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Abstract

Crystalline materials deform in an intermittent way with slip-avalanches that are power-law distributed.

In this work we study plasticity as a pinning-depinning phase transition employing a discrete dislocation

dynamics (DDD) model and a phase field crystal (PFC) model in two dimensions. Below a critical (flow)

stress, the dislocations are pinned/jammed within their glide plane due to long-range elastic interactions

and the material exhibits plastic response. Above this critical stress the dislocations are mobile (the de-

pinned/unjammed phase) and the material constantly flows.

We employ discrete dislocation dynamics to resolve the temporal profiles of slip-avalanches and extract

the finite-size scaling properties of the slip-avalanche statistics, going beyond gross aggregate statistics of

slip avalanche sizes. We provide a comprehensive set of scaling exponents, including the depinning exponent

β. Our work establishes that the dynamics of plasticity, in the absence of hardening, is consistent with the

mean field interface depinning universality class, even though there is no quenched disorder.

We also use dislocation dynamics and scaling arguments in two dimensions to show that the critical stress

grows with the square root of the dislocation density (Taylor’s relation). Consequently, dislocations jam at

any density, in contrast to granular materials, which only jam above a critical density.

Finally, we utilize a phase field crystal model to extract the size, energy and duration distributions of

the avalanches and show that they exhibit power law behavior in agreement with the mean field interface

depinning universality class.
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Chapter 1

Overview

1.1 Thesis Outline

In Chapter 1 (here) we give an overview of what this Thesis is about and the research efforts that went into

it as well as publications that already resulted from this work or are in preparation. The topic: Plasticity

as a depinning phase transition.

In Chapter 2 we provide an introduction to plasticity starting from how it was originally approached

phenomenologically and how in the last years discoveries on small scales came to suggest it as a mean field

interface depinning transition. More specifically in Section 2.1 we present how traditional plasticity theory

was built as a continuum theory. The metallurgist community used continuum models to study the strength

of a piece of metal. The deforming body is assumed to behave smoothly in time and in space. At sufficiently

small scales where the presence of dislocations can be observed the previous assumption seizes being a good

approximation. In Section 2.2 we introduce dislocations; they break the translational symmetry of the ideal

crystal. Dislocations allow the atoms of crystalline materials to move and consequently enable the solid to

deform. The dislocations interact via long-range non-local stress fields. The dislocation network exhibits

avalanches and collective behavior. On small scales crystalline materials deform in a jerky manner that is

intermittent in time and inhomogeneous in space. Plastic response to external stress is characterized by

slip avalanches of many orders of magnitude in size. Lastly in Section 2.3 we explain how plasticity can be

studied as a depinning non-equilibrium phase transition. The material is pinned and the dislocations are

jammed below the flow stress. The material is constantly flowing and the dislocations are unjammed above

the flow stress. The slip avalanches grow bigger as the flow stress is approached.

In Chapter 3 we review ground breaking experiments that investigated plasticity on tiny length scales.

Experiments in micro- and nano- crystals revealed power law distributed avalanche behavior as the material

slips under stress.

In Chapter 4 we discuss the computational models that were employed to shed light on the experimental

findings on the avalanche statistics. Besides the continuum models that were phenomenologically adapted
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to explain the intermittent character of plasticity, new models of interacting dislocations were invented in

an effort to study the dislocations’ collective behavior. The majority of the experimental and computational

results indicate that plasticity can be studied as a depinning phase transition.

At its maturity this massive effort revealed that (mainly) the static aspects of plasticity may belong to

the mean field interface depinning universality class. There were some unresolved inconsistencies reported,

however. For example dynamic properties such as power spectra, temporal avalanches profiles and the

depinning exponent extracted from simulations did not match mean field theoretical (MFT) predictions. In

this Thesis we report on the results of our careful analysis of extensive numerical simulations. We show

that both the static properties and the dynamic properties of plasticity are fully consistent with the MFT

predictions. So in Chapter 5 we present the mean field theory (MFT) of a generic interface depinning model.

In Chapter 6 we give the details of the discrete dislocation dynamics (DDD) model we implemented.

And in Chapter 7 we present our results from the discrete dislocation model at zero temperature. We

extract the average slip avalanche speed profiles (shapes). We find that the profiles are self-similar and do

in fact collapse with a MF critical exponent. The scaling function is a parabola as indicated by MFT. We

calculate the power spectra of the computational acoustic emission signal and find that it matches with

the average temporal avalanche profiles and MFT predictions. We also study the finite-size effects on the

avalanches and show that they too agree with MFT. We extract the depinning exponent of the transition

which agrees with MFT as well. All in all we provide an extensive set (Table 7.1) of newly (and correctly)

calculated critical exponents that show that not only the statics and aggregate statistics of avalanches but

also the dynamics of plasticity are in agreement with the mean field interface depinning universality class.

In Chapter 8 we study the critical (flow) stress with dislocation density and we suggest a putative

jamming phase diagram for dislocations in which there is no jamming point. Based on discrete dislocation

dynamics simulations and analytical scaling arguments we show that dislocations (and by analogy particles

with long-range interactions) will require a non-zero external shear stress to unjam for any finite density.

This behavior is distinctly different from granular materials where grains interact via short-range interactions

and the material exhibits zero shear modulus for a low enough (but finite) density.

In Chapter 9 we present a modern phase field crystal (PFC) model to study the effect of finite temperature

on plasticity.

And in Chapter 10 we show that the phase field crystal model exhibits plastic response through slip

avalanches when we shear it at a fixed strain rate and a given temperature. The slip avalanches exhibit

power law statistics that are consistent with the mean field interface depinning universality class.

Lastly in Chapter 11 we retell the story of plasticity and present the exciting future possibilities of our
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work.

1.2 Research Challenges and Collaborations

I developed and ran the discrete dislocation dynamics simulations. It was quite a feat building a code of

objects interacting long range. I also collected and analyzed the data above and below the flow stress.

With the help of Mr. B. A. W. Brinkman graduate student in our group we came up with analytical

scaling arguments for the jamming of dislocations. On all aspects of my research, from understanding the

problem to preparing publications I enjoyed guidance by my advisor Prof. Karin Dahmen and from Prof.

Nigel Goldenfeld (both at the Physics Department of the University of Illinois at Urbana). I then gave the

experience I developed to Mr. N. Friedman (another graduate student in our group) and helped analyze

experimental data from Prof. J. R. Greer’s group (Material Science and Mechanics, Caltech). Our findings

in deforming nano-crystals will appear in the literature soon.

The phase field crystal model was developed by Prof. Nigel Goldenfeld (Physics), Prof. Jonathan Dantzig

(Mechanical Engineering) and Dr. Pak Yuen Chan (Physics) who also built and run the PFC code. I was

involved in analyzing the data and extracting the scaling characteristics of the crystal under shear relying on

the expertise of Prof. Karin Dahmen on non-equilibrium critical phenomena. A wealth of data was produced

by Mr. Thomas Fehm (Physics, Illinois and Ludwig-Maximilians-Universität München) in our group under

my guidance. Those data gave me better statistics and reduced errorbars allowing me to obtain considerably

cleaner avalanche distributions.

1.3 Publications

Our work at zero temperature with the discrete dislocation dynamics model has already given us a Physical

Review Letter on the modern topic of dislocation jamming. Very recently we submitted for publication an-

other manuscript to Physical Review Letters. It is on our results of the scaling of the dynamic characteristics

of plasticity. We expect to put together a longer paper to submit to Physical Review E where we present

all the details of our work with the discrete dislocation dynamics. Finally our observation of slip avalanches

with the phase field crystal model resulted into a published Physical Review Letter as well. Currently with

Thomas Fehm we are exploring the effect of temperature on the depinning transition of plasticity.
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Chapter 2

Introduction to Plasticity

2.1 Homogeneous Plasticity; Traditional Continuum Mechanics

1Plastic deformation remains on the solid body after the external driving force has been removed. Elastic

deformation disappears in the absence of the external force. The two kinds of deformation are distinctly

different from each other. At the same time they are complementary to each other. The two kinds of

deformation are sufficient and necessary to describe in a simple way the effect of an external force on a solid

material.

In general plasticity is isochoric (i.e. constant volume) and irreversible in the thermodynamic sense. It is

associated with hysteresis, a non-equilibrium phenomenon. For small strains the total strain, γ, is composed

of an elastic and a plastic part

γ = γelastic + γplastic (2.1)

The elastic strain is directly proportional to the external stress, τ , (this is Hook’s law)

τ ∝ γelastic (2.2)

and will vanish once the external stress is removed denoting a reversible process while the plastic strain will

remain. Here we work with shear stress, τ , and shear strain, γ 2.

In order to proceed we need to relate plastic strain to external stress. The simplest approach, termed

ideal plasticity, is rate-independent. In this case the solid deforms elastically for external stresses up to the

yield stress, τy. Plastic deformation ensues once the yield stress is reached. The solid deforms constantly

with the applied stress at τy and experiences a permanent plastic deformation, γplastic measurable on the

body, when the stress is removed (Fig. 2.1).

1For this introduction we found particularly elucidating Zaiser’s review [1].
2In this thesis we exclusively study shear stress and strain and we do not deal with transformation plasticity where the solid

transitions to a different crystal structure.
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Figure 2.1: Strain-rate independent plasticity. Ideal plasticity without hardening (left) and with hardening
(right). The figure is taken from Zaiser [1], Scale invariance in plastic flow of crystalline solids, M. Zaiser,
Advances in Physics, 55(1):185-245, 2006, Taylor & Francis, reprinted by permission of the publisher (Taylor
& Francis Ltd, http://www.tandfonline.com).

We can amend the rate-independent approach to include strain hardening, the fact that the yield stress

can increase with strain. In other words the added stress needed to plastically deform a body, τ − τy,

increases with increasing plastic strain, with the simplest relationship being the linear,

τ − τy ∝ γplastic. (2.3)

Note that for applied stress less than the yield stress Hook’s law holds, Eq. (2.2). The slope of the stress-

strain curve for the plastic part of the deformation is the strain-hardening coefficient, θ.

θ =
∂γplastic

∂τ
=

∂γ

∂τy
(2.4)

A more sophisticated approach is to account for a rate-dependent deformation process (Fig. 2.2). Linear

viscoplasticity describes a solid that requires an increasing applied stress to flow

γ̇ ∝

 τ − τy for τ > τy > 0

0 for 0 < τ < τy

(2.5)

The applied stress above the yield stress needed for plastic flow is called flow stress, τf , and is a function of

the deformation rate,

τf (γ̇) = τy + µγ̇. (2.6)

µ is the viscoplastic coefficient of the material assumed constant here. The above reduces to the rate-
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independent plastic deformation for µγ̇ << τy and the flow stress coincides with the yield stress. Other

reasonable phenomenological approximations to the stress-strain curve are the power law and the saturation

exponential model which seems to describe well a number of aluminum alloys [2].

Figure 2.2: Plasticity with linear dependence on strain rate. Strain rate vs stress (left) and stress vs strain for
different strain rates (right). The figure is taken from Zaiser [1], Scale invariance in plastic flow of crystalline
solids, M. Zaiser, Advances in Physics, 55(1):185-245, 2006, Taylor & Francis, reprinted by permission of
the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).

The overarching notion in traditional continuum mechanics is that plasticity of crystalline solids is con-

sidered to be smooth in time, and homogenous in space, since fluctuations are supposed to average out at

”large enough” spatial scales. In special cases though small fluctuations in strain, δγ, can become under-

damped and grow considerably and one has a plastic instability. For example one gets a strain softening

instability when θ becomes negative under constant stress rate loading. Under constant strain rate defor-

mation conditions and when µ < 0 one gets a strain rate softening instability. These include non-linear

oscillations, traveling waves, deformation localization, patterning and chaos. In general plastic instabilities

reveal characteristic internal time and length scales. We will see in Sections below how these hypotheses

cannot fully describe the deformation process at small scales and the interactions of discrete dislocations

give rise to power law distributed phenomena of many decades.

2.2 Dislocation-based Plasticity, A Collective Phenomenon

In this Thesis we study plasticity from the point of view of critical phenomena. In plastically deforming

solids collective dislocation motion gives rise to slip avalanches that span many orders of magnitude and lack

a characteristic length scale. The traditional picture and approach to plasticity discussed above becomes

increasingly unable to describe deformation in smaller spatial scales and we must follow a fundamentally

different approach. At ”small enough” spatial scales one can actually observe the intermittent motion of

6



dislocations.

A dislocation is, in short, the topological boundary of a crystal half plane that does not preserve the

periodicity of a perfect crystal [3]. An edge dislocation and a screw dislocation are shown in Fig. 2.3. In

real crystalline solids both kinds are present, as well as mixed dislocation lines with segments that can be

of edge or screw character.

Figure 2.3: Edge (top) and screw (bottom) dislocation. The difference in the circulation integral be-
tween a crystal without a dislocation (left) and a crystal hosting a dislocation (right) is the Burg-
ers vector characterizing the dislocation. The Burgers vector is parallel to a screw line and perpen-
dicular to an edge line and parallel to the direction of motion of an edge line. For more info go to
http://en.wikipedia.org/wiki/Dislocation . Image taken from wikipedia.org under the GNU Free Docu-
mentation License, http://en.wikipedia.org/wiki/GNU Free Documentation License .

In this new picture of plasticity, dislocations are carrying the elementary discrete amounts of slip. Crystal

deformation takes place in an inhomogenous-in-space and intermittent-in-time manner a direct effect of the

discreteness of the dislocations. When a crystal is deformed the dislocations are found to be moving in a

collective fashion exhibiting long-range correlations in space and in time. What is more, one can observe

slip avalanches spanning several orders of magnitude in size distributed according to a power law.

Dimiduk et al. [4] used ultrahigh displacement resolution nanoindentation systems (effectively nanoscale

seismometers) to detect displacement events of pure metallic single micro-crystals. They found power law dis-

tributions of event sizes spanning several decades in slip size (Fig. 2.4). These observations strongly support

the interpretation that dislocations, in slowly compressed micro-crystals, move collectively in avalanches.
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Figure 2.4: Power-law distribution of slip avalanche sizes, S = ∆γ, from pure Ni samples with a fitted
exponent κ ≈ 1.5 − 1.6 (defined in Chapters 3 and 4). The figure is taken from the experimental paper by
Dimiduk et al. [4], Scale-Free Intermittent Flow in Crystal Plasticity, D. M. Dimiduk, C. Woodward, R.
LeSar, and M. D. Uchic, Science, 312(5777):1188-1190, 2006). Reprinted with permission from AAAS.

2.3 Material Flow as a Depinning Phase Transition

The substantial experimental evidence of power law distributed phenomena in deforming solids inspired a

great deal of theoretical work. Several computational models can reproduce the experimental findings and

reveal even more scale invariant, power-law distributed phenomena [1]. Discrete dislocation dynamics models

[5, 6, 7, 8, 9, 10, 11], stochastic continuum models [6], phase field models [12, 13] and phase field crystal

models [14] indicate that plastically deformed systems can operate near a non-equilibrium critical point [15].

Perhaps the most crucial finding came from Zaiser et al. who combined discrete dislocation dynamics

coupled with extremal dynamics and automaton techniques [6]. They achieved a scaling collapse of the

distribution of the slip avalanches at different external stresses below the flow stress. This collapse revealed

that the slip avalanches grow bigger (and consequently span more decades) the closer the system approaches
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to the flow stress (Fig. 2.5). The flow stress can be thought of as a non-equilibrium critical point separating

two distinct phases: a low stress pinned phase where dislocations are stuck on average and the material is

exhibiting plastic response and a high stress depinned phase where dislocations are mobile and the material

is constantly flowing. In another study utilizing a stochastic continuum model Zaiser et al. [16] implemented

a stochastic microstrain evolution model with similar success.

Figure 2.5: Distribution of slip avalanche sizes binned in stress, obtained using discrete dislocation dynamics
(left) and collapse (right) by Zaiser et al. [6]. The fitted power law gives exponent κ = 1.4 and the collapse
1/σ = 2. ∆ = 1 − τ/τc. and indicates the center of the window in stress for each curve. Both figures
are in good agreement with our simulations (see Chapters 7 and 10 for our results, also Table 7.1). The
figure is taken from Zaiser [1], Scale invariance in plastic flow of crystalline solids, M. Zaiser, Advances in
Physics, 55(1):185-245, 2006, Taylor & Francis, reprinted by permission of the publisher (Taylor & Francis
Ltd, http://www.tandfonline.com).

The approach to the critical point (which lies at the flow stress) happens in an intermittent manner

through slip avalanches. A set of critical exponents and scaling functions that are expected to be material

independent (universal) quantifies the non-equilibrium phase transition. In fact the majority of the up-

to-date results indicate that dislocation systems fall into the universality class of the mean field interface

depinning phase transition of an elastically moving interface in a disordered medium.

Although a single dislocation line can be thought of as an elastic line moving through a background of

pinning centers (e.g. arrested or forested dislocations as they are often called) a collection of dislocations

has been hard to deal with analytically. Therefore various kinds of computer simulations of the interacting

dislocation network have been successfully employed to study plastic deformation as an interface depinning

problem. In this work we employ a traditional discrete dislocation dynamics model and a modern phase field
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crystal model. We successfully recover (and often times correct) previous computational results and reveal

even more scaling laws all in agreement with the mean field interface depinning universality class.
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Chapter 3

Experimental Evidence

3.1 Micro-pillar Deformation

Acoustic emission experiments on ice single crystals are one of the most trusted means of verifying the

intermittent character of deformation since ice monocrystals or polycrystals can be easily grown in the

laboratory. In addition, the transparency of ice permits the verification that the acoustic emission is not

due to microcracking, and excellent coupling between ice sample and acoustic emission transducer can be

achieved with fusion/freezing [17, 18, 19, 20, 5] 1.

The acoustic emission transducer picks up the acoustic emission signal, V (t), at a sequence of discrete

times t. It is made up of all the acoustic waves emitted by the moving dislocations in the deforming sample.

The acoustic emission signal contains a continuous background due to slow dynamic phenomena such as grain

boundaries bending, superimposed by fluctuations of all sizes. The fluctuations constitute slip avalanches

which reveal the jerky character of plastic deformation.

Richeton et al. [17] analyzed the acoustic emission signal from hexagonal closed packed metallic single

crystals (Cd and Zn-0.00%Al) and found a power law distribution of the acoustic emission energy of the slip

events of

D(E) ∼ E−1.5 (3.1)

spanning 6 decades in acoustic emission energy defined as E =
∫

avalanche
V (t)2dt. They compressed metallic

single crystals with the activated slip planes oriented at an angle to the compression direction.

In a similar work Miguel et al. [5] measured the acoustic emission signal of deforming ice single crystals.

1Several of the experimental works measure the peak amplitude of the signal during an avalanche in order to characterize
an avalanche which may involve tedious mathematics to extract the scaling of its distribution. However the experiments we
discuss explicitly in this chapter provide robust measurements of slip avalanche size and energy that can be easily compared to
simulations and theory (see also Table 7.1).
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They found a power law distribution of the slip events energy for over 6 decades

D(E) ∼ E−1.6. (3.2)

Alternatively, Dimiduk et al. [4] used ultrahigh displacement resolution nanoindentation systems (effec-

tively nanoscale seismometers) to detect displacement events of pure metallic single crystals. They measured

the nominal displacement timeseries of the sample and extracted the displacement rate, V ′(t), via differen-

tiation. They found a power law distribution of the slip event sizes of

D(S) ∼ S′−(1.5∼16) (3.3)

which extended for over 2 orders of magnitude is size S′ =
∫

avalanche
V ′(t)dt = ∆γ (Fig. 2.4).

3.2 Nano-pillar Deformation

The deformation of micro-sized pillars revealed slip avalanche statistics that matched well the collective

dislocation behavior the models predict and they are in satisfactory agreement with the MFT of interface

depinning (Chapter 5). But a question still remained: How small can a crystal be and still reveal such

behavior? A manufacturing and testing challenge on its own.

In sub-micron-sized specimens there exist different dislocation creation mechanisms and their plastic

response is difficult to study because of their tiny size (some maybe smaller than a human virus). There are

2 significant works we are going to discuss here that appeared recently in the literature.

Zaiser et al. [21] tested Mo (molybdenum, body center cubic (bcc) single crystal) nano-pillars down to

150nm in diameter and found power law avalanche size distribution

D(S′) ∼ S′−1.5. (3.4)

Brinckmann et al. [22] worked with Au (gold, face centered cubic (fcc) single crystals) and Mo nano-

pillars down to 155nm in diameter and found the same result.

In all cases power law distributions of different measures of slip events spanning several decades were

found, further documenting the collective dislocation motion in deforming crystals. Later in Chapter 7 we

will show through our work that the results given in this Chapter are consistent with each other and in

satisfactory agreement with the mean field theory of the interface depinning universality class (Table 7.1).
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Chapter 4

Previous Computational Results

In the effort to understand better the phenomenon of plasticity as an interface depinning problem, several

theoretical models were built and implemented drawing from the significant experimental works. Continuum

models [6], discrete dislocation dynamics (DDD) models [5, 6, 7, 8, 11, 9, 10], phase field (PF) models

[12, 13] and phase field crystal models [14] can reproduce the experimental findings and reveal even more

scale invariant, power-law distributed phenomena. For our work we relied on traditional discrete dislocation

dynamics (we explain the DDD model in Chapter 6) and were able to extract even more scaling laws

(Chapters 7 and 8) and tested a phase field crystal (PFC)model (we present the PFC model in Chapter

9) for plasticity avalanches that are power-law distributed (Chapters 10). Here we discuss computational

results from the literature from the point of view that plastically deformed systems can operate near a

non-equilibrium critical point [15] 1.

4.1 Stochastic Continuum Models

Existing continuum models can be adapted to include stochastic fluctuations in their local stress-strain

dependence phenomenologically in an effort to incorporate the disorder inherent in plastically deformed

systems that gives rise to the power law collective behavior. These models describe plasticity at a mesoscopic

scale above the microscopic scale of the individual dislocations but smaller than the macroscopic dimensions

of the material. The spatial inhomogeneity of the crystal is introduced into these models by making the

local yield stress random in space and strain.

Zaiser et al. [16] implemented a microstrain evolution model which included random stress fluctuations

in space and in strain and was able to recover power law avalanche statistics, binned-in-stress (Fig. 2.5) and

integrated-in-stress. More specifically they showed that the avalanche size distribution at stress τ scales as,

D(S′) ∼ S′−1.4f

(
S′
(

1− τ

τc

)2
)

(4.1)

1Similar behavior has been discovered in magnetic systems [15] and turbulence [23].
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and its integrated-in-stress form scales as,

Dint(S′) ∼ S′−1.4− 1
2 ∼ S′−1.9. (4.2)

Here S′ = ∆γ, the strain increment in a slip avalanche and f a generic universal scaling function. The two

previous scaling expressions are consistent with each other and in close agreement with the results of the

MFT of interface depinning. The MFT of interface depinning is presented in Chapter 5 where we also define

the universal scaling exponents and function shown.

In the same work and with the same microstrain evolution model, Zaiser et al. [16], also revealed the

effect of work hardening by allowing the dislocation density to depend on with strain essentially introducing

dislocation creation and annihilation. More specifically they made the root-mean-square of the local stress

fluctuations to grow proportionally with the square root of the dislocation density, which in turn causes the

local stress fluctuations to increase with strain. The maximum slip avalanche is dictated by the hardening

coefficient θ ∼ dτ/dγ

D(S′) ∼ S′−1.4f(S′θ) (4.3)

4.2 Discrete Dislocation Dynamics Models

In one of the first works of Miguel et al. [7], a discrete dislocation dynamics (DDD) in 2 dimensions was

utilized where a collection of interacting (parallel, straight, edge) dislocations was allowed to slip, driven by

their long-range interaction and a uniform external stress. They successfully showed the Andrade power-law

creep under constant external stress for a stress above the yield stress but below the flow stress (and constant

temperature)

γ ∼ t1/3 (4.4)

from the strain rate decay with time as dγ/dt ∼ t−2/3. The strain rate is defined as dγ/dt = V ′(t) =∑
i=all dislocations bivi(t). Here vi is the velocity of a dislocation and bi its Burger’s vector. They also

managed to extract a power-law distribution of avalanche sizes (defined as S∗ =
∑
i,avalanche V

∗(ti) where

V ∗(t) =
∑
i=mobile |vi(t)| is the instantaneous collective speed of the mobile dislocations in an avalanche)
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with a power-law exponent of 1.6,

D(S∗) ∼ S∗−1.6. (4.5)

In a later publication based on the same model Miguel et al. [24] showed that Andrade power-law creep

of γ ∼ t1/3 can also be observed at initial times with an external applied stress above the flow stress (and

constant temperature). The Andrade creep turned into linear creep, γ ∼ t, at large times (the dislocations

flowed constantly). The crossover time decreased for higher dislocation creation and/or higher temperature.

For external stresses below the yield stress they saw the strain rate approaching zero and the dislocations

jamming. However they got

〈
dγ

dt

〉
∼ (τ − τc)1.8, (4.6)

as the external stress, τ , moves from below to above the critical stress, τc (where the system changes from the

pinned to the depinned phase). This means that the depinning exponent they obtained, β ≈ 1.8, a value that

differs substantially from the mean field theory of interface depinning (Chapter 5). In Chapter 7 we perform a

careful measurement of β which gives the MF value of β ≈ 1. In Miguel et al. [5] (again 2d DDD) the authors

calculated the distribution of the avalanche energies, E∗ =
∫

avalanche
V ∗(t)2

dt (V ∗(t) =
∑
i=mobile |vi(t)|), to

follow a power law of,

D(E∗) ∼ E∗−1.8 (4.7)

which compared well with acoustic emission experiments on ice (same work), D(E) ∼ E−1.6 with E =∫
avalanche

V 2(t)dt.

Laurson and Alava [8] extracted the temporal avalanche speed profiles, power spectra and average

avalanche sizes versus their duration above the flow stress but with exponents that disagree with MF interface

depinning. In their calculation of average avalanche profiles, an exponent of 1.5 was assumed,

V (t) = taval
1.5f(t/taval) (4.8)

and then all avalanches of similar duration taval were averaged. Here f is a universal scaling function, that is

predicted to be a parabola in MFT. In the resulting plot the avalanche profiles appeared to overlap although

in a proper scaling collapse one varies the exponent until the average profiles of different durations overlap.
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The best collapse gives the scaling exponent. The authors then proceeded to extract power spectra

PS(ω) = ω−1.5 (4.9)

and average avalanche sizes versus their duration

〈S〉 = taval
1.5 (4.10)

that gave the same apparent exponent. They work exclusively above the critical stress where in general the

individual avalanches tend to merge together and their resulting shape may be distorted from the pure single

avalanche shape and may not be amenable to a collapse. Their exponents disagree with MFT. We perform

a proper scaling collapse of the avalanche profiles (and define the above scaling exponents and function) in

Chapter 7 and show that it is in agreement with the power spectra of the collective speed of the dislocations

both above and below the critical stress. Our results indicated that the power spectra and the temporal

avalanche speed profiles are consistent with the MF interface depinning universality class.

Zaiser et al. [6] achieved a scaling collapse of the distribution of the slip avalanches at different external

stresses below the flow stress,

D(S′) ∼ S′−1.4f

(
S′
(

1− τ

τc

)2
)

(4.11)

(S′ =
∫

avalanche
V ′(t)dt = ∆γ, V ′(t) =

∑
bivi(t) = dγ/dt) combining discrete dislocation dynamics coupled

with extremal dynamics and automaton techniques (as we already discussed in Section 2.3 and showed in

Fig. 2.5). Their work convincingly shows that a correlation length can be defined, which diverges as the

system approaches the critical point. Therefore plastically deformed systems can be thought of as depinning

systems.

Finally, Csikor et al. [11] undertook the immense effort to build a 3 dimensional DDD with both edge

and screw dislocations segments to extract the full avalanche size distribution, meaning power law and cutoff

exponents and the scaling function,

D(S′) ∝ S′−1.5exp(−(S′/S′0)2) (4.12)

Both critical exponents and the scaling function are in agreement with the mean field interface depinning

universality class (Chapter 5). Here S′0 is the maximum avalanche size up to which the power law distribution
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extends (a similar definition we discuss in Chapter 7).

4.3 Phase Field Models

Koslowski et al. [12, 13] introduced a phase field model to describe the dislocation configurations in a

disordered slip plane. It accurately describes single crystals that are isotropic and experience single slip

deformation. The evolution of the dislocation configurations is described through an integer-valued phase

field. The model incorporates in an energy functional the dislocation interaction, the effect of an externally

applied stress and also accounts for the dislocation core energy. The dynamics are determined through

minimization of a work functional which besides the dislocation energy includes a dissipative interaction with

the quenched disorder representing forest dislocations. The model needs no extra creation and annihilation

conditions to be supplied as in the DDD models. The phase field keeps track of the dislocation number

in space through the amount of slip; slip at a point increases (decreases) by +1 (in units of a Burgers’

vector) when a dislocation crosses that point with a positive (negative) velocity. During external loading

the dislocations are forced to move through the disordered landscape bowing at the pinning centers until

they get depinned leading to slip avalanches.

The phase field model with quenched disorder was able to reproduce the avalanche behavior of plastically

deforming crystals. As the external stress is increased adiabatically slowly the system responds with larger

and larger slip events that follow a power of about 2 decades,

D(A) ∼ A−1.8 (4.13)

where A = maxt∈avalanche

{
V (t)

}
of the acoustic emission signal V (t) =

∑
i=all dislocations |vi(t)|. This value

is in rough agreement with the literature but logarithmic binning could improve the result and a scaling

collapse of the avalanche distributions at different stresses could even reveal the full distribution of slip

avalanches (i.e. critical exponents and scaling function). Finally characterizing the slip avalanches by their

size S or energy E (as defined for example above or in Chapter 7) would make it easier to compare critical

exponents and scaling functions with the theory of interface depinning.

4.4 Discussion

The discrete dislocation dynamics models describe plasticity at a microscopic level. They constitute the

most straight-forward approach. Plastic deformation is directly produced by the motion of the individual
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dislocations. Microstrain evolution models are stochastic continuum plasticity models. Plastic deformation

is expressed in terms of the evolution of a continuous plastic strain field. The effect of the dislocation

dynamics is introduced by adding microstructural heterogeneity and randomness to the equations of the

strain field phenomenologically (the models still maintain their homogeneity at macroscopic scales). Phase-

field models lie at an intermediate scale between the other two. Plastic deformation is described by a strain

field. The strain field is resolved on a microscopic scale and dislocations appear as localized gradients of

that field. However, in order to observe metastable dislocation configurations, quenched disorder needs to be

introduced in both the continuum and the phase field models. This is different from the discrete dislocation

dynamics models (ours is defined in Chapter 6) and the phase field crystal model (defined in Chapter 9)

where self-pinning due to the long-range dislocation interaction is already included.

The models discussed so far, with or without quenched disorder, indicate that the static properties of

plasticity fall into the universality class of the mean field version of the depinning phase transition of an

elastically moving interface in a disordered medium [1]. In Chapter 5 we elaborate on the interface depinning

model and present its mean field theory. In Chapter 7 we show our results from a DDD model and in Chapter

10 we discuss our results from our PFC model. We extract a wealth of universal (i.e. material independent)

critical exponents and scaling functions providing several new findings and correcting the literature. Our

work shows that the dynamics of plasticity belong to the mean field interface depinning universality class.

The reader that cannot wait can just turn to Table 7.1 where all of our results are presented side-by-side with

experimental and computational results from the literature and the mean field theory of interface depinning.

18



Chapter 5

Interface Depinning

5.1 A general model of Interface Depinning

1Let us first give here a generic simple model which describes an interface driven by an externally applied

force through a disordered medium. The interface has configurations that are on average stuck if the driving

force is below a critical value. The interface is moving constantly if the force is above the critical value.

Examples of such interface depinning problems include fluid invasion in porous media [26, 27], magnetic wall

depinning [28, 29, 30], charged density waves driven by electric fields [31, 32, 33, 34, 35, 36, 37].

The interface can be visualized as a line, which lies on a 2-dimensional plane (x, y), and can be driven by a

uniform force ~F = |~F |x̂. Assuming small deviations from the straight line its configuration can by represented

by the displacement field u(y) away from a reference straight line along the y direction perpendicular to the

x direction. In the following we assume that the interface is self-affine, i.e. without overhangs [38, 39]. In

many interface depinning systems inertia does not play a significant role since many systems are overdamped,

i.e. the dynamics of the interface are purely dissipative. To lowest order in deviations from flat, i.e. for

small u(y), we have the following equation of motion [25],

η
∂u(y, t)
∂t

= F + σ(y, t)− fp[y] (5.1)

where η is the viscosity of the medium, fp the force from the randomly distributed pinning centers and

σ(y, t) =
∫
dt′
∫
dy′J(y − y′, t− t′)[u(y′, t′)− u(y, t)] (5.2)

is the self-stress on the interface, meaning the stress on a specific segment from the rest of segments of the

interface. Elastic interactions along the interface (for example surface tension) preserve its straightness and

1For this Chapter on the MFT of interface depinning we found particularly elucidating Fisher’s notes [25] and Zaiser’s review
[1].
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that can be modeled through J(y − y′, t− t′) as,

J(y − y′, t− t′) ∝ δ(t− t′)∇2δ(y − y′) (5.3)

In monotonic models

J(y, t) ≥ 0 for all y, t (5.4)

and a configuration that is initially ahead of another will always be ahead as the interface is driven by F .

Middleton [40] has shown that Eq. (5.4) implies that pinned (not moving) (F < Fc) and constantly moving

(F > Fc) solutions cannot coexist at the same driving force F . Therefore, the critical force, Fc, is unique

and well defined for monotonic models.

Figure 5.1: A generic model of an interface depinning through a background of pinning centers. Taken from
Fisher [25]. Reprinted from Physics Reports, 301, D. S. Fisher, Collective transport in random media: from
superconductors to earthquakes, 113-150, Copyright (1998), with permission from Elsevier.
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5.1.1 Scaling Expressions

This problem has been studied as a non-equilibirum critical phenomenon [41, 38, 35, 40, 25]. Fc sits between

two phases: a pinned (stuck) phase for F < Fc and a moving phase for F > Fc. 〈V 〉 = 〈d(〈x〉 + u(y))/dt〉

is the mean velocity of the interface and the average 〈...〉 is over all y on the interface. Then 〈V 〉 > 0 for

F > Fc and 〈V 〉 = 0 for F < Fc. In analogy to equilibrium phase transition theory a correlation length, ξ,

can be defined that has been shown to scale in the same way above and below the critical point [25]

ξ ∼ |Fc − F |−ν (5.5)

i.e. ξ diverges near the critical point. Eq. (5.5) defines the critical exponent ν. Middleton also showed that

the depinning transition at Fc is continuous rather than a first order transition [40]. The average velocity

〈V 〉 at which the interface moves is zero below the critical point and scales with the depinning exponent β

above it,

〈
V
〉
∼

 0 F < Fc

(F − Fc)β F > Fc

(5.6)

For forces well above the critical force, F >> Fc, where the system is outside the critical region, the disorder

becomes less important and the mean velocity increases linearly with stress.

The interface becomes self-affine as it proceeds through the disordered medium (Fig. 5.1). In other words

the transformation y → λy, u→ λζu, where λ is a positive constant and ζ the roughness exponent, leaves it

statistically invariant [1],

〈
|u(y)− u(y + l)|

〉
∼ lζfu(l/ξ) (5.7)

Here the scaling function fu(w << 1) = 1 and fu(w >> 1) = w−ζ according to the Family–Vicsek scaling

[42]. The height-height correlation in Eq. (5.7) exhibits a power law with the separation, lζ for l < ξ and

turns into a constant ξζ for l > ξ.

The interface proceeds with avalanches as some segments advance rapidly through the disordered land-

scape before they get pinned again. Below the critical force and for an external force increased adiabatically

(or quasi-statically) slowly the interface will be pinned at the local energy minima (metastable configurations)

and will proceed with distinct avalanches in between. These avalanches distribute themselves according to
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a power law with a maximum size Smax,

DS(S, Fc − F ) ∼ S−κfS(S/Smax) (5.8)

where

Smax ∼ (Fc − F )−
1
σ (5.9)

and the universal scaling function fS(w → 0)→ 1 and fS(w →∞)→ 0.

In the critical region (i.e. for F close enough to Fc) the interface advances incrementally with avalanches

(Fig. 5.1). The time t it takes the interface to proceed locally over a distance l (which is essentially the

linear size of an avalanche, a valid assumption in isotropic problems) is related to that distance through the

dynamic exponent z [1],

t ∼ lz. (5.10)

5.1.2 Exponent Relations

The mean velocity of the interface can be expressed as the distance traveled over time

〈
V
〉
∼ x

t
∼ ξζ

ξz
∼ (F − Fc)−ν(ζ−z). (5.11)

Together with
〈
V
〉
∼ (F − Fc)β this gives us the first exponent relation

β = ν(z − ζ) (5.12)

The mean avalanche size is the mean distance travelled by the interface over some (adiabatically) small

increase in the applied force 2 [1]

〈
S
〉
∼ ξζ

|Fc − F |
∼ ξζ

ξ−1/ν
∼ ξ

1+νζ
ν ∼ |Fc − F |−(1+νζ) (5.13)

In the general case of a d-dimensional interface moving in (d+ 1)-dimensional space (in this example d = 1)

2It is in general more straightforward to define and extract avalanches below Fc (for an example see Chapter 7). Special
care may be necessary for the fluctuations above Fc, for an example see Chapter 10.
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the maximum avalanche scales as (e.g. see Fig. 5.1)

Smax ∼ ξd × ξζ ∼ |Fc − F |−ν(d+ζ). (5.14)

The mean avalanche size relates to the maximum as

〈
S
〉
∼

∫ Smax

0

SD(S)dS (5.15)

∼
∫ Smax

0

S1−κfS(S/Smax)dS (5.16)

∼ S2−κ
max

∫ 1

0

(S/Smax)1−κfS(S/Smax)d(S/Smax) (5.17)

∼ S2−κ
max (5.18)

∼ |Fc − F |−(2−κ)ν(d+ζ) (5.19)

Combining the above Eq. (5.13) with Eq. (5.19) we have the scaling relations

κ = 2− 1 + νζ

ν(d+ ζ)
(5.20)

while combining Eq. (5.9) with Eq. (5.14) we arrive at the following scaling relation

1
σ

= ν(d+ ζ). (5.21)

5.2 Mean Field Theory of Interface Depinning

In mean field theory (MFT) all spatial information of the interaction is neglected and constant interactions

between all segments of the interface are assumed. Using renormalization tools this approximation has been

shown to give the exact values for the critical scaling exponents and scaling functions for all dimensions

above the upper critical dimension. The upper critical dimension and consequently the applicability of MFT

is ultimately determined by the long wavelength behavior of the interaction. In the general case

∫
dtJ(~r, t) ∼ r−d−Γ̃ (5.22)

with a Fourier transform that scales in the static limit as [25]

J̃(~k, ω = 0) ∼ |~k|Γ̃ (5.23)
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The upper critical dimension dc is then given by

dc(Γ) = 2Γ with Γ = min[Γ̃, 2] (5.24)

and the MF critical exponents and scaling functions are exactly correct for dimensions d > dc(Γ).

In MFT the velocity force relationship becomes linear even close to the critical point and the depinning

exponent βMF is unity,

〈
V
〉
∼ (F − Fc)βMF for F > Fc with βMF = 1 (5.25)

The rest of the fundamental exponents in MFT are compiled in the following Table 5.1 3. Also the avalanche

exponent MF value
βMF 1
νMF

2
dc

ζMF 0
κMF

3
2

σMF
1
2

Table 5.1: Table of MF exponents of the interface depinning universality class.

size distribution scaling function takes the form of an exponential.

All the critical exponents characterizing the interface depinning universality class depend on the dimen-

sion of the elastic manifold, the power-law decay of the interaction if it is long range and on the type of

dynamics but not on other details of the system. On the other hand the critical force or the proportionality

coefficients will in general depend on the details and thus will be non-universal.

5.3 A simple Mean Field Theory Model for Plastic Deformation

of Solids

A more specific daughter model to the generic interface depinning discussed above was synthesized to include

dynamic weakening effects seen in plastic deformation of solids [44]. It gives universal predictions for stress-

strain curves and avalanche statistics in all three cases of deformation: brittle behavior (positive weakening),

ductile behavior (zero weakening) and hardening (negative weakening).

The model assumes that a slowly sheared material has weak spots (labeled with r) where slip initiates

3These exponents are calculated also by Functional Renormalization Group ε-expansion to second order by Fisher [25],
Nattermann et al. [41], Leschhorn et al. [43].
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when the local stress exceeds a random local failure stress τs,r. A failed spot r slips until the local stress is

reduced to some random arrest stress τa,r, and then re-sticks. Such a local slip event can trigger other weak

spots to slip, resulting in a slip avalanche. To model brittle materials after a spot has failed for the first

time its failure stress will be weakened to a diminished value τd,r with τa,r < τd,r < τs,r and it stays at the

diminished value for the remainder of the slip avalanche. The amount of weakening is parametrized by

ε =
τs,r − τd,r
τs,r − τa,r

> 0 (5.26)

At the end of an avalanche all failure stresses return to their initial static failure stresses. In contrast, in

order to model hardening behavior each spot’s failure stress is increased by an amount proportional to |ε|/N

(can be defined differently, see [1] and/or Chapter 2)

τs,r →
(

1 +
|ε|
N

)
τs,r (5.27)

where N is the volume of the system or the total number of spots in the discrete model.

In all three cases of plastic deformation modeled above the elastic interactions between slipping sites

(J(~r)) are so long range that the upper critical dimension is lower than the dimension of the system (see

Eq. (5.24)). In that case the interactions can be approximated by infinite range interactions and the MFT

of interface depinning will give exact results for the universal scaling behavior on long length scales in

all dimensions [44, 45]. For example in MFT it possible to analytically solve for the probability density

distribution D(S, τ) of slip-avalanche sizes S, at applied stress τ (see Eq. (5.8)). Here, the slip size S is

given by the total strain increase during a slip avalanche.

5.4 Proposed Thermal Rounding of the Depinning Transition of

Plasticity

At zero temperature there is no thermally induced dislocation creep. Dislocations are pinned below the

critical stress and flow above it. The mean dislocation speed is zero below, and continuously increases to

non-zero values above the critical stress with a discontinuous jump in its first derivative with respect to the

applied stress. For non-zero temperatures thermal dislocation creep is induced. This causes the dislocations

to flow at any positive stress, even though the external stress may be below its zero-temperature critical

value. The critical point is located where the zero-temperature curve, 〈V 〉(F ), has a sharp discontinuity in

its first derivative (where the arrow points in Fig. 5.2). The higher the temperature the larger the velocity

25



<
v>

τ

T0=0<T1<T2<T3

τc

<v>H

<v>L

T0=0
T1
T2
T3

Figure 5.2: (color online) The proposed behavior of the strain rate,
〈
V
〉
, of the depinning phase transition

of plasticity due to temperature. In this schematic the thermal rounding of the transition is illustrated. The
behavior is expected to be similar to the temperature effect on the depinning of charge-density waves as
studied by Middleton [37] or Roters et al. [29]. Figure courtesy of Thomas Fehm.

at the critical stress as it is illustrated in Fig. 5.2.

One can impose a fixed shearing rate instead of controlling the applied shear stress on a deforming body.

The system can operate in a steady flowing state for different temperatures. Systems that operate closer to

the zero-temperature critical point will exhibit longer correlation lengths and distributions of slip avalanches

with more decades of power law scaling, i.e. with larger maximum (cutoff) avalanche sizes Smax. More

specifically, for low enough shearing rate (v0 = 〈v〉L in Fig. 5.2) the lower temperature can be closer to the

critical point. For high enough shearing rate (v0 = 〈v〉H in Fig. 5.2) the situation is reversed and the higher

temperature is closer to the critical point (meaning, it has a larger associated correlation length).

In summary at zero temperature the pinning-depinning transition is sharp and the critical point clearly

separates the pinned phase (τ < τc) from the depinned phase (τ > τc). At nonzero temperatures the

transition becomes rounded. This effect is illustrated in the relationship of the shear strain rate with the

external stress:

〈V 〉 ∼ T δ (5.28)

and schematically depicted in Fig. 5.2. Here T is the temperature and δ the temperature or thermal critical
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exponent (defined through this scaling expression). This behavior is analogous to the temperature effect on

the depinning of charge-density waves as studied by Middleton [37] or Roters et al. [29].

5.5 Jamming-Unjamming vs Pinning-Depinning

A clarification is in order at this point. The dislocation system is jammed below a critical value of the

external stress. Applying a constant external stress above the critical (flow) stress allows the system to flow,

and the dislocations are unjammed. It is important to stress that in the glide plane of the dislocations,

there is effectively no external pinning potential (i.e. no quenched disorder) 4, so that the jamming is an

emergent phenomenon. However, recent work has shown that the behavior of the transition appears to be

in the universality class of the interface pinning-depinning transition [6], as if there was an effective external

pinning potential induced by the collective interactions between the dislocations. The dislocations can

be thought of as pinned (stuck) below a critical value of the external stress. The dislocations get depinned

(mobile) when a constant external stress above the critical (flow) stress is applied. Henceforth, in this Thesis

we will use the two terms interchangeably without abiding to their strict definition since they effectively

describe the same phases of the dislocation system and plastic deformation.

4Here we are describing the setup of the DDD model. However there is no quenched disorder in the PFC model either.
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Chapter 6

The Model @ T=0 (DDD)

6.1 Discrete Dislocation Dynamics

In our effort to investigate plasticity, we have implemented a model that presents a straight-forward approach

to the problem: discrete dislocation dynamics. As we will see below the interaction between the dislocations

is long range. For that reason we expect DDD to give results according to the MFT of interface depinning

(see next Chapter 7).

In a square box of side length L we place N straight edge dislocations parallel to the z-axis. They are

allowed to move continuously along the x-axis, our shear direction. Their y position is fixed at consecutive

integer values simulating parallel slip planes separated by integer multiples of the lattice constant. In that

way we simulate materials with strong plastic anisotropy that deform by glide on a single plane, like ice [5].

Due to high plastic anisotropy dislocation climb is negligible in such systems, while the temperature is not

high enough to active considerable dislocation motion by climb. The problem is effectively two-dimensional

and it has been shown to have the same scaling behavior in three dimensions [5, 8, 6, 11, 9].

The shear stress produced by an edge dislocation with Burgers vector ~b = (b, 0) at a distance ~r = (x, y)

in the host medium is (from linear elasticity theory):

τint(~r) =
bµ

2π(1− ν)
x(x2 − y2)
(x2 + y2)2

(6.1)

=
bµ

2π(1− ν)
cos(θ)cos(2θ)

r
. (6.2)

It is anisotropic in the (x,y)-plane and for large r =
√
x2 + y2 decays as τint ∼ 1/r as it is shown in Fig.

6.1. Here µ is the shear modulus and ν is the Poisson ratio of the host medium [3]. Each dislocation moves

in response to the interaction stress from the rest, τint, and the external shear stress, τext. Their stick-slip
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Figure 6.1: (color online) The shear stress field of an edge dislocation (located at the origin) as mediated by
the medium is long-range and anisotropic. Exact functional form plotted on the left, schematic of anisotropy
on the right.

motion can be described by overdamped equations of motion (without inertia):

η
dxi
dt

= bi

 N∑
j 6=i

τint(~rj − ~ri) + τext

 (6.3)

for i, j = 1, ..., N where xi is the x coordinate of the ith dislocation at point ~ri with Burgers vector bi, ~rj

with j 6= i are the coordinates of the other N − 1 dislocations, t is time and η is the effective viscosity in the

host medium [5, 8, 6].

In our computer simulations we impose periodic boundary conditions in both x and y directions in order

to simulate materials that are bigger than our basic simulation cell and avoid edge effects. To treat the

long-range character of the dislocation interaction and avoid edge effects, we found the Lekner summation

method [46] particularly straight forward and useful. According to that method, we introduce an infinite

number of image cells around the basic simulation cell. Each one of the image cells contains an image

dislocation for each one of the N dislocations in the basic cell at the same relative position. The image

dislocations follow exactly the motion of the N dislocations in the basic cell. The total stress between a pair

of dislocations, i, j, of the basic cell includes now all their images 1,

τint(~ri − ~rj) = bj
∑

all images

(xi − xj)((xi − xj)2 − (yi − yj)2)
((xi − xj)2 + (yi − yj)2)2

(6.4)

1For all the details on how we derived the stress interaction applying the Lekner summation method of images please see
Appendix A.
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= bj

[
4π2

L

∞∑
l=−∞

+∞∑
m=1

m(χi,j + l) cos(2πmψi,j)e−2π|m(χi,j+l)|
]

(6.5)

where

xi − xj = χi,jL yi − yj = ψi,jL |χi,j |, |ψi,j | < 1 (6.6)

where xi−xj (yi−yj) is the x(y)-distance between the dislocations i and j while the integers l(m) count the

images in the x(y) direction. Since they both reside in the basic cell, their x(y)-distance is a less-than-one

fraction χi,j(ψi,j) of the linear size of the basic cell L. The calculation of the long-range interaction over

all the images is the most time-consuming part of the simulation. In order to speed up the simulation we

calculate the interaction for all possible pairs of distances with some resolution and place those values in a

table. During runtime for a given pair of dislocations we find the interaction stress by interpolation 2.

The equations of motion are solved by the adaptive-step fifth-order Runge-Kutta method. During every

time-step new positions are calculated in parallel for all dislocations in the basic cell. The method compares

the new positions obtained with the fifth-order Runge-Kutta method to those obtained with the fourth-order

Runge-Kutta method and accepts them if they are within the specified accuracy. Otherwise more accurate

positions are calculated repeatedly until accuracy is reached, up to a maximum number of recalculations

[47] 3.

We have set the temperature to T = 0, the distance scale to b = 1 and the time scale to t0 = η/(µ/(2π(1−

ν)) = 1. The dislocation number is constant, since for the time being, we considered neither dislocation

creation nor annihilation4 5. There are equal numbers of dislocations with positive, ~b = +x̂, and negative,

~b = −x̂, Burgers vectors, rendering the system ’neutral’,

N∑
i=1

bi = 0. (6.7)

Also, we are not allowing dislocation climb since it is negligible compared to the effect of glide in materials

that exhibit power law statistics. It would only increase the computational complexity but not add to the
2For a detailed explanation of how we set up and implemented the ”look-up” table please see Appendix A.
3The details of the Runge-Kutta we used can be found in [47].
4Having a constant number of dislocations should be particularly true for nanometer sized materials where prolific dislocation

sources are scarce and exhibit minimal hardening as it is evident from the stress-strain curves in single crystal FCC nanopillars
like Au [22] or Cu [48] and elucidated by the numerical work of Weinberger and Cai [49]. Friedman et al. [50] analyzed
deformation avalanches from nano-scale samples and found it agrees with MFT as well.

5Dislocation creation and annihilation introduce strain-hardening to the system. More specifically by making the creation
rate depend on the local (or external) stress the system would possess a non-constant critical stress that would increase with
strain. In that case the size of the maximum avalanche would scale inversely with the strain-hardening coefficient [16, 51],
which is analogous to the demagnetization factor in spin-systems [28].
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physics we are probing6. When two dislocations on the same glide plane come very close (1b) they get pinned

as they are not allowed to climb over each other. In that way we can still use linear elasticity theory for

their interaction.

We define the dislocation collective speed (also called dislocation activity) V (t), i.e. the sum of the

absolute values of the velocities |vi(t)| of all the dislocations at each time to be,

V (t) =
N∑
i=1

|vi(t)| (6.8)

The acoustic emission signal is proportional to the dislocation collective speed. Thus their statistics should

be similar. Another popular choice is

V ′(t) =
N∑
i=1

bivi(t) ∝ γ̇, (6.9)

which is proportional to the strain rate [1].

6Dislocation climb is necessary for investigating pattern formation [52] but is not expected to change the scaling results we
present in the next Chapter 7. Csikor et al. [11] implemented a full 3-dimensional DDD model with edge, screw and mixed
dislocation segments that could glide in different slip planes and recover essentially the same avalanche size distribution scaling
as in the 2-dimensional DDD models. (Their equations of motion are overdamped with inertia. The dislocations are allowed
to form junctions and dislocations with opposite Burgers’ vectors can annihilate. Edge dislocations are not allowed to climb
but screw dislocations are allowed to cross-slip depending on temperature. The simulations are initialized with Frank-Read
sources.)
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Chapter 7

Results @ T=0 (DDD)

The interaction between two parallel straight edge dislocations is given by the shear stress element τxy of

the elasticity tensor which scales as

τxy ∼
1
r

for r →∞ (7.1)

This means that the stress kernel is also long range,

∫
ddrJ(r) ∼ τxy∫

drrd−1J(r) ∼ 1
r

J(r) ∼ r−d−1 (7.2)

Thinking of dislocation dynamics as an interface depinning problem we can determine an analogous upper

critical dimension by seeing that

Γ̃ = 1 (7.3)

and [1]

dc = 2Γ̃ = 2. (7.4)

Although the problem is still not completely solved analytically1 we can offer here the following simple

visualization. We view the dislocations as part of an abstract interface which slips in the direction of the

external applied stress while it is ”held” together and pinned at the same time by the individual dislocation

interaction. In that sense we have an abstract (d =)2-dimensional slip interface depinning in (d + 1 =)3-

dimensional space (the stress interaction between 2 straight parallel edge dislocations is calculated to be
1The full analytical Renormalization Group calculation of the DDD critical exponents is made extra tedious by the extra

difficulty of the anisotropy of the dislocation interaction.
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τxy ∼ 1/r in linear elasticity for an infinite-long straight edge dislocation line living in the unbounded

3-dimensional space.). According to the above simple visualization

dc = 2 = d (7.5)

for 2d DDD and one can expect to get results in the MF interface depinning universality class.

In the following we describe exactly how we performed the computer simulations and analyzed the results

from DDD.
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Figure 7.1: (color online) (left) Time series of the collective speed of the dislocations for N = 64 dislocations
in a square box of side L = 100. Displacement at time t is the total distance all the dislocations traveled
from the beginning of the simulation (t = 0) till time t:

∫ t
0
dt′
∑N
i=1 bidxi(t

′). (right) External stress vs
total dislocation displacement for the same run. The arrows indicate the start and finish of the last large
avalanche. (Note that in the stress vs displacement figure the equilibration occurs at zero external stress.)

7.1 Below the critical stress

We start by randomly seeding the N dislocations in the simulation box and letting the system relax to the

nearest (metastable) equilibrium state at zero external stress. The dislocation activity approaches zero the

closer the system gets to the nearest local energy minimum. A simple eigenmode analysis shows that the

time needed for the system to reach zero activity diverges. When the dislocation activity, V (t) (see Eq. (6.8)

for definition) has fallen below a threshold, Vthr, the system is sufficiently close to the nearest local energy

minimum 2.

For a typical system of N = 64 dislocations in a square box of side L = 100, Vthr = 0.1, which is

roughly 100 times less than the initial activity of the system. We increase the external stress adiabatically
2The closer the system gets to a local energy minimum the slower it moves and the time it is needed to reach the exact

bottom of the energy well diverges, so a threshold has to be applied.
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(or quasi-statically) slowly whenever and for as long as the system’s activity is below the specified threshold,

V (t) < Vthr. Eventually the increased external stress pushes the system’s activity above the threshold.

During the time that V (t) > Vthr the system produces an avalanche and we keep the external stress constant

until the avalanche has completed (Fig. 7.1). We have checked that the scaling behavior is insensitive to the

threshold for a value up to ten times larger and smaller.

For relatively low values of the external stress the system responds with small avalanches. As the stress τ

approaches the flow stress τc, it responds with larger and larger avalanches until at τc it finally flows steadily

with an infinite avalanche. When the applied stress exceeds the critical value, i.e. τ > τc, we observe the

dislocations moving constantly, exiting from one side of the simulation cell and reemerging at the other as a

result of the periodic boundary conditions, without ever getting jammed (pinned) again. This is the point

when the sample flows in a deformation experiment. In summary, for τ < τc the system is jammed (pinned).

For τ > τc the system is constantly flowing (Fig. 7.1).
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Figure 7.2: (color online) The power spectrum of the dislocation activity, V (t), of the adiabatic increase of
the external stress gives a power law of 1

σνz ≈ 2 in agreement with MFT. The power-law regime corresponds
approximately to the inverse of the Dt(taval) power-law region. Extracted from 288 runs of the system with
N = 64 dislocations in a box of L = 100 and from 96 runs for the systems with N = 128 and L = 141 and,
N = 256 and L = 200.
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7.1.1 Power Spectra Below the critical stress

We calculated the power spectra of the time series of the activity V (t) for all stresses, i.e. 0 < τ < τc

(integrated-over-stress), using the Lomb periodogram technique [47]. From Kuntz and Sethna [53] and for

a size distribution exponent κ < 2 the power spectra scales as

PSint(ω) =

∣∣∣∣∣
∫
V (t)eiωtdt

∣∣∣∣∣
2

∼ ω− 1
σνz . (7.6)

Our results are shown in Fig. 7.2 where we find 1
σνz ≈ 2 in agreement with MFT.
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Figure 7.3: (color online) Scaling collapse (right) of the averaged temporal avalanche profiles for τ < τc
shown on the left. The collapse yields 1

σνz ≈ 1.9 in agreement with the power spectra both below (Fig. 7.2)
and above (Fig. 7.10) τc and MFT. Averaged avalanche profiles (shapes) are shown for 3 different durations
from the power-law regime of Dt(taval) . Extracted from 96 runs with N = 64 dislocations in a box of
L = 100. (Note that Vthr = 0.1 was subtracted from the signal V (t)).

7.1.2 Slip avalanche shapes below the critical stress

A slip avalanche is defined as starting at time tstart when V (t+start) > Vthr with V (t−start) < Vthr. It ends at

tfinish when V (t−finish) > Vthr and V (t+finish) < Vthr provided that V (t) > Vthr for all tstart < t < tfinish (see an

example in Fig. 7.1). The duration of an avalanche is then

taval = tfinish − tstart. (7.7)

From our simulations we were able to extract for the first time the temporal avalanche speed profiles in

the jammed/pinned phase. We collected all the avalanches within ±5% of a duration and averaged their

profiles. For sufficiently small durations the avalanches are taken from the power law regime of the duration
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distribution. Following Kuntz and Sethna [53] we were able to collapse them using

V (t) = taval
1
σνz−1fshape

( t

taval

)
. (7.8)

We obtained a good collapse which indicates that the scaling exponent has the MF value of 1
σνz ≈ 2 (Fig.

7.3). In addition the power spectra exponent and the exponent that collapses the avalanche shapes are in

excellent agreement. In [8] a power spectra exponent of about 1.5 was found for the activity fluctuations

above the critical stress while the system was in the flowing state. In general the activity fluctuations in the

flowing state (depinned phase) can be comprised out of several avalanches merged together (in contrast to

the pinned phase where increasing the external stress adiabatically slowly makes the system respond with

individual avalanches). In the case when individual avalanches merge together their shape may be different

from the pure single avalanche shape and may not be amenable to a collapse. One also needs a very large

number of avalanches (good statistics) above and below the critical stress in order to produce an average

avalanche shape that will reveal self-similarity and give a collapse. In contrast, our power spectra above

the critical stress (Fig. 7.10) give the same power-law exponent of 1
σνz ≈ 2 as our power spectra below the

critical stress (Fig. 7.2).

7.1.3 Slip avalanche distributions below the critical stress
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Figure 7.4: (color online) Avalanche size distributions (left) and their scaling collapse (right). It gives κ ≈ 1.5
and 1

σ ≈ 2 in agreement with MFT. Extracted from 96 runs with N = 256 dislocations in a box of L = 200.
For the collapse shown we found more convenient the form DS(S, τ)(1 − τ/τc)−κ/σ ∼ gS(S(1 − τ/τc)1/σ)
where gS is a another scaling function. The scaling function can in principle be extracted by a fit on the
collapsed curves. (In producing these distributions we used logarithmic binning and ignored bins with only
one count to avoid the trivial power law of 1/S that comes from normalizing the logarithmic bins with their
size.)

36



10-10

10-8

10-6

10-4

10-2

100

10-1 100 101 102 103 104 105 106

D
(E

)

E

τ= 0.90τc
τ= 0.69τc
τ= 0.45τc
τ= 0.16τc

slope=-1.3

10-6

10-4

10-2

100

102

104

10-4 10-3 10-2 10-1 100 101 102 103 104

D
(E

)E
3.

0*
1.

3

E(1-τ/τc)
3.0

τ= 0.90τc
τ= 0.69τc
τ= 0.45τc
τ= 0.16τc

Figure 7.5: (color online) Avalanche energy distributions (left) and their scaling collapse (right). It gives
κE = 1 + κ−1

2−σνz ≈ 1.3 and 2−σνz
σνz ≈ 3 in agreement with MFT. Extracted from 96 runs with N = 256

dislocations in a box of L = 200. For the collapse shown we found more convenient the form DE(E, τ)(1−
τ/τc)−κE(2−σνz)/σ ∼ gE(E(1− τ/τc)(2−σνz)/σ) where gE is a another scaling function. The scaling function
can in principle be extracted by a fit on the collapsed curves. (In producing these distributions we used
logarithmic binning and ignored bins with only one count to avoid the trivial power law of 1/E that comes
from normalizing the logarithmic bins with their size.)

We were also able to extract the probability distribution of the avalanche sizes, durations and energies.

We define the size of an avalanche as

S =
∫

taval

V (t)dt (7.9)

and the energy as

E =
∫

taval

V 2(t)dt. (7.10)

The distribution of energies (shown in Fig. 7.5) at different stresses can be shown to scale as

DE(E, τ) ∼ E−1− κ−1
2−σνz fE

(
E
(

1− τ

τc

) 2−σνz
σ

)
(7.11)

(κE = 1 + κ−1
2−σνz ) and the distribution of durations as

Dt(taval, τ) ∼ taval
−1−κ−1

σνz ft

(
taval

(
1− τ

τc

)νz)
(7.12)
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(κt = 1 + κ−1
σνz ) starting from the distribution of sizes (shown in Fig. 7.4)

DS(S, τ) ∼ S−κfS
(
S
(

1− τ

τc

) 1
σ

)
(7.13)

[6], the correlation length as

ξ ∼
(

1− τ

τc

)−ν
(7.14)

and the dynamic exponent is defined as

taval ∼ ξz (7.15)

(see [1] and/or Appendix B). We calculated all the power-law and cut-off exponents above from our simu-

lations and they are consistent with MFT (see Table 7.1).

The distribution of durations, Dt(taval), could not be extracted due to finite size effects although we were

able to get the power law exponent from the phase field crystal model (PFC) (see Chapter 10). Also much

larger system sizes than our maximum L = 200 and N = 256 are needed to probe the cut-off region of the

distributions and finally measure the correct integrated-over-stress (0 < τ < τc) power-law exponents. For

example the scaling exponent of DS,int(S) ∼ S−(κ+σ) has only been observed with continuum models and

not yet with DDD models [6] because of the very strong finite size effects that require large systems and

long simulations. We present all the exponents in Table 7.1.

7.1.4 Average avalanche size versus duration and average avalanche duration

versus size.

The avalanches size S and can be written as

S =
∫

taval

V (t)dt = 〈V 〉taval (7.16)

where 〈V 〉 = 1/taval

∫
taval

V (t)dt is the average height of an avalanche. From Eq. (7.8) we know that

〈V 〉 ∼ taval
1
σνz−1 which gives,

S = taval
1
σνz . (7.17)
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Figure 7.6: (color online) Average avalanche sizes versus durations (left) and average avalanche durations
versus sizes (right) for same system sizes and number of dislocations. As the threshold is lowered we get

1
σνz → 2 and σνz → 1

2 in agreement with MFT. The power law exponents converge to their MF values as
Vthr is lowered and the durations are sampled better (The Dt’s for lower Vthr could not reveal the correct
exponents however.). Extracted from 96 runs with N = 128 dislocations in a box of L = 141 and 3 different
thresholds Vthr = 0.1, 0.01, 0.001.

We can extract this exponent by plotting the average avalanche size for a narrow bin in durations and the

average duration in a narrow bin in size,

〈S〉 = taval
1
σνz and 〈taval〉 = Sσνz (7.18)

which we show in Fig. 7.6 below. The avalanche durations are plagued by finite-size effects in the sense

that we get a few decades in taval for several decades in S because avalanches can have very different areas

for similar horizontal - in time - extensions. However lowering the threshold we get exponent value that

converge to the MF predicted value.

7.1.5 Finite-size effects

As the system approaches the flow stress from below, τ → τc, (i.e. the critical point of the depinning

transition) the correlation length diverges,

ξ ∼
(

1− τ

τc

)−ν
. (7.19)

Up to the point where the correlation length is smaller than the linear system size (ξ < L) the maximum

avalanche is given by Smax ∼
(

1− τ
τc

)− 1
σ ∼ ξ 1

σν . However when the correlation length outgrows the system
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size (ξ > L) the maximum avalanche is dictated by the system size, Smax ∼ L
1
σν .

Smax ∼

 ξ
1
σν for ξ < L

L
1
σν for ξ > L

(7.20)
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Figure 7.7: (color online) Finite-size scaling analysis for same density dislocation systems at different linear
sizes L.We used N = 16, 32, 64, 128, 256 dislocations in square boxes of side L = 50, 71, 100, 141, 200 respec-
tively and excluded spanning avalanches (a spanning avalanche has at least one dislocation travel by L). The
individual linear fits on the moments ratios (dashed lines) are expected to scale as log10

〈Sm+1〉
〈Sm〉 ∼

1
νσ ·log10(L)

(left) and as log10
〈Em+1〉
〈Em〉 ∼

2−σνz
νσ · log10(L) (right) giving for the finite-size exponent ν = 1.0± 0.2.

We can quantify the finite-size effects through the exponent ν (Fig. 7.7). The integrated size distribution

can be modified to account for finite-size effects,

DS,int(S,L) ∼ S−(κ+σ)fS,int(SL−
1
σν ). (7.21)

We were able to qualitatively observe the increase of the maximum avalanche of DS,int(S,L) with L. We

were able to quantify that dependence through the moments,

〈Sm〉 =
∫ Smax

0

SmDS,int(S,L)dS. (7.22)

For m > κ+ σ the integral does not diverge at the lower limit and we get

〈Sm〉 ∼ L
1+m−κ−σ

νσ . (7.23)
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By plotting

log10
〈Sm+1〉
〈Sm〉

∼ 1
νσ
· log10(L) (7.24)

we get consistent values for ν, independent of m. Our results are consistent when we use

〈Em〉 ∼ L(m− κ−2
2−σνz ) 2−σνz

νσ (7.25)

and plot

log10
〈Em+1〉
〈Em〉

∼ 2− σνz
νσ

· log10(L) (7.26)

We also tried to extract the dynamic exponent z that shows up in the scaling of the duration moments with

the system size,

〈taval
m〉 ∼ L(m−κ+σ−1

σνz )z (7.27)

through plotting

log10
〈taval

m+1〉
〈taval

m〉
∼ z · log10(L). (7.28)

Determining z by applying Eq. (7.28) to the data does not yield reliable results because the data for the

durations is plagued by unusually large finite size effects and large errorbars. The duration moments are

more strongly affected by finite size effects than the moments of the sizes and energies above. Note that

the size and energy distributions also have a much wider scaling regime (to be expected as they measure

distributions of physical quantities that scale with volume rather than length). We encountered the same

strong finite size effects when we attempted to extract z from the distribution of durations above (see Section

7.1.3).

7.2 Above the critical stress

We take as the critical stress τc for each system the stress that it reached at the end of the adiabatic run.

This is the stress at which the system has reached the infinite avalanche with the dislocations moving out

of the basic cell at one side and in at the other due to the periodic boundary conditions.
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Figure 7.8: (color online) (left) Time series of the collective speed of the dislocations for N = 64 dislocations
in a square box of side L = 100 at 1% higher stress than the critical stress (τ = 1.01τc) of the adiabatic run
of the same system and initial conditions. Displacement at time t is the total distance all the dislocations
traveled from the beginning of the simulation (t = 0) till time t:

∫ t
0
dt′
∑N
i=1 bidxi(t

′). (right) External stress
vs total dislocation displacement for the same run. The dislocation system is constantly flowing although
one can observe activity fluctuations but no avalanches since the activity does not slow down below Vthr,
the threshold level. (Note that in the stress vs displacement figure the equilibration occurs at zero external
stress.)

7.2.1 Average flow rate above the critical stress

The critical stress τc is not a universal quantity and every system with the same number of dislocations and

box size has a different τc. Knowing the critical stresses from the adiabatic run allowed us to run at a fixed

fraction above each realization’s own critical stress.

We obtain a transition from the pinned to the depinned phase and a linear relationship between mean

dislocation activity and distance from the critical point for stresses above the critical stress:

〈V 〉 ∼
(
τ

τc
− 1
)β

with β ≈ 1 (7.29)

(Fig. 7.9). This result agrees with MFT predictions [28, 45] and it is different from [24] where the critical

stress was determined in a collective manner for the entire ensemble. Our treatment suppresses the effect of

the ensemble stress fluctuations on the calculation of β, but we expect that the two approaches should yield

the same exponent in the thermodynamic limit.

7.2.2 Power Spectra Above the critical stress

We also calculated the power spectra of the dislocation collective speed for stresses above the critical stress.

They exhibit power law that extends for over 2 decades in frequency and from very close to the critical
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Figure 7.9: (color online) Mean collective speed (V (t) =
∑N
i=1 |vi(t)|) and mean strain rate (V ′(t) =∑N

i=1 bivi(t)) plotted against the reduced stress above the critical stress. Power-law fits were performed:
〈V 〉 ≈ 1.38(±0.03)+6.03(±0.05)(τ/τc−1)1.14(±0.02) and 〈V ′〉 ≈ 1.13(±0.03)+6.26(±0.04)(τ/τc−1)1.19(±0.02).
Both measures yield a MF value of β ≈ 1. (The value of β is more sensitive to the number of points used
in the fit than the statistical errors indicate. The statistical errors quoted are not the dominant errors.
In the numerical study of a critical phenomenon the systematic errors dominate.) Each of the 7 points
(τ/τc = 1.01, 1.02, 1.05, 1.1, 1.2, 1.5, 2.0) is extracted from 96 runs with N = 64 dislocations in a square box
of side L = 100.

stress, τ = 1.01τc, to up to τ = 2.00τc or 100% above the critical stress. One can see this in Fig. 7.10. Note

that the power spectrum at stress τ = 3.00τc does not follow a power law meaning that the critical region

does not extend to 200% above the critical stress.

7.3 Discussion

We presented here the first avalanche shape collapse and power spectrum below the critical point of plasticity.

The avalanche shape collapse exponent, 1/σνz, agrees with the power spectrum scaling exponent. In fact

all the exponents we calculated are in very good agreement with the MF values of the Interface Depinning

Transition Universality Class. Thus we have shown that even the temporal characteristics of crystalline

deformation, in the absence of work-hardening, belong to the universality class of the MF pinning-depinning

phase transition. This should be particularly true for nanometer sized materials where prolific dislocation

sources are scarce and exhibit minimal hardening as is evident from the stress-strain curves in single crystal
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Figure 7.10: (color online) The power spectrum of the dislocation activity, V (t), for external stress above
the critical stress gives a power law of 1

σνz ≈ 2. This is in agreement with the power spectra below the
critical stress (Fig. 7.2), the avalanche shapes collapse (Fig. 7.3) and MFT. Extracted from 96 runs of the
system with N = 64 dislocations in a box of L = 100 and τ = 1.01, 1.02, 1.05, 1.1, 1.2, 1.5, 2.0, 3.0τc. Notice
that for τ = 3.0τc the power spectrum does not follow a power law and thus it is outside the critical region.
Presumably the upper end of the critical region up to where the critical power law scaling of the depinning
transition is seen is at a stress, τupper, that lies 2.0τc < τupper < 3.0τc.

FCC nanopillars like Au [22] or Cu [48] and elucidated by the numerical work of Weinberger and Cai [49].

Friedman et al. [50] analyzed deformation avalanches from nano-scale samples and found it agrees with

MFT as well.
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Chapter 8

Dislocation Jamming
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Figure 8.1: (color online) Proposed jamming phase diagram for dislocation systems. Notice the absence of
a jamming point.

1 In this chapter we study connections between the plastic yield point of systems with long range inter-
1This work of ours was published in Physical Review Letters [10].
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actions, such as dislocation systems and the jamming transition of systems with short range interactions,

such as sheared granular materials and molecular liquids [55, 56, 57, 58]. When a system jams it undergoes

a transition from a flowing state (analogous to a depinned phase) to a rigid state (analogous to a pinned

phase). In contrast to the ordered solid phase obtainable via crystallization, the solid phase reached via

jamming remains disordered. Liu and Nagel [55], O’Hern et al. [56, 57] and others [58] studied jamming of

granular materials with short range interactions in simulations and experiments. They found that below a

critical density these materials do not jam at any stress. This critical density is called the jamming point

J of granular materials. In contrast, we show here that dislocations jam at any nonzero density, i.e. dislo-

cations have no jamming point. The physical reason is that dislocations have long range interactions that

can lead to pinning for arbitrarily large distances between the dislocations. Fig. 8.1 sketches the putative

jamming phase diagram (in the absence of screening) for dislocation-mediated plasticity. It is closely related

to the jamming phase diagram of [58] for granular materials, except for the absence of a jamming point J

for dislocations.

In the following we employ analytical calculations and discrete dislocation dynamics simulations to study

how the critical (flow) stress depends on the dislocation density ρ. Our analytical calculations verify and

generalize the numerical findings.

8.1 Numerical Calculation of Critical Stress; Taylor relation

The critical stress τc is not a universal quantity and every system with the same number of dislocations and

box size has a different τc. We performed an adiabatically slow increase of the stress for different dislocation

densities, ρ = N/L2. The cumulative distributions of the critical stresses is shown in left Fig. 8.2 & 8.4. One

can observe that the distributions become narrower for smaller densities, as does the mean critical stress of

the ensemble. The scaling collapse shown in right Fig. 8.2 & 8.4 gives (to first order in ρ) the relationship

τc ∼
√
ρ (8.1)

also known as the Taylor relation [59].

The dislocation system exhibits jamming for τ < τc analogous to the work of Liu and Nagel [55] and

O’Hern et al. [56, 57]. Their systems are different from ours in that they had exclusively short range

interactions (contact interactions of soft spheres) and we have long range (besides the core interactions that

are enforcing the ”no climb” constraint). They observed similar distributions of depinning stresses and a

similar concave up dependence of the flow stress on the density (Fig. 8.3). However in contrast to their
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Figure 8.2: (color online) (left) The cumulative distribution of critical stresses τc for 5 different numerical
densities. Each curve is extracted from 288 runs with N = 64, 32, 16 dislocations and 96 runs with N = 48, 24
dislocations in a square box of side L = 100. The smaller the density, the narrower the distribution
and smaller the mean τc (see next Fig. 8.3). (right) We obtain a good collapse using the expression
p(τc, ρ) ∼ ρλf [τcρλ

′
]. λ = 0 since the cumulative probability is restricted in [0, 1]. λ′ = −0.5 ± 0.02. The

rescaling of the horizontal axis indicates that τc ∼ ρ0.5. The collapse quantifies the fact that the distributions
get steeper and have a smaller mean for lower density ρ (see Fig. 8.3).

results, we neither expect nor find a jamming point equivalent to their jamming point J where τc = 0. This

means there can be no density, however small, that will unjam our system at zero applied external stress.

The reason is that dislocations have long-range interactions [58]. No matter how far apart they are, they

always feel each other.

8.2 Theoretical Calculation of Critical Stress

Consider N+
R,∆R positive and N−R,∆R negative edge dislocations parallel to the z-axis randomly distributed

on a ring of radius R and thickness ∆R on the (x, y)-plane. The stress exerted at the origin is given by,

τR,∆R =
∫ R+∆R

R

d2r
ρ+(r, θ)− ρ−(r, θ)

r
K(θ) (8.2)

adapted from [60] using Eq. (6.2) where

ρ±(r, θ) =
N±
R,∆R∑
i=1

δ(r − ri)
rd−1

δ(θ − θi) (8.3)

and

K(θ) ∼ cos(θ) cos(2θ). (8.4)
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Figure 8.3: (color online) The mean critical stress 〈τc〉 plotted against the inverse numerical dislocation
density ρ. The system is jammed below the line (τ < τc) and unjammed above the line (τ > τc). Each point
is extracted from 288 runs with N = 64, 32, 16, 8 dislocations and 96 runs with N = 48, 24, 12 dislocations
in a square box of side L = 100. The critical stress has a similar qualitative dependence on the density as
in the proposed jamming phase diagram by Liu and Nagel [55]. However for dislocations τc(ρ) > 0 for all
non-zero densities ρ.

We express all distances in terms of l, the mean dislocation distance, i.e. ρ = N/Ld = 1/ld in d dimensions,

i.e. X = R/l and x = r/l. For any power law r−α interaction, we get

τX,∆X =
ld

lα

∫ X+∆X

X

ddx
ρ+(x,Θ)− ρ−(x,Θ)

xα
K(Θ) (8.5)

with

ρ±(x,Θ) =
1
ld

N±
X,∆X∑
i=1

δ(x− xi)
xd−1

δ(Θ−Θi). (8.6)

where Θ now is a generalized angle in d dimensions. For small ring thickness we can approximate the integral

with the value of the integrand at X times ∆X. The average over the number of the dislocations to first

order gives

〈τX,∆X〉 ∼
1

lαXα
(〈N+

X,∆X〉 − 〈N
−
X,∆X〉) = 0 (8.7)

49



with

〈N+〉 = 〈N−〉 = 〈N〉. (8.8)

The effect of the number fluctuations on the stress per ring thickness is:

〈τ2
X,∆X〉 ∼

〈(N+
X,∆X −N

−
X,∆X)2〉

l2αX2α
∼ 1
l2α
〈NX,∆X〉
X2α

(8.9)

since N± are independent random variables, Poisson distributed with the same mean and variance. Assuming

that there are N dislocations of each kind in the entire area Ld where XL = L/l >> 1, their mean number

in the ring can be expressed as

〈NX,∆X〉 ∼ N
Xd−1∆X

Xd
L

. (8.10)

Substituting into Eq. (8.9) we find,

〈τ2
X,∆X〉 ∼

1
l2α

N

Xd
L

∆X
X2α−d+1

. (8.11)

Integrating over the entire region and using N/Xd
L = 1 we extract the global stress fluctuations

〈τ2〉 ≡
∫
〈(τ2

X,∆X〉 ∼
1
l2α

∫ XL

Xmin

dX

X2α−d+1
. (8.12)

With Xmin = b/l the closest possible distance between 2 dislocations it gives us

√
〈τ2〉 ∼ 1

lα
1√

2α− d

√
1

X2α−d
min

− 1
X2α−d
L

(8.13)

∼ 1

l
d
2

1√
2α− d

√
1

b2α−d
− 1
L2α−d (8.14)

∼ √ρ 1√
2α− d

√
1

b2α−d
− 1
L2α−d (8.15)

for 2α > d. In the thermodynamic limit, L→∞, this translates to the rms stress scaling as

√
〈τ2〉 ∼ √ρ. (8.16)
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For 2α < d,

√
〈τ2〉 ∼ 1

lα
1√

d− 2α

√
Xd−2α
L −Xd−2α

min (8.17)

∼ 1

l
d
2

1√
d− 2α

√
Ld−2α − bd−2α (8.18)

∼ √ρ 1√
d− 2α

√
Ld−2α − bd−2α (8.19)

and the thermodynamic limit doesn’t exist. For parallel straight edge dislocations in 2 dimensions 2α = d = 2

and

√
〈τ2〉 ∼ 1

l
d
2

√
ln(L/b) ∼ √ρ

√
ln(L/b) (8.20)

This agrees with our numerical result from the scaling collapse in Fig. 8.2 which was at fixed system size

L = 100 and the numerical result from the scaling collapse in Fig. 8.4 which was at fixed dislocation number

N = 32. The two scaling collapses verify the appropriate choice for the lower limit of the integral in Eq.

8.12 which leads to Eq. 8.20.
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Figure 8.4: (color online) (left) The cumulative distribution of critical stresses τc for 4 different numerical
densities. Each curve is extracted from 96 runs with N = 32 dislocations in a square box of side L =
50, 71, 100, 141. The smaller the density, the narrower the distribution and smaller the mean τc (similar to
Fig. 8.3). (right) We obtain a good collapse based on the expression p(τc, ρ) ∼ ρλf [τc(ρln(1/

√
ρ))λ

′
]. The

collapse quantifies the fact that the distributions get steeper and have a smaller mean for lower density ρ.
The exponent λ = 0 since the cumulative probability is restricted in [0, 1]. λ′ ≈ −0.5 approximately. The
rescaling of the horizontal axis indicates that τc ∼ (ρln(1/

√
ρ))0.5 which is equivalent to Eq. 8.20 for fixed

N .
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8.3 Discussion

We were able to show, using a discrete dislocation dynamics model, that the mean critical stress of an

ensemble of dislocation systems with long-range interactions, τint ∼ 1/r, scales with the square root of

the dislocation density, 〈τc〉 ∼
√
ρ, for straight parallel edge dislocations. Eq. (8.20) also agrees with the

Taylor hardening relation [59] and is analogous to the effective velocity of a point vortex in 2 dimensional

hydrodynamics [61]. We were able to perform the analytical calculation for any power law interaction,

τint ∼ 1/rα, and for arbitrary d dimensions. The theoretical result agrees with our simulation at fixed

system size L = const. Our results, both numerical and theoretical, show that for dislocations or particles

with long-range interactions there can be no jamming point at a finite density (only at ρ = 0), even if there

is screening with a screening length that grows as dislocation density decreases.
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Chapter 9

The Model @ T>0 (PFC)

9.1 The Phase Field Crystal Model

1 The phase field crystal model describes how the local density of atoms changes with time while maintaining

the symmetries and periodicity of the lattice. In addition, the elastic interactions of the atoms are also

captured by the PFC allowing for elasticity of the crystal to be expressed. These characteristic properties of

the phase field crystal model are distinctly different from the generic phase field model. In a typical phase

field model the phase field describes the dynamics of interfaces that separate dissimilar regions without

keeping track of the microscopic information inside those regions. As we saw in Chapter 4 Koslowski et al.

[13] developed a phase field model to simulate dislocations as interfaces (probably separating crystal regions

with different accumulated slip). In studying plasticity it is important to capture the microscopic details

such as the dislocations who disrupt the periodicity of the perfect lattice. At the same time is important

to capture the macroscopic behavior as well such as the collective motion of the dislocation ensemble. The

phase field crystal model is particularly successful in doing that in an elegant way.

Mathematically the phase field crystal (PFC) model is given by the free energy density [63, 64]

f =
ρ

2
(∇2 + 1)2ρ+

r

2
ρ2 +

ρ4

4
, (9.1)

where r is the undercooling and ρ(~x, t) is the local density of the phase field. The first term in Eq. (9.1) forces

ρ(~x, t) to be periodic (and one can have a phase field crystal that is able to describe a periodic structure).

The last two terms impose a double well potential (to lowest order) similar to the Landau ansatz. For r > 0

one gets a liquid, constant ρ, phase (because the potential is single well) while for r > 0 one can get a

triangular lattice or a striped phase (due to the double well potential). r can be thought of as a reduced

temperature, (T − Tc)/Tc. The material is liquid for temperatures higher than a critical while it crystalizes

for temperatures below a critical. This behavior can be readily seen in the PFC phase diagram, Fig. 9.1.
1This work of ours was published in Physical Review Letters [14] while an extensive description of the phase field crystal

model can be found in [62].
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Figure 9.1: The PFC phase diagram. The figure is taken from Elder and Grant [64]. K. R. Elder and Martin
Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,
Phys. Rev. E, 70:051605, 2004. Copyright 2004 by the American Physical Society.

The dynamics associated with this free energy is conservative, relaxational and diffusive, and systematically

derivable from density-functional theory [65].

In order to study the plastic response of the PFC model under shear, we add an applied strain rate along

the x direction at the y = 0, Ly boundaries, v(y)∂ρ/∂x, to the dynamical equation:

∂2ρ

∂t2
+ (β)

∂ρ

∂t
= (α)2∇2 δF

δρ
+ v(y)

∂ρ

∂x
+ η, (9.2)

where

v(y) =

 v0e
−y/λ for 0 < y < Ly/2

−v0e
−(Ly−y)/λ for Ly/2 < y < Ly

(9.3)

is the shearing profile. In Eq. (9.3) v0 is the magnitude and λ the penetration depth of the shearing rate.

The simulations take place in a square box of sides Lx(Ly) in the x(y) direction. In Eq. (9.2) α and β control
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the range and time scale of elastic interactions (phonon excitations) propagating through the medium [66],

F ≡
∫
f(~x)ddx (9.4)

is the total free energy and η is the thermal noise satisfying the fluctuation-dissipation theorem

〈η(~x, t)η(~x′, t′)〉 = −ε∇2δ(~x− ~x′)δ(t− t′). (9.5)

Here ε is the noise amplitude. It is directly proportional to the temperature, kBT . The value of v0 controls

the magnitude of the shearing force; the penetration depth, λ, controls how deep the shearing force extends

into the material. In all simulations we set λ � Ly, so the actual value of λ does not affect our simulation

results. The boundary conditions are periodic in x and fixed at y = 0, Ly (i.e. we design the simulation cell

with the following boundary conditions: the crystal terminates at y = 0, Ly and does not wrap around as

in x = 0, Lx). That way we can easily apply a fixed shear rate at the y = 0, Ly boundaries (see just above

Eq. 9.3) and allow the dislocations to flow unbounded at the x = 0, Lx boundaries effectively simulating a

larger thermodynamic system than the mere dimensions of our basic simulation cell.

9.2 Advantages of the Phase Field Crystal Model

One of the advantages of using the PFC model is that we do not have to impose any ad hoc assumptions about

the creation and annihilation of dislocations. Recall that in dislocation dynamics simulations, dislocations are

treated as elementary particles and usually only the far field interaction between dislocations is captured.

When dislocations get too close to each other (a few atomic spacings), the highly nonlinear interaction

between them is not captured and more importantly, the annihilation of dislocations is not accounted for.

The standard practice is then to impose some annihilation rules—dislocations of opposite topological charges

annihilate when they get too close to each other [5]. Similarly, dislocations have to be created by hand

when the local strain is high. Although these rules are consistent with our physical intuition, particular

ways of implementing them are sometimes difficult to justify. However, because the PFC model captures

the nonlinear elastic behavior of a crystal, the interaction between dislocations is completely captured. In

addition, because the PFC model simulates the atoms in the lattice (the PFC density is periodic in its ground

state with peaks representing atoms and troughs inter-atomic space), but not the dislocations themselves,

creation and annihilation of them are also naturally captured as collective excitations of the lattice. No ad

hoc rules or assumptions have to be imposed.
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Figure 9.2: (color online) (top) The PFC simulation cell setup where the boundary conditions are indicated:
periodic in x and fixed at y = 0, Ly where the exponentially decaying shearing rate is applied. (bottom)
A single frame from a PFC simulation. Peaks in ρ can be identified with black and indicate atoms while
troughs in ρ are white and signify interatomic space. In the perfect 2-dimensional crystal the PFC ”atoms”
arrange themselves in a triangular or hexagonal lattice. In that case every atom has exactly 6 neighbors and
there are no dislocations. Individual dislocations can be seen near the PFC ”atoms” with 5 or 7 neighbors.
In some regions dislocations form grain boundaries. The x-axis lies horizontally while the y-axis vertically
in these figures.
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Chapter 10

Results @ T>0 (PFC)

10.1 Introduction

1 In this chapter we approach plastic deformation from the flow side of the non-equilibrium critical point,

manifested in the strain-rate dependence of the acoustic emission. Importantly, we are able to systematically

vary the strain-rate and temperature in simulations, and moreover we relate the critical point underlying

plastic flow at finite strain rates to the scaling of interface depinning [25, 1, 44]. We find remarkable agreement

between simulations and analytical mean field theory predictions of exponents. Our results strongly support

the critical point picture of plasticity, and suggest new experiments.

We study dislocation avalanches during plastic flows using the phase field crystal (PFC) model [63,

64]. This approach is well-suited to this problem, because it can be performed at finite temperature, for

large systems, and over long time periods. The PFC model describes the dynamics of the local crystalline

density field, and has been shown to give an excellent account of numerous materials properties including

polycrystalline solidification, vacancy diffusion, grain growth, grain boundary energetics, epitaxial growth,

fracture [64], grain coarsening [67], elasticity [66], dislocation annihilation, glides and climb [68], as well as

vacancy dynamics [69]. The model has been applied to the commensurate-incommensurate transition [70]

and has been related the density functional theory and extended to the case of binary alloys [71]. In this work,

we augment the model to treat external shearing forces by adding an advective term to the dynamics near

the boundary. We obtain the main scaling behavior of the distribution of a variety of avalanche measures and

for several different temperatures and shearing rates. Our scaling findings are consistent with the interface

depinning picture [1, 44].

1This chapter is based on work of ours that was published in Physical Review Letters [14].

57



10000 12500 15000 17500
t

0

50

100

150

200

N
(t

)

0 2500 5000 7500
0

50

100

150

200

N
(t

)

0 500 1000 1500
t

0

25

50

N
(t

)

Figure 10.1: The number of dislocations (or the number of defect atoms) in a sheared PFC crystal. Inter-
mittent events with sizes differing in orders of magnitude is observed. Parameters are L = 512, (α)2 = 255,
β = 0.9, v0 = 1.581, ρ0 = 0.3, ε = 1.5, λ = 40.0 and r = −0.5.

10.2 PFC simulations at Finite Shearing Rate and Temperature

We solve Eq.(9.2) in a 2d square simulation cell (i.e. Lx = Ly = L). The crystal is initially perfectly

triangular. As the crystal is sheared, dislocations are created near the fixed boundaries y = 0, L where

the stress is higher. They then propagate into the bulk. They interact with each other and glide giving

slip avalanches. To quantify the avalanche activity, we calculate the total speed of all dislocations in the

simulation cell,

V (t) =
N(t)∑
i=1

|~vi|, (10.1)

where N(t) is the number of dislocations in the system at time t and ~vi is the velocity of the i-th dislocation.

This measure is similar to the acoustic emission signal in Weiss et al.’s single crystal ice experiments (e.g.

[5]).

As dislocations are generated and interact with each other in the domain, in addition to the fast avalanch-

ing dynamics, quasi-static structures, such as grain boundaries, can form. These slow dynamics should not

be measured because they are really not part of the avalanches. This leads to the distinction between
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Figure 10.2: The collective speed of dislocations (or defect atoms) in a sheared PFC crystal. Intermittent
events with sizes differing in orders of magnitude is observed. Parameters are L = 512, (α)2 = 255, β = 0.9,
v0 = 1.581, ρ0 = 0.3, ε = 1.5, λ = 40.0 and r = −0.5.

fast-moving and slowly-moving dislocations introduced by Miguel et al. [5]. In essence, they introduced a

threshold in dislocation speed and measured only dislocations with speed higher than the threshold. In that

way, they tried to retain only the avalanche activity in the (spiked) acoustic emission signal but not the

background (continuous) noise.

Another way to eliminate the slow dynamics is to study the power spectrum of the signal, instead of

studying the signal itself. The slow dynamics, which contributes to a locally smooth background in the total

signal then translates into the low frequency end of the power spectrum, which can easily be eliminated.

This method is employed for the study of Barkhausen noise in magnets in [53, 72], where the scaling of the

power spectrum is also derived.

We employed yet another method to tackle this problem. Instead of simulating a very large system, with

all sorts of dislocation activities, we simulated a moderate size of system with approximately 10000 atoms.

For this system size, dislocation avalanches come and go, i.e. not many dislocations are left in the system

after every avalanche. As a result, no grain boundaries, or slow dynamics, is present and we obtain clean

avalanche data. It is fair to mention that this method severely limits the system size, and thus the resulting
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avalanche sizes. The system size we chose contains approximately 100 dislocations in the largest avalanche

events. The tradeoff, which we exploit, is the cleanness of the avalanche signal and the speed of the resulting

simulations. Different methods, such as those we mentioned above, would have to be employed if larger

avalanche sizes are desired.

We count the number of nearest neighbors of each atom, ni, using the Delaunay triangulation method in

computational geometry [73, 74]. Because we have ni = 6 for every atom in a perfectly triangular crystal,

and because there are no vacancies introduced in our PFC model (vacancies can be introduced into the PFC

model by breaking the up-down symmetry of the PFC free energy, as detailed in [69]), any atom having

ni 6= 6 is sitting next to a dislocation. So these ”defect atoms” are tracking the locations of dislocations.

Instead of measuring the total sum of dislocation speeds, V (t), we then measure the total sum of these defect

atoms’ speeds,

Ṽ (t) =
Ndefect(t)∑
i=1

|~ui|, (10.2)

where Ndefect(t) is the number of defect atoms and ~ui is the velocity of defect atom i. Note that the velocity

of a defect atom is not the velocity of any atom in the system, but the velocity of the dislocation it is tracking.

Because the two measures, V (t) and Ṽ (t) are proportional to each other with the proportionality constant

being the mean number of defect atoms sitting next to a dislocation, we can use the latter for convenience.

Fig. 10.1 shows the typical time dependence of N(t) from a simulation. N(t) changes as dislocations are

being created and annihilated. There are intermittent events of creation of dislocations, with number of

dislocations involved ranging from a few to 100. Fig 10.2 shows the acoustic emission signal, V (t), in the

same simulation. Similar to N(t), the signal ranges from 0 to 400, with intermittent pulses of various sizes.

In order to partition the signal into individual avalanches we apply a threshold, Vthr, to it for each

temperature and shearing rate we simulate. The probability distribution of the avalanche size (also called

activity fluctuations in the flowing state)

S =
∫ tfinish

tstart

V (t)dt, (10.3)

duration

taval = tfinish − tstart, (10.4)

and energy

E =
∫ tfinish

tstart

V 2(t)dt, (10.5)

where tstart and tfinish are the starting and ending time of the event respectively, were then extracted. In
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order to see the fluctuations that correspond to slip avalanches in addition to the effect of the shear rate we

applied a threshold equal to the average of the signal in each realization of total time ttotal,

Vthreshold =
1

ttotal

∫ ttotal

0

V (t)dt, (10.6)

For each shearing rate and temperature, 48 different realizations are run to obtain sufficient statistics. This

results in tens of thousands of avalanche events for each shearing rate and temperature. In Fig. 10.3 we show

the event size distribution for different temperatures at the same shearing rate. We find that the distribution

follows a power law for small event sizes and cuts off at larger sizes, with the maximum avalanche size not

exhibiting a strong dependence on temperature.

10.3 Scaling Behavior of the avalanches at Finite Temperature

and Shear Rate

The probability distributions of the avalanche size, duration and energy shown in Fig. 10.3 are at the

same shearing rate, v0 = 0.765, and different temperature parameter values ε. In Fig. 10.4 we present the

probability distributions of the avalanche size, duration, energy and average size versus duration are at the

same temperature parameter values ε = 1.6 and different shearing rates, v0. Each curve is characterized by

a power law for several decades and a cutoff at large values which does not depend strongly on temperature.

The slip events distribute themselves according to power laws

DS(S) ∼ S−1.5, (10.7)

Dt(taval) ∼ t−2
aval, (10.8)

DE(E) ∼ E−1.3, (10.9)

with critical exponents that are in agreement with the Mean Field interface depinning transition universality

class (Table 7.1).

10.4 Discussion

Our results agree with the majority of the robust experimental and computational results in the literature.

Richeton et al. [17] find κE = 1.5 for the energy distribution of acoustic emission while Dimiduk et al.
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Figure 10.3: (color online) The probability distribution of the avalanche size (top left), the duration (top
right), the energy (bottom left) and the average size versus duration of dislocation avalanches (bottom right),
for different values of the temperature parameter at the same shearing rate. The probability distribution of
the avalanche size of dislocation avalanches exhibits a power law of κ ≈ 1.5, of durations of κt ≈ 2 and of
energies of κE ≈ 1.3. The average size scales with the square of the duration, 1/σνz ≈ 2. These results are
in agreement with MFT (Table 7.1). The temperature range we used preserved the PFC crystal (did not
melt it). (In producing these distributions we used logarithmic binning and ignored bins with only one count
to avoid the trivial power law of 1/S that comes from normalizing the logarithmic bins with their size.)
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Figure 10.4: (color online) The probability distribution of the avalanche size (top left), the duration (top
right), the energy (bottom left) and the average size versus duration of dislocation avalanches (bottom right),
for different shearing rates at the same temperature. The probability distribution of the avalanche size of
dislocation avalanches exhibits a power law of κ ≈ 1.5, of durations of κt ≈ 2 and of energies of κE ≈ 1.3.
The average size scales with the square of the duration, 1/σνz ≈ 2. These results are in agreement with
MFT (Table 7.1). (In producing these distributions we used logarithmic binning and ignored bins with only
one count to avoid the trivial power law of 1/S that comes from normalizing the logarithmic bins with their
size.)
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reports κ = 1.5 − 1.6 in experiments at fixed compression stress that leads to shearing [4]. Similarly, for

adiabatic stress increase in the pinned regime, Zaiser et al. finds κ = 1.4 [6, 51]. The distribution of energy

amplitudes decays with the exponent κE = 1.8 [5] in simulations, and with κE = 1.6 in experiments [5].

Koslowski et al. employing a phase field (PF) model measured κA = 1.8 in simulations at fixed stress [12, 13].

Studies (including this work) at adiabatically slow shear rate have suggested analogies between plasticity

and the interface depinning transition [1, 44]. Just as in the 2d DDD, we expect the upper critical dimension

for the 2d PFC model to be the same and therefore mean field theory (MFT) is expected to give exact

scaling results. The exponents we found are in excellent agreement with the mean field theory of the

interface depinning universality class (see Table 7.1). At zero temperature the critical shear rate is vc = 0.

Our simulations, however, are performed at finite temperature ε ∼ kBT . Temperature-induced dislocation

creep causes the critical shear rate to appear to be nonzero in finite systems (see for example Fig. 5.2), with

the apparent

vc(ε)→ 0 as ε→ 0. (10.10)

This causes the scaling distributions in Fig. 10.3 & 10.4 to be less precise and with more fluctuations than

in zero temperature studies.
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Chapter 11

Conclusion & Discussion

As the miniaturization trend in modern technological products progresses we need to know how materials

deform on small scales. Experiments show that plasticity is an intermittent process in minute scales since one

can sense the discreteness of the periodic crystal and, most importantly, the discontinuities of its periodicity.

Crystalline materials on small scales deform intermittently-in-time and inhomogeneously-in-space. They

exhibit a random sequence of slip events whose distribution shows power-law scaling. The dislocations

interact with each other and demonstrate collective behavior. For applied stresses below the flow stress the

dislocations are pinned/jammed and deformation proceeds with avalanches. For applied stresses above the

flow stress the dislocations are mobile (depinned/unjammed) and the deforming body is constantly flowing.

This behavior is characteristic of interfaces driven by an external force through a background of pinning

centers. The phenomenon of plasticity can be studied as a depinning non-equilibrium phase transition.

Although initially ignored in deformation experiments, the jerky patterns of plasticity exhibit power law

scaling. Initial indications were followed by a wealth of experiments in different materials, structures, and

testing conditions. Studied sample sizes were pushed from mm [19] to µm [4] and all the way down to nm

recently [21, 22]. The power laws are persistent and, remarkably, the same!

The exciting experimental evidence prompted a great deal of theoretical analysis. As a statistical physics

problem a collection of dislocations is a non-trivial problem and has proven hard to solve analytically (at

least for the time being). In order to solve the problem numerically several clever computational models

were devised. Discrete dislocation dynamics and stochastic continuum models were able to reporduce the

slip avalanche size distributions and give a first proof of the existence of a critical point [6]. Phase field

models [13] also gave power law distributions.

However there were several open questions when we begum this work. Some studies of static properties

seemed to exhibit mean field behavior. Other studies of dynamic properties showed non-mean-field behavior.

The understanding of the apparent discrepancy was limited. In this Thesis we addressed a series of important

open questions: If the dislocation interactions are long range then are the critical exponents mean field?

What about the scaling functions? Is the scaling behavior mean field like both in the static properties and

65



the dynamical properties? How do the average temporal speed profiles of the slip avalanches look? Can

we predict and test scaling functions in addition to the traditionally tested scaling exponents? What about

finite-size effects?

In this study we undertook a considerable computational effort with an established model (DDD) at zero

temperature and a newer model (PFC) at finite temperature. Besides reproducing the most reliable results

in the literature we were able to answer several new questions and clarify and correct contradictory results in

the literature. With the discrete dislocation dynamics (DDD) simulations at zero temperature we were able

to extract the average temporal avalanche profiles. This constitutes the first test of a scaling function against

MFT predictions. We showed that the corresponding universal exponents and scaling function agree with

the scaling exponents of the power spectra and with mean field theory. These findings rectify previous results

on the power spectra and avalanche profiles in the literature [8]. We were also successful in performing a

finite-size scaling analysis extracting the critical exponent ν and calculating the depinning exponent β both

in agreement with the MFT of interface depinning transition. In addition to the avalanche size distribution

we were able to obtain the energy and the duration distributions, the latter from the phase field crystal

(PFC) model.

There is still some work to be done to close this problem. The roughness exponent seems to disagree with

the MFT of interface depinning most likely due to finite-size effects [1]. Also, what is the effect of temperature

on the scaling behavior of plastically deformed systems? What is the thermal critical exponent? We are

currently investigating the roughness with the DDD model and the temperature effects with the PFC model.

We are planning to report results from these studies in the near future.
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Appendix A

Details of the DDD Numerics

A.1 Lekner summation of images for the DDD

In this Section we derive the Lekner summation formula to account for the images and avoid edge effects in

our simulation. We based our calculation on Lekner’s ideas [46]. The interaction between dislocation i at

(xi, yi) and dislocation j at (xj , yj) is given by

τint(~ri − ~rj) =
∑

all images

(xi − xj)[(xi − xj)2 − (yi − yj)2]
[(xi − xj)2 + (yi − yj)2]2

(A.1)

We can reduce the x and y distances between the two dislocations within the basic simulation cell

xi − xj = χL yi − yj = ψL |χ|, |ψ| < 1 (A.2)

The interaction stress when one accounts for an infinite number of image cells, −∞ < l(m) < +∞, in x(y)

direction can be written as follows, making use of the reduced coordinates,

τ(χ, ψ) =
1
L

∞∑
l=−∞

∞∑
m=−∞

(χ+ l)[(χ+ l)2 − (ψ +m)2]
[(χ+ l)2 + (ψ +m)2]2

(A.3)

What we have here is essentially two terms for which we need to perform a summation over an infinite

number of image cells l(m) in both, x(y), directions. For each of the two terms there are two ways to

simplify them using the Euler transformation, Eq. (A.35), the Poisson-Jacobi identities, Eqs. (A.40-A.43),

and the integral representation of the Bessel K functions, Eq. (A.36). We calculate both Way I and Way II

explicitly below. The two Ways are expected to be equivalent and they indeed yield similar results but not

identical at least in their numerical evaluation. It turns out that Way I is better behaved numerically 1 and

that’s the one we used in the computer simulations.
1Way I is comprised of a single sum in contrast to Way II which is comprised of 2 sums and a continuous function and that

makes Way I easier to deal with numerically although the 2 are mathematically equivalent.
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Figure A.1: (color online) Schematic of the Lekner summation method for the image cells. The basic
simulation cell is drawn in blue and the image cells in black dashed dotted lines. The dislocations in the
basic cell are in red and the image dislocations in green. The interaction pairs are shown with brown lines.
Since periodic boundary conditions are needed to simulate behavior bigger than the basic cell, image cells are
needed to be tiled around the basic simulation cell. The more image cells are used the higher the accuracy
of the results. We used as many image cells as necessary in both directions to reach a relative accuracy of
better than EPSILON = 10−12 in the Lekner series. Image courtesy of Yang Liu.

A.1.1 Way I

For χ 6= 0 we can use the Poisson-Jacobi identities to simplify expression A.3 according to Way I. First we

make use of the Euler transformation, Eq. (A.35) for ν = 2 to write,

τI(χ 6= 0, ψ) ≡ 1
L

∞∑
l=−∞

∞∑
m=−∞

(χ+ l)3 − (χ+ l)(ψ +m)2

[(χ+ l)2 + (ψ +m)2]2
(A.4)

=
1
L

∞∑
l=−∞

∞∑
m=−∞

[
(χ+ l)3 − (χ+ l)(ψ +m)2

] ∫ ∞
0

dtte−(χ+l)2t−(ψ+m)2t (A.5)

=
1
L

∞∑
l=−∞

(χ+ l)3

∫ ∞
0

dtte−(χ+l)2t
∞∑

m=−∞
e−(ψ+m)2t

− 1
L

∞∑
l=−∞

(χ+ l)
∫ ∞

0

dtte−(χ+l)2t
∞∑

m=−∞
(ψ +m)2e−(ψ+m)2t (A.6)

Then using the first, Eq. (A.40), and third Eq. (A.42) Poisson-Jacobi identities on the ψ term,

τI(χ 6= 0, ψ) =
1
L

∞∑
l=−∞

∫ ∞
0

dtt(χ+ l)3e−(χ+l)2tπ
1
2

t
1
2

∞∑
m=−∞

e−
π2m2
t cos(2πmψ)

− 1
L

∞∑
l=−∞

(χ+ l)
∫ ∞

0

dtte−(χ+l)2t 1
2
π

1
2

t
3
2

+∞∑
m=−∞

e−
π2m2
t cos(2πmψ)

+
1
L

∞∑
l=−∞

(χ+ l)
∫ ∞

0

dtte−(χ+l)2tπ
5
2

t
5
2

+∞∑
m=−∞

e−
π2m2
t m2 cos(2πmψ) (A.7)
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Rearranging and taking advantage of the fact that the expression is even in m to separate the sum to

convenient partial sums

τI(χ 6= 0, ψ) =
π

1
2

L

∞∑
l=−∞

∞∑
m=1

(χ+ l)3 cos(2πmψ)
∫ ∞

0

dtt
1
2 e
−(χ+l)2t

e−
π2m2
t

+
π

1
2

L

∞∑
l=−∞

(χ+ l)3

∫ ∞
0

dtt
1
2 e
−(χ+l)2t

−π
1
2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l) cos(2πmψ)
∫ ∞

0

dtt−
1
2 e−(χ+l)2te−

π2m2
t

+
2π

5
2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l)m2 cos(2πmψ)
∫ ∞

0

dtt−
3
2 e−(χ+l)2te−

π2m2
t

−π
1
2

2L

∞∑
l=−∞

(χ+ l)
∫ ∞

0

dtt−
1
2 e−(χ+l)2t (A.8)

Three of the integrals above are the Bessel K 1
2
, Eq. (A.38), and K 3

2
Eq. (A.39) functions,

τI(χ 6= 0, ψ) =
2π

1
2

L

∞∑
l=−∞

∞∑
m=1

(χ+ l)3 cos(2πmψ)2
(
π

∣∣∣∣ m

χ+ l

∣∣∣∣ ) 3
2

K 3
2

(2π|m(χ+ l))

+
π

1
2

L

∞∑
l=−∞

(χ+ l)3 Γ( 3
2 )

[(χ+ l)2]
3
2

−π
1
2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l) cos(2πmψ)2

(
π

∣∣∣∣∣ m

χ+ l

∣∣∣∣∣
) 1

2

K 1
2
(2π|m(χ+ l)|)

+
2π

5
2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l)m2 cos(2πmψ)2

(
π

∣∣∣∣∣ m

χ+ l

∣∣∣∣∣
)− 1

2

K 1
2
(2π|m(χ+ l)|)

−π
1
2

2L

∞∑
l=−∞

(χ+ l)
Γ( 1

2 )

[(χ+ l)2]
1
2

(A.9)

and substituting for them gives,

τI(χ 6= 0, ψ) =
4π2

L

∞∑
l=−∞

∞∑
m=1

(χ+ l)3 cos(2πmψ)

∣∣∣∣∣ m

χ+ l

∣∣∣∣∣
3
2√

π

2
e−2π|m(χ+l)|√
2π|m(χ+ l)|

(1 + 2π|m(χ+ l)|)
2π|m(χ+ l)|

+
π

1
2

L

∞∑
l=−∞

(χ+ l)3

√
π

2

[(χ+ l)2]
3
2

−2π
L

∞∑
l=−∞

+∞∑
m=1

(χ+ l) cos(2πmψ)

∣∣∣∣∣ m

χ+ l

∣∣∣∣∣
1
2√

π

2
e−2π|m(χ+l)|√
2π|m(χ+ l)|

+
4π2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l)m2 cos(2πmψ)

∣∣∣∣∣χ+ l

m

∣∣∣∣∣
1
2√

π

2
e−2π|m(χ+l)|√
2π|m(χ+ l)|
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−π
1
2

2L

∞∑
l=−∞

(χ+ l)
√
π

[(χ+ l)2]
1
2

(A.10)

=
π

L

∞∑
l=−∞

∞∑
m==1

(χ+ l)3

|χ+ l|3
cos(2πmψ)e−2π|m(χ+l)|(1 + 2π|m(χ+ l)|)

+
π

2L

∞∑
l=−∞

(χ+ l)3

|χ+ l|3

−π
L

∞∑
l=−∞

+∞∑
m=1

χ+ l

|χ+ l|
cos(2πmψ)e−2π|m(χ+l)|

+
2π2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l)
m2

|m|
cos(2πmψ)e−2π|m(χ+l)|

− π

2L

∞∑
l=−∞

χ+ l

|χ+ l|
(A.11)

=
π

L

∞∑
l=−∞

∞∑
m=1

sgn(χ+ l) cos(2πmψ)e−2π|m(χ+l)|(1 + 2π|m(χ+ l)|)

+
π

2L

∞∑
l=−∞

sgn(χ+ l)

−π
L

∞∑
l=−∞

+∞∑
m=1

sgn(χ+ l) cos(2πmψ)e−2π|m(χ+l)|

+
2π2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l)|m| cos(2πmψ)e−2π|m(χ+l)|

− π

2L

∞∑
l=−∞

sgn(χ+ l) (A.12)

The result is

τI(χ 6= 0, ψ) =
4π2

L

∞∑
l=−∞

+∞∑
m=1

(χ+ l)m cos(2πmψ)e−2π|m(χ+l)| (A.13)

For χ = 0 and ψ 6= 0 we have,

τI(χ = 0, ψ 6= 0) =
1
L

∞∑
l=−∞

∞∑
m=−∞

l
l2 − (ψ +m)2

[l2 + (ψ +m)2]2
(A.14)

=
4π2

L

∞∑
l=−∞,6=0

+∞∑
m=1

lm cos(2πmψ)e−2π|ml|

+
1
L

∞∑
m=−∞

l
l2 − (ψ +m)2

[l2 + (ψ +m)2]2

∣∣∣∣∣
l=0

+
1
L

∞∑
l=−∞,6=0

l
l2 − (ψ +m)2

[l2 + (ψ +m)2]2

∣∣∣∣∣
m=0

(A.15)
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= 0 + 0 + 0 (A.16)

which is symmetrically zero for all y’s at x = 0. The expression in Eq. (A.13) already contains this

information, i.e. gives zero for χ = 0.

Way I gives a compact, quickly convergent sum due to the exponential that is very useful for the numerical

evaluation of the interaction properly taking into account the image cells and avoiding discontinuity problems

that can arise because of the periodic boundary conditions. Expression A.13 is antisymmetric with respect

to χ (x) and symmetric with respect to ψ (y) just like the interaction expression without any images Eq.

(A.1). Way I, Eq. (A.13), is depicted in Fig. A.2.

A.1.2 Way II

For ψ 6= 0 we can use the Poisson-Jacobi identities to simplify the expression Eq. (A.3) according to Way

II. First we make use of the Euler transformation, Eq. (A.35) for ν = 2 to write,

τII(χ, ψ 6= 0) ≡ 1
L

∞∑
l=−∞

∞∑
m=−∞

(χ+ l)3 − (χ+ l)(ψ +m)2

[(χ+ l)2 + (ψ +m)2]2
(A.17)

=
1
L

∞∑
l=−∞

∞∑
m=−∞

[(χ+ l)3 − (χ+ l)(ψ +m)2]
∫ ∞

0

dtte−(χ+l)2t−(ψ+m)2t (A.18)

=
1
L

∞∑
m=−∞

∫ ∞
0

dtte−(ψ+m)2t
∞∑

l=−∞

(χ+ l)3e−(χ+l)2t

− 1
L

∞∑
m=−∞

(ψ +m)2

∫ ∞
0

dtte−(ψ+m)2t
∞∑

l=−∞

(χ+ l)e−(χ+l)2t (A.19)

Then using the second, Eq. (A.41), and fourth, Eq. (A.43), Poisson-Jacobi identity on the χ terms,

τII(χ, ψ 6= 0) =
1
L

∞∑
m=−∞

∫ ∞
0

dtte−(ψ+m)2t
+∞∑
l=−∞

[
3
2
π

3
2

t
5
2
e−

π2l2
t l sin(2πlχ)− π

7
2

t
7
2
e−

π2l2
t l3 sin(2πlχ)

]

− 1
L

∞∑
m=−∞

(ψ +m)2

∫ ∞
0

dtte−(ψ+m)2tπ
3
2

t
3
2

+∞∑
l=−∞

e−
π2l2
t l sin(2πlχ) (A.20)

=
3π

3
2

L

+∞∑
l=1

∞∑
m=−∞

l sin(2πlχ)
∫ ∞

0

dtt−
3
2 e−(ψ+m)2te−

π2l2
t

−2π
7
2

L

+∞∑
l=1

∞∑
m=−∞

l3 sin(2πlχ)
∫ ∞

0

dtt−
5
2 e−(ψ+m)2te−

π2l2
t

−2π
3
2

L

+∞∑
l=1

∞∑
m=−∞

(ψ +m)2l sin(2πlχ)
∫ ∞

0

dtt−
1
2 e−(ψ+m)2te−

π2l2
t (A.21)
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Substituting for the Bessel K functions, Eq. (A.38) and Eq. (A.39), wherever possible,

τII(χ, ψ 6= 0) =
3π

3
2

L

+∞∑
l=1

+∞∑
m=−∞

l sin(2πlχ)2

(
π

∣∣∣∣∣ l

ψ +m

∣∣∣∣∣
)− 1

2

K 1
2
(2π|l(ψ +m)|)

−2π
7
2

L

+∞∑
l=1

∞∑
m=−∞

l3 sin(2πlχ)2

(
π

∣∣∣∣∣ l

ψ +m

∣∣∣∣∣
)− 3

2

K 3
2
(2π|l(ψ +m)|)

−2π
3
2

L

+∞∑
l=1

∞∑
m=−∞

(ψ +m)2l sin(2πlχ)2

(
π

∣∣∣∣∣ l

ψ +m

∣∣∣∣∣
) 1

2

K 1
2
(2π|l(ψ +m)|) (A.22)

=
6π
L

+∞∑
l=1

+∞∑
m=−∞

l sin(2πlχ)

(∣∣∣∣∣ψ +m

l

∣∣∣∣∣
) 1

2√
π

2
e−2π|l(ψ+m)|√
2π|l(ψ +m)|

−4π2

L

+∞∑
l=1

∞∑
m=−∞

l3 sin(2πlχ)

(∣∣∣∣∣ψ +m

l

∣∣∣∣∣
) 3

2√
π

2
e−2π|l(ψ+m)|√
2π|l(ψ +m)|

1 + 2π|l(ψ +m)|
2π|l(ψ +m)|

−4π2

L

+∞∑
l=1

∞∑
m=−∞

(ψ +m)2l sin(2πlχ)

(∣∣∣∣∣ l

ψ +m

∣∣∣∣∣
) 1

2√
π

2
e−2π|l(ψ+m)|√
2π|l(ψ +m)|

(A.23)

=
3π
L

+∞∑
l=1

+∞∑
m=−∞

l

|l|
sin(2πlχ)e−2π|l(ψ+m)|

−π
L

+∞∑
l=1

∞∑
m=−∞

l3

|l|3
sin(2πlχ)e−2π|l(ψ+m)|(1 + 2π|l(ψ +m)|)

−2π2

L

+∞∑
l=1

∞∑
m=−∞

(ψ +m)2

|ψ +m|
l sin(2πlχ)e−2π|l(ψ+m)| (A.24)

=
3π
L

+∞∑
l=1

+∞∑
m=−∞

sgn(l) sin(2πlχ)e−2π|l(ψ+m)|

−π
L

+∞∑
l=1

∞∑
m=−∞

sgn(l) sin(2πlχ)e−2π|l(ψ+m)|(1 + 2π|l(ψ +m)|)

−2π2

L

+∞∑
l=1

∞∑
m=−∞

l|ψ +m| sin(2πlχ)e−2π|l(ψ+m)| (A.25)

The result is

τII(χ, ψ 6= 0) =
2π
L

+∞∑
l=1

+∞∑
m=−∞

sin(2πlχ)e−2π|l(ψ+m)|(1− 2πl|ψ +m|) (A.26)

which is identically zero for x = 0 for all y’s.

For χ 6= 0 and ψ = 0 we have

τ1II(χ 6= 0, ψ = 0) =
1
L

∞∑
l=−∞

∞∑
m=−∞

(χ+ l)3 − (χ+ l)m2

[(χ+ l)2 +m2]2
(A.27)
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=
2π
L

+∞∑
l=1

+∞∑
m=−∞,6=0

sin(2πlχ)e−2π|lm)|(1− 2πl|m|)

+
1
L

+∞∑
l=−∞

1
χ+ l

∣∣∣∣∣
m=0

(A.28)

=
2π
L

+∞∑
l=1

+∞∑
m=−∞,6=0

sin(2πlχ)e−2π|lm|(1− 2π|lm|)

+
π

L
cot(πχ) (A.29)

where in the last line we used the Mittag-Leffler expansion of the cotangent, Eq. (A.44).

Way II, Eq. (A.26) and Eq. (A.29), gives a little less compact way of calculating the interaction with

images than Way I, Eq. (A.13). At first look this may seem not obvious because Way II still carries the

rapidly convergent exponentials as Way II. This salient difference lies in the fact that Way I is a single sum

while Way II has two separate sums and a continuous term (the cot is a sum that is already performed for

infinite number of terms). Nevertheless Way II exhibits the same quick convergence (due to the exponentials)

and symmetries as Way I, Eq. (A.13) and can be used provided special care is taken for convergence during

evaluation. The combined expression of Way II, from Eq. (A.26) and Eq. (A.29), is depicted in Fig. A.3.

A.1.3 Self-Energy

If two dislocations occupy the same space (location) then their interaction diverges. In the image summation

we need to account for the interactions of particle i with all its images (self-energy) and not count the

interaction with its own self. That is the case for χ = 0 and ψ = 0 where the term l = 0,m = 0 is explicitly

excluded. This summation is denoted by

(
+∞∑
l=−∞

+∞∑
m=−∞

)′
≡

+∞∑
l=−∞

+∞∑
m=−∞

−(l = 0,m = 0 term) (A.30)

In our case we have,

τI(χ = 0, ψ = 0) =
1
L

( ∞∑
l=−∞

∞∑
m=−∞

)′
l
l2 −m2

[l2 +m2]2
(A.31)

=
2
L

∞∑
l=−∞

∞∑
m=1

l
l2 −m2

[l2 +m2]2
+

1
L

∞∑
l=−∞, 6=0

1
l

(A.32)

= 0 (A.33)
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Obviously the l = 0,m = 0 term diverges,

(l = 0,m = 0 term) =
1
L

1
l

∣∣∣∣∣
l→0

→∞ (A.34)

as one would expect from the expression of the interaction without images, Eq. (A.1).

A.1.4 Euler Transformation

The Euler transformation is,

1
xν

=
1

Γ(ν)

∫ ∞
0

dt · tν−1e−xt (ν > 0) (A.35)

where Γ(ν) is the Gamma function. It allows us to convert fractions into integral expressions that can be

transformed (with the help of Eq. (A.36)) to quickly decaying Bessel functions.

A.1.5 Bessel K function Integral Representation

The Bessel K function can be represented by an integral,

∫ ∞
0

dt · tν−1e−
π2l2
t −m

2t = 2
(
π

∣∣∣∣ lm
∣∣∣∣)ν Kν(2π|lm|)) (A.36)

Also the Bessel K functions are even with respect to their order,

Kν(z) = K−ν(z) (A.37)

The Bessel K functions we are going to need here are,

K 1
2
(z) =

√
π

2
e−z√
z

(A.38)

K 3
2
(z) =

√
π

2
e−z√
z

(
1 +

1
z

)
(A.39)

These fractional Bessel K function are easy to use because they can be written in closed form with well-

behaved, fast decaying exponentials.
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A.1.6 Poisson-Jacobi Identities

The Poisson-Jacobi identities are very useful in transforming the integrals from the Lekner summation to

accept converging Bessel function through their integral representation (shown just above).

+∞∑
l=−∞

e−(χ+l)2t =
π

1
2

t
1
2

+∞∑
l=−∞

e−
π2l2
t cos(2πlχ) (A.40)

Taking the 1st derivative over χ, d
dχ ,

d

dχ

+∞∑
l=−∞

e−(χ+l)2t =
d

dχ

π
1
2

t
1
2

+∞∑
l=−∞

e−
π2l2
t cos(2πlχ)

+∞∑
l=−∞

(χ+ l)e−(χ+l)2t =
π

3
2

t
3
2

+∞∑
l=−∞

e−
π2l2
t · l · sin(2πlχ) (A.41)

Taking the 2nd derivative over χ,

+∞∑
l=−∞

(χ+ l)2e−(χ+l)2t =
1
2
π

1
2

t
3
2

+∞∑
l=−∞

e−
π2l2
t cos(2πlχ)− π

5
2

t
5
2

+∞∑
l=−∞

e−
π2l2
t · l2 · cos(2πlχ) (A.42)

Taking the 3rd derivative over χ,

+∞∑
l=−∞

(χ+ l)3e−(χ+l)2t =
3
2
π

3
2

t
5
2

+∞∑
l=−∞

e−
π2l2
t · l · sin(2πlχ)− π

7
2

t
7
2

+∞∑
l=−∞

e−
π2l2
t · l3 · sin(2πlχ) (A.43)

A.1.7 Mittag-Leffler expansion of cotangent

+∞∑
l=−∞

1
z + l

= π cot(πz) (A.44)

A.2 Evaluation of the Lekner series; Convergence criteria

The Lekner formalism is particularly elegant and powerful because of the fast decaying Bessel functions. In

the case at hand of the DDD interaction it is very convenient to have Bessel functions for which an analytic

form exists and converges rapidly, like the exponential e−z. Naively thinking one may want to numerically

evaluate the sum up to some truncation cutoff parameter values, e.g. nl and nm,

τI(χ 6= 0, ψ) =
4π2

L

+nl∑
l=−nl

+nm∑
m=1

(χ+ l)m cos(2πmψ)e−2π|m(χ+l)| (A.45)
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τI(χ = 0, ψ 6= 0) = 0 (A.46)

or

τII(χ, ψ 6= 0) =
2π
L

+nl∑
l=1

+nm∑
m=−nm

sin(2πlχ)e−2π|l(ψ+m)|(1− 2πl|ψ +m|) (A.47)

τII(χ 6= 0, ψ = 0) =
2π
L

+nl∑
l=1

+nm∑
m=−nm,6=0

sin(2πlχ)e−2π|lm|(1− 2πl|m|) +
π

L
cot(πχ) (A.48)

This may introduce a bias and yield very different numerical results unless one makes sure that the series

has converged (e.g. [75]). In our implementation we truncated the series when the absolute value of the last

term was within a very low precision relative to the absolute value of the sum of all the previous terms. For

our double sums the convergence scheme we applied was:

g(1) =
1∑

l=−1

f(l, 1) for n = 1 (A.49)

g(n) =
n−1∑
m=1

f(l = n,m) +
n−1∑
m=1

f(l = −n,m) +
n∑

l=−n

f(l,m = n) for n > 1 (A.50)

if
∣∣g(n+ 1)

∣∣ < EPSILON×

∣∣∣∣∣
+n∑
m=1

+n∑
l=−n

f(l,m)

∣∣∣∣∣ then stop (A.51)

else n = n+ 1 and check again (A.52)

In other words, we sum the terms of the next shell in (l,m), i.e. g(n+ 1) and compare it to the sum so far

|
∑+n
m=1

∑+n
l=−n f(l,m)|. If the next term g(n+ 1) to be added to the series is relatively smaller than the set

precision (we chose EPSILON = 10−12)2 the series has converged. Otherwise we repeat the process onto the

next shell and until the series has converged.

In addition we imposed another convergence criterion by making sure that the exponential had converged

to a very tiny value similar to the series,

z > 28 → e−z = 6.91× 10−13 < 10−12 = EPSILON (A.53)

In our case the first convergence criterion on the truncation of the series is always more restrictive than the

second convergence criterion on the exponential. However it is good practice to include both.3

2We picked EPSILON to be close enough but not better than the precision of a double in our computer architecture which
was approximately 10−14.

3In the general case where our Lekner sums contain Bessel functions without an analytic form, the application of the second
convergence criterion on the argument of the Bessel function becomes: e.g. z > 35 → K1(z) < 1.35× 10−16.
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The two Ways of carrying out the summation of the series converge to the same results for different total

number of images (n’s) in general. Lastly, the trigonometric terms oscillate rapidly for different values of l

and m and may give a value very close to zero indicating false convergence before the series has converged

itself. Therefore it is better to check the convergence of the series without the trigonometric terms first, find

the appropriate n’s and then sum the series up to those n’s including the sines and cosines.

A.3 Numerical Implementation of the Interaction

Calculating several terms of the Lekner sums for each dislocation pair at every timestep of the simulation

during runtime (on the fly) is very demanding on the CPU. In every time step of a run with N dislocations

the number of operations is proportional to N2 FLOPS 4. This was very time consuming so we decided to

calculate the interaction for a sufficient number of possible pair distances and store them in a look-up table.

During runtime we load the look-up table on to the RAM. At every timestep and for every dislocation pair

we ”look-up” the stress values at the nearest distance values and interpolate to find the interaction stress at

the distance of interest.

Because the dislocations are placed on planes at integer values of y the integers y = 0, 1, 2...L/2 give

exact and unique (due to the symmetry of the Lekner summation) interaction stress values. In other words

no interpolation was performed along the y-direction. On the other hand, the dislocations are allowed to

exist at any real x so the density of exact interaction stress values to store in the look-up is a parameter

we need to optimize for a succesful interpolation scheme. The minimum number of points we considered in

the x-axis was the integers (like in the y case) x = 0, 1, 2...L/2. From then on we increased the density of

points which we declared as 1/fac. Considering only the integers (like just above) translates to 1/fac = 1.

For fac = 2 we added one more x-point for every integer x, x = 0, 0.5, 1, 1.5, 2...L/2. For fac = 5 we added

four more x-points for every integer x, x = 0, 0.2, 0.4, 0.6, 0.8, 1, ...L/2 and so on. This means that we have

L/2 + 1 y distances and fac · L/2 + 1 x distances. In total our look-up table has (fac · L/2 + 1)× (L/2 + 1)

entries.

The total relative error of n-th order polynomial interpolation is proportional to the distance between

the points where the interaction is known to the next power of n + 1. For a spatial resolution of fac this

translates to the total relative error between the interaction stress as calculated from the Lekner sum and

the interpolated interaction from the Lekner interaction stress at neighboring points that are 1/fac apart to

4N dislocations form
N(N−1)

2
pairs
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scale as,

TOTAL RELATIVE ERROR(fac) ∼
(
1/fac

)n+1
. (A.54)

We calculated the total error

TOTAL RELATIVE ERROR(fac) =

√√√√√∑200·L/2
xi=0

∑L/2
j=0

(
τinterpolated(xi, j)− τ(xi, j)

)2

∑200·L/2
xi=0

∑L/2
j=1 τ(xi, j)2

(A.55)

for several different spatial resolution in x fac = 1, 2, 5, 10, 20, 50, 100 and plot it in Fig. A.4. The scaling

jumps right out of the figure. The x points on which we performed the sum for the calculation of the total

relative error where xi = 0, 0.005, 0.001, 0.0015, ...L/2, i.e. the 200 ·L/2+1 points that fac = 200 would give.
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Figure A.2: (color online) The result of the converged Lekner series according to Way I (Eq. A.13) for a
small system of L = 60. It is depicted as a surface plot (top) and as a color contour plot (bottom left). The
anisotropy of the interaction is indicated bottom right. In order to reveal its anisotropy Way I is plotted in
an area of 2L× 2L.
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Figure A.3: (color online) The result of the converged Lekner series according to Way II (combined expression
A.26 and A.29) for a small system of L = 60. It is depicted as a surface plot (top) and as a color contour plot
(bottom left). The anisotropy of the interaction is indicated bottom right. In order to reveal its anisotropy
Way II is plotted in an area of 2L× 2L.
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Figure A.4: (color online) The total relative error of our interpolation (Eq. A.55) from the look-up table for
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Appendix B

Scaling Relations Derived

B.1 Distribution of Avalanche Sizes

B.1.1 Binned in Stress

As long as the dislocation activity, V (t), is above the threshold value, i.e. V (t) > Vth, the system is exhibiting

an avalanche. We define its size as

S =
∫

avalanche

V (t)dt. (B.1)

The distribution of the avalanche sizes should scale with the closeness to the critical stress as

DS(S, τ) ∼ S−κfS [S(1− τ/τc)1/σ]. (B.2)

Essentially it exhibits a power law behavior, DS(S) ∼ S−κ, up to a maximum, ”cutoff”, size Smax, which

increases as the stress, τ , approaches the critical value, τc

Smax ∼
(

1− τ

τc

)− 1
σ

. (B.3)

B.1.2 Integrated in Stress

If one now integrates the binned-in-stress distribution over the entire range of stress, τ = 0 to τ = τc obtains

the stress-integrated distribution:

DS,int(S) =
∫ τc

0

DS(S, τ)dτ

=
∫ τc

0

S−κfS [S(1− τ/τc)1/σ]dτ

∼ S−κ
∫ 1

0

fS [Sσ(1− τ/τc)]d(1− τ/τc)
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= S−κ−σ
∫ Sσ

0

fS [Sσ(1− τ/τc)]d(Sσ(1− τ/τc))

= S−κ−σ
∫ Sσ

0

fS [w]dw (B.4)

∼ S−(κ+σ) (B.5)

assuming that fS(w) is a well-behaved and bounded function (and the integral over fS converges). This is

usually the case for fS(w) since it expresses a probability distribution function. More specifically fS(w →

∞)→ 0 and fS(w → 0)→ 1.

B.2 Distribution of Avalanche Durations

B.2.1 Binned in Stress

The cutoff size of the DS(S, τ) scales as Smax ∼ (1 − τ/τc)−1/σ. On the other hand one can plot the

distribution of avalanche durations taval. It should also exhibit a power law that gets truncated by a cutoff

duration, taval,max, that decreases the further the stress is from the critical stress,

taval,max ∼ ξz ∼
(

1− τ

τc

)−νz
. (B.6)

For the distribution of avalanche durations at stress τ we can write down the following expression:

D(taval, S, τ) ∼ S−xf [S(1− τ/τc)1/σ, taval/S
σνz] (B.7)

In order to find the unknown exponent x we need to integrate out the duration taval variable and compare

the result to the size distribution.

∫
D(taval, S, τ)dtaval ∼

∫
S−xf [S(1− τ/τc)1/σ, taval/S

σνz]dtaval

∼ S−x+σνz

∫
f [S(1− τ/τc)1/σ, taval/S

σνz]d(taval/S
σνz)

∼ S−x+σνzf [S(1− τ/τc)1/σ]. (B.8)

Comparing the above with DS(S, τ) ∼ S−κfS [S(1−τ/τc)1/σ] we get x = κ+σνz. To find the distribution

of avalanche durations that does not depend on the size S we need to integrate over S.

Dt(taval, τ) ∼
∫
D(taval, S, τ)dS
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∼
∫
S−κ−σνzf [S(1− τ/τc)1/σ, taval/S

σνz]dS

∼ t
−(κ+σνz)/σνz
aval

∫
f [taval(1− τ/τc)νz, taval/S

σνz]dS

∼ t
−(κ+σνz−1)/σνz
aval

∫
f [taval(1− τ/τc)νz, taval/S

σνz]d(S/t1/σνzaval )

∼ t
−(κ+σνz−1)/σνz
aval ft[taval(1− τ/τc)νz] (B.9)

which can be simplified to

Dt(taval, τ) ∼ t−κtavalft[taval(1− τ/τc)νz] (B.10)

where κt = 1 + (κ− 1)/σνz.

B.2.2 Integrated in Stress

We can integrate the duration distribution over the entire stress range, τ = 0 → τc, and obtain the stress-

integrated version:

Dt,int(taval) =
∫
Dt(taval, τ)dτ

=
∫
t−κtavalft[taval(1− τ/τc)νz]dτ

∼ t−κtaval

∫
ft[t

1/νz
aval (1− τ/τc)]d(1− τ/τc)

= t
−κt−1/νz
aval

∫
ft[t

1/νz
aval (1− τ/τc)]d(t1/νzaval (1− τ/τc))

= t
−κt−1/νz
aval

∫
ft[w]dw

∼ t
−(κt+1/νz)
aval . (B.11)

with ft(w) a well-behaved and bounded function that gives a finite integral (ft(w → ∞) → 0 and ft(w →

0)→ 1).
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B.3 Distribution of Avalanche Energies

B.3.1 Binned in Stress

The energy of a slip avalanche has been shown to relate to the square of the activity, which leads us to define

the energy of a slip avalanche to be

E =
∫

avalanche

V (t)2dt (B.12)

where the integral is taken over the duration taval of an avalanche. The energy of an avalanche scales with

the collective speed and duration like

E ∼ V 2taval ∼ (S/taval)2taval ∼ S2/taval ∼ S2−σνz (B.13)

The distribution of energies should then have the scaling form,

D(E, taval, S, τ) ∼ S−yf(E/S2−σνz, S(1− τ/τc)1/σ, taval/S
σνz) (B.14)

In order to find the new exponent y we had to integrate the above distribution over the energies and

obtain a form,

D(taval, S, τ) ∼
∫
D(E, taval, S, τ)dE

∼
∫

1
Sy
f(E/S2−σνz, S(1− τ/τc)1/σ, taval/S

σνz)dE

∼ 1
Sy−2+σνz

f(S(1− τ/τc)1/σ, taval/S
σνz) (B.15)

we can directly compare to D(taval, S, τ) above. We find the value x = κ + σνz and get y = κ + 2. The

distribution of energies results if we integrate out the slip size S and duration taval.

DE(E, τ) ∼
∫
D(E, taval, S, τ)dtavaldS

∼ 1

E
κ+2

2−σνz

∫
f(E(1− τ/τc)

2−σνz
σ , S(1− τ/τc)1/σ, taval(1− τ/τc)νz)dtavaldS

∼ (1− τ/τc)−νz−
1
σ

E
κ+2

2−σνz
f(E(1− τ/τc)

2−σνz
σ )

∼ 1

E1+ κ−1
2−σνz

fE(E(1− τ/τc)
2−σνz
σ ) (B.16)
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B.3.2 Integrated in Stress

We can integrate the energy distribution over the entire stress range, τ = 0 → τc, and obtain the stress-

integrated expression:

DE,int(E) =
∫
DE(E(1− τ/τc)

2−σνz
σ )d(1− τ/τc)

∼ 1

E1+ κ−1
2−σνz

∫
fE(E(1− τ/τc)

2−σνz
σ )d(1− τ/τc)

∼ 1

E1+κ−1+σ
2−σνz

∫
fE(E

σ
2−σνz (1− τ/τc))d(E

σ
2−σνz (1− τ/τc))

∼ 1

E1+κ−1+σ
2−σνz

∫
fE [w]dw

∼ 1

E1+κ−1+σ
2−σνz

(B.17)

with fE(w) a well-behaved and bounded function that gives a finite integral (fE(w →∞)→ 0 and fE(w →

0)→ 1).
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