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ABSTRACT 

Programs to identify proteins in tandem mass spectrometry experiments are not optimized 

to identify neuropeptides and other peptides resulting from the processing of prohormones. This is 

due to the unique characteristics of neuropeptides including release after complex processing of 

prohormones, potentially intense post-translational modifications and their small size. The aims of 

this study were: (1) to evaluate the strengths and limitations of different tandem mass spectra 

search algorithms to detect neuropeptides and other peptides resulting from prohormone 

processing; (2) to evaluate the impact of mass spectrometry factors such as charge on the 

identification of these peptides; and (3) to offer guidelines to obtain the most comprehensive and 

accurate survey of the prohormone peptides of a sample. Three software database search programs, 

OMSSA, X!Tandem and Crux, were applied to identify neuropeptides from in silico produced 

mass spectra. The spectra were simulated from a database of 7850 mouse peptides from 92 

prohormones. For each peptide, spectra were simulated with either +1, +2 and +3 precursor charge 

states, and +1 charged b and y product ions including single water and/or ammonia loss depending 

on amino acid composition. The spectra were searched against the mouse database and a rat 

database including 7647 neuropeptides. OMSSA, X!Tandem and Crux correctly detected 98.9%, 

93.9% and 88.7% of the peptides, respectively, at the comparable significance E- or p-value < 1 x 

10-6. Scoring only b- or y-ion series significantly reduced peptide identification for both OMSSA 

and X!Tandem. At E-value < 1 x 10-6, 50.8% and 55.3% of peptides were correctly identified by 

both algorithms using b- and y-ion series, respectively. Furthermore, availability of only b-ion, y-

ion series and 50% random ions for peptide identification had in general minor influence on the 

scoring functions of OMSSA and Crux. The comparatively weaker performance of X!Tandem 
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suggests that the corresponding scoring function favors continuity of ions. The charge state had 

minor effect on the detection of neuropeptides. Unlike Crux and X!Tandem, OMSSA was 

negatively influenced by the presence of additional peaks in the spectra at higher precursor charge 

states. The sensitivity of either program to detect small neuropeptides (< 10 amino acids in length) 

was limited. This is particularly troublesome given the large number of neuropeptides that are 

small. Peptide identification by X!Tandem across species suggests that the position of the 

mismatch in the sequence is critical when using non-specific species databases. These results 

indicate that alternative algorithmic specifications and implementations must be developed to 

optimize the detection of neuropeptides. 
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CHAPTER ONE: LITERATURE REVIEW 

1.1 NEUROPEPTIDES 

Neuropeptides are non-tryptic endogenous peptides that play critical roles in many critical 

biological processes [1, 2]. Neuropeptides encompass neurotransmitters and peptide hormones and 

usually range in length from 3 to 40 amino acids [1]. Biosynthesis by neurons, regulated release, 

ability to function by acting on neural receptors [3], short or long unique primary sequences, non-

tryptic nature [4], and less complex 3D structures than the regular proteins due to smaller size [5] 

are among characteristic features of neuropeptides. Neuropeptides are involved in cell-cell 

communication as peptide neurotransmitters and regulate many biological processes such as 

growth, learning, memory, metabolism, and neuronal differentiation by acting as peptide hormones 

[1]. Biological functions of neuropeptides are largely determined by their unique primary 

sequences, with the same neuropeptide often acting as neurotransmitter in the nervous system and 

as peptide hormone in the peripheral endocrine system. One such example is the neuropeptide 

Enkephalin (PENK), a neurotransmitter in the central nervous system that is also involved in 

regulating intestinal motility and immune cell functions in the peripheral endocrine system [1]. 

Neuropeptides are derived from larger full length precursor proteins known as 

proneuropeptides or prohormones through complex post-translational processing which includes 

cleavage at basic lysine (K) or arginine (R) amino acids, removal of C-terminal basic amino acids, 

and modifications such as amidation, acetylation and others [1, 5]. One or more than one copy of 

the same neuropeptide could be present in a single prohormone, for example Proenkephalin 
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contains four copies of Metenkephalin [1]. So far approximately 100 prohormone genes have been 

reported across species [6]. 

Preprohormone is a collective term used for prohormones carrying a signal peptide chain of 

hydrophobic residues on their N-terminals [7]. Signal peptide is characteristic of secretory proteins 

and directs precursor proteins through the ribosome into the lumen of rough endoplasmic reticulum 

(RER) in an ATP-mediated process. In the RER, biosynthesis of neuropeptides after proteolytic 

processing of prohormones starts co-translationally. As a first step, signal peptide is removed by 

the signal peptidase followed by prohormones folding, post-translational modifications or PTMs 

(e.g., glycosylation, disulfide bridges etc.,) and transfer to Golgi apparatus, where it is packed into 

newly formed secretory vesicles along with processing proteases [7, 8]. Secretory vesicles serve as 

primary sites for the formation of mature and biologically active neuropeptides upon maturation 

[1]. 

In the secretory vesicles prohormones undergo complex post-translational processing 

including cleavage of precursor proteins by proteases into shorter peptides. Cleavage can occur 

either at pairs or multiple basic amino acids or pairs of basic amino acids separated by n number of 

non-basic amino acids. Mostly cleavage takes place at KR or RR and in some cases at R-nX-R, 

where X represents any amino acid and n = 0, 2, 4 or 6 [9]. Additionally, few precursor 

prohormones are also cleaved at single basic amino acids (K or R) or occasionally at non-basic 

amino acids [1, 9]. The newly formed peptides undergo further post-translational processing 

including removal of C-terminal basic amino acids by carboxypeptidases. Bioactive peptides may 

undergo modifications such as N-terminal acetylation, C-terminal amidation, glycosylation, 
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phosphorylation and sulfation [10]. Neuropeptides participate in signal transduction pathways 

through cell surface receptors on their target cells.  

Neuropeptides exert their effect through interaction with receptors. Neuropeptides receptors 

include G-protein coupled receptors or enzyme-linked receptors. In most cases, receptors are G-

protein coupled receptors which have seven membrane spanning alpha helices. Recent studies have 

shown that more than 100 G-protein coupled receptors exist in the human genome, which likely 

have peptide ligands highlighting the importance of peptide identification present in tissue or cells 

[11].  

1.2 PREDICTION OF CLEAVAGE SITES IN PROHORMONES 

Identification and characterization of neuropeptides using experimental procedure has been 

mostly limited to few model species (e.g., human, mouse, rat, honey bee, zebra finch, tribolium). 

This is because neuropeptide identification is resource intensive and challenging as cleavage 

patterns of prohormones vary across species, tissues, pH levels and developmental stages among 

other conditions [12]. Additionally, conventional sequence homology based annotation approaches 

may be ineffective due to the diversity in prohormone sequences across species and small sizes of 

neuropeptides, leading to inaccurate neuropeptide identification [6, 12].  

Neuropeptides are formed mostly as a result of proteolytic cleavage of prohormones either 

at single or pairs of basic amino acids by proteases [1, 9]. The identification of much conserved 

cleavage patterns can surmount limitations of homology-based annotations by considering multiple 
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cleavage motifs in prohormones [13]. Various cleavage prediction models have been implemented 

to accurately identify neuropeptide cleavage sites. 

Southey et al. developed "known motif" model for the prediction of prohormone cleavage 

sites using training prohormone sequences from insects, birds, mammals, fish and other species 

[13]. The model assigns cleavage probabilities to windows containing one of these motifs: KK, 

KR, RR, RxxK, or RxxR, where x, R and K refers to any, arginine and lysine amino acids, 

respectively. The cleavage probabilities were derived from the frequency of occurrence of above 

motifs at the cleaved sites [13]. Amare et al. trained a binary logistic regression model on 

mammalian sequences. The model included training precursor sequences from human, pig, mouse, 

rat and cattle. The mammalian model proved to be more sensitive than known motif, Aplysia and 

other models [14]. 

Logistic regression and artificial neural network models based on relative positions and 

physiochemical properties of amino acids around cleavage sites have been developed using known 

motifs, mammalian and specie-specific datasets with correct classification rate ranging from 85% 

to 100% across species and models. This suggests that despite sequence divergence in 

prohormones, a majority of cleavage patterns remain conserved across species, although higher 

results of species-specific models relative to known motifs or mammalian models shows that there 

are species-dependent cleavage patterns in mouse, rat, human and cattle [6]. 

NeuroPred (http://neuroproteomics.scs.illinois.edu/neuropred.html; [15]) is a cleavage site 

prediction web application written in the Python programming language. It assigns cleavage 
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probabilities using known motif, mollusk, mammalian and insect binary logistic regression models. 

This system supports the selection of one or multiple predictive models and  the validation of the 

predictions including model accuracy statistics. In addition, the masses of predicted neuropeptides 

including PTMs are also provided [15].    

1.3 DATABASES OF PROHORMONES AND NEUROPEPTIDES SEQUENCE 

INFORMATION 

UNIPROT 

UniProt (http://www.uniprot.org) is a unified database of protein sequences and functional 

characterization that encompasses information from Swiss-Prot, Translated EMBL Nucleotide 

Sequence Data Library (TrEMBL) and Protein Information Resource Protein Sequence Database 

(PIR-PSD). UniProt consists of four components: (1) the UniProt Knowledgebase (UniProtKB), a 

database of protein sequence and functional information; (2) the UniProt Archive (UniParc), 

containing sequences and history of all protein sequences; (3) the UniProt Clusters (UniRef) 

contains clusters of closely related sequences based on sequence identity; and (4) the UniProt 

Metagenomic and Environmental Sequences (UniMES) which contains metagenomic data [16].  

UniProtKB is a central and curated database of protein information provided by cross-

references from more than 120 databases. Each entry in UniProtKB comes from a wide variety of 

sources including EMBL/GenBank/DDBJ, direct submissions, experimental data from the  

literature, Protein Data Bank (PDB), Ensembl and RefSeq [17]. Entries in UniProtKB include 

primary amino acid sequence, protein entry name or description, taxonomic data and citation 
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information (http://www.uniprot.org/help/uniprotkb). UniProtKB is comprised of two sections: 

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot contains manually 

curated records based on critical reviews of experimentally validated or computationally predicted 

data of each protein sequence. UniProtKB/Swiss-Prot annotation includes explanation of protein or 

peptide functions, enzyme specificity, domains, PTMs, sub-cellular location, tissue-specific 

expressions, structures and associated diseases [17]. UniProtKB/TrEMBL, includes automatic 

annotation of six-reading frame translations of all coding DNA sequences present in 

EMBL/GenBank/DDBJ, TAIR, SGD and Ensembl nucleotide sequence databases [16]. Once an 

entry in UniProtKB/TrEMBL is manually annotated it is moved from this section to 

UniProt/Swiss-Prot (http://www.uniprot.org/help/uniprotkb). The information in UniProtKB 

Swiss-Prot and TrEMBL is well-suited to support neuropeptide and prohormone research.  

NEUROPEPTIDES 

Neuropeptides (http://www.neuropeptides.nl; [3]) is an online database of known 

neuropeptides. The database contains information about gene symbols, precursor names, 

chromosomal locations and organization of genes, expression in mouse brain and a list of bioactive 

neuropeptides. So far more than 70 human neuropeptide genes have been reported and these are 

grouped into more than 13 families based on structural and functional similarities. Through 

hyperlinked gene symbols each neuropeptide gene is directly linked to the UCSC (University of 

California Santa Cruz; http://genome.ucsc.edu) human genome browser containing information 

about genomic location, transcripts, expression, homolog genes in other species and single 

nucleotide polymorphisms (SNPs). The hyperlink in the precursor column leads to a pre-computed 
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BLAST results page with information about homologous proteins in different species and their 

descriptions. The mouse brain expression data was obtained from the  Allen Brain Atlas or 

GenePaint.org.  

PEPTIDEDB 

PeptideDB (http://www.peptides.be; [18]) is a composite database of known bioactive 

peptides, peptide precursor proteins and known protein motifs. Based on UniProt, literature review 

and sequence alignments, the current version of PeptideDB contains 20  027 peptides and 19 438 

precursor proteins from 2820 species, which are grouped into 373 peptide families. Of these, 178 

families have known motifs in Prosite, Pfam or SMART, while the remaining 195 families are 

classified as novel peptide families. Furthermore, 97% of peptides in PeptideDB are below 200 

amino acids in length, while 98% precursor proteins are below 500 amino acids in length. About 

14 358 (72%) of the peptides belong to the phylum Chordata. The database contains both peptides 

with known biological activities in vitro or peptides having sequence homology with known 

peptides in the UniProt database. Also, 2634 precursors do not contain any known bioactive 

peptides, therefore, it is important to use cleavage prediction program such as NeuroPred to 

identify peptides in these precursor proteins [18].  

1.4 APPROACHES TO STUDY NEUROPEPTIDES 

Several approaches are available to identify neuropeptides in samples. These include 

Edman degradation, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), 

immunocytochemistry and the mass spectrometry (MS). The Edman degradation method is used to 
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find the sequences of neuropeptides by labeling and the sequential cleavage of N-terminal amino 

acids. However, the Edman degradation method is time consuming and N-terminal post-

translational modifications (for example acetylation) can hinder in step-wise degradation process 

[19]. Bioassays are very useful for the detection of peptides and to study their possible 

physiological effects [20]. The RIA approach is used to characterize and quantify peptides in 

complex mixtures using specific anti-peptide antibodies. The peptide antigens compete with the 

radioactively labeled peptide tracers for binding with the antibodies. An RIA standard curve shows 

quantity of peptides in complex mixtures. The ELISA approach provides a useful alternative to 

RIA to quantify peptides without using radioactively labeled isotopes [21]. Immunocytochemical 

techniques are similar to RIA in that these techniques detect the presence of neuropeptides using a 

peptide-antibody affinity approach to localize peptides in a target tissue or cell [7]. For RIA, 

ELISA and immunocytochemistry, prior information about exact peptide sequence is not required. 

However, known purified peptide samples are used to obtain specific anti-peptide antibodies. 

Furthermore, these approaches are less specific when samples contain many neuropeptides that can 

cross react with specific antibodies. In recent years the MS approach has gained much popularity 

and has largely replaced other techniques. Like the Edman degradation method it allows 

neuropeptide sequencing using much smaller amount of samples and also it has better sensitivity in 

detecting post-translationally modified peptides than other techniques [19]. The MS based 

approach is the focus of the current study and it will be discussed in detail. 
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1.5 MASS SPECTROMETRY BASED PROTEOMICS 

The aim of MS based proteomics is to identify proteins using the masses of peptides (such 

as tryptic peptides) obtained from enzymatic processing of the protein [22]. Large-scale proteomics 

experiments involve analysis of complex protein mixtures (samples containing various proteins of 

different concentrations). Methods like two-dimensional (2D) gel electrophoresis, enzyme-linked 

immunosorbent assays (ELISA) and western blotting have low protein detection sensitivity and are 

difficult to be used in automated high-throughput proteomics experiments [23]. Mass spectrometry 

based proteomics has become a method of choice for large-scale protein and peptide identifications 

mainly due to availability of large number of genomic and proteomic sequence databases and 

improvements in MS ionization techniques such as matrix-assisted laser desorption ionization 

(MALDI) and electrospray ionization (ESI) [24]. These techniques rely on the fact that proteins 

and peptides are polar, nonvolatile and thermally unstable molecules that can undergo ionization 

into the gas phase without much degradation [25]. 

A mass spectrometer consists of an ion source that ionizes proteins and peptides into the 

gas phase, a mass analyzer to record measurements of the ionized molecules as mass-to-charge 

ratios (m/z) and a detector to measure intensity of ions at each m/z value [24]. Mass spectrometers 

are maintained under high vacuum to assist ions in reaching the detector without interference from 

air molecules or collisions with gas molecules. Collisions result in low resolution and sensitivity of 

mass spectrometer by increasing the kinetic energy of the ions, which can fragment and prevent 

ions from reaching the detector region [26]. MALDI and ESI are the two most commonly used 

ionizing methods for protein and peptides. Once ionized, the mass analyzer region of the mass 



 

10 
 

spectrometer separates and records the m/z value of each ion. Four types of mass analyzers that 

have different sensitivity, resolution, mass accuracy and spectrum generating ability are currently 

used in MS-based proteomics research. These analyzers include ion trap, time-of-flight (TOF), 

quadrupole and Fourier transform ion cyclotron (FT-MS). A mass spectrometer can have one or 

more mass analyzers in tandem separated by collision cells. The later are known as Tandem mass 

spectrometers [24]. In tandem MS, proteomic mass analysis is carried out either on intact precursor 

ions (MS scan) or on further fragmentation of precursor ions into N and C-terminal containing ions 

(MS/MS scan). This further fragmentation is carried out in the collision cell upon reaction of the 

precursor ions with inert gas molecules in a process known as Collision Induced Dissociation 

(CID) [25]. The detector region of a mass spectrometer records the intensities of the ions by 

counting the number of each m/z value. The mass-to-charge ratios (m/z) and corresponding 

intensity values are finally represented in the form of a MS or MS/MS spectrum of m/z values for 

further downstream analysis [24]. In MS-based proteomics, proteins are characterized either as 

enzymatically digested peptides (Bottom-Up approach) or as intact proteins (Top-Down approach). 

Both approaches correlate MS data with sequence information from proteomic and genomic 

databases. 

TOP-DOWN APPROACH 

The Top-Down is a peptide-protein mapping strategy used to identify proteins based on 

masses of the intact proteins and their fragmented ions. Fragmentation of proteins into peptides is 

carried out in the gaseous phase of ESI and MALDI mass spectrometers [27]. Recent techniques 

such as electron capture dissociation (ECD) and electron transfer dissociation (ETD) provides 



 

11 
 

more useful fragmentation of complete protein sequences and depiction of multiple PTMs. The 

informative fragmentation patterns are key to identify protein isoforms through correct peptide-

protein mapping [25, 27]. With Top-Down approach, it's possible to directly quantify proteins by 

measuring protein abundances rather than characterizing them through peptide sequences. Several 

limitations including limited front-end separation of intact proteins as compared to the peptide 

samples, large sample requirements, less sensitivity and less effective fragmentation of larger 

proteins in the gaseous phase have restricted the application of the Top-Down approach to the 

analysis of single proteins and simple protein mixtures. Mostly, MS data of the Top-Down 

approach is analyzed using Expressed Sequence Tags (EST) and de novo methods [25].  

BOTTOM-UP APPROACH 

The Bottom-Up approach is widely used in MS-based proteomics studies. It is also known 

as multidimensional LC/MS/MS or multidimensional protein identification technology (MudPIT). 

In this approach, complex protein mixtures are enzymatically digested into peptides, masses of 

intact peptides are measured followed by front-end peptide separation (either using 

chromatography or Gel-based methods) and MS or MS/MS analysis in the gas phase using ESI and 

MALDI techniques of MS [28]. In the gas phase peptides are further fragmented to produce 

peptide fragment ion mass ladders in a process termed as Collision Induced Dissociation (CID). 

The measurements are than recorded either as masses of the intact peptides (MS) or fragmented 

ions of the peptides (MS/MS) [25]. The parent proteins are identified either using Peptide Mass 

Fingerprinting (for MS scan) or Shotgun proteomics strategy (MS/MS scan). 
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The Bottom-Up approach is well suited for large-scale proteomic studies as it allows 

analysis of complex protein mixtures coupled with good front-end separation techniques, has better 

sensitivity and requires a lesser amount of the sample as compared to Top-Down approach [25]. 

The peptides are more solubilized and easy to separate than parent protein molecules. Unlike the 

Top-Down approach, Bottom-Up is not an ideal choice to identify splice variants and PTMs of 

proteins due to less sequence coverage of proteins. The lower coverage is due to the fact that not all 

peptides of enzymatically digested proteins are detectable and only some of them give useful 

fragment ion ladders [27].  

The Bottom-Up MS data is generally analyzed by one of these methods: database 

searching, spectral library search, de novo methods and peptide mass fingerprinting (PMF). Among 

these, database searching is most commonly used in which experimental MS/MS spectra is 

correlated with theoretical spectra generated from a set of target database peptides, satisfying a 

certain search criteria for database search algorithms [25]. 

SHOTGUN PROTEOMICS 

The Bottom-Up Shotgun Proteomics approach is widely used in proteomic studies to 

identify proteins and their PTMs with better sensitivity. This technique is an analogous method to 

shotgun DNA sequencing (whole genome sequencing from short sequence reads). Figure 1 depicts 

the general scheme of shotgun proteomics. First proteins are enzymatically digested and resultant 

complex mixture of peptides is separated by one or multidimensional chromatography. After 

separation, proteins are subjected to further fragmentation in collision cell of tandem mass 
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spectrometers to produce MS/MS spectra [29]. The identification of proteins starts with the correct 

assignment of peptides sequences to the MS/MS spectra. Several computational methods that have 

complementary features have been developed for this purpose. These computational methods are 

classified into three major groups: (1) the database search approach; (2) the de novo approach; and 

(3) the hybrid approach. The database search is the most efficient method in which each 

experimental MS/MS spectrum is assigned a peptide sequence from sequence databases by 

correlating experimental spectrum with theoretical spectra of peptides in the database using 

database search algorithms [23, 30].  

The assignment of peptides to the spectra is assessed either manually or based on statistical 

measures such as E-value or p-value. Unlikely or incorrect assignments are removed. Peptide 

assignments that have strong supporting evidence are used to identify the original proteins by 

peptide-protein mapping. For this purpose peptides are grouped on the basis of their parent proteins 

and statistical confidence scores are assigned to peptide-protein mappings [23]. 

1.6 PEPTIDOMICS 

Peptidomics is the study of endogenous peptides (molecular mass < 20 KDa) present in a 

cell, tissue or organism. Earlier peptide identification studies relied on the Edman degradation 

method, and currently MS-based peptidomics is the method of choice. With the advent of MS-

based peptidomics it became possible to identify large number of peptides and their PTMs in a 

single experiment [10]. MS-based peptidomics is a two step process: first separation of complex 

mixtures of peptides by multidimensional liquid chromatography or gel or liquid-based isoelectric 

focusing; and second MS-based peptide identification [5].  
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Peptidomics is an analogous term for proteomics but has some obvious differences. First, 

unlike proteomics which aims to identify proteins, the peptidomics refers to peptide identification 

from sequence information [22]. Second, in proteomics identification of only few peptides (in most 

cases not all peptides of precursor are required) can lead to identification of precursor proteins, 

while in peptidomics the primary aim is to identify as many peptides as possible from sample 

considering each peptide as a bioactive molecule performing specific functions. Third, proteomics 

uses enzymatically digested peptides to characterize parent protein, while peptidomics does not 

involve enzymatic digestion in order to identify original peptides along with their PTMs [10].  

1.7 IDENTIFICATION OF PEPTIDES VIA TANDEM MASS SPECTROMETRY 

Peptide identification using MS/MS spectra is a highly efficient and sensitive method that 

is well-suited for large scale peptidomics studies [23]. The peptide identification process starts 

after digestion of proteins with enzymes (such as trypsin) resulting in a complex mixture of 

peptides, which are separated by one dimension (e.g. High Performance Liquid Chromatography) 

or multidimensional (MudPIT) chromatography columns. The peptides undergo ionization at the 

end of a column with MALDI or ESI ionization techniques. Once ionized, peptides travel through 

mass spectrometer vacuum and m/z and intensity of peptide ions (precursor ions) are recorded as 

MS spectrum by mass analyzers. The selected peptide ions are transferred to collision chambers of 

tandem mass spectrometers (spectrometer with more than one mass analyzer separated by collision 

chambers), where the peptide ions react with inert gas (such as nitrogen, argon and helium) and 

peptide bond is broken to generate fragment ions. This fragmentation process is called collision 

induced dissociation (CID). The breakage of the peptide bond results in N-terminal containing ions 
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and C-terminal containing ions. The mass spectrometers then generate MS/MS spectra using m/z 

ratio and intensity pairs of fragmented ions. The fragmentation pattern of MS/MS spectrum is used 

to identify peptide sequence [31]. 

Tandem mass spectrometers differ in the CID conditions and this in turn affects the 

fragmentation patterns of the peptides. Mass spectrometers such as ion trap, triple quadrupole and 

quadrupole time-of-flight (TOF) have low energy CID conditions generating mostly b- and y-ions. 

However, high energy CID conditions in mass spectrometers such as TOF-TOF can also result in 

a-, c-, x- , z-ions. Moreover, other ions can result from side chain cleavages in addition to primarily 

occurring b- and y-ions. Additionally, fragmentation patterns in ion trap gives both b- and y-ions, 

while in quadrupole/quadrupole-TOF y-ions dominate the resulting spectrum [31]. 

The fragmentation produces different types of ions depending upon type of the broken 

bonds between two adjacent amino acids in a peptide sequence. However, in MS product ions 

should carry charge state one or higher in order to be detected. A product ion is categorized as N-

terminal ion or C-terminal ion if charge is retained on the N-terminal or C-terminal, respectively 

[32]. Most common ions are b- and y-series ions, generated as a result of the breakage between 

carbonyl carbon and the amide nitrogen. A breakage of the bond connecting alpha carbon and the 

carbonyl carbon gives a- and x-ion series. The third breakable bond is amide nitrogen and alpha 

carbon bond, which yields c- and z-ion series. Additional peaks due to neutral mass loss such as 

loss of ammonia (nh3, -17 Da) or water molecule (h2o, -18 Da) from either b- or y-ion series are 

also common in MS/MS spectrum [33]. The a-, b- and c-ions are classified as N-terminal ions, 
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while x-, y- and z-ions are classified as C-terminal ions [32]. Molecular masses of different types of 

ions are listed in Table 1. 

The matching of MS/MS spectra to peptides is complicated by various factors. First, an 

ideal MS/MS spectrum should contain only b- and y-ion series , no noise/rare ion peaks, and all b- 

and y-ions (complete fragmentation of peptides) with same intensity values [34]. However, a real 

MS/MS spectrum contains incomplete fragmentation patterns, noise peaks, other types of ions and 

variable intensity values depending upon types of ions [34, 35]. Under low energy CID conditions 

peptides undergo incomplete fragmentation (unbroken bonds between amino acids) in instruments 

such as triple quadrupole, hybrid quadrupole-TOF and ion traps, resulting in tandem MS/MS 

spectra with many ions missing from common b- and y-ion series (discontinuous series). High 

energy CID conditions (such as in hybrid sector/TOF) results in complete fragmentation of the 

peptides but are expensive to use, generate many rare ion peaks, and must be used by highly 

trained professionals [35]. Second, discrepancies between the m/z of precursor and fragment ions 

depend on the instrument, temperature, and instrument parameter settings [29, 36]. Generally, the 

instrumental mass errors range from few parts per million (high mass accuracy instruments) to 500 

parts per million (low mass accuracy instruments) [29]. In mass spectrometers, mass calculations 

are based either on monoisotopic masses of amino acids (with 
12

C atoms only) or average mass of 

all ions (including 
13

C atoms). Third, the determination of the ion charge state (especially in 

multiple charged ions) is challenging. The assessment of the charge state partially depends on the 

accuracy of the mass measurements and could be determined from isotopic patterns observed in 

the MS/MS spectrum. Fourth, the presence of isobaric amino acids, amino acids with same masses 

for example leucine (L) and isoleucine (I). Low accuracy instruments cannot resolve masses 
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difference between such amino acids [23]. Fifth, the presence of static and variable PTMs 

challenges the identification of peptides from ion fragments.  

POST-TRANSLATIONAL MODIFICATIONS 

Post-translational modifications are covalent changes in proteins due to the proteolytic 

cleavage or addition of modifying groups [37]. Most proteins are modified and so far 

approximately 200 different types of modifications have been reported for these proteins [38]. 

Common PTMs for neuropeptides are glycosylation, amidation, acetylation, phosphorylation and 

sulfation. These modifications occur in secretory granules and are species- or tissue-specific [7]. 

Each modification causes mass shifts in precursor or fragment ion m/z values containing that 

modification thus further complicating interpretation of MS/MS spectra. However with MS, it's 

possible to detect PTMs on proteins and peptides with better sensitivity by considering the possible 

mass shifts due to modifications [37].  

1.8 DATABASES WITH MASS SPECTRAL DATA ON NEUROPEPTIDES 

SWEPEP  

SwePep (http://www.swepep.org; [39]) is a database of annotated endogenous peptides 

intended to facilitate peptide identification from samples using mass spectrometry. As of April 

2012, SwePep contains 4180 endogenous peptides from 394 species. The neuropeptides in SwePep 

have been derived from 1643 precursor proteins with more than 100 neuropeptides having been 

confirmed experimentally [39]. Additionally, literature supported information about peptides, 
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precursor proteins, PI, and PTMs are also provided. In this database, the peptides are grouped into 

three classes: (1) biologically active peptides containing characteristics of neuropeptides and 

hormones such as convertase specific processing sites, PTMs, and well-known biological 

functions; (2) potentially biologically active peptides that share characteristics of biologically 

active peptides but become proteolytically inactivated after sampling; and (3) uncharacterized 

peptides that are identified but do not share characteristics of above two classes [39, 40]. 

In the peptide identification process using SwePep, m/z values in experimental spectra are 

matched against m/z values calculated from database peptides both with and without PTMs and 

scores are assigned to matches. This search procedure is less time consuming than spectral search 

against whole proteomes of species, as searches against whole proteomes  returns more false 

positives due to large search space [39, 40]. The availability of MS/MS data on 219 unique 

peptides in SwePep database enables the verification of low quality spectra with low signal to 

noise ratio by correlating this spectra to the high quality spectra in SwePep. Spectrum validation is 

required when a peptide was identified with both high and low confidence scores in MS/MS across 

different experiments. In the SwePep MS/MS database, spectrum-spectrum identification starts by 

assigning a Pearson correlation coefficient as a measure of similarity between two the spectra that 

results from comparing their fragmentation patterns (intensities of b- and y-ions) [40].  
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NEUROPEDIA 

NeuroPedia (http://proteomics.uscd.edu/Software/NeuroPedia.html; [4]) is a sequence 

database and MS/MS library of neuropeptides. NeuroPedia contains sequences, taxonomic and 

genomic information of 847 neuropeptides from human, rat, mouse, bovine, rhesus macaque, 

chimpanzee, California sea hare and leech. All possible pairwise alignments of 847 neuropeptides 

resulted in 340 725 pairs of sequences, which are further grouped into 531 identical sequences, 

5020 overlapping sequences and 9185 homolog sequences. Using MS/MS database search 

algorithms, new MS/MS data can be searched against the NeuroPedia sequence database. The 

NeuroPedia spectral library contains 3401 spectra from human, mouse, rat, bovine and leech. The 

spectral data is arranged in ten Mascot generalized format (MGF) files depending upon type of 

species, instrument and enzyme. Searching MS data against the NeuroPedia MS is less time 

consuming and gives more accurate results for small sized or non-tryptic neuropeptides as 

compared to searching against whole UniProt database [4] because NeuroPedia is a smaller and 

targeted database.  

NIST 

National Institute of Standards and Technology (NIST; http://peptide.nist.gov) is a public 

MS/MS library of tryptic peptides generated in LC-MS/MS experiments using ESI. The library 

mostly contains spectra from high energy ion trap mass spectrometers and some spectral data from 

low energy quadrupole-TOF mass spectrometers. Spectra from ten different organisms in NIST are 

classified into three types: (1) the consensus spectra derived from multiple identifications of the 

http://proteomics.uscd.edu/Software/NeuroPedia.html
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same peptide ion; (2) the best replicate spectra; and (3) the high confidence single spectrum 

identifications. Using four database search engines, peptides were assigned to each spectrum. The 

aim of the spectral library is to collect MS/MS data and assign peptides to new spectra by 

spectrum-spectrum matching. This resource can be used for spectrum-spectrum matching that can 

be better than spectrum-whole proteome sequence matching, by reducing the time involved and 

false positive identifications.  

1.9 PEPTIDE IDENTIFICATION APPROACHES FROM TANDEM MASS 

SPECTROMETRY 

Many computational approaches have been developed to assign peptide sequences to 

MS/MS spectra. These approaches are classified into four major categories. First is the sequence 

database approach, in which the experimental spectrum is scored against theoretically simulated 

spectra of peptides present in proteomic and genomic sequence databases. In most cases only the 

top hit (best hit) based on assigned score is considered for further analysis. This approach is useful 

for only those species that have fully sequenced genomic or proteomic information [23, 29, 30]. 

Second, in the spectral library approach, the experimental MS/MS spectrum is searched against 

libraries of previously annotated MS/MS spectra. The spectral library approach is based on the idea 

that the same MS/MS spectra are repeatedly found in many experimental proteomic studies. 

Peptides with no prior representation in spectral libraries cannot be identified by this approach 

[41]. Third, in the de novo approach, peptide sequences are directly extracted from the MS/MS 

spectra without database searching. The basic concept behind this approach is that two adjacent 

peaks in a spectrum differ by a single amino acid. Novel peptides can be identified by this 



 

21 
 

approach but at the same time the error rate is high due to incomplete fragmentation patterns in 

MS/MS spectra [34, 35]. Forth, the Hybrid approach is a combination of the sequence database 

search and de novo method. In this approach, short sequence tags (3-5 amino acids) are extracted 

from the MS/MS spectra followed by an error-tolerant (allowing mismatches) search against 

sequence databases. The Hybrid approach is useful in detecting sequence polymorphisms and 

PTMs without significantly increasing database size [23, 29, 30]. The sequence database search 

approach has been successful in the detection of neuropeptides. 

1.10 DATABASE SEARCH APPROACHES 

Database searching remains a suitable, robust, and reliable method to interpret MS/MS 

spectra. Unlike the de novo method which requires high quality spectra (good fragmentation 

patterns and signal to noise ratio), the database search approach can also identify peptides for low 

quality spectra by counting shared peaks between the experimental and theoretical spectra of 

peptides. However, identification of novel peptides and peptides with sequence polymorphisms by 

performing a search against database of known peptides is challenging. The database search 

against translated genomic databases provides a useful alternative to identify novel peptides which 

are not represented in a protein databases (e.g., novel alternative splice variants and single 

nucleotide polymorphisms) [23, 29, 30]. 

Free commonly used open source proteomic database search methods include OMSSA 

[42], X!Tandem [43] and Crux [44] (an alternative implementation of the SEQUEST algorithm 

[45]), MyriMatch [46], and Tide [47]. These methods share the basic working principle shown in 

Figure 2. Each experimental MS/MS spectrum is scored against a theoretical spectrum (following 
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common peptide fragmentation rules) generated from a database comprised of enzymatically 

digested protein sequences. Each experimental spectrum is matched against only a subset of 

database peptides satisfying certain search specific parameters. The parameters which reduce the 

search space are: choice of an enzyme, precursor mass tolerance and PTMs. Once the candidate 

peptides are identified, fragment ions in experimental spectra are compared against fragment ions 

in theoretical spectra within a certain fragment ion tolerance, and a correlation score is computed. 

The score reflects the degree of similarity between experimental and theoretical spectra [48, 49].  

The MS/MS database search programs mainly differ in the heuristic search algorithm used 

and in the calculation of a score for the match between the experimentally observed spectra and 

theoretical spectra. The program either reports an E-value or p-value by assuming a distribution 

(e.g. Poisson) of matches for a given experimental spectrum. The E-value denotes the number of 

matches with score equal or higher than the observed one that could arise by chance. Similarly, the 

p-value denotes the probability of finding a match between experimental and theoretical spectra 

with score than the one observed by chance under a null hypothesis. The output from these 

programs is a list of peptides ranked by the score for the match. In most cases, only the best match 

is considered for further analysis, while remaining hits are considered incorrect identifications [30]. 

A brief overview about these open source algorithms, their scoring schemes and conversion of 

scores to E-value or p-values is given below. 
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OMSSA 

The Open Mass Spectrometry Search algorithm (OMSSA) is an open source database 

search algorithm implemented in C++ and developed by the National Center for Biotechnology 

Information (NCBI; [42]). This algorithm is available as part of the NCBI C++ toolkit, which can 

be downloaded and installed across different platforms and can also be used online [42]. An 

OMSSAAdapter is also available for OMSSA in the  OpenMS project [50]. The OpenMS 

framework includes many tools commonly used in MS for peptide and protein identification. 

However, OMSSA software is not included in OpenMS toolkit, rather a user has to provide 

location of OMSSA binary executables (separately installed) through OMSSAAdapter to analyze 

MS data. The OMSSA algorithm takes an experimental spectrum as input, determines charge, 

filters nose, calculates mass ladders and compares the processed spectra against theoretical spectra 

generated from the sequences present in enzymatically digested protein database. To improve 

algorithmic speed, all masses are converted to integer values by using 100 as a scaling factor, 

spectra is sorted and indexed using precursor mass and a binary formatted sequence database is 

used [42]. 

OMSSA determines the precursor charge states by counting the number of peaks below the 

precursor m/z value in the spectra. A spectrum with more than 95% of its peaks below precursor 

m/z is considered in +1 charge state, while a spectrum is searched both as +2 and +3 when less 

than 95% of spectral peaks are below precursor m/z. The experimental spectra is preprocessed to 

remove noise peaks in multiple steps. First, the peaks with intensity below 2.5% of the maximum 

intensity value are removed. Second, only the most intense peak in a region of ±27 Da (around the 
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examined peak in a non-overlapping window) for the charge states +1 and +2 is retained, while for 

the charge state +3 a region of ±14 Da is used. OMSSA assumes +1 product ions for spectra with 

+1 and +2 precursor charge states. For precursor charge states +3, product ions are assumed to be 

in a +1 charge state and +1 and +2 charge state if they are above m/2 and below m/2, respectively, 

where m is precursor mass. Third, ion peaks that are 17 Da (ammonia loss) or 18 Da (water loss) or 

1 Da (isotopic peaks) below the selected peaks are removed. After these noise removal steps, the 

theoretical spectra in the database peptides are compared against the processed experimental 

spectra for precursor charge states +1, +2, and +3 [42].  

The scoring function of OMSSA is based on the number of matched ions or shared peak 

counts (SPC) between the experimental and the theoretical spectra. The SPC is calculated by 

correlating the experimental and theoretical spectra through counting common peaks that are 

within a certain fragment mass tolerance range of each other. To improve the sensitivity of the 

algorithm only those theoretical spectra that have at least one peak matched with any of the top 

three peaks (or other number selected by the user) in processed experimental spectra are considered 

for further scoring. The scoring is based on the assumption that distribution of the number of 

matches follows a Poisson distribution. The Poisson mean is a function of the fragment ion 

tolerance, number of peaks in the experimental and theoretical spectra, and the precursor mass. The 

calculation of the mean for spectra containing only a +1 fragment ion is different than for spectra 

containing both +1 and +2 fragment ions. The OMSSA noise filter does not remove all noise peaks 

during preprocess steps, so while considering the total number of peaks in experimental spectrum, 

the algorithm includes the effect of random noise in the calculation of the Poisson mean. The 
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probability of a match for a given number of matches in the Poisson distribution is calculated using 

the mean (µ) and number of matches (x) by [42]:    

        
  

  
    

  

OMSSA reports an E-value which is a measure of expected number of peptides having a 

score equal or better than this score by chance matching. The E-value is a function of the number 

of candidate theoretical spectra (N) and the probability (based on number of matching ions 

following a Poisson distribution) that the search of a given spectra against N theoretical spectra is a 

random event.  

                     

   

   

     

   

where N, y and z are the number of theoretical candidate spectra, the number of matched 

ions and the searched ions series, respectively [42]. 

SEQUEST/CRUX/TIDE 

The Crux algorithm is a free open source reimplementation of the Sequest algorithm, a first 

commercial database search algorithm for identification of peptide sequences from a tandem mass 

spectra [44]. Like Crux, Tide is an alternative implementation of Sequest. Both Tide and Crux 

provide an alternative method to identify peptides with improved speed by using a database 
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indexing approach. Crux was written in the C programming language and can be used across 

platforms. Crux can be executed from the command line by providing a user changeable parameter 

file containing a description of all parameters. The default parameter specification is used when no 

parameter file is provided. 

The general working algorithm of Crux is shown in Figure 3. The scoring functions of 

Crux are based on SPC. Crux computes a series of scores and ranks for a given experimental 

spectra and precursor m/z ratio that starts with the identification of all candidate peptides having 

precursor m/z ratio within a precursor mass tolerance of the experimental spectra. Candidate 

peptides are ranked by a preliminary score called Sequest score (SP) and the top 500 peptides are 

scored and reranked using cross-correlation scores (Xcorr) [44].   

Prior to calculating scores, the experimental spectra is preprocessed by taking the square 

root of each intensity value, normalization of square rooted intensity values and rounding each m/z 

value to its nearest integer. The SP score is a function of the sums of the intensities of matched ions 

adjusted by the sequential series ions, the matched immonium ions and the total number of 

matched ions relative to the total number of ions. After scoring, the candidate peptides are ranked 

by their SP score and the top 500 are selected for further scoring [44].   

The cross-correlation score (Xcorr) is a primary score for determining other scores and 

serves as a measure of the similarity between two spectra based on shared peak count. This score is 

computed by matching the processed spectrum (X) to the theoretical spectrum (Y), shifted with 
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respect to spectrum X along m/z axis by t mass units. The cross-correlation between spectra X and 

Y is:  

               

 

 

 

   

where xi and yi+t are the peaks in the X and Y spectra, respectively [23]. For each 

experimental spectrum, the highest value of Xcorr with the database peptides represents the best 

match. Crux also computes a relative score (delta Cn) and a relative ranking of peptide-spectrum 

matches for a given input spectra. The relative score is calculated from the difference between the 

Xcorr scores of a best match and all other peptide-spectra matches of an experimental spectrum. 

Like Xcorr, higher value of delta Cn corresponds to a correct match, while low score represents 

likely incorrect peptide identifications. Usually in proteomics studies both Xcorr and delta Cn are 

considered while characterizing a peptide-spectrum match [23].   

Absolute ranking or the ranking all experimental spectra-peptide matches with respect to 

each other is more challenging than relative ranking. To address this problem, Crux computes a p-

value from a Weibull distribution fitted using cross-correlation scores from all the theoretical 

matches of an experimental spectrum [44]. The p-value reported by Crux is a Bonferroni adjusted 

p-value that takes into consideration the total number of candidate peptides. Furthermore, Crux 

includes a machine learning method termed Percolator that uses both target peptide-spectra 

matches and decoy peptide-spectra matches to assign absolute ranking to identifications. A q-value 

which is an estimation of false discovery rate can also be computed. The p-value based search is 
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useful because this approach does not require separate decoy files (as in case of Percolator), and 

this saves computational resources, thus speeding up the search [44].  

X!TANDEM 

X!Tandem is free open source algorithm distributed by the Global Proteome Machine 

Organization [43, 51]. This algorithm is implemented in the C++ programming language thus 

augmenting the portability across platforms. X!Tandem can be executed from the command line 

when provided with .xml file containing location of the input spectra, parameter file and the 

protein or peptide database [43]. X!Tandem can also be executed through OpenMS 

X!TandemAdapter. X!TandemAdapter provides comparable parameter settings with other 

Adapters in OpenMS (such as OMSSA and Mascot) [50]. 

The scoring function in X!Tandem also uses the principle of SPC between the experimental 

and theoretical spectra. For each input spectra X!Tandem assumes that at least one peptide exists in 

the sequence database. The primary score of X!Tandem is known as the hyperscore and this differs 

from the other algorithms using similar SPC methods. X!Tandem uses dot-product to score the 

matches between the observed and predicted spectra [49]. Dot-product scores are converted to 

hyperscores by multiplying the score by the factorial number of matching b- and y-ions. By 

default, the algorithm uses the factorial of the matching b- and y-ions yet users can also specify 

other ions such as a-, c- and z-ions to be considered in scoring. The formula for the hyperscore is 

[23]: 



 

29 
 

                       

 

 

   

  

where xi and yi are matched peaks between the experimental and theoretical spectra, 

respectively and nb and ny are number of assigned b- and y-ions, respectively [23]. The upper 50 

percentile of the hyperscores are natural log-transformed and any scores higher than the 

intersection between the log transformation of the number of results (natural log of E-value) and 

the hyperscore with zero are assumed to be significant. Extrapolation of the linear regression of the 

natural log of the E-value (y-axis) relative to the hyperscore (x-axis) is used to assign E-values to 

high-scoring peptide matches. For example, if a significant hyperscore of 80 correspond to the log 

E-value of -8.3, then the E-value for that match is e
-8.3

. The distribution of the scores is assumed to 

follow a hypergeometric distribution with parameter estimates obtained of the scores for random or 

false identifications is obtained from the database search. This distribution is used to translate the 

score of each match into an Expected or E-value. 

MYRIMATCH 

MyriMatch is a multi-threaded free open source tandem mass spectral matching algorithm 

implemented in C++ programming language available under Mozilla Public License. This method 

is based on an idea of considering user-defined intensity classes in calculating the score, because a 

typical MS/MS contains peaks of different intensities with few peaks having high intensity and 

large number of peaks in spectra having low intensity. The first step involves the preprocessing of 

the experimental spectra to remove noise peaks. This processing is done by computing total ion 
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current (TIC), total intensity of all peaks in the MS/MS spectra. The TIC that is below a user-

specified TIC threshold (representing low intensity peaks) is removed and final processed spectra 

contain peaks with the highest intensity values. However, a spectrum is not consider for further 

analysis if a low number of MS/MS peaks prevents the division of the spectrum into intensity 

classes [46]. 

MyriMatch generates +1 product b- and y-ions for +1 and +2 precursor charge states to 

represent the theoretical spectra corresponding to the database peptides. Product ions that have +1 

and +2 charge state are generated for precursors that have +3 charge state, depending on the weight 

of the ions [46]. Each amino acid is assigned a weight, which is the sum of weights of individual 

amino acids present in that ion. With each broken peptide bond, ions with smaller weight are 

assigned a +1 charge while ions with larger weight are assigned a +2 charge. 

Each spectrum is assigned a p-value (probability of randomly matching) based on a 

multivariate hypergeometric distribution of the matches. The p-value calculation considers the 

number of peaks in a particular class, the number of peaks matched to theoretical fragment peaks 

from particular intensity class, the total number of b- and y-ions present in the processed 

experimental spectrum, and the total number of peaks predicted from the database sequence [46]. 

1.11 LIMITATIONS OF DATABASE SEARCH ALGORITHMS TO ASSIGN CORRECT 

PEPTIDE TO SPECTRA 

The correct identification of peptides from MS/MS spectra depends on quality of MS/MS 

data, type of instrument and choice of database search engine. Many different database search 
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engines are available for peptide identification. The best peptide returned by these algorithms 

against a spectra is often considered correct, however, best match may not be correct in all cases 

[52]. There are several reasons for the incorrect assignments by database search engines: (1) low 

quality of MS/MS spectra due to the presence of many noise peaks, missing ion peaks due to 

incomplete fragmentation and contaminations in samples; (2) simultaneous fragmentation of more 

than one peptide ions having similar m/z values in MS. The database search methods often fail to 

correctly identify all peptide ions present in a given spectrum; (3) scoring schemes of most 

database search engines are based on simplified representation of the peptide fragmentation 

process with assumption that all ions are present in MS/MS spectra with same intensity values. 

Using generalized fragmentation rules to generate theoretical spectra and subsequently using it to 

score experimental spectra (with incomplete fragmentation and different intensity values) often 

leads to incorrect peptide assignment for the MS/MS spectra; (4) presence of several true 

homologous peptides in target sequence database leads to incorrect interpretation of biological 

data; (5) the database search algorithms are not suitable for the identifications of novel peptides or 

peptide variants, which have no prior representation in the target sequence databases [23]; and (6) 

characterization of non-enzymatic post-translational modifications such as isomerization, 

deamidation and racemization using current database search engines is challenging. The new 

fragmentation methods (ECD or ETD) provides useful fragmentation patterns to determine such 

modifications [53]. However, current database algorithms are mostly designed for CID-based 

fragmentation method and can lead to incorrect peptide identifications. 
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1.12 COMPARISON OF TANDEM MS SEARCH ALGORITHMS 

Database search approach is a robust choice to identify peptides from the MS/MS because 

of improvements in the experimental procedures and the availability of multiple database search 

engines and sequence databases. However, the identification scores or statistical values reported by 

these algorithms depend on the quality of the spectra (signal to noise ratio, intensity, etc.,), the 

dissociation mechanism (such as CID, ECD and ETD), the search parameters specified (precursor 

and fragment mass tolerance, enzyme, etc.,), the sequence databases, and the database sizes. The 

selection of suitable database search algorithm for peptide identification should consider the 

strengths, weaknesses, and the working principle of different algorithms to correctly assess the 

significance of the match [48]. Several attempts have been made to benchmark these algorithms by 

evaluating the performance of these algorithms on common datasets using comparable search 

parameters. 

Balgley et al. [48] obtained 155  973 MS/MS from a complex mixture of 18 proteins using 

an ion trap mass spectrometer and ESI as ionization source. Four commonly used search 

algorithms (OMSSA, X!Tandem, Mascot and Sequest) were compared and finally an False 

Discovery Rate (FDR) adjustment of the Sequest thresholds was proposed. Comparable search 

parameters and the same target-decoy sequence database search strategy was used to evaluate the 

variations in the scoring functions of these algorithms in an unbiased manner. However, the results 

and criteria may not be applicable across different mass spectrometers, dissociation mechanisms 

(such as CID, ECD and ETD) and search parameters. Common measures of comparison MS/MS 

such as sensitivity, specificity, and number of proteins identified at a 1% FDR adjusted threshold 
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in a shotgun proteomics approach. OMSSA outperformed all other algorithms at 1% FDR 

returning 35% more hits than X!Tandem (second best in comparison). Overall the OMSSA, 

X!Tandem, Sequest and Mascot correctly identified 48 328, 31 367, 29  463 and 24 575 peptides, 

respectively. OMSSA outperformed X!Tandem in terms of sensitivity (97.9% vs. 74.2%, 

respectively) and MS/MS hits per protein (17.7 vs. 15.0, respectively) and was comparable in 

terms of specificity (98.7 vs. 98.8, respectively) [48]. 

Kapp et al. [54] compared five database search algorithms commonly used by research 

laboratories participating in the HUPO Plasma Proteome Project. These algorithms included 

Spectrum Mill, Sonar, Sequest, Mascot and X!Tandem and were compared in terms of sensitivity 

and specificity at a specified false discovery rate (FDR). Furthermore, the effects of database size 

and enzymatic digestion (tryptic vs. non-tryptic) on peptide identification were investigated using 

forward and reverse sequence databases. The samples were prepared using an ion trap mass 

spectrometer with ESI as ionization source and peptide ions are fragmented using CID. Four 

research groups independently selected search parameters (such as precursor and fragment ion 

tolerances) and search strategies based on their experience to optimize results of these algorithms. 

This suggests that possibly a biased comparison was made among these database search algorithms 

due to the selection of different search parameters and search strategies optimized for each 

algorithm. According to Kapp et al. [54], Sequest and Spectrum Mill are more sensitive while 

Mascot and X!Tandem are more specific. Overall, Mascot performed better than the other 

algorithms. In addition, although the scores of all the algorithms are precursor charge state-

dependent, X!Tandem showed relatively constant thresholds across singly, doubly and triply 
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charged precursor states. Sequest exhibited higher sensitivity than Mascot with higher search space 

(database size indicating a negative effect of database size on the Mascot scoring function [54]. 

Yadav et al. [55] proposed a new method (MassWiz) for peptide identification from 

MS/MS and compared this approach to OMSSA, Mascot, Sequest and X!Tandem. For the 

validation of peptide assignments two different datasets were used: (1) a mixture of 18 proteins 

with known contaminations from six different instruments (AGILENT XCT, LCQ_Deca, LTQ, 

LTQ-FT, QTOF and ABI-4700); and (2) a complex mid-log phase yeast dataset. Mascot 

outperforms other algorithms on the standard mixture of 18 proteins both in terms of spectral and 

peptide assignments, except for spectra from AGILENT XCT that was better identified by 

MassWiz). Across the six instrument used, OMSSA performed better than Sequest and X!Tandem 

on four instruments in assigning peptides and spectra. Sequest performed better than OMSSA and 

X!Tandem on AGLENT XCT spectra, while X!Tandem assigned more peptides than Sequest and 

OMSSA but low number of spectra than OMSSA on QTOF. For the yeast dataset, OMSSA 

assigned higher number of spectra and peptides than any other algorithm while X!Tandem 

assigned the lowest number of all algorithms at 1% FDR [55]. 

Kandasamy et al. [56] compared OMSSA, Mascot, X!Tandem and Spectrum Mill using 

approximately 170 000 ETD derived MS/MS. For comparison purposes, tryptic peptides and the 

same search specifications were used for precursor ion tolerance, fragment ion tolerance, number 

of missed cleavages and fixed and variable post-translational modifications. However, for OMSSA 

c- and z-ion series and for the other three algorithms c-, z- and y-ion series were included in the 

search process. Overall, Spectrum Mill performed better than the other algorithms at 0.1%, 1%, 
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and 5% FDR adjusted thresholds. OMSSA identified 477 more peptides than X!Tandem at 0.1% 

FDR, while X!Tandem detected 639 more peptides than OMSSA at the 1% FDR adjusted 

threshold. Furthermore both OMSSA and X!Tandem performed poorly on doubly charged 

peptides identifying only less than 1%, and 1 to 12% of peptides across the FDR thresholds, 

respectively. The poor performance of OMSSA, X!Tandem on doubly charge MS/MS spectrum 

and the choice of different search parameters could be the possible reasons for the low results of 

these algorithms as compared to Mascot and Spectrum Mill. Correlation analysis of peptide 

assignments between the four algorithms showed that only 1/6 of the peptides were identified by 

all four algorithms in the ETD dataset [56]. In contrast, an approximately 50% correlation between 

these algorithms was found for the CID dataset in previous studies [48, 54].  

Li et al. [57] proposed an intensity based algorithm (SQID) for identification of peptides 

from MS/MS spectra and compared the performance of this algorithm against Sequest and 

X!Tandem. Three different datasets were used: (1) a Pacific Northwest National Laboratories 

(PNNL) data containing 28  311 spectra from LCQ ion trap mass spectrometer; (2) a mixture of 18 

proteins, resulting on 37 044 spectra from ESI ion trap MS; and (3) a yeast data, containing 54 799 

spectra collected with Thermo LTQ ion trap MS. Similar search specifications were used across 

algorithms. Overall, SQID performed better than Sequest (the second best performer) and 

X!Tandem. For the PNNL data, SQID, Sequest and X!Tandem correctly identified 22 135, 19 678 

and 14 878 peptides, respectively. Similar performance was observed on the yeast data for SQID 

and Sequest (4355 vs. 3319 peptides). While X!Tandem performed better than Sequest (3501 vs. 

3319 peptides) on the yeast data probably due to lower signal to noise ratio in these spectra. In 
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terms of unique peptide identifications in the protein mixture data SQID, Sequest and X!Tandem 

correctly matched 292, 273 and 241 peptides, respectively [57]. 

1.13 THESIS RESEARCH MOTIVATION 

Mass spectrometry experiments allow the identification of peptides in complex mixtures 

[19]. Spectra from MS/MS can be annotated by spectral search against databases of known 

sequence or de novo sequencing. The database search approach is well suited even in situations 

characterized by low signal to noise ratio or incomplete fragmentation patterns under low energy 

CID conditions [23]. Three commonly used open source database search algorithms are: OMSSA 

[42], X!Tandem [43] and Crux [44]. The database search algorithms mainly work by correlating 

experimental MS/MS with theoretical spectra generated from known peptides in the databases [4, 

48]. These algorithms use different scoring schemes and are optimized for protein identification 

based on the spectra from tryptic peptides. Several studies have provided insights into the relative 

advantages of the algorithms to identify peptides. However, no study has focused on understanding 

the comparative strengths of these algorithms to identify neuropeptides. Neuropeptides have 

unique features stemming from the complex processing, non-tryptic cleavage and typical small 

size. The aims of this research project are: (1) to study the strengths and weakness of three open 

source database search algorithms to identify neuropeptides; (2) to evaluate the effect of peptide 

charge, length and neutral losses on scoring functions of OMSSA, X!Tandem and Crux; and (3) to 

provide a comprehensive guidelines for future neuropeptidomics studies. 
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CHAPTER TWO: EVALUATION OF DATABASE SEARCH PROGRAMS FOR 

ACCURATE DETECTION OF NEUROPEPTIDES IN TANDEM MASS 

SPECTROMETRY EXPERIMENTS 

2.1 INTRODUCTION 

Neuropeptides are involved in intercellular communication, mediate neurotransmission, 

and regulate many biological processes such as growth, learning, memory, metabolism and 

neuronal differentiation [1]. Neuropeptides encompass neurotransmitters and peptide hormones 

and have a critical role in many disorders such as depression, Parkinson's disease, and eating and 

sleeping disorders [58]. Most neuropeptides range in length from 3 to 40 amino acids and are 

produced by a complex post-translational processing that includes cleavage of precursor 

prohormones at basic amino acids (K and R) and removal of C-terminal basic amino acids by 

carboxypeptidases [1, 58]. In addition, neuropeptide sequences can experience multiple post-

translational modifications (PTMs) including pyroglutamination, acetylation, amidation, 

phosphorylation, and sulfation. 

Mass spectrometry (MS) is a well-established technology to identify proteins and peptides. 

The shotgun proteomics implementation of the bottom-up approach relies on the direct protease 

digestion (typically with trypsin) with subsequent separation of the peptides. The resulting digested 

peptides are subjected to tandem mass spectrometry (MS/MS) for identification and assignment to 

proteins. Database searching is a common approach to identify MS/MS spectra. The overall 

strategy of database searches is to pair observed and theoretical or predicted spectra. The observed 

spectra come from MS/MS experiments and the theoretical spectra is the result of in silico 
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prediction based on the known sequence of peptides in a database. Most databases include peptides 

that are empirically confirmed or predicted from genome sequence assemblies or EST libraries.   

Differences between the database search programs in the ability to identify proteins have 

been reported [49, 54, 59]. These studies offer some pointers to the algorithmic components that 

may be responsible for the difference in performance among programs. However, these studies 

evaluated the programs based on detection of fewer than 600 peptides. The inconsistencies have 

been attributed without proof to the different matching algorithms used as authors have not 

compared ideal spectra. 

The same programs that match experimental to theoretical spectra from the database are 

used to identify neuropeptides in MS/MS experiments [4, 58, 60, 61]. However, the extrapolation 

of the strengths and weaknesses of each program to the identification of neuropeptides is not 

straightforward. This is because there are major differences between protein and neuropeptide 

detection using tandem mass spectrometry. First, neuropeptides already exist in the sample as 

endogenous peptides prior to any sample preparation or enzymatic degradation. Meanwhile, the 

identification of a protein can be inferred by the presence of a component peptide, on the other 

hand the detection of a neuropeptide requires the precise identification of the exact neuropeptide in 

the sample and cannot be inferred from the detection of other prohormone peptides. The second 

distinctive feature is that neuropeptides tend to be small, on average between 20 and 40 amino acid 

long. This length limits the statistical significance of the match of the peptide to a database and 

thus the capability to detect peptide matches beyond a user-defined statistical threshold. The third 

distinctive feature is that neuropeptides may result from cleavages by multiple proteases. Thus, the 
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digestion model to generate peptides from proteins is not applicable to neuropeptides as many 

neuropeptides may lack additional basic amino acids or result in smaller peptides. Also, 

neuropeptides are formed by cleavage at basic amino acid sites that are also cleavage targets of 

proteases such as trypsin. Consequently, the digestion model may not identify the correct peptide 

and fail to distinguish between shorter and longer forms of the same peptide. The fourth distinctive 

feature is that neuropeptides tend to undergo more post-translational modifications than other 

peptides, on a per-peptide basis. Samples of high complexity or dynamic range are particularly 

challenging for MS/MS and peptide search algorithms. These conditions are commonly present in 

samples analyzed for neuropeptide identification and quantification.   

Previous comparisons of database search programs [48, 49, 59] have demonstrated the 

failure of some programs to identify peptides, even under carefully parameter specifications and 

expert usage of the programs. Kapp et al. [54] found that 15% of human serum and plasma MS/MS 

spectra were identified by at least one program. Similarly, Balgley et al. [48] reported an average 

of 34% normal human ovarian epithelium MS/MS matches to distinct peptides, and Xu and Freitas 

[59] reported the identification of 5% out of 1837 human histone MS/MS spectra. No large-scale, 

systematic study of the strengths and weaknesses of different database search programs to identify 

neuropeptides and other potential peptides resulting from prohormone processing have been 

reported. The unique characteristics of these peptides, compared to all peptides in general, call for 

the evaluation of database programs and algorithms that best support the identification of 

neuropeptides. Therefore, an assessment of the peptide database search programs and scoring 

schemes in the context of prohormone peptide identification is warranted. The neuropeptide 

research community and the proteomic community will benefit from a better understanding of the 
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strengths, weaknesses and limitations of the search algorithms available for protein and general 

peptide identification. The aims of this study were: (1) to compare the relative advantages of three 

complementary open-source search methods: OMSSA, X!Tandem and Crux to accurately identify 

prohormone peptides including neuropeptides; (2) to evaluate the impact of mass spectrometry 

factors such as charge on neuropeptide identification; and (3) to offer guidelines to obtain the most 

comprehensive and accurate survey of the peptides in a sample. 

2.2 MATERIALS AND METHODS 

A database of neuropeptides was assembled from neuropeptides available in the SwePep 

(http://www.swepep.org) and UniProt (http://www.uniprot.org; release 2011_01) databases and 

potentially cleaved peptides predicted from 92 mouse prohormones using the NeuroPred program 

(http://neuroproteomics.scs.illinois.edu/neuropred.html; [15]). The final database consisted of 7850 

peptides that ranged in length from 5 to 255 amino acids including experimental confirmed 

neuropeptides and peptides resulting from predicted cleavages of prohormones (Table 2).  

Peptides from mouse prohormones were used to simulate the observed or query spectra. 

Two target databases were used to identify the query neuropeptides: (a) the mouse database; and 

(b) a rat neuropeptide database including 7647 peptides. The rationale for matching the observed 

data to the same counterpart in the database without the addition of a decoy database is three-fold. 

First, a decoy database does not assist in determining if the algorithms can correctly match the 

spectra to the correct target. Rather a decoy database provides a general measure of confidence of 

all the matches. Second, the simulated data share the same quality and thus the addition of decoy 

mass spectra does not aid in addressing quality differentials in the present study. Third, 
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neuropeptides tend to be short and span a few residues. A reverse decoy spectra of a short peptide 

has higher likelihood to be present in nature than that of a longer peptide, thus biasing the objective 

of these spectra to help assess the probability of a random match. The lack of known spectra with 

no target database entry prevented the comparison of performance across programs using receiver 

operating characteristics curves. 

The rationale for undertaking a cross-species search was three fold. First, the cross-species 

strategy permitted the assessment of the robustness of the programs to detect prohormone peptides 

in databases of peptides including all common variants such as single amino acid polymorphisms 

between mouse strains. This is particularly relevant in light of the multiple mouse genome projects 

such that the rat sequence is expected to be more different from all mouse species than the 

differences between mouse species. Second, the strategy allowed the evaluation of the performance 

of the programs to detect neuropeptides using databases from other species. This is important when 

considering the large number of species that have not been sequenced and the increasing number of 

species with sequenced genomes that lack of proteomic verification of proteins and peptides. 

Lastly, the spectra match is performed on an independent data set.  

Among the database search programs available, three public, open source software were 

considered: X!Tandem [43], OMSSA [42] and Crux [44]). These programs were selected because 

they are open source and this allows the investigation of the code, computation of matching scores 

and the algorithmic specifications.  
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The three programs can be classified as descriptive, heuristic or un-interpreted database 

searching based on the matching scoring algorithm [62]. Descriptive database search programs are 

commonly used to identify peptides in MS/MS experiments because they do not require a high-

quality spectrum, although low quality spectra tend to result in low matching scores and thus may 

fail to lead to peptide identification. These algorithms correlate the observed or query mass spectra 

to the predicted mass spectra in the database. From this correlation, a score indicator of the 

similarity between the query and database spectra is produced and a probability that a particular 

peptide sequence generated the observed spectrum is obtained by chance [54]. The score is then 

used to compute an E-value (Expected-value) or p-value. The first indicator is the expected number 

of database matches by chance with scores equal or higher than the one observed. The second is 

the probability that the match between the query and target sequences is due to chance. A brief 

description of the three database search programs follows. 

Crux (Version 1.37 released on December 22, 2011) [44] is an alternative implementation 

of the SEQUEST algorithm [45]. Peptide identification relies on searching a collection of spectra 

against an indexed sequence database, and returning a collection of peptide-spectrum matches 

(PSMs). Crux option to calculate p-values from a Weibull distribution of the cross-correlation 

scores [49] was used in this study. Although this approach is computationally intensive, this 

strategy maximizes sensitivity or true positive rate through the ability to identify peptides 

regardless of the quality of the spectra at the expense of higher rates of false positives or 

mismatches.  
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X!Tandem (http://www.thegpm.org/tandem; Version 2010.12.01.1 released on December 

01, 2010) [43] was developed to optimize speed and to minimize the computational requirements. 

The algorithm includes preprocessing of the observed spectra to remove noise and technical 

artifacts, process database peptide sequences with cleavage reagents, post-translational and 

chemical modifications and scores the peptide matches between the observed and predicted spectra 

[49]. The scores are converted to hyperscores and the distribution of hyperscores of all matches is 

used to translate the hyperscore of each match into an E-value that indicates the number of peptides 

in the database that are expected to exhibit matching scores equal or higher than the one under 

consideration by chance alone. 

The Open Mass Spectrometry Search Algorithm (OMSSA; Version 2.1.7 released on June 

15, 2010; http://pubchem.ncbi.nlm.nih.gov/omssa) attempts to optimize the speed of the database 

searching approach [42]. The scoring of each match assumes that the number of matches between 

observed and predicted peaks for a peptide sequence follows a Poisson distribution. The lambda 

(or average) parameter of the Poisson distribution is calculated as a function of the fragment ion 

tolerance, the number of predicted and observed peaks and the neutral mass of the precursor ion. 

OMSSA provides the probability that the match between the observed and predicted spectrum is 

the result of chance and corresponding E-value based on the dimensions of the target database.  

Simulated spectra were used to compare the performance of the three database search 

programs. There are three advantages of simulating the observed peptides to be queried against a 

database. First, the use of simulated mass spectra overcomes the limited number of neuropeptides 

with mass spectra information of comparable quality obtained using the same or similar 
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technologies. Second, the analysis of simulated mass spectra that share the same quality level 

allows benchmarking the database search programs irrespectively of sample or data quality issues 

including low mass accuracy, noise and low signal to noise ratio. Third, simulated mass spectra 

offers an absolute control of the peptides that should be detected and accurate evaluation of the 

number of true positives (detected and correctly identified peptides), false positives (detected but 

incorrectly identified peptides) and false negatives (missed peptides). 

Ideal uniform spectra that have either +1, +2, and +3 charge states were simulated for each 

peptide precursor ion in the target database. For each precursor charge status, only +1 charged b 

and y product ions were simulated with equal intensity. The product ions with equal intensity 

values were simulated to avoid selection of only high intensity peaks for scoring and thus to 

eliminate the effect of intensity on scoring functions of database search methods. Neutral losses of 

a water and/or ammonia were simulated if the ion contained either one of four water losing amino 

acids (S, T, E, D) or ammonia losing amino acids (R, K, Q, N). Neutral losses from b and y product 

ions occurred regardless of position of these amino acids in the ions. Complementary scenarios of 

neutral mass loss and ion availability conditions were simulated across the three precursor charge 

states and searched against the database to investigate the impact of these situations on the 

identification of neuropeptides. 

1) All b- and y-ion series with all neutral mass losses due to water and ammonia, 

2) Only the possible b- and y-ion series, 

3) Only the possible b-ion series with all neutral mass losses, 
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4) Only the possible y-ion series with all neutral mass losses, 

5) Random 50% of b- and y-ion series with all neutral mass losses, 

6) Random 25% of b- and y-ion series with all neutral mass losses, 

7) Only scoring the b-ion series from b- and y-ion spectra with all neutral mass losses, 

8) Only scoring the y-ion series from b- and y-ion spectra with all neutral mass losses. 

Under low energy CID conditions in MS not all product ions are detected in common b- 

and y-ion series. The simulation of the random 25% and 50% of ions represents one type of 

incomplete fragmentation. The aim of simulating spectra with missing ions is to determine which 

ions are sufficient for the database search algorithms to accurately identify peptides.   

In addition, charge state +1 precursor ions from mouse spectra were searched against the 

rat database using X!Tandem. For the latter evaluation, only SwePep and UniProt identified 

peptides were used to represent the experimentally known mouse peptides and avoid ambiguous 

annotation of corresponding rat peptides. This strategy minimized the likelihood of matches 

between small and large peptides where the smaller peptide is a known cleavage product of the 

larger peptide. X!Tandem was selected for this evaluation because this program was found to the 

more conservative of the three programs. 

A set of composite spectra is simulated by combining product ions from more than one 

peptides having similar precursor m/z values (mass error ± 0.4 Da). To create composite spectra 
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that has minimum biasness towards any database search method, only those peptides were selected 

which were individually identified by all database search tools at an E- or p-value < 1 x 10
-2

. The 

945 composite spectra from 2049 peptides were grouped into four classes based upon number of 

peptide ions used to produce composite spectra. The purpose of this strategy is to assess the ability 

of OMSSA, X!Tandem and Crux to correctly identify peptides from composite spectra, 

representing simultaneous fragmentation of different peptide ions with same precursor m/z values 

in mass spectrometry conditions. Ideal uniform spectra with all b- and y-ions with neutral loss at 

precursor charge state +1 were used in this study. 

The peptide identification search programs OMSSA, X!Tandem and Crux were evaluated 

using comparable algorithmic specifications and excluding PTMs. The default values of the 

programs were used in addition to the following specifications: (1) precursor ion tolerance: 1.5 Da; 

(2) product or fragment ion tolerance: 0.3 Da; (3) no fixed or variable modifications; (4) “whole 

protein” (OMSSA) or “enzyme: custom cleavage site” (X!Tandem and Crux) to prevent cleavage 

since the detection of neuropeptides does not involve protease cleavage; (5) peptide length: 5-255 

residues; (6) precursor ion charge: 1+, 2+, 3+; (7) product ion charge: default values; (8) no 

complete or partial modifications; and (9) peptide mass: monoisotopic. 

For comparison purposes, Crux probability scores (ranging from 0 to 1), X!Tandem E-

values (ranging from 1 x 10
-45

 to 1 x 10
+3

) and OMSSA E-values (ranging from 1 x 10
-15

 to 1 x 

10
+4

) were transformed using a base 10 logarithm. The match or hit with lowest E- or p-value 

among all hits per input spectrum was analyzed. At 1 x 10
-6

 threshold based on a 1% Bonferroni 
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correction (0.01/7850 = 1.27 x 10
-6 

≈ 1 x 10
-6

) was used to determine if the match was significant 

while accounting for multiple testing. 

2.3 RESULTS AND DISCUSSION 

The overall significance and the correctness of the matched sequence of the query-to-target 

matches were used to assess the capability of each search algorithm to detect neuropeptides and 

other prohormone peptides. This evaluation step allowed discrimination between obvious and 

dubious, yet correct, peptide identifications. The decision tree used to assess the performance of 

each database search program is presented in Figure 4. A peptide match was deemed to be 

significant if the detection signal (e.g. E- or p-value) was lower (more significant) than a threshold 

< 1 x 10
-6

. This stringent threshold aimed to minimize the number of false peptide identifications 

because the percentage of matches that could be considered by chance (false positives) is less than 

a 1% Bonferroni corrected significance threshold. There were three outcomes for each simulated 

spectra: the neuropeptide correctly matched the simulated peptide (true positive), incorrectly 

matched (false positive) or failed to match (false negative). 

Table 3 summarizes the results from the three search methods across three precursor charge 

states. From a total of 23 550 simulated spectra (7850 peptides x 3 precursor charge states), 

OMSSA, X!Tandem and Crux had 23 281 (98.9%), 22 117 (93.9%) and 20 890 (88.7%) true 

positive results (correct spectrum-peptide matches at strong E- or p-value < 1 x 10
-6

), respectively. 

Our results are consistent with previous reports of a higher number of spectra matched by OMSSA 

than by X!Tandem [55, 63]. At an unadjusted 1% threshold < 1 x 10
-2

 (i.e., no multiple test 

adjustment), OMSSA, X!Tandem and Crux had 23 548 (99.9%), 22 932 (97.4%) and 23 139 
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(98.3%) true positive identifications. The consensus among programs suggested that the 

overlapping peptides are less susceptible to the assumptions and models used by each database 

search algorithm. In total, 20  740 (88%) peptides were correctly identified by all three programs. 

The majority of the 267 (1%) peptides that were not identified by any one program were five 

amino acids in length (Table 3). The remaining peptides were found by OMSSA (4%) or OMSSA 

and Crux (1%) or OMSSA and X!Tandem (6%). X!Tandem provided no significant peptides that 

were not detected by at least one other program. This suggest that X!Tandem may be the most 

conservative program evaluated or that the algorithm is less sensitive. 

Selected shared and distinct identifications among all three database search programs are 

highlighted using Venn diagrams. A Venn diagram depicting the common and distinct true positive 

peptides identified from the three database search programs, X!Tandem, OMSSA, and Crux using 

information from b- + y-ion series and peptide charge state 3 is depicted in Figure 5. This diagram 

underlines the substantial overlap between all three programs, between OMSSA and X!Tandem 

and the ability of OMSSA to identify additional peptides at charge state 3. Figures 6 and 7 present 

Venn diagrams depicting the common and distinct peptides identified by all three programs using 

only y- and b-ion series information and peptide charge state 3, respectively. These figures stress 

the relative advantage of Crux when only b-ion series are available and of OMSSA and X!Tandem 

when only y-ion series are available for peptide identification. Figures 8 and 9 present Venn 

diagrams depicting the common and distinct peptides identified by all three database search 

programs using only 50% or 25% of all ion information and peptide charge state 3 are available, 

respectively. These figures stress the increasing detrimental impact of  missing ions on the 

performance of X!Tandem.  
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The length of the peptide had an impact on the statistical significance of the match for each 

program. Overall the correlation between the length of the query sequence and log10 transformation 

of the E or p-values for OMSSA, Crux and X!Tandem was 0.1%, 86.8% and 46.7%, respectively. 

However, the relationship was non-linear. Figure 10 depicts the relationship between the log10 

transformed E- or p-values on peptides across peptide length. Examination of the relation between 

query length and log-transformed E-values showed rapid increase up to 11 and 15 amino acid long 

peptides for OMSSA and X!Tandem, respectively, before the log-transformed E-values stabilized. 

In contrast, the Crux log-transformed p-values showed a gradual increase to approximately 50 

amino acids before the log-transformed p-values stabilized. Kapp et al. [49] also noted that small 

peptides between 600 and 700 Da were factor in peptides not identified across programs. A similar 

effect of peptide length on the distribution of the MaxQuant program p-scores between target and 

decoy database was observed [64]. In that study, peptides smaller than 15 amino acids long had a 

higher likelihood of being incorrectly matched than larger peptides. 

The increase in the E-values with decreasing peptide length is due to the corresponding 

increase in the number of expected matches by chance. The mean of the underlying Poisson 

distribution used by OMSSA decreases with smaller peptides resulting in larger E-values due to 

the increased probability of a random match. In particular, the detection of short peptides by 

OMSSA is negatively influenced by the tendency of small peptides to exhibit neutral mass losses. 

Similarly with X!Tandem, the observed reduction in E-value significance is associated with a 

lower number of unique peptides that can be matched relative to larger peptides. For peptides less 

than 12 amino acids, the correlations between OMSSA and X!Tandem, OMSSA and Crux, and 
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X!Tandem and Crux were 78%, 63% and 52%, respectively. This result also indicates that the 

selected threshold was more stringent in Crux and X!Tandem than for OMSSA.  

The statistical significance of the X!Tandem matches was inferred using the lowest scores 

from the matches. Consequently, the significance values assigned by X!Tandem is negatively 

influenced when there are insufficient matches to provide an accurate estimate of the X!Tandem 

score. At a computational extreme, Crux uses a resampling test where random permutations of 

matching sequences are generated and scored. The implementation of this procedure in Crux is 

flawed because resampling with replacement is permitted and this potentially allows the same 

sequence to be repeatedly sampled. Unlike Crux and X!Tandem, the OMSSA E-value is derived 

from the assumption that the number of matches can be represented by Poisson distribution does 

not depend on the matches or generated sequences although it relies on the database size. The 

OMSSA formulation is also dependent on peptide size so that small peptides tend to be on the low 

bound of significance due to the smaller proportion of ion matches than larger peptides. For 

example, if the Poisson mean is equal to one, then the probability of zero ion matches is 0.37%.  

The search time of the three database search programs was a function of the number of 

neuropeptides in the search database. This computational comparison is empirical and that the 

database search can be easily computed in parallel because the experimental spectra can be 

independently analyzed. The computational speed was measured on a 3.00 GHz Intel X9650 

processor to evaluate all 7850 peptides for all programs. X!Tandem returned results the fastest 

(averaged 23 cpu seconds), followed by Crux with no p-value calculation (3.8 x more time than 

X!Tandem; averaged 89 cpu seconds) followed by OMSSA (5.3 x more than X!Tandem; averaged 
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123 cpu seconds). The Crux p-value calculation adds considerable time due to the permutation-

based approach to assess the statistical significance of the database match. This approach requires 

the generation and scoring of dummy sequences to obtain the Weibull density for each match. 

Consequently, the computation of p-values for 100 and 1000 dummy sequences required over 1 

hour and 13 hours of cpu time, respectively. The increase in time is linear on the number of 

sequences evaluated such that each sequence took approximately 47 cpu seconds. This resampling 

test approach is not limited to Crux so a similar increase in time would occur when this approach is 

used with X!Tandem and OMSSA.  

Crux was the only program that was able to correctly match all peptides although only 12 

peptides with less than ten amino acids had p-values < 1 x 10
-6

 threshold. At unadjusted p-value < 

1 x 10
-2

 threshold 33%, 64%, 75%, 87%, 98%, 99% and 100% of the 5, 6, 7, 8, 9, 10, and 11 

amino acid peptides were detected with Crux. This increase is partly due to the number of Weibull 

samples because with 100 permutations only 61 of the peptides with charge state 1 had p-value < 1 

x 10
-5

 threshold (results not shown). Consequently, adding further Weibull samples especially for 

small peptides may increase the significance levels by providing more accurate density estimation. 

X!Tandem was not able to correctly detect the 85 peptides with length of five amino acids which 

accounted for 1% of all peptides. Across the different scenarios, most of these peptides were not 

detected (80%) and the rest were incorrectly identified (mismatched). X!Tandem was able to 

correctly match at E-value < 1 x 10
-6 

peptides ten amino acids in length or larger, although 94% of 

seven amino acid long peptides and all eight and higher amino acid long peptides surpassed the 

unadjusted E-value < 1 x 10
-2

 threshold. OMSSA was also influenced by peptide size as most 

peptides larger than nine amino acids surpassed the E-value < 1 x 10
-6

 threshold. However, 100%, 



 

52 
 

27%, 6%, and 1% of the peptides with five, six, seven and eight amino acids, respectively did not 

reach significance with OMSSA.  

There were five unique neuropeptide sequences that were not first ranked peptides in 

OMSSA across all simulated conditions. Four of the peptides were associated with the highly 

homologous Oxytocin-neurophysin 1 (NEU1) and Vasopressin-neurophysin 2-copeptin (NEU2) 

prohomones. These peptides were further reduced to two sets of peptides after consideration of 

ambiguous cleavage site that leads to two possible peptides within homolog. The simulated spectra 

of the b- and y-ions without neutral mass loss were very similar between these peptides with the 

largest difference of 19.9 m/z occurring at the b6 ion. Another mismatch occurred with a PENK 

(UniProt id P22005) peptide due to the multiple occurrences of the Met-enkephalin in a longer 

peptide. For simulated charge state 1 and 2 including neutral mass loss, a mismatch occurred 

between the two Met-enkephalin peptides located at the C- and N-terminal. Due to the similarity in 

sequence and E-values, these peptides were treated as "homeometric peptides" [65] and were 

considered as correct matches. 

OMSSA failed to detect one peptide (a SCG1 peptide; P16014[592-652] predicted by the 

NeuroPred mouse model) in all three charge states. Also, OMSSA had one mismatch (a SCG2 

peptide Q03517[475-547] from a non-mammalian model match to NEUT; Q9D3P9[87-156]) with 

charge state 3 with an E-value > 60. This peptide was detected by OMSSA in the other two charge 

states. Both peptides were correctly detected when the simulation excluded neutral mass losses. 

This suggests a weakness (or lower sensitivity) of the algorithm to accommodate neutral mass 

losses. Examination of both peptides indicated that 54% of the amino acids in each sequence were 
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prone to lose water (28% of the amino acids) and ammonia (25% of the amino acids). As a result 

approximately 2/3
 
of the ions can include neutral mass losses and OMSSA apparently failed to 

distinguish the series with and without neutral losses. 

Combining identifications that were significant in at least two programs improved the 

average identification rate across all three charge states from 89% to 94% when all ions were 

available for scoring and including neutral mass loss. Using a consensus approach, as has been 

advocated in the identification of proteins [49], can improve peptide identification because the 

probability of all programs incorrectly identifying a peptide is equal to or less than probability of 

the least accurate program being incorrect. While this consensus approach assists in the correct 

identification of peptides, it is less suitable to the goals of the present study because the individual 

programs helps us to understand the particular distributional features of the prohormone peptide 

population of mass spectra relative to protein database searches and recommend the best tools for 

particular neuropeptides. For example, a closer inspection of the few peptides (5%) that were not 

consistently identified across programs revealed that these peptides were correctly matched by at 

least Crux and OMSSA although exhibited low scores, irrespectively of the programs, due to the 

small size of these peptides (ranged between 5 and 11 amino acids in length). This result suggests 

that for these few neuropeptides all three programs have comparable disadvantages but have 

complementary strengths and weaknesses to detect neuropeptides. 
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NEUTRAL MASS LOSSES 

Table 4 and Table 5 summarizes the performance of the three programs in the identification 

of peptides when all ions from both series are available including and excluding neutral mass 

losses, respectively. The inclusion of neutral mass losses had minor influence on the overall 

detection of peptides across the programs (Table 3). The average percentage of detected peptides at 

E- or p-value < 1 x  10
-6

 with neutral mass loss over all charge states was 98%, 94.4% and 89.6% 

in OMSSA, X!Tandem, and Crux, respectively. Slightly more peptides were detected for all three 

programs (89%) when neutral loss was included in the simulated query. However, the percentage 

of undetected peptides increased to 2%. This was mainly due to a decrease in the number of 

peptides identified by OMSSA either alone (111 peptides over the three charge states) or with 

X!Tandem (223 peptides over the three charge states) or with Crux (128 peptides over the three 

charge states). 

Peptide detection by Crux was largely not affected by neutral mass loss scenarios. Slightly 

more peptides were correctly identified with neutral mass loss than without neutral mass losses at 

higher significance levels (E- or p-values < 1 x 10
-9

). The inclusion of neutral mass loss noticeably 

influenced the significance levels of X!Tandem matches that were already highly significant (E-

value < 1 x 10
-10

). The E-values of the correct matches decreased in significance from a median of 

E-value < 1 x 10
-25

 to E-value < 1 x 10
-14

 when neutral mass losses were added to the same queries. 

OMSSA identified 99% of the queries without neutral mass loss across charge states. 

Peptides simulated without neutral mass losses had more significant E-values than peptides 

simulated with neutral mass losses. This trend was reflected by the median E-value of peptides 
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with E-value < 1 x 10
-6 

decreasing from 8.8 x 10
-12 

to 5.6 x 10
-13

 for simulations with and without 

neutral mass loss, respectively. However, overall the impact of neutral mass loss is low considering 

that at E-value < 1 x 10
-6

, more than 98.3% of the peptides were correctly matched across both 

neutral mass loss scenarios.  

Comparison of OMSSA peptide detection across charge states with neutral loss showed a 

difference between charge states that was absent when no neutral losses were simulated. At the 

stringent threshold E-value < 1 x 10
-10

, peptides that have precursor charge state 1 had more 

significant matches (93%) than precursor charge state 3 (81%). This difference decreased with less 

stringent thresholds and at the E-value < 1 x 10
-6 

threshold the difference in detection was only 1% 

between charge states 1 and 3. This may be partially explained by the assumption that +2 product 

ions are present in charge state +3 and higher spectra but not present in charge state +2 spectra 

[42]. This assumption results in a higher number of possible ions and a consequently a lower E-

value even if the spectra lacks these highly charged product ions. These results suggest that the 

algorithm of OMSSA has a high risk to fail the identification of peptides that contain numerous 

amino acids prone to neutral mass losses, and this risk is higher at higher charge states. 

Peptide size influenced the number of true positive matches across all database search 

programs, even when all ions were present and there were no neutral mass loss simulated. No 

program correctly detected five amino acid peptides. However, OMSSA and X!Tandem correctly 

detected all peptides longer than 7 and 11 amino acids, respectively. There was a gradual increase 

in the number of peptide matches that have E-value < 1 x 10
-6

 with Crux although only peptides 46 

amino acids long and higher surpassed this threshold.  
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MISSING IONS 

Tables 6, 7, 8, and 9 summarizes the performance of the three programs in the 

identification of peptides when only b-ion series, y-ion series, random 50% of all ions, and random 

25% of all ions are available including neutral mass losses, respectively. The average percentage of 

correct identifications across charge states varied from 85% to 94% when 50% of all possible ions 

were available and between 69% and 83% when 25% of ions were available. The proportion of 

correct identifications in all programs was 87%, 88%, 85% and 68% when b-ion series, y-ion 

series, random 50% and random 25% of the ions were available, respectively. The proportion of 

unidentified peptides in all programs was 8%, 6%, 7% and 14%, when b-ion series, y-ion series, 

random 50% and random 25% of the ions were available, respectively. The lower percentage of 

peptides identified in scenarios that had 50% and 25% of the ions available was mainly due to a 

poorer performance of X!Tandem. This conclusion is based on the percentage of peptides correctly 

identified by Crux and OMSSA that increased from 3% to 11%. Missing ions also impacted the 

detection of peptides by OMSSA because the percentage of correctly identified peptides by Crux 

only increased from zero in the random 50% scenario to 4% in the random 25% of the ions 

scenario. 

Unlike for the other two programs, missing ions on the query had minor influence on the 

identification and significance level of the peptides in Crux. The availability of only one ion series 

resulted in 89% and 90% when only the b- and y-ion series were available, respectively, and was 

similar to the 90% when all ions were used. The percentages of peptides that had significant 

matches were 88% and 83% when 50% and 25% of the ions were available, respectively. On 
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average 119 and 480 fewer significant matches were detected across the three charge states when 

50% and 25% of the ions were available, respectively. 

The number of ions available for scoring affected the detection of peptides by X!Tandem, 

regardless of the charge state. The number of correctly detected peptides decreased from 94% 

when all ions were available to 89% when only the b- or y-ion series were available. Furthermore, 

availability of 50% or 25% of all possible ions reduced the number of correctly identified peptides 

to 85% and 69%, respectively. The minimum length for a peptide to be detected at significance E-

value < 1 x 10
-6

 were 13, 15, 14 and 81 amino acids for the y-ion series, b-ion series, 50% ions and 

25% ions available, respectively, compared to ten amino acids when all ions were available. These 

trends are likely to be related to the number of ions that can potentially be available rather than the 

percentage of ions available.  

The absence of the b-ion series, y-ion series, or 50% of all ions at random had minor effect 

on the identification of peptides using OMSSA compared to the availability of all ions. On 

average, 95% of the peptides identified when all ions were available were also identified when 

only 50% of the possible ions were available. On average 65 peptides across all three charge states 

were undetected when only 25% of all ions were available. These peptides were between five and 

eight amino acids in length. Furthermore, only peptides of more than 25 amino acids in length had 

E-value < 1 x 10
-6

. 

There was a slight tendency for the number of undetected peptides by OMSSA to increase 

with the increasing charge state when only 50% of ions were available. This result is consistent 
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with the observed trend in the presence of neutral loss simulation suggesting that the presence of 

neutral loss rather than the absence of 50% of ions was the factor driving the lower detection rate. 

However, when only 25% of the ions are available, charge state 1 peptides were four times more 

likely to be undetected relative to higher charge states. These results indicate that the absolute 

number of ions present is potentially more critical to the OMSSA algorithm than the relative 

percentage of ions available. Overall, these findings point out that there was a diminishing return 

on accurate identification for additional ions used by OMSSA, with the detection E-value threshold 

dependent on the precursor charge state. Longer peptides are expected to generate more ions, 

suggesting that the OMSSA scoring system based on the actual number of mass spectra peak 

matches needs to account for the overall peptide length. This adjustment is particularly critical for 

neuropeptides because these peptides tend to be small. 

The simulation of the random proportion of ions represents one type of incomplete 

fragmentation that is an important component of variation between programs and a lack of peptide 

identification [49]. Peptides can be identified by the programs when incomplete fragmentation 

provided sufficient ions are present especially for large peptides. The difficultly is assigning an 

appropriate significance threshold since most of the peptides were correctly matched regardless of 

program used. The low impact on Crux is possibly due to the lack of resampled peptides that share 

similar ion patterns. The OMSSA E-values increased with fewer ions present since the E-value 

computation assumes that all possible ions are present. X!Tandem is clearly negatively influenced 

by the decreased number of ions available. A possible explanation is that with fewer ions present, 

the score of the correct match is not sufficient different from the incorrect matches as with all ions, 

both leading to a low score. 
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ION SERIES-DEPENDENT SCORING 

An alternative approach to improve the speed of programs is to search only one ion series. 

Spectra scoring using a single ion series affected only OMSSA and X!Tandem. Table 10 

summarizes the performance of the database search programs by ion series scored. Tables 11 and 

12 summarize the performance of the database search programs across match significance levels 

when the b- and y-ion series are scored, respectively. 

Scoring only one of the ion series was noticeably detrimental to peptide detection for both 

OMSSA and X!Tandem. The y-ion series provided a higher detection rate (89% and 82% for 

OMSSA and X!Tandem, respectively) than the b-ion series (87% and 78% for OMSSA and 

X!Tandem, respectively). Consequently, only 50.8% and 55.3% of peptides were correctly 

detected by both programs using the b- and y-ion series, respectively. The percentage of false 

positive peptide matches in both programs was 6% and 5% for the b- and y-ion series, respectively. 

Very few peptides were incorrectly identified by both programs (0.3%);  X!Tandem and OMSSA 

incorrectly matched 0.8% and 3% of the peptides, respectively. This result indicated that OMSSA 

may be more prone to false positive results when scoring only one ion series. 

The major reason for weaker performance of X!Tandem when scoring one ion series was 

that the peptides had less significant E-values than when scoring both ion series. At the E-value < 1 

x 10
-5

 threshold, 78% and 82% of the peptides were identified by X!Tandem when only the b-ion 

series and y-ion series were scored, respectively. Consequently, using an unadjusted E-value < 1 x 

10
-2

 threshold, 90% and 92% of peptides were detected in both X!Tandem and OMSSA when b- 

and y-ion series were scored, respectively. The major difference between the two ion series in 
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OMSSA was that scoring using only y-ion series resulted in fewer unmatched peptides (difference 

of 34), mismatched peptides (difference of 12) and peptides with less significant E-values (98% of 

peptides with the E-value < 1 x 10
-2

). In both programs, higher charge states were associated with 

slightly poorer peptide detection with scoring based on the y-ion series being less affected than on 

the b-ion series. 

The length of the peptide was also critical when one ion series was used to score the 

matches between the query and target database mass spectra. The minimum length among the 

detected peptides was 10 and 13 amino acids in OMSSA and X!Tandem, respectively, compared to 

six amino acids when both ion series were scored.  Consequently, the median length of the 

correctly identified peptides with both programs using the b- and y-ion series was 83 and 76 amino 

acids, respectively. Also, the median length of the missed (false negative) peptides in both 

programs was seven and six amino acids when the b- and y-ion series were used, respectively. This 

result reflects the issues of correctly identifying small peptides at E-value < 1 x 10
-6

. 

CHIMERA SPECTRA 

The presence of chimera spectra is a likely event among prohormone peptides and the 

performance of the programs under these circumstances was evaluated. The 2049 peptides that had 

at least one other peptide with theoretical mass ± 0.4 Da were split into 945 groups including at 

least two peptides within a theoretical mass range or tolerance within group. Of these, 804, 126, 

12, and 3 groups included 2, 3, 4 and 5 peptides, respectively. The performance of each program to 

identify the peptides in a chimera was evaluated. Overall, Crux had the best performance and 



 

61 
 

X!Tandem generally failed to identify peptides from chimera spectra regardless of the threshold 

used. At a E-or p-value < 1 x 10
-6

, OMSSA, X!Tandem and Crux, correctly identified 79%, 10% 

and 76% of peptides in each group, respectively (Table 13). At E- or p-value < 1 x 10
-2

 threshold, 

OMSSA, X!Tandem and Crux, correctly identified 81%, 43% and 99% of peptides, respectively. 

Further study of the peptides identified at E-value < 1 x 10
-2

 indicated that X!Tandem only 

detected one peptide in the chimera spectra resulting in 93% of spectra with at least one peptide 

correctly matched. At the other extreme, Crux only had three unmatched peptides at p-value < 10
-2

. 

OMSSA had a correct match rate similar to Crux at  E-value < 1 x 10
-6

 and lower at E-value < 1 x 

10
-2

 threshold. The typical OMSSA correct match is at a high E-value or else OMSSA fails to 

match the peptide.  A further decrease in the accuracy of peptide identification in chimeras was 

observed for the peptides less than 10 amino acids in length in case of X!Tandem and Crux. At E- 

or p-value < 10
-2 

, the correct identification by OMSSA, X!Tandem and Crux was 81.2%, 37.6% 

and 91.8%, respectively. Consistent with our results, Houel et al. [66] reported that MASCOT 

correctly identified peptide A in 87% of chimera spectra containing 50% of peptide A and 50% of 

peptide B.  

ACROSS-SPECIES COMPARISON 

The identification of peptides using information from sequence variants or a different 

species must consider the potential impact of non-synonymous amino acid changes, insertions and 

deletions. Changing the precursor tolerance is a simple approach to account for non-synonymous 

amino acid changes. Increasing the precursor tolerance during the database search process allows 

the evaluation of a wider range of peptide sequences, resulting in an increment in the potential 
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number of matches. The disadvantages of increasing the tolerance include the increased number of 

candidates to evaluate (increasing computational time) and an increased chance of an incorrect 

match. The evaluation of simulated spectra permitted the assessment of the impact of the precursor 

tolerance on the accuracy of peptide identification. 

At a 100 Da precursor tolerance, equivalent to less than an "average" amino acid in 

difference, four and two mouse peptides had two and three matches in the rat database, 

respectively.  None of the additional matches to the mouse peptide correctly identified the 

corresponding or expected rat peptide. At a 200 Da precursor tolerance that encompasses most 

amino acid mutations, 13 and 1 mouse peptides had two and three rat matches although there were 

only four second ranked matches to the expected rat peptide. At a 500 Da precursor tolerance that 

encompasses up to three amino acid substitution there were 16 and 1 mouse peptides that had two 

and three rat matches, respectively, but only seven matches identified the expected rat peptide. At a 

1000 Da precursor tolerance that permits multiple amino acid changes, 17, 3, and 1 mouse peptides 

had two, three and four rat matches, respectively, although only seven peptides that had two 

matches identified the expected rat peptide. In all cases, when there was more than one correct 

match (when complete and incomplete prohormone sequences were used to generate rat peptides), 

one of the rat matches had a closer mass to the mouse peptide than the other match. Among the six 

mouse peptides that had second ranked matches to the expected rat homolog, three, two and one 

peptides had second ranked matches at precursor tolerance < 1000 Da, 1000 Da < precursor 

tolerance < 500 Da, and 500 Da < precursor tolerance < 200 Da, respectively. 
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This limited ability of programs to handle sequence differences without adjustments in the 

search parameter specifications was also reported in a study of the similarity between the target 

and an isobaric decoy database by Colaert et al. [67]. In this study, peptides that were isobaric to 

the correct sequences were generated by permuting a pair of amino acids or using insertions or 

deletions. The resulting decoys became almost homeometric because only the ions that fragment at 

the modified region were actually different. No obvious difference in the type of change was 

reported however, the importance of the location of the change within the peptide was not 

examined.  

Irrespective of tolerance level, 91 and 110 mouse peptides were correctly matched to the 

expected rat peptide at E-value < 1 x 10
-6

 and E-value < 1 x 10
-2

, respectively. Most matches were 

exact (80) or had a single amino acid substitution (15). Only three mouse peptides matches that had 

an E-value < 1 x 10
-2

 across all tolerances matched a longer or shorter form of the expected rat 

counterpart in at least one tolerance level. Only one peptide that differed in length by a single 

amino acid between the rat and mouse sequences was identified. Among the mouse queries, 45 

peptides matched an incomplete or truncated rat peptide. Most of the 19 partial peptide matches 

(13) had an E-value < 1 x 10
-6

 in particular precursor tolerance levels and this could be due to 

matches with peptide lengths. Most of the 26 non-significant E-value < 1 x 10
-2

 matches (19) 

exhibited amino acid substitutions and ten were due to a single change.  

Regardless of the precursor tolerance level, 96 mouse peptides were not correctly matched. 

In these cases, the difference between the mouse and homologous rat sequences averaged 202 Da 

and ranged from 2 Da to 3727 Da. All of these peptides had more than one difference between 
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species including sequence length and amino acid substitutions. All peptides that differed in 

sequence length also had at least one amino acid substitution. 

There were 57 mouse peptides unmatched in the rat database that had the same length in 

both species. These included 31 peptides that are annotated in UniProt as propeptides, 12 peptides 

that are known to be cleaved further to produce bioactive peptides, three UniProt named peptides 

that are the only named peptides produced from the prohormone and additional 11 UniProt named 

peptides that do not correspond to any of the previous groups. Only three of these unmatched 

mouse peptides differed from the rat peptide by a single amino acid. The remaining 54 peptides 

had the same length in both species (i.e., alignment with no gaps) and included multiple amino acid 

substitutions.  

Among the mouse peptides unmatched in the rat database, four peptides had the same 

length in both species and are expected to have biological function. Two large neuropeptides, 

adrenomedullin and osteocrin, have multiple amino acid substitutions indicating that mutations are 

more likely to be tolerated in non-critical regions compared to critical regions. The relaxin B chain 

(P47932[23-57]) has nine amino acid differences spanning over 35 amino acids, and these occur 

near the center of the peptide although this peptide is not well conserved across species. 

Neuropeptide B-29 (Q8K4P1[22-50]) only had two changes near the center of the peptide ( at 

position 9 (P to S) and position 18 (S to A) mouse to rat) that resulted in incorrect peptide 

identification.  
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The remaining 39 unmatched mouse peptides differed in peptide length and amino acid 

substitutions between species. Only 11 of these peptides had at least four amino acid substitutions 

and differed in length by at least three amino acids. In most cases the difference in length was due 

to a loss of amino acids rather than sequence differences or unreported cleavages. However, for the 

neuropeptide Vascular endothelial growth factor D there were sequence differences because the 

UniProt rat version is not the complete rat prohormone sequence. The average number of gaps 

between the mouse and rat sequences was 3.6 indicating that X!Tandem was not able to 

simultaneously accommodate variations both in sequence length and amino acids. 

For the unmatched mouse peptides, increasing the precursor tolerance over 100 Da added 

19 peptides that had non-significant matches when the precursor tolerance was 100 Da. However, 

the increased precursor tolerance also resulted in the matches to longer or shorter versions of the 

correct match rather than the correct match of a similar size. Typically, when this occurred the 

correct match was detected at a lower precursor tolerance level. In many cases this was due to the 

precursor tolerance being too small to allow for the mass difference between the mouse and rat 

sequences. Although for one peptide there was a significant match that was not present in the 

higher precursor tolerance levels. Consistent with the increased tolerance that permitted matching 

of truncated peptides that shared the same sequence, all of the matches involved truncated peptides. 

This result was consistent with the increased tolerance that allows additional amino acids. The 

correct match would have been identified by the actual mass difference between the observed and 

theoretical masses.  
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With the exception of one mouse peptide, all the unmatched peptides that had a 

corresponding rat sequence of the same length were not considered to be functionally constrained 

due to inactive peptides or changes in the non-critical functions. This lack of functional constrain 

permits a potentially large number of non-synonymous substitutions in these peptides. This results 

in species differences that cannot be accounted for in the standard mass spectrometry just by using 

increased tolerance and a known sequence in one species. Rather, the identification of peptides 

with a large number of potential variation requires a suitable database or error tolerant search 

program [68, 69]. 

Further characterization of the differences between mouse and rat sequences helped to 

understand the impact of sequence variations on the database search methods. The differences 

between the mouse and rat peptide sequences were characterized using two complementary 

criteria, the mass differences and Levenshtein distances. The Levenshtein or edit distance is 

defined as the minimum number of edits needed to transform one string into the other, with the 

allowable edit operations being insertion, deletion, or substitution of a single character. In this 

study string corresponds to a peptide sequence and a character corresponds to an amino acid. The 

median mass difference and Levenshtein distance for the correct matches was zero, reflecting that 

most of these peptides had the same sequence in rat and mouse. The mouse peptides that were not 

matched had the largest Levenshtein distance and average mass difference with the expected rat 

counterpart. The Levenshtein distance and mass differences for the marginally significant (E-value 

< 1 x 10
-2

) correctly matched peptides averaged 37.4 and 1.36, respectively. The difference in E-

value between mouse and rat peptides with partial matches in some precursor tolerance levels 

appeared mainly due to the higher average Levenshtein distance than mass differences.  
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Peptide sequence dissimilarity and mass differences were insufficient to explain the 

matching and significance of the match. As previously noted, the higher precursor tolerance 

typically accommodated some of the previous differences in peptide mass. Evaluation of the 

individual peptides that differ among species indicated that location of the sequence has a role in 

the determining match and associated significance. To further investigate this, the number of 

differences (gaps plus substitutions) in the aligned rat and mouse sequences was determined for the 

N-terminal 25%, the C-terminal 25% and the remaining middle 50% of the total length of the 

aligned peptides. The region with the largest impact is the C-terminal region where the average 

number of sequence differences increased from 0.02 in the significant correct matched peptides to 

3.76 in the non-significant, non-matched peptides. A very similar difference was also observed 

when there were no gaps in the alignment (0.02 vs. 3.42) indicating that insertions or deletions 

were not factors in the identification of peptides using databases that include variants. The 

difference in the C-terminal region between mouse and rat affects the y-ion series and the large b-

ion series. This result suggests that X!Tandem heavily relies on matching these ions. This is also 

consistent with the poor performance of the program when a random percentage of ions was 

available for peptide identification, especially when only 25% of the ions were available for 

scoring. 

2.4 CONCLUSION AND FUTURE STUDIES 

The present study demonstrates that although most neuropeptides and prohormone peptides 

with ideal MS/MS spectra can be identified using standard database search methods, a careful 

assessment of the accuracy of the match is still required. The present study evaluated the impact of 
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various factors including sequence size, characteristics (including charge state, neutral mass loss), 

variation (including cross species searches), spectra completeness and search specifications  on 

accurate peptide identification. Our results indicate the need to optimize for the search for 

neuropeptides and small peptides. The database search methods must accurately assess the match 

significance irrespective of peptide length, especially for small prohormone peptides less than ten 

amino acids in length. 

The results from the present study indicate that the correct identification of peptides based 

on a single threshold across all spectra is challenging even when provided with ideal spectra and 

target data. A major component of this challenge was the scoring and assignment of a single 

significance threshold for all peptides. This problem is exacerbated when analyzing experimental 

data because the quality of the data and the specifications of the program have a large impact on 

the accuracy of peptide identification. A more comprehensive simulation approach can be used to 

extend these results to assess the importance of other aspects of MS/MS on peptide identification 

[70]. 

The evaluations performed in this study assumed that the peptides had an ideal, uniform 

spectra. Different peptide ion fragmentation methods (e.g., CID, HCD, ETD) have different 

abilities to fragment; thus, resulting in different identification performance by database search tools 

[71]. Future studies will consider the impact of the fragmentation method and PTMs on the ability 

to identify neuropeptides. 
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In recent years, the identification of peptides using spectrum-to-spectrum search tools has 

been proposed [72]. Spectral library search strategies are a promising alternative for peptide 

identification, in which MS/MS spectra are directly compared against a reference library of 

confidently assigned spectra. A study of the effectiveness of spectrum-to-spectrum searches when 

applied to small prohormone peptide identification needs to be undertaken. Supporting resources 

include the development of a well-curated library of neuropeptide MS/MS spectra. 
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FIGURES AND TABLES 

 
 
Figure 1. General view of the experimental steps and flow of the data in shotgun proteomics analysis. Sample 
proteins are first proteolytically cleaved into peptides. After separation using one- or multidimensional 
chromatography, peptides are ionized and selected ions are fragmented to produce signature tandem mass 
spectrometry (MS/MS) spectra. Peptides are identified from MS/MS spectra using automated database search 
programs. Peptide assignments are then statistically validated and incorrect identifications filtered out (peptide 
STHICR). Sequences of the identified peptides are used to infer which proteins are present in the original 
sample. Some peptides are present in more than one protein (peptide HYFEDR), which can complicate the 
protein inference process1. 

                                                 
1 Springer and the Methods in Molecular Biology, 367, 2007, 87-119, Protein identification by tandem mass 

spectrometry and sequence database searching, Nesvizhskii AI, 1; with kind permission from Springer Science 
and Business Media. 
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Figure 2. Tandem mass spectrometry (MS/MS) database searching. Acquired MS/MS spectra are correlated 
against theoretical spectra constructed for each database peptide that satisfies a certain set of database search 
parameters specified by the user. A scoring scheme is used to measure the degree of similarity between the 
spectra. Candidate peptides are ranked according to the computed score, and the highest scoring peptide 

sequence (best match) is selected for further analysis2. 

 

 

 

 

 

 

 

 

 

                                                                                                                                                             
 
2Springer and the Methods in Molecular Biology, 367, 2007, 87-119, Protein identification by tandem mass 

spectrometry and sequence database searching, Nesvizhskii AI, 3; with kind permission from Springer Science 
and Business Media. 
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Figure 3. The Crux algorithm3. 

 
 
 
 
 
 

 

                                                 
3 Adapted with permission from (Park, C. Y., Klammer, A. A., Kall, L., MacCoss, M. J., Noble, W. S., Rapid and 

accurate peptide identification from tandem mass spectra. J. Proteome Res. 2008, 7, 3022-3027. doi:10.1021/pr800127y). 
Copyright (2008) American Chemical Society. 
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Figure 4. Decision tree depicting the flow of criteria used to evaluate the performance of the three tandem 
mass spectrometry database search programs. 
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Figure 5. Venn diagram depicting the common and distinct true positive peptides identified from the three 
database search programs, X!Tandem, OMSSA, and Crux using all ion information and peptide charge state 3. 
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Figure 6. Venn diagram depicting the common and distinct peptides identified by all three programs 
(X!Tandem, OMSSA, and Crux) using only y-ion series information and peptide charge state 3. 
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Figure 7. Venn diagram depicting the common and distinct peptides identified by all three database search 
programs using only b-ion series information and peptide charge state 3. 
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Figure 8. Venn diagram depicting the common and distinct peptides identified by all three database search 
programs using only 50% of all ion information and peptide charge state 3. 
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Figure 9. Venn diagram depicting the common and distinct peptides identified by all three database search 
programs using only 25% of all ion information and peptide charge state 3. 
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Figure 10. Comparison of OMSSA, Crux, and X!Tandem log10(E- or p-values) averaged across peptide length 
and precursor charge states for all peptides (main plot) and magnified for peptides up to 60 amino acids in 
length (insert). 
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Table 1. Masses of different ion types4. 

Ion type Mass 

a σ
a)
 - 26.9871 

b σ + 1.0078 

c σ + 18.0344 

x σ + 44.9977 

y σ + 19.0184 

neutral loss (nh3 or h2o) b - 17 or y - 17 or  

b - 18 or y - 18 

a) Total residue mass of ion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                                 
4 http://www.bioinformaticssolutions.com/peaks/downloads/masstable.html 
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Table 2. Summary of the mouse peptides used to simulate the query spectra and of the mouse and rat peptides 
used to populate the search database. 

 Mouse Rat 

Number of prohormones 92 90 

Number of peptides 7850 7647 

Average (min, max) number of peptides/prohormones 74.06 (1, 1139) 76.47 (1, 1172) 

Average (min, max) peptide size (amino acids) 75.23 (5, 255) 76.00 (5, 255) 

Percentage of peptides from UniProt 3.35 3.45 

Percentage of peptides not from UniProt 96.65 96.55 

Percentage of peptides less than 10 amino acids in length 5.45 5.07 

Percentage of peptides less than 20 amino acids in length 16.60 15.72 

Percentage of peptides less than 30 amino acids in length 26.52 25.77 
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Table 3. Comparison of peptide detection among database search programs. 

Correctly 

Matched 

 X!Tandem+OMSSA+Crux OMSSA+Crux X!Tandem+Crux Crux 

  All
a)
 OC OX O C N OC O C N XC C N N 

Scenario
b)
 Charge               

All +1 7028 8 378 327 0 23 0 0 1 84 1 0 0 0 

 +2 7012 7 397 313 0 35 0 0 0 85 1 0 0 0 

 +3 7027 5 379 265 0 87 0 0 3 82 2 0 0 0 

b + y ions +1 6874 5 503 339 0 3 41 0 1 84 0 0 0 0 

 +2 6888 5 485 340 0 3 44 0 0 85 0 0 0 0 

 +3 6978 3 389 337 0 8 50 0 1 84 0 0 0 0 

b ions +1 6837 109 105 184 46 484 0 0 1 84 0 0 0 0 

 +2 6831 99 109 175 60 491 0 0 0 85 0 0 0 0 

 +3 6887 99 57 105 57 560 0 0 1 84 0 0 0 0 

y ions +1 6911 126 118 221 17 370 2 0 1 84 0 0 0 0 

 +2 6905 116 133 202 11 397 1 0 1 84 0 0 0 0 

 +3 6897 99 133 157 24 454 1 0 2 83 0 0 0 0 

R50 +1 6646 230 69 394 14 410 1 0 0 85 1 0 0 0 

 +2 6638 244 69 382 10 421 1 0 2 83 0 0 0 0 

 +3 6668 254 36 278 27 502 0 0 1 84 0 0 0 0 

R25 +1 5370 661 21 156 318 989 198 4 8 52 0 1 29 43 

 +2 5358 673 25 160 295 987 200 4 6 82 0 0 30 30 

 +3 5378 675 4 170 267 1010 210 5 5 63 0 0 22 41 

a): 

All =OMSSA, X!Tandem and Crux E- or p-value < 1 x 10
-6
. 

OC = only OMSSA and Crux E- or p-value < 1 x 10
-6
. 

OX= only OMSSA and X!Tandem E-value < 1 x 10
-6

. 

XC= only X!Tandem and Crux E- or p-value < 1 x 10
-6

. 

O= only OMSSA E-value < 1 x 10
-6

. 

C= only Crux p-value < 1 x 10
-6

. 

N= No program E- or p-value < 1 x 10
-6

. 

b): 

All = Match using all b- and y-ion series including neutral mass losses. 

b + y ions = Match using all b- and y-ion series excluding neutral mass losses. 

b ions = Match only using the b-ion series including neutral mass losses. 

y ions = Match only using the y-ion series including neutral mass losses. 

R50 = Match only using random 50% of all ions including neutral mass losses. 

R25 = Match only using random 25% of all ions including neutral mass losses. 

 

 

 

 

 

 

 



 

94 
 

Table 4. Performance of the three programs in the identification of peptides with precursor ion charge states 
+1, +2, and +3 when all ions from both series are available including neutral mass losses. 

Significance
a)
  OMSSA    X!Tandem    Crux  

 +1
e)
 +2 +3  +1 +2 +3  +1 +2 +3 

Unmatched
b)

 1 1 1  69 67 63  0 0 0 

Mismatch
c)
 0 0 1  16 18 22  0 0 0 

0 0 0 0  4 6 5  1 5 1 

1 1 2 4  73 67 72  118 131 109 

2 11 19 42  91 88 91  214 209 237 

3 48 52 34  82 79 82  171 165 146 

4 24 13 33  33 41 33  160 150 151 

5 24 34 59  75 74 74  151 172 170 

6 49 57 54  91 85 89  172 170 170 

7 73 58 40  83 78 77  171 179 182 

8 28 27 336  47 59 51  194 179 189 

>=9 7591 7587 7246  7186 7188 7191  6498 6490 6495 

Prop >6
d)

 98.6% 98.5% 97.8%  94.4% 94.4% 94.4%  89.6% 89.4% 89.6% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 5. Performance of the three programs in the identification of peptides with precursor ion charge states 
+1, +2, and +3 when all ions from both series are available excluding neutral mass losses. 

Significance
a)
  OMSSA    X!Tandem    Crux  

 +1
e)
 +2 +3  +1 +2 +3  +1 +2 +3 

Unmatched
b)

 0 0 0  115 116 118  0 0 0 

Mismatched
c)
 0 0 0  11 13 17  0 0 0 

0 0 0 0  2 4 3  1 5 2 

1 0 1 1  73 70 72  129 153 124 

2 1 0 2  93 90 93  236 228 233 

3 2 5 6  80 81 80  226 193 171 

4 10 30 78  30 32 33  178 175 140 

5 75 52 6  69 71 67  170 163 151 

6 4 7 4  95 90 94  172 186 159 

7 5 3 63  74 76 74  213 190 198 

8 63 68 79  13 17 13  200 245 207 

>=9 7690 7684 7611  7195 7190 7186  6325 6312 6465 

Prop >6
d)

 98.9% 98.9% 98.8%  94.0% 93.9% 93.8%  88.0% 88.3% 89.5% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 6. Performance of the three programs in the identification of peptides with precursor charge states +1, 
+2, and +3 when only the b-ion series is available including neutral mass losses.  

Significance
a)
  OMSSA    X!Tandem    Crux  

 +1
e)
 +2 +3  +1 +2 +3  +1 +2 +3 

Unmatched
b)

 0 0 0  79 76 75  0 0 0 

Mismatched
 c)

 0 0 0  6 9 10  0 0 0 

0 160 179 234  237 237 240  0 4 2 

1 84 94 100  109 110 107  93 99 105 

2 87 82 89  149 147 145  229 249 214 

3 100 100 112  122 123 125  215 175 175 

4 94 92 83  96 97 97  154 161 157 

5 90 89 84  105 105 104  167 173 153 

6 64 57 119  137 137 134  188 195 166 

7 94 111 83  104 101 104  167 160 195 

8 93 75 95  89 93 90  168 170 220 

>=9 6984 6971 6851  6617 6615 6619  6469 6464 6463 

Prop >6
d)

 92.2% 91.9% 91.1%  88.5% 88.5% 88.5%  89.1% 89.0% 89.7% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value  < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 7. Performance of the three programs in the identification of peptides with precursor charge states +1, 
+2, and +3 when only the y-ion series is available including neutral mass losses.  

Significance
a)
  OMSSA    X!Tandem    Crux  

 +1
e)
 +2 +3  +1 +2 +3  +1 +2 +3 

Unmatched
b)

 0 0 0  72 69 66  0 0 0 

Mismatched
c)
 0 0 1  15 17 20  0 0 0 

0 48 55 95  138 135 138  2 8 7 

1 62 76 96  113 109 112  131 140 135 

2 86 86 104  156 161 155  196 190 186 

3 99 99 95  113 112 116  155 171 161 

4 88 86 98  98 94 99  169 149 171 

5 89 91 74  109 108 106  140 158 167 

6 77 79 90  139 143 138  173 157 193 

7 73 70 96  105 109 106  196 185 228 

8 90 99 110  103 103 104  226 226 257 

>=9 7138 7109 6991  6689 6690 6690  6462 6466 6345 

Prop >6
b)

 94.0% 93.7% 92.8%  89.6% 89.7% 89.7%  89.9% 89.6% 89.5% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value  < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 8. Performance of the three programs in the identification of peptides with precursor charge states +1, 
+2, and +3 when only random 50% of all ions are available including neutral mass losses.  

Significance
a)
  OMSSA    X!Tandem    Crux  

 +1
e)
 +2 +3  +1 +2 +3  +1 +2 +3 

Unmatched
b)

 1 0 0  73 75 66  0 0 0 

Mismatched
c)
 0 0 0  13 11 19  0 0 0 

0 71 88 136  316 296 313  9 10 11 

1 72 77 86  170 166 159  151 169 167 

2 85 69 98  133 147 145  243 241 208 

3 87 91 101  166 181 172  188 188 187 

4 106 99 96  104 107 109  180 151 148 

5 88 92 97  157 157 160  188 196 179 

6 81 95 106  109 96 95  190 198 213 

7 86 83 89  122 144 139  209 208 244 

8 74 92 92  127 117 111  244 230 235 

>=9 7099 7064 6949  6360 6353 6362  6248 6259 6258 

Prop >6
d)

 93.5% 93.4% 92.2%  85.6% 85.5% 85.4%  87.8% 87.8% 88.5% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value  < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 9. Performance of the three programs in the identification of peptides with precursor charge states +1, 
+2, and +3 when random 25% of all ions are available including neutral mass losses.  

Significance
a)
  OMSSA    X!Tandem    Crux  

 +1
e)
 +2 +3  +1 +2 +3  +1 +2 +3 

Unmatched
b)

 73 60 63  295 312 311  0 0 0 

Mismatched
c)
 4 0 1  10 10 13  0 0 0 

0 492 512 506  1133 1113 1115  60 71 80 

1 182 177 170  284 292 280  322 322 298 

2 184 194 189  228 228 250  302 306 244 

3 178 188 169  229 227 225  218 226 183 

4 160 143 171  140 128 131  183 182 236 

5 167 156 139  136 153 139  209 211 274 

6 133 147 154  120 110 130  273 236 285 

7 113 124 124  146 130 132  326 318 312 

8 106 100 125  131 126 112  365 378 434 

>=9 6058 6049 6039  4998 5021 5012  5592 5600 5504 

Prop >6
d)

 81.7% 81.8% 82.1%  68.7% 68.6% 68.6%  83.5% 83.2% 83.2% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 10. Performance of OMSSA and X!Tandem by ion series scored for precursor charge states +1, +2, and 
+3.  

Correctly 

matched
a)
 

Significance 

Threshold
 b)

 

 

b-ion series scored  y-ion series scored 

  +1
c)
 +2 +3  +1 +2 +3 

Both Both 4003 3974 3980  4459 4288 4270 

Both OMSSA 2919 2926 2791  2615 2760 2678 

Both X!Tandem 0 0 3  0 0 1 

Both None 438 460 587  331 357 443 

X!Tandem X!Tandem 177 186 184  156 147 151 

X!Tandem None 228 219 220  204 213 222 

OMSSA None 64 64 64  69 69 69 

None None 21 21 21  16 16 16 

a) Both: OMSSA and X!Tandem both correctly identified the peptide; OMSSA: only OMSSA correctly 

identified the peptide; X!Tandem: only X!Tandem correctly identified the peptide; None: Neither OMSSA 

and X!Tandem correctly identified the peptide. 

b) Both: OMSSA and X!Tandem E-values were both < 1 x 10
-6

; OMSSA: only OMSSA E-value was < 1 x 

10
-6

; X!Tandem: only X!Tandem E-value was < 1 x 10
-6

; None: Neither OMSSA and X!Tandem E-value 

was < 1 x 10
-6
. 

c)
 
Peptide charge state. 
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Table 11. Performance of OMSSA and X!Tandem across match significance levels and precursor charge states 
when the b-ion series is scored. 

Significance
a)
  OMSSA    X!Tandem  

 +1
e)
 +2 +3  +1 +2 +3 

Unmatched
b)

 415 396 373  75 75 71 

Mismatched
c)
 11 30 54  10 10 14 

0 122 141 171  248 249 249 

1 63 64 89  113 113 115 

2 76 65 80  187 195 190 

3 76 89 106  270 292 298 

4 103 95 88  746 851 854 

5 62 70 118  1902 1800 1788 

6 102 118 110  1536 1471 1471 

7 108 105 99  842 868 878 

8 116 95 114  690 699 691 

>=9 6596 6582 6448  1231 1227 1231 

Prop >6
d)

 88.2% 87.9% 86.3%  54.8% 54.3% 54.4% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 12. Performance of OMSSA and X!Tandem across match significance levels and precursor charge states 
when the y-ion series is scored. 

Significance
a)
  OMSSA    X!Tandem  

 +1
e)
 +2 +3  +1 +2 +3 

Unmatched
b)

 365 361 355  74 70 70 

Mismatched
c)
 11 15 34  11 15 15 

0 47 60 79  151 145 152 

1 50 51 69  108 108 110 

2 69 67 77  179 186 183 

3 66 73 92  214 234 241 

4 87 86 103  591 688 693 

5 81 89 93  1785 1857 1853 

6 90 84 113  1948 1794 1786 

7 80 95 118  861 841 830 

8 126 122 97  648 613 620 

>=9 6778 6747 6620  1280 1299 1297 

Prop >6
d)

 90.1% 89.8% 88.5%  60.3% 57.9% 57.7% 

a) Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10
-t
. 

b) Unmatched: the program does not provide a match with the program setting. 

c) Mismatched: the program provided an incorrect match. 

d) Percentage of the matches that have E- or p-value < 1 x 10
-6
. 

e)
 
Peptide charge state. 
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Table 13. Performance of X!Tandem, OMSSA and Crux in the number of spectra and percentage of peptides 
identified from chimera spectra with precursor charge state +1 with all ions are available and including neutral 
mass losses. 

  Number of peptides correctly matched in a spectra 

with an E- or p-value  < 1 x 10
-2

 

Percentage of peptides 

detected 

Program N pep
a)
 0 1 2 3 4 5 >2

 b)
 >6

 c)
 

OMSSA 2 11 213 580    85.4 84.1 

 3 3 25 64 34   67.5 61.9 

 4 1 3 5 2 1  47.9 33.3 

 5 0 0 1 0 1 1 73.3 66.7 

 Total 15 241 650 36 2 1 81.1 78.7 

X!Tandem 2 0 799 5    50.3 12.8 

 3 59 67 0 0   17.7 0.5 

 4 11 1 0 0 0  2.1 0.0 

 5 3 0 0 0 0 0 0.0 0.0 

 Total 73 867 5 0 0 0 42.8 10.2 

Crux 2 0 10 794    99.4 81.3 

 3 0 0 3 123   99.2 61.6 

 4 0 0 0 0 12  100.0 20.8 

 5 0 0 0 0 0 3 100.0 13.3 

 Total 0 10 797 123 12 3 99.4 75.8 

a) Number of peptides simulated in a spectra. 

b) Percentage of correctly matched peptides with an E- or p-value  < 1 x 10
-2
. 

c) Percentage of correctly matched peptides with an E- or p-value  < 1 x 10
-6
. 

 

 


