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Abstract 

Ripple correlation control makes use of the inherent switching ripple in a power 

converter to minimize or maximize input power. This report develops a complete 

analytical and simulation model of an induction motor drive system, with ,ripple 

correlation control used for efficiency optimization. The analysis utilizes a Matlab model 

for field-oriented control (FOC) of a three-phase induction machine. The FOC method 

analyzed here is indirect: it operates with a flux observer derived from rotor position and 

stator current information. The algorithm includes an observer to correct for variations in 

the rotor time constant. The analysis incorporates a saturation function to model 

nonlinear magnetics. FOC is used to control a pulse-width modulated (PWM) inverter. 

The inverter input de bus is obtained from a six-pulse rectifier. Ripple on the de bus is 

applied to ripple correlation control, which is used to alter the motor operating flux. It is 

well known that motor efficiency is best at a particular flux value that depends on the 

operating point. With the control introduced here, the flux is adjusted dynamically to 

drive the system to its best efficiency under all conditions. The algorithm employs a 

parameter observer to correct for inductive effects in the motor windings. 

Conventional electric machines are designed to have maximum efficiency at rated 

load and rated flux. In induction motors, efficiency can be improved under light-load 

conditions by reducing the operating flux. Optimal flux adjustment allows the efficiency 

to be nearly constant with load- at the highest attainable value. (For instance, a motor 

with a tested peak efficiency of 90% can operate with an efficiency of about 90% across 

its full range of loads with optimal flux adjustment.) Simulation studies are presented in 

the case in which ripple correlation control is used to adjust for optimal flux. A sample 
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motor, with peak efficiency under conventional conditions of about 66%, is used to 

illustrate the possible results. The optimizing control is designed to work slowly, without 

interfering with the dynamics of FOC. The design presented here operates on time scales 

of about 30 s, working in the background while the complete FOC system functions. 

Operation is illustrated for step changes in both the commanded motor speed and the 

applied shaft torque. For this sample motor, efficiencies of 66% or better are obtained 

over the full rated load range, as compared to much lower efficiencies (less than 20% at 

20% load) obtained without optimal flux adjustment. The results demonstrate that ripple 

correlation control can be used to augment even very sophisticated motor controllers, and 

that it supports efficiency maximization without interfering with dynamic performance. 

Considerable energy savings can be obtained in cases in which a motor is often used 

below its rated load condition. 
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1 Introduction 

Ripple correlation control, first proposed in the context of solar power conversion [1,2], 

is uniquely suited to optimization problems encountered in power electronics [3]. In this 

control approach, the ripple inherent in a switching power converter is used as an internal 

perturbation for a control method. The general possibilities are similar to those of 

vibratory control [4], except that no external vibration needs to be imposed. 

The classic solar power conversion problem, maximum power point tracking 

(MPPT) is to draw power from a solar array at the highest possible value. The best 

conventional approach, termed perturb and observe [5,6], alters a switching converter's 

duty ratio, exploring parameter values until the highest power is attained. Since panel 

conditions change over time, the process must continue indefinitely. 

With ripple correlation, the converter ripple itself is interpreted as a perturbation. In 

place of a measurement, a cross-correlation between power ripple and the switching 

signal shows when the converter operation straddles the maximum power point. An 

integral controller will drive the converter to the maximum power point [1]. A typical 

perturb-and-observe process works on time scales of seconds, while ripple correlation 

works on the millisecond time scales of switching functions. 

There is a question that arises when applying ripple correlation to solar power 

conversion on fast time scales (lms and below): does the ripple in fact represent a 

perturbation in panel power? A real solar panel has substantial parallel capacitance, so the 

answer is not obvious. In practical solar configurations, this question has a useful answer. 
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Ripple voltage produces both a perturbation on panel current and a current that flows in 

the panel capacitance. A panel large enough to supply 3A at about 12V will have 

capacitance that does not exceed O.l)LF. At 10kHz with 2% ripple the expected capacitive 

current is less than 0.25mA. The 2% ripple would imply current ripple on the order of 

60mA --- orders of magnitude larger. Furthermore, the capacitive current has an 

orthogonal relation with the power-generating current. If the value of capacitance is 

known, it is possible to compensate for this effect. 

Ripple correlation control has also been proposed for power tracking in motor 

applications [2]. The problem in many ways is the dual of the solar power problem, since 

a motor has series inductance and most likely minimum power is of interest. The 

application of ripple correlation control to the problem of motor power minimization is 

one of great practical interest. This is especially important as electronic motor drive 

applications expand. 

It is well known that motor efficiency depends on the excitation flux, and that for 

any given operating condition, there is a specific flux value that will minimize power 

consumption [7]. In principle, a perturb-and-observe technique can be applied to this 

problem: flux value is altered slightly, subject to the speed and torque requirements of the 

load, and power can be measured. The flux again can be altered and a decision is then 

made whether the new value is better or worse. This would continue indefinitely. 

On the other hand, a switching motor drive system is the most convenient way to 

adjust speed, torque, and power. If switching takes place, ripple will be present and 

presumably ripple correlation control can be applied. Since motor windings are inductive, 

the question arises whether a perturbation influences power or just the inductor voltage. 
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Unlike the solar power case, the answer in the context of a motor is that inductor drop 

cannot be neglected. If ripple alone is used for control, minimum power will not be reached. 

As in the solar power case, it is possible to compensate for inductance. If winding 

inductance Lw is known, a correction term Lw di/dt can be subtracted from the ripple 

voltage to give a "true" representation of the ripple power. This signal then functions in a 

ripple correlation control. Of course, in general the inductor value is unknown. It must 

either be measured or obtained with an observer or other similar active method. 

This paper describes the use of ripple correlation control in a conventional 

ac induction motor operating from a high-performance field-oriented control (FOC) 

system. In such a system, a pulse-width modulated (PWM) inverter powers the motor. 

Both flux and torque are controlled independently. In conventional applications flux is set 

to its rated value. With ripple correlation, flux is driven dynamically to the value that 

minimizes input electrical power. 

2 Overview 

We report in detail the modeling and simulation of an FOC machine drive and 

demonstrate the magnitude of system efficiency gain as a function of decrease in motor 

load below design maximum or optimum. For ease of simulation the induction machine is 

modeled in the synchronous reference frame. The FOC method utilized is indirect: the 

rotor position and stator currents provide the necessary information for rotor flux 

alignment. The drive is supplied by a six-pulse rectifier with LC output filter. 

The control method also addresses the variation of the rotor LR time constant due to 

temperature changes. A parameter estimator based on measurement of the rotor flux 

alignment is used to provide this time constant for use by the FOC controller. 
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Maximum operating efficiency is achieved via a maximum power-point tracker 

(MPPT). The MPPT adjusts the rotor flux to achieve maximum efficiency. It does so by 

using information about the correlation between the change in the inverter de bus power 

and the change in rotor flux while the system is being perturbed repetitively. The 

perturbations in input power and rotor flux are not artificially introduced, rather induced 

by the ripple content of the front-end rectifier supplying the de bus. The input power is 

readily available, but the rotor flux, not being directly accessible, must be calculated. It is 

easily achieved in a reference frame attached to the rotor. Note that this calculation 

requires the rotor LR time constant provided by the parameter estimator described above. 

Modeling of the listed systems will be presented first, followed by simulation results for 

various operating conditions. 

3 System Modeling 

Figure 1 shows the block diagram of the complete maximum efficiency motor control 

system. Modeling of the induction machine, FOC drive, front-end rectifier, and MPPT 

are described. The methods of calculation of the rotor flux and estimation of the rotor 

time constant are also provided. A nomenclature is presented in Table 1. 

7 



v iabc: 
abcr ~ I Vr ... J Vdc ... I Induction Rectifier LC filter Inverter .... 

""I I ... I ... I Vabc .... Machine 
liJ,. 

~~ 

I 
~ liJref ... J FOC ..... Speed 

... , ..... controller 
...._ 
..... 

~ ~/ 
..... 

MPPT .... ..... 
..... 

Estimation .... 
... I ...... 

Tr Rotor time ~ 
.... - constant ..... 

estimation ..... ..... 

Figure 1: Complete maximum efficiency motor control system 

Table 1: Nomenclature. 

Symbol Description 
p Derivative operator 

1//u/ Stator q-axis flux linkage-per-second (Synchronous frame) 

lf/d/ Stator d-axis flux linkage-per-second (Synchronous frame) 

lf/q/ Rotor q-axis flux linkage-per-second (Synchronous frame) 

lf/d/ Rotor d-axis flux linkage-per-second (Synchronous frame) 

~ Machine base frequency (radls) 

(4. Machine shaft speed (electrical radls) 

li.l? Synchronous speed (radls) 

Be Angle between stationary and synchronous frames 
Te Developed electrical shaft torque 
p Number of machine poles 
VQs 

e Induction machine q-axis stator voltage 
Vdse Induction machine d-axis stator voltage 
. e 
lqs Induction machine q-axis stator current 
• e 
lds Induction machine d-axis stator current 
. e 
lqr Induction machine q-axis rotor current 
• e 
ldr Induction machine d-axis rotor current 
rs Stator series resistance 
rr Referred rotor resistance 
Xt.f Stator leakage reactance 
X1r Referred rotor leakage reactance 
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3.1 Induction Machine Modeling in the Synchronous Reference Frame 

The induction machine is modeled with stator and rotor flux-linkages-per-second as 

states [8-9]. These quantities are related to the flux linkages by the base speed as 

lf/; = {J)bA;. Symmetrical operation of the induction machine is assumed hence, the zero 

sequence states are not needed. Equations (1)-(8) model the induction machine. 

(1) 

d lf/;s = {J) [ve + {J)e Jlfe + __!2_ fJJf _life )~ 
dt b ds {J) 'f' qs X \It' md 'f' ds 

b Is 

(2) 

(3) 

I [ 1 ] 
de {J) {J) I I 

lf/ dr = {J) e - r life + _!i_(Jif _life J 
d 

b 'f' qr 1 'f' md 'f' dr 
t {J)b X 

lr 

(4) 

The quantities ve qs and ve ds are the stator input voltages in dq coordinates. Here, the 

superscript 'e' represents the synchronously rotating reference frame and the primes 

indicate referred rotor quantities. The quantities X1s and X1r / are the stator and rotor 

leakage reactances, respectively. The stator and rotor series resistances are rs and rr ~ 

respectively. The quantities t4 and ~ denote the speed of the synchronous and rotor 

9 



reference frames in electrical radians-per-second, respectively. The flux linkages-per-

second lf/mq and lf/md are given by 

(5) 

(6) 

where XM is the magnetizing reactance of the machine, and Xa is defined by 

X a=(-1-+_1_+_J_,]-l 
XM xlr X · lr 

The electrical shaft torque of the machine is given by 

(7) 

and the shaft speed is governed by 

d{J),m 1 (T ,.,.. ) 
~J e-.l.load (8) 

where J is the rotational inertia constant of the machine and f4 is in mechanical radians-

per-second. The quantities f4 and t4m are related as follows: 

p 
{J), = 2{J)rm (9) 
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The function !sal) in (5) and (6) is used to facilitate the modeling of magnetic 

saturation. This correction term is a function of the quantity ~ lf/~ + lf/~ . Saturation of 

the machine is one reason that (7) was chosen for calculation of the developed shaft 

torque. This particular form for the shaft toque does not involve XM, which is not constant 

under the effects of saturation [8]. The stator input currents in dq coordinates are 

·e 1 f e ) 
lqs = x\'1/q:r _,. mq 

Is 

(10) 

·e 1 { e ) 
1ds = x\'1/ds _,. md 

Is 

(11) 

In order to effectively interface the machine to the front-end rectifier, the machine 

variables must be placed in stationary abc coordinates. This is done by multiplying the 

vector of dqO components by Ks-I to convert from the synchronous dqO to the abc 

coordinate frame as shown in (12). It is understood that the reverse is also possible by 

multiplying the abc components by Ks. 

where 

f. s K-IJ.e 
abc= s dqO 

fabc = [Ja 

fdqO = [td 

(12) 

can be any be any set of variables associated with the machine. The matrices Ks and Ks-I 

are given by (13) and (14), respectively. 
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2 
cos(Be) cos(Be- 2f) cos(Be + 2f) 

K =- sin( Be) sin(Be- 2f) sin(Be + 2f) 
s 3 

1 1 1 
(13) 

2 2 2 

(14) 

where 

The induction machine top-level SIMULINK block diagram is shown in Figure 2. 

The stator block incorporates (1) and (2), the rotor block contains (3) and (4), the Phi_m 

block contains (5) and (6), and the mechanical dynamics block uses equations (7)-(11). 
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Figure 2: Induction machine top-level SIMULINK block diagram. 

3.2 Front-end Rectifier Modeling 

The rectifier is a three-phase diode bridge followed by a LC filter. It is assumed that the 

rectifier operates in continuous conduction mode [ 1 0]. This is justified if the filter 

inductance and capacitance are chosen properly and the motor is loaded. This being the 

case, the filter input voltage is easily calculated as 
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where the rectifier input voltages Var, Vbr, and Vcr form a three-phase balanced set. The 

rectifier output voltage ripple therefore contains a first harmonic at six times the rectifier 

input frequency. 

The motor reference voltages are generated by the FOC controller and supplied to a 

pulse-width-modulated (PWM) inverter. The necessary phase voltages are then created 

by the inverter. In order to mimic the real system, the rectifier ripple must be imposed on 

these voltages in some manner. A two-level PWM drive generates three modulating 

functions, call them d1(t), d2(t), and d3(t), from which the machine voltages Va, Vb, and Vc 

are constructed. These functions define duty ratio of the corresponding switches in the 

inverter. The modulating functions are given by 

d1 (t) = .!.[1 + k1 cos(tiX )] 
2 

d 2 (t) = .!.[1 + k2 cos(tiX- 2-f )] 
2 

d3 (t) = .!.[1 + k3 cos(tiX + 2-f )] 
2 

(15) 

where 0 ~ k1, k2, k3 ~ 1 are the depth of modulation of each modulating function. The 

modulating functions of (15) correspond to the high-side switches of a bridge inverter. 

The modulating functions for the low-side switches are the complements of d1, d2, and d3. 

The phase voltages generated by the drive are constructed as in (16), which shows 

that the generated voltages follow the modulating functions with amplitudes proportional 

to the depth-of-modulation functions k1, k2, and k3. The phase voltages can be written this 

way under the assumption that the PWM frequency is sufficiently high to ensure that the 

effects of the inverter switching are filtered completely [11]. 
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va = .!_v de [d1 - (1- d1 )] = .!_v de (2d1 -1) = 5.v de cos( ax) 
2 2 2 

vb = .!_v de [d2 - (1- d2 )] = .!_v de (2d2 -1) = ~v de cos(ax- 2f) 
2 2 2 

(16) 

ve = _!_v de [d3 - (1-d3 )] = _!_v de (2d3 -1) = k3 
v de cos( ax+ 2f) 

2 2 2 

Since in simulation these voltages are produced directly by the FOC drive, they do not 

contain the ripple component generated by the input rectifier. However, the ripple can be 

artificially imposed on the drive phase voltages. Adding ripple to the phase a voltage will 

be considered here; ripple addition to the other two phases is managed in a similar 

fashion. First, let 

and let the de bus voltage be split into its average and a ripple component as follows: 

If the time average of the de bus voltage is essentially constant when compared with the 

drive dynamics, the phase a voltage generated by the drive can be written as 

(17) 

by definition of the modulating function. The desired result is obtained if we multiply 

(17) by the de bus voltage normalized by its average as in (18). This effectively gives the 

phase voltages as the product of their corresponding modulating functions and the de bus 

voltage. 

(18) 
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This type of construction will impose the necessary rectifier ripple component on 

the phase voltages generated by the FOC drive. Note that this must be done in the 

stationary abc reference frame, after which the phase voltages are converted back to the 

synchronous dqO reference frame to feed the induction machine model. 

Finally, the rectifier LC filter is described by (19), where Vr is the rectifier output 

voltage, Vdc is the filter output voltage, his the rectifier output current, and ide is the drive 

de bus current. The parasitic resistance of the inductor is denoted by R1. 

(19) 

The SIMULINK block diagrams of the front -end rectifier and output filter are shown in 

Figure 3. Interconnection of the FOC controller, de interface and induction machine is 

shown in Figure 4. The de interface is shown in Figure 5. 
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vc 

Figure 3: Front-end rectifier and output filter SIMULINK block diagrams. 

Figure 4: FOC controller, de interface and induction machine. 
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~ to CJS$1 q1) to abc2 

Figure 5: SIMULINK block diagram of the de interface. 

4 PWM Inverter 

The electronic drive considered here is an averaged model neglecting the PWM switching 

transients. The reference voltages created by the FOC controller are assumed to be 

produced exactly by the inverter [10-12]. The amplitude of the inverter-produced phase 

voltages is of course limited by the available de bus voltage. Under this assumption the 

stator voltages Vqs and Vtt" produced by the FOC control can be directly applied, after the 

addition of the rectifier ripple, to the induction machine. The only problem concerning 

the inverter itself that still needs to be solved is the calculation of the de bus current ide· 

As discussed in the previous section, the three high-side switches of a hex -bridge 

inverter are controlled with duty ratios d1(t), d2(t), and d3(t). Hence, the de bus current 

18 



can be calculated as the sum of products of the phase currents and the corresponding 

high-side duty ratio functions as in (20). 

(20) 

Note that this calculation is also performed in stationary abc coordinates. This is 

necessary to ensure the proper current ripple components are reflected back to the de bus. 

The functions m~, m2, and m3 and, hence, d1, d2, and d3, are not produced directly by the 

FOC controller. The duty ratio functions can be calculated from the de bus voltage and 

the machine phase voltages however. The function m1 is calculated from (17) as follows: 

2va 
m~=--

(vde) 
(21) 

The other two functions m2 and m3 are found in a similar manner. The de bus current is 

the given by 

. 1 [ 2v a J. 1 [ 2vb ] . 1 [ 1 2v c J. 
Zdc =- 1+-( ) la +- 1+-( ) lb +- +-( ) ·Zc 

2 V de 2 V de 2 V de 

after simplifying 

(22) 

The first term would not be necessary in a balanced system, but here it is necessary that 

the current ripple, which does not represent a balanced system, be reflected upon the 

rectifier output filter. 
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5 Field-Oriented Controller 

The indirect FOC controller for the induction machine is described in this section. The 

controller is, of course, implemented within the synchronous reference frame. In 

discussing the design of the FOC controller, it is convenient to look at the induction 

machine model in terms of flux -linkages and stator and rotor currents [ 13]. The primes 

indicating referred rotor quantities have been omitted for simplicity. The derivative 

operator is denoted by p. 

e ·e 1e 1e 
V qs = r._fzqs + PA-qs + lUe/Lds (23) 

(24) 

(25) 

(26) 

where 

T _ 3 P Lm ( 1e ·e 1e ·e ) 
---- /L l -/L l e 2 2 L dr qs qr ds 

r 

(27) 

(28) 

(29) 

(30) 

(31) 

I 
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Field-oriented control requires that the rotor flux, in the synchronous reference 

frame, be directed along a single axis, arbitrarily chosen here to be the d-axis. Hence, we 

can write 

(32) 

Looking at (31 ), this implies 

Lm ·e Lm ·e --=-z =--z L +L qs L qs 
m lr r 

(33) 

The values of the co~trol variables must be calculated in the synchronous reference frame 

and then transformed to the stationary reference frame. The transformation requires 

knowledge of Ul?- Starting with (25), setting the time derivative of 2~, to zero, and 

solving for Ul?-l# yields 

•I! r,zq, 
(J) - (J) = --- = S(J) 

I! r Ae e 
dr 

(34) 

The quantity s Ul? is known as the slip frequency, and is equal to the difference in the 

synchronous and rotor frequencies. We need the synchronous frequency, which is 

supplied to the motor model, and its integral, which is used to make the transformation 

from the synchronous reference frame to the stationary and vice-versa. This is 

accomplished as follows: 

·e r,zqr 
(J) =(J) ---

e r Ae 
dr 

(35) 

(36) 
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Equation (35) represents a problem because the quantity iq/ is not readily accessible. This 

difficulty can be overcome by substituting (33) into (35) to obtain (37) 

L ·e L ·e 
~ mlqs 1 mlqs 

(J) =(J) +---=(J) +---
e r L 1e r 1e 

r .ILdr 'f r .ILdr 

(37) 

where the quantity -r, = L, / r, is known as the rotor flux time constant. 

Since .A.q/=0 under FOC control, from (27) the shaft torque can be written as 

(38) 

demonstrating that ~/ and iq/ are the desired inputs for torque control. If one of these is 

held constant, direct control over the shaft torque by the other input is achieved. The 

current iq/ is chosen as the control variable, while the rotor flux is held constant. This 

results from the delay involved in changing the flux, as shown below. 

Since .A.q/ is zero under FOC control, (26) can be written as 

In addition, (30) can be written as 

·e 1 1e 
ldr = -- P.ILdr 

r, 

Now, substitution of (39) into (40) yields 

1e Lm ·e 
.IL - l 
dr- 1 + 'f ds 

rP 

(39) 

(40) 

(41) 

which shows that changes in iq/ directly affect ~/, but with a response governed by the 

rotor flux time constant. This would not allow instantaneous torque control via the motor 
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stator currents. However, with the rotor flux constant, the shaft torque can be controlled 

with no delay via iq/. 

The control variables are iq/ and id/, but the actual inputs to the motor are v q/ and 

vd/. The FOC controller must calculate these quantities. However, first id/ must be 

found. This can be accomplished by rewriting ( 41) as follows: 

(42) 

The stator voltage equations must now be 'decoupled' in order to control the stator 

currents independently. First solve (30) and (31) for the rotor currents and setting .Aq/=0. 

These currents are then substituted into (28) and {29). The resulting stator flux-linkages 

are substituted into the voltage equations (23) and (24) to give 

(43) 

(44) 

2 2 

where L; = ( LL, + Lm)- ~m = L, - ~m is called the stator transient inductance. Equations 
r r 

(43) and (44) can now be used to calculate the required stator voltages using the values of 

iq/, id/, and k/ supplied by the FOC controller. The resulting FOC controller is shown 

in Figure 6. The slip calculation block utilizes (36) and (37), and the id/ calculation block 

uses (42). The voltage decoupling block uses (43) and (44). 
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1/Tr 
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..J 
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Figure 6: SIMULINK block diagram of FOC controller. 

6 Estimation of Rotor Flux Time Constant 

we 

voltage decoupling 

The FOC scheme discussed in the previous section requires that machine parameters be 

known exactly. Although these parameters can be determined to a sufficient degree of 

accuracy during bench testing, there is a problem if the parameters vary during the course 

of operation. Of primary interest is the determination of the rotor flux time constant t;. as 

the rotor temperature varies. The time constant will vary because the rotor resistance 

varies with temperature. Variation of the stator resistance is not usually so problematic 

because this resistance can be estimated through the use of a temperature sensing device 

or a similar method. Such is not the case with rotor resistance. 

When estimating the rotor time constant we assume that when the correct time 

constant is utilized by the FOC controller, the rotor flux in the synchronous reference 

frame will be entirely oriented along the d-axis [14]. We begin by substituting (28) and 

(29) into (23) to give 

(45) 
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In steady-state in the synchronous reference frame the currents are constant, and ( 45) 

reduces to 

(46) 

The last term contains the quantity id/ to which we do not have direct access. However, it 

can be seen from (39) that 

d2~r 0 •e 0 dt= =>zdr = 

Therefore, in steady state, we have 

(47) 

If the rotor flux is not oriented properly, (47) will be non-zero. This property allows (47) 

to be used to adjust the value of t;. used by the FOC controller until proper orientation is 

achieved. This is done by integrating (47) as follows: 

(48) 

where Tr is the estimator time constant, and fr is the estimated rotor flux time constant 

used by the FOC controller. 

It is important to note that this estimation scheme is valid only for steady-state 

operating conditions. However, as will be seen later in simulation, if the load and shaft 

speed do not vary rapidly, the estimator is satisfactory. The SIMULINK block diagram of 

the rotor flux time-constant estimator is shown in Figure 7. 
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Figure 7: Rotor flux time-constant estimation. 

7 Induction Efficiency Optimization 

We will now consider the problem of adjusting the reference rotor flux supplied to the 

FOC drive to optimize operating efficiency. From the torque equation (38), it is apparent 

there is a continuous set of values for iq/ and A.u/ that will provide a given shaft torque. 

Efficiency optimization deals with finding the values iq/* and A.u/* that provide the 

desired shaft torque while providing the highest machine operating efficiency. If the drive 

is set up for speed tracking, then iq/ is derived from the speed error, possibly from a 

proportional-integral (PI) controller as in (49): 

t 

i;s = k p (mref -aJr )+ k; J(mref -aJr ~t (49) 
0 

From ( 49) we see that if the rotor flux is adjusted much more slowly than the speed 

response, then iq/ will be adjusted so as to maintain the reference torque, and hence the 

reference speed. 

A method for adjusting the rotor flux to maximize efficiency must now be designed. 

First the rotor flux must be perturbed in some fashion and the resulting change in the 

input power observed. The rotor and load inertia are large enough to maintain the shaft 
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speed nearly constant during these perturbations. If the change in rotor flux is positive 

and results in a negative change in the input power, then the rotor flux reference should 

be increased in order to increase efficiency. The converse is also true: if the change in 

rotor flux is positive and the resulting change in the input power is positive, the rotor flux 

reference should be reduced. The same reasoning applies when the rotor flux perturbation 

is negative. This is shown in Table 2. 

Table 2: Rules for increasing or decreasing~/ reference value. 

P;n ~/ Change in Aref 

dP;n/dt>O d~/ldt>O Decrease~/ 

dP;n/dt>O dk/ldt<O Increase k/ 

dP;nldt<O dk/ldt>O Increase k/ 

dP;n/dt<O d~/ldt<O Decrease~/ 

The description above indicates that we are looking for a correlation between the de bus 

power and the rotor flux. Table 2 shows that a convenient way of adjusting the rotor flux 

is to use the correlation between the rotor flux and input power as an error signal for 

optimizing the machine operating efficiency. Let the reference rotor flux be given by [3,15] 

A . = -T KdP;n dA,~r Jdt 
ref flux dt dt 

0 

(50) 

Note that this integral will correctly produce the necessary changes in A.re1 given by Table 2. 

However, the derivatives will also capture the change in rotor flux and input power due to 

the control action, not just the perturbations introduced by the rectifier. This is not a 
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problem if the control action is 'slow-acting' as compared with perturbation frequency. 

The derivatives due to the control action will be very small. 

Using the control law, the rotor flux is effectively adjusted until optimal operating 

efficiency is achieved. Convergence to the optimal flux value can be improved by taking 

into account the delay between the perturbation of machine phase voltages and the 

resulting rotor flux change. Perturbations in the input voltage that introduce changes in 

the input power do not immediately affect the rotor flux. The inverter input power is 

affected because the de bus voltage contains the rectifier output ripple component. 

However, there is a delay between the perturbations in the input voltage and those in the 

rotor flux. 

To solve for this delay characteristic, start with (26) and solve for the d-axis rotor 

current in the rotor reference frame as in (51): 

(51) 

Substitute this result into (30) and solve k/ to obtain 

(52) 

Equation (52) shows that changes in the stator currents are transferred to the rotor flux 

with time constant equal to the rotor flux time constant t;.. Of course, the perturbations 

are introduced in the stator voltages, but the drive input power and not the machine 

voltages is being correlated with the rotor flux. The rotor flux time constant is provided 

by the estimator described above. 
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One problem remains: calculation of the rotor flux in the synchronous frame d-axis. 

Start by solving (25) and (26) for the rotor current components in the rotor reference 

frame as follows: 

·r 1 1r 
lqr =--pAqr 

rr 
{53) 

·r 1 ')r 
ldr =--pAdr (54) 

rr 

Substitute these two equations into (30) and (31) to yield 

(55) 

(56) 

Equation (56) gives the d-axis rotor flux in the rotor reference frame. It is required to 

solve for both rotor components in order to make the transformation from the rotor frame 

back to the synchronous frame. The assumption that the q-axis rotor flux is zero is not 

valid even under FOC control. The FOC controller is not capable of regulating the 

perturbations in the rotor flux. Again, the rotor flux time constant is supplied by the 

estimator. The SIMULINK block diagram of the efficiency optimizer is shown in Figure 8. 
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Figure 8: SIMULINK block diagram of efficiency optimizer. 

8 Simulation Examples 

Section 8 will present simulation examples of the systems described above. Example 1 

shows the operation of the induction machine under FOC control. The motor and rectifier 

parameters are given in Table 3. For the first simulation, the induction machine is initially 

loaded at 5 N·m with the reference speed held at zero. At time equal to 1 s the reference 

speed is brought to -100 rad/s, and then to +100 rad/s at 4 s. At time equal to 7 s the load 

is brought to 35 N·m. The reference speed and shaft speed are shown in Figure 9. The 

FOC controller provides excellent speed tracking and load disturbance rejection. 
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Table 3: Motor and rectifier parameters. 

Parameter Value 

Average rectifier output voltage 674 v 

Filter inductance 100 JlH 

Filter capacitance 1000 JlF 

Induction machine poles 4 

Magnetizing inductance 5.5 mH 

Stator leakage inductance 400 J.LH 

Rotor leakage inductance 400 JlH 

Stator series resistance 0.250 

Rotor series resistance 0.250 

Base frequency 200 rad/s 

Induction machine inertia 0.01 kg·mz 

The stator currents components are shown in Figure 10. Note that the d-axis current 

is constant. This is expected because the d-axis rotor current is held constant. The q-axis 

current provides the necessary shaft torque to sustain the load. The rectifier ripple 

components are easy to distinguish on the current waveforms. 

The rotor flux components are displayed Figure 11. The d-axis component is 

brought up to the reference value and held. The q-axis component is brought to zero and 

remains there with slight transients as the reference speed or the load torque are changed 

abruptly. Again, the ripple imposed by the rectifier is readily appar~nt. 
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Figure 9: Induction motor reference speed and shaft speed. 
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Figure 10: Induction machine stator currents in synchronous reference frame. 
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Figure 11: Rotor flux components in synchronous reference frame. 

10 

Finally, Figure 12 shows the de bus voltage and current. The bus voltage is almost 

constant while the current varies with the current demand imposed by the inverter. The 

rectifier ripple is present in both waveforms. 
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Figure 12: De bus voltage and current. 
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Example 2 includes all of the components presented above including rotor time-

constant estimation and efficiency optimization. The reference speed is brought to 

100 rad/s at 1 s and increased to 135 radls at 75 s. The shaft load is initially 5 N·m and 

increased to 35 N·m at 1 s, and again to 55 N·m at 40 s. The machine speed and load 

torque are shown in Figure 13. 
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Figure 13: Induction motor shaft speed and load. 

The operating efficiency optimization of the induction machine is shown in Figure 14. 

The d-axis rotor flux is varied according to the correlation between the derivative of the 

de bus power and the derivative of the rotor flux. The figure shows how, at startup, and 

after changes in speed and load torque, the flux is adjusted and the efficiency rises to its 

maximum. The optimization time constant is on the order of 20 s. A faster response can 

be achieved at the expense of having additional overshoot. Note that the optimization is 

more critical when the motor is lightly loaded. 
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Figure 14: Rotor flux in synchronous reference frame and overall efficiency. 

The estimation of the reciprocal of the rotor flux time constant is shown in Figure 

15. The lock-in time is on the order of 30 s. Also, note that the estimator has to recover 

after every transient, since the estimator equation is based on a steady state analysis. 

However, the error is not large enough to cause any problems with the FOC controller or 

the optimization process. In a real application, the response of the optimization process 

and the rotor time-constant estimation should have a wider time scale separation in order 

to prevent oscillation in either rotor flux reference or the time constant estimate. In other 

words, the two are dependent processes. 

The stator currents in the synchronous reference frame are shown in Figure 16. The 

de bus voltage and current are shown in Figure 17, and the de bus power to the inverter is 

shown in Figure 18. Note that since the shaft speed of the induction machine is regulated 

that the inverter input power is inversely proportional to the efficiency. 
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Figure 15: Estimation of reciprocal of the rotor flux time constant. 
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Figure 16: Stator currents in synchronous reference frame. 
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9 Induction Motor Efficiency Optimization 

In section 9 comparison is made between a conventional FOC-controlled induction 

machine with a constant rotor flux reference, and the same system with rotor flux 

optimization. The machine model used takes into account saturation of the magnetizing 

inductance. The induction machine parameters are given in Table 4. 

Table 4: Induction machine parameters. 

Parameter Value 
Number of poles 4 
Stator leakage inductance 400 JlH 
Rotor leakage inductance (referred) 400 J,lH 
Stator series resistance 0.250 
Rotor series resistance (referred) 0.250 
Magnetizing inductance 5.5mH 
Continuous rated power 20HP 

Saturation in the induction machine is handled by directly changing the magnetizing 

inductance Lm as follows: 

(57) 

where 

(58) 

This is the equivalent of changing f.L in the main flux path of the induction machine. The 

scaling of the nominal value of Lm with A,.e is shown in Figure 19: 
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Table 5 shows the comparison between the conventional FOC controlled induction 

machine and the optimized version. The shaft speed is regulated at 200 rad/s. As 

expected, for light loads the operating efficiency increases significantly with a reduction 

in field excitation. As the load is increased near rated torque, the conventional setup 

efficiency is equal to the efficiency of the optimized setup. A plot of the operating 

efficiencies vs. load torque for both setups is shown in Figure 20. 
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Table 5: Comparison of conventional and optimized FOC-controlled induction machine. 

Load torque Output 1Jconventional Input power 7Joptimized lntput power k/ (Wb) 
(N.m) 

10 

20 

35 

55 

75 

90 

105 

110 

125 

power 

(W) 

2000 

4000 

7000 

11000 

15000 

18000 

21000 

22000 

25000 

80 

(%) (%) 

(k/=0.45 (Fixed k/) (optimized 
Wb) 

8.77 22805 69.00 2899 

17.54 22805 73.10 5472 

25.44 27516 70.76 9893 

40.35 27261 61.99 17745 

48.54 30902 66.96 22401 

51.75 34783 66.67 26999 

52.92 39683 54.09 38824 

52.92 41572 53.51 41114 

52.05 48031 51.46 48581 

Nominal and optimized efficiency 
(Shaft speed 200 rad/s ). 
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Figure 20: Operating efficiency of conventional and optimized FOC-controlled induction machine. 
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For this motor, a load of about 93 N·m corresponds to rated load. Fig. 20 confirms that 

efficiency improvements are substantial at all load levels below the rated value. Table 5 

confirms that loss is reduced considerably. The 1% increase in loss at 125 N-m load 

shows the residual error of the observer when the magnetics are well into saturation, but 

even in this case the system was able to reach within about 1% of the lowest loss 

operating point. The Table 5 results also confirm that efficiency improvements are 

considerable over a wide load range, and not just for highly underloaded situations. At 

35 N-m (about 38% of rated load), for example, the optimizing control saves 17.6 kW­

nearly as much as the rated . motor output power. Efficiency improves as the load 

reduces, most likely because extra losses from high magenetic saturation currents are 

lower at low flux. 

10 Conclusion 

The modeling and simulation of an FOC-controlled three-phase induction machine has 

been presented. In addition, a method of estimation of the rotor flux time constant has 

been provided. The estimated time constant is utilized by the FOC controller and an 

operating ripple-correlation efficiency optimizer. Maximization of the operating 

efficiency of the induction machine is effected by examining the cross-correlation 

between the inverter input power ripple and the rotor flux ripple, and then adjusting the 

rotor flux to null out this correlation. 

In contrast to the use of ripple control for solar power processing, motor systems 

require compensation for reactive effects to ensure correct convergence of the control. It 

was demonstrated that ripple correlation can be applied successfully when an observer is 

employed to support the necessary reactive compensation. Simulation studies were used 
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to evaluate controller performance, in the presence of magnetic saturation. Results for a 

sample test motor revealed substantial reductions in power loss when ripple correlation 

control is applied. The method of ripple correlation control shows great promise for 

reducing the energy usage of electronic motor drive systems. 
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