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ABSTRACT 

 

Kittur, Hummel and Holyoak (2004) showed that people have great difficulty learning relation-

based categories with a probabilistic (i.e., family resemblance) structure. In Experiment 1, we 

investigated interventions hypothesized to facilitate learning family-resemblance relational 

categories. Changing the description of the task from learning about categories to choosing the 

“winning” object in each stimulus had the greatest impact on subjects’ ability to learn 

probabilistic relation-based categories. Experiment 2 tested two hypotheses about how the 

“who’s winning” task works. The results are consistent with the hypothesis that the task invokes 

a “winning” schema that encourages learners to discover a higher-order relation that remains 

invariant over members of a category. Experiment 3 reinforced and further clarified the nature of 

this effect. Together, our findings suggest that people learn relational concepts by a process of 

intersection discovery akin to schema induction, and that any task that encourages people to 

discover a higher-order relation that remains invariant over members of a category will facilitate 

the learning of putatively probabilistic relational concepts.  
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CHAPTER 1 

INTRODUCTION 

We use categories to have a better understanding of the world. They allow us to 

generalize knowledge from one situation to another, to decide which objects in the world are 

fundamentally the same, and to infer the unseen properties of novel category members (Kittur, 

Hummel, & Holyoak, 2009). Relational concepts also play a central role in human mental life 

(Gentner, 1983; Holland, Holyoak, Nisbett, & Thagard; Holyoak & Thagard, 1995; Hummel & 

Holyoak, 2003). Such concepts specify the relations among two or more things rather than just 

the literal features of those things. For example, the concept ‘mother’ is defined by the 

relationship between the mother and her child, not by her status as a female or an adult. 

Relational categories abound in ordinary language (Gentner, 2005). Asmuth and Gentner (2005) 

showed that informal ratings of the 100 highest-frequency nouns in the British National Corpus 

revealed that about half refer to relational concepts, such as ‘barrier’, ‘gate’, ‘conduit’, and 

‘bridge’.  

The study of human concepts has focused largely (although not exclusive) on category 

learning, the intuition being that understanding how people acquire concepts (i.e., mental 

representations of categories) can shed light on the nature of those concepts. However, in spite of 

their importance, comparatively little research has investigated the acquisition of relational 

categories. Rather, research on category learning has focused almost exclusively on how people 

learn categories defined by their exemplars’ features.   

One of the most robust findings from this literature is that human concepts have a family 

resemblance structure (e.g., Kruschke, 1992; Kruschke & Johansen, 1999; Rosch & Mervis, 

1975; Shiffrin & Styvers, 1997; Smith & Medin, 1981), such that every member of a category 
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tends to share features with other members of the category but there need not be any single 

defining feature that is shared by all category members. To the extent that relational concepts are 

qualitatively similar to feature-based concepts, our understanding of concepts can be expected to 

generalize from the (extensively investigated) case of feature-based categories to the (largely 

neglected) case of relational categories. But as elaborated shortly, there is reason to believe they 

are not, casting doubt on our ability to generalize our conclusions from studies using feature-

based categories to the case of relational concepts. 

We begin with an overview of the literature on feature-based and relational categories. 

The conclusion of this review is that relational categories, in contrast to feature-based categories, 

may not be learnable when they have a family-resemblance structure (see also Gentner & Kurtz, 

2005; Kittur, Holyoak & Hummel, 2006; Kittur, Hummel & Holyoak, 2004). We then report the 

results of three experiments investigating the conditions under which people can (and cannot) 

learn relational categories with a family-resemblance structure. Our findings suggest that the best 

way to make family-resemblance relational categories learnable is to structure the learning task 

in a way that endows the to-be-learned relational categories with a higher-order relation that 

remains invariant over members of a category—i.e., to endow them with a deterministic, rather 

than a family resemblance, structure. 

Feature-based Categories and Prototype Effects 

The idea that concepts have a family-resemblance structure is the accepted wisdom in 

cognitive psychology, but this was not always the case. The “classical” view of concepts—which 

was dominant since the time of the ancient Greek philosophers—held that concepts specified the 

necessary and sufficient conditions for category membership (see, e.g., Bruner, Goodnow & 

Austin, 1956). For example, the concept of a triangle specifies that it is a two-dimensional 
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geometric form consisting of three straight lines that meet at angles summing to 180 degrees. 

However, Wittgenstein (1953) famously refuted this idea, pointing out that people cannot 

provide such definitions for many ordinary categories, such as “game” (an argument later 

empirically supported by Hampton, 1981, 1995). 

This failure of the classical view gave rise to the idea that concepts have a family 

resemblance structure. Instead of a definition, the mental representation of a category was 

assumed to be either a prototype or a collection of stored exemplars consisting of probabilistic 

clusters of features (e.g., Rosch & Mervis, 1975; Medin & Schaffer, 1978). This idea motivated 

an explosion of experiments investigating prototype effects in artificial categories constructed to 

have a family-resemblance structure. One of the most powerful findings from these experiments 

is that people are capable of learning categories with a family resemblance structure (e.g., 

Kruschke, 1992; Kruschke & Johansen, 1999; Rosch & Mervis, 1975; Shiffrin & Styvers, 1997; 

Smith & Medin, 1981). The “prototype” effects that result from such learning—such as our 

ability to learn a category prototype from the exemplars without ever seeing the prototype itself, 

and the tendency to judge the (unseen) prototype as the “best” member of the category—are so 

robust that they led Murphy (2002) to quip that any category learning experiment that fails to 

demonstrate prototype effects is suspect. And it is hardly possible to teach a course on cognitive 

psychology without talking about prototype effects: They are among the most ubiquitously 

observed and widely accepted effects in cognitive psychology (see Murphy, 2002).  

However, one limitation of these experiments is that they have universally been 

conducted using categories defined by their exemplars’ features (see Kittur et al., 2004). But as 

pointed out by numerous researchers, categories defined by simple lists of features are not 

representative of human concepts (see e.g., Gentner, 1983). Keil (1986, 1989) showed that the 
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surface features of an object could be dramatically changed without changing its classification. 

For example, people consider a skunk painted and trained to climb trees like a raccoon to still be 

a skunk, not a raccoon.  

Similarly, greater featural overlap does not inevitably result in increased probability of 

classification as a category member. Malt (1991) demonstrated that people classify liquids with 

many other substances in them as “water” (e.g., swamp water), whereas they do not classify 

many liquids that are mostly H2O as “water” (e.g., juices or sodas). When Rips (1989) asked 

participants to judge an ambiguous circle that was half way between a quarter and a pizza in size, 

they judged it to be more similar to a quarter, yet more likely to be a pizza. Gelman and 

Markman (1986) reported similar results with children, in that children’s inductive inferences 

(about what an animal would feed its babies) were driven more by the animal’s category 

membership than by its perceptual features. 

One implication of these studies is that human concepts specify not just the features of 

categories and their members, but also relations, both between the features of a category (e.g., 

only if a bird can fly does it also live in trees) and between members of one category and the 

members of others (e.g., a mother and her child stand in a particular kind of relation to one 

another). For our current purposes, the crucial difference between a feature and a relation is that 

a feature is a property of a single entity, whereas the value of a relation cannot be determined 

without reference to two or more entities. For example, a “feature” of a given circle may be that 

it is two inches in diameter; however, whether the circle is larger or smaller than another circle 

(a relational property) cannot be known without also knowing the size of the other circle (see 

also Barr & Caplan, 1987).  
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Relational Categories 

There are known differences between featurally-defined and relationally-defined 

categories. Prior work on relational categories has distinguished between perceptual features and 

functional features (Bruner, Olver, & Greenfield, 1966; Miller & Johnson-Laird, 1976) and 

between concrete and abstract features (e.g., Paivio, 1971). Barr and Caplan (1987) explored the 

distinction between intrinsically represented and extrinsically represented categories. They 

defined an intrinsic feature as one that is true of an entity considered in isolation (such as "has 

wings" for a bird) and an extrinsic feature as one expressing the relationship between two or 

more entities (e.g., "used to work with" for a hammer). Using a variety of converging measures, 

they divided their 13 categories into an intrinsically based set (in our terms, feature categories: 

mammals, birds, flowers, fruit, vegetables and trees) and an extrinsically based set (relational 

categories: weapons, vehicles, furniture, toys, tools, and sports) with one intermediate category 

(clothing). Barr and Caplan (1987) found that subjects’ responses on a category membership 

judgment task (e.g., “is an x a y?”) had greater variance (less between-subjects agreement) for 

relational categories than for featural categories. 

Barsalou's (1983, 1985) ad-hoc categories, such as "things to take out of the house in case 

of fire," can also be seen as relational categories. The members of such categories typically lack 

intrinsic (i.e., featural) similarity. For example, "things to take out of the house in case of fire" 

includes such diverse exemplars as pets, family photos, checkbooks, laptops, and so forth (see 

also Estes, Golonka & Jones, 2011, for a discussion of thematic relations). In a delightfully 

circular way, the only “feature” the members of this category have in common is that they are all 

things to take out of the house in case of fire. In contrast to the members of feature-based 

categories, which have a graded structure around a central tendency (i.e., the prototype), 
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Barsalou (1985) found that ad-hoc categories show a graded structure around an ideal (properties 

that optimally promote goal resolution). For example, a food with zero calories for “foods to eat 

when on a diet”. The centrality of a specific goal suggests that relational category representations 

may have a relatively sparse, rule-like nature (e.g., see also Kittur et al., 2004; Kittur et al., 

2006). 

Rehder & Ross (2001) investigated a kind of relational category they termed abstract 

coherent categories and found that such categories can be acquired on the basis of relationships 

that are orthogonal to the specific attributes of exemplars, as long as the relationships arise in a 

manner consistent with prior expectations. In their study, they presented three exemplars of the 

abstract coherent category “morkels”. For example, one morkel “operates on the surface of 

water, works to absorb spilled oil, coated with spongy material,” while another “operates on 

land, works to gather harmful solids, has a shovel”. The members of this category lack featural 

overlap but take their structure from systems of features that support a common abstract relation 

(i.e., that a morkel’s features work sensibly together to satisfy a goal).  

Another kind of relational category is Markman and Stilwell's (2001) role-governed 

categories. Role-governed categories are categories defined by the role an item plays in a more 

global relational structure. Examples include private (the military rank), mother, mentor, boss, 

and so on. Whether someone is a private in the army depends on their relative position in the 

military hierarchy. Having a single stripe on his or her uniform sleeve may be necessary to 

recognize a private, but although these features are useful for recognizing whether someone is a 

private, they are not critical for membership in the category private (e.g., if I were to put a stripe 

on my sleeve, that would not render me a private) (Markman & Stilwell, 2001). It is in this sense 

that private is a role-governed category. Although Markman and Stilwell distinguish role-
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governed categories (which are defined by an exemplar’s occupying a particular relational role) 

from relational categories (which, in their terminology refers only to categories defined by 

complete relations rather than relational roles, e.g., robbery, betrayal, and slavery) what is 

important for our current purposes is that both are defined relationally rather than featurally; as 

such, in our parlance both are relational. 

Gentner and her colleagues (Anggoro, Gentner, & Klibanoff, 2005; Gentner, 2005; 

Gentner & Kurtz, 2005) have also investigated relational categories. They compared traditional 

entity categories with relational categories. According to their definition, entity categories can 

thought of as first-order partitions of the world (e.g., Gentner, 1982) and relational categories as 

second-order ways of organizing and linking those first-order partitions (Gentner & Kurtz, 

2005). Entity categories such as dog or rose share intrinsic features among the members, often 

including perceptual commonalities (Gentner, 2005). For example, dogs are characterized by 

four legs, a tail, fur, a bark, and so on. By contrast, for members that enter into relational 

categories, there exists no obvious intrinsic similarities among members. They are connected by 

a sparse relational structure. For example, landlords are defined by the rental relations between a 

tenant and a landlord, not by perceptual features that landlords have in common. 

Like Markman and Stilwell (2001), Gentner and Kurtz (2005) also noted that relational 

categories can be divided into relational role categories (Markman & Stilwell’s role-goverend 

categories) and relational schema categories (Markman & Stilwell’s relational categories); but 

like us, they emphasize the fact that both are inherently relational in nature. Gentner (1982) 

compared entity categories with relational categories using an exemplar generation task and 

found that not only were people less fluent at generating members of relational categories, they 

were also less able to guess the category given the exemplars. This result, along with the findings 
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of Barr and Caplan (1987), suggests that, although relational categories play a central role in our 

mental lives, they are generally more abstract and more variable across individuals. Thus they’re 

more difficult to reason about than featural categories.  

Thematic relations can be seen as yet another kind of relational category. A thematic 

relation is any temporal, spatial, causal or functional relation between things that perform 

complementary roles in the same scenario (Estes, Golonka & Jones, 2011, Golonka & Estes, 

2009; Lin & Murphy, 2001; Wisniewski & Bassok, 1999). Examples of thematic relations 

include the relation between bees and honey and the relation between coffee and cream. 

Thematic relations are external in that they occur between multiple objects, concepts, people or 

events and complementary in the sense that the arguments of a thematic relation fill 

complementary roles of the relation (e.g., bees do the making and the honey gets made; Estes et 

al., 2011). In this way, the arguments of a thematic relation differ from members of an ad-hoc 

category: There is no sense in which the members of an ad-hoc category are bound to 

complementary roles. The sense in which thematic relations form (typically very small) 

categories is that the arguments of a thematic relation can be viewed as the “members” of the 

category. 

What Must Be Explained? 

In reviewing the literature on prototype effects, Kittur et al. (2004) noticed that all 

the studies reporting prototype effects had used category structures defined by their 

members’ features. For example, if the categories to be learned were fictional animals 

then they might be defined by features such as the shape of the head, the shape of the tail, 

etc. Similarly, the vast majority of models of category learning and categorization assume 

that we represent categories and exemplars as lists of features and assign exemplars to 
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categories by comparing their features (see Kittur et al. for a review). As Kittur et al. 

observed, this reliance on feature-based categories is a limitation inasmuch as many 

natural concepts and categories are based exclusively on relations.   

 The importance of relational categories in human cognition, in combination with their 

under-representation in one of the largest literatures in cognitive psychology, led Kittur et al. 

(2004) to pose the following question: Can we observe prototype effects with relational 

categories? That is, if the categories to be learned are defined by the relations between the 

exemplars’ features, rather than the literal features themselves, can human subjects learn 

categories with a family resemblance structure? And if they do, what will the resulting 

prototypes be like? Kittur et al. never got an answer to the second question because the answer to 

the first question turned out to be a resounding no: Using a 2 X 2 design crossing category 

structure (family resemblance, in which no single feature or relation always predicted category 

membership, vs. deterministic, in which one feature or relation remained invariant across all 

exemplars of a category) with defining property (exemplar features vs. relations between those 

features), Kittur et al. found that subjects in the relation/family resemblance condition found 

category learning much more difficult than subjects in the other conditions (an effect that Kittur 

et al., 2006, used ideal observer analysis to demonstrate is probably not attributable to the formal 

difficulty of the task itself); indeed, the majority of the subjects in the relation/family 

resemblance condition failed to reach criterion even after 600 trials of training.  

  Kittur at al. (2004, 2006) interpreted their findings in terms of the LISA model of 

schema induction (Hummel & Holyoak, 2003). Specifically, they reasoned that if a relational 

category is represented as a schema, as has been proposed by others (e.g., Barsalou, 1993; 

Gentner, 1983; Holland, Holyoak, Nisbett, & Thagard, 1986; Keil, 1989; Murphy & Medin, 
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1985; Ross & Spalding, 1994), and if schemas are learned by a process of intersection discovery, 

which  keeps what the examples have in common and discards details on which they differ (as 

proposed by Hummel & Holyoak, 2003; see also Doumas, Hummel & Sandhofer, 2008), then 

learning probabilistic relational categories ought to be extremely difficult because the 

intersection of the examples is the empty set (i.e., there is no single relation shared by all 

category members).  

In the research reported here, we sought to better understand the difficulty of learning 

relational categories with a family resemblance structure by investigating circumstances that 

might make them easier to learn. Experiment 1 tested three not-mutually-exclusive hypotheses 

about what makes family resemblance relational categories difficult to learn. The results suggest 

that recasting the category learning task as a task that encourages subjects to discover a higher-

order relation that remains invariant across members of a category (namely, as a task that 

required subjects to learn which part of each exemplar was “winning”) greatly facilitated 

probabilistic relational category learning. Experiment 2 investigated the reasons for this “who’s 

winning” effect and the results suggest that the effect results from a combination of both general 

factors, not specific to winning per se, and winning−specific factors. Experiment 3 replicated and 

extended Experiment 2. The results of all three experiments suggest that the best way to make a 

probabilistic relational category learnable is to structure the learning task in such a way as to 

render the category structure effectively deterministic. 
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CHAPTER 2 

EXPERIMENT 1 

Experiment 1 served as an initial investigation of the factors that might make 

probabilistic relational categories learnable and was motivated by two broad hypotheses. The 

first (which subsumes two more specific hypotheses as elaborated shortly) was that subjects may 

simply be biased against learning probabilistic relational categories—or that learning such 

categories may simply be more difficult (although not qualitatively different) than learning 

featural categories. As a test of this hypothesis, we manipulated how explicit the instructions 

were about the fact that the categories were relational and how explicit they were about the fact 

they were probabilistic. To the extent that subjects are biased against expecting categories to be 

relational or probabilistic, instructions directing them to expect probabilistic relational categories 

may improve learning relative to a neural instruction baseline. The second broad hypothesis was 

that, if relational categories are learned by a process akin to schema induction, then changing the 

task from a category learning task to a task that can help subjects find a (higher-order) relation 

that remains invariant over category members should improve performance relative to a category 

learning baseline. 

    Following Kittur et al. (2004), each of our exemplars was composed of two shapes: a 

square and a circle. (Kittur et al. used an octagon rather than a circle, and they placed their 

stimuli on a background designed to resemble a “computer chip” whereas we did not, but the 

stimuli are otherwise isomorphic). In each exemplar, one of the two shapes was larger than the 

other, one was darker, one was in front, and one was above the other (Figure 1). In the prototype 

of category A (never seen by subjects), the circle was larger, darker, above and in front of the 

square; in the prototype of category B, the square was larger, darker, above and in front of the 
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circle. In any given exemplar seen by a subject, exactly three of these relations were shared with 

the prototype of the exemplar’s category and one was shared with the prototype of the opposite 

category (e.g., an exemplar of A might have the circle larger, darker and above [A-prototype 

relations] but behind [a B-prototype relation] the square).  

  The first hypothesis we explored is that people are simply biased toward learning based 

on features rather than relations. To test this hypothesis, one factor varied whether the 

instructions explicitly stated which relations were relevant to category membership. To the 

extent that the results of Kittur et al. (2004) reflect a bias against using relations for 

categorization, naming the relations and thus pointing out that relations, rather than features are 

relevant, should facilitate category learning. 

  The second hypothesis we tested was that, rather than being unable to learn relational 

categories with a family resemblance structure, people are simply biased against assuming that 

relational categories will have a family resemblance structure. That is, faced with relational 

categories, perhaps people simply assume that those categories will have some defining (i.e., 

deterministic; invariant) relation—for example, an essence (see Gelman, 2000; 2004; Keil, 1989; 

Medin & Ortony, 1989)—that is shared by all members of the category, and that this assumption 

caused Kittur et al.’s subjects to adopt a suboptimal learning strategy. To test this hypothesis, the 

second factor varied whether subjects were informed about the probabilistic category structure. 

In the clue condition the instructions explicitly informed subjects that no single property would 

always work as the basis for categorizing the exemplars. In the no clue condition, no such clue 

was provided. To the extent that subjects are biased against assuming a family resemblance 

category structure given relational categories, providing this clue should help them to adopt a 

more appropriate learning strategy, especially when the relations were also named.  
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  Our final hypothesis started with Kittur et al.’s (2004) conclusion: If it is difficult to 

learn relational categories that have a family resemblance structure, then anything that 

encourages subjects to discover a property—e.g., a higher-order relation over the first-order 

relations—that does remain invariant across all members of a category ought to substantially 

improve relational category learning (since the categories, although probabilistic in the first-

order relations, would now be deterministic in the higher-order relation). To test this hypothesis, 

in the categorize condition, subjects were instructed to learn the category of each stimulus, as in 

Kittur et al. In the who’s winning condition, we told subjects they would see displays consisting 

of a circle and a square, and that in each display “either the circle is winning or the square is 

winning,” and that their task was to figure out which one was winning. In all other respects, the 

who’s winning task was identical to the categorize task: In any stimulus that would be correctly 

categorized as a member of category A, the circle was “winning”, and in any stimulus that would 

be categorized as a B, the square was “winning.”  

  The “who’s winning” task could encourage subjects to discover an invariant that holds 

across members of a “category” by invoking schemas for winning and losing. Such a schema 

might encourage subjects to predicate a higher-order relation of the form “more winning roles on 

the circle/square,” which would remain invariant over members of a category. If this happens, 

then even though no (nominally relevant) first-order relation remains invariant over members of 

a category, the higher-order relation would. If the presence of an invariant is the key to the 

learnability of relational categories (as concluded by Kittur et al., 2004), then subjects in the 

who’s winning condition might learn faster than those in the categorize condition. 
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Method 

Participants. A total of 154 subjects participated in the study for course credit. Each 

participant was randomly assigned to one of the eight conditions. 

Materials. Each trial presented a single exemplar consisting of a gray circle and a gray 

square in the middle of the computer screen (although both figures were gray, they could be 

darker or lighter shades of gray). The properties of the exemplars were determined by a family 

resemblance category structure defined over the relevant first-order relations. The prototypes of 

the categories were defined as [1,1,1,1] for category A and [0,0,0,0] for B, where [1,1,1,1] 

represents a circle larger, darker, on top of, and in front of a square and [0,0,0,0] represents a 

circle smaller, lighter, below and behind a square. Exemplars of each category were made by 

switching the value of one relation in the prototype (e.g., category A exemplar [1,1,1,0] would 

have the circle larger, darker, on top of and behind the square). Two variants of each logical 

structure were constructed by varying the metric properties size and darkness, respecting the 

categorical relations larger and darker, resulting in eight exemplars per category.  

Design. The experiment used a 2 (relations named vs. not named) X 2 (clue vs. no clue) 

X 2 (categorize vs. who’s winning task) between-subjects design.  

Procedure. Participants were first given instructions to categorize the stimuli (categorize 

condition) or decide whether the circle or square was winning (who’s winning task), which either 

named the relevant relations (relations named) or not (not named) and either provided the “no 

single property will always work” clue (clue condition) or not (no clue). After the instructions, 

the procedure was identical across all conditions. Trials were presented in blocks of 16, with 

each exemplar presented in a random order once per block. In the categorize condition, subjects 

were instructed to press the A key if the stimulus belonged to category A or the B key if it 
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belonged to B; in the who’s winning condition, they were instructed to press A if the circle was 

winning and B if the square was winning (i.e., the stimulus-response mapping was identical 

across tasks, since in all members of A the circle “wins” and in all members of B the square 

“wins”). Each exemplar remained on the screen until the participant responded. Responses were 

followed by presentation of the correct category label or winning shape. The experiment 

consisted of 60 blocks (960 trials) and continued until the participant responded correctly on at 

least fourteen of sixteen trials (87.5% correct) for two consecutive blocks or until all 60 blocks 

had transpired, whichever came first. At the end of the experiment participants were queried 

about the strategies they had used during the experiment.   

Results 

Trials to criterion. Since our primary interest is the rate at which participants learn the 

categories, we report our data first in terms of trials to criterion. These analyses are biased 

against our hypotheses in the sense that participants who never learned to criterion were treated 

as though they had reached criterion on the last block. Figure 2 shows the mean trials to criterion 

by condition. A 2 (relations named vs. not named) × 2 (clue vs. no clue) × 2 (categorize vs. 

who’s winning) between-subjects ANOVA revealed a main effect of task [F(1, 145) = 25.826, 

MSE = 2,267,729, p < 0.001], reflecting the fact that participants took reliably fewer trials to 

reach criterion in the who’s winning condition (M = 211, SD = 261) than in the categorize 

condition (M = 453, SD = 339). No other main effects were statistically reliable. However, there 

was a reliable interaction between relations named and clue, indicating that the effect of 

providing the clue was more pronounced for relation not named than for relations named [F(1, 

145) = 5.98, MSE = 525,066, p < 0.05]. Finally, there was a reliable three-way interaction 

between relations named, clue, and task [F(1, 145) = 4.10, MSE = 359,946, p < 0.05]. As shown 
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in Figure 2, relation naming interacted with the clue differently across the two tasks. With the 

who’s winning task, the effect of the clue was roughly equivalent to the effect of naming the 

relations, with each reducing trials to criterion. By contrast, for participants given the categorize 

task, naming the relations without providing the clue and providing the clue without naming the 

relations were both beneficial relative to doing neither (although these trends did not reach 

statistical reliability in our sample); but both naming the relations and providing the clue together 

did not facilitate category learning, and in fact the trend went in the opposite direction.  

Of particular interest is the fact that the condition that gave rise to the worst performance 

with the categorize task (and overall)—specifically, relations named and clue, with only 50% of 

participants learning to criterion (and a mean of 623 trials to criterion)—gave rise to the best 

performance with the who’s winning task (and overall), with 95% of participants learning to 

criterion (and a mean of 160 trials to criterion). We address the possible reasons for this effect in 

the Discussion. 

Survival function. We also analyzed how many participants reached criterion by the end 

of each block. The resulting survival functions for the who’s winning and categorize conditions 

are shown in Figure 3. (A participant’s having “survived” on a given block means they had not 

yet reached criterion by that block. Participants who survived to block 60 never reached 

criterion.) As shown in Figure 3, a higher proportion of participants reached criterion in the 

who’s winning condition than in the categorize condition, and they did so much faster. 

Response times. Since participants in the categorize, relations named, and clue condition 

required so many more trials to reach criterion than participants in the who’s winning, relations 

named and clue condition, we also analyzed these conditions in terms of participants’ mean 

response times on individual trials in order to gain insight about the strategies participants in 
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these conditions may have adopted. Response times in the categorize, relations named, and clue 

condition (M = 1.69 s) were reliably shorter than those in the who’s winning, relations named, 

and clue condition (M = 3.31 s) [t(35) = -4.45, p < 0.001]. As elaborated in the Discussion, these 

data suggest that participants in the former condition were attempting to categorize the stimuli 

based on their features, whereas those in the latter were attending to the exemplars’ relations, 

including, potentially, higher-order relations. 

Discussion 

The results of Experiment 1 showed that recasting category learning as a “who’s 

winning” task substantially improved participants’ ability to learn probabilistic relational 

categories. For subjects given the “who’s winning” task, other factors that might sensibly be 

expected to improve learning—specifically, naming the relevant relations and informing 

participants that no single relation will work every time—seemed to improve performance 

(although not all these trends were statistically reliable in our data). Surprisingly, when 

combined, these factors did not improve the learning of participants charged with the (formally 

equivalent) task of categorizing the stimuli: Although each factor individually seemed to 

improve learning of our probabilistic relational categories, when combined they impaired 

learning.  

   The reasons for this trend are not entirely clear, but it is consistent with the pattern that 

would be expected if participants in the categorize, relations named, and clue condition were 

attempting to categorize the exemplars based on their features rather than the relations between 

the circle and square. This conclusion is supported by the fact that response times were fastest in 

the categorize, relations named, and clue condition (1.69 s per trial) and slowest in the who’s 

winning, relations named, and clue condition (3.31s per trial). A post-hoc analysis of 
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participants’ end-of-experiment self-reports also supports this conclusion: Participants in the 

relations named, clue and categorize condition named stimulus features rather than dimensions 

or relations more often than participants in any of the other conditions (19 times vs. a mean of 

8.29 times [SD = 4.39] across the other conditions).  

  These patterns suggest that participants in Experiment 1’s categorize, relations named, 

and clue condition may have abandoned the use of the first-order relations as the basis for 

categorization and, rather than discovering a useful higher-order relation, simply retreated to a 

strategy based on the exemplars’ features. At the same time, however, it remains unclear why 

only the participants in this condition would resort to this maladaptive strategy. Perhaps being 

told what the relevant relations were, in combination with the clue that no single one of them 

would work every time, had the counterproductive effect of helping these participants know 

which relations to ignore in their categorizations.  

  More important for our current purposes is the fact that, as predicted, changing the task 

from a category learning task to a “who’s winning” task substantially improved our participants’ 

ability to discover what separated stimuli requiring an “A” response from those requiring a “B” 

response. Experiment 2 investigated the origin of the winning effect by comparing it to related 

tasks. Our second study also provided an opportunity to replicate the basic findings of 

Experiment 1. 
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CHAPTER 3 

EXPERIMENT 2 

The most striking result in Experiment 1 was the main effect of the who’s winning vs. 

categorize tasks. Accordingly, Experiment 2 sought to further elucidate the reasons for this 

effect. Specifically, Experiment 2 tested two not-mutually-exclusive hypotheses about how the 

who’s winning task facilitates learning of probabilistic relational categories: the comparison 

hypothesis and the specific role of the winning schema itself.                                                                                

  Our first hypothesis was that the who’s winning task might facilitate learning simply by 

encouraging subjects to compare the circle and square in some manner that the category learning 

task does not. For example, perhaps subjects in the who’s winning condition represented the 

circle and square as separate objects and doing so facilitated learning by encouraging them to 

compare them to one another. On this account, any task that encourages subjects to represent the 

circle and square as separate objects engaged in a relation (like winning/losing) ought to 

facilitate learning. For example, asking subjects “who’s daxier?” should encourage the same kind 

of comparison as “who’s winning?” and result in a comparable improvement over “to which 

category does this example belong?”. 

  Our second hypothesis was that a schema for what “winning” consists of may facilitate 

learning by encouraging subjects to count the number of “winning” roles (i.e., “points”) bound to 

the circle and the square and to declare whichever part has more winning roles the winner. On 

this account, the effect of “who’s winning” reflects the operation of the “winning” schema, per 

se, rather than simply the effect of comparisons encouraged by instructions that suggest the circle 

and square are separate objects.  
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  Where these hypotheses make divergent predictions is in the potential role of role 

alignment in the effect. The instructions refer to the relevant relations by naming one role of 

each: Subjects are told that one shape will be darker, one will be larger, one will be above and 

one will be in front. Implied, but not stated, is that therefore, one will be lighter, one smaller, one 

below and one behind. Perhaps naming darker, larger, above and in front somehow marks them 

as the “winning” roles, leaving lighter, smaller, below and behind to be the “losing” roles. If so, 

then to the extent that the effect is due to the involvement of the “winning” schema, per se, then 

having the roles aligned within categories (i.e., such that the “winning” shape is the one with the 

most named [i.e., “winning”] roles) ought to lead to faster learning than having the roles 

misaligned (e.g., such that the “winning” shape that the one that has 3/4 of larger and in front 

[named, “winning” roles] and lighter and below [unnamed, “losing” roles]). By contrast, to the 

extent that the effect of “who’s winning” simply reflects the role of comparison, then role 

alignment vs. misalignment should make little difference to the rate of learning. A third 

possibility, of course, is that both hypotheses are correct, in which case we would expect to see 

facilitatory effects of both comparison (i.e., “who’s daxier?” or “who’s winning?” vs. “what 

category?”) and, in the case of “who’s winning?”, role alignment. 

Experiment 2 tested both hypotheses by orthogonally crossing task (categorize vs. who’s 

daxier vs. who’s winning) with role alignment (aligned vs. misaligned). In all other respects, 

Experiment 2 was an exact replication of the conditions in Experiment 1 in which participants 

were informed of what the relevant relations were and that no single relation would work every 

time. 
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Method 

Participants. Participants were 105 undergraduates who participated for course credit. 

Each participant was randomly assigned to one of the six conditions. 

Materials. There were two types of stimuli: In the aligned roles condition, the prototypes 

were identical to those of Experiment 1. In the misaligned condition, the named roles were 

mixed across the prototypes of A and B (categorize condition), the “daxier” shape (daxier 

condition) or the “winning” shape (winning condition). The precise mixing of roles was counter 

balanced: In one case, the category A /“daxier”/ “winning” prototype was larger, lighter, below 

and in front; in the other it was smaller, darker, above and behind (where larger, darker, above 

and in front were named in the instructions and were thus presumably the “winning” roles).     

Design. The experiment used a 3 (categorize vs. who’s daxier vs. who’s winning task) X 

2 (aligned vs. misaligned roles) between-subjects design.  

Procedure. The procedure was identical to that of Experiment 1. Participants were first 

instructed to categorize the stimuli (categorize condition), decide whether the circle or square 

was daxier (who’s daxier condition) or decide whether the circle or square was winning (who’s 

winning condition). All instructions named the relevant relations and gave the “no single 

property will always work” clue.  

Results 

Trials to criterion. The analyses of trials to criterion are conservative in the same sense 

as in Experiment 1. The trials to criterion data are shown in Figure 4. A 3 (categorize vs. daxier 

vs. winning) × 2 (aligned vs. misaligned) between-subjects design ANOVA revealed a main 

effect of task [F(2, 99) = 11.352, MSE = 1,158,433, p < 0.001]. As in Experiment 1, participants 

reached criterion in fewer trials in the who’s winning task (M = 330, SD = 342) than in the 
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categorize task (M = 699, SD = 317) (by Tukey’s HSD, p < 0.01). Participants given the who’s 

daxier task (M = 492, SD = 318) took reliably fewer trials to reach criterion than those in the 

categorize task (M = 699, SD = 317) (by Tukey’s HSD, p < 0.05). Participants given the who’s 

winning task took fewer trials to reach criterion those given who’s daxier (by Tukey’s HSD, p < 

0.05). There was also a reliable main effect of alignment [F(1, 99) = 4.701, MSE = 479,678, p < 

0.05]. As expected, participants in the aligned conditions (M = 381, SD = 360) reached criterion 

faster than those in the misaligned conditions (M = 521, SD = 341). This difference between 

aligned (M = 206, SD = 279) and misaligned (M = 468, SD = 359) was reliable only in the who’s 

winning condition [t(36) = -2.534, p < 0.05].                                                      

Response times. As in Experiment 1, we analyzed response times on individual trials. 

There was a reliable effect of task [F(2,99) = 9.296, MSE = 13.588, p < 0.001] such that RTs in 

who’s winning (M = 2.96,  SD = 1.48) were reliably longer than in categorize (M = 1.66, SD = 

0.75) (by Tukey’s HSD, p < 0.001) and RTs in who’s daxier  (M = 2.55, SD = 1.18) were 

reliably longer than in categorize (by Tukey’s HSD, p < 0.05). The main effect of aligned (M = 

2.56, SD =1.45) and misaligned (M = 2.36, SD = 1.14) was not reliable (F(1, 99) = 0.402, MSE = 

0.588, p = 0.527). Experiment 2 thus showed a speed-accuracy tradeoff similar to that observed 

in Experiment 1. 

Discussion 

     The results of Experiment 2 are consistent with both our hypothesized explanations of 

the effect of “who’s winning” in Experiment 1. The fact that who’s daxier resulted in faster 

learning than categorize in both the aligned and misaligned conditions is consistent with the 

hypothesis that who’s winning (like who’s daxier) encourages subjects to compare the circle and 

square in a way that categorization does not. This hypothesis is further supported by the fact that 
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subjects in the misaligned winning condition performed similarly to those in the daxier condition 

and better than those in the categorize condition. At the same time, the fact that subjects in the 

aligned winning condition learned faster than those in either the misaligned winning or daxier 

conditions is consistent with a winning-schema-specific effect. Together, the results of 

Experiments 1 and 2 suggest that an effective way to help people learn relational categories with 

a probabilistic structure is to recast the learning task in a form that encourages them to discover a 

higher-order relation that remains invariant over members of a category. 
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CHAPTER 4 

EXPERIMENT 3 

The results of Experiments 1 and 2 suggest that finding an invariant higher-order relation 

is extremely helpful to learning relational categories with a probabilistic structure and that the 

who’s winning task also plays an important role in finding such an invariant with our stimuli. 

Experiment 2 also demonstrated that simply having a task that encourages subjects to think of 

the circle and square as separate objects (the who’s daxier task) is not, by itself, sufficient to 

achieve the same degree of facilitation as enjoyed by subjects given the who’s winning task. By 

itself, however, the difference between who’s winning and who’s daxier is not sufficient to 

conclude that something like a “winning schema” is responsible for subjects’ superior 

performance in the who’s winning condition than in the categorize condition.  

Specifically, there are at least two additional differences between who’s winning and 

who’s daxier that could account for the superior performance in the former condition: First, the 

question who’s winning? is simply more meaningful than the question who’s daxier?, so it is at 

least logically possible that this difference in meaningfulness somehow led to better performance 

in the who’s winning condition. And second, asking “who’s winning?” implies that whoever is 

not winning is losing. That is, the two roles of the winning/losing relation have opposite valence. 

Perhaps it is something about relational roles with opposite valence, rather than winning per se, 

that encourages subjects to invoke a schema that facilitates the discovery of an invariant higher-

order relation with our stimuli. 

 Experiment 3 was designed to tease apart these possibilities. Subjects performed one of 

five different tasks: The categorize, who’s winning and who’s daxier tasks were the same as in 

Experiment 2. In addition, one group of subjects was asked to learn “which one would Britney 
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Spears like?”  We chose this task because, like who’s winning and who’s daxier, it encourages 

subjects to think of the circle and square as separate objects. And like who’s winning, but unlike 

who’s daxier, its roles have opposite valence (presumably it is “good” to be liked by Britney and 

bad not to be liked by her) and it has meaning. A fifth group of subjects were asked to learn 

“which one comes from Nebraska”.  This task shares the comparative property of winning, 

daxier and Britney and it has semantic content, like winning and Britney, but presumably lacks 

strong differences in valence across its roles (i.e., it is presumably neither particularly good nor 

particularly bad to be from Nebraska). These properties of our five tasks are summarized in 

Table 1.        

To the extent that simply having semantic content is sufficient to account for the 

difference between who’s winning and who’s daxier, performance in the Britney and Nebraska 

conditions should resemble performance in who’s winning and be better than performance in 

who’s daxier.  To the extent that having asymmetrical valence across relational roles is 

sufficient, performance in Britney should resemble that in who’s winning but performance in 

Nebraska should resemble performance in who’s daxier. 

In addition, as in Experiment 2, we crossed the five learning conditions orthogonally with 

role alignment vs. misalignment as an additional check on their similarity to who’s winning or 

who’s daxier. To the extent that Britney vs. Nebraska are like who’s winning vs. who’s daxier 

they should show the same patterns of sensitivity vs. insensitivity to role alignment. 

Method 

Participants. 191 undergraduates participated in the experiment to fulfill a course 

requirement. Each participant was randomly assigned to one of the 10 conditions.  
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Materials. The same stimuli used in Experiments 1 and 2 were in Experiment 3. The 

prototypes and category structures were identical to those of Experiment 2.  

Design. The experiment used a 5 (categorize vs. who’s daxier vs. which one comes from 

Nebraska vs. which one would Britney Spears like vs. who’s winning ) X 2 (aligned vs. 

misaligned roles) between-subjects design.  

Procedure. Aside from the instructions in the Britney and Nebraska conditions, the 

procedure was identical to that of Experiment 2.  

Results 

Trials to criterion. We conducted A 5 tasks (categorize vs. daxier vs. Nebraska vs. 

Britney vs. winning) X 2 alignment (aligned vs. misaligned roles) ANOVA, but Levene’s test 

(Levene, 1960) for equality of variance revealed a significant difference in variance across five 

groups in the trials to criterion (p < 0.001). The frequency results of trials to criterion across 

groups were positively skewed. Thus, the data were log transformed to normalize the skewed 

distributions. After this transformation, a 5 tasks (categorize vs. daxier vs. Nebraska vs. Britney 

vs. winning) X 2 alignments (aligned vs. misaligned roles) between-subjects design ANOVA 

revealed that Levene’s test was not significant (p = 0.588). As shown in Figure 5, there was a 

main effect of the task [F(4, 181) = 9.811, MSE = 7.108, p < 0.001]. Since our main interest is in 

how the task itself affects the learning of probabilistic relational categories, we first report the 

data from the aligned condition. A 5 tasks (categorize vs. daxier vs. Nebraska vs. Britney vs. 

winning) between-subjects ANOVA revealed a reliable effect of the task [F(4, 106) = 11.150, 

MSE = 7.525, p < 0.001]. As in the previous experiments, participants in who’s winning (M = 

127, SD = 127) reached criterion faster than those in who’s daxier (M = 276, SD = 241) (p < 

0.01) as well as those in categorize (M = 523, SD = 341) (p < 0.001) (by Tukey’s HSD). 
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Participants in daxier took reliably fewer trials to reach criterion than those in categorize (by 

Tukey’s HSD, p < 0.05). Participants in Britney (M = 186, SD = 155) showed performance 

equivalent to those in winning. There was no reliable difference between Britney likes and 

winning (by Tukey’s HSD, p = 0.381). Participants in Britney reached criterion reliably faster 

than those in categorize (by Tukey’s HSD, p < 0.001). The number of trials to reach criterion in 

Nebraska (M = 250, SD = 218) was reliably less than in categorize (by Tukey’s HSD, p < 0.05). 

There was also a main effect of alignment [F(1, 181) = 26.769, MSE = 19.394, p < 0.001]. The 

winning task [t(38) = 3.717, p < 0.01], the Britney task [t(33) = 3.036, p < 0.01], and the 

Nebraska task [t(35) = 3.006, p < 0.01], all of which have semantic content, showed reliable 

differences between the aligned and misaligned conditions. Whereas there was no such effect, in 

categorize (t(37) = 1.308, p = .199] or daxier [t(38) = 0.388, p = 0.7] which lack semantic 

content. There was no reliable interaction between task and alignment [F(4, 181) = 2.208, MSE = 

1.6, p = 0.07].    

Response times. Levene’s test revealed a significant difference between in variance 

across five groups in response times (p < 0.05). The data were log transformed to normalize the 

skewed distribution. After the transformation, a 5 tasks (categorize vs. daxier vs. Nebraska vs. 

Britney vs. winning) X 2 alignments (aligned vs. misaligned roles) between-subjects design 

ANOVA revealed that Levene’s test was not significant (p = 0.178). We report response times in 

the aligned condition since we were mainly interested in how the different tasks affect category 

learning. A 5 tasks (categorize vs. daxier vs. Nebraska vs. Britney vs. winning) between-subject 

design ANOVA revealed a reliable effect of task [F(4,106) = 6.177, MSE = 0.940, p < 0.001]. 

Participants in winning (M = 3.43, SD = 1.73) (by Tukey’s HSD, p < 0.001) and daxier (M = 

2.89, SD = 1.29) (by Tukey’s HSD, p < 0.05) took reliably longer to respond than those in 
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categorize (M = 1.88, SD = 0.66). RTs in Britney (M = 2.58, SD = 0.79) were marginally longer 

than RTs in categorize (p = 0.06) and RTs in Nebraska (M = 2.69, SD = 1.34) were also 

marginally longer than RTs in categorize (p = 0.06) (by Tukey’s HSD). As in Experiments 1 and 

2, a speed-tradeoff was found in Experiment 3.  

Discussion 

Experiment 3 explored why who’s winning promotes faster learning of probabilistic 

relational categories than who’s daxier. The who’s winning task is semantically rich, has roles of 

opposite valence and encourages subjects to consider the circle and square as separate objects. 

To examine how each of these factors contributes to the acquisition of an invariant higher-order 

relation, we added two new tasks, which one would Britney Spears like, which was assumed to 

have all three of these elements and thus to be equivalent to who’s winning, and which one comes 

from Nebraska which was assumed to have the first and third, but without opposite valence. In 

contrast to the Nebraska task, the daxier task has no semantic content. Consistent with our 

assumptions, it was revealed that Britney is similar to winning, and Nebraska is similar to daxier. 

That is, like winning and Britney, the tasks that treat the circle and square as separate objects, 

have roles with opposite valence, and have semantic content may provide optimal conditions for 

discovering a higher-order invariant and thus facilitate learning. Missing of any of these 

elements, however, seems to make category learning reliably worse.  
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CHAPTER 5 

GENERAL DISCUSSION 

Kittur and colleagues (2004) showed that learning relational categories with a 

probabilistic (family resemblance) structure is extremely difficult. They interpreted this result as 

indicating that relational category structures invoke the machinery of schema induction by 

intersection discovery (Hummel & Holyoak, 2003), a learning algorithm that works well for 

deterministic structures but fails catastrophically with probabilistic category structures, in which 

no single feature or relation remains invariant across all exemplars of a category. The current 

study further tested this intersection discovery hypothesis by exploring the conditions that might 

render probabilistic relational category structures learnable. Specifically, the intersection 

discovery hypothesis predicts that any task that leads learners to discover a (for example, higher-

order) property or relation that remains invariant over exemplars of an otherwise probabilistic 

relational category ought to render that category learnable. 

Experiment 1 showed that replacing the category-learning task with the completely 

isomorphic task of learning which of two parts of an exemplar is “winning” renders the 

probabilistic relational category structures easily learnable: Although people had great difficulty 

learning whether a given circle-square pair belonged to category A or category B, they had no 

difficulty learning whether the circle or the square was “winning”, even though the stimulus-

response mappings were identical across the two tasks. And although naming the relevant 

relations and providing the clue (that no single relation would be a reliable indicator of the 

correct response every time) both facilitated learning in the who’s winning condition, they 

individually facilitated—but, together, interfered with—learning in the categorize condition. 

Indeed, learning was numerically (although not reliably) slowest in the relations named, clue and 
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categorize condition: It would appear that the worst thing one can do to a person who is trying to 

learn probabilistic relational categories is inform them that they are trying to learn probabilistic 

relational categories.  

Experiment 2 demonstrated that this effect is not simply due to subjects’ being 

encouraged to compare the circle and square as separate objects in the “winning” task: Asking 

subjects “which is daxier” improved learning relative to the category-learning task but did not 

bring it up to the level of performance in the “winning” task. Finally, Experiment 3 

systematically explored the properties of the “winning” task by comparing it to a variety of 

related learning tasks. The results suggest that what is crucial about the “winning” task is that it 

encourages learners to compare the circle and square with the goal of assigning each to one role 

of a relation whose roles have unequal valence. 

These results replicate and extend those of Kittur et al. (2004, 2006), providing further 

evidence that the task of learning a category defined by the relations between things (rather than 

just the features of the things themselves) invokes a process of schema induction by intersection 

discovery in the mind of the learner. Although this process works well with categories whose 

members all share one or more invariant relations, it fails catastrophically with categories that 

lack such an invariant. 

The Frailty of Probabilistic Relational Concepts 

Why should relational category learning be so fragile in the face of probabilistic (family 

resemblance) category structures whereas featural category learning is not? Although the data 

presented here cannot provide a definitive answer to this question, it is tempting to speculate that 

this distinction between the learning of feature- vs. relation-based categories reflects differences 

in the learning algorithms brought to bear on the two tasks. 
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Feature-based category structures are easy to learn by simple association: It is only 

necessary to tabulate, explicitly or implicitly, the co-occurrence statistics of features and 

category labels. And as long as the majority of features in exemplar favor one category label 

over another, it is possible to assign the correct category label to the stimulus. (To wit: the 

category structures used in most feature-based studies of category learning are learnable by an 

one- or at most two-layer associative learner, such a connectionist model trained by error back-

propagation; see, e.g., Krushke, 1992.) Deterministic featural categories might be easier to learn 

than probabilistic ones, but only because a larger majority of the features “point in the direction” 

of one category label or another, or because one feature (i.e., the deterministic one) “points” 

more strongly. Deterministic category structures are thus not qualitatively different than 

probabilistic ones; they are simply different points on the same associative learning continuum. 

Although associative learning is adequate for acquiring non-relational (e.g., feature-

based) concepts, it is inadequate for acquiring relational (equivalently, symbolic; see Hummel, 

2010; Hummel & Holyoak, 2003) concepts (see Chomsky, 1959; Deacon, 1997; Doumas et al., 

2008; Hummel & Holyoak, 2003). The reason, in brief, is that the meaning of a relational 

concept like larger-than is simply nowhere to be found in the co-occurrence statistics of the 

objects or features engaged in that relation (see, e.g., Doumas et al., 2008; Gentner, 1983): 

Almost any given object is both larger-than and smaller-than a veritable infinity of other objects 

(a point and the universe as a whole, respectively, being the only notable exceptions). This 

observation has led some researchers to hypothesize that relational structures such as schemas 

(Hummel & Holyoak, 2003) and even individual relations (such as larger-than; Doumas et al., 

2008) are learned, at least in part, by a processes of structured intersection discovery.  
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The basic idea is that by comparing early, proto-relational ideas (e.g., examples of 

specific objects in specific, as-yet-discovered relations) to one another structurally (i.e., by a 

process, such as analogical mapping, that highlights the relational correspondences between their 

parts), intersection discovery serves to highlight what they have in common and de-emphasize 

the details on which they differ (e.g., comparing an apple to a toy fire truck would highlight 

properties such as red and shiny and deemphasize properties unique to one object or the other). 

Performed iteratively, this operation can result in the discovery of abstract schemas and rules 

(Hummel & Holyoak, 2003) and even basic relational concepts, such as larger-than and chases 

(Doumas et al., 2008). (This proposal is less chicken-and-egg like than it may first appear based 

on by the very brief summary given here; see Doumas et al., 2008, for the details.) 

Hummel and Holyoak (2003) showed that intersection discovery provides a good account 

of schema induction, and Doumas et al. (2008) demonstrated that it provides an excellent 

account of the acquisition of relational concepts (in both development and adulthood). But as 

noted previously, it fails catastrophically with concepts that do not have a deterministic structure.  

One potential explanation of the data presented here, and by Kittur and colleagues (2004, 

2006), is that both (feature-based) associative learning and (relational) schema induction are 

engaged during all cases of concept acquisition (see Kittur, et al, 2006; Ashby, Paul & Maddox, 

2011, for similar proposals and supporting evidence). Associative learning succeeds in acquiring 

feature-based categories, perhaps rendering the results of schema induction irrelevant or at least 

redundant. In response to deterministic relational categories, associative learning fails, but 

schema induction succeeds, resulting in relational concepts (schemas and/or relational 

predicates). But faced with probabilistic relational categories, both associative learning and 

schema induction fail, leaving the learner with little or no basis for categorizing new exemplars. 
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Psychological Essentialism 

The need for an invariant in relational categories is reminiscent of psychological 

essentialism—the belief that (especially biological) categories have an unseen, internal essence 

that defines them and that gives rise to their visible features (Gelman, 2004; Medin & Ortony, 

1989). For example, the visible differences between men and women are assumed to reflect 

unseen, but fundamental, differences in their makeup (what we now know to be their genes). 

And when a caterpillar changes into a butterfly, we believe it to be the same animal because, 

although the visible features have changed considerably, its unseen essence remains the same.  

Analogously, we found that the key to making putatively probabilistic relational 

categories learnable is encouraging the discovery an invariant higher-order relation. Like an 

“essence”, this higher-order invariant is not observable in any single first-order relation. But 

even as the first order relations change (much as the caterpillar changes into the butterfly), so 

long as the higher-order invariant—the essence—is preserved, the exemplar remains a member 

of the category. 

Relational Language  

Our findings are also broadly consistent with previous findings that relational language 

—a label that “points to” a relation directly—plays an important role in the acquisition of 

relational concepts (Casasola, 2005; Gentner, 2003; Gentner, Anggoro, & Kalibanoff, 2011; 

Gentner, & Christie, 2010; Gentner & Namy, 1999, 2004, 2006; Loewenstein & Gentner, 2005). 

For example, Gentner and her colleagues (2011) studied children’s ability to learn relational 

concepts (e.g., the cuts relation between a knife and watermelon) and found that labeling the 

relation (e.g., as “dax”) facilitated 4- and 5-year-olds’ ability to generalize those relations to new 
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arguments (e.g., scissors and paper). The findings showed that the use of relational language 

encouraged the children to predicate the relational concepts. It is possible that our “who’s 

winning” and “who’s daxier” tasks similarly facilitate the acquisition of our relational categories 

by somehow “pointing to” the crucial relations themselves. 

Thematic Relations 

Thematic relations (e.g., the relation between bees and honey, or between houses and 

home owners) are relations between separate objects, rather than relations between the 

components of a single object. Indeed, it seems intuitive that most natural relational categories 

are categories defined by relations between the categorized object and other objects, not by 

relations among the parts of a single object. (But see Biederman, 1987, and Hummel & 

Biederman, 1992, for arguments that natural object categories also depends on the internal 

relations between an object’s parts.)  

These considerations suggest an alternative, or perhaps auxiliary, account of the “who’s 

winning” effect reported here: It is at least possible that the “categorize” task encourages subjects 

to view the relations as relations among the parts of a single object and the “who’s winning” task 

encourages them to view the critical relations as relations between separate objects.  
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CHAPTER 6 

CONCLUSION 

Three experiments showed that recasting category learning as a “who’s winning” task 

considerably improved participants’ ability to learn relational categories with a family 

resemblance structure. Our findings also suggest that the traditional categorize-with-feedback 

laboratory category learning task may somehow inhibit, or at least fail to promote, the discovery 

of the higher-order invariants necessary for intersection discovery to succeed with exemplars 

defined in terms of probabilistic first-order relations. As such, it appears that probabilistic 

relational categories may be more learnable if one does not realize one is engaged in category 

learning. Indeed, participants in our relations named, clue and categorize condition of 

Experiment 1 took the longest of all our participants to reach criterion—and were least likely to 

reach it—suggesting that one of the worst things you can do to a person who is attempting to 

learn probabilistic relational categories is tell them that they are attempting to learn probabilistic 

relational categories.  

Finally, it is worth noting that our results, like those of Kittur et al. (2004, 2006), raise the 

question of whether natural relational concepts and categories tend to have deterministic or 

probabilistic structures. Ad-hoc categories, such as “things to remove from a burning house”, 

“ways to escape the mob” and “things to take on a winter camping trip” (Barsalou, 1983) 

certainly have a relational invariant that holds true across all members of the category (i.e., 

category membership). Does our tendency to assume the existence of (invariant) “essences” in 

biological categories reflect a tendency to assume relational categories possess invariants? And 

do schemas and theories tend to possess relational invariants? For example, is there a relational 

core that all members of the category “mother” have in common? Although at first it is tempting 
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to say yes, the differences between birth mothers and adoptive mothers, and between loving 

mothers and abusive mothers, suggest that the answer might be no. If the answer is no, then do 

people have difficulty acquiring an all-encompassing schema for the concept “mother”? Or do 

we simply have multiple “mother” schemas? The work of Kittur et al. (2004) suggests that 

schemas, theories and ad-hoc categories must either contain relational invariants or else be 

difficult to acquire. The findings presented here suggest that they may not be so difficult to 

acquire, even if they lack invariants among their first-order relations, provided the conditions 

under which they are learned promote the discovery of an invariant higher-order relation. 
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TABLES  

Table 1   

Comparison of three main factors of all conditions in Experiment 3 

 Categorize Who’s daxier Which one 

comes from 

Nebraska? 

Which one 

would Britney 

Spears like? 

Who’s 

winning 

Treats circle 

and square as 

separate 

objects 

No Yes Yes YES YES 

Unequal 

valence 

across two 

relational 

roles 

No No No YES YES 

Has semantic 

content 

No No Yes YES YES 
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FIGURES 

 

 

 

 

 

 

 

 

 

Figure 1. Exemplars of category A and B used in Experiment 1-3. Exemplars of each category 

were made by switching the value of one relation in the prototype.  
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Figure 2. Mean trials to criterion in the categorize (left) and who’s winning (right) conditions in 

Experiment 1. Error bars represent standard errors.  
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Figure 3. Proportion of survivors per block for each task in Experiment 1. The graph represents 

how many participants reached criterion by the end of each block.  
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Figure 4. Mean trials to criterion by condition in Experiment 2. Error bars represent standard 

errors.  

*p < 0.05 
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Figure 5. Mean trials to criterion by condition in Experiment 3. Error bars represent standard 

errors.  

     **p < 0.01 
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