
© 2012 Abdullah Al Muzahid

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/10201216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EFFECTIVE ARCHITECTURAL SUPPORT FOR DETECTING CONCURRENCY BUGS

BY

ABDULLAH AL MUZAHID

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Josep Torrellas, Chair
Professor Marc Snir
Associate Professor Darko Marinov
Assistant Professor Sam King
Dr. Matthew Frank, Intel
Dr. Paul Petersen, Intel

Abstract

Multicore machines have become pervasive and, as a result, parallel programming has received

renewed interest. Unfortunately, writing correct parallel programs is notoriously hard. Therefore,

it is important to innovate with techniques and approaches to tackle various types of concurrency

bugs.

This thesis aims at making parallel programming easier by detecting some of the most common

and difficult concurrency bugs in shared memory parallel programs, namely data races, atomicity

violations, and sequential consistency violations. Specifically, we propose novel, effective and

efficient hardware-based techniques that help detect and isolate these bugs. We use hardware-based

solutions because they lead to low overhead solutions. Therefore we can use these techniques to

detect the bugs both during development time and during production run.

The proposal to detect data races is called SigRace. It uses hardware address signatures to

detect data races dynamically at run time. As a processor runs, the addresses of the data that it

accesses are automatically encoded in signatures. At certain times, the signatures are automatically

passed to a hardware module that intersects them with those of other processors. If the intersection

is not null, a data race may have occurred, in which case we run a more detailed analysis to pinpoint

the race.

SigRace can detect data races successfully. But even if a multithreaded program does not have

any data races, it can still show incorrect behavior because of a bug named atomicity violation.

The proposal to detect atomicity violations is called AtomTracker. It is based on first trying to

learn atomicity constraints automatically from the program, by analyzing many correct executions.

After it finds the set of possible atomic regions, the hardware monitors the execution to detect

ii

any violations of these atomic regions. AtomTracker uses a hardware very similar to SigRace to

accomplish this.

The above approaches tackle data races in a classical sense or in a more higher level sense

(namely atomicity violations). The last work of this thesis is to find out a special pattern of data

races that are particularly hard to detect and analyze. This complicated pattern of data races leads

to violation of sequential consistency which is the underlying behavior of the memory model

that programmers usually assume. Sequential consistency violations (SCV) lead to some of the

most notorious bugs in parallel programs. In order to detect SCV in a machine with a relaxed

memory model, we leverage cache coherence protocol transactions and dynamically detect cycles

in memory-access orderings across threads. When one such cycle is about to occur, an exception

is triggered, providing the exact architectural state.

We performed detailed experimentation with each of these techniques and showed that they are

effective in detecting various types of concurrency bugs. More importantly, we uncovered several

new and previously unreported bugs in various popular open source codes using these solutions.

iii

To my loving parents, Laz, and Sadit.

iv

Acknowledgments

I would like to acknowledge numerous people who helped me along the way to my PhD.

First and foremost, I would like to thank my adviser Josep Torrellas who gave me directions in

every step of this journey. He taught me how to do research - how to generate ideas, how to debug

them, how to design experiments and finally how to write papers. But most importantly, he taught

me how to be persistent no matter what happens. I hope that I can apply these lessons throughout

the rest of my career and life.

I would like to thank my committee members - Marc Snir, Darko Marinov, Matthew Frank,

Paul Petersen and Sam King. They made time for my preliminary proposal and final defense

out of their busy schedules. Without their recommendation letters, my job search would not be

successful. Particularly, I would like to mention the invaluable mock interview opportunity that

Darko has provided to me. It boosted my confidence a lot. I have also learned a lot from Paul and

Matt during my internship in Intel.

Of course, nothing would have been possible without the help and support from my family.

My parents sacrificed so many things in life for me that I cannot even express enough gratitude for

them. Laz, my loving wife, stood by me during this long journey of PhD. Without her constant

love and support, I probably would have gone insane a long time ago. She believed in me even

when I did not believe in myself. And my son, Sadit made me smile even when I was having

a crappy day. His endless smile, enthusiasm and intelligence always made my day. I would be

ungrateful if I do not mention about my in-laws. Specially my father-in-law and mother-in-law

always encouraged and supported us in various endeavors of our little family.

I have to mention about my friends and group mates in the department. Inside the I-ACOMA

v

group, I had the opportunity to interact with some of the brilliant minds of computer architecture.

I spent countless hours talking to Wonsun, Ulya, Shanxiang, Xuehai, Nima, Yuelu, Amin about

various issues ranging from food to paper writing. Outside the group, I am specially thankful to

Neal for his invaluable help and feedback during my job talk. I would be completely remiss if I do

not mention about Sherry. She arranged all the conference travel and seminar related issues. Her

help during my job search period is unforgettable.

I am blessed with a group of friends who helped me and my family to have an enjoyable time

during our stay here. All those outing, partying, game playing and gossiping never made me realize

that I was staying thousands of miles away from home. For this I am specially thankful to Sunny,

Nayeem, Khurshid, Imran, Sonia, Fariba Apu, Atanu Bhai, Maifi Bhai, Anu Bhai, Reem, Shukti,

Muna, Farhan Bhai, Julie Apu, Ezaz Bhai, Silvi, Sarwar Bhai, Samee, Gourab, Shamim Bhai, Nila

Apu, Sakeeb, Rahat, Fahad, Hasib, Romin, Kallol, Mazhar, Ashik and many more.

I am thankful to the Bangladesh community of Urbana-Champaign. The elder members of

this community always provided advice and support to survive here. I am specially thankful to

Salim Uncle, Zenat Aunty, Shaneela Bhabi, Taher Bhai, Tarek Bahi, Luna Bhabi, Sharif Bhai,

Rushi Apu, Rani Apu, Tuhin Bhai, Nadeem Bhai, Rita Bhabi, Parul Anuty, Faruque Uncle for the

survival of my early days here.

Finally, I would like to express my gratitude towards the Almighty who has given me the

physical and mental strength to finish this daunting task.

vi

Table of Contents

Chapter 1 Introduction . 1
1.1 Proposed Approaches . 4

Chapter 2 Signature Based Data Race Detection . 6
2.1 Introduction . 6
2.2 Contributions . 7
2.3 Background & Related Works . 7

2.3.1 Logical Timestamps for Happened-Before 7
2.3.2 Hardware Schemes for Data Race Detection 9
2.3.3 Hardware Address Signatures . 10

2.4 Signature Based Race Detection . 10
2.4.1 Overview of the Idea . 10
2.4.2 Normal Execution under SigRace . 12
2.4.3 Re-Execution under SigRace . 13
2.4.4 Race Analysis under SigRace . 16

2.5 Implementation . 18
2.5.1 Hardware Modifications . 18
2.5.2 Software Interface . 20

2.6 Conclusions . 21

Chapter 3 A Comprehensive Approach to Atomic Region Inference and Violation
Detection . 22
3.1 Introduction . 22
3.2 Contributions . 23
3.3 Related Works . 23
3.4 AtomTracker-I: Automatic Inference of Atomic Regions 25

3.4.1 Basic AtomTracker-I Algorithm . 26
3.4.2 Design Decisions . 28
3.4.3 Putting It all Together . 31

3.5 AtomTracker-D: Automatic Detection of Atomicity Violations 33
3.5.1 Description of the Algorithm . 33
3.5.2 Illustrative Examples . 35
3.5.3 Generalization to More Atomic Regions 37

3.6 Hardware Implementation . 38

vii

3.6.1 Leveraging Cache Coherence Transactions 38
3.6.2 An Atomicity Violation Detection Module (AVM) Based on Address Sig-

natures . 39
3.6.3 Software Interface . 41
3.6.4 Design Issues . 42

3.7 Conclusions . 43

Chapter 4 Detecting Sequential Consistency Violations 44
4.1 Introduction . 44
4.2 Contributions . 47
4.3 Background . 48
4.4 Related Work . 49
4.5 A New Taxonomy of Data Races . 51
4.6 Vulcan: Detecting SC Violations . 53

4.6.1 Basic Algorithm to Detect Cycles . 53
4.6.2 Safe Accesses . 57
4.6.3 Detecting Dependences . 59
4.6.4 Leveraging the Coherence Protocol . 60
4.6.5 How to Detect N-Processor SC Violation 62

4.7 Vulcan Hardware Design . 63
4.7.1 Supporting Multiple Words per Line . 63
4.7.2 V-State Transitions for a Word . 64
4.7.3 SCVQ Implementation . 66

4.8 Discussion and Limitations . 68
4.9 Conclusion . 69

Chapter 5 Evaluation . 70
5.1 SigRace . 70

5.1.1 Experimental Setup . 70
5.1.2 Signature Configuration . 71
5.1.3 Block and BlockHistoryQueue[i] Size . 73
5.1.4 SigRace Effectiveness . 75
5.1.5 SigRace Overheads . 78

5.2 AtomTracker . 80
5.2.1 Training Sensitivity . 81
5.2.2 Bug Detection Ability . 84
5.2.3 False Positives . 85
5.2.4 Execution Time Overhead . 86
5.2.5 Components of AtomTracker-I . 87

5.3 Vulcan . 88
5.3.1 Experimental Setup . 88
5.3.2 Detection Ability . 89
5.3.3 Three New SC Violations Found . 91
5.3.4 Size of the SC Violation Queue (SCVQ) 95
5.3.5 Network Traffic & Execution Overhead 96

viii

Chapter 6 Conclusion . 99

References . 100

Appendix . 106

ix

Chapter 1

Introduction

Advances in semiconductor industry have ushered a new era of multicore machines. Multicore

machines are becoming so pervasive that it would be unwise not to take advantage of the increased

parallelism that they provide. Therefore, parallel programs are becoming more important than ever

before. However, parallel programming comes with its own unique set of problems. Arguably,

the most important one is the concurrency bugs. Because, none of the other things matter if the

program is buggy. So, it is important to keep innovating new ideas and techniques to debug various

types of concurrency bugs.

Concurrency bugs are software bugs related to synchronization operations of parallel programs.

Parallel programs are software systems that conduct concurrent execution of multiple tasks. These

tasks communicate with each other through shared memory or message passing. In this proposal,

we focus on shared memory parallel programs.

Concurrency bugs occur when the programmers make mistakes in using proper synchronization

operations. An example of a concurrency bug is shown in Figure 1.1. Here, two threads update

a shared variable count without any synchronization. As a result, there can be a situation where

thread T2 reads count, increments it by 1 but before storing the result back to count, thread T1

reads and updates count. As a result, the update of the thread T1 gets lost. This is a concurrency

bug namely a Data Race.

Data race detection has been the subject of many works (e.g., [15, 26, 45, 51, 53, 54, 55,

57, 58, 63, 65, 69, 71, 77, 78]), including the development of commercial software tools for race

debugging (e.g., [26, 69]) and even the proposal of special hardware structures in the machine

(e.g., [45, 57, 58, 78]). In general, there are two approaches to find data races, namely the lockset

1

t1=count
t1=t1+1
count=t1

t1=count
t1=t1+1

count=t1

T2T1

Figure 1.1: An example of a concurrency bug (data race).

approach, as in Eraser [65], and the happened-before one, as in Thread Checker [26]. The lockset

approach is based on the idea that all accesses to a given shared variable should be protected

by a common set of locks. Consequently, if it cannot find a common set of locks, it reports a

data race.The happened-before approach relies on finding concurrent accesses by using Lamport’s

happened-before clock [29]. If such accesses are found, they are reported as data races. Race

detectors that use these algorithms can be implemented either in software or in hardware.

A very closely related concurrency bug is an atomicity violation bug. An atomicity violation

can occur when the programmer fails to enclose in the same critical section all of the memory ac-

cesses that should occur atomically. During execution, such accesses get interleaved with accesses

from another thread that alters the program state, making it inconsistent.

Figure 1.2 shows an example of an atomicity violation bug in the MySql program. Variables

t→rows and binlog need to be accessed together to generate the correct logging order of concurrent

operations in the database (Figure 1.2(a)). However, the variables are protected by different critical

sections. It is possible that, in between the accesses to the two variables by a thread, a second thread

accesses them (Figure 1.2(b)). This is an atomicity violation, which results in a wrong logging

order.

Recently, atomicity violations have got lots of attention from the researchers. Existing ap-

proaches can be classified into ones requiring explicit annotation of atomic regions (AR) and oth-

ers that infer atomic regions. The proposals [22, 23, 25, 72] which are in the first category are

often not applicable to the real world big software because they require lots of effort on the part

of the programmers to annotate the atomic regions. Works [73, 35, 56, 39] in the second category

2

= 0;t−>rows = 0;t−>rows

DELETE & INSERT recorded
in correct order

DELETE & INSERT recorded
in wrong order

 lock(l);

 unlock(l);
. . .

 lock(b);
 binlog

Thread 1

(1)

 unlock(b);

.write(
"DELETE");

(2)
. . .

 lock(l);

 unlock(l);

 lock(b);
 binlog

Thread 1

(1)

 unlock(b);

.write(
"DELETE");(2)

(b)(a)

 lock(l);

 unlock(l);

 lock(b);

t−>rows ++;

binlog

. . .

Thread 2

(3)

 unlock(b);

.write(
"INSERT");(4)

 lock(l);

 unlock(l);

 lock(b);

t−>rows ++;

binlog

. . .

Thread 2

(3)

 unlock(b);

.write(
"INSERT");(4)

Figure 1.2: Atomicity violation in MySql. The variables involved in the bug are in bold. ,

have the nice property that it can be easily applied to any software as it does not need a priori

knowledge of the atomic regions.

Among the concurrency bugs, the last but not the least one that we consider is the Sequen-

tial Consistency [28] Violation (SCV) bug. Although data races have been a topic of research for

many years, not all the data races act similarly. Specifically, in terms of memory consistency, some

causes violation of SC while others do not. Data races that cause SC violation are particularly diffi-

cult to detect because often times programmers use them intentionally (e.g. inside synchronization

libraries) but the lack of proper memory fences causes SC to be violated. This type of data races

should be given higher priority because they make it harder, if not impossible, to reason about the

correctness of the program in different relaxed memory machines.

As an example, consider the simple case of Figure 1.3(a). In the example, processor PA al-

locates a variable and then sets a flag. Later, PB tests the flag and uses the variable. While this

interleaving produced expected results, the interleaving in Figure 1.3(b) did not. In here, since the

3

variable and the flag have no data dependence, the PA hardware reorders the statements. In this

unlucky interleaving, PB ends up using uninitialized data. This is an SC violation.

PB

A0: buff=malloc()

A1: init=TRUE

B0: if (init)

B1: ...=buff

(b)

PA PBPA

A1: init=TRUE

A0: buff=malloc()

B0: if (init)

B1: ...=buff

(a)

Figure 1.3: Example of an SC violation.

Most of the prior works either try to find places in the program where to insert fences to prevent

SCVs [67, 18, 20, 27, 30, 70] or dynamically try to detect SC violations by looking for near by

data races as a proxy for SCVs [24, 38, 43].

1.1 Proposed Approaches

We proposed three approaches to detect these three types of concurrency bugs.

SigRace [48] is proposed to detect data races with some hardware support. It relies on hard-

ware address signatures [12]. As a processor runs, the addresses of the data that it accesses are

automatically encoded in signatures. At certain times, the signatures are automatically passed to a

hardware module that intersects them to those of other processors. If the intersection is not null,

a data race may have occurred. With SigRace, there are no changes to the cache or the cache co-

herence protocol messages, and there are no critical-path operations performed on local/external

access to the cache. Moreover, lines can be displaced or invalidated from caches without affecting

SigRaces ability to detect data races.

Our second proposal, AtomTracker [49] is a comprehensive approach to AR inference and

violation detection. It is the first scheme to (1) automatically infer generic ARs (not limited by

issues such as the number of variables accessed, the number of instructions included, or the type of

4

code construct) and (2) automatically detect violations of them at runtime with negligible execution

overhead. No programmer input or annotations are needed. AtomTracker has two parts: one that

automatically infers ARs (AtomTracker-I) and one that automatically detects violations of their

atomicity (AtomTracker-D).

To detect SC violation bugs, we propose Vulcan. Unlike most existing approaches, it does

not rely on data races to detect SC violations. Rather, it relies on the cache coherence protocol

to dynamically record the observed inter-thread data dependences, and then checks whether they

form cycles. These dependences are kept around only for as long as they can participate in a cycle,

and are discarded soon after. Both the recording and the checking of these dependences is done in

hardware for minimum execution overhead.

All of these proposals detect concurrency bugs with some hardware support. The reason is that

hardware support leads to low overhead solutions. Therefore, we can use them both in development

time and in production run. In a nutshell, this thesis can be summarized through the following

research statement.

We want to make parallel programming easier by providing always-on hardware support to

detect different types of concurrency bugs.

5

Chapter 2

Signature Based Data Race Detection

2.1 Introduction

An important type of concurrency bug is a data race. A data race occurs when two threads access

the same variable without an intervening synchronization and at least one of the accesses is a

write. The erroneous program behavior caused by the race may only appear under certain access

interleavings, making debugging data races notoriously hard.

For this reason, data race detection has been the subject of many works (e.g., [15, 26, 45, 51,

53, 54, 55, 57, 58, 63, 65, 69, 71, 77, 78]). In general, there are two approaches to finding data

races, namely the lockset approach, as in Eraser [65], and the happened-before one, as in Thread

Checker [26]. The lockset approach is based on the idea that all accesses to a given shared variable

should be protected by a common set of locks. Consequently, it tracks the set of locks held while

accessing each variable. It reports a violation when the currently-held set of locks (lockset) at two

different accesses to the same variable have a null intersection.

The happened-before approach relies on epochs. An epoch is a thread’s execution between two

consecutive synchronization operations. Each processor has a logical clock, which identifies the

epoch that the processor is currently executing. In addition, each variable has a timestamp, which

records at which epoch the processor accessed it. When another processor accesses the variable, it

compares the variable’s timestamp to its own clock, to determine the relationship between the two

corresponding epochs: either one logically happened before the other, or the two logically overlap.

In the latter case, we have a race.

Race detectors that use these algorithms in software typically induce about 10–50x slowdowns

6

on programs [26, 51, 63, 65]. Such slowdowns can distort the timing of races identified in produc-

tion runs, and make them hard to find. For this reason, there have been several recent proposals

for race detectors with hardware assists [45, 57, 58, 78]. Such schemes should be effective at de-

bugging races in production runs. However, they detect races by augmenting the cache state and

the coherence protocol. Specifically, they tag each cache line with a timestamp [45, 57, 58] or a

lockset [78], perform additional operations on local/external access to the cache, and piggyback

information on cache coherence protocol messages. L1 caches and coherence protocol units are

key hardware structures, either time-critical or complicated. In addition, if a line is displaced or

invalidated from the cache, these systems typically lose the ability to detect races involving the

line.

2.2 Contributions

We propose a novel approach to hardware-assisted data race detection that overcomes these limi-

tations. Our approach, called SigRace, relies on hardware address signatures [12]. As a processor

runs, the addresses of the data that it accesses are automatically encoded in signatures. At certain

times, the signatures are automatically passed to a hardware module that intersects them to those

of other processors. If the intersection is not null, a data race may have occurred. With SigRace,

there are no changes to the cache or the cache coherence protocol messages, and there are no

critical-path operations performed on local/external access to the cache. Moreover, lines can be

displaced or invalidated from caches without affecting SigRace’s ability to detect data races.

2.3 Background & Related Works

2.3.1 Logical Timestamps for Happened-Before

Lamport’s happened-before relation [29] in a multithreaded environment states that an event α

happened before another β if (i) both are performed by the same thread and α precedes β in

7

program order, or (ii) α is a release and β is an acquire on the same object, or (iii) for some other

event γ, α happened before γ and γ happened before β. If α happened before β or vice-versa,

the two events are ordered; otherwise, they are concurrent or unordered. The happened-before

algorithm for race detection finds out whether two memory accesses to the same location that

are performed by different threads are unordered and at least one is a write. This algorithm only

detects races that actually occur during execution.

In a typical implementation, each thread maintains a logical vector clock, which has as many

components as number of threads [21]. If thread t has a vector clock vct[.], then the element vct[t]

contains the time of the thread itself and, given another thread u, vct[u] contains the latest time of u

“known” to t. When t performs a synchronization operation, it starts a new Epoch and increments

vct[t]. Suppose that, after t performed a release on object S, u acquires S. In this case, u increments

vcu[u] and, in addition, updates the rest of vcu[.] as follows: vcu[i] = max(vcu[i], vct[i]) for every

i 6= u. Here, vct[.] is the vector clock of thread t after the release operation. We refer to the value of

a thread’s vector clock during an epoch as the epoch’s Timestamp. Figure 2.1(a) shows an example

execution with epoch timestamps.

Committed
Instructions

(b)

Thread1Thread0 Thread2

Acquire

Release
Acquire

Release
Acquire

Release

[0,0,0]

[1,0,0]

[2,0,0]

[3,2,2]

[2,1,0]

[2,2,0]

[0,0,0][0,0,0]

[2,2,1]

[2,2,2]Acquire

(a)

Sync

Sync

Epoch Block

Block

Figure 2.1: Example of execution of three threads with epoch timestamps in brackets (a), and
definitions in a thread’s execution (b).

We determine whether there is a happened-before relation between two epochs by comparing

8

their timestamps. Specifically, if epoch f of thread t has timestamp vcft [.] and epoch g of thread u

has timestamp vcgu[.], then f happened before g if and only if vcft [t] < vcgu[t] and vcft [u] < vcgu[u].

For example, in Figure 2.1(a), the epoch after the acquire in Thread 2 happened before the epoch

after the second acquire in Thread 0.

2.3.2 Hardware Schemes for Data Race Detection

There are at least four proposals for hardware assisted data race detectors, namely Min and Choi’s

[45], ReEnact [58], CORD [57] and HARD [78]. They all detect races by tagging the state in

the caches as it is being accessed, and then piggybacking the tags on cache coherence protocol

messages between processors so that they can be compared.

ReEnact and CORD use the happened-before approach. They tag each cache line with times-

tamp information, and send and compare timestamps at least at every coherence action (invalida-

tion of cached line or external read of a dirty cached line). In ReEnact, the tag is an index into a

table of vector-clock timestamps. In CORD, the tag is four scalar timestamps (two for read and

two for write), and two sets of read-write bits per word. HARD uses the lockset approach and,

therefore, only handles locks properly. It tags each cache line with two special state bits, and a bit

vector that represents the lockset for the line. These bits are checked at every access to the line,

and are kept coherent by the coherence protocol as if they were data. Finally, Min and Choi use

the happened-before approach for only nested doall loops. They tag each cache line with a set of

read and write bits for each doall nesting level, and perform tag checking at every cache access.

Overall, these schemes have two shortcomings. First, they modify the L1 cache, the operations

performed on some local/external accesses to L1, and the cache coherence protocol messages.

These are key hardware structures, either time-critical or complicated to design and debug. Second,

when a line is displaced or invalidated from the cache, the system loses its ability to detect a data

race for that line. An exception is CORD, which keeps some timestamp information in memory.

We would like a design that decouples cache and coherence protocol from race detection, and has

a longer detection window than that provided by cache residence.

9

2.3.3 Hardware Address Signatures

A hardware address signature is a long register (e.g., 2Kbits long) where the memory addresses

accessed by the processor are automatically hash-encoded and accumulated using a Bloom fil-

ter [5]. Signatures have been used in the Bulk system [12] and several subsequent multiprocessor

designs (e.g., [11, 46, 74]) to detect data dependences between threads in thread-level speculation

and transactional memory. Signatures are efficiently operated on in hardware using simple logic

(e.g., bit-wise AND of signatures to find common addresses). From a signature, it is only possible

to obtain a superset of the addresses that were originally encoded in the signature. Consequently,

operations on signatures may produce false positives, although not false negatives.

In this work, we use signatures to detect data races. This is the first proposal that uses address

signatures for happened-before race detection.

2.4 Signature Based Race Detection

2.4.1 Overview of the Idea

The idea in SigRace is to automatically record the set of addresses accessed by the processor

in a code section in hardware signatures. At appropriate intervals, the signatures and the epoch

timestamp are automatically passed to an on-chip hardware module called Race Detection Module

(RDM). The RDM keeps the signatures and the timestamp in an in-order queue assigned to the

initiating processor, and compares them to the entries of queues assigned to other processors using

very efficient signature operations. The comparison quickly determines whether there has been a

potential data race.

SigRace addresses the two shortcomings of existing hardware-assisted schemes. First, there

are no L1 cache modifications, no critical-path operations performed on local/external accesses

to L1, and no cache coherence protocol message changes. Signature generation, storage, and

comparison are decoupled from caches and coherence protocol. Second, lines can be displaced

10

O
ld

er
 B

lo
ck

s

R i0 W i0TS i0

R i1 W i1TS i1

W i2TS i2 R i2

Proci ProcjTS i0 R i0 W i0

2

1 3
R jN

W jN

W jN

 i0

 i0

 i0

 W

U

 R

U

 W

U

if (TS i0 unordered TSjN)

BlockHistoryQueue[i]

...

BlockHistoryQueue[0] BlockHistoryQueue[j] BlockHistoryQueue[n−1]

R WTS

R WTS

WTS R

 j0 j0 j0

 j1 j1 j1

 j2 j2 j2 O
ld

er
 B

lo
ck

s

Race Detection Module (RDM)

On−Chip Network

Dump
 W i0 i0 i0TS R

Figure 2.2: Operations when a block finishes. In the figure, TS, R, and W refer to timestamp and
read and write signature, respectively. In any BlockHistoryQueue[k], entries for older blocks have
higher subscripts.

or invalidated from caches without SigRace losing the ability to detect data races. In practice,

the RDM necessarily has limited storage capacity, and old signatures are discarded when room is

needed, also limiting the race detection window. We see, however, that SigRace’s race detection

capability is higher than that of cache-based systems.

SigRace needs to rely on rollback and re-execution to provide the full set of racing instructions

to the programmer, and to disambiguate false-positive races. Unlike currently-proposed schemes,

SigRace does not suffer false positives due to false sharing. This is because SigRace encodes fine-

grain (e.g., word) addresses in signatures. Accesses to different words of the same line do not

induce a data race report. However, address aliasing in signatures may induce false positives in

SigRace. This is because signatures represent a superset of the addresses that were encoded [12].

False negatives are not possible.

For simplicity, we want SigRace to support the rollback and re-execution largely in software.

Consequently, SigRace does not use thread-level speculative execution. Reads and writes commit

as usual. We use the ReVive checkpointing/rollback mechanism proposed by Prvulovic et al. [59].

11

After rollback and re-execution to the race, an analysis phase takes place. We envision rollback, re-

execution, and analysis to be transparent to the user, who should at worst notice a slight slowdown

when many false data races are detected.

Address collection into signatures is disabled and enabled in software at kernel entries and

exits, respectively, and, optionally, at library entries and exits. This typically improves race de-

tection. Moreover, the programmer can disable address collection during the execution of certain

code sections. Finally, signatures are assigned to software threads rather than to hardware contexts.

In the following, we describe SigRace’s operation under three stages: normal execution, re-

execution, and race analysis.

2.4.2 Normal Execution under SigRace

The execution of a thread is logically divided into epochs, which are the dynamic instructions

executed between synchronization operations (Figure 2.1(b)). The latter include, e.g., acquiring

a lock, releasing it, waiting on a flag, setting a flag, or crossing a barrier. Under SigRace, each

processor keeps the timestamp of the current epoch, which is encoded and updated as per Sec-

tion 2.3.1. In addition, the processor has a Read (R) and a Write (W) Signature. When a load or

a store commits, a hardware Bloom filter as in [12] automatically hash-encodes and accumulates

the address loaded from or stored to, respectively, into the correct signature.

Ideally, a processor can keep its timestamp and R and W signatures to itself until the end of

the epoch. At that point, they are made visible to all other processors, to check for data races. In

practice, long epochs would cause the signatures to accumulate so much state that any operation

on them would likely induce many false positives due to aliasing [12]. Consequently, when the

processor has committed a certain number of dynamic instructions that we call a Block without

finding a synchronization operation, the hardware automatically passes the timestamp and signa-

tures to the RDM. Figure 2.1(b) shows the resulting execution: a block finishes when either a

certain number of dynamic instructions have been committed or a synchronization operation is

found.

12

The exact actions taken when a block in processor i finishes for either reason are as follows

(Figure 2.2). First, the hardware automatically dumps the timestamp and R and W signatures into a

memory-mapped FIFO queue of registers in the RDM called BlockHistoryQueue[i] (Step 1 in the

figure). To save network bandwidth, the data is transferred in compressed format. The R and W

signatures are then cleared. Finally, if the block finished because of a synchronization operation,

library software updates the epoch timestamp and then saves it in a log in memory to keep a trail

of timestamp changes — which is useful if we need to roll back execution.

At the RDM, simple hardware automatically compares the incoming data to entries in all the

other BlockHistoryQueue[.] (Step 2 in the figure). Specifically, for a given BlockHistoryQueue[j],

the incoming timestamp TSi0 gets compared to TSj0, TSj1, etc — in sequence order starting from

the latest one available. Such comparisons stop as soon as one of the j timestamps is found to

precede the incoming timestamp — in this case, due to transitivity, all earlier j timestamps will

also precede the incoming one. Then, for all timestamp pairs found to be unordered (e.g., TSi0

and TSjN), simple signature functional units compute Ri0 ∩WjN , Wi0 ∩ RjN , and Wi0 ∩WjN

(Step 3 in the figure). If any of these is not null, the two blocks have accessed the same location(s)

without synchronization and at least one wrote. We have detected a data race — or a false positive.

We call these two blocks and their corresponding threads the Conflicting Blocks and Threads.

A BlockHistoryQueue[k] is a FIFO queue. When it overflows, information on the displaced

blocks is lost. We have lost the ability to detect data races in those blocks. We accept this limitation

to keep overheads to a minimum.

2.4.3 Re-Execution under SigRace

When a pair of Conflicting Blocks is found, we want to identify for the user the exact instructions

and address(es) involved in the race(s), and to weed out any false positive transparently to the user.

In our design, an exception forces all processors to roll back to the previous checkpoint and enter

the Re-execution mode. In this section, we describe the checkpointing support and the re-execution

process.

13

Checkpointing Support

The SigRace design that we present needs a low-overhead checkpointing scheme. Ideally, such

a scheme would already be in place for reliability purposes, and SigRace would reuse it. One

possible scheme is ReVive [59], which performs incremental memory-state checkpointing.

In addition, the kernel collects and buffers the inputs to the program during Normal execution

— such as interrupts, system call returns, and I/O input — and passes them to the re-execution

at appropriate times. Support similar to this is provided by Flashback [68] and Rx [60], which

require no hardware modifications.

With these two mechanisms, we will now see that SigRace re-executes following the same

paths until the first data race is found.

Re-Execution Operation

Re-execution forces the application to follow the same order of epochs as in the original execution,

and leaves each thread at the beginning of the epoch that the thread was executing when the race

was detected. This is shown in Figure 2.3, where a race was detected at the points shown in

Figure 2.3(a), and re-execution brings the threads to points A, B, C, and D in Figure 2.3(b). Note

that re-execution does not bring each thread to the actual block that it was executing when the race

was detected. This is because we do not rely on the ability to reproduce block boundaries exactly.

Checkpoint

A B

C

D

Checkpoint

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Thread0 Thread1 Thread2 Thread3

(b)

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Thread0 Thread1 Thread2 Thread3

(a)

Race
Data

Figure 2.3: Detection of a data race during Normal (a) and Re-execution (b) modes.

14

To reproduce the order of epochs, SigRace uses the history of logged timestamps (Section 2.4.2).

They encode the history of synchronization operation orders — i.e., which thread completed a

synchronization operation before which other thread. SigRace uses these timestamps to follow the

same synchronization orders.

Specifically, each processor has a Thread Re-execution Timestamp (TRT) register into which,

as it re-executes, it successively loads the timestamps logged since the checkpoint. Recall that

each timestamp was saved after the processor went past a synchronization operation. In addition,

there is a shared software structure in memory called Global Re-execution Timestamp (GRT) that

contains the most up-to-date logical time of each processor during the re-execution. In other

words, while the TRT is the “thread view” of the current re-execution time, the GRT is the “true

global view”. Each processor compares its TRT to the GRT to see when the other processors have

executed all the earlier epochs and the processor can proceed. Proceeding means for the processor

to perform its next synchronization operation, update its own component of the GRT, execute its

next epoch, and read its next logged timestamp into its TRT.

The actual algorithm is as follows. Let us call grt[.] the GRT and trtp[.] the TRT of processor p.

Each i in grt[i] is the latest epoch from processor i that has been executed. For example, Figure 2.4

repeats the timeline of Figure 2.1(a) and shows with an arrow the current position of each replaying

processor. As a result, grt[.] = [2, 1, 0]. All processors are waiting at a synchronization operation

and we need to decide which one(s) to execute next. Each processor has loaded into its trt the

timestamp it had after the synchronization (e.g., trt1[.] = [2, 2, 0]). When a given processor p

finds that grt[i] ≥ trtp[i] for all i 6= p, then processor p executes the synchronization operation,

sets grt[p] = trtp[p], executes its next epoch, and loads its next logged timestamp into trtp[.]. The

last two operations are not performed if there is no next logged timestamp. In the figure, the only

processor for which the inequality is true is Processor 1. Consequently, Processor 1 will execute

the release and set GRT to [2,2,0]. Since it has no further timestamp logged, it will wait there.

15

3 2 2 2 2 0 2 2 1

2 1 0
Global Re−Execution
Timestamp (GRT)

Thread1Thread0

Acquire

Release
Acquire

Acquire

Release

[0,0,0]

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

[0,0,0][0,0,0]

[2,2,1]

[2,2,2]Acquire

Release

Thread2

= Current Replay
Position

[3,2,2]

Re−Execution
Thread

Timestamp (TRT)

Figure 2.4: Re-execution using the logged timestamps.

2.4.4 Race Analysis under SigRace

When all threads have reached their last logged timestamp, execution enters the Analysis mode. In

this mode, only the threads involved in the data race execute, while the others stall. Specifically,

first, the two processors executing the Conflicting threads load into a local register called the

Conflict Signature the intersection of the two Conflicting blocks’ signatures — namely the union

of Ri0 ∩WjN , Wi0 ∩ RjN , and Wi0 ∩WjN as per Section 2.4.2. The Conflict Signature holds the

hashed address(es) involved in the race. Then, the two Conflicting threads execute normally up

to their next synchronization points, while the hardware automatically intersects their loads and

stores against the Conflict Signature. Every time a non-null intersection occurs, a trap is triggered,

which records the memory address and the PC. Finally, when both threads have reached their

next synchronization points, a software handler compares the record of trapping addresses in both

processors, to see if there are common addresses. If so, SigRace has found a data race, which it

reports to the user. Otherwise, it was only a false positive and is ignored.

As each Conflicting thread reaches its next synchronization point, it may have executed past its

Conflicting block. This is fine, since it enables us to capture as many of the references involved in

the data race(s) as possible.

16

After the Analysis step, execution seamlessly returns to the Normal mode of execution. This is

enabled by the fact that SigRace continued to perform timestamp/signature logging and signature

intersection during Re-execution and Analysis modes — exactly like it did during Normal mode. In

this way, the trail of timestamps and signatures is up to date at the point where Analysis completes

and all processors resume Normal execution.

Because the Analysis step may push program execution beyond what was executed before

the rollback, it is possible that the Analysis step discovers new data races. To address this case,

SigRace proceeds as follows. Every time two blocks are found to conflict during Analysis (Ri0 ∩

WjN , Wi0 ∩ RjN , or Wi0 ∩WjN are not null), a handler compares their intersection against the

contents of the Conflict Signature. If the latter is a superset, no action is taken because this race

is already being processed (call it Race1). Otherwise, the handler saves the signature intersection

and records the need to analyze the new data race (call it Race2) later. In this case, after Race1 is

fully analyzed, execution is rolled back, and we proceed to perform Re-execution and Analysis for

Race2. Note that we cannot analyze the two races concurrently because, by the time we detect the

presence of Race2, processors have already issued some of the references associated with it.

Overall, to minimize the amount of re-execution, SigRace is designed as follows. When a pro-

cessor in Normal execution detects a pair of Conflicting blocks, it does not immediately request a

rollback. Instead, it continues executing for several more blocks (e.g., 5–10) or until it synchro-

nizes, before interrupting all other processors and requesting rollback. The goal is to collect as

many potential races as possible. During Analysis, the Conflict Signature of each processor con-

tains the racing addresses of all the races that the processor is involved in characterizing. In this

way, multiple races are analyzed concurrently. Finally, SigRace also saves the Conflict Signatures

of the races that it has finished analyzing. In this way, if SigRace has to re-execute the same code

a second time, it can ignore the race already analyzed.

17

2.5 Implementation

A possible implementation of SigRace requires some hardware and software changes to a chip

multiprocessor. The hardware changes are the Race Detection Module (RDM) and some additions

to the per-processor cache hierarchy. The cache tag and data arrays are unmodified. Also, SigRace

does not use speculative multithreading. On the software side, SigRace needs an augmented syn-

chronization library. In this section, we describe the hardware and software components, and then

how SigRace is virtualized to make it usable.

2.5.1 Hardware Modifications

The RDM is a simple on-chip hardware module that is connected to the on-chip network. As

shown in Figure 2.5(a), it contains the BlockHistoryQueue[.], which stores past timestamps (TS)

and signatures for all the processors (Section 2.4.2). It also includes functional units that operate

on signatures (like in Bulk [12]) and timestamps.

SigRace also requires some per-processor hardware that is placed in the cache hierarchy in a

module that interfaces with the processor, the cache and the network (Figure 2.5(b)). The module

includes storage for the current epoch timestamp and the current block’s R and W signatures. The

addresses hashed into signatures have a finer granularity than cache line, so that false sharing of

a line does not trigger incorrect data race alarms. A good choice is to use word addresses. The

module also includes the Thread Re-Execution Timestamp (TRT) for re-execution (Section 2.4.3)

and the Conflict Signature for analysis (Section 2.4.4). There are two flags, namely the Operation

Mode (OM) that denotes whether the hardware is in Normal, Re-execution, or Analysis mode, and

the Conflicting Thread (CT) that denotes whether the thread is a Conflicting one (Section 2.4.2).

There is also a Committed Instruction Counter. When the latter reaches the maximum value set

for a block — or an approximate value, since there is no need to be exact — it sends a signal

to terminate the current block. The SigRace controller then initiates the following actions: dump

TS, R and W into the corresponding BlockHistoryQueue[i], and clear R, W, and the Committed

18

(b) Additions to the Private Cache Hierarchy

Committed
Instruction
Counter

...

... ...

Network

TS R Sig W Sig

BlockHistoryQueue[0] BlockHistoryQueue[n−1]

Signature and Timestamp
Functional Units

TS R Sig W Sig

Cache

Processor
Controller
SigRace

TS R Sig W Sig Timestamp (TRT)
Thread Re−Execution

Conflict
Signature

FlagsOM CT

Compress Network

Decompress

(a) Race Detection Module (RDM)

Figure 2.5: Hardware support needed by SigRace.

Instruction Counter.

The TS and R and W signatures are compressed before being sent to the on-chip network, and

decompressed as they get into the RDM. We call these network messages the Summary messages.

Their compressed size is ≈100 bytes — for 2 signatures of 2 Kbits each and a 160-bit timestamp.

This is less than the size of two cache lines, and is sent out every time a block completes (≈2,000

committed instructions). Summary messages from the same processor need to arrive at the RDM

in order; messages from different processors can arrive in any order. This centralized RDM design

is fine for the small numbers of processors considered here. In large, distributed machines, the

RDM can be distributed as well.

19

2.5.2 Software Interface

High-level synchronization constructs such as M4 macros [41] and OpenMP directives [16] are

commonly used by programmers and parallelizing compilers. These constructs can enable SigRace

transparently. Specifically, we rewrite such constructs to encapsulate the SigRace operations. As

a result, the application code does not need be modified at all, and all we need is to relink it with

the new M4 or OpenMP library.

To accomplish this, we add three processor instructions that operate on local SigRace structures

(Table 3.1). Two of the instructions (collect on and collect off) enable and disable the collection

of addresses into signatures, and the counting of committed instructions. A variation of these

instructions could perform these actions only on a range of addresses. These instructions are used

to prevent the signatures from being polluted by unrelated accesses (such as those from the OS or

the instrumentation added to the macros) or by obviously-private accesses (e.g., those to the stack).

They can also be used to mark a benign data race or an epoch that should skip the checking. The

other instruction (sync reached) is invoked when execution reaches a synchronization operation.

Specifically, it is invoked immediately before performing a release-type operation and immediately

after performing a successful acquire-type operation. It tells the SigRace controller to dump TS,

R and W into the RDM, clear R, W, and the Committed Instruction Counter, and increment the

counter in TS that corresponds to the local thread.

Instruction Description
collect on Collect addresses into R and W, and count

committed instructions.
collect off Do not collect addresses into R or W, or

count committed instructions.
Dump TS, R, and W into the RDM. Clear R, W and

sync reached the Committed Instruction Counter. Increment the
counter in TS that corresponds to the local thread.

Table 2.1: Instructions to manage SigRace structures.

For simplicity, we assume that these instructions make their side effects visible only when they

20

commit — like the updates of signatures by loads and stores. A design where these actions happen

earlier in the pipeline can also be conceived.

2.6 Conclusions

We propose SigRace, a novel approach to hardware-assisted data race detection that overcomes

shortcomings of previous hardware proposals. To detect races, SigRace does not rely on cache

state or coherence protocol messages. Instead, it relies on hardware address signatures. With

SigRace, there are no changes to the cache or the cache coherence protocol messages, and there are

no critical-path operations performed on local/external access to the cache. Moreover, lines can

be displaced or invalidated from caches without affecting SigRace’s ability to detect data races.

Finally, application code is unmodified. Our experiments showed that SigRace is significantly

more effective than a state-of-the-art conventional hardware-assisted race detector. SigRace found

on average 29% more static races and 107% more dynamic races. Moreover, if we inject data

races, SigRace found 150% more static races than the conventional scheme.

21

Chapter 3

A Comprehensive Approach to Atomic
Region Inference and Violation Detection

3.1 Introduction

Of all the concurrency bugs, atomicity violations are particularly hard to isolate, and have received

little attention compared to their importance [33]. An atomicity violation can occur when the

programmer fails to enclose in the same critical section all of the memory accesses that should

occur atomically. During execution, such accesses get interleaved with accesses from another

thread that alter the program state, making it inconsistent.

Existing approaches to find these bugs can be classified into two groups. The first one are

techniques that require the programmer to annotate the Atomic Regions (AR) [22, 23, 25, 72].

Providing this information may be too tedious and error prone on the part of the programmer.

The second group are techniques that attempt to detect atomicity violations automatically. They

include, among others, SVD [73], AVIO [35], AtomFuzzer [56], and Atom-Aid [39].

These techniques are often effective. However, as we will discuss in detail, they are all con-

strained in the types of ARs that they can support — typically limited by the number of variables

that they access, the number of instructions that they execute, or the type of code construct in which

they are embedded (e.g., a function). For example, AVIO only finds ARs with two instructions and

a single variable. A substantial improvement in the state of the art would be to devise an approach

that identifies violations of any type of AR.

22

3.2 Contributions

We propose AtomTracker. which is a comprehensive approach to AR inference and violation

detection. It is the first scheme to (1) automatically infer generic ARs (not limited by issues such

as the number of variables accessed, the number of instructions included, or the type of code

construct) and (2) automatically detect violations of them at runtime with negligible execution

overhead. No programmer input or annotations are needed.

AtomTracker has two parts: one that automatically infers ARs (AtomTracker-I) and one that

automatically detects violations of their atomicity (AtomTracker-D). AtomTracker-I infers generic

ARs by analyzing annotation-free memory traces of test runs of the program. AtomTracker-I’s

main contribution is a novel algorithm that works by greedily joining successive references of a

thread into an AR if the other threads do not conflict. AtomTracker-I does not require any semantic

knowledge of the program. It is the first algorithm of its kind.

AtomTracker-D takes the set of ARs and detects violations of their atomicity at runtime.

AtomTracker-D’s first contribution is an algorithm for atomicity violation detection. It checks

if concurrently-executing ARs can be made to appear to execute in sequence by taking one ref-

erence at a time and reconsidering the relative order of the ARs. The second contribution is a

hardware implementation of AtomTracker-D in a shared-memory multiprocessor that leverages

cache coherence state transitions. It induces a negligible execution time overhead and, therefore,

can be on during production runs.

3.3 Related Works

The state of the art in atomicity violation detection without annotations is set by SVD [73],

AVIO [35], MUVI [32], AtomFuzzer [56], PSet [75], and Bugaboo [36]. SVD [73] proposes

the Computational Unit (CU) concept, which approximates a limited type of AR. The idea is that,

after a thread has written to a shared variable, when it reads it again, it starts a new CU. As a

program runs, SVD computes CUs based on the observed dependencies. SVD reports violations

23

when CUs are interleaved with unserializable writes from other threads. While SVD is effective,

it only looks for violations of the limited set of ARs considered.

AVIO [35] looks for ARs composed of only a single variable and two instructions. AVIO uses

memory traces of correct executions of the program to train the algorithm. If two instructions

in a thread that access the same shared variable are never found to be interleaved unserializably

by an access from another thread while training, then AVIO assumes that these two instructions

are intended to be atomic by the programmer. Consequently, AVIO reports violations when these

instructions are interleaved unserializably in production runs.

MUVI [32] is a step toward handling multiple variables. It finds access correlations among

multiple variables. Variables that are accessed together for some minimum number of times are

likely to be related. These variables should be protected by the same lock. The MUVI paper shows

how to use correlation information in a race detector. It claims that this information would be hard

to use to detect multi-variable atomicity violations.

AtomFuzzer [56] looks for the case when a lock is grabbed multiple times in the same function.

It reckons that this pattern suggests an atomicity violation bug. This is because functions are likely

to be atomic.

PSet [75] detects and avoids concurrency bugs by embedding in the binary legal interleavings

obtained from training runs. This is done by specifying which memory operation depends upon

which other remote memory operations. If, at runtime, an unexpected interleaving is observed, the

system reports a potential bug. Bugaboo [36] extends this work by adding context information to

the interleavings. A given interleaving is acceptable under an certain program context, while it is

not under a different one. These two works do not specifically target atomicity violations, but can

be used to detect unusual interleavings that uncover such violations.

A recent work that can detect multi-variable atomicity violations is ColorSafe [37]. This

scheme requires annotations of which groups of variables are related (i.e., have the same color).

Then, the system reports a violation when a thread’s accesses to same-color variables are inter-

leaved by another thread’s access to a variable of that color.

24

While the work in this area has made great strides, it is still limited, considering the many di-

mensions of the problem. Our scheme, AtomTracker, differs from these proposals in that it is the

first one to work with annotation-free arbitrary (non-nested) ARs. Such ARs are not constrained

in the number of variables, number of instructions, or type of code construct (e.g., a function).

Moreover, AtomTracker both automatically infers ARs in a program (AtomTracker-I) and auto-

matically detects atomicity violations of these ARs at runtime (AtomTracker-D). All this makes

AtomTracker the first of its kind.

3.4 AtomTracker-I: Automatic Inference of Atomic Regions

AtomTracker-I automatically infers ARs from a program by training on the memory traces of

many correct executions of the program. Training on correct runs of programs is a feasible and

commonly-used approach in software-development groups. It is also used in many proposed de-

bugging tools, such as AVIO [35] or PSet [75].

AtomTracker-I does not require any manual annotation from the programmer. The key idea

is to scan the dynamic memory reference trace of a thread, and greedily try to join successive

references of the thread into a common AR — for as long as the references of the other threads

do not conflict with this newly-formed AR. The operation is repeated for the references of each

thread in turn, and then for each training file. The output of AtomTracker-I is a list of static AR

entry and exit points in the program.

With this algorithm, the analysis of the first trace file typically generates a set of large ARs.

Later, as we process another trace file, we may find evidence that an AR should be broken into two

or more smaller ARs. As we process more files, ARs will tend to get more numerous and smaller.

When the set of ARs does not change anymore, we assume that we have found the actual ARs.

The rationale is that if a set of accesses by a thread are found to be atomic in all the correct runs,

then the programmer likely intends them to be atomic. As we can see, this algorithm extracts any

arbitrary AR, unconstrained in the number of variables, number of instructions, or type of code

25

construct.

Next, we describe the basic algorithm, some design decisions, and two examples.

3.4.1 Basic AtomTracker-I Algorithm

AtomTracker-I processes multithreaded traces of a program’s memory accesses. A trace file has

an ordered list of records from several threads collected during an execution of the program.

Each record contains the thread ID, PC, address accessed, and whether it is a load or a store.

AtomTracker-I processes many trace files of correct runs.

The algorithm works by greedily trying to join successive references of a thread into an AR.

The goal is to generate ARs that are as big as possible. To describe the algorithm, we use the

two-threaded trace of Figure 3.1(a). In the figure, Ii:rd x means that the instruction at PC Ii reads

address x.

The algorithm starts by processing all the references of one thread, then moving to a second

thread, and so on. The order of thread processing may initially generate small variations, but the

end result is the same.

In the example, we start with Thread 1. The thread reads x in I1 and then y in I2. We would like

to group I1 and I2 in an AR. However, Thread 2 writes y in between (in J1). We cannot assume

that I2 happened before J1 (and, therefore, move I2 above J1) because, if we do, Thread 1 would

read a wrong y value. However, we can assume that I1 happened after J1 without affecting the final

execution outcome. Consequently, we move I1 down after J1 (hence, the arrow) and combine I1

and I2 into an AR called I1′ that reads x and y. Conceptually we think of it as a giant instruction.

Next, we consider combining I1′ with I3. We cannot move I1′ below J2 of Thread 2 because there

is a conflict on variable x. We cannot move I3 upward above J2, either. Therefore, AR I1′ cannot

grow any bigger (Figure 3.1(b)).

We start a new AR with I3. Applying the same algorithm, we move I3 down and combine it

with I4. Then, we move the I3 + I4 combination down, combine it with I5 and get the bigger AR

I3+ I4+ I5. We call this AR I5′ (Figure 3.1(c)). Now, we cannot move I5′ down or move I6 above

26

T
hr

ea
d

2
T

hr
ea

d
2

T
hr

ea
d

1
Time

T
hr

ea
d

1
T

hr
ea

d
1

T
hr

ea
d

2

I
 :

rd
 x

1 I
 :

rd
 y

2 I
 :

rd
 x

3 I
 :

w
r

x
4 I
 :

w
r

y
5

I
 :

w
r

y
6

(a
)

J
 :

w
r

y
4 J
 :

rd
 y

5J
 :

w
r

y
1

J
 :

w
r

x
2 J
 :

rd
 x

3

(b
)

I
 :

rd
 x

3 I
 :

w
r

x
4 I
 :

w
r

y
5

I
 :

w
r

y
6

J
 :

w
r

y
4 J
 :

rd
 y

5J
 :

w
r

y
1

J
 :

w
r

x
2 J
 :

rd
 x

3

(c
)

I
 :

w
r

y
6

I
 :

 r
d

x,
 w

r
x,

 w
r

y
5’

J
 :

w
r

y
4 J
 :

rd
 y

5J
 :

w
r

y
1

J
 :

w
r

x
2 J
 :

rd
 x

3

I
 :

 r
d

x,
 r

d
y

1’
I

 :
 r

d
x,

 r
d

y
1’

Fi
gu

re
3.

1:
B

as
ic

A
to

m
Tr

ac
ke

r-
Ia

lg
or

ith
m

fo
ri

nf
er

ri
ng

A
R

s.

27

J5 because of the conflict with y. So, I5′ does not grow any more.

If the trace contains more than two threads, every time we attempt to combine two accesses

in Thread 1, we need to consider the intervening accesses from all the other threads. After pro-

cessing Thread 1, we move to process Thread 2, then Thread 3, and so on. In the example, since

there are only 2 threads, the ARs in Thread 2 are created as a side effect of processing Thread 1

(Figure 3.1(c)).

As AtomTracker-I processes a trace file, it may find that an AR that was previously inferred

from the same file gets divided into multiple ARs. Therefore, after AtomTracker-I finishes the

file, it goes back to re-process it from the beginning, and breaks the previous AR into the multiple

smaller ones. This process continues iteratively until AtomTracker-I gets a stable set of ARs from

this trace file.

After this, AtomTracker-I takes these ARs and moves to analyze the traces of another run. As

AtomTracker-I processes the new file, it starts with the ARs obtained from previous files and likely

breaks some of them into smaller ones. The process is repeated until the set of total ARs does not

change by analyzing more runs. The fact that every iteration can only create smaller ARs ensures

that AtomTracker-I always converges.

AtomTracker-I could also work even if some of the training runs were of incorrect executions.

In this case, after the ARs are collected, we would apply statistical analysis to identify the good

ARs. Specifically, if a certain AR appeared at least a threshold number of times in the test runs,

we would consider it a good AR; otherwise, we would discard it.

3.4.2 Design Decisions

Handling Synchronization Variable Accesses

When AtomTracker-I attempts to move references up and down, it disregards synchronization

accesses. This prevents synchronization bugs in the program from making AtomTracker-I infer

incorrect ARs.

28

t = AccountBal
lock L

unlock L
(1)

Thread 1 Thread 2

lock L

unlock L
(2) Print AccountBal

lock L

unlock L

t += Deposit1
AccountBal = t(3)

lock L

unlock L
(4) AccountBal += Deposit2

Call
site 2

(f)
(a)

Call
site 1

Atomic
region

(c)(b) (d)

Entry 1

Entry 2

Exit 2

Exit 1

Dynamic
execution 1

Dynamic
execution 2

(e)

Figure 3.2: Design decisions in AtomTracker-I.

To see why, consider Figure 3.2(a). Thread 1 incorrectly uses two separate critical sections to

add Deposit1 to AccountBal — one to read the balance (1) and one to write it (3). During training

runs, a harmless critical section that prints the balance (2) interposes between the two. If we made

the synchronization accesses visible to AtomTracker-I, it would detect conflicts on lock variable

L, and incorrectly create separate ARs for (1) and (3). Later, during production runs, if critical

section (4) interposed between (1) and (3), we would not detect an atomicity violation. However,

by disregarding synchronization accesses, AtomTracker-I moves code (1) below (2), and correctly

merges (1) and (3) into the same AR.

Using Critical Section Information

Programmers mark as critical sections portions of the code that they want to be atomic. Typically,

an atomicity violation occurs because the critical section that the programmer wrote is not large

enough, although what is inside should indeed be atomic. Consequently, AtomTracker-I uses the

lock/unlock statements in a program as a hint that they enclose code that should not be split into

multiple ARs.

29

Specifically, the AtomTracker-I algorithm includes a preprocessing pass on the trace files. The

pass identifies each lock/unlock pair that protects a critical section whose data is not being accessed

concurrently by another thread. The sections protected by such lock/unlock pairs are recorded in

a table. Later, when the AtomTracker-I algorithm runs, it uses this table. Specifically, it considers

each of the sections in the table as an indivisible instruction. When it tries to expand an AR and

finds one of these critical sections, it either takes-in the whole section or no instruction from it.

Using Loop Information

Typically, a programmer either makes a whole loop atomic or creates one or multiple ARs within

an iteration of the loop. ARs very rarely cross an iteration boundary in a loop. To exploit this fact,

in the same preprocessing pass described above, AtomTracker-I also identifies loops and checks

whether they conflict with concurrent accesses from other threads. If none of the instances of

a loop has conflicting accesses, then AtomTracker-I stores the loop boundaries in a database for

later use. Later, when the AtomTracker-I algorithm runs, it will consider the whole loop as one

giant indivisible instruction; when it tries to expand an AR, it either takes in the whole loop or no

instruction from it.

On the other hand, if the loop has conflicting accesses in the trace, then the AtomTracker-I

preprocessing pass records the iteration boundaries of the loop in the database for later use. Later,

when the AtomTracker-I algorithm runs, it will always end an AR at the iteration boundary, so that

no AR crosses the boundary. This, of course, does not disallow multiple ARs within an iteration.

To keep things simple, we flatten the inner loops and only consider outer loops. To make the

preprocessing pass possible, loops are dynamically identified automatically using the algorithm of

Moseley et al [47] during training runs, and this information is recorded in the trace files.

Handling Different Call Sites

Depending on what site a subroutine is called from, it may behave differently and, therefore,

AtomTracker-I may create different ARs. For example, assume that when a subroutine is called

30

from Site 1, AtomTracker-I creates the AR in Figure 3.2(b), while when it is called from Site 2, it

creates the one in Figure 3.2(c). For simplicity, we make AtomTracker-I context insensitive. This

means that, for each subroutine, we use the combination of all the ARs found in all of the calls. In

the example, we use the ARs in Figure 3.2(d).

Atomic Region Representation

The goal of AtomTracker-I is to augment the static code of the program with AR entries and exits.

This is not trivial because each training run may take different control paths.

For example, Figure 3.2(e) shows a segment of static code and two dynamic executions that

took different control paths and found different AR entries and exits. Pictorially, Figure 3.2(f)

shows many dynamic executions (shown as curved lines) that intercept the static code differently,

inserting different AR entries and exits.

To ensure that the resulting information makes sense to AtomTracker-D, the AR exit markers

inserted by AtomTracker-I in the code also include the PC of the corresponding AR entry point. In

this way, if dynamic execution 2 in Figure 3.2(e) finds Exit 1, it ignores it because it is not paired

with Entry 2.

3.4.3 Putting It all Together

To summarize, this is how the complete AtomTracker-I algorithm works. When first presented with

a trace file, AtomTracker-I performs a preprocessing pass to record lock/unlock pairs as per Sec-

tion 3.4.2 and loop boundaries and iteration boundaries as per Section 3.4.2. Then, AtomTracker-I

runs the algorithm of Section 3.4.1, as many times as it needs to converge (typically 2–4 times).

The reason why the algorithm may need to run multiple times over the same trace is because

key information for AR inference may only appear toward the end of the trace. This is seen in

the trace of Figure 3.3. Suppose that the correct ARs for Thread 1 are those in Figure 3.3(a).

However, as AtomTracker-I eagerly builds the first AR, such AR will gobble-up the I3 read to x

— since Thread 2 only reads x. AtomTracker-I will not include the I4 write to y in the same AR

31

because J2 from Thread 2 conflicts. Consequently, AtomTracker-I will record that I3 is the end of

the AR starting at I1 (Figure 3.3(b)).

I : rd x1

I : wr y2

I : rd x3

I : wr y4

J : rd x1

J : rd y2

Thread 2

(a)

Thread 1

Correct
atomic
region 1

Correct
atomic
region 2

I : rd x1

I : wr y2

I : wr y4

J : rd x1

J : rd y2

Thread 2

I : rd x3

(b)

I : rd x1

I : wr y2

I : rd x3

I : wr y4

(c)

J : rd y2

J : wr x1

Thread 1 Thread 2

I : rd x1

I : wr y2

I : rd x3

I : wr y4

(d)

J : rd/wr x1

J : rd y2

Thread 1

Thread 1 Thread 2

Figure 3.3: ARs correct themselves thanks to the multiple iterations of AtomTracker-I.

As AtomTracker-I runs, it can fix itself. Indeed, if later-on in the trace file, Thread 2 writes

to x in between the two correct ARs as in Figure 3.3(c), AtomTracker-I will record that I2 is the

end of the AR starting at I1. Then, in a second iteration of AtomTracker-I on the trace file (as

per Section 3.4.1), as AtomTracker-I reaches I1 in Figure 3.3(a), it will pick up the two ARs from

its database — the smaller one that terminates at I2 and the larger one that finishes at I3. Since

AtomTracker-I reaches I2 next, it will confirm the smaller AR and discard the larger AR. The

result will be the ARs of Figure 3.3(d), which are correct. This is an example of how multiple

32

iterations help AtomTracker-I converge to the correct ARs.

After this, AtomTracker-I moves to process another trace file. The same convergence described

above may occur across trace files. When the processing of several new trace files does not result

in changes in the inferred ARs, AtomTracker-I completes.

3.5 AtomTracker-D: Automatic Detection of Atomicity

Violations

AtomTracker-D takes program annotations in the binary like those inserted by AtomTracker-I and

automatically detects violations of ARs at runtime. Beyond this, AtomTracker-D is independent

of AtomTracker-I.

The idea behind AtomTracker-D is as follows. As two ARs execute concurrently, AtomTracker-

D checks whether they can be made to appear to execute in sequence, one after the other, in any

of the two possible orders. Only if they cannot, AtomTracker-D declares an atomicity violation.

To do its checks, AtomTracker-D uses a novel algorithm. The algorithm considers each access

of the two (or more) concurrent ARs in sequential order and checks for conflicts. The algorithm

can be efficiently implemented in hardware by leveraging the cache coherence protocol messages.

In this section, we describe the algorithm as it could be implemented in a tool like Pin [40], while

in Section 3.6, we describe a hardware implementation.

3.5.1 Description of the Algorithm

In this description, we assume that we have two processors executing two ARs concurrently; the

algorithm will be later generalized to any number of concurrent ARs. Let us call the processors

PR and PS , and the ARs ARR and ARS , respectively. In the AtomTracker-D algorithm, PR keeps

a local flag called OrderRS that tells, at any time, whether ARR appears (so far) to execute before

or after ARS . PS keeps a symmetrical flag called OrderSR.

33

Let us focus on OrderRS . OrderRS is updated in three cases, as shown in Figure 3.4. Case

PR → PS is when a reference by PS accesses a variable that has already been referenced by PR

in ARR. In this case, we check the following references to the variable: (1) the current one by PS

and (2) all of the previous ones by PR in ARR. If at least one is a write, then PS is dependent on

PR and, therefore, AtomTracker-D tries to set OrderRS to Before. If, instead, all of them are reads,

then PS is not dependent on PR and AtomTracker-D tries to set OrderRS to Unordered.

PR PS PR PS PR PS

Case P −>PR S

Access X
Access X Access X

Access X
Access X

Case P −>PRS RCase P −

Figure 3.4: Different cases for AtomTracker-D.

The second case (Case PS → PR) is the dual case: a reference by PR accesses a variable that

has already been referenced by PS in ARS . As before, we check if at least one of the relevant

references to the variable is a write. If so, PR is dependent on PS and AtomTracker-D tries to set

OrderRS to After. Otherwise (i.e., the references to the variable are all reads), PR is not dependent

on PS and AtomTracker-D tries to set OrderRS to Unordered.

The final case (Case PR−) is when PR accesses a variable that PS has not accessed in ARS

yet. In this case, AtomTracker-D tries to set OrderRS to Unordered.

We say that the algorithm tries to set OrderRS to a value because what it really does is to set

OrderRS to the logical AND of the value and the old contents of OrderRS . This is done to detect

any ordering inconsistency: the AND of Unordered with any other value is that other value, while

the AND of Before and After signals an ordering inconsistency. In this latter case, the two ARs

cannot be serialized, and we have an atomicity violation.

34

3.5.2 Illustrative Examples

Figure 3.5 shows two examples where processors P1 and P2 execute atomic regions AR1 and

AR2, respectively. It also shows the updates to OrderP1P2. We start with Figure 3.5(a). The first

access (I1) in the figure is a write to x by P1. This access falls into Case P1- because P2 has not

accessed x in AR2 yet. Therefore, OrderP1P2 is set to Unordered. In access J1, P2 reads x. This is

Case P1 → P2 with a write, and AtomTracker-D logically-ANDs Before to OrderP1P2. The result

is Before. In access I2, P1 reads x, which is Case P2 → P1 with all reads, and AtomTracker-D

logically-ANDs Unordered to OrderP1P2. The result is Before. In access I3, P1 reads y, which

is Case P1-, and AtomTracker-D logically-ANDs Unordered to OrderP1P2. The result is Before.

Next, in access J2, P2 writes y, which is Case P1 → P2 with a write, and AtomTracker-D logically-

ANDs Before to OrderP1P2. The result is Before. Next, in access I4, P1 reads x, which is Case

P2 → P1 with all reads. AtomTracker-D logically-ANDs Unordered to OrderP1P2. This was the

last access in AR1 and the algorithm concludes that there is no atomicity violation because AR1

can appear to execute before AR2.

Consider now Figure 3.5(b), which changes I4 from a read to a write. Access I4 is Case

P2 → P1 with a write. Consequently, AtomTracker-D logically-ANDs After to OrderP1P2, which

triggers a violation. Effectively, this access requires AR1 to be after AR2, which is incompatible

with the other accesses.

In these examples, as soon as the first processor completes its AR, the algorithm can declare

the presence or absence of a violation. However, this is not always the case. Specifically, if the

Order flag of the processor that finishes first has the value After, AtomTracker-D cannot declare

the outcome until the other processor also finishes its AR.

This case is shown in Figure 3.6, which shows both OrderP1P2 and OrderP2P1. The example

shows a dependence from P1 to P2, and one in the opposite direction. Consequently, there is

an atomicity violation. We focus first on P1 and its flag OrderP1P2. Reference I1 sets the flag

to Unordered, and J1 ANDs Unordered to it. Reference I2 is a read to y by P1, which is Case

35

J
 :

rd
 x

1

I
 :

rd
 x

2 I
 :

rd
 y

3
J

 :
w

r
y

2

I
 :

w
r

x
1

J
 :

w
r

x
3

I
 :

w
r

x
4

J
 :

rd
 x

1

I
 :

rd
 x

2 I
 :

rd
 y

3
J

 :
w

r
y

2

I
 :

rd
 x

4I
 :

w
r

x
1

J
 :

w
r

x
3

Time

Pr
oc

es
so

r
P1

Pr
oc

es
so

r
P2

B
ef

or
e

&
&

 U
no

rd
er

ed
 =

 B
ef

or
e

U
no

rd
er

ed

U
no

rd
er

ed
 &

&
 B

ef
or

e
=

 B
ef

or
e

B
ef

or
e

&
&

 B
ef

or
e

=
 B

ef
or

e

A
ft

er
 &

&
 B

ef
or

e
=

 V
io

la
tio

n

(b
)

Pr
oc

es
so

r
P1

Pr
oc

es
so

r
P2

(a
)

B
ef

or
e

&
&

 U
no

rd
er

ed
 =

 B
ef

or
e

U
no

rd
er

ed

U
no

rd
er

ed
 &

&
 B

ef
or

e
=

 B
ef

or
e

B
ef

or
e

&
&

 B
ef

or
e

=
 B

ef
or

e

O
rd

er

 P

1P
2

O
rd

er

 P

1P
2

A
R

1

A
R

2

A
R

1

A
R

2

U
no

rd
er

ed
 &

&
 B

ef
or

e
=

 B
ef

or
e

U
no

rd
er

ed
 &

&
 B

ef
or

e
=

 B
ef

or
e

U
no

rd
er

ed
 &

&
 B

ef
or

e
=

 B
ef

or
e

Fi
gu

re
3.

5:
Tw

o
ex

am
pl

es
of

th
e

A
to

m
Tr

ac
ke

r-
D

al
go

ri
th

m
.

36

P2 → P1 with a write. Consequently, AtomTracker-D logically-ANDs After to OrderP1P2. At this

point, AR1 completes. However, AtomTracker-D cannot strictly declare an outcome because the

AR that appears to execute first (AR2) is not complete yet.

J : wr y1

J : wr x2

I : rd x1

I : rd y2

P2P1

Unordered

Order

Bef && Unord = Bef

After && Bef = Violation

Unordered

Order P1P2 P2P1

AR1

AR2

Unord && Unord = Unord

After && Unord = After

Figure 3.6: Both processors need to complete their ARs for AtomTracker-D to declare the out-
come.

We now examine P2 and its flag OrderP2P1. Reference J1 sets OrderP2P1 to Unordered. Refer-

ence I2 ANDs Before to OrderP2P1. Finally, reference J2 ANDs After to OrderP2P1. At this point,

AtomTracker-D correctly declares a violation. Note, however, that the information that P1 had

read x in AR1 has to be kept around until AR2 completes.

3.5.3 Generalization to More Atomic Regions

In the most general case, all N processors in a multicore may be executing atomic regions AR0,

AR1...ARN−1 concurrently, and AtomTracker-D has to detect atomicity violations between any

two ARs. Consequently, each processor i keeps N-1 Orderi∗ flags, where * takes the values from

0 to N-1 except i.

Given a processor Pi, its Orderi∗ flags are updated following the above description. Specifically,

when another processor Pj accesses a variable that has been accessed by Pi, Orderij is ANDed with

Before or Unordered. When Pi accesses a variable that has been accessed by Pj , Orderij is ANDed

with After or Unordered. Finally, when Pi accesses a variable that Pj has not accessed yet, Orderij

is ANDed with Unordered.

37

3.6 Hardware Implementation

Both AtomTracker-I and AtomTracker-D can be easily implemented in software. However, if we

want to run AtomTracker-D on-the-fly in production runs, a software implementation is too slow.

Consequently, we propose an efficient hardware implementation of AtomTracker-D.

A key insight is that the AtomTracker-D algorithm does not really need to observe every single

access in the two (or more) concurrent ARs. Instead, it only needs to observe those accesses that

induce cache coherence transactions in the network — with some exceptions that we will handle.

Consequently, we propose to add a hardware module called Atomicity Violation Detection Module

(AVM) attached to the on-chip network of the multicore. The AVM sees all the relevant accesses

and runs the AtomTracker-D algorithm in hardware. It supports atomicity violation detection

without slowing down execution.

For simplicity, our AVM design is centralized. It is possible to distribute the design to make it

scalable.

3.6.1 Leveraging Cache Coherence Transactions

Many of the references processed in the AtomTracker-D algorithm of Section 3.5.1 are guaranteed

not to change the value of the Order flag. For example, when a processor writes the same variable

multiple times without any intervening access from other processors, then, after the first write,

the value of the Order flag will not change. Consequently, it suffices that we capture only the

references that can change the value of Order.

One group of accesses that can change Order are those that introduce RAW, WAW, or WAR

dependences on a variable between two processors. These are cases PR → PS and PS → PR

with a write in Figure 3.4. In particular, in a sequence of such dependences on a given variable

between a given source and a given destination processor, AtomTracker-D only needs to observe

one dependence. Fortunately, by construction (and ignoring false sharing for now) the first one

of these dependences induces a change in the variable’s cache coherence state, and a resulting

38

coherence transaction in the network. Consequently, it can be observed easily.

The other group of accesses that can change Order are those that introduce RAR dependences

on a variable between two processors (cases PR → PS and PS → PR with only reads in Figure 3.4)

or accesses to variables that have not been accessed in the other AR (case PR− in Figure 3.4).

In a sequence of such accesses to a given variable for a given source and destination processor,

AtomTracker-D only needs to observe one. Again, we choose the first one. This access may miss

in the cache. If so, the AVM attached to the on-chip network will see the address and process

the reference. However, this access will not miss if the variable is in the cache is a certain state

when the processor enters the AR. Specifically, a read that finds the variable in a state equivalent

to Shared or Dirty in the cache, or a write that finds it Dirty, will not miss.

To ensure that these accesses are visible to the AVM, we modify the cache to operate slightly

differently when executing an AR. We add two FirstAccess bits per cache line — one for reads

and one for writes. Every reference in the AR sets the corresponding FirstAccess bit in the line

touched. If the reference hits in the cache and the corresponding bit was not set, the line address

(and whether the access was a read or a write) is sent to the network, so that the AVM captures it;

if the reference misses in the cache, the AVM sees it by default. FirstAccess bits are cleared when

an AR finishes.

Finally, caches naturally replace lines and references that should otherwise not miss may miss.

This means that the AVM will see more accesses than the strict minimum necessary for running

AtomTracker-D. This does not affect correctness in any way.

3.6.2 An Atomicity Violation Detection Module (AVM) Based on Address

Signatures

A naive AVM design would have, for each processor, a buffer with the list of references since

the current AR started. The references would be processed using the AtomTracker-D algorithm.

However, we propose a more efficient approach based on hardware address signatures. These are

39

registers of about 2048 bits that accumulate the result of hashing addresses of references using

Bloom filters [6]. Conceptually, a signature acts like a compressed buffer to store memory refer-

ences. Per processor, the AVM has one signature (RSig) that hash-accumulates the addresses read

in the AR and one (WSig) for the addresses written. Every network transaction by a processor

executing an AR is captured by the AVM and the address is encoded in the correct signature. The

AVM is shown in Figure 3.7. Each pair of signatures has N-1 associated Order flags.

0P P1 PN−1

Order

. . .

. . .

.

R’Sig

W’Sig

C
ac

he
WR

F
irs

tA
cc

es
s

RSig

WSig

Atomicity Violation Detection Module (AVM)

N−1

N

Network

Figure 3.7: Signature-based hardware implementation of AtomTracker-D in a multicore.

AtomTracker-D is implemented as follows. Assume that the AVM observes a transaction by

processor Pi to address Addr. The address is hashed and accumulated into the appropriate signature

(RSigi or WSigi). Assume it is a write. In this case, the AVM hardware uses membership signature

operations [13] to see if Addr is present in RSign or WSign, for all processors Pn 6= Pi. For each

processor Pj where the answer is “yes”, we have found a WAR or WAW. The AVM hardware does

the following. Since this is Case Pj → Pi with write access, the AVM ANDs Orderij with After

and, in addition, ANDs Orderji with Before. Finally, for each processor Pk where the answer is

“no”, since this is Case Pi−, the AVM ANDs Orderik with Unordered.

40

If the access is a read, the procedure is similar. AtomTracker-D first checks if Addr is present

in WSign. For each processor Pj where the answer is “yes”, we have found a RAW, and the

AVM hardware ANDs Orderij with After and Orderji with Before. For the other processors,

AtomTracker-D checks if Addr is present in RSign. For each processor Pj where the answer is

“yes”, we have found Case Pj → Pi with RAR only, and the hardware ANDs Orderij and Orderji

with Unordered. Finally, for the other processors Pk, this is Case Pi−, and the hardware ANDs

Orderik with Unordered. These operations are done in parallel.

Signatures do not keep precise information and, as they contain more addresses, they appear

to include a larger number of other addresses as well — also called aliases. This may cause false

positives, an issue we address in Section 3.6.4. To minimize such events, the AVM keeps several

(four in our design) physical signatures for each logical signature. Each hashed incoming address

is accumulated into one of the four signatures of the logical one, depending on its address. The

number of operations on signatures does not change. Overall, at the cost of more hardware, this

design reduces address aliasing.

As soon as the AVM detects a violation, it records it. When a processor ends its AR, its

signatures are cleared. However, recall from Figure 3.6 that if the Order flag is set to After when

a processor finishes its AR, and the concurrent AR is not yet finished, we cannot discard the state

until the concurrent AR ends. Consequently, in this case, the AVM saves the processor’s RSig

and WSig into Shadow Signatures (R’Sig and W’Sig in Figure 3.7). These shadow signatures are

checked by references from the concurrent AR until the latter finishes.

3.6.3 Software Interface

The AVM is driven by two instructions that are inserted in the program by either AtomTracker-I

or another software tool. They are atomic enter and atomic exit (Table 3.1). Atomic enter marks

the entry to an AR. It triggers the allocation of signatures and Order flags in the AVM. It saves

the PC of atomic enter in a processor register that we call AtomTrackerEntry. This register will

be used to identify the matching atomic exit instruction. In addition, atomic enter sets the cache

41

operation to AR mode. In this mode, cache accesses set the FirstAccess bits of the lines touched. If

the cache intercepts the access and the corresponding FirstAccess bit is clear, the hardware sends

the line address (plus whether this is a read or a write) to the network, so that the AVM captures it.

As indicated in Section 3.4.2, AR entries and exits may be unpaired and, therefore, execution may

already be in an AR. In this case, atomic enter has no effect.

Instruction Description
If (found outside an atomic region)

Allocate signatures/flags in AVM
AtomTrackerEntry = PC

atomic enter Set cache to AR mode. Per mem. access:
If [(cache intercepts access) and

(FirstAccess bit = 0)]
Send line address + R/W to network

FirstAccess bit = 1
If [(PC = AtomTrackerEntry) or
(NumMismatches = MAXMISMATCH)]
Set cache to plain mode:

atomic exit PC FirstAccess bits = 0 for all cache lines
Disable FirstAccess bit use

AtomTrackerEntry = 0
Deallocate own structures in AVM

Table 3.1: Instructions added to manage the AVM.

Atomic exit marks the exit of an AR. It takes the PC of the matching atomic enter instruction.

This instruction only has an effect if its PC argument is equal to the AtomTrackerEntry contents,

or if we found a threshold number of mismatching atomic exit instructions in a row. This is done

to ensure that the current AR eventually finishes. In these cases, atomic exit exits the AR by

setting the cache operation to plain mode (no FirstAccess use), clearing AtomTrackerEntry, and

deallocating its AVM structures.

3.6.4 Design Issues

Address aliasing in the signatures could result in false positives (FPs), namely claims of atomicity

violations when there are none. The actual signature implementation affects the number of FPs.

42

Consequently, we have chosen the design described in [50], which has few FPs. On the other hand,

signatures cannot lead to false negatives, namely false claims of no atomicity violations.

Network accesses only expose line addresses. Therefore, all AtomTracker-D operations are

done at cache-line granularity. This makes the implementation subject to false sharing, which can

also result in false positive claims, but not false negatives.

The atomic enter and atomic exit instructions use fences, as if they were synchronizations.

Therefore, the AtomTracker-D hardware also works with relaxed memory consistency model ma-

chines.

3.7 Conclusions

Our proposal AtomTrackeris the first scheme to (1) automatically infer generic non-nested ARs

(not limited by issues such as the number of variables accessed, the number of instructions in-

cluded, or the type of code construct the region is embedded in) and (2) automatically detect viola-

tions of them at runtime with negligible execution overhead. No programmer input or annotations

are needed. AtomTracker provides novel algorithms to infer generic ARs and to detect atomicity

violations of them. Moreover, we presented a hardware implementation of the violation detection

algorithm that leverages cache coherence state transitions in a multiprocessor. To evaluate Atom-

Tracker, we took eight atomicity violation bugs from real-world codes like Apache, MySql, and

Mozilla, and showed that AtomTracker detects them all — which is not the case with any of the

existing approaches.

43

Chapter 4

Detecting Sequential Consistency Violations

4.1 Introduction

The model that programmers have in mind when they program — and debug — shared-memory

threads is Sequential Consistency (SC). SC requires the memory operations of a program to appear

to have executed in some global sequential order that is consistent with each thread’s program

order [28]. In practice, however, current processor hardware aggressively overlaps, pipelines,

and reorders the memory accesses of a thread. As a result, a program’s execution can be very

unintuitive.

As an example, consider the simple case of Figure 4.1(a). In the example, processor PA al-

locates a variable and then sets a flag. Later, PB tests the flag and uses the variable. While this

interleaving produced expected results, the interleaving in Figure 4.1(b) did not. In here, since the

variable and the flag have no data dependence, the PA hardware reorders the statements. In this

unlucky interleaving, PB ends up using uninitialized data. This is an SC violation.

PB

A0: buff=malloc()

A1: init=TRUE

B0: if (init)

B1: ...=buff

(b)

PA PBPA

A1: init=TRUE

A0: buff=malloc()

B0: if (init)

B1: ...=buff

(a)

Figure 4.1: Example of an SC violation.

For an SC violation to occur, it is necessary to have data races. Consequently, if the program is

44

well synchronized (i.e., race-free), then the memory access reorderings induced by the hardware

do not matter. However, in practice, codes often contain data races. Such races may be inserted

inadvertently by the programmer, or created as a side effect of a careless compiler transformation,

or even introduced on purpose by the programmer — typically to improve the performance of the

code. Common intentional data races are found in double-checked locking constructs [66], some

synchronization libraries, and code that implements synchronization-free data structures.

While past work has used race-detection techniques to find SC violations [24, 38, 43], using

data races as proxies for SC violations is very unproductive. One reason is that a large majority

of data races in the codes are of the so-called benign kind [19, 52]. These races are informally

defined as those that, no matter the reference interleaving, do not change the program output (in a

way that the programmer cares about).

A second reason is that, even among harmful data races, an SC violation requires a very special

type of race. Indeed, it requires the presence of at least two overlapping data races intertwined in

a very unique manner [67]. Specifically, for two threads, it requires a pattern like in Figure 4.2(a)

where, if we follow program order, the two threads reference the same two variables in opposite

orders, and each variable is written at least once. Moreover, the order of the dependences between

these two racing pairs has to form a cycle at runtime. This is shown in Figure 4.2(b), where we

have arbitrarily assigned reads and writes: A1 must occur before B0 and B1 must occur before A0.

This is exactly what happened in Figure 4.1(b), where y was init and x was buff.

Note, however, that if the timing is such that at least one of the two dependence arrows occurs

in the opposite direction at runtime, there is no SC violation. For example, Figure 4.2(c) shows

the case when A0 executed before B1. Since there is no cycle, SC is not violated. This case

corresponds to the timing in Figure 4.1(a). The other parts of Figure 4.2 are described later.

A final reason for not using data races as proxies is that, in many cases, we want to find SC

violations in codes that have intentional data races, such as synchronization-free data structure

codes. We want to debug the code for SC violations while retaining the non-SC-violating races.

Here, a race-detection tool would be the wrong instrument and create many false positives.

45

PA
PB

(a
)

B
0:

 r
d

y

B
1:

 r
d

x

A
0:

 w
r

x

A
1:

 w
r

y

A
0:

 w
r

x
B

0:
 r

d
y

B
1:

 r
d

x

Pr
og

ra
m

 o
rd

er
 e

dg
e

(I
rr

el
ev

an
t t

o
th

e
ha

rd
w

ar
e)

PA
PB

A
0:

 w
r

x
B

0:
 r

d
x

A
1:

 w
r

y
B

1:
 r

d
y

A
1:

 w
r

y

A
0:

 r
ef

(x
)

B
0:

 r
ef

(y
)

A
1:

 r
ef

(y
)

B
1:

 r
ef

(x
)

PB
PA

PB
PA

(b
)

(c
)

D
ep

en
de

nc
e

ed
ge

 (
Fr

om
 s

ou
rc

e
to

 d
es

tin
at

io
n)A

0:
 r

ef
(x

)
B

0:
 r

ef
(x

)

B
1:

 r
ef

(y
)

A
1:

 r
ef

(y
)

(d
)

PA
PB

(e
)

Fi
gu

re
4.

2:
U

nd
er

st
an

di
ng

SC
vi

ol
at

io
ns

.

46

From this discussion, it is clear that we need a technique that precisely zeroes-in on these

clusters of data races and interleavings. Developing a precise, sophisticated technique for it is

justified because virtually all SC violations are harmful races and clear-cut bugs. The reason is

that, as the example in Figure 4.1(b) showed, they require memory access orders that contradict

a programmer’s intuition. In addition, they are doubly harmful because the programmer cannot

reproduce them using a single-stepping debugger.

4.2 Contributions

Given the importance of these bugs and the difficulty in isolating them, this work contributes with

Vulcan, the first hardware scheme to dynamically detect SC violations in a program running on

a relaxed-consistency machine precisely. Vulcan’s idea is to leverage cache coherence protocol

transactions to dynamically detect cycles in memory access orderings across threads. When one

such cycle is about to occur, an exception is triggered, providing the exact architectural state. From

our analysis of various real world SC violation bugs (Section 4.5), we found that 2-processor bugs

are the clear majority. Therefore, Vulcan focuses on catching this 2-processor SC violation bugs. In

all later discussions, whenever we mention SC violation, we usually refer to 2-processor violation.

However, Section 4.6.5 outlines how to extend this approach to detect more general N-processor

violations.

Vulcan’s approach has several advantages: it suffers from no false positives or false negatives

(in the context of 2-processor bugs), induces negligible execution overhead, requires no help from

the compiler, and only takes as input the program executable.

Experimental results show that Vulcan detects three new bugs in very popular codes. Specif-

ically, Vulcan finds SC violations in the Pthread and Crypt libraries, and in the fmm program

from SPLASH-2. We have reported the bugs to the developers. In addition, Vulcan’s negligible

execution overhead makes it suitable for on-the-fly use in production runs.

Finally, we also contribute with a new taxonomy of data races.

47

4.3 Background

A Sequential Consistency Violation (SCV) occurs when the memory operations of a program have

executed in an order that does not conform to any SC execution. It is virtually always a harmful

bug, since it is the outcome of an execution not predicted by the programmer and, furthermore, is

the hardest to debug because debuggers cannot reproduce it.

Shasha and Snir [67] show what causes an SC violation: overlapping data races where, at

runtime, the dependences end up ordered in a cycle. Recall that a data race occurs when two

threads access the same memory location without an intervening synchronization and at least one

is writing. Figure 4.2(a) showed the required program pattern for two threads (where each variable

is written at least once) and Figure 4.2(b) showed the required order of the dependences observed

at runtime for SCV (where we assigned reads and writes to the references arbitrarily).

If at least one of the dependences occurred in the opposite direction (e.g., Figure 4.2(c)), no

SCV occurs. In addition, if the code of the two threads references the two variables in the same

order (Figure 4.2(d)), no SCV is possible — no matter how these references end up being reordered

at runtime. For example, in Figure 4.2(e), no SCV can occur — no matter the execution order of

the instructions within a thread, or the direction of the inter-thread dependences.

Given the pattern in Figure 4.2(a), Shasha and Snir [67] avoid the SCV by placing a fence

between the references A0 and A1 and another between the references B0 and B1. Their algorithm

to find where to put the fences has been called the Delay Set.

The commonly used Double-Checked Locking (DCL) [66] is a major source of SCVs. This

is a programming technique to reduce the overhead of acquiring a lock by first testing the locking

criterion without actually acquiring the lock. Only if the test indicates that locking is required does

the actual locking logic proceed. The code takes a structure like that in Figure 4.1(a). Because the

code is typically involved, programmers often miss putting the two fences required by Shasha and

Snir. In that case, an SCV may occur.

Data races and SCVs are very different and, intuitively, programs have many more data races

48

than SCVs. However, past work has focused on detecting data races as proxies for SCVs. This

includes the work of Gharachorloo and Gibbons [24], DRFx [43] and Conflict Exceptions [38].

Specifically, they all look for a data race between two accesses from different threads that occur

within a short time distance. The actual detection scheme is different: Gharachorloo and Gibbons

detect external invalidations (or read requests) on local outstanding loads and stores, while DRFx

and Conflict Exceptions detect conflicts between concurrent synchronization-free regions. More-

over, when such a race is detected, DRFx and Conflict Exceptions raise an exception. Overall,

while focusing on a data race between close-proximity references may be a good way to discard

many irrelevant races, it is still a very different problem than focusing on uncovering SCVs.

Other researchers have used the compiler to identify race pairs that could cause SCVs, typically

using the Delay Set algorithm, and then insert fences to prevent cycles [18, 20, 27, 30, 31, 70].

In general, compiler approaches tend to be very conservative, and typically result in substantial

slowdowns. There is some work on program testing and verification that either checks semantic

correctness or collects traces of a program and then, off-line, applies reordering rules to try to

detect SCVs [8, 9, 10]. While such techniques are promising, they are typically limited to small-

sized codes and are performed statically or as an off-line pass. Finally, the hardware verification

community tries to verify whether the memory subsystem hardware correctly implements SC or

some other memory consistency models [14, 17, 44]. Our work is different in that we focus on

debugging software as it runs on a correctly-implemented relaxed-consistency machine. More

details on related work are presented in Section 4.4.

4.4 Related Work

Beyond the work of Gharachorloo and Gibbons [24], DRFx [43] and Conflict Exceptions [38]

already described in Section 4.3, the most related work has to do with compiler-inserted fences,

testing, and hardware verification.

The compiler community has done substantial work on avoiding SCVs by inserting fences

49

(e.g., [20, 30, 70]). Most of the work is based on the Delay Set algorithm [67]. Krishnamurthy

and Yelick [27] reduce the complexity of the algorithm by applying it to SPMD programs. Sura

et al. [70] combine delay set analysis with escape and thread structure analysis to make it more

effective. Duan et al. [18] combine delay set analysis with a dynamic data race detector to improve

the precision of inserting fences.

Lin et al. [31] reduce the overhead of the SC-enforcing fences by proposing a conditional

fence (C-Fence). They point out that, for an SCV to occur, the cross-thread dependence arrows

must form a cycle (Figure 4.2(b)). If one arrow points in the opposite direction because the source

thread has executed long ago, then an SCV violation is impossible and there is no need for the

second fence. They propose a fence that, in such conditions, becomes invisible.

The testing community has proposed static and off-line techniques to check for SCVs. For

example, Burnim et al. [10] and SOBER [9] collect SC traces of a program. Then, they apply

the reordering rules of various memory models on them, hoping to detect SCVs. CheckFence [8]

checks semantic consistency by enumerating all possible executions and using an SAT solver.

Static or compiler methods are not directly comparable to dynamic methods such as Vulcan. Static

methods check a program – for all possible inputs and all possible schedules. Dynamic methods

check an execution, for one input and one schedule.Thus, one would expect more false positives

with static methods.

There are some works from the hardware verification community that try to verify if a particular

memory subsystem hardware has been correctly implemented. While somewhat related, these

works have a different goal than ours: we assume correct hardware and check if the software is

correct; they check if the hardware is correct and do not care about the software. For example,

Meixner and Sorin [44] verify that the memory subsystem hardware supports SC either directly

by checking some memory ordering rules or indirectly by checking some invariants. They induce

some hardware errors and then show that they can detect them. Chen et al. [14] verify different

memory models by building constraint graphs and looking for cycles. They use various techniques

to reduce the size of the graph. DACOTA [17] collects hardware activity logs and periodically

50

examines the logs to verify that the hardware was SC. Our work is different in that we focus on

debugging software as it runs on a relaxed-consistency machine; their focus is on verifying that

the memory system hardware correctly implements a memory model.

4.5 A New Taxonomy of Data Races

App. # Harmful Bug ID # Multi- # SCV # DCL
Races Races Races SCVs

Apache 24 254653, 49972, 25520, 21287, 5 5 5
49985, 49986, 47158, 48790,
31018, 45608, 40681, 40167,
37458, 36594, 37529, 40170,
44402, 44178, 46215, 41659,
45605, 1507, 46211, 728

MySQL 13 644, 791, 2011, 3596, 12848, 1 1 1
19938, 24721, 48930, 42101,
45058, 56324, 52356, 59464

Mozilla 11 622691, 341323, 133773, 2 1 1
342577, 52111, 224911,
270689, 73761, 124923
225525, 325521

Redhat (glibc) 2 2644, 11449 2 2 1
Java SDK 2 6633229, race in 1 1 1

ConcurrentLinkedQueue
PostgreSQL 1 613 0 0 0
Pbzip2 1 Data race from [76] 0 0 0
Windows kernel 1 Data race from [19] 0 0 0
Isolator bench. 1 Data race from Isolator [61] 0 0 0
SPLASH-2 1 Data race from fmm 1 1 0
Total 57 —- 12 11 9

Table 4.1: Harmful data races studied. The races in bold are three new SC Violation (SCV) bugs
found by Vulcan.

To assess the relationship between data races and SCVs, we develop a new taxonomy of data

races. We examined the bug databases of popular programs such as Apache, MySQL, and Mozilla,

and collected all the data-race bugs we could find. Since these are bugs reported by users, we

declare them Harmful data races. Table 4.1 lists the applications and the number of harmful races,

51

together with the bug IDs when available. The races in bold in the table are three new SCV bugs

that we uncovered as we evaluated Vulcan— two of them in the official fixes of the reported Redhat

bugs and one in a SPLASH-2 code. More details are presented in Section 5.3.3.

Overall, we recorded 57 harmful races. For each of these bugs, if they contain more than one

race, we call them Multi-races; otherwise, we call them Single-races. In addition, if a multi-race

bug can create an SCV, we call it an SCV Race; otherwise it is a Non-SCV Race. Finally, SCVs are

classified into those that are DCLs [66] and those that are not.

Table 4.1 shows the breakdown of the bugs per application. We see that, of the total 57 harmful

races, 12 are multi-races (21%). This is a sizable fraction. Of these, 11 can cause SCVs (91%).

The only one that, due to its reference pattern cannot ever create an SCV is in Mozilla [2]. Of the

11 SCVs, 9 are DCLs (82%). The ones that are not DCLs are shown later in Figures 5.6 and 5.8.

To put this in context, Microsoft reported that about 90% of all the data races are benign [19,

52]. Therefore, we can build the tree of Figure 4.3(a), which shows the frequency of each type

of bug relative to its parent’s. To visualize the frequency relative to all the race instances, Fig-

ure 4.3(b) shows a diagram where the area is proportional to the frequency of occurrence. We can

see that SCVs account for 1.9% of all the data races. This suggests that previous approaches that

focus on data races as proxies for SCVs [24, 38, 43] are insufficient.

The figure also shows why a special technique for SCV bugs is warranted: they comprise a

substantial fraction of the harmful data races, namely 0.91x21%=19.1%. In addition, they are

very hard to debug, since debuggers cannot reproduce them. Finally, there are no existing pre-

cise techniques to find them. For example, even a sophisticated data-race detector is ineffective,

since we often look for SCVs in the codes that have intentional data races, such as libraries of

synchronization-free data structures. Using a race detector would continuously trigger false posi-

tives.

52

Benign
(90%)

Harmful
 (10%)

Benign
 (90%)

Multi
Race
(21%)

Single
Race
(79%)

Non−SCV
 Race
 (9%)

SCV
Race

(91%)

 (7.9%)

Data Races

(a) (b)

Data Races

Single
Race

(1.9%)
SCV

Non−SCV
(0.2%)

Figure 4.3: Relative frequency of data-race types.

4.6 Vulcan: Detecting SC Violations

Our goal is to develop a precise approach to detect SCVs in relaxed-consistency machines. Hence,

we focus on detecting cycles in inter-thread data dependences at runtime. In addition, we want a

solution that has no false positives or false negatives, is able to deliver the exact processor state

with an exception at an SCV, and has a negligible execution overhead. Finally, the solution should

not rely on the compiler because compilers are conservative — it should take a plain executable.

The idea behind our approach, called Vulcan, is to rely on the cache coherence protocol to

dynamically record the observed inter-thread data dependences, and then check whether they form

cycles. These dependences are kept around only for as long as they can participate in a cycle, and

are discarded soon after. Both the recording and the checking of these dependences is done in

hardware for minimum execution overhead. In this section, we describe Vulcan.

4.6.1 Basic Algorithm to Detect Cycles

Figure 4.4(a) repeats the pattern that can lead to an SCV with two threads. An SCV occurs when,

due to the out-of-order execution of ref(x) and ref(y) in one thread or in both threads, A1 executes

53

before B0, and B1 executes before A0 — creating a dependence cycle.

In Vulcan, the hardware dynamically captures the dependences and checks for cycles. To un-

derstand how it works, consider the arrow of Figure 4.4(b), which represents that reference A1

executed before reference B0. This arrow creates two regions, R1 and R2, such that any future de-

pendence whose source is in R1 and destination is in R2 will cause an SC violation. Consequently,

after Vulcan records A1→B0, it monitors that no new dependence is created from an access in PB

at or after B0 to an access in PA at or before A1.

We put this requirement as the two restrictions of Figure 4.4(c):

• For any dependence whose source reference is in PB at or after B0, the Allowed Destination

(AD) in PA is after A1.

• For any dependence whose destination reference is in PA at or before A1, the Allowed Source

(AS) in PB is before B0.

If there are multiple dependences between two threads, then the AD of a dependence from a

reference is the latest (i.e., maximum) of the contributing ADs, while the AS of a dependence to a

reference is the earliest (i.e., minimum) of the contributing ASs. This is shown in Figure 4.4(d). In

the figure, for each of the two dependences, we use the algorithm of Figure 4.4(c) to set the ADs

of their R1 Regions and the ASs of their R2 regions. In the areas where the two R1 regions overlap

(B0 and later in PB), Vulcan sets the AD to the maximum of the two values; in the areas where

the two R2 regions overlap (A1’ and earlier in PA), Vulcan sets the AS to the minimum of the two

values.

Based on this discussion, Vulcan tags each monitored reference with three labels. They are

shown in Figure 4.4(e). The first one is the Serial Number (SN), which is the local dynamic

reference count, assigned when the load or store enters the pipeline (e.g., at issue). The second

one is the Allowed Destination (AD), which is the SN of the reference in the other processor after

which the local reference can send data to. The last one is the Allowed Source (AS), which is

the SN of the reference in the other processor before which the local reference can receive data

54

R
eg

io
n

R
1:

S
ho

ul
d

no
t

be
 th

e
of

 a
 d

ep
en

de
nc

e
to

 R
eg

io
n

R
2

so
ur

ce

R
eg

io
n

R
2:

be
 th

e
S

ho
ul

d
no

t

of
 a

 d
ep

en
de

nc
e

de
st

in
at

io
n

fr
om

 R
eg

io
n

R
1

BP
AP

(c
)

A
1

B
0

Allowed Source:

Allowed Destination:

AS < B0

AD > A1

BP
AP

A
1

re
f(

y)

(b
)B

0

BP

A
BP

N
−

1

N
: #

 o
f p

ro
ce

ss
or

s

(e
)

1
1 2

2
A

1
B

1

A
0 B

0

P

S
N

: S
er

ia
l

N
um

be
r A
D

: A
llo

w
ed

D
es

tin
at

io
n

A
S

: A
llo

w
ed

S
ou

rc
e

If
(S

N
B

j >
=

 A
S

]

 m

ax
[c

ur
r_

va
lu

e,
 S

N B
j

2

If
(S

N
[P

 <
=

 A
D

A
i

B
j

A
])

A
S

[P
A

] o
f B

j
an

d
ea

rli
er

 =

A
ll

ca
se

s:
 S

en
d

re
sp

on
se

 +
 S

N
B

j

A
i]

 m
in

[c
ur

r_
va

lu
e,

 S
N

A
B

A
B

P
P

A
0:

 r
ef

(x
)

B
0:

 r
ef

(y
)

A
1:

 r
ef

(y
)

B
1:

 r
ef

(x
)

(a
)

re
f(

y)

P

A
1’

A
1

P

B
0’ B
0

AS<B0

(d
)

AS<min(B0, B0’)

AD>max(A1, A1’)AD>A1’

(f
)

AP

B
0

A
1

A
i

B
j

AP A
i

1
R

eq
ue

st

S
en

d
S

N A
i

ex
ce

pt
io

n
E

ls
e

[P
])

3

A
i

B

A
D

[P
B

] o
f A

i
an

d
la

te
r

=

(g
)

BP B
j

ex
ce

pt
io

n
E

ls
e

A
ct

io
n

at
 p

ro
du

ce
r

A
ct

io
n

at
 c

on
su

m
er

Fi
gu

re
4.

4:
B

as
ic

al
go

ri
th

m
to

de
te

ct
cy

cl
es

.

55

from. Since a processor can have dependences with every other processor, AD and AS are arrays

of N-1 entries, where N is the processor count. In each processor, SN starts up as 0 and increases

monotonically. AD starts up as 0 and AS as∞.

These structures are updated in hardware every time that a new cross-processor dependence is

created. The algorithm is shown in Figure 4.4(g), which refers to the example in Figure 4.4(f).

Assume that we already have the solid arrow A1→B0; now PA issues a request from reference Ai

that prompts reference Bj in PB to respond, creating the dotted arrow Bj→Ai. Figure 4.4(g) shows

that there are three steps. Step 1 is the request from PA, which carries the SN of the requesting

access (SNAi). In Step 2, PB operates on its Vulcan metadata, sends the response, and possibly

raises an exception. Specifically, PB checks that a cycle is not about to form by confirming that

Ai is an allowed destination of Bj. If it is not (SNAi ≤ ADBj[PA]), a cycle is about to form

and, therefore an SC violation is detected. In this case, PB sends the response with the SN of

the producer access (SNBj) and raises an exception. Otherwise, as in the example, the metadata

is updated: the AS[PA] of Bj and earlier accesses in PB are set to the minimum of their current

values and SNAi. Also, PB sends the response with SNBj .

Finally, in Step 3, when the data reaches PA, PA operates on its metadata and possibly raises an

exception. Specifically, PA checks that a cycle is not formed by confirming that Bj is an allowed

source of Ai. If it is not (SNBj ≥ ASAi[PB]), a cycle is formed and an SC violation has occurred.

Consequently, a precise exception is raised. Otherwise, as in the example, the AD[PB] of Ai and

later accesses in PA are set to the maximum of their current values and SNBj .

With this algorithm, Vulcan raises exceptions immediately when a dependence closes a cycle

and an SCV occurs. This provides valuable information for debugging. In particular, the exception

at the processor that receives the response provides the precise architectural state of the consumer

reference closing the cycle. In addition, the exception at the processor that sends the response pro-

vides additional information from the producer reference’s metadata, that can further help debug.

Note that the exception at the producer may not occur since, at send time, there may not be enough

dependences for a cycle yet. Still, the exception at the consumer is the one that matters and it

56

always occurs.

4.6.2 Safe Accesses

As a processor issues references, Vulcan monitors them. To understand for how long they need to

be monitored, we define the concept of a Safe access:

• An access is Safe when no data dependence involving this access can cause an SC violation any

more. Vulcan can stop monitoring an access when it becomes safe.

To find out when an access becomes safe, consider the Performed Point (PP) in an out-of-order

processor. The PP is the latest memory access (in program order) such that it and all the accesses

preceding it in program order have been performed. We say that an access has been performed

when any activity in the memory system resulting from it has ceased. Ignoring misspeculations, a

load has been performed when the value has been loaded into the load buffer or, if forwarded, when

the producer store has been performed; a store has been performed when the cache has received

the data and all the invalidation acknowledgments.

As a thread executes, the PP keeps advancing. When the PP reaches an access, it is clear that

the access is complete. However, the access may still participate in an SCV and, therefore, not be

Safe. To see why, consider Figure 4.5(a). The creation of the A1→B1 dependence makes the B1

and subsequent accesses in PB vulnerable. Indeed, even if they complete and PB’s PP goes past

them, they can still participate in cycles. Specifically, if any access in PA prior to A1 requests data

from them (or generally becomes dependent on them), a cycle is created. In precise terms: B1 and

subsequent accesses in PB remain not Safe (i.e., unsafe) for as long as PA’s PP has not reached the

reference in their AD (A1 in the example).

The exact condition for an access Ci in processor PC to be Safe is as follows:

• Suppose that we have an array PP[] with the current value of the PPs for each processor (given as

SN numbers). Ci is Safe when (SNCi ≤ PP [PC]) and (ADCi[PK] ≤ PP [PK]), for all processors

K 6= C. [Proof in Theorem 1 of the Appendix].

57

SN

PA

A1

A2

PB

B1

B2

(b)

PA

A1

PB

B1

(a)

Performed Point (PP) Array

 N

(c)

(d)
AD[] AS[]

Sequential
Consistency
Violation
Queue
(SCVQ)

Ref5
Ref4
Ref3
Ref2
Ref1

Figure 4.5: Understanding when an access is Safe.

As an example, consider Figure 4.5(b). The accesses in PA become safe as soon as PP [PA]

reaches them (since their AD has not been changed from 0). The accesses in PB remain unsafe

even as PP [PB] reaches them. However, as soon as A1 becomes safe, all the accesses in PB up to

(but not including) B2 can become safe.

We also say that an access Ci in processor PC is safe with respect to another processor PM :

• Ci is Safe with respect to PM when (SNCi ≤ PP [PC]) and (ADCi[PM] ≤ PP [PM]).

Vulcan uses these insights as follows. First, each processor has a PP[] array (Figure 4.5(c)). In

this array, the entries corresponding to the other processors are kept largely up-to-date thanks to

the fact that each processor includes its PP in every response message.

Second, Vulcan only keeps the SN, AD, and AS information for the references that are not

safe. Such information is kept in a per-processor FIFO hardware queue associated with the cache

controller called SC Violation Queue (SCVQ) (Figure 4.5(d)). When the processor issues a load

or store, Vulcan allocates an SCVQ entry and sets its SN field. Later, as the access executes

and coherence actions are received, the AD and AS fields are updated. Finally, when the access

becomes safe, Vulcan deallocates the entry.

An SCVQ entry does not contain the data loaded or stored. Moreover, the entry can remain

58

allocated long after the access has completed — for as long as it remains unsafe.

4.6.3 Detecting Dependences

When an SC violation occurs, the following must be true:

• The two inter-processor dependence arrows that form the cycle must share a property: their

source reference is unsafe with respect to the destination processor. If one of the arrows fails this

condition, there is no SC violation. [Proof in Theorem 2 of the Appendix].

rd 1

PA B A BP PA B PA PB PA PBP

(a) (c) (d) (e)

T
im

e PP
PP

1
2 B1

(b)

PP

rd

wr

wr

rd

wr

rd 2

RAW

wr

wr

WAR WAW

Figure 4.6: Inter-processor data dependences.

For example, in Figure 4.6(a), while arrow 1 satisfies the condition, arrow 2 does not, and no

SC violation occurs. Consequently, we conclude:

• Vulcan only needs to watch for inter-processor data dependences where the source reference is

unsafe with respect to the destination processor. We call such dependences unsafe dependences.

To find the unsafe dependences, we will see that Vulcan uses the cache coherence protocol

transactions (to a large extent). When one is found, the hardware performs the basic algorithm

described in Section 4.6.1: the source and destination references exchange SNs, the source checks

its AD and potentially updates its AS (and those of earlier accesses), and the destination checks its

AS and potentially updates its AD (and those of later accesses).

Figures 4.6(b)-(e) show the three types of dependences possible: WAR, RAW, and WAW. Fig-

59

ure 4.6(b) shows a WAR. The write triggers Vulcan to search the other processors’ SCVQs for

reads to the address. Multiple reader processors may be identified. Each reader processor has to

take-in the write’s SN, provide its read’s SN and run the Vulcan algorithm; the writer has to take-in

all the reads’ SNs and run the Vulcan algorithm using the correct entries in its AD and AS arrays.

In addition, since the write will be the source of the future dependence(s) on this address, the write

also triggers the removal (i.e., invalidation) of the SCVQ entries for this address in all the other

processors.

Figure 4.6(c) shows a RAW. The read triggers Vulcan to search the other processors’ SCVQs

for a write to the address, ignoring SCVQ entries for reads. The usual algorithm is then run.

Figure 4.6(d) shows a special case of a RAW, where the reader thread performs two reads to the

same address out of order: first a later read (rd1) and then a read that is earlier in program order

(rd2). In this case, both reads must communicate with the write’s SCVQ entry. In the process, rd1

will first set the AS of the write (and prior accesses) to rd1’s SN; later, rd2 will set it to rd2’s SN,

which is lower.

Figure 4.6(e) shows a WAW. As usual, the consumer write invalidates the SCVQ entry of

the producer write. Note that other processors may have read the address in between the two

writes. In this case, the consumer writer generates WAR dependences with the readers and a

WAW dependence with the producer writer, and invalidates all the SCVQ entries for this address

but its own.

Our goal is to detect all the unsafe dependences. The Appendix shows that:

• If Vulcan records all the unsafe dependences, then it can detect all the SCVs between the pro-

cessors. [Proof in Theorem 3 of the Appendix].

4.6.4 Leveraging the Coherence Protocol

To detect all the unsafe dependences,

Vulcan partially relies on piggybacking on the cache coherence protocol transactions. In this

60

work, we describe the operation assuming a snoopy-based MSI protocol; other protocols may re-

quire slightly different arrangements. Moreover, we assume a single-level private cache hierarchy

per processor, where the SCVQ is associated with the cache controller. In addition, without loss of

generality, in our discussion, we use a word (i.e., 32 bits) as the finest grain of processor accesses.

To understand how Vulcan uses the coherence protocol, this section starts by assuming single-

word cache lines; Section 4.7 shows the final Vulcan design, which uses multi-word lines. With

single-word lines, the destination access of the WAR, RAW, and WAW dependences of Figure 4.6

induces a coherence transaction on the bus. Vulcan leverages such a transaction. The only ex-

ception is the second read (rd2) in the RAW with out-of-order reads to the same address (Fig-

ure 4.6(d)). We describe this special case later.

As part of the coherence transaction, the Vulcan metadata is exchanged and operated upon.

Specifically, on a read coherence transaction on the bus, the SCVQs that may have the referenced

address (we will see later how we know this) are searched. The search tries to find the latest write

to the address in program order in the SCVQ. If a write is found, we have detected a RAW. Then,

the Vulcan metadata is exchanged (as part of the transaction) and operated upon appropriately.

On a write coherence transaction on the bus, the SCVQs that may have the referenced address

are searched. The search tries to find the latest read or write to the address in program order in the

SCVQ. Vulcan looks for the latest one because it forms the most conservative dependence. If we

find one, we have detected a WAR or a WAW. Then, the metadata is exchanged and operated upon.

In addition, as indicated above, all the entries for the address in the SCVQ are invalidated.

The second read (rd2) in the RAW with out-of-order reads of Figure 4.6(d) presents a difficulty.

On the one hand, the read hits in the cache and would not cause a coherence transaction. On the

other hand, it needs to exchange SNs with the write and update the metadata (importantly, the AS

of the write and prior accesses in PA must become smaller). Vulcan solves the problem by forcing

a Metadata Bus Access, namely one where only Vulcan metadata is exchanged and operated on; no

data is returned. Specifically, when a load executes and finds that a later load to the same address

has already executed, the hardware forces a metadata network access.

61

Vulcan’s operation requires that, on a bus transaction, the hardware looks-up the SCVQs that

may have the referenced address. Vulcan cannot rely on the cache snoopers to flag which SCVQs

may have the address — since the corresponding cache line may have been evicted from the cache

and have to be brought in from memory. Consequently, Vulcan adds a per-processor bloom filter

that contains the current addresses in the local SCVQ. If the address on the bus hits in the filter,

the SCVQ is searched. Section 4.7.3 presents a detailed design.

4.6.5 How to Detect N-Processor SC Violation

So far, we have discussed how to detect 2-processor SC violation. In order to uncover any N-

processor SC violation, we need to extend our algorithm to detect N-processor cycle. In that case,

a simple scalar number based SN won’t suffice. Because, it fails to capture relative order across

multiple processors. Therefore, we need to maintain Lamport clock (i.e. vector clock) based

SN for each memory access. Every time a memory operation is issued, the issuing processor

will increment the component of SN corresponding to itself and associate this new SN to that

access. Let us assume that SNCi[] is associated with access Ci of processor Pl. When Ci is

issued SNCi[] is initialized by first copying SNCi−1[] to it and then incrementing SNCi[Pl] by 1.

Whenever, Ci depends on another access Di of processor Pm, we have to update SNCi by taking

a pairwise maximum of SNCi and SNDi. This will establish the causal or happens-before relation

between the two accesses. Like before, we also need to maintainAS andAD which will be vectors

now. Therefore, we need to update them by applying vector minimum and maximum operations.

Thus, the high level idea to extend Vulcan for N-processor cycle is to use vectors instead scalar

numbers like the original design. This will lead to exchanging vectors instead of scalars among

the processors. We have left the details of this design as a future work of this thesis.

62

4.7 Vulcan Hardware Design

This section presents the key Vulcan hardware structures, namely the coherence protocol and

SCVQs.

4.7.1 Supporting Multiple Words per Line

Detecting all the unsafe dependences was easy with single-word cache lines because, conveniently,

in all cross-thread dependences (except RAWs with out-of-order read-read) the destination refer-

ence induces a coherence action in an MSI protocol (Figure 4.6). During the resulting bus access,

the hardware exchanges and updates Vulcan metadata.

Unfortunately, this is not the case with multi-word cache lines. As a processor references a

word, other words come along. Consequently, some unsafe dependences do not trigger coherence

actions. Further, some coherence actions are caused by false sharing rather than by true depen-

dences.

To solve this problem, Vulcan decouples, to some extent, the coherence actions from the Vul-

can metadata operations. It ensures that every time an unsafe dependence occurs, (1) either the

coherence protocol triggers a coherence action or (2) Vulcan forces a Metadata bus access.

We now use an line-based cache coherence protocol. However, a bus transaction also includes

the address bits of the word accessed within the line. Moreover, in each valid line in the cache,

Vulcan keeps two state bits per word. These bits represent the Vulcan-State (or V-State) of the

word. A word can be in one of three V-states:

• Solo: This word is not in any other processor’s SCVQ because the local processor has written the

word and invalidated the address from all the other SCVQs, and no other processor has accessed

the word since.

• Recorded: The local processor has recorded any unsafe dependences it may have with other

processors on this word. The local processor may or may not have accessed the word.

• Unknown: The local processor is not up-to-date in recording unsafe dependences on this word.

63

These states are used as follows:

• Solo: The processor can read or write a Solo word without checking the Vulcan metadata. The

access may or may not trigger a coherence action on the line in the bus. The Vulcan hardware is

not exercised.

• Recorded: The processor can read the word without checking the Vulcan metadata. If the pro-

cessor writes the word, the bus is accessed, the Vulcan metadata is operated on, and the V-state

transitions to Solo. If the write triggers a coherence action in the bus, these actions are piggybacked

on it.

• Unknown: If the processor reads or writes the word, it causes a bus access and operation on the

Vulcan metadata. The word transitions to Recorded on a read or to Solo on a write. If the write

triggers a coherence action, these actions are piggybacked on it.

We handle out-of-order read-read accesses to the same word like in Section 4.6.4: when a read

executes and finds that a later read to the same address has already been sent to the bus (because it

found the Unknown state), the hardware forces a second bus access.

4.7.2 V-State Transitions for a Word

Figure 4.7 shows how the V-state of a word changes. We break the transitions into two figures. Fig-

ure 4.7(a) shows the transitions of the word as its line moves in and out of the cache; Figure 4.7(b)

shows the transitions while the line is in the cache.

Starting with Figure 4.7(a), as the line is brought-in on a read miss, the hardware operates on

the Vulcan metadata of the referenced word, recording any unsafe dependence. Hence, the word is

loaded as Recorded. The other words in the line (i.e., “not-referenced” words) are loaded as either

Recorded — if their address cannot be in any of the other processor’s SCVQs — or as Unknown

otherwise. This functionality is easily supported by adding one control wire in the bus for each

word in a line. During the bus transaction, the processors also check the addresses of all the not-

referenced words in the line against their bloom filter. If any processor finds a match for a given

64

E
xt

er
na

l
w

rit
e

E
xt

er
na

l r
ea

d

Lo
ca

l w
rit

e

Lo
ca

l r
ea

d

N
ot

−
re

f.
w

or
ds

pr
es

en
t i

n
so

m
e

fil
te

r

N
ot

−
re

f.
w

or
ds

pr
es

en
t i

n
so

m
e

fil
te

r

N
ot

−
re

f.
w

or
ds

pr
es

en
t i

n
no

 fi
lte

r

N
ot

−
re

f.
w

or
ds

pr
es

en
t i

n
no

 fi
lte

r

or
 e

vi
ct

ed

R
ea

d
m

is
s

Li
ne

 in
va

lid
at

ed

or
 e

vi
ct

ed

E
xt

er
na

l r
ea

d

E
xt

er
na

l

w
rit

e

Lo
ca

l r
ea

d
Lo

ca
l w

rit
e

(a
)

S
ol

o

U
nk

no
w

n

R
ec

or
de

d

or
 e

vi
ct

ed
Li

ne
 in

va
lid

at
ed

Li
ne

 in
va

lid
at

ed

(b
)

U
nk

no
w

n

S
ol

o

R
ec

or
de

d

Local write

Lo
ca

l r
ea

d

w
rit

e
E

xt
er

na
l

E
xt

er
na

l

re
ad

W
rit

e
m

is
s R

ef
. w

or
d

R
ef

. w
or

d

Fi
gu

re
4.

7:
V

-s
ta

te
tr

an
si

tio
ns

fo
ra

w
or

d.
In

ch
ar

t(
a)

,r
ef

st
an

ds
fo

rr
ef

er
en

ce
d.

In
ch

ar
t(

b)
,t

he
un

de
rl

in
ed

tr
an

si
tio

ns
in

vo
lv

e
SC

V
Q

m
on

ito
ri

ng
,m

et
ad

at
a

ex
ch

an
ge

an
d

up
da

te
an

d,
he

nc
e,

ne
ed

a
bu

s
ac

ce
ss

(p
os

si
bl

y
pi

gg
yb

ac
ke

d
on

a
co

he
re

nc
e

ac
tio

n)
.

65

word, it sets the control wire for that word. If the wire for a particular word is not set by the end

of the bus transaction, it means that no processor can possibly have the word in its SCVQ, and the

word’s V-state in the requester is set to Recorded.

Hardware-prefetched lines work seamlessly. The algorithm for the not-referenced words is

applied to all the words in the line.

If the line is brought-in on a write miss, the state becomes Solo for the referenced word. For

the other words, the bloom filters are checked as above and the state is set as Recorded if there is

no match in any filter or Unknown if there is. Note that the V-state information is lost when the

line leaves the cache. This occurs when the line is evicted or invalidated by an external write to

any one of its words.

In Figure 4.7(b), the line is in the cache in any valid state. The transitions that require metadata

update in potentially both dependence source and destination and, therefore, need a bus access are

underlined. Such access is possibly piggybacked on a coherence action in the bus. Consider a Solo

word. The local processor can read and write it without metadata access. An external read requires

metadata update and the transition to Recorded V-state. Consider a Recorded word. A local read

is silent. A local write and an external read cause a bus access with metadata update, bringing

the local state to Solo or Recorded, respectively. Finally, in an Unknown word, a local read and

write cause a bus access and bring the word to Recorded and Solo, respectively. An external read

is ignored. In all states, an external write was described above and invalidates the line.

4.7.3 SCVQ Implementation

The SC Violation Queue (SCVQ) is a FIFO queue that contains the Vulcan metadata for local

unsafe loads and stores. As a load or store enters the pipeline, an SCVQ entry is allocated, holding

the next Serial Number (SN) and default values for AS and AD (∞ and the preceding access’ AD,

respectively). The AS and AD are updated later, when (1) the load or store executes, and (2) an

external access creates a dependence with the load or store. The latter event involves a bus access

and a search of the SCVQ.

66

The SCQV implementation is shown in Figure 4.8. The metadata is stored in a FIFO circular

queue. Since the bus can trigger an access to any address, the bus accesses the queue through a hash

table on word addresses. With this design, it is easy for the processor to allocate and deallocate

entries in FIFO order. It is also easy for the bus to find the entries that match a certain address.

Finally, a write bus transaction that invalidates an SCVQ entry simply marks the entry as “empty”

without moving it.

Tail Hash table

Counting
bloom filter

Head

Figure 4.8: Implementation of the SC Violation Queue (SCVQ).

On a bus transaction, we need to look-up the SCVQ for an address match. To reduce the num-

ber of useless look-ups, we cannot rely on filtering by the cache snooper. This is because an SCVQ

match may occur even if the corresponding line is no longer in the cache. Consequently, Vulcan

hashes all the word addresses currently in the SCVQ in a counting bloom filter [7]. This struc-

ture uses counters to allow the removal of an individual hashed-address. As entries are inserted

and removed from the SCVQ, the addresses are added and removed from the filter. Then, bus

transactions check the filter for a match before initiating an SCVQ access.

Inserting and removing addresses from the filter is not in a critical path. Insertion can occur

any time from when the address of the reference is known until when the load/store completes.

In the meantime, the metadata is not up-to-date anyway. Removal can be done lazily, since false

positive matches in the filter are harmless.

67

4.8 Discussion and Limitations

Vulcan is attractive because it is a very precise detector of SC violations — unlike some past

work that focuses on the related (but different) problem of detecting data races [24, 38, 43]. In

addition, Vulcan needs no compiler support. Finally, it provides precise exceptions on SC violation

detection, since it detects the exact reference that closes the dependence cycle.

The current Vulcan implementation has some limitations that can be fixed with additional fea-

tures. The first one is that it uses words as the finest grain of access. If the program has byte-level

accesses, Vulcan may suffer from false positives and false negatives. To solve this problem, Vulcan

needs to keep information (including V-states) and operate at byte granularity. A second limitation

is that the current design focuses on dependence cycles involving only two processors. In prac-

tice, this is not a major limitation because three-processor dependence cycles are extremely rare

— they require the overlapping of three races. In fact, all of the related existing work focuses on

two-processor interactions (e.g., [8, 10, 14, 31]). Anyway, the Vulcan framework can be mapped

to several-processor cycles by propagating the AS/AD along the dependence arrows, as opposed to

just sending SN.

Other coherence protocols and cache hierarchy organizations may require changes to the design

presented. Vulcan correctly supports load forwarding in the processor. However, the current design

does not support misspeculated loads — i.e., loads executed past mispredicted branches. In the

current design, these loads could trigger a dependence cycle. One approach to support such loads

is for Vulcan to be re-designed to wait until the loads become non-speculative before performing

metadata updates.

Finally, Vulcan’s hardware does not scale well to large numbers of processors because it has

to be designed to check for all-to-all processor interactions. However, this is not a significant

limitation. It is well known that small numbers of processors are perfectly adequate to test for

concurrency bugs [34].

68

4.9 Conclusion

SC violations arising from overlapping data races intertwined in a cycle are virtually always harm-

ful bugs: they result from totally-unintuitive memory access orders and cannot be reproduced using

a single-stepping debugger. While past work has focused on looking for data races as their proxies,

a new taxonomy of data races that we introduced shows that more precise detection methods are

needed.

To address this problem, this paper proposed Vulcan, the first hardware scheme that dynam-

ically detects SC violations in a program running on a relaxed-consistency machine precisely.

Vulcan’s idea is to leverage cache coherence protocol transactions to dynamically detect cycles in

memory access orderings across threads. When one such cycle is about to occur, an exception is

triggered, providing the exact architectural state. Vulcan suffers from no false positives or false

negatives, induces negligible execution overhead, requires no help from the compiler, and only

takes as input the program executable. Experimental results showed that Vulcan detects three new

bugs in very popular codes. Specifically, it found SC violations in the Pthread and Crypt libraries,

and in the fmm SPLASH-2 program. We have reported the bugs to the developers. Also, we

showed that Vulcan had a negligible execution overhead, which makes it suitable for on-the-fly

use in production runs.

69

Chapter 5

Evaluation

In this chapter we evaluate our work. The high level goal of this evaluation is to show that - (i)

the algorithms work, (ii) the techniques detect both known and possibly new, unreported bugs,

(iii) they require moderate hardware and, (iv) they have negligible execution time overhead. The

chapter will start with the evaluation of SigRace, then AtomTracker and finally it will end with

Vulcan.

5.1 SigRace

To evaluate SigRace, we consider four issues: (1) the signature configuration, which determines the

number of false positives, (2) the block size and number of entries in each BlockHistoryQueue[i],

which determine the window of monitored execution, (3) the effectiveness of SigRace in detecting

data races, and (4) the overheads of SigRace. In the following, we first overview the experimental

setup and then consider each issue in turn.

5.1.1 Experimental Setup

Since we are interested in the high-level parameters of SigRace, we use the PIN [40] binary instru-

mentation tool to design a simulator of the SigRace hardware, and run the applications on a real

8-processor shared-memory machine. This approach has the benefit of execution-driven simula-

tion without incurring the slow speeds of typical cycle-accurate simulators. Table 5.1 shows the

default parameters used in the simulation.

We model an 8-core chip multiprocessor where 32-Kbyte L1 caches are connected in a mul-

70

Number of processors: 8 Timestamp size: 8 x 20 = 160 bits
L1 cache size: 32 Kbytes Signature size: 2 Kbits each R and W
L1 cache line size: 64 bytes Block size: 2,000 committed instr.
Coherence protocol: MESI BlockHistoryQueue[i] size: 16 entries
Checkpoint interval: 1 M
committed instr./proc.

Benchmarks:
SPLASH2 kernels: FFT, Cholesky, LU
SPLASH2 applications: Barnes, Volrend, Ocean, Radiosity,
Raytrace, Water-ns, Water-spatial

PARSEC kernels: Dedup, Streamcluster
PARSEC applications: Blackscholes, Fluidanimate, Swaptions

Table 5.1: Default parameters used in the evaluation.

tistage network and kept coherent with a MESI cache coherence protocol. The timestamp size is

very conservatively set to 160 bits. The default values for the size of signatures, block, and Block-

HistoryQueue[i] are set according to the sensitivity analyses presented later. We take periodic

global checkpoints. A checkpoint is created as soon as a processor has committed 1 M instruc-

tions. We use the checkpointed information as a starting point of our Re-execution and Analysis

algorithms.

We evaluate SigRace with the SPLASH2 and PARSEC [4] benchmarks. These benchmarks

are representative of parallel workloads and exhibit a wide variety of memory access patterns. For

SPLASH2, we use the default inputs, while for PARSEC, we use the simmedium input size. We

report data for 10 SPLASH2 and 5 PARSEC benchmarks. As shown in Table 5.1, we separate them

into SPLASH2 kernels, SPLASH2 applications, PARSEC kernels, and PARSEC applications.

5.1.2 Signature Configuration

We test multiple signature configurations, denoted as Bi Sj . We first partition the address into 2

portions. The possible configurations are the Bi in Table 5.2. Then, we use multiple Bloom filters

in parallel using the H3 hash function as in [64] — half of them process one portion while the

other half the other. The configurations are the Si in Table 5.3.

71

Configuration Address Partition
LSB USB

B1 8 24
B2 10 22
B3 16 16

Table 5.2: Address partitions. LSB and USB stand for Lower and Upper Sliced Bits.

Configuration # of Bloom Bits per Bloom Sig Size
Filters (k) Filter (n) (k × n)

S1 16 256 4Kbit
S2 16 128 2Kbit
S3 16 64 1Kbit
S4 8 512 4Kbit
S5 8 256 2Kbit
S6 8 128 1Kbit

Table 5.3: Signature organizations.

We run the applications and count the number of signature intersections that indicate a collision

while there is none. The ratio of this number over the total number of signature intersections is the

false-positive rate. Figure 5.1(a) shows the average false-positive rate of the applications for our

default parameters. In the rest of the work, we use B2 S2, where the false-positive rate is 1.57%.

B
1_S

1
B

1_S
2

B
1_S

3
B

1_S
4

B
1_S

5
B

1_S
6

B
2_S

1
B

2_S
2

B
2_S

3
B

2_S
4

B
2_S

5
B

2_S
6

B
3_S

1
B

3_S
2

B
3_S

3
B

3_S
4

B
3_S

5
B

3_S
6

(a) Signature Configuration

0

5

10

15

20

25

F
al

se
 P

os
iti

ve
s(

%
)

2,000

4,000

8,000

16,000

S
ync

(b) SigRace Block Size

0

5

10

15

20

F
al

se
 P

os
iti

ve
s(

%
)

Figure 5.1: False positive rate versus signature configuration (a) and versus block size (b).

72

5.1.3 Block and BlockHistoryQueue[i] Size

If we choose a large SigRace block then, with the same BlockHistoryQueue[i] (BHQ[i]) size,

we can monitor a larger instruction window for possible data races. However, as the block size

increases, the signature false-positive rate also increases. Figure 5.1(b) shows the false-positive

rate for different block sizes beyond our default of 2,000 committed instructions. Sync means

terminating a block only at synchronizations. We see that larger blocks induce more false positives.

For a given block size, if we increase the number of entries in BHQ[i], we cover a larger

instruction window. However, we have to do more signature operations and the BHQ takes more

area.

To evaluate these issues, we run the applications with different numbers of entries in BHQ[i]

and different block sizes. When the RDM checks an incoming signature against a BHQ[i], the

hardware operates on each of the entries in the BHQ[i] until it finds a block that is a predecessor

of the incoming one. If there is such a predecessor, then SigRace does not lose any race detec-

tion opportunity. We call this event a Hit. Otherwise, SigRace loses race detection opportunity

beyond the oldest entry in BHQ[i]. We are interested in the execution window that starts at the

previous checkpoint and ends at the block just before the oldest entry in BHQ[i]. We call it the

Lost Detection Window.

Figure 5.2(a) shows the lost detection window as a percentage of the checkpoint interval, while

Figure 5.2(b) shows the hit rate of a signature against a BHQ[i], and Figure 5.2(c) shows the num-

ber of timestamp comparisons in a BHQ[i] per signature until hitting in the BHQ[i] or exhausting

all full BHQ[i] entries. All figures have the same X axis and share the same legend.

We see that, as the number of BHQ[i] entries increases, the lost detection window decreases

(Figure 5.2(a)) and the hit rate increases (Figure 5.2(b)). However, we have to do more timestamp

comparisons until a hit or BHQ[i] exhaustion (Figure 5.2(c)), and the BHQ takes more area. On the

other hand, for a fixed number of BHQ[i] entries, as the block size increases, we lose less window

(Figure 5.2(a)), the hit rate increases (Figure 5.2(b)) and the number of comparisons decreases

73

16 32 64

Number of BHQ[i] Entries

20.0

30.0

40.0

50.0

60.0

70.0

80.0

H
it

R
at

e
(%

)

(a)

16 32 64

Number of BHQ[i] Entries

0.0

10.0

20.0

Lo
st

 D
et

ec
-

tio
n

W
in

do
w

 (
%

)

2,000 Inst/Block
4,000 Inst/Block

8,000 Inst/Block
16,000 Inst/Block

Sync/Block

(b)

16 32 64

Number of BHQ[i] Entries

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 N
um

 o
f

C
om

pa
ris

on
s

pe
r

B
H

Q
[i]

(c)

Figure 5.2: Lost detection window (a), hit rate (b), and number of timestamp comparisons (c) for
different numbers of BHQ[i] entries and block size. All figures share the same legend.

(Figure 5.2(c)) — however, we saw in Figure 5.1(b) that false positives increase. Overall, we

choose as default a block size of 2,000 committed instructions and 16 entries in BHQ[i]. This

leads to an average of 20% loss in detection window.

74

5.1.4 SigRace Effectiveness

Data Race Detection

To assess SigRace’s effectiveness, we use it to find (i) existing data races in our applications and

(ii) races that we inject in the applications. We also simulate a cache-based race detector, namely

a version of ReEnact [58] with per-word timestamps (W-ReEnact). Table 5.4 shows the results.

Columns 2-7 (Finding Existing Races) list the number of races found by Ideal Sigrace, SigRace,

and W-ReEnact. Ideal SigRace is a SigRace where each BHQ[i] keeps information for all the

blocks between consecutive checkpoints — rather than for 16 blocks as in SigRace. Races are

identified by the two instructions involved in the race and the address accessed. The table counts

both static and dynamic races. Dynamic races are the dynamic instances of static races.

The table shows that 8 of the applications have data races. These races include, for example,

reads of shared structures outside a critical section before accessing them inside the critical section.

They are likely to be all benign races. However, we believe that it is important for any race detector

to detect even benign races. This is because, often, benign races are a symptom that the code

has a bug or something that the programmer does not understand. In any case, as described in

Section 2.5.2, if the programmer wants SigRace to skip checking for these races, he can mark the

code with collect off.

The table shows that SigRace detects 90 static and 47,000 dynamic races. Compared to W-

ReEnact, SigRace detects on average 29% more static races and 107% more dynamic races.

SigRace’s substantially higher effectiveness is due to its ability to monitor a longer window of

program at a time. Finally, compared to Ideal SigRace, SigRace detects on average 95% of the

static races and 26% of the dynamic ones.

We also inject races. For each application, we perform 25 runs. In each run, we randomly

eliminate one dynamic lock-unlock pair or one dynamic barrier. Since the Swaptions code syn-

chronizes with fork/joins, we could not subject it to this experiment. While these are contrived

examples, they provide some insight.

75

Fi
nd

in
g

E
xi

st
in

g
R

ac
es

Fi
nd

in
g

In
je

ct
ed

R
ac

es
A

pp
lic

at
io

n
Id

ea
lS

ig
R

ac
e

Si
gR

ac
e

W
-R

eE
na

ct
R

ac
y

St
at

ic
R

ac
es

Fo
un

d
R

un
s

w
/R

ac
es

Fo
un

d
St

at
D

yn
St

at
D

yn
St

at
D

yn
R

un
s

Si
gR

ac
e

W
-R

eE
na

ct
Si

gR
ac

e
W

-R
eE

na
ct

FF
T

–
–

–
–

–
–

25
/2

5
60

0
15

0
25

25
C

ho
le

sk
y

16
19

96
4

16
35

39
16

38
8

3/
25

2
2

1
1

L
U

–
–

–
–

–
–

25
/2

5
28

75
25

25
B

ar
ne

s
11

44
16

11
71

9
6

41
9

1/
25

3
1

1
1

Vo
lr

en
d

27
26

84
6

27
11

60
7

18
68

58
23

/2
5

34
5

74
23

21
O

ce
an

1
29

1
29

1
6

7/
25

8
8

7
7

R
ad

io
si

ty
15

59
30

7
15

16
95

1
12

14
66

0
8/

25
29

11
8

6
R

ay
tr

ac
e

4
30

4
17

3
12

21
/2

5
66

53
21

21
W

at
er

-n
s

–
–

–
–

–
–

5/
25

2
4

1
2

W
at

er
-s

pa
tia

l
8

82
4

27
2

3
3/

25
6

6
3

3
D

ed
up

–
–

–
–

–
–

3/
25

0
0

0
0

St
re

am
cl

us
te

r
13

68
56

6
12

14
30

7
12

43
6

6/
25

7
2

5
2

B
la

ck
sc

ho
le

s
–

–
–

–
–

–
0/

25
0

0
0

0
Fl

ui
da

ni
m

at
e

–
–

–
–

–
–

12
/2

5
95

90
12

12
Sw

ap
tio

ns
–

–
–

–
–

–
–

–
–

–
–

To
ta

l
95

17
92

40
90

47
19

6
70

22
78

2
14

2/
35

0
11

91
47

6
13

2
12

6

Ta
bl

e
5.

4:
E

ff
ec

tiv
en

es
s

of
Si

gR
ac

e
an

d
R

eE
na

ct
w

ith
pe

r-
w

or
d

tim
es

ta
m

ps
in

fin
di

ng
ex

is
tin

g
ra

ce
s

an
d

in
je

ct
ed

ra
ce

s.

76

Columns 8-12 (Finding Injected Races) show the detection capability of SigRace and W-

ReEnact. Column 8 (Racy Runs) shows the fraction of those 25 runs that actually created races.

Then, Columns 9-10 show the number of static races found by SigRace and W-ReEnact, respec-

tively. We see that, on average, SigRace finds 150% more static races than W-ReEnact. This again

shows the higher effectiveness of SigRace. Interestingly, there are two applications where W-

ReEnact finds more races (LU and Water-ns). This is because, while SigRace typically monitors

a longer program window, there are cases when lines remain in the caches for a long time. In this

case, W-ReEnact can detect racing accesses that are far apart in the code (over 50,000 instructions

apart in these examples). In general, it can be argued that races where the accesses are far apart are

least dangerous, since the chances that these accesses appear in reverse order in a different run are

lower. Finally, Columns 11-12 show the number of runs in which SigRace and W-ReEnact found

at least one race. Again, the number for SigRace is higher.

Opportunity to Detect Data Races

SigRace has an advantage when addresses are in BHQ[.] and not in caches, while W-ReEnact

has an edge in the opposite case. In this section, we estimate the frequency of each case. For

simplicity, in this experiment only, signatures encode line addresses.

Of all the cache lines with shared data being displaced or invalidated from a cache, Figure 5.3(a)

shows the fraction whose address is strictly present (not just due to aliasing) in the corresponding

BHQ[i]. The figure shows the average for different cache sizes and application sets. For the 32KB

default cache, the weighted average fraction is ≈59%. Then, Figure 5.3(b) shows the number of

displacements or invalidations of lines with shared data per million instructions executed. For the

32KB default cache, the weighted average can be shown to be ≈2,800. Overall, roughly speaking,

compared to SigRace, W-ReEnact loses detection opportunity for 0.59×2,800=1,652 lines per

million instructions.

Given a block being displaced from a BHQ[i], Figure 5.3(c) shows the fraction of addresses

in the block’s signatures that are not anywhere else in BHQ[i] and that are in the cache. For the

77

32KB 64KB 128KB

Cache Size

0

20

40

C
ac

he
d

Li
ne

s
in

 D
is

p
B

lo
ck

 (
%

)

Splash2-kernels
Splash2-apps

Parsec-kernels
Parsec-apps

(a)
S

plash2
kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0

10

20

Li
ne

s
pe

r
B

lo
ck

(b)

32KB 64KB 128KB

Cache Size

0
20
40
60
80

100

D
is

p
an

d
In

va
l

in
 B

H
Q

[i]
 (

%
)

(c)

32KB 64KB 128KB

Cache Size

0k

2k

4k

6k

D
is

p
an

d
In

va
l

pe
r

M
ill

 In
s

(d)

Figure 5.3: Opportunities for SigRace and W-ReEnact to detect races. Charts (a), (b), and (c) share
the same legend.

32KB cache, the weighted average fraction is ≈13%. Figure 5.3(d) shows the number of ad-

dresses of lines with shared data that are encoded in the signatures of one block. This number is

on average 14. Overall, since SigRace executes≈500 blocks per million instructions, compared to

W-ReEnact, SigRace loses detection opportunity for 0.13×14×500=910 lines per million instruc-

tions. While these numbers give approximate information only, they show W-ReEnact loses more

opportunities.

5.1.5 SigRace Overheads

We estimate the instruction, SRAM memory, bandwidth, and checkpointing overheads of SigRace.

To estimate the instruction overhead, we run each application until the first true data race is fully

78

analyzed. In the process, some false positives may occur. We count as instruction overhead all

the instructions executed in Re-execution and Analysis modes to characterize the true data race

and all the false positives found from the beginning of the program until that point. We stop after

analyzing the first true race because then the programmer would stop execution. If the application

has no true data race, we insert one in a random location.

Figure 5.4(a) shows the resulting instruction overhead as a percentage of committed instruc-

tions. The average bar is the mean of all the applications. The overhead depends on several things,

most notably how far from the previous checkpoint is the conflict detected, and the rate of false

positives. We see that, on average, the instruction overhead is 22%. The large majority of it is due

to re-execution. About two thirds of it is caused by false positives.

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
20
40
60
80

100

In
st

ru
ct

io
n

O
ve

rh
ea

d
(%

)

false true

(a)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
20
40
60
80

100
120

N
et

w
or

k
O

ve
rh

ea
d

(b
yt

es
/th

ou
sa

nd
 in

s)

(b)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
10
20
30
40
50

Lo
g

S
iz

e
(K

B
/P

ro
ce

ss
or

)

(c)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
2
4
6
8

10

D
irt

y
W

rit
e

B
ac

k
(K

B
/P

ro
ce

ss
or

)

(d)

Figure 5.4: Instruction (a), bandwidth (b), and checkpoint-related (c and d) overheads.

From Figure 2.5, we see that the main SRAM memory overhead of SigRace per processor

includes: a 16-entry BHQ[i] in the RDM (each entry containing a timestamp and a R and W

79

signature), one extra timestamp and R and W signatures, the TRT, and the Conflict signature.

Since timestamps are 160 bits and signatures 2K bits, this results in 8512 bytes in the RDM and

808 bytes in the cache hierarchy — independently of the cache size.

To compute the bandwidth overhead of SigRace, we count how many bytes of timestamp-

signature messages (compressed) are deposited on the network. Figure 5.4(b) shows such number

per 1,000 instructions committed. We see that, on average, the bandwidth overhead is 63 bytes per

thousand committed instructions.

Finally, we measure some overheads of checkpointing every 1M instructions. As per Sec-

tion 2.4.3, the memory controller saves the value overwritten by every first memory update. Fig-

ure 5.4(c) shows that, on average, this amounts to 29KB of log per processor between checkpoints.

Also, at the point of checkpoint, the dirty lines in the cache are written back. As shown in Fig-

ure 5.4(d), this corresponds to, on average, 4.8KB of writebacks per processor.

5.2 AtomTracker

In this section, we evaluate AtomTracker-I and AtomTracker-D. We implement the AtomTracker-I

algorithm in C++, and run it on traces of parallel applications generated by a Pin [40] tool. After

AtomTracker-I determines the ARs, we use AtomTracker-D to find violations. We evaluate two

implementions of AtomTracker-D, namely a software one using Pin and a hardware one using a

whole-system simulator of the multicore architecture of Section 3.6 based on Simics [42]. The

parameters of the multicore architecture simulated are shown in Table 5.12.

We use three representative applications (Apache, MySql, and Mozilla) and focus on eight

documented atomicity violation bugs. These bugs have been used in the evaluation of past works

like AVIO [35], MUVI [32], and PSet [75]. They are described in Table 5.6. Of these bugs, the

three Mozilla bugs, MySql#2, and MySql#3 are multi-variable atomicity bugs; the rest are single-

variable atomicity bugs. We also use six SPLASH-2 codes to characterize AtomTracker: three

kernels (FFT, LU-con, and LU-non-con) and three applications (Barnes, FMM and Water-ns).

80

Multicore 4 cores at 4 GHz
Core 4 issue out-of-order
L1 cache (private) 32 KB, 4 way, 2 cycle lat.
L2 cache (private) 512 KB, 8 way, 12 cycle lat.
Cache line 64B
Memory 80 cycle round trip lat.
Network Bus
Bus bandwidth 128B/cycle
Coherence protocol MESI
Signatures 2Kbit each like in [50]

Table 5.5: Multicore architecture evaluated.

Lastly, we also use three synthetic microbenchmarks to evaluate AtomTracker.

Our evaluation aims to (i) demonstrate the training methodology, (ii) show the bug detection

ability, (iii) characterize the false positives, (iv) quantify the execution overhead, and (v) show the

completeness of our design.

5.2.1 Training Sensitivity

To make AtomTracker effective, we need enough training runs to obtain a good set of ARs. To ob-

tain many training runs, we change the program inputs and also get different interleavings for the

same input. For MySql, we change the number of concurrent requests to the server. For Apache#2,

we use httperf to send different numbers of concurrent requests, while for Apache#1, we use dif-

ferent numbers of calls to wget to fetch different numbers of web pages concurrently. For Mozilla,

we wrote a driver that calls the buggy library with different parameters and different numbers of

iterations. In all tests, we check that we do not trigger the bugs. This is easily done because all the

bugs manifest themselves with either a program failure or a wrong output. Fortunately, bugs are

hard to exercise because they require special interleavings. For all the applications, we stop the

training as soon as we get 5 consecutive training runs that generate no new ARs.

Figure 5.5 shows the convergence of ARs in the commercial (a) and the SPLASH-2 (b) codes as

we execute training runs. We perform from 10 to 40 training runs. The SPLASH-2 codes converge

faster than the commercial codes because of their smaller size. Table 5.7 shows the average size

81

B
ug

V
er

si
on

Fi
le

s
In

vo
lv

ed
#

V
ar

ia
bl

es
D

es
cr

ip
tio

n
A

pa
ch

e#
1

2.
0.

48
m

od
lo

g
co

nfi
g.

c
Si

ng
le

U
np

ro
te

ct
ed

re
ad

an
d

w
ri

te
of

bu
ff

er
le

ng
th

ca
n

co
rr

up
tl

og
fil

e.
A

pa
ch

e#
2

2.
0.

46
m

od
m

em
ca

ch
e.

c
Si

ng
le

U
np

ro
te

ct
ed

re
ad

an
d

w
ri

te
of

re
fe

re
nc

e
co

un
te

rc
an

ca
us

e
nu

ll
po

in
te

rd
er

ef
er

en
ce

.
M

oz
ill

a#
1

0.
8

js
st

r.h
,j

ss
tr.

c
M

ul
tip

le
N

on
-a

to
m

ic
up

da
te

of
to

ta
ln

um
be

ro
fs

tr
in

gs
an

d
to

ta
ls

tr
in

g
le

ng
th

pe
rm

it
th

em
to

be
in

co
ns

is
te

nt
.

M
oz

ill
a#

2
0.

8
js

in
te

rp
.h

,
M

ul
tip

le
N

on
-a

to
m

ic
ac

ce
ss

of
ca

ch
e

st
ru

ct
ur

e
ca

n
ca

us
e

ca
ch

e
js

in
te

rp
.c

an
d

em
pt

y
fla

g
to

be
in

co
ns

is
te

nt
.

M
oz

ill
a#

3
0.

9
js

dh
as

h.
c

M
ul

tip
le

C
on

cu
rr

en
ta

cc
es

s
of

en
tr

yC
ou

nt
an

d
re

m
ov

ed
C

ou
nt

ca
n

ca
us

e
th

e
ta

bl
e

to
in

co
rr

ec
tly

sh
ri

nk
.

M
yS

ql
#1

4.
0.

12
lo

g.
cc

,
Si

ng
le

U
np

ro
te

ct
ed

cl
os

e
an

d
op

en
of

da
ta

ba
se

bi
n

lo
g

ca
n

sq
l

in
se

rt
.c

c
ca

us
e

so
m

e
ac

tio
ns

no
tt

o
be

lo
gg

ed
.

M
yS

ql
#2

3.
23

.5
6

sq
l

in
se

rt
.c

c,
M

ul
tip

le
N

on
-a

to
m

ic
up

da
te

of
ro

w
s

an
d

bi
n

lo
g

ca
n

ca
us

e
sq

l
de

le
te

.c
c

w
ro

ng
or

de
ro

fl
og

gi
ng

.S
ho

w
n

in
Fi

gu
re

1.
2

M
yS

ql
#3

4.
0.

16
sl

av
e.

cc
M

ul
tip

le
N

on
-a

to
m

ic
re

ad
of

lo
g

fil
e

na
m

e
an

d
lo

g
fil

e
ca

n
ca

us
e

sl
av

e
sq

lt
hr

ea
d

to
fa

il.

Ta
bl

e
5.

6:
B

ug
de

sc
ri

pt
io

ns
.

82

0 10 20 30 40

Training Runs

0

100

200

300

T
ot

al
 A

to
m

ic
 R

eg
io

ns

Apache#1
Apache#2
Mozilla#1
Mozilla#2

Mozilla#3
MySQL#1
MySQL#2
MySQL#3

(a)

0 5 10 15 20 25

Training Runs

0

100

200

300

T
ot

al
 A

to
m

ic
 R

eg
io

ns

FMM
Water-ns
LU-con
LU-non-con
Barnes
FFT

(b)

Figure 5.5: Convergence of ARs for the commercial (a) and the SPLASH-2 (b) codes as we execute
training runs.

83

of the resulting ARs, in number of source code lines that access shared variables (the lines that the

programmer will check) and in number of shared variables. On average, ARs in the commercial

codes have 52 lines and access 114 shared variables, whereas ARs in the SPLASH-2 codes have 5

lines and access 122 variables.

App # Lines # Shared
of Code Variables

Apache#1 44.3 62.4
Apache#2 76.4 125.6
Mozilla#1 62.2 82.9
Mozilla#2 83.8 197.1
Mozilla#3 46.4 102.1
MySql#1 43.9 230.4
MySql#2 44.3 82.4
MySql#3 17.0 31.8
Avg 52.3 114.3
SPLASH-2 kernels 4.6 215.5
SPLASH-2 apps 4.7 28.2
Avg 4.7 121.8

Table 5.7: Average AR size.

5.2.2 Bug Detection Ability

After AtomTracker-I infers the set of ARs, we provide the bug-triggering input and run AtomTracker-

D. Our AtomTracker-D algorithm detects the resulting atomicity violation in every case. Table 5.8

compares the effectiveness of AtomTracker to that of AVIO [35], MUVI [32], and PSet [75] —

based on data on the same bugs reported in the papers of those schemes.

AVIO and PSet are reported to catch the three single-variable atomicity bugs. However, since,

by construction, they cannot catch multi-variable bugs, they cannot catch the three Mozilla bugs,

MySql#2, or MySql#3. MUVI focuses on catching multi-variable data races. Consequently, it does

not handle the bugs with a single variable, namely Apache #1, Apache #2, and MySql #1. The other

five bugs are both multi-variable data races and multi-variable atomicity violations. The MUVI

paper reports that MUVI catches the Mozilla bugs and MySql#3, but not MySql#2. The reason

84

Bug Atomicity Violation Detected?
AtomTracker AVIO MUVI PSet

Apache#1 Yes Yes No Yes
Apache#2 Yes Yes No Yes
Mozilla#1 Yes No Yes No
Mozilla#2 Yes No Yes No
Mozilla#3 Yes No Yes No
MySql#1 Yes Yes No Yes
MySql#2 Yes No No No
MySql#3 Yes No Yes No

Table 5.8: Comparison of bug detection ability. Recall that the Mozilla bugs, MySql#2, and
MySql#3 are multi-variable atomicity violations.

why MySql #2 (shown in Figure 1.2) is undetected by MUVI but is detected by AtomTracker is as

follows. MUVI fails because the correlation between t->rows and binlog is conditional: t->rows

and binlog do not always need to be accessed together; only when t->rows is modified at the

end, binlog needs to be modified atomically with it. This atomicity relation is easily extracted by

AtomTracker-I by examining execution traces. MUVI does not extract this relation.

5.2.3 False Positives

AtomTracker is a heuristic-based approach and, therefore, subject to False Positives (FPs). To

evaluate this issue, we apply AtomTracker-D to five bug-free runs per program — obtained by

changing the inputs. Table 5.9 shows the average number of FPs observed per run, for three dif-

ferent scenarios: (i) software implementation, (ii) hardware implementation where, rather than

signatures, we use an unbounded buffer to store addresses in the AVM, and (iii) hardware imple-

mentation with signatures as in Section 3.6.

The software implementation of AtomTracker-D has an average of only 0.8 and 1.6 FPs per run

for the commercial and SPLASH-2 codes, respectively. These few FPs are due to undertraining.

The more we train, the better the AR accuracy will be, and hence the fewer the FPs will be. The

hardware implementation has two additional sources of FPs: false sharing due to using cache line

addresses and aliasing due to signatures. Column 3 of Table 5.9 includes only the impact of false

85

App FP in FP in HW impl
SW impl Unbounded Signatures

buffer
Apache#1 1.8 2.0 2.0
Apache#2 2.6 10.4 14.4
Mozilla#1 0.4 1.8 1.8
Mozilla#2 0.0 3.0 6.0
Mozilla#3 0.0 0.0 0.0
MySql#1 0.6 12.2 15.0
MySql#2 0.8 7.6 9.6
MySql#3 0.2 17.2 18.0
Avg 0.8 6.8 8.4
SPL2 kernels 0.0 14.7 15.3
SPL2 apps 3.3 12.7 17.6
Avg 1.6 13.7 16.4

Table 5.9: False positives in different scenarios.

sharing, since signatures are replaced by an unbounded address buffer. This leads to an average

of 6.8 and 13.7 FPs per run for the commercial and SPLASH-2 codes, respectively. When we use

signatures and, therefore, include the aliasing effect as well, the average FPs per run is 8.4 and

16.4.

Overall, the number of FPs in AtomTracker-D is comparable to other schemes. For example,

for similar commercial codes, AVIO has 7 FPs per code (compared to 8.4 in AtomTracker-D), and

SVD has 3.2 FPs per M instructions (compared to 0.16 FPs per M instructions in AtomTracker-D).

5.2.4 Execution Time Overhead

Table 5.15 shows the overhead of of AtomTracker-D. The overhead of the hardware one is mea-

sured in increase in execution time and in network traffic. The execution time increases by an

average of only 0.2% and 4.0% for the commercial and SPLASH-2 codes, respectively. This

makes AtomTracker-D suitable for production runs. This low overhead results from running the

algorithm in hardware in the AVM. The main source of overhead is the additional network traffic

caused by first-time accesses in an AR that are intercepted by the cache. This causes on average

86

3.3% and 9.2% more traffic for the commercial and SPLASH-2 codes, respectively. The SPLASH-

2 codes induce higher traffic because they have relatively more data sharing.

App HW impl SW impl
Execution Traffic Slowdown (x)
time increase in Due to Total
increase (%) bytes (%) Pin

Apache#1 0.1 1.3 8.7 80.4
Apache#2 0.1 1.0 6.9 74.1
Mozilla#1 0.1 5.5 2.9 14.6
Mozilla#2 0.5 6.3 1.3 2.1
Mozilla#3 0.1 2.7 1.5 1.9
MySql#1 0.1 4.2 6.2 15.9
MySql#2 0.1 1.5 7.5 13.9
MySql#3 0.3 3.8 1.8 2.8
Avg 0.2 3.3 4.6 25.7
SPL2 kernels 2.2 9.0 106.4 573.1
SPL2 apps 5.8 9.4 19.3 256.1
Avg 4.0 9.2 62.9 414.6

Table 5.10: Execution overhead of AtomTracker-D.

The software implementation slows down, on average, 26x and 415x the commercial and

SPLASH-2 codes, respectively. Of this, Pin accounts for a 5x and 63x slowdown, respectively.

Since our software implementation is highly unoptimized, these slowdowns should only be con-

sidered an upper bound. They can easily be reduced with a better implementation. Still, they are

acceptable for in-house testing, especially those for the commercial codes.

5.2.5 Components of AtomTracker-I

As described in Section 3.4.2, AtomTracker-I uses a preprocessing pass that collects Critical Sec-

tion (CS) and Loop (LP) information. To evaluate the contribution of this pass in finding ARs,

we use three microbenchmarks for which we know the actual ARs. We cannot use our main ap-

plications because we do not know the correct ARs there. The three microbenchmarks, shown in

Table 5.11, implement a linked list, a producer-consumer pattern, and an FFT. They have 17, 4,

and 14 ARs, respectively. Table 5.11 shows the fraction of the correct ARs that are inferred by our

87

algorithms. We consider four cases: the complete AtomTracker-I (ATI), ATI without the critical

section information (ATI-CS), ATI without the loop information (ATI-LP), and ATI without either

(ATI-CS-LP). From the average numbers, we see that AtomTracker-I identifies all the ARs. With-

out CS or LP information, AtomTracker-I identifies only 79% or 90% of them. So, both types of

information are needed.

Micro- ARs Inferred by AtomTracker-I (ATI) versions
benchmark ATI ATI - CS ATI - LP ATI - CS - LP
(# of ARs) (% of (% of (% of (% of

correct) correct) correct) correct)
LinkedList (17) 100.0 58.8 94.1 52.9
ProdCons (4) 100.0 100.0 75.0 75.0
FFT (14) 100.0 78.6 100.0 78.6
Avg (11.7) 100.0 79.1 89.7 68.8

Table 5.11: Impact of the AtomTracker-I preprocessing pass.

5.3 Vulcan

In this section, we evaluate Vulcan. Our goal is to (1) validate its effectiveness in detecting SC

violations, (2) determine the size of the SCVQ, and (3) assess Vulcan’s overhead in terms of

network traffic and execution time.

5.3.1 Experimental Setup

We model Vulcan’s architecture using a cycle-accurate execution-driven simulator. The simulator

is based on SESC [62], and models the processor and memory systems of a multicore with four

superscalar processor cores. The processors are out-of-order, three-retire wide, and execute under

release consistency. They have a simple cache hierarchy composed of a private L1 cache and a

shared L2 cache. Table 5.12 shows the baseline architecture parameters. We conservatively use 4

bytes for Serial Numbers.

88

Architecture 4 processors in a multicore chip
Proc. freq. 2.0GHz
Proc. pipeline out-of-order, 3-retire wide
ROB size 32 entries
LSQ size 20 entries
L1 cache 32KB WB, 4-way asso., 2-cycle RT, snoop delay 4-cycle,

num. ports 2, MSHR 8 entries, 32B line
L2 cache 1MB WB, 8-way asso., 11-cycle RT,

num. ports 2, MSHR 64 entries, 32B line
Coherence Snoopy-based MSI protocol
Bus OC Coherence access: 2-cyc request, 4-cyc reply

Metadata access: 2-cyc request, 2-cyc reply
L1 to L1 transfer 38-cycle RT
Main memory 500-cycle RT
Vulcan param. SCVQ size: 256 entries, serial number: 4 B

Table 5.12: Baseline multicore architecture evaluated. RT and OC stand for round trip and occu-
pancy, respectively.

We used three sets of applications for the evaluation. The first set includes implementations of

some concurrent data structures and mutual exclusion algorithms that have SC violations. They

are taken from [8, 10]. The second set includes some reported SC violation bugs and bug patterns

from the open source libraries. The last set includes 8 applications from the SPLASH-2 suite.

The first two sets have known SC violations and are used to evaluate Vulcan’s effectiveness. The

last set has long-executing applications, supposedly free of SC violations, and is used to estimate

Vulcan’s overheads. Table 5.13 describes the applications.

5.3.2 Detection Ability

To test Vulcan’s SC violation detection ability, we run each application multiple times — 100

times for the concurrent algorithms and bug kernels, and 5 times for the SPLASH-2 codes. In each

run, we generate different interleavings by forcing the processors to miss some random number

of fetch cycles. We identify each observed SC violation by the pair of instructions that create the

dependence that closes the cycle. Such a pair may create multiple dynamic instances of the same

SC violation during an execution. For each application, we compute, over all the runs, the number

89

Set Program Description
Dekker Algorithm for mutual exclusion

Conc. Lazylist List-based concurrent set
Algo. Snark Nonblocking double-ended queue

Harris Nonblocking set
Pthread cancel Unwind code after canceling

Bug from glibc thread needs memory barrier [3]
Kernels Crypt util Small table initialization code

from glibc needs memory barrier [1]
DCL Kernel using double checked
bug locking without fences

Full SPLASH-2 8 programs form the SPLASH-2
Apps. application suite

Table 5.13: Applications analyzed.

of unique and total number of SC violations observed. This information is shown in Table 5.14, for

cache lines of 1 and 8 words (i.e., 32 bytes). Note that the table only includes the fmm application

from SPLASH-2, since Vulcan found no SC violation in the other SPLASH-2 codes.

Columns 3 and 4 of Table 5.14 show the number of unique and total SC violations found with

two different cache line sizes over all the runs. Vulcan detects SC violations in all of the concurrent

algorithms and bug kernels. It also finds one in the fmm code from SPLASH-2. Of the unique

SC violations in the table, three are new, unreported SC violation bugs. They are one in each of

Pthread cancel, Crypt util, and fmm. We discuss them in Section 5.3.3.

The number of unique SC violations observed is 1-3 per application. However, the total num-

ber of them can soar to many hundreds for some codes. In addition, the number of unique and,

especially, total SC violations depends substantially on the line size. This shows that this bug is

highly dependent on the actual timing of the events in the processor. Overall, we see that Vulcan is

very effective. Note that, with more runs, new interleavings may occur and Vulcan may find more

SC violations.

90

Program Line Size SC Violations Found Total
(Words) Unique Total Runs

Dekker 1 1 1982 100
8 1 224 100

Lazylist 1 0 0 100
8 1 150 100

Snark 1 1 745 100
8 1 1467 100

Harris 1 0 0 100
8 1 18 100

Pthread 1 2 298 100
cancel 8 2 142 100

Crypt 1 2 564 100
util 8 2 130 100

DCL 1 2 648 100
8 1 2 100

fmm 1 1 2 5
8 3 18 5

Table 5.14: SC violations found in various applications.

5.3.3 Three New SC Violations Found

New SC Violation in the pthread Library

One of the SC violations in the pthread cancel kernel of Table 5.14 is Bug ID 2644 in the Redhat

bug database, which had been fixed by the developers. After running Vulcan, we found a new SC

violation in the bug fix. We reported the new bug and its fix to the developers, who have most

recently implemented it.

Figure 5.6 shows the bug. Figure 5.6(a) shows the pthread cancel init and Unwind Resume

functions. Assume that thread T1 is inside pthread cancel init, and about to initialize function

pointers libgcc s resume (in A0) and libgcc s gtecfa (in A1). Before it does so, another thread

(T2) is in Unwind Resume and calls pthread cancel init. There, it finds libgcc s gtecfa already

non-null (in B0), returns from pthread cancel init and uses libgcc s - resume (in B1). Due to an

SC violation, libgcc s resume is still uninitialized and the program crashes.

The references involved are shown in Figure 5.6(b), together with the fence (write barrier) that

91

T1 T2

_Unwind_Resume(...) {
 if(libgcc_s_resume == NULL)
 pthread_cancel_init(...);
 libgcc_s_resume(...);

T1 T2

(a): Code from unwind−forcedunwind.c

B1:
}

}
A1:

A0:

if(libgcc_s_getcfa != NULL)
 return;

pthread_cancel_init(...) {
B0:

libgcc_s_getcfa = ...;
atomic_write_barrier();
libgcc_s_resume = ...;

libgcc_s_resume = ...;

libgcc_s_getcfa = ...;

(b): Accesses that participate in the SC violation

 atomic_write_barrier();
A0:

A1:

B0:
B1: libgcc_s_resume(...);

(c): Interleaving with an SC violation

libgcc_s_resume = ...;

libgcc_s_getcfa = ...;

A0:

A1:
B0:

B1: libgcc_s_resume(...);

 atomic_write_barrier();

if(libgcc_s_getcfa != NULL)

if(libgcc_s_getcfa != NULL)

Figure 5.6: New SC violation found in the glibc pthread library.

92

the developers inserted in an attempt to fix the bug. This code is the same as Figure 4.1 except

for the fence. Unfortunately, the fence only prevents the reordering of A0 and A1. In an RC or

PowerPC memory model, B0 and B1 can get reordered as in Figure 5.6(c). The condition in B0 is

true but B1 finds the function uninitialized. This is the SC violation that crashes the code. To fix

this, we also add a fence between B0 and B1.

New SC Violation in the crypt Library

A similar case occurs for crypt util. One of its SC violations in Table 5.14 is Bug ID 11449 in

the database, which had also been incorrectly fixed by the developers. After running Vulcan, we

found a new SC violation in the bug fix. We reported the new bug and its fix to the developers.

They declined to fix it because it only happens in memory models more relaxed than Intel’s x86.

Figure 5.7 shows the bug. Figure 5.7(a) shows the code of function init des r, which uses

DCL to initialize shared tables. Assume that thread T1 enters the function, grabs the lock and

is about to initialize the table eperm32tab (in A0) and then set small tables- initialized (in A1).

Another thread (T2) enters the function, finds small tables initialized set (in B0) and proceeds to

use eperm32tab (in B1). Unfortunately, due to an SC violation, eperm32tab is still uninitialized

and the program behaves incorrectly.

The references involved are shown in Figure 5.7(b), together with the fence that the developers

added to fix the bug. This example is like the one in Section 5.3.3: another fence between B0 and

B1 is needed to avoid SC violations.

New SC Violation in fmm from SPLASH-2

Vulcan finds three new SC violations in fmm, caused by a single flag dependence racing against

three pairs of references. The code for one of the racing pairs is shown in Figure 5.8. Inside the Set-

Colleagues function, a thread (T2) sets structure colleagues (in A0) and then flag construct synch

(in A1); another one spins on the flag (in B0) and then uses the structure (in B1). This is like the

pattern in Figure 4.1 and an SC violation occurs. In the fmm code, the flag was declared as volatile.

93

small_tables_initialized=1;
 atomic_write_barrier();

eperm32tab[...]= ...;A0:

A1: B1: ... =eperm32tab[...];
B0: if(small_tables_initialized==0){

T1 T2

 ...

}

 }

... =eperm32tab[...];

Done:
small_tables_initialized=1;

 if(small_tables_initialized)
 goto Done;

_init_des_r(...){
if(small_tables_initialized==0){

 atomic_write_barrier();

B0:

B1:

A0:

A1:

eperm32tab[...]= ...;

 lock;

 unlock;

(a): Code from crypt_util.c

(b): Accesses that participate in the SC violation

Figure 5.7: New SC violation found in the glibc crypt library.

94

However, in C, while volatile prevents compiler optimizations, it does not prevent reordering by

the hardware.

T2T1

}
... = parent_b−>colleagues[...];B1: child_b−>construct_synch=1;

b−>colleagues[...] =...;A0:
A1:

}

SetColleagues(...) {
while(b−>construct_synch==0);B0:

SetColleagues(...) {

Code from construct_grid.c

Figure 5.8: New SC violation found in fmm from SPLASH-2.

This SC violation affects the precision of the program’s output because thread T1 uses “old

data”. However, since fmm is an N-body problem, the output might still be acceptable. Still,

we argue that this is a serious bug because the programmer can hardly reason about the code and

estimate how much the bug affects the output in all possible cases. This bug can be fixed by

either placing a fence between the two references in each thread, or by using a synchronization

instruction to access the flag.

5.3.4 Size of the SC Violation Queue (SCVQ)

To size the SCVQ, we need to know the number of unsafe accesses that individual processors

maintain over time. Consequently, we count the average and maximum number of unsafe accesses

that a processor keeps over the course of each application. We use only SPLASH-2 applications

because the others are too small to provide any useful information. For our measurements, we take

a sample every time a memory operation is issued. Also, to gain more insight, we additionally

collect measurements on the average and maximum number of pending accesses. These are loads

and stores that are already issued but not yet performed, as defined in Section 4.6.2. Recall from

that section that an access remains unsafe at least while pending and often beyond that. Figure 5.9

shows the results for each application and for the average of them.

Figure 5.9(a) shows that the average number of unsafe accesses ranges from 6 to 17. This is a

95

fft lu

ra
di

x

ch
ol

es
ky

oc
ea

n

ra
yt

ra
ce

ba
rn

es

fm
m

A
ve

ra
ge

0

5

10

15

20

25

30

A
ve

ra
ge

 #
 o

f a
cc

es
se

s Pending
Unsafe

(a)

fft lu

ra
di

x

ch
ol

es
ky

oc
ea

n

ra
yt

ra
ce

ba
rn

es

fm
m

A
ve

ra
ge

0

50

100

150

200

250

300

M
ax

im
um

 #
 o

f a
cc

es
se

s

(b)

Figure 5.9: Number of pending and unsafe accesses: average values (a) and maximum values (b).

small number, and is about double of the average number of pending accesses. Since accesses are

typically bursty, the maximum number of unsafe accesses is higher. Across applications, it ranges

from 50 to 270 (Figure 5.9(b)). If we average out all the applications, this number is also about

double of the maximum number of pending accesses.

Overall, to be very conservative, we size the SCVQ with 256 entries. Most of the time, only

about 10 or so entries are in use. Sometimes, many more entries exist. If the processor were to

need more entries than 256, then it temporarily stalls. This only happens 170 times in cholesky,

which issues about 147 million memory accesses. Therefore, such stall is negligible.

5.3.5 Network Traffic & Execution Overhead

In Vulcan, the operations on the metadata and the accesses to the SCVQ are not in the critical path

of execution. Therefore, Vulcan’s overhead comes from the additional bus traffic that it induces.

This traffic comes from two sources: (i) the information that it piggybacks on many of the normal

coherence transactions on the bus and (ii) the Metadata bus accesses that it induces (Section 4.6.4).

In both transactions, Vulcan sends a Serial Number in the request (conservatively, 4 bytes), and

96

fft lu
ra

di
x

ch
ol

es
ky

oc
ea

n
ra

yt
ra

ce
ba

rn
es

fm
m

A
ve

ra
ge

0

20

40

60

80

100

N
et

w
or

k
T

ra
ffi

c
(%

)

Coherence
Piggybacked

Extra

Figure 5.10: Breakdown of total bus traffic in bytes.

both a Serial Number and a Performed Point in the response (again conservatively, a total of 8

bytes).

To see the magnitude of this traffic, Figure 5.10 breaks down the total bytes of traffic in the bus

for each application. The categories are: traffic induced by a Vulcan-free execution (Coherence),

traffic piggybacked by Vulcan on the normal coherence (Piggybacked), and traffic in Metadata

bus accesses (Extra). We can see that the effect of Vulcan is modest: on average, Piggybacked

accounts for 9.4% of the traffic and Extra for 12.4%.

To understand the impact of this traffic on the execution time, recall from Table 5.12 that the

bus occupancy of a Vulcan-free transaction is 2 and 4 cycles for request and reply, respectively.

Given the implied bus bandwidth, we assume that the additional bytes piggybacked by Vulcan

do not increase these occupancies. However, the bus is also used by Metadata accesses, whose

bus occupancy is set to 2 cycles for both requests and replies. The contention induced by these

accesses causes Vulcan’s execution overhead.

Table 5.15 shows the resulting overhead. For each application, it shows the total number of

instructions executed, the fraction of them that are memory operations, and the total number of bus

accesses in the application. Column 5 shows what fraction of all the bus accesses are Metadata bus

97

Appl. Total Mem Total Metad. Exec.
Ins Ops Bus Bus Time
(M) (%) Acc (M) Acc (%) Over (%)

fft 6.4 25.9 0.4 32.4 4.9
lu 145.2 20.7 1.2 34.4 3.8
radix 45.0 16.1 2.0 32.5 0.7
cholesky 469.0 31.8 34.5 38.9 7.0
ocean 143.2 28.6 21.5 26.7 5.8
raytrace 277.1 34.3 3.1 8.8 4.2
barnes 2785.6 43.2 30.7 6.9 2.7
fmm 3713.1 39.2 19.2 25.8 2.6
Avg. 948.1 30.0 14.1 25.8 4.0

Table 5.15: Overhead of Vulcan.

accesses. We see that such fraction is, on average, about 26%. Therefore, about one quarter of the

accesses are Metadata accesses. Finally, the last column shows the execution time overhead caused

by Vulcan. Such overhead is consistently small for all the applications. Its value ranges from 1%

to 7%, with an average of 4%. Overall, therefore, we conclude that the execution overhead of

Vulcan is negligible enough to allow its on-the-fly use in production runs.

98

Chapter 6

Conclusion

In order to make parallel programming easier, we need good debugging support. This thesis strives

to achieve that goal. It proposes to add some extra hardware that can be used both during devel-

opment time and during production run time to detect various types of concurrency bugs. First, it

proposes to detect data races, which are the most common form of concurrency bugs. Then it goes

on to detect atomicity violation bugs which are harder and more difficult to debug than data races.

Finally, it tries to detect a special type of bugs that can violate sequential consistency which is ar-

guably the hardest type of concurrency bugs. Moreover, the thesis shows that all of these proposals

have modest hardware requirements, induce negligible execution overhead and can actually detect

both known and unknown bugs. This makes the proposals effective and attractive to implement in

real systems.

99

References

[1] Sources bugzilla. Bug 11449. http://sources.redhat.com/bugzilla/show_
bug.cgi?id=11449.

[2] Sources bugzilla. Bug 133773. https://bugzilla.mozilla.org/show_bug.
cgi?id=133773.

[3] Sources bugzilla. Bug 2644. http://sources.redhat.com/bugzilla/show_
bug.cgi?id=2644.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC bench-
mark suite: Characterization and architectural implications. In International Conference on
Parallel Architectures and Compilation Techniques, October 2008.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Comm. of the
ACM, 13(7):422–426, 1970.

[6] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

[7] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom filters. In Ann. Euro. Symp. on Algo., Sep 2006.

[8] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence: Checking consis-
tency of concurrent data types on relaxed memory models. In Prog. Lang. Des. and Impl.,
Jun 2007.

[9] Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for relaxed
memory models. In Comp. Aid. Veri., Jul 2008.

[10] Jabob Burnim, Koushik Sen, and Christos Stergiou. Sound and complete monitoring of
sequential consistency for relaxed memory models. In Tools and Algo. for the Const. and
Ana. of Sys., July 2011.

[11] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: Bulk enforcement
of sequential consistency. In International Symposium on Computer Architecture, June 2007.

[12] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation of spec-
ulative threads in multiprocessors. In International Symposium on Computer Architecture,
June 2006.

100

http://sources.redhat.com/bugzilla/show_bug.cgi?id=11449
http://sources.redhat.com/bugzilla/show_bug.cgi?id=11449
https://bugzilla.mozilla.org/show_bug.cgi?id=133773
https://bugzilla.mozilla.org/show_bug.cgi?id=133773
http://sources.redhat.com/bugzilla/show_bug.cgi?id=2644
http://sources.redhat.com/bugzilla/show_bug.cgi?id=2644

[13] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation of spec-
ulative threads in multiprocessors. In International Symposium on Computer Architecture,
June 2006.

[14] Kaiyu Chen, Sharad Malik, and Priyadarsan Patra. Runtime validation of memory ordering
using constraint graph checking. In High Perf. Comp. Arch., Feb 2008.

[15] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and
Manu Sridharan. Efficient and precise datarace detection for multithreaded object-oriented
programs. In Programming Language Design and Implementation, June 2002.

[16] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for shared-
memory programming. IEEE Computational Science & Engineering, 5(1):46–55, 1998.

[17] Andrew Deorio, Ilya Wagner, and Valeria Bertacco. DACOTA: Post-silicon validation of the
memory subsystem in multi-core designs. In High Perf. Comp. Arch., Feb 2009.

[18] Yuelu Duan, Xiaobing Feng, Lei Wang, Chao Zhang, and Pen-Chung Yew. Detecting and
eliminating potential violations of sequential consistency for concurrent C/C++ programs. In
Code Gen. and Opt., Mar 2009.

[19] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. Effective data-
race detection for the kernel. In Op. Sys. Des. and Impl., Feb 2010.

[20] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. Automatic fence insertion for shared memory
multiprocessing. In Int. Conf. on SuperComp., Jun 2003.

[21] Colin Fidge. Logical time in distributed computing systems. IEEE Computer, 24(8):28–33,
1991.

[22] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic atomicity checker for multi-
threaded programs. In Symposium on Principles of Programming Languages, January 2004.

[23] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Programming
Language Design and Implementation, June 2003.

[24] Kourosh Gharachorloo and Phillip B. Gibbons. Detecting violations of sequential consis-
tency. In Symp. on Para. Algo. and Arch., Jul 1991.

[25] Christian Hammer, Julian Dolby, Mandana Vaziri, and Frank Tip. Dynamic detection of
atomic-set-serializability violations. In International Conference on Software Engineering,
May 2008.

[26] Intel Corporation. Intel Thread Checker.
http://www.intel.com, 2008.

[27] Arvind Krishnamurthy and Katherine Yelick. Analyses and optimizations for shared address
space programs. Jour. Paral. Dist. Comp., Nov 1996.

101

[28] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs. IEEE Tran. on Comp., July 1979.

[29] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Comm. of
the ACM, 21(7):558–565, 1978.

[30] Jaejin Lee and David A. Padua. Hiding relaxed memory consistency with a compiler. IEEE
Trans. Comput., Aug 2001.

[31] Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient sequential consistency using
conditional fences. In Par. Arch. and Compil. Tech., Sep 2010.

[32] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li, Raluca A.
Popa, and Yuanyuan Zhou. MUVI: Automatically inferring multi-variable access correlations
and detecting related semantic and concurrency bugs. In Symposium on Operating Systems
Principles, October 2007.

[33] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics. In International Conference
on Architectural Support for Programming Languages and Operating Systems, March 2008.

[34] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics. In Arch. Supp. for Prog.
Lang. and Op. Sys., Mar 2008.

[35] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: Detecting atomicity viola-
tions via access interleaving invariants. In International Conference on Architectural Support
for Programming Languages and Operating Systems, October 2006.

[36] Brandon Lucia, Luis Ceze, and Karin Strauss. Finding concurrency bugs with context-aware
communication graphs. In International Symposium on Computer Architecture, December
2009.

[37] Brandon Lucia, Luis Ceze, and Karin Strauss. ColorSafe: Architectural support for debug-
ging and dynamically avoiding multi-variable atomicity violations. In International Sympo-
sium on Computer Architecture, June 2010.

[38] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm. Conflict ex-
ceptions: Simplifying concurrent language semantics with precise hardware exceptions for
data-races. In Int. Symp. on Comp. Arch., Jun 2010.

[39] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-Aid: Detecting and
surviving atomicity violations. In International Symposium on Computer Architecture, June
2008.

[40] Chi-Keung Luk et al. Pin: Building customized program analysis tools with dynamic in-
strumentation. In Conference on Programming Language Design and Implementation, June
2005.

102

[41] Ewing Lusk, James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ross Overbeek,
James Patterson, and Rick Stevens. Portable programs for parallel processors. Holt, Rinehart
& Winston, 1988.

[42] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hall-
berg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A full
system simulation platform. Computer, 35(2):50–58, 2002.

[43] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish
Narayanasamy. DRFx: A simple and efficient memory model for concurrent programming
languages. In Prog. Lang. Des. and Impl., Jun 2010.

[44] Albert Meixner and Daniel J. Sorin. Dynamic verification of sequential consistency. In Int.
Symp. on Comp. Arch., Jun 2005.

[45] Sang L. Min and Jong-Deok Choi. An efficient cache-based access anomaly detection
scheme. In International Conference on Architectural Support for Programming Languages
and Operating Systems, April 1991.

[46] Chi Cao Minh et al. An effective hybrid transactional memory system with strong isolation
guarantees. In International Symposium on Computer Architecture, June 2007.

[47] Tipp Moseley, Dirk Grunwald, Daniel A. Connors, Ram Ramanujam, Vasanth Tovinkere, and
Ramesh Peri. LoopProf: Dynamic techniques for loop detection and profiling. In Workshop
on Binary Instrumentation and Applications, October 2006.

[48] Abdullah Muzahid et al. SigRace: signature-based data race detection. In ISCA ’09: Proceed-
ings of the 36th annual international symposium on Computer architecture, pages 337–348,
New York, NY, USA, 2009. ACM.

[49] Abdullah Muzahid, Norimasa Otsuki, and Josep Torrellas. Atomtracker: A comprehensive
approach to atomic region inference and violation detection. In Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages
287–297, 2010.

[50] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep Torrellas. SigRace: Signature-
based data race detection. In International Symposium on Computer Architecture, June 2009.

[51] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder.
Automatically classifying benign and harmful data races using replay analysis. In Program-
ming Language Design and Implementation, June 2007.

[52] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder.
Automatically classifying benign and harmful data races using replay analysis. In Prog.
Lang. Des. and Impl., Jun 2007.

[53] Robert H. B. Netzer and Barton P. Miller. Detecting data races in parallel program executions.
In In Workshop on Advances in Languages and Compilers for Parallel Computing, pages
109–129, 1990.

103

[54] Robert H. B. Netzer and Barton P. Miller. Improving the accuracy of data race detection. In
Principles and Practice of Parallel Programming, April 1991.

[55] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In Principles
and Practice of Parallel Programming, June 2003.

[56] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation detection in con-
current programs. In International Symposium on Foundations of Software Engineering,
November 2008.

[57] Milos Prvulovic. CORD: Cost-effective (and nearly overhead-free) order-recording and data
race detection. In International Symposium on High-Performance Computer Architecture,
February 2006.

[58] Milos Prvulovic and Josep Torrellas. ReEnact: Using thread-level speculation mechanisms
to debug data races in multithreaded codes. In International Symposium on Computer Archi-
tecture, June 2003.

[59] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: Cost-effective architectural sup-
port for rollback recovery in shared-memory multiprocessors. In International Symposium
on Computer Architecture, May 2002.

[60] Feng Qin, Joseph Tucek, Yuanyuan Zhou, and Jagadeesan Sundaresan. Rx: Treating bugs
as allergies—a safe method to survive software failures. ACM Transactions on Computer
Systems, 25(3):7, 2007.

[61] Sriram Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani. ISO-
LATOR: Dynamically ensuring isolation in comcurrent programs. In Arch. Supp. for Prog.
Lang. and Op. Sys., Mar 2009.

[62] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze, Smruti
Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC Simulator, January 2005.
http://sesc.sourceforge.net.

[63] Michiel Ronsse and Koen De Bosschere. RecPlay: A fully integrated practical record/replay
system. ACM Transactions on Computer Systems, 17(2):133–152, 1999.

[64] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Implementing
signatures for transactional memory. In MICRO ’07: Proc. of the 40th Annual Int’l Symp. on
Microarchitecture, pages 123–133, 2007.

[65] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[66] Douglas C. Schmidt and Tim Harrison. Double-checked locking: An optimization pattern for
efficiently initializing and accessing thread-safe objects. In Patt. Lang. of Prog. Des. Conf.,
1996.

104

[67] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that Share
Memory. ACM Trans. on Prog. Lang. and Sys., April 1988.

[68] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and Yuanyuan Zhou.
Flashback: A lightweight extension for rollback and deterministic replay for software debug-
ging. In USENIX Annual Technical Conference, June 2004.

[69] Sun Microsystems. Sun Studio Thread Analyzer.
http://developers.sun.com/sunstudio, 2007.

[70] Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David Padua.
Compiler techniques for high performance sequentially consistent Java programs. In Prin.
and Pract. of Para. Prog., Jun 2005.

[71] Christoph von Praun and Thomas R. Gross. Object race detection. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications, October 2001.

[72] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multithreaded pro-
grams. IEEE Trans. Softw. Eng., 2006.

[73] Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serializability violation detector for shared-
memory server programs. In Conference on Programming Language Design and Implemen-
tation, June 2005.

[74] Luke Yen et al. LogTM-SE: Decoupling hardware transactional memory from caches. In
International Symposium on High Performance Computer Architecture, February 2007.

[75] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. In International Symposium on Computer Architecture, June 2009.

[76] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. In Int. Symp. on Comp. Arch., Jun 2009.

[77] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: Efficient detection of data race condi-
tions via adaptive tracking. In Symposium on Operating Systems Principles, October 2005.

[78] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. HARD: Hardware-assisted lockset-based
race detection. In International Symposium on High Performance Computer Architecture,
February 2007.

105

Appendix

Here we outline the proof of why Vulcan detects all SCVs between any two processors.

Theorem 1: An access Ci of processor PC is Safe when (SNCi
≤ PP [PC]) and (ADCi

[PK] ≤

PP [PK]), for all processors K 6= C.

Proof: Ci can participate in an SCV with either an earlier access Ci−l (Case 1) or a later access

Ci+m (Case 2) for l,m > 0. Here, an earlier or later access is defined in terms of program order.

The two cases are shown in Figure A.1.

Ci+m

Ci Kk

Kk+o

PC PK PKPC

Er Er

El El

Ci

Ci−l

Kj

Kj−n

Case 1 Case 2

Figure A.1: Possible cases for SCV.

Case 1: If edge Er occurs first, Ci is not safe until it provides data to Kj−n. Here, data can

be either value stored in that address or invalidation ack. Ci can provide data to other accesses

until the program ends but this pattern can happen only until all previous accesses Ci−l where

1 ≤ l ≤ i are performed. So, Ci is not safe until all previous accesses are performed i.e. until

PP [PC] ≥ SNCi−1
. However, if edge El occurs first, Ci is not safe until Ci−l is performed and all

Kj−n for 0 ≤ n ≤ j is performed. This pattern can happen with all previous accesses Ci−l where

1 ≤ l ≤ i. That meansCi is not safe until all previous accesses are performed (just like the previous

scenario) and all accesses of PK upto MAX(SNKj
) where SNKj

= src(Ci−l) for 1 ≤ l ≤ i

is performed i.e MAX(SNKj
) ≤ PP [PK]. We should note that ADCi

[PK] = MAX(SNKj
).

106

Therefore, the condition for safety in Case 1 is ADCi
[PK] ≤ PP [PK] and PP [PC] ≥ SNCi−1

.

Case 2: If edgeEl occurs first, Ci is not safe until it is performed. At that time, all the necessary

updates will be done so that when Er occurs the violation gets detected. Now, if edge Er occurs

first Ci is not safe until it is performed at which point the violation will be detected.

Now, Case 1 requires all previous accesses of Ci to be performed and ADCi
[PK] to be less

than or equal to PP [PK]. Case 2 requires Ci to be performed. So, combining them, we can

say that Ci is safe when all accesses upto Ci are performed and ADCi
[PK] ≤ PP [PK]. If we

generalize this to all the processors of the system, an access Ci is safe when (SNCi
≤ PP [PC])

and (ADCi
[PK] ≤ PP [PK]), for all processors K 6= C.

Theorem 2: In order to form an SCV cycle with two dependences, their source references have to

be unsafe with respect to the destination processors.

Proof: This can be proved by contradiction. Let us assume that one of the dependences has a

source that is safe (w.r.t. the destination processor) at the time of the dependence and it forms

an SCV cycle with another dependence whose source is unsafe (w.r.t the destination processor).

According to the definition of a safe access, once an access becomes safe (w.r.t. a processor), no

future dependence from this access to any access of that processor can cause an SCV. But this

contradicts our previous assumption. Therefore, this proves the theorem.

Theorem 3: Given all the unsafe dependences, Vulcan detects all the SCVs between the proces-

sors.

Proof: Referring to Figure A.1, an access Ci can have SCV with any of its previous accesses (Case

1) or any of its later accesses (Case 2). Without loss of generality, we can assume that dependence

edge to/from Ci completes the cycle. For Case 1, Ci needs to store src information of all of its

previous accesses. This is done by taking theMAX of SNKj
whereKj = src(Ci−l) for 1 ≤ l ≤ i.

This is precisely what ADCi
stores. Therefore, SCV will detected as a violation of condition for

ADCi
(i.e. a destination has to be larger than this). For Case 2, Ci needs to store dest information

of all of its later accesses. This is done by taking the MIN of SNKk
where Kk = dest(Ci+m) for

1 ≤ m ≤ (NC − i) where NC is the total number of accesses by processor PC . This is precisely

107

what ASCi
stores. Therefore, SCV will detected as a violation of condition for ASCi

(i.e. a src

has to be smaller than this). Thus, an SCV will be detected in both cases. This means that if we

have all the dependences’ information, Vulcan can detect all SCVs between the processors. Now,

Theorem 2 proves that SCV occurs only among unsafe dependences. This, along with the fact that

we keep the metadata of every unsafe access ensures that Vulcan detects all the SCVs between the

processors

108

	Chapter 1 Introduction
	Proposed Approaches

	Chapter 2 Signature Based Data Race Detection
	Introduction
	Contributions
	Background & Related Works
	Logical Timestamps for Happened-Before
	Hardware Schemes for Data Race Detection
	Hardware Address Signatures

	Signature Based Race Detection
	Overview of the Idea
	Normal Execution under SigRace
	Re-Execution under SigRace
	Race Analysis under SigRace

	Implementation
	Hardware Modifications
	Software Interface

	Conclusions

	Chapter 3 A Comprehensive Approach to Atomic Region Inference and Violation Detection
	Introduction
	Contributions
	Related Works
	AtomTracker-I: Automatic Inference of Atomic Regions
	Basic AtomTracker-I Algorithm
	Design Decisions
	Putting It all Together

	AtomTracker-D: Automatic Detection of Atomicity Violations
	Description of the Algorithm
	Illustrative Examples
	Generalization to More Atomic Regions

	Hardware Implementation
	Leveraging Cache Coherence Transactions
	An Atomicity Violation Detection Module (AVM) Based on Address Signatures
	Software Interface
	Design Issues

	Conclusions

	Chapter 4 Detecting Sequential Consistency Violations
	Introduction
	Contributions
	Background
	Related Work
	A New Taxonomy of Data Races
	Vulcan: Detecting SC Violations
	Basic Algorithm to Detect Cycles
	Safe Accesses
	Detecting Dependences
	Leveraging the Coherence Protocol
	How to Detect N-Processor SC Violation

	Vulcan Hardware Design
	Supporting Multiple Words per Line
	V-State Transitions for a Word
	SCVQ Implementation

	Discussion and Limitations
	Conclusion

	Chapter 5 Evaluation
	SigRace
	Experimental Setup
	Signature Configuration
	Block and BlockHistoryQueue[i] Size
	SigRace Effectiveness
	SigRace Overheads

	AtomTracker
	Training Sensitivity
	Bug Detection Ability
	False Positives
	Execution Time Overhead
	Components of AtomTracker-I

	Vulcan
	Experimental Setup
	Detection Ability
	Three New SC Violations Found
	Size of the SC Violation Queue (SCVQ)
	Network Traffic & Execution Overhead

	Chapter 6 Conclusion
	References
	Appendix

