
iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

Gradation: A Pay-as-You-Go Style Hybrid Query Language for
Structured and Text Data

Yui Yasunaga
University of Tsukuba
yui@slis.tsukuba.ac.jp

Atsuyuki Morishima
University of Tsukuba

mori@slis.tsukuba.ac.jp

Hiroki Sodeyama
University of Tsukuba

hiroki.sodeyama.2009b@mlab.info

Masateru Tadaishi
University of Tsukuba

tada@slis.tsukuba.ac.jp

Shigeo Sugimoto
University of Tsukuba

sugimoto@slis.tsukuba.ac.jp

Abstract

There is an increasing number of Web data which consist of text and structured data, such as the
combination of Wikipedia pages and DBpedia data. To issue queries to such data, we must choose one of
the followings: (1) submit keyword queries against textual data part, or (2) submit structured queries written
in structured query languages like SPARQL, against structured data part. Keyword queries are easy for
casual users to write, but they do not have expressive powers enough to fulfill the user’s information needs.
On the other hand, structured queries are more expressive than keyword queries, but are not easy for casual
users to write. This paper proposes a hybrid query language that seamlessly integrates the two types of
queries, allowing us to write queries in a “pay-as-you-go” fashion.

Keywords: query languages, web search, structured data

Introduction

There is an increasing number of Web data which consist of text and structured data. An example
is the combination of Wikipedia pages and DBpedia data (http://www.dbpedia.org/). DBpedia is RDF data
that describe information appearing in the Wikipedia articles in a structured way. Another example is the
combination of the Bible Ontology (http://home.bibleontology.com/) and text pages explaining the people
who appear in the Bible1. Given the current activities such as Linking Open Data community projects
(http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData) at W3C, we expect that
in the near future it is common that many textual data have structured data (annotation) associated to them.

To issue queries to such data, you need to choose one of these types of queries: keyword queries
against text pages, or structured queries, like SPARQL, against structured data. Keyword queries including
Boolean queries are so simple and widely used by casual users. However, they cannot express complex
conditions. In contrast, structured queries can express complex conditions, but are difficult for many users
to write since it is required for users to know the complex syntax and schema-level information for writing
queries.

This paper proposes Gradation query language (shortly, Gradation), a hybrid query language for
the Web data that consist of text pages (Web pages whose main components are text) and structured
data (mainly RDF data in the paper). In short, Gradation supports keyword queries with options to specify
conditions on the associated structured data, and allows a seamless integration between keyword and
structured queries. The design was developed based on an interesting fact that casual users often use

The authors are grateful to Prof. Sakaguchi and Prof. Nagamori for the discussion in seminars. This research was partially supported
by PRESTO from the Japan Science and Technology Agency.

Yui, Y., Atsuyuki, M., Hiroki, S., Masateru, T., & Shigeo, S. (2013). Gradation: A Pay-as-You-Go Style Hybrid Query Language for
Structured and Text Data. IConference 2013 Proceedings(pp.xxx-xxx). DOI:xxxxxxxx

Copyright is held by the author/owner(s).
1It is easy to associate the people that appear in texts with objects in the Bible Ontology.

1

schamber
Text Box
_______________________________1 It is easy to associate the people that appear in texts with objects in the Bible Ontology._______________________________Acknowledgements: The authors are grateful to Prof. Sakaguchi and Prof. Nagamori for the discussion in seminars. This research 	was partially supported by PRESTO from the Japan Science and Technology Agency.Yasunaga, Y., Morishima, A., Sodeyama, H., Tadaishi, M., & Sugimoto, S. (2013). Gradation: A pay-as-you-go style hybrid query language for structured and text data. iConference 2013 Proceedings (pp. 209-222). doi:10.9776/13178Copyright is held by the authors.

schamber
Text Box

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

“search options” in Web search, such as “site:edu.” In fact, a survey (internet.com K.K. (Japan), 2009)
reported that about 25% of users of Web search engines have experience of using options.

The design of Gradation allows users to write not only both pure keyword and structured queries,
but also hybrid queries that intermix conditions on text data and associated structured data. Thus, Gradation
allows us to write queries in a “Pay-as-you-go” fashion, i.e., describe various types of queries according
to the tradeoff between the acceptable cost of writing queries and the required preciseness of the query
description.

Here is an example. When you search for text pages containing “Tom,” the query is:

Tom

If the associated structured data contain the age of people, a query to get text pages containing “Tom” that
correspond to those people who are over 40 is 2:

Tom age>=40

As shown above, you can not only just submit simple keyword queries, but also add more complex conditions
on structured data if required.

The contributions of the paper are as follows: First, we propose a unified query language that covers
both simple keyword queries and complex structured queries. Next, we prove that the query language
is relationally complete, because the relational completeness is a well-known criterion for discussing the
expressive power of structured query languages. Finally, we show the experimental results to prove that that
language allows us to write many hybrid queries in addition to pure keyword and relational queries.

In general, users need to know the schema-level information (e.g. attribute and class names) to write
structured queries. An interesting application of our hybrid language is to help the user construct complex
structured queries: The user first submits simple keyword queries and the system shows hints to transform
the query into more precise ones. The detailed discussions on the application are beyond the scope of this
paper and will appear in forthcoming papers.

The remainder of this paper is organized as follows: First, we describe related work. Second, we
explain the processing model for Gradation query language. Third, we explain Gradation queries. Next,
we give the formal semantics and prove that Gradation is relationally complete. Then, we show some
experimental results to illustrate Gradation allows us to write many queries other than pure keyword queries
and relational queries. Finally, we describe the conclusion.

Related Work

Since Gradation is a hybrid query language for text and associated structured data, there are a lot of
related work and tools that address queries for text and structured data in different ways. They include: (1)
natural language queries for structured data, (2) keyword queries for structured data, (3) structured query
languages that have built-in keyword search mechanisms, (4) full-text search engines that allow users to
specify conditions on structured metadata and (5) sophisticated search systems.
(1) Natural language queries. It would be ideal if users can write queries in natural languages. Therefore,
there have been a lot of attempts (Androutsopoulos, Ritchie, & Thanisch, 1995). A typical approach is to
translate natural language queries into structured ones. However, it is difficult for computers to perfectly
understand what users intended with the queries, and this is one of the reasons why we have artificial and
formal query languages including SQL, SPARQL, and Gradation. Essentially, processing natural language
queries is to map such queries to well-defined formal abstractions. In that sense, researches on natural
language query processing and formal query languages are complementary to each other.
(2) Keyword queries for structured data. There are many researches on keyword queries for structured
data (Chen, Wang, Liu, & Lin, 2009). For example, SPARK (Luo, Wang, & Lin, 2008) is a keyword search
engine against structured data, which allows users to mention attributes or table names in queries. SPARK
is different from Gradation in that (1) it is a query language for structured data only, and (2) the relationships
among tuples the queries can represent are limited thus SPARK is not relationally complete. Another
approach is to try to find the semantics of keyword queries in the context of given structured data (Sarkas,
Paparizos, & Tsaparas, 2010), in which they try to find which attribute corresponds to each given keyword.
Again, Gradation is different from such researches, in that it does not try to find the intention of keyword
queries, and is complementary to them.
(3) Structured query languages with keyword search mechanisms. XQuery and XPath Full-Text (Case
et al., 2011) extends the syntax and semantics of XQuery and XPath to realize full-text search on XML.
Many SQL databases support full-text search functions. Semplore is an IR-based system that has a query
language for text and structured data. Because they are extensions of structured languages or a novel query
language, users cannot write even simple queries without knowing the syntax. In contrast, Gradation is a
natural extension of keyword queries, and allows us to write queries in a “Pay-as-you-go” fashion.
2You can quote character strings (attribute values, or keywords) to distinguish them from reserved words or attribute names if necessary.

2

schamber
Text Box
210

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

(4) Full-text search engines allowing queries on structured metadata. An example is Lucene
(http://lucene.apache.org/core/), a search engine given as a Java library to develop full-text search systems.
Programmers, who use Lucene to implement a search engine, define queryable fields for given text data in
advance, and then users of the search engine can use advanced search functions to specify the fields. Unlike
Gradation, Lucene does not define how to write queries since it is not a query language. In addition, the
functions for structured search given by Lucene are limited and do not provide the relational completeness.
(5) Sophisticated search systems. There is an increasing number of sophisticated search systems, such
as faceted search systems (Tunkelang, 2009) and fielded search systems (e.g., LexisNexis (http://www.
lexisnexis.com/en-us/)). Gradation is different from the systems in that it is a relationally complete language
that seamlessly integrates keyword search and structured queries.

In addition, the ranking of query results is an important issue of in Text retrieval and Web search (Selvan,
Sekar, & Dharshini, 2012). Gradation has a set-based semantics and is neutral on the ranking issue. The
development of ranking schemes for Gradation is an interesting future work.

Query Processing Model

This section explains the query processing model for Gradation. We first define the data model of
Gradation, and then, explain the input and output of the query processing model.

The Data Model

We define the data D as a triple: D = (T, G, f). Figure 1 illustrates an example of D.

• T is a set of text pages. For example, T = {Samurai_t, M:I_t, ToyStory_t, Ken_t, Tom_t, Johnny_t} is
in Figure 1 3.

• G is the RDF data associated to T. RDF (Resource Description Framework) (http://www.w3.org/RDF/)
is a framework for describing metadata. RDF describes metadata in terms of a set of resources, a set
of values, and the relationship among them. RDF data consists of a set of triples, each of which has
the form of (Subject, Predicate, Object), in which Subject is a resource, and Object is either a
resource or a value. For example, given a resource Tom_r4, assertions on Tom_r such as “Tom_r is
50 year-old” or “Tom_r belongs to Actor class” can be described using a set of triples: {(Tom_r, age,
50), (Tom_r, type5, Actor)}. Given a set of RDF triples, we can express it as a labeled directed graph
G = (N, P, E) (Figure 1 (top)). Here, N is a set of nodes, P is a set of predicates, and E is a set
of edges. Each edge in E is a triple (ni, p, nj) where ni, nj ∈ N and p ∈ P. Triples of RDF data are
mapped to edges, in which resources and values are mapped to nodes, and predicates are mapped to
edge labels. In Figure 1, N = {Tom_r, 48, ToyStory_r, Film} and E = {(Tom_r, age, 48), (ToyStory_r,
type, Film)}.

• f : T → N is an injective function that expresses the relationship between text pages in T and nodes
of G. If t ∈ T is associated to n ∈ N, the fact is represented by f (t) = n. For example, f (Tom_t) =
Tom_r in Figure 1.

Inputs and Outputs

Figure 2 illustrates the query processing model for Gradation. The model consists of the following
components: (1) D is the data explained in the previous section, (2) q is a submitted query. (3) R is the
relation to represent the result of applying q to D.

The schema of relation R is determined by q. In the simplest case, R is a unary relation whose only
attribute is “t_uri” which means the URI of the text pages. For example, if q is “Tom”, R is a unary relation
contains a set of URIs of text pages containing “Tom”. Other cases will be explained in the next section.

Gradation Query Language

This section explains Gradation queries with examples. We start with simple queries that appear in
casual searching and gradually show more precise ones. Therefore, this section illustrates the flexibility of
the language. All of the examples take as input the data shown in Figure 1. The purpose of the section is to
give intuitive explanation. The formal semantics are given in the next section, and the detailed syntax will be
shown in the Appendix.
3Here, strings ending with “_t” denote URIs of text pages.
4Here, strings ending with “_r” denote URIs of resource nodes.
5“type” will be used to refer to “rdf:type”.

3

schamber
Text Box
211

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

Figure 1. Example of D Figure 2. Query Processing Model of Gradation

A query consists of keywords and non-keyword components (Table 1). Non-keyword components
are used to write more complex queries that require path expressions, class specifications, and arithmetic
comparisons. Gradation allows us to write queries with various combinations of keywords and non-keywords
components, covering both of simple keyword queries and complex structured ones. The user can choose
appropriate combinations according to the tradeoffs between the acceptable cost of writing queries and
the required preciseness of query description. In the followings, we first explain queries consisting only of
keywords. Then, we explain queries having non-keyword components.

Queries with One Keyword

The section explains queries consisting of only one keyword, and their semantics. In Gradation, a
query to get the text pages containing “Tom” can be written as:

Tom (Q1)

As another example, a query to get the text pages containing “Samurai” is:

Samurai (Q2)

The results of the queries Q1 and Q2 are shown in Figures 3 and 4, respectively.
In general, if a query consists of one keyword k, the query processor performs a Boolean full-text

search against T with k, and the result is a set of URIs of text pages containing k. Formally, the result is
{t|t ∈ T, match(t, keyword)}.

Gradation supports the wildcard (“*”) as a special type of keyword. The result of the query consisting
only of “*” is T, namely, the set of all the text pages. The wildcard can be used at the place in which
predicates or string values are required (i.e., at places in which class names, attribute names, or string
values are required).

Intersection, Union and Difference

In order to make a query to produce the intersection, union, and difference of the results of subqueries
(Lines 1-3 of Table 1), users use non-keyword components and, or, and -, respectively. For example, a
query to get the text pages containing “Tom” and “Samurai” is:

Tom and Samurai (Q3)

The result of query Q3 is shown in Figure 5. This is the intersection of the results of Q1 and Q2 (see Figures
3 and 4). In Gradation, the intersection is the default interpretation to connect subqueries. Therefore, and
can be omitted and the query “Tom Samurai” is interpreted as “Tom and Samurai”.

4

schamber
Text Box
212

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

Table 1
List of Non-keyword Components of Queries

Query with a non-keyword component Explanation

q1 and q2 Intersection. Returns the intersection of the results of queries q1 and
q2.

q1 or q2 Union. Returns the union of the results of queries q1 and q2.
q1 - q2 Difference. Returns the set of tuples that appear in the result of q1 and

do not appear in that of q2. If q1 is omitted, “*” is used for q1 (Here, “*” is
a wildcard for keywords. See Section “Queries with One Keyword”).

(q1 . . . qi) qi+1 . . . qn Grouping. q1 . . . qi are evaluated before the others.
class:c Class Instances. Here, c is a class name in RDF data. The query

returns the set of instances of class c, namely the set of resourse nodes
have rdf:type predicate connected to c or to a class reachable from c
through subclass properties.

q [attribute1, . . ., attributen] Make Relational Attributes Appear in the Result (Projection). Here,
attributei is one of the followings: (1) t_uri, which means the URI of
text pages, (2) r_uri, which means the URI of resource nodes, and (3)
a predicate that appears in the given RDF data.

q1.p.q2 Path Traversal. Let Ni be a set of RDF graph nodes corresponding to
the result of qi. The query returns the set of (t1, t2), in which (n1, p, n2) ∈
E, ni ∈ Ni, ni = f (ti) and ti ∈ T.

attribute1 θ value or attribute1 θ
attribute2

Attribute-based Selection. This component returns the set of
URIs of text pages each of which is connected to RDF graph
node s satisfying one of the following conditions: (1) There exist
(s, attribute1, value) ∈ E s.t. attribute1θvalue holds. (2) There exist
(s, attribute1, o1), (s, attribute2, o2) ∈ E, s.t. o1θo2 holds. For θ, we can
use >, <, >=, <=, =, ==, or !=.

q1 * q2 Cartesian Product. The query returns the Cartesian Product of q1
and q2 (Note that each query returns a relation in the Gradation query
processing model.)

q1 as $a q2 . . . qn Alias. In q2 . . . qn, $a can be used as the name to refer to the result of
q1.

t_uri
Samurai_t
Tom_t
Johnny_t

Figure 3. Output of Q1

t_uri
Samurai_t

Figure 4. Output of Q2

t_uri
Samurai_t

Figure 5. Output of Q3

Grouping of Subqueries

Users can use (. . .) to group subqueries (Line 4 of Table 1), to affect the evaluation order of
subqueries. For example, the following queries have different evaluation orders of subqueries.

(Tom or Ken) Scientist (Q4)

Tom or (Ken Scientist) (Q5)

Here, Q4 returns the intersection of the set of text pages containing “Tom” or “Ken,” and the set of text pages
containing “Scientist.” On the other hand, Q5 returns the union of the set of text pages containing “Tom,” and
the set of text pages containing “Ken” and “Scientist.”

Restricting to Instances of a Particular Class

Gradation has a non-keyword component class:c in order to restrict the query results to instances
of a particular class c (Line 5 of Table 1). For example, a query to get the set of text pages corresponding to
Tom who is an actor is:

Tom class:Actor (Q6)

5

schamber
Text Box
213

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

t_uri
Tom_t
Johnny_t

Figure 6. Output of Q6

t_uri
Tom_t
Ken_t
Johnny_t

Figure 7. Output of class:Actor

t_uri age
Tom_t 48
Ken_t 51
Johnny_t 48

Figure 8. Output of Q7

t_uri age
Tom_t 48
Ken_t 51
Johnny_t 48

Figure 9. Output of Q8

t_uri
Tom_t
Ken_t
Johnny_t

Figure 10. Output of Q9

age
48
51
48

Figure 11. Output of Q10

The result of Q6 is shown in Figure 6. The semantics of the query is the intersection of the results of
subqueries Tom and class:Actor (Figure 3 and 7). In general, the result of class:c is the set of text pages
corresponding to resource nodes which are instances of c. Here, we say a resource node is an instance
of c if the node has rdf:type predicate connected to c or to a class reachable from c through subclass
properties in the RDF data G. Therefore the subquery class:Actor returns the set of URIs of text pages
that corresponds to RDF resource nodes having rdf:type predicate connected to Actor class or to a class
reachable from Actor class through subclass properties in the RDF data G.

Specifying Relational Attributes to Appear in the Output

Each Gradation query can have a sequence of attribute names following the query (i.e., q [attribute1,
. . ., attributen]) in order to provide each relational attribute with a tag “to appear” meaning that the attribute
appears in the final result (Line 6 of Table 1). When the attributes correspond to RDF predicates, the
attributes will contain values in the given RDF data G. For example, a query to return a set of binary tuples
with (1) URIs of text pages that contains ‘Tom’ corresponding to resources who are of actor type, and (2) the
values of their ages is:

(Tom class:Actor)[t_uri, age] (Q7)

Here, t_uri is the attribute to contain URIs of test pages (explained next). The result of Q7 is shown in
Figure 8. The query returns a relation which has two relational attributes, t_uri and age.

Here, attributei can be one of the followings:

1. t_uri: URIs of text pages that are contained in the result of q.

2. r_uri: URIs of resource nodes corresponding to the values of t_uri (i.e., r_uri = f(t_uri)).

3. Predicate p (e.g., age), that is connected to the RDF nodes in r_uri. If the RDF nodes do not have p,
the values of the relational attribute of the final result will be null.

There are two points to note. First, t_uris are tagged as “to appear” by default (i.e., query q without
[attribute1, . . ., attributen] is interpreted as q[t_uri] by default). For example, query “Tom” is interpreted
as “Tom [t_uri].” Second, the expression can be nested in queries and the tags are overwritten by the
outer ones (i.e., if an attribute that is given “to appear” tag by an inner one is not specified in the outer one,
the tag is removed from the attribute). For example, the following nested queries (Q8-Q10) return the results
in Figures 9-11.

((Tom class:Actor)[t_uri, age])[t_uri, age] (Q8)

((Tom class:Actor)[t_uri, age])[t_uri] (Q9)

((Tom class:Actor)[t_uri, age])[age] (Q10)

Traversing Paths in the RDF Graph

Gradation allows users to traverse the paths in the given RDF data (Line 7 of Table 1). For example,
a query to get the set of pairs (binary tuples) of text pages, in which each tuple has a text page corresponding
to a film and a text page corresponding to an actor who stars in the film, is:

class:Film.starring.class:Actor (Q11)

6

schamber
Text Box
214

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

t_uri(Film) t_uri(Actor)
M:I_t Tom_t
Samurai_t Tom_t
Samurai_t Ken_t

Figure 12. Output of Q11 and Q12

t_uri(Film) t_uri(Actor)
M:I_t Tom_t
Samurai_t Tom_t

Figure 13. Output of Q13

The result of Q11 is shown in Figure 12 6.
In general, query q1.p.q2 returns a set of binary tuples, each of which represents a one-length path

to traverse a link to connect the results of queries q1 and q2. In other words, let Ti be the set of t_uri values
of the result of qi, and let Ni = {n|n = f (t), t ∈ Ti}. Then, the result of q1.p.q2 is a set of binary tuples
{(t1, t2)|∀i ∈ {1, 2}(ni ∈ Ni, ni = f (ti)), (n1, p, n2) ∈ E}. Since the default attribute for the result is t_uri,
the query q1.p.q2 is interpreted as q1.p.q2[t_uri(q1), t_uri(q2)] if not explicitly specified.

For example, consider query Q11 and assume that N1 = {M:I_r, Samurai_r, ToyStory_r} and N2 =
{Tom_r, Ken_r, Johnny_r}, are the set of instances of Film class and that of Actor class, respectively. Then,
the result of Q11 is {(M:I_t, Tom_t), (Samurai_t, Tom_t), (Samurai_t, Ken_t)}.

As a natural extension, users can write arbitrary length of path traversal q1.p1.q2.p2.q3.. . ..pn−1.qn.
In this case, let Ni be the set of RDF nodes that are r_uri values for the result of qi. Then, the result of the
query is a set of m-ary tuples {(t1, t2, . . . , tm)|∀1 ≤ i ≤ m(ni = f (ti)), ∀1 ≤ i < m(ni ∈ Ni, (ni, pi, ni+1) ∈
E)}

Combining Keyword Queries with Path Traversals

This section shows an example of a query having a keyword and a path traversal:

Tom class:Film.starring.class:Actor (Q12)

Note that the query is an example of a hybrid query (neither a pure keyword nor a pure relational
query). A subtle point here is that the results of Tom and class:Film.starring.class:Actor are not union
compatible, because the former returns a unary relation and the latter returns a binary relation. Therefore,
we cannot compute the intersection of the two results. However, as will be explained in a later section
(Resolution Rules for Union Incompatibility), Gradation has a resolution rule for the case in which one
subquery is a keyword query. Let R1 is the result of a keyword subquery (with a keyword k, such as Tom) and
R2 is the non-unary relation computed by the other query q2. In this case, the result of k and q2 contains a
non-unary tuple t ∈ R2 if a text page addressed by one of the t_uri attribute values of t contains k.

For example, let Rpath be the result of the second subquery of Q12, and assume that Rpath ={(M:I_t,
Tom_t), (Samurai_t, Tom_t), (Samurai_t, Ken_t)}. Then, since every tuple in Rpath has at least one URI of
text pages containing “Tom,” the result of Q12 is the same as the result of Q11 (shown in Figure 12).

Applying Grouping in Various Types of Queries

Users can apply grouping (explained in an earlier section (Grouping of Subqueries)) to various
types of queries including non-keyword queries. For example, a query to get the set of pairs of text pages,
in which each binary tuple has (1) a text page containing “Tom” that corresponds to an actor and (2) a text
page for a film in which he stars in is:

class:Film.starring.(Tom class:Actor) (Q13)

The result of Q13 is shown in Figure 13. As with the case of keyword queries, the subqueries in
() is evaluated before the other subqueries. In Q13, the subquery (Tom class:Actor) is evaluated first
and returns the set of URIs of text pages having “Tom” and corresponding to the resources are actor type.
Therefore, the result of Q13 (shown in Figure 13) is different from that of Q12 (shown in Figure 12), and does
not have the tuple (Samurai_t, Ken_t).

Selection Based on Attribute-Values

The following is an example of a query to get the URIs of text pages corresponding to actors who
are over 50:

class:Actor age>=50 (Q14)

6If at the output relation has different attributes with the same attribute names, the names would be changed appropriately.

7

schamber
Text Box
215

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

t_uri
Ken_t

Figure 14. Output of Q14

t_uri(Film) t_uri(Actor1) t_uri(Actor2)
Samurai_t Tom_t Ken_t

Figure 15. Output of Q15

t_uri(Film) t_uri(Actor)
Samurai_t Ken_t

Figure 16. Output of $a.starring.(class:Actor Ken)

The result of Q14 is shown in Figure 14. Attribute-based selection (Line 8 of Table 1) can be
specified as (1) attribute1 θ value or (2) attribute1 θ attribute2 where value is a constant. Here, the former
is the comparison between values of two attributes and the latter is the comparison between values of an
attribute and a constant. The output of attribute1 θ value is the relation that contains URIs of text pages
each of which is connected to RDF graph node s s.t. (s, attribute1, value) ∈ E (See an earlier selection
(The Data Model)) and attribute1θvalue holds (for example, when q is “age>=50,” s = Ken_r). Similarly, the
output of attribute1 θ attribute2 is the relation that contains URIs of text pages each of which is connected
to RDF graph node s s.t. (s, attribute1, o1), (s, attribute2, o2) ∈ E, and o1θo2 holds (For example when q is
“birthPlace==activePlace,” s can be Ken_r).

Alias

Gradation allows users to give alias names to subqueries (that returns relations) so that they can
write complex queries, such as queries having the same path traversal multiple times (Line 9 of Table 1).
For example, assume we want to know the films such that (1) two actors star in the same film, (2) one of
them has the text page that contains “Tom” and (3) the other has the text page that contains “Ken.” Then, the
query is:

(class:Film as $a).starring.(class:Actor Tom) $a.starring.(class:Actor Ken) (Q15)

The result of Q15 is shown in Figure 15. It has three attributes: (1) the URIs of text pages containing “Tom”
and corresponding to RDF nodes of actor type, (2) the URIs of text pages containing “Ken” and corresponding
to RDF nodes of actor type, and (3) the URIs of text pages corresponding to films they star in, because
the t_uris are the default attributes to appear in the result (See an earlier section (Specifying Relational
Attributes to Appear in the Output))

There is one point that users have to be careful in using aliases. As explained in an earlier section
(Intersection, Union and Difference), the default interpretation of a sequence of subqueries (q1 q2 . . .) is
the intersection of the subquery results. However, for subqueries that are related to each other with the
same alias, the interpretation is the join of the subqueries. For example, the result of Q15 is the equi-join
on $a of the results of (class:Film as $a).starring.(class:Actor Tom) (the same as the result of Q10
(Figure 13)) and $a.starring.(class:Actor Ken) (Figure 16). The attributes of the result relation of Q15
are t_uris of the two subqueries.

Formal Semantics and Relational Completeness

This section defines the formal semantics of Gradation Language. Then, we show that Gradation
is relationally complete. Actually, the expressive power of Gradation is equivalent to the relational algebra
with text containment predicate, which means that the queries can be translated into relationally complete
structured query languages with text containment predicates (such as SPARQL).

This section is organized as follows: First, we map the data D (explained in The Data Model) to
an equivalent universal relation. Second, we give the formal semantics for queries that we explained (see
Gradation Query Language) only intuitively. Finally, we show that Gradation is relationally complete in the
sense that it can express any relational queries on the universal relation.

Mapping Text and RDF Data to a Relation

This section explains how to map D (text and RDF data) to a universal relation U that preserves the
information in D. For the explanation, we use the data shown in Figures 17 and 18.

The data in Figure 17 have two text pages Samurai_t and Ken_t. Figure 19 shows the result of
mapping it to U. Let D = (T, G, f). Then, U contains one tuple for each resource node nt in G. Attributes
of U are r_uri, t_uri, text, and attributes corresponding to all of the predicates that appear in G. (e.g.,

8

schamber
Text Box
216

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

Figure 17. A part of Figure 1 Figure 18. Another part of Figure 1

r_uri text t_uri starring age
Samurai_r “Samurai stars Tom...” Samurai_t Ken_r NULL
Ken_r “Ken is...” Ken_t NULL 51

Figure 19. Universal relation U for the data in Figure 17

“starring” and “age”). Each tuple contains values of the r_uri of nt, t_uri of t s.t. nt = f (t), and attribute
values each of which is o s.t. (nt, p, o) ∈ G. The values of attributes that do not correspond to predicates on
nt are null.

In general, a resource node can have two or more values for one predicate. For example, in Figure
18, Samurai_r has two edges for each of “starring” and “type” predicates. Figure 20 shows the result of
mapping it to U. When nt has m > 1 values for the same predicate p, U contains m tuples that are the same
as each other except that attribute values for p are different. This recursively applies to the general case in
which two or more such predicates exist. For example, U has four tuples for Samurai_r (Figure 20), which are
generated by combining {Ken_r, Tom_r} for “starring” predicate and {Film, HistoricalFilm} for “type” predicate.

Constructing the Universal Relation. This section explains the algorithm for translating D into U.
The algorithm works with the simple case in which each RDF node has only one value for each predicate.
The algorithm for the general case in which nodes have two or more values for the same predicate is a
natural extension of the algorithm and thus omitted. The algorithm (Figure 21) works as follows. Given
D, it generates a tuple for each resource node nt ∈ N (Lines 2-3), stores attribute values in each tuple
(Line 4-13), and inserts the tuple into U (Line 14). Here, node_uri(nt) in Figure 21 is a function to get the
URI of resource node nt. Similarly, textpage_uri(nt) is a reverse function of f to get the URI of text page
corresponding to nt (i.e., nt = f (textpage_uri(nt))), and text(u) is a function to get the contents of the text
page of URI u.

Theorem 1 The algorithm in Figure 21 outputs U that preserves the information stored in D = (T, G, f). 2

Proof. To prove the theorem, we have to show U preserves information stored in G, T, and f , respectively.
First, we show that U preserves the information in G. Lines 10-13 guarantee that for every nt ∈ N, there is a
tuple in U that has information on every triple (nt, p, o) in G. Each tuple in U contains node_uri(nt) in the
attribute r_uri and contains o in the attribute p.

Next, we show that U preserves the information stored in function f : T → N. Remember that f is
a one-to-one mapping between text pages and RDF resource nodes and that for every text page there is
one RDF node in N. Given the fact, Line 8 guarantees that for every nt, there is a tuple that has URI of the
corresponding text page (if any). Since f is an injective function and the URI of every nt is stored in U, it
preserves the information encoded in function f .

Finally, we show that U preserves the information in text pages in T. Line 9 guarantees that each
tuple in U stores not only the URI of a text page but the contents of it, which means that U preserves the
information stored in the contents of text pages in T. 2

Formal Semantics

This section gives the formal semantics of queries that we explained only intuitively in an earlier
section (Gradation Query Language). First, we give the formal semantics of Gradation queries in terms
of relational algebra expressions on the universal relation U. Second, we explain the formal semantics for
subtle cases in which the relations are not union compatible in Intersection, Difference or Union operations.

Semantics of Gradation Queries. Table 2 summarizes the semantics of Gradation queries in terms
of relational algebra expressions on the universal relation U we explained in an earlier section (Mapping Text

9

schamber
Text Box
217

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

r_uri text t_uri starring type
Samurai_r “Samurai stars Tom...” Samurai_t Ken_r HistoricalFilm
Samurai_r “Samurai stars Tom...” Samurai_t Ken_r Film
Samurai_r “Samurai stars Tom...” Samurai_t Tom_r HistoricalFilm
Samurai_r “Samurai stars Tom...” Samurai_t Tom_r Film
Ken_r “Ken is...” Ken_t NULL Actor
Tom_r “Tom is...” Tom_t NULL Actor

Figure 20. Universal relation U for the data in Figure 18

INPUT: Data D = (T, G, f), where G = (N, P, E)
OUTPUT: Universal Relation U
1:U = φ

2:FOREACH nt ∈ N
3: Tuple tuple = new Tuple();
4: FOREACH Ai ∈ U′s Attributes
5: tuple[Ai]= NULL;
6: ENDFOR
7: tuple[r_uri] = node_uri(nt);
8: tuple[t_uri] = textpage_uri(nt);
9: tuple[text] = text(textpage_uri(nt));
10: FOREACH (nt, el, v2) ∈ E
11: IF (v2 has URI) tuple[el] = node_uri(v2);
12: ELSE tuple[el] = v2;
13: ENDFOR
14: U.insert(t);
15:ENDFOR
16:RETURN U;

Figure 21. Algorithm to create the relation U

and RDF Data to a Relation). In Table 2, q is a Gradation query and sem(q) is a relational algebra expression
that is equivalent to q (modulo the relational attributes that appear in the output). U is the universal relation,
and R.a is the attribute a of relation R.

We use the table to define the semantics of q as follows: Given q, the semantics of q is defined as
πattrs(sem(q)), in which sem(q) is given in Table 2, and attrs are the set of attributes that are tagged as “to
appear” by q1[attributte1, . . . , attributen] in q. Therefore, we first construct a relation R = sem(q) with Table
2. During the process, we compute attrs when we encounter q1[attributte1, . . . , attributen] in q. As explained
in an earlier section (Specifying Relational Attributes to Appear in the Output), the expression can be nested
and attrs will be overwritten by the outer one. Finally, we project out the attributes that are not contained in
attrs from R.

Resolution Rules for Union Incompatibility. This section explains the resolution rules for union
incompatibility in Intersection, Difference and Union operations. An informal explanation was already given in
an earlier section (Combining Keyword Queries with Path Traversals).
Union. When two relations for the union are not union compatible, the union operation returns the outer
union (Navathe & Elmasri, 2002) of the two relations.
Intersection. In general, the two relations sem(q1) and sem(q2) for the intersection must be union compatible.
However, Gradation defines the result of the intersection if one of qis is a keyword query k (say, q1 = k). In
that case, we interpret the k and q2 as selecting tuples in sem(q2) that contains k in any of text attributes of
sem(q2). Formally, the result of query “k and q2” is R = σtext1 contains k∨...∨textn contains k(sem(q2)). Here, texti
is a text attribute of sem(q2). Note that the intersection is commutative thus “q2 and k” returns the same
result of “k and q2.”

Difference. Similarly, the two relations sem(q1) and sem(q2) for the difference must be union compatible.
However, Gradation defines the result of the difference if one of qi is a keyword query. Formally, the
semantics of query “k − q2” is σtext1 not contains k∧...∧textn not contains k(Rk). Here, k is a keyword, and texti is a
text attribute of sem(Rk). The semantics of query q1 − k is σtext1 not contains k∧...∧textn not contains k(R1).

10

schamber
Text Box
218

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

Table 2
Formal Semantics of Gradation Queries

Query q Description Sem(q)

keyword Keyword Query. σt_uri contains keyword(U)
q1 and q2 Intersection. sem(q1) ∩ sem(q2)
q1 or q2 Union. sem(q1) ∪ sem(q2)
q1 - q2 Difference. sem(q1)− sem(q2). If q1 is omitted, sem(q1) = U.
class:c1 Class Instances. σtype=c1∨...∨type=cn(U) where c2, . . . , cn are the types

reachable from c1 through subclass properties.
q1.p1.q2.p2.. . ..pn−1.qn Path Traversal. Let Ri = sem(qi) and assume that each qi has

only one t_uri attribute with “appear tag.” Then,
sem(q) = (((R1 1R1.p1=R2.r_uri R2) 1R2.p2=R3.r_uri
R3) . . .) 1Rn−1.pn−1=Rn .r_uri Rn.

attribute1 θ value or
attribute1 θ attribute2

Attribute-based
Selection.

R = σattribute1 θ value(U) or σattribute1 θ attribute1(U). For
θ, we can use >, <, >=, <=, =, ==, or !=.

q1 * q2 Cartesian Prod-
uct.

sem(q1)× sem(q2)

q1[attribute1, . . .,
attributen]

Attributes to ap-
pear in the out-
put

attributesis are tagged as those to appear in the final
output

Operations Relational Algebra Gradation
Union R ∪ S R or S

Difference R − S R − S
Cartesian Product T × V T ∗ V

Projection πA1,A2,...,An(R) R[A1, A2, . . . , An]
Selection σAi θ c(R) or σAi θ Aj(R) R Aiθc or R AiθAj

Figure 22. Gradation queries that are equivalent to five relational operations

Relational Completeness

This section proves the following theorem.

Theorem 2 Gradation is relationally complete on the universal relation U shown in an earlier section
(Mapping Text and RDF Data to a Relation). 2

Proof. We show that Gradation can express queries that are equivalent to five relational algebra
operations: Union, Difference, Cartesian product, Projection and Selection on U. In the discussion, we
assume that:

1. Relation R, S, T and V are any relations that can be derived by applying relational algebra expressions
to U,

2. R and S are union compatible,

3. The schema of R is R(A1, A2, . . . , Ai, . . . , Aj, . . . , An),

4. θ is one of <, ≤, >, ≥, =, 6=, and

5. c is a constant.

Then, Figure 22 shows how the five operations can be expressed in Gradation. 2

Evaluation

As shown in an earlier section (Formal Semantics and Relational Completeness), the expressive
power of Gradation is equivalent to the relational algebra with text containment predicate. The unique point
of Gradation is its syntax - some queries can be written as pure keyword queries, some queries can be

11

schamber
Text Box
219

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

 0 5 10 15 20 25 30 35 40 45 50

N
u
m
b
e
r

o
f

Q
u
e
r
i
e
s

Number of words(|W|)

Hybrid Queries
Pure Structured Queries

Pure Keyword Queries

Figure 23. Experimental Result 1 (height = 8)

10
10

-1

10
10

0

10
10

1

10
10

2

10
10

3

10
10

4

10
10

5

 5 7 9 11 13 15 17 19

N
u
m
b
e
r

o
f

Q
u
e
r
i
e
s

Height of the concrete syntax tree

Hybrid Queries
Pure Structured Queries

Pure Keyword Queries

Figure 24. Experimental Result 2 (|W| = 1)

written by combining keywords and non-keyword components, and others can be written as pure structured
queries, allowing us to write queries in a pay-as-you-go fashion. In order to confirm that Gradation allows
us to write many keyword queries and hybrid queries other than pure structured queries, we counted the
number of each type of queries that can be written in Gradation.

Query Styles

We define three query styles to which each Gradation query expression belongs. Note that only the
syntax matters to define the styles. It is possible that query expressions in different styles are equivalent in
their results.

• Pure Keyword-query Style: A query in this style has an appearance of Boolean keyword queries. An
example is (Tom or Thomas) and actor.

• Pure Structured-query Style: A query in this style is a direct translation of a relational algebra
expression into Gradation. An example is Class:Actor[name], which is a direct translation of
πname(σType=“Actor′′(U)).

• Hybrid Query Style: A query in this style can be classified into neither pure keyword nor structured-
query styles. An example is Tom class:Actor

Experiment

The purpose of the experiment is to confirm that Gradation allows us to write query expressions
in various styles so that we can write queries in the pay-as-you-go fashion. In the experiment, we counted
the number of Gradation query expressions in each of the three query styles. As explained in Introduction,
support to change queries into more precise ones is one of our future work.

In the experiment, if we don’t limit the number of words that appear in a query and the height of
the concrete syntax trees of queries, it is obvious that every query style has a countable infinite number of
queries and the comparison is meaningless. Therefore, we parameterize the number of words (|W|) and the
height of the concrete syntax tree (height) in counting the number of queries. Here, W is a set of words used
in queries. In the experiment, we assume that any w ∈W can appear at the places in which keywords, class
names, attribute names, or string values can appear in a query.

We compared the numbers of queries in each of the three styles, varying the values of height and
|W|.

Results

Figure 23 shows the number of possible query expressions in each query style in the case of
height = 8 and 1 ≤ |W| ≤ 50. Figure 24 shows the number of possible query expressions in the case of
|W| = 1 and 5 ≤ height ≤ 20. The figures show that Gradation allows us to write many hybrid queries in
addition to pure keyword and structured ones (Note that the Y-axis is in log scale).

Conclusion

This paper proposes Gradation, a hybrid query language for text and associated structured data that
covers both keyword queries and structured queries. Users can add various query components to keywords

12

schamber
Text Box
220

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

to constitute various kinds of queries in Gradation. We proved that Gradation is relationally complete and
showed that Gradation allows us to write many hybrid queries in addition to pure keyword and structured
queries. Therefore, Gradation allows us to write queries in a “Pay-as-you-go” fashion, i.e., describe various
types of queries, according to the tradeoff between the acceptable cost of writing queries and the required
preciseness of the query description.

Future work includes the development of efficient processing schemes for Gradation queries, the
development of a scheme for ranking query results, and the development of a support system to show
the user hints so that she can rewrite her imprecise queries (typically keyword queries) to more precise,
structured ones.

References

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural Language Interfaces to Databases - An
Introduction. Journal of Natural Language Engineering, 1, 29–81.

Case, P., Dyck, M., Holstege, M., Amer-Yahia, S., Botev, C., Buxton, S., . . . Shanmugasundaram, J.
(2011). XQuery and XPath Full Text 1.0 W3C Recommendation (REC-xpath-full-text-10-20110317 ed.)
[Computer software manual]. <http://www.w3.org/TR/xpath-full-text-10/>.

Chen, Y., Wang, W., Liu, Z., & Lin, X. (2009). Keyword Search on Structured and Semi-Structured Data. In
Proceedings of the 35th sigmod international conference on management of data (pp. 1005–1010).
doi: 10.1145/1559845.1559966

internet.com K.K. (Japan). (2009). An article from internet.com k.k. (japan) (in japanese). <http://japan
.internet.com/wmnews/20090908/5.html>.

Luo, Y., Wang, W., & Lin, X. (2008). SPARK: A Keyword Search Engine on Relational Databases. In
Data engineering, 2008. icde 2008. ieee 24th international conference on (pp. 1552–1555). doi:
10.1109/ICDE.2008.4497619

Navathe, S. B., & Elmasri, R. A. (2002). Fundamentals of Database Systems (3rd ed.). Addison Wesley
Longman.

Sarkas, N., Paparizos, S., & Tsaparas, P. (2010). Structured Annotations of Web Queries. In Proceedings
of the 2010 international conference on management of data (pp. 771–782). NY, USA: ACM. doi:
10.1145/1807167.1807251

Selvan, M. P., Sekar, A. C., & Dharshini, A. P. (2012). Survey on Web Page Ranking Algorithms. International
Journal of Computer Applications, 41(19), 1–7. (Published by Foundation of Computer Science, New
York, USA) doi: 10.5120/5646-7764

Tunkelang, D. (2009). Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Services,
1(1), 1-80. doi: 10.2200/S00190ED1V01Y200904ICR005

Appendix: The Syntax of Gradation Query Language

<query> ::= <exper>

<exper> ::= <term>

| <exper> ' or ' <term>

<term> ::= <factor>

| <term> (' and ' | ' ' | ' * ' | '.' <edge> '.') <factor>

| 'not ' <term>

| <term> ' as ' <alias>

| <term> <cond>

| <term> '[' <attrs> ']'

<factor> ::= '(' <exper> ')'

| <keyword>

| 'class:' <classname>

<edge> ::= <exper_edge>

<exper_edge> ::= <term_edge>

| <exper_edge> ' or ' <term_edge>

<term_edge> ::= <factor_edge>

| <term_edge> (' and ' | ' ') <factor_edge>

| 'not ' <term_edge>

<fact_edge> ::= '(' <exper_edge> ')'

| <edgename>

<cond> ::= <exper_cond>

<exper_cond> ::= <term_cond>

13

<http://www.w3.org/TR/xpath-full-text-10/>
<http://japan.internet.com/wmnews/20090908/5.html>
<http://japan.internet.com/wmnews/20090908/5.html>
schamber
Text Box
221

iConference 2013 February 12-15, 2013 Fort Worth, Texas, USA

| <exper_cond> ' or ' <term_cond>

<term_cond> ::= <factor_cond>

| <term_cond> (' and ' | ' ') <factor_cond>

| 'not ' <term_cond>

<fact_cond> ::= '(' <exper_cond> ')'

| <attrname> <relational_op> (<attrname> | <constant>)

<attrs> ::= <attrs> ',' <attrname>

| <attrname>

<keyword> ::= <string> | <uri>

<constant> ::= <string>

<attrname> ::= '-'? (<edgename> | 't_uri' | 'r_uri')

<classname> ::= <identifier>

<edgename> ::= <identifier>

<alias> ::= '$' <identifier>

<relational_op> ::= '>' | '<' | '>=' | '<=' | '=' | '!='

<string> ::= [0-9a-zA-Z*\-\.]+

| '"' [0-9a-zA-Z*\-\.][0-9a-zA-Z*\-\.\]* '"'

<identifier> ::= [a-zA-Z][a-zA-Z0-9_%]+

14

schamber
Text Box
222

