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ABSTRACT 

 

 

 

 
This thesis presents an architectural solution that provides secure and reliable execution of an application 

that computes critical data, in spite of potential hardware and software vulnerabilities. The technique does 

not require source code of or specifications about the malicious library function(s) called during execution 

of an application. The solution is based on the concept of Information Flow Signatures (IFS). The 

technique uses both a model-checker-based symbolic fault injection analysis tool called SymPLFIED to 

generate an IFS for an application or operating system, and runtime signature checking at the level of 

hardware to protect the integrity of critical data. The runtime checking is implemented in the IFS module. 

Reliable computation of data is ensured by the critical value re-computation (CVR) module. 

 

Prototype implementation of the signature checking and reliability module on a soft processor within an 

FPGA incurs no performance overhead and about 12% chip area overhead. The security module itself 

incurs about 7.5% chip area overhead. Performance evaluations indicate that the IFS module incurs as 

little as 3-4% overhead compared to 88-100% overhead when the runtime checking is implemented as a 

part of software. Preliminary testing indicates that the technique can provide 100% coverage for insider 

attacks that manifest as memory corruption and change the architectural state of the processor. Hence the 

IFS and CVR implementation offers a flexible, low-overhead, high-coverage method for ensuring reliable 

and secure computing. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Memory corruption attacks represent a major part of security attacks reported in recent years [1]. 

Applications written in unsafe languages like C or C++ are still numerous and are vulnerable to 

attacks exploiting memory errors like buffer overflow and underflow [2], [3], dangling pointers 

[4], or double frees [5]. Theft and modification of sensitive information on computer systems 

contribute to billions of dollars in annual losses and often reflect organized crime. 

 

As for defensive techniques, the most complete solutions often incur either high runtime or 

memory space overhead (e.g., duplication of critical data). Current software-based security 

techniques tend to focus on remote vulnerabilities, such as buffer overflow attacks, format string 

attacks, and other memory corruption attacks, looking either to “plug” every potential hole in the 

software, or to make sure the statistical likelihood of a successful attack is extremely low. 

Several hardware-based runtime security techniques have also emerged to prevent similar classes 

of attacks. These techniques improve upon the performance overheads of the software-based 

techniques. Techniques to detect anomalous execution based on control flow monitoring have 

also been proposed to protect against code injection into an application. However, these 

approaches focus on defending against attacks rather than protecting critical data. 

 

The piecewise nature of current defenses against computer security vulnerabilities continues to 

allow malicious attackers to gain unauthorized access into computer systems. Hardware defenses 
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against malicious tampering can ensure that attacks are detected reliably and nearly 

instantaneously. The Reliability and Security Engine (RSE), a low-level interface to the internal 

signals of a microprocessor, is a generic hardware framework that can be leveraged by a 

hardware designer to implement powerful mechanisms in modules that improve the reliability 

and security of a computer system [6]. The RSE presents a standard interface of pipeline signals 

that can be used to monitor the state of a processor and ensure reliability and security of the 

executing code. Because the RSE gives low-level access to processor signals, it is possible to 

develop techniques that can guarantee the integrity of data within a system by ensuring 

trustworthy execution of code that computes these data. In addition to providing such guarantees, 

RSE modules can be designed so that they have no effect on performance and little hardware 

area overheads on the host processor. The Information Flow Signatures (discussed in this thesis) 

technique for data integrity implemented as RSE modules does exactly this. Using the technique, 

it is possible for a software developer to select which critical data must be protected within a 

program or operating system and to have the data automatically protected during runtime. 

Because the runtime protection happens at a low level in hardware, it is possible to detect 

security violations with extremely low latencies, thus allowing action to be taken before 

corruption of data occurs. 

 

1.1 Motivation 

Insider attacks have been widely reported in the financial and critical infrastructure sectors [7, 8], 

in which the attackers’ goals have been financial gain and disruption of essential services, 

respectively. Such attacks are becoming increasingly prevalent due to the outsourcing of 

software components, often spanning geographic boundaries, and the increased distribution of 
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libraries and third-party modules over the internet. Also, as process technologies continue to 

shrink and margins decrease [9], the likelihood of memory corruption errors, which impact an 

application’s integrity [10], is on the rise.  Further, as critical systems increasingly deploy 

commodity components, there is a greater opportunity for malicious individuals or nation-states 

to launch such attacks. Therefore, insider attacks are underrepresented in the literature and will 

become increasingly important in the future. 

  

Application-level insider attacks are particularly hard to detect because third-party modules and 

library functions are often distributed in binary form, and their source code is not available. Even 

if the code is available, only a detailed security audit can find logical loopholes in it, and such 

detailed audits are time- and effort-intensive. Further, the malicious library or module may 

exhibit its malicious behavior only under exceptional situations triggered by the attacker’s input. 

Such inputs are unlikely to be provided during testing unless exhaustive testing is performed, 

which is often impractical. Finally, the insider has almost unrestricted privileges to write to any 

part of the application data space or execute arbitrary code. Under those circumstances, it is 

extremely difficult to identify a specific module or library as the cause of the attack, so insiders 

can effectively cover their tracks. Finding these attacks requires extensive instrumentation of the 

application and incurs high performance and resource overheads or hardware requirements [11].  

These overheads represent more than an annoyance; for example, time-critical systems may not 

be able to accommodate a high runtime overhead, while embedded systems may not be able to 

accommodate excessive hardware requirements.  Moreover, such techniques also detect a 

number of benign errors (errors that have no detrimental impact on a program’s execution) [12] 

and therefore unnecessarily expend computational resources on their detection. Several 
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hardware-based runtime security mechanisms based on these techniques have also emerged to 

prevent similar classes of attacks. Hardware-based runtime security techniques, covered in detail 

in Chapter 2, improve upon the performance overheads of software-based techniques. 

Techniques to detect anomalous execution based on control flow monitoring have been proposed 

to protect against code injection into an application [13]. However, these approaches focus on 

defending against attacks rather than protecting critical data. For example, with the increasing 

processor power available as a result of from shrinking process technology, computers can now 

efficiently run many applications simultaneously on the same system. While some of these 

applications are well-written and secure, others are not. Insecure applications can pose a threat to 

those that are secure, since current security techniques do not focus on protecting the target of 

attacks (critical data such as passwords or user authentication variables), but instead look to 

mitigate classes of attacks. In the face of such vulnerabilities, it is worthwhile to consider 

security techniques that operate under the assumption that a “hole” in the virtual fence may be 

found at any time. Thus, by protecting the critical data target of malicious attacks, a technique 

may prevent both current and future attack vectors. 

 

In order to minimize the performance and area overhead associated with duplication detection 

mechanisms, a method is proposed whereby only critical variables are considered for detection.  

 

1.2 Contributions 

This thesis presents a new method for application source code analysis to derive the critical 

signature along with the hardware-implemented enforcement of Information Flow Signatures. 

The implementation ensures that, during runtime, security-critical data are computed according 
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to source code semantics, even under the threat of hardware or software vulnerabilities. If an 

attacker attempts to tamper with the protected program execution or data used by the application, 

the system will be notified so that it can take appropriate actions. Though this technique can also 

be used to provide protection against a wide range of memory corruption attacks, we focus on 

the hardware-based mechanism for protecting security-critical data against malicious tampering 

due to external and insider attacks. 

 

The specific contributions of this thesis are: 

 

1. Design, implementation, and demonstration of IFS (Information Flow Signatures) that 

check hardware for trustworthy execution of instructions computing critical data. An 

FPGA-based prototype has been developed with real-world applications to demonstrate 

the efficacy of the concept. 

2. Augmentation of the Maude model-checker-based SymPLFIED [14] tool to support (i) a 

prototype (SPARC-Leon3-based) architecture, (ii) exhaustive symbolic fault injection for 

application analysis to derive the signature of the application, and (iii) application 

instrumentation to facilitate an interface between the application and IFS checking 

hardware. 

3. Qualitative analysis of the technique’s coverage of memory corruption (generic and 

targeted) attacks and detailed evaluation of hardware resource overhead and performance 

overhead for real-world applications. 
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1.3 Organization  

The rest of the thesis is organized as follows. In Chapter 2 we describe some of the related 

security work. Chapter 3 addresses the basic concept of the IFS, the attack model, the software 

implementation, and, briefly, the new proposed analysis method and hardware-based 

architectural solution. In Chapter 4 we introduce the tool SymPLFIED, explain how it is used for 

source code analysis, and we describe the extensions made to it to support IFS. The chapter also 

describes in great detail the limitations of the previous compiler-based static analysis and how 

symbolic error injection overcomes all these limitations. Chapter 5 describes the Reliability and 

Security Engine, a hardware-based framework for monitoring of applications, and its new 

modified architecture for easier coding and extensibility. Chapter 6 gives more details on the 

architectural features of the IFS module, its runtime checking operation, and how a hardware-

based solution removes the vulnerabilities present in the software-based IFS implementation. 

Chapter 7 details the nature of insider attacks, the importance of preventing such attacks, 

different attack scenarios, and the efficacy of the IFS method in detecting those attacks. Chapter 

8 describes another major contribution of this thesis, which is the design and implementation of a 

unified framework for security and reliability; hence, we briefly describe the reliability module 

and how it was integrated with the security module and the main processor on a single fabric. 

Finally, Chapter 9 presents results that include hardware footprints for different configurations 

and performance overhead due to IFS, along with conclusions and plans for future work. 
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CHAPTER 2 

 

 

RELATED WORK 

 

 

A multitude of techniques have been proposed to address the security concerns discussed in the 

Introduction.  Some of these techniques offer low-level detection or correction but operate in a 

manner largely indifferent to the needs of the application being protected.  To support 

application-aware detection, several techniques utilize static analysis of application source code 

or dynamic analysis of application invariants to provide error detection services that are geared 

to the needs of individual applications.  Others utilize hardware and software redundancy; such 

techniques rely on either software duplication or hardware duplication.  All of these methods 

have their benefits and drawbacks. The properties of a secure software application can be 

summarized as follows: 

1. Instructions cannot be directly stolen, inferred, or modified; 

2. Data cannot be directly stolen, inferred, or modified; 

3. Execution flow cannot be tampered with or monitored; 

4. The application and all of its subcomponents can only be used by authorized entities; 

5. Authorized users cannot be denied usage of or access to an application or its     

subcomponents. 

 

Nearly all direct attacks against software, despite variations in methodology and sophistication, 

exhibit intentions that fall under one of the previously stated protection properties. While it is 

generally accepted that no system can completely protect against all classes of threats, the 
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properties listed above provide a general upper bound on protection goals for all systems that 

attempt to protect software. 

 

2.1 Security Architectures  

The following sections present an overview of architectures for securing software. Discussions 

of design issues associated with software protection architectures can be found in [15] and [16]. 

These design issues are extended in [17], which discusses similar issues arising from the 

combination of software security and multiprocessors. The purpose, protection, and design 

assumptions of security architectures range from custom-designed processors to small jump 

tables. 

 

The concept of using hardware to protect software was first publicly introduced by Robert Best, 

who patented the idea of a crypto-microprocessor in the early 1970s [18], [19]. The crypto-

microprocessor was a microprocessor outfitted with encryption hardware that could decrypt 

encrypted memory for a single application using a single key. This concept was again revisited in 

[20] and was realized as a commercial product in the Maxim DS5002FP [21] secure 

microcontroller, which could access 128kB of encrypted random access memory (RAM). 

 

Dyad [22], [23] was one of the first architectures to rely on a secure micro-kernel. Dyad 

examined the necessary protocols and procedures for networked hosts utilizing secure 

coprocessors. Specific applications of interest were audit trails, electronic transactions, and copy 

protection. The secure coprocessor was responsible for providing a secure compartment for 

execution and security functionality not available in the OS. The secure coprocessor was not 
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responsible for enforcing security policies, because the OS was booted securely and verified 

using the coprocessor. Keys and other secret material were assumed to be stored exclusively on 

the coprocessor’s internal, nonvolatile memory. The Dyad architecture was neither simulated nor 

implemented. 

 

The Cerium [24] architecture created security by utilizing a tamper-resistant CPU in coordination 

with a micro-kernel. The micro-kernel, much like the secure kernel used in Dyad, was 

responsible for providing process separation and was specifically responsible for address space 

separation, protection during cache-evicts, cryptographic processes (e.g., authentication, 

encryption/decryption), and certificate creation/signing. The Cerium architecture was neither 

simulated nor implemented. Similarly, the ChipLock [25] architecture relied on a secure micro-

kernel, in addition to processor modifications, to provide integrity and confidentiality for both 

instructions and data. Unlike Cerium, however, ChipLock placed security functions in hardware 

and not in the micro-kernel. Another security architecture proposed by Gilmont et al. [26], [27] 

modified traditional, architectural memory management structures; included a hardware cipher 

unit and a permanent memory for storing keys; and appended TLB, page registers, and an L1 

cache interface to allow for prefetching. This architecture moves security farther toward the 

outside of the processor but still keeps it within the processor boundary. Gilmont’s MMU 

security architecture fails to address the protection of data and ignores issues related to operation 

in a multitasking environment, such as shared libraries and different security levels. The 

architecture was evaluated using simulation and showed overhead costs between 2.5% and 6%. 
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An important aspect of hardware-based security solutions that modify or redesign processor 

internals is the effect of adding the additional security hardware to the processor. The additional 

hardware consumes logic resources that would otherwise be used for cache or memory that are 

essential to performance. Also, the additional security hardware might also impact timing and 

other requirements. Together the loss of logic resources and possible timing impact could 

severely hinder performance. These critical system issues have not been addressed in the design 

and characterization of existing processor redesign software security solutions. 

 

Other recent efforts at placing security features at the chip boundary include the SafeOps 

architecture by Zambreno et al. [28], [29] and CODESEAL [30], developed by Gelbart et al. The 

SafeOps architecture attempted to protect software integrity using a combined compiler and 

FPGA approach. The compiler examined the executable for sequences of register usage and 

employs this knowledge to check for integrity and consistency. Additionally, the compiler could 

embed several nonessential instructions to add to the register usage patterns and perform opcode 

obfuscation. At execution time, instructions were pushed through the FPGA hardware that 

compared the register sequence to the register sequence established in the static analysis. If 

discrepancies were detected, the FPGA hardware halted the processor. SafeOps was evaluated 

using SimpleScalar [31], which showed average performance degradation to be around 20%. The 

CODESEAL architecture extended the SafeOps architecture to include instruction decryption 

and hashing of blocks of information. This architecture was also validated using SimpleScalar 

and demonstrated performance degradation between 4% and 42%, depending on the type of 

protections incorporated and the benchmark applications. 

 



11 

 

2.2 Software Solutions 

Terra [32] introduced the idea of trusted virtual machine monitors that compartmentalize 

applications or sets of applications using the virtual machine concept. Terra relied on the 

existence of a tamper-resistant platform. Obfuscation methods that attempt to complicate 

program analysis have also been explored. 

 

Wang [33] used a compiler implementation that produced obfuscated programs that made static 

analysis of the program difficult. The obfuscated software is unobfuscated by the operating 

system using a runtime interpreter. Duvarney et al. [34] presented the idea of extending 

traditional executable formats, particularly the Executable Linking Format (ELF) [35], to include 

security information. Their particular application appended standard ELFs with information that 

was used to perform runtime monitoring, static monitoring, and program transformation. This 

allowed security information to be added postcompile if necessary. Another platform under 

development in the commercial sector under the names of the Next Generation Computing Base 

(NGSCB) [36], Trusted Computing Platform Alliance, and Palladium utilizes a combination of 

hardware and software techniques to provide protection from software-based attacks. The 

NGSCB is not designed to prevent physical attacks on the local machine. NGSCB utilizes a 

small security coprocessor called a trusted platform module, which is attached to the 

motherboard to store and limit access to sensitive information, e.g., keys and certificates. 

 

2.3 Hardware-Based Security Solutions  

The first class of hardware solutions for protecting execution flow aims to provide execution 

flow confidentiality. Zhuang et al. [37] utilized a fairly simple obfuscation mechanism, called a 
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shuffle buffer, to complicate memory and address access monitoring as a method for gaining 

information about an executing application. The shuffle buffer is a circular memory of recently 

accessed memory blocks. When a memory block is accessed, a block is replaced in the shuffle 

buffer, and the information being replaced in the buffer is written back to memory. This process 

attempts to create a “random” memory access pattern. The tracking of memory blocks 

throughout memory as a method for breaking the obfuscation method was not addressed. 

 

Another similar architecture by Zhuang et al., named HIDE [38], also examined the protection of 

instruction access sequences, likely obtained (leaked) by monitoring memory or disk accesses, 

using hardware. The HIDE architecture attempted to make instruction accesses independent of 

program execution using multilevel prefetch buffers in addition to a hot function set. As hot 

functions were identified and added to the set, the entire function block was prefetched and 

stored in the prefetch buffers. As the functions were requested, the prefetch buffers were 

accessed to retrieve the appropriate portions of the function. This required that the size of the 

function be added to the executable description such that the prefetch buffer hardware would 

know the appropriate amount of memory to allocate. Also, the prefetch controller was required to 

encrypt and decrypt memory for writing blocks back that have been encrypted with a different 

key such that blocks cannot be tracked as they are moved within memory. Evaluation of the 

HIDE architecture method was performed using the SimpleScalar [31] simulation platform and 

the SPEC benchmarks [39]. Performance degradation was shown to be approximately 38%. 

 

Barrantes et al. [40] sought to prevent code injection attacks (that could potentially alter 

execution flow) by implementing a form of program obfuscation called instruction set 
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randomization. They proposed the production of a machine-specific executable using a 

pseudorandom sequence loaded at runtime that is XORed with instructions by an interpreter that 

resides in the process’s virtual address space. The method was evaluated using an emulator and 

demonstrated a 5% performance degradation. Another approach for preventing invalid code 

injection was dynamic information flow tracking [41] that utilized the operating system to mark 

sources of information flow as possibly malevolent. The classification of information was used 

by a custom processor, which included architectural support at the TLB and registers, to tag 

information from these possibly malevolent sources. Tags were propagated to the data produced, 

if the data consumed contained tags. The SimpleScalar [31] was used to evaluate the 

architecture, which demonstrated modest performance degradation of around 5% and an 

approximate storage overhead of about 5%. The architecture does, however, require a custom 

processor and was not implemented. 

 

The next two hardware architectures, basic block signatures [42] and runtime execution 

monitoring [43], used signature methods for verifying execution flow. Basic block signature 

verification attempted to prevent execution of unauthorized code by verifying runtime block 

signatures calculated by hardware with signatures created during the install process. The 

signatures were created during the install process using secret coefficients and the relative 

address of the basic block. Because this method verified the integrity of instruction sequences, 

access to the instruction pipeline hardware was necessary. The method was evaluated using 

traces from the SPEC [39] benchmarks for an Alpha processor. Analysis of the method 

compared the number of misses in the basic block signature table to the number of instruction 

cache misses. The results indicated that if the number of sets in the basic block signature is 
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sufficiently large, basic block signature misses are relatively small compared to the number of 

cache misses and should not contribute greatly to system performance degradation. Specific 

performance degradation numbers were not cited.  

 

Runtime execution monitoring protected execution flow integrity by comparing precomputed 

hashes of basic program blocks after they were loaded into L1 caches. If the hashes calculated on 

instructions and data passing through to the fetch and load store units did not match the original 

hashes, an exception was raised. This method required the addition of hash compute and 

comparison hardware to the processor (behind caches) as well as a hash pointer instruction to the 

instruction set architecture (ISA). The concept was evaluated using the SimpleScalar simulation 

framework and SPEC2000 benchmarks. The additional hash information increased application 

size by 40% to 100%. Performance reduction ranged from 6.4% to 40% depending on hash block 

size, cache sizes, and memory bandwidth consumed retrieving hashes from memory. 

 

2.4 Formal Security Analysis  

The goal of formal systems is to verify the operation of a subsystem or system, or interaction 

within a collection of systems, using formal methods. Formal methods have generally fallen into 

two categories: theorem proving and model checking [44]. Several generally accepted rules-of-

thumb relating to the use and application of formal methods can be found in [45]. In the security 

domain, formal methods have been utilized to support claims concerning security. One of the 

initial uses of formal methods in the security domain was cryptographic protocol analysis [46], 

[47], which uncovered an attack on the Needham-Schroeder exchange protocol [48]. Other 

variations of formal protocol analysis [49], [50], [51] examine abstract state machines and team 
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automata as methods for examining cryptographic protocols. Lowe [52] made one of the first 

attempts at automating the protocol analysis process by creating a compiler, called Casper, 

which would generate process algebra descriptions automatically from a more abstract 

description. The analysis was completed by processing the algebras with a standard model 

checker. 

 

Butler et al. [53] examined the use of formal methods for validating and modeling trust. Another 

area of interest is secure systems. With the arrival of the secure coprocessor (as discussed in 

Section 2.2.1), much effort was focused on formal verification of these systems, such as in [54]. 

A practical example of formal security analysis of a secure coprocessor, specifically the Infineon 

SLE88, can be found in [55]. The analysis utilizes a combination of model checking and theorem 

proving, called interacting state machines, that was created and applied to the Infineon SLE88 

[56], [57], [58], [59]. Recently, several custom architectures have been proposed as methods to 

provide security functionality. These systems, like other hardware and/or software [60], are 

subject to functional verification and are also subject to security verification. For example, the 

security features of the XOM architecture [61], [62] were analyzed and verified using model 

checking on a scaled-down model; this was one of the few efforts to apply formal methods to 

security hardware. 
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CHAPTER 3 

 

 

INFORMATION FLOW SIGNATURE FOR DATA INTEGRITY 

 
 

3.1 Principles 

The Information Flow Signatures (IFS) technique is used to protect the integrity of critical data 

within an application or operating system. The data may be selected as the highest-priority 

security variables, such as variables that hold information about user authentication in an SSH 

application or structures containing information about processes currently running within an 

operating system. 

 

The crux of the approach is to allow programmers to specify critical data in applications (i.e., 

data that are important for the application’s secure execution) and ensure that the data cannot be 

corrupted by untrusted third-party libraries or modules. This enforcement is done at runtime 

using the Information Flow Signatures (IFS) of the critical data. The IFS represents the sequence 

of legitimate instructions that are allowed to write to the critical data from within the trusted 

module. If an instruction that is not part of the IFS attempts to write to the critical data, it is 

considered an attack. Similarly, if an instruction that is part of the IFS writes to the critical data 

in a different order than determined by the IFS, it is also considered an attack. Thus, only 

instructions within the IFS can write to the critical data, and only in the order in which they 

appear in the IFS. 
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3.2 Attack Model 

In this work, we consider application-level memory corruption attacks that alter the integrity of 

an application. This section further explains the above definition.  

Application-level attacks: The goal of an application-level attack is not to corrupt the behavior 

or gain control of the whole system (e.g., launch a root shell), but to alter the normal behavior of 

the attacked application (corrupted output, login with wrong password, etc.). Application-level 

attacks can be achieved by exploiting vulnerabilities (e.g., buffer overflow or format string), or 

by changing the code of an application (e.g., trojan). We focus on application-level attacks 

conducted by memory corruption.  

 

Memory corruption attacks: All attacks that corrupt either data or the control flow of an 

application (or both) by overwriting data or addresses in memory are considered memory 

corruption attacks. They include, for example, the usual buffer overflow, integer overflow, and 

format string attacks, but also logic bombs or third-party libraries that modify memory locations, 

which they are not allowed to modify semantically.  

 

In this work, we assume that the attacker’s goal is to alter the integrity of data produced by the 

application, i.e., to corrupt data produced by the application. Therefore, we do not consider 

attacks targeting the confidentiality of data, where the goal is to steal information from the 

application. Furthermore, we assume in this work that the attacker does not want to crash the 

application. Any attacks that result in a system exception being raised or a system crash are 

considered to be “detectable” attacks and thus are not considered. In general, the IFS technique 

described here can be used to prevent data corruption attacks. The aim of the technique is to 
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preserve data integrity rather than its confidentiality. Hence, the technique does not address side-

channel attacks. The threat model assumes that the attacker can execute arbitrary code and 

overwrite program variables stored in both memory and processor registers. We assume all 

malicious memory accesses are visible to the processor pipeline. Thus, malicious DMA transfers 

are not covered by this threat model. We also assume that the IFS hardware is initialized prior to 

the attack conditions; thus, the technique protects against runtime attacks, but only if the correct 

signatures have been loaded into the hardware. 

 

3.3 Software Implementation of IFS 

In this section we briefly describe the initial design and implementation of the Information Flow 

Signature Module. In the proposed approach, the portion of the program that manipulates the 

critical data (i.e., the trusted module) is statically analyzed and instrumented to ensure that 

runtime modifications of the critical data follow the language-level semantics of the application. 

This corresponds to static extraction of the backward slice of the critical data [63], and ensures 

that only the instructions within the slice can modify the critical data, and only in accordance 

with their execution order as specified by the program code. A third-party module or a memory 

corruption attack that overwrites the critical data or violates the established dependencies in the 

slice is detected. Because the approach ensures that information flows to the critical data in 

accordance with the program source code, we call it the Information Flow Signatures (IFS) 

technique. 

Invariants: The instrumentation added by the IFS technique ensures that the following 

invariants are maintained at runtime.  
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1. Only the instructions that are allowed to write to data operands in the backward slice of 

the critical data (according to the static data dependencies) in fact do so.  

2. The instructions in the backward slices of the critical data are executed in the order of 

their occurrence along a valid acyclic path in the program.  

3. Either all the instructions in the backward slice along a control path are executed, or no 

instruction along the path is executed.  

 

3.3.1 Phase 0: Identification of Critical Data (Carried Out by the Programmer)  

The critical data in a program can refer to both program variables (i.e., local and global 

variables) and dynamically allocated memory objects on the heap. The programmer identifies 

critical data in the program through annotations in the source code. In the case of program 

variables (local or global), the annotations are placed on the definitions of the variables. In the 

case of dynamically allocated memory objects, the annotations are placed on the allocation sites 

(i.e., the instruction that makes the function call) in the program (e.g., calls to malloc). It is 

assumed that all objects allocated at an annotated malloc call are critical. 

 

3.3.2 Phase 1: Static Analysis (Carried Out by Our Enhancements to the Compiler)  

1. Extract intra-procedural backward slice of the critical data by identifying all 

instructions within a function in the program that can influence critical data. It is assumed 

that the function that manipulates the critical data is trusted, and its source code is 

available for the analysis.  
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2. For each instruction in the backward slice, insert an encoding operation after the 

instruction and pass the value computed by the instruction as an argument to the encoding 

operation.  

3. Before every use of an operand that has been encoded in the backward slice, insert a 

call to the decoding operation and pass it the value returned by the encoding operation.  

4. Generate the sequences of instructions for each acyclic control-flow path in the 

function. Do this for each function in the program.  

5. Since we consider intra-procedural paths, add instrumentation functions at the 

beginning and end of function calls in order to push and pop the current state of the 

function’s state machine on to a runtime stack (see phase 3). (State machines track the 

sequence of calls to the encoding functions and check if the program control flow is 

valid.)   

 

3.3.3 Phase 2: Code Generation (Carried Out by Custom Programs)  

6. Generate finite-state machines to encode the sequences of calls to the encoding 

operations within a function for all control paths identified in step 5. Mark the final state 

of each state machine as an accepting state.  

7. Generate the encoding and decoding operations to check the data-values of the 

program as it executes (see phase 3). Also, check the validity of the program control-flow 

using the state machines derived in step 6.  

8. Track the runtime path based on the state machines generated in step 6. If the path does 

not correspond to a valid path, raise an alarm and stop the program.  
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9. Encode data values depending on where the encoding operation is called in the original 

program. Check the value for consistency by decoding it before its use, i.e., check if the 

decoded value matches the encoded operand. If the value is inconsistent, raise an alarm 

and stop the program.  

Slicing Algorithm: The backward slices of the critical data are computed on a path-specific 

basis, i.e., each execution path in the function is considered separately for slice extraction. This is 

based on our earlier work on extracting backward slices for detecting transient errors in programs 

[64]. 

 

State machines: The state machines track the sequence of calls to the encoding functions and 

check if the program control flow is valid. The state is tracked on a per-function basis, since we 

consider only intra-procedural slices. A separate stack is maintained at runtime to push and pop 

the current state of the state machine (for the function) at the beginning and end of function calls. 

At the entry point to a function, the corresponding state machine is reset to the start state. 

Similarly, the state-machine state is checked just before the function returns to ensure that the 

state machine is in an accepting state, i.e., the state machine has accepted the observed sequence 

of encoding calls (invariant 3). Finally, we check that every encoding call executed by the 

program corresponds to a valid state transition from the current state of the state machine 

(invariant 2). 
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Fig. 3.1: Tool chain for software implementation of IFS 

 

Figure 3.1 describes the tool chain for implementing IFS checks in software. There are a number 

of limitations and shortcomings in this approach which we overcome with our new proposed 

method, for which a prototype has been developed to demonstrate efficacy. The major 

limitations come from the preprocessing method of the code, which is based on compiler static 

analysis; it is discussed in detail in Chapter 4, where the new analysis method based on model 

checking and error injection has been described and contrasted with the compiler-based analysis. 

The approach involves major performance degradation and vulnerability due to the inherent 

problems of handling everything (encoding and decoding operations) in software. The 

instrumentation is done at a level of intermediate code that is still high-level C code, hence 

providing a vulnerable window for attackers to attack the code successfully without being 

detected. By implementing the IFS module in hardware, we reduce this vulnerable window to 0 
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for any practical purpose and also have a huge performance boost, which is described in Chapter 

6 (in the discussion on advantages of hardware-based IFS) and Chapter 8 (performance results). 

 

3.4 New Approach and Algorithm 

Critical data is defined as any variable or memory object that, if corrupted by an attacker, can 

lead to security compromise of the application. The programmer identifies critical data through 

type annotations in the code. The approach consists of two phases: 

 A compile time phase to extract the trusted signature of the application source code. This 

is done completely in software. As described (Fig. 3.2), the application source code has to 

go through SymPLFIED analysis to extract the application signature, which is used to 

instrument the application source code. 

 A runtime phase, in which the IFS module enforces the integrity of critical data using the 

trusted signature of the application configured in the hardware itself. It does so at the 

hardware level. The instrumented source code is loaded onto the processor, which, upon 

execution, configures the IFS hardware with the application’s instruction and data 

signature. Later, during the course of execution, the IFS module enforces the integrity of 

critical data using the signature initially loaded. 
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Fig. 3.2: Conceptual design flow: IFS  

 

3.4.1 Compile Time Phase  

 We leverage a formal tool, SymPLFIED [14], to find the minimum yet exhaustive set of critical 

data locations that one needs to protect.  SymPLFIED uses symbolic execution and fault 

injection to comprehensively enumerate all possible memory errors that can be corrupted by 

malicious instructions to cause a program failure. 

 

SymPLFIED runs on top of the Maude model checker and models applications’ execution at the 

assembly level using rewriting logic. SymPLFIED-supported symbolic fault injection introduces 

a single error per execution in one memory location and propagates the error’s consequences 

using symbolic execution. The results from the symbolic fault injections are then used to 

determine the complete set of memory locations and the corresponding critical stores that need to 

be protected. This set of memory locations and critical store instructions forms the signature for 

an application. The original program is instrumented to load the signature in the IFS module 
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during the runtime. More details on the compilation and extraction of signatures for an 

application’s source code are provided in the next two chapters, which address the SymPLFIED 

analysis and loading of signatures to the hardware module. 

 

Fig. 3.3: Proposed compilation phase framework 

  

Figure 3.3 shows the conceptual flow of the proposed compilation phase framework. 

SymPLFIED [14] exhaustively simulates and analyzes the processor state at instruction-level 

granularity and hence helps in identifying all possible sources of vulnerabilities that can be 

exploited to achieve the attacker’s goal, namely, compromise of the integrity of critical data 

being computed by the application. The set of real-world attacks is a subset of all the possible 

attack scenarios analyzed, and hence we claim that the signature extracted by the proposed 

framework (by analyzing and parsing the successful attack cases) can theoretically provide 100% 

coverage. The obtained coverage is verified with simulations and error injection experiments 

discussed later in this thesis. 
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3.4.2 Runtime Phase 

The instrumented code is loaded onto the processor. The coprocessor instructions (in the SPARC 

instruction set) are modified to act as an interface between the application running on the main 

core and the signature-checking hardware. Hence, the checking is done in parallel with minimum 

performance overhead due to instrumented code. The instrumented code also configures the IFS 

hardware to load the corresponding critical instruction and data signatures during the 

initialization of the program. The IFS module then enforces the integrity of the critical data to be 

maintained during the execution of the application.  

  

The instrumentation added by the IFS technique ensures that the following invariants are 

maintained at runtime.  

1. Only the instructions that are allowed to write to data operands in the backward slice of 

the critical data (according to the static data dependencies) in fact do so.  

2. The instructions in the backward slices of the critical data are executed in the order of 

their occurrence along a valid acyclic path in the program.  
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CHAPTER 4 

 

 

SYMPLFIED 
 

 

In this chapter we discuss the formal model-checker-based tool called SymPLFIED and how it is 

extended to support the analysis required for extracting application-specific signatures to 

configure the Information Flow Signature module and hence monitor the application during the 

execution of the instrumented source code. 

 

SymPLFIED [14] is a program-level formal framework that runs on top of the Maude model 

checker. It has been designed to enable reasoning about application vulnerabilities using 

symbolic execution and model checking. We leverage the symbolic fault-injection capabilities of 

SymPLFIED along with the flexible design of the machine model in order to design, model, and 

verify detection mechanisms. Critical variables along with associated critical code are identified 

using SymPLFIED’s symbolic fault injector. 

 
 

Fig. 4.1: Conceptual design flow of SymPLFIED 
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SymPLFIED is implemented using rewriting logic. Equations are used to model deterministic 

actions such as the program execution or memory and register lookups. Rules are used to 

introduce nondeterministic transitions when errors are injected. Figure 4.1 describes the 

conceptual design components used in the Maude-based model checker SymPLFIED. Error 

model describes the class of errors to be analyzed; “machine model” describes the architectural 

state of the hardware processor, and the assembly of the source code is the input to the processor. 

  

A machine state describes the states of the registers, memory, program counter, etc., during the 

execution of an application. The whole application’s execution consists of going from one 

machine state to another through transitions. In other words, transitions modeling the fault-free 

execution of an application are written with equations, and transitions involving errors are 

written with rules. 

 

4.1 SymPLFIED: Extended Implementation for SPARC 

 

The existing tool SymPLFIED emulated MIPS ISA. We extended the tool to support the SPARC 

instruction set architecture because our experimental platform is based on the open-source Leon3 

processor, to which we attached the custom-designed IFS hardware to support the runtime error 

checking of the application.  

 

The extension of the existing tool consisted of two implementation phases:  
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1. We modified the front end of the SymPLFIED tool to support all the instruction formats 

of SPARC V8. The execution behavior of the new instructions, which determine the 

states of the application and the processor after a particular instruction is emulated, was 

implemented as re-writing rules for Maude. The dependency and define list for the 

SPARC instructions that define the resulting values (on execution), the initial state (of the 

processor), and the dependency of an instruction on registers and memory locations was 

re-implemented. For the new Maude instructions defined, we implemented the state 

transition functions that would define the subsequent states after the execution of a 

particular instruction by adding rules to the constraint checker for Maude. 

2. We implemented a translator that interprets the SPARC V8 assembly instructions and 

maps them to the corresponding Maude formalism to enable symbolic execution of 

instructions. A Maude instruction representation mimics the behavior of the 

corresponding assembly instruction in SPARC. To incorporate all the unique features of 

the SPARC-based Leon3 architecture, a single instruction can map to multiple Maude 

instructions. Unlike MIPS, SPARC uses register windows to minimize access to memory. 

For example, to support function calling conventions, for instructions like save and 

restore, Leon 3 passes the top 6 arguments through the output registers. These registers 

overlap with the set of input registers for the function called. Consequently, before the 

function is called, a save instruction is executed to increment the register window where 

the new sets of input windows overlap with the previous set of output windows. At the 

same time, in the stack frame layout, the top 64 bytes are reserved for pushing the register 

values onto the stack in case of register spilling, which happens once the processor runs 

out of new sets of register windows. To mimic this behavior, we intentionally push the 
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registers onto the stack every time a save instruction is executed (as described in Figure 

4.2) and reload the registers when the restore instruction is executed, which in the 

processor decrements the window pointer and returns the access to the previous set of 

register windows. Pushing registers onto the stack frame, even when the processor has 

available register windows that can be used, increases the memory locations that must be 

protected, which is fine because in an actual system (with kernel and other processes 

running simultaneously), the resource usage for a processor at any particular time is 

unpredictable. Thus the methodology proposed in this thesis should abstract away such 

concerns while the application’s source code is being instrumented.   

 

Fig. 4.2: Example of mapping a single SPARC instruction to multiple Maude instructions to 

accurately simulate the architectural state of the processor 

 

 

Another case that requires mapping of a single instruction to multiple Maude instructions is the 

instruction that sets condition code registers. Unlike the MIPS architecture, which does not have 

condition code registers and uses slt instructions and a comparator to make branching decisions, 

the SPARC architecture uses four condition code registers to make branching decisions. 

Mapping of a complex instruction to multiple Maude instructions gives us better granularity in 

cases where we can set breakpoints, even within an atomic instruction, and makes it easier to 
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debug and monitor the architectural state of the processor. Also, it offers a better way to extend 

Maude to different instruction set architectures, as opposed to redesigning complex Maude 

instructions to map to specific complex instructions, which would increase the verification 

complexity of the model checker. While mapping a single instruction to multiple instructions in 

cases like the one in Figure 4.3, one has to be careful to avoid including any redundant memory 

locations as a part of the backward slice.  

 

Fig. 4.3: Example SPARC instruction mapped to multiple Maude instructions  

 

4.2 Stack Memory Management in SymPLFIED   

 

In order to emulate the SPARC architecture behavior, the save instruction is translated to 

multiple save-store instructions in Maude, which push the set of input registers onto the stack 

space allocated to the called subroutine. Similarly, on the restore instruction, we pop the values 

from the stack into the corresponding registers in the reverse order before tearing down the stack 

frame for the called function. The stack frame layout after every subroutine call is shown in Fig. 

4.4. 
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Fig. 4.4: Stack memory frame layout before and after subroutine call in SymPLFIED 

 

4.3 Register File Management for SPARC Architecture in SymPLFIED 

When a function call is made, all the input and local registers are pushed onto the stack frame. 

The save instruction, which is mapped to multiple movsp instructions to emulate a behavior 

similar to the overlapping of registers, is executed; i.e., the values in the output registers are 

moved into the input registers. Similarly, on a restore instruction, the values of the input registers 

are moved to the output registers, and values of the frame pointer and stack pointer register are 

restored to tear down the called function’s stack frame. Figure 4.5 describes register overlapping 

before and after a save instruction is executed on a function call. 
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Fig. 4.5: Register overlapping in a SPARC ISA-based architecture 

 

That behavior is not exactly what SPARC processors do (because SPARC processors push the 

oldest set of used registers onto the stack frame). But the current design does not introduce any 

false negatives (i.e., it does not compromise an application’s critical signature, and hence no 

critical memory locations are eliminated) because register spilling is forced on every function 

call. In a very conservative analysis, the bottom 64 bytes of every new stack frame allocated 

must be included in the application signature and then invalidated as soon as the stack frame is 

torn down. In most critical applications, objects allocated on stack memory usually are 

associated with temporary calculations and are not that critical to the application’s security. If an 

object is indeed a critical variable, then it is guaranteed to be included in the application’s 

signature until the function stack frame is alive; after returning to the caller, the stack frame (for 

the called function) is free to be used. In usual programming practice, data are never accessed 
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(by reference) from a lost stack frame; hence the correct design is to prevent such memory 

locations from being part of the application’s signature. 

 

4.4 Error Injection  
 

The error injection mechanism mimics the behavior of existing fault injectors such as NFTAPE 

[65]. SymPLFIED uses symbolic fault injection. A breakpoint is set at a given application’s 

execution point. When the breakpoint is reached, the err symbol is injected at one memory 

location. Then, the application’s execution resumes propagating the error. 

 

4.4.1 Error Injection Mechanism 

At each run, the user is able to specify where to inject the symbolic error (into the register, 

memory or the program counter). In this technique, as we wish to model memory corruption 

attacks, we only consider memory errors. The user can also specify when to inject the error by 

setting breakpoints. By default, SymPLFIED exhaustively and successively injects errors at 

every available memory location and at every possible breakpoint. Figure 4.6 illustrates the 

exhaustive fault injection process. Within each state, ai denotes memory location i and ai = err 

denotes the fact that the memory location ai contains the error symbol. Note that there is at most 

one error injected on each path of the state diagram (Figure 4.6). 
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Fig. 4.6: State diagram of error injection of all memory addresses at all possible breakpoints 

 

The initial state is a state in which no instruction has been executed yet. After instruction 1 is 

executed, n1 + 1 states can be reached from the initial state (n1 being the number of memory 

locations available). In the n1 state, a unique symbolic error err is injected. In the first state, an 

error is injected into memory location 1, and in the i
th

 state, an error is injected into memory 

location i. Once injected, each error is propagated independently from the others. The (n1 + 1)
th

 

state is an error-free state from which new states are forked after the execution of the second 

instruction. Table 4.1 gives the injection commands defined in SymPLFIED. The “Search” 

command defined in Maude enables us to explore all reachable states from the initial state given 

the specified injections. 
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Table 4.1: Basic commands to inject memory errors in SymPLFIED  

 

 

4.4.2 Error Propagation  
 

Once the error has been injected into the program, the error is propagated. Every operation 

involving err will return error expressions merging err symbols (e.g., err + 2 = err, err + err = 

err).  

The interesting part of the error propagation is the way the tool handles branching or comparison 

involving the err symbol. When branching and comparison are not involved, merging 

expressions into err is sufficient. But if we need to evaluate a predicate in order to determine 

how to branch, merging of expressions into err is no longer possible. SymPLFIED uses rules to 

fork the execution when evaluating a predicate that involves the err symbol; in other words, a 

predicate containing an err symbol is evaluated to both true and false. 

 

4.4.3 SymPLFIED Outputs  

SymPLFIED logs the result of the error injection experiments. The results enumerate all the 

cases that match the search criteria, for example, attacks that were successful in modifying the 

critical variable. The logged results describe the precise instructions and the memory locations at 
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which the errors were injected; hence, one can identify the critical instructions and the 

corresponding memory locations with which they are associated. The critical instruction 

signature and data signature for the application are formed by the set of instructions and memory 

locations that upon error injection were successful in exploiting the application’s vulnerability, 

for example by changing the system password in the SSH program. The check instructions 

encoding this information are used to instrument the original application, which, upon execution, 

configures the IFS hardware module and enforces runtime checking.  

 

SymPLFIED considers the effect of all possible transient hardware errors on computation. Our 

focus in this thesis is on memory-corruption-related errors when a program is being executed 

under a specific input. SymPLFIED uses symbolic execution and model-checking to 

exhaustively reason about the effect of the error on the program. The key innovation of 

SymPLFIED is that it combines an entire set of errors into a single abstract class and 

symbolically reasons about the effects of the error class as a whole. This grouping effectively 

collapses into a single state the entire set of errors, in turn greatly enhancing the scalability of 

SymPLFIED compared to exhaustive fault injection. However, the scalability is obtained at the 

cost of accuracy, as this abstraction can lead to false positives, i.e., erroneous outcomes that 

occur in the model but not in the real system. However, the loss in accuracy is acceptable in 

practice, as the detectors can be conservatively overdesigned to protect against a few false 

positives.  
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4.5 SymPLFIED vs. Compiler Static Analysis 

Compared to previous work (namely software implementation, as discussed in Chapter 3), 

computation of the backward slice of a critical variable in the program based on static analysis 

has certain limitations, such as intra-procedural slicing, conditional dependencies of a control 

flow path that computes critical variables and difficulties in Pointer analysis. The proposed 

method of having exhaustive symbolic fault injection running over model checker overcomes 

most of those limitations, as discussed below.  

1. Intra-procedural slicing: The IFS technique considers only intra-procedural slices; i.e., 

it truncates the slice at the beginning of functions. Hence, any corruption of the slice prior 

to the function call will not be detected by the technique. There are different ways of 

mitigating the impact of this using function in-lining, which is not practical for large 

pieces of code. The user can choose critical variables in each function, but again that is 

not practical for millions of lines of application software.  From the perspective of 

SymPLFIED analysis, the function boundaries are transparent. The analysis is done at the 

abstraction level of instructions that modify memory locations. Function boundaries are 

transparent to such a design approach and hence obviate the limitation presented by the 

static compiler analysis methodology. 

2.  Annotation of critical instructions at the RTL level gives finer granularity and precision 

than the backward slices given by static analysis of compiler-generated intermediate code 

representation of an application’s source code. Even the intermediate representation used 

for analysis of routines is a relatively high level of code and does not exactly represent 

the change in the architectural state of the processor during execution of an application. 

To ensure the integrity of critical data, it is important that no window of vulnerability be 
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left open during runtime checking; hence, it is better to have more fine-tuned analysis, 

such as checking at the instruction level. The RTL-level-checking approach described in 

this thesis presents a better picture of the architectural state of a processor and is more 

suited to solving the problem of eliminating all windows of vulnerability. 

3. The analysis of an application or a part of the application that is the trusted module using 

SymPLFIED is complete in the sense that it includes all conditional dependencies for 

which a static analysis using the compilers cannot account. The control flow fault is the 

backdoor for most of the crafted attacks and hence requires a method that can include all 

possible dependencies for a critical variable. 

 

Fig 4.7: Example code exposing the limitation of compiler static analysis approach 

 

In the piece of code in Figure 4.7, neither the value of variable a nor the memory location 

of the variable a is a part of the backward slice computed for the critical variable. Hence 

it is easy to craft an attack by corrupting the memory location a. Such dependencies are 

not represented in the backward slice generated by compiler analysis techniques. 

4. Another big limitation of the backward slices produced using compiler techniques is the 

level of indirection of pointers supported (points-to analysis) and pointer alias analysis. 
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Even a compiler with advanced pointer analysis capabilities, like IMPACT or LLVM, 

cannot guarantee memory safety with a given backward slice. 

 Pointer-alias analysis: *(critical) and *(xyz_variable) (where xyz_variable is any 

random pointer variable) can both point to the same critical object, but there can 

be cases where xyz_variable is never a part of the backward slice or even a part of 

the source code (e.g., xyz_variable is a part of the dynamically loaded shared 

library), as seen in the example in Figure 4.7. 

 Points-to analysis: The variables (a, critical: in the piece of code in Figure 4.7) 

can have multiple levels of indirection (which is very common in industry 

software written in C++). One can compromise the integrity of the system by 

corrupting the memory location at any level of indirection of those pointers; the 

pointers may or may not be a part of the backward slice, depending on the level of 

indirection supported by the compilers. 

 

We overcome all these limitations because symbolic fault injection gives us all the possible 

memory locations that can compromise an application’s integrity, and hence we can annotate all 

the critical instructions that are accessing a particular memory location and need to be protected. 

All the memory locations that we need to protect are determined by SymPLFIED analysis. Also, 

the set of attack scenarios simulated by SymPLFIED is a superset of the real-world attacks. 
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CHAPTER 5 

 

 

RELIABILITY AND SECURITY ENGINE (RSE) 

 

 
The RSE used to evaluate the IFS technique is implemented on the Leon 3 soft processor [6]. 

This chapter introduces the Leon 3 processor we used as the RSE development platform, in this 

thesis, and describes the RSE implementation for the Leon 3, including the details of the CHK 

instruction used by an application to communicate with RSE modules. 

 

5.1 The Leon 3 Processor 

 
The Gaisler Research Leon 3 processor was chosen as the new RSE development platform 

because of its clear and concise documentation, easy-to-use tools, preconfigured FPGA synthesis 

examples, operating system support, large development community, and active mailing list. The 

GRLIB peripheral library included with this processor has an Ethernet controller, video graphics 

array (VGA) controller, several types of memory controllers, and a significant number of device 

controllers and interfaces. The AMBA bus standard is used for all peripherals in GRLIB. The 

hardware description of the entire GRLIB was written in very high-speed integrated circuit 

hardware description language (VHDL) using a special two-process state machine format 

developed at Gaisler research [66]. The Leon 3 processor implements the SPARC v8 instruction 

set. It is a seven-stage pipelined processor with configurable caches, a floating point unit. The 

seven stages of the processor and their functionalities are as follows: 
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 Fetch: The first stage of the processor controls the instruction cache and does program 

counter calculations, including loading of branch addresses and changing of addresses for 

exception handling. 

 Decode: This stage decodes the instructions into microcode to be used by the processor 

as control signals, determines branch instructions, and loads the addresses for register 

access. 

 Register file access: Operands to each instruction are loaded by the Register File Access 

stage. This stage handles register bypassing from the execution unit and retrieves and 

pads immediate values from the instruction to be used as operands. 

 Execute: Arithmetic and logical operations are processed in the Execute stage. Floating 

point instructions and addressing for the data cache and branch instructions are calculated 

are also calculated at this time. 

 Memory: The Memory stage generates control signals for the data cache and generates 

the appropriate interrupt control signals for the following stage. 

 Exception: Traps for interrupts and exceptions are generated in the Exception stage. The 

final address calculations are made here before they are sent back to the Fetch stage. This 

stage also generates the signals used by the Writeback stage to control the register file. 

 Writeback: Results of instructions are written back to the register file in this stage. 

 

5.2 The Reliability and Security Engine 

The Reliability and Security Engine (RSE) [6] is a framework that provides a standard interface 

between a processor pipeline and hardware modules that implement reliability and security 

services for the executing application. Figure 5.1 provides a block diagram of the RSE connected 
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to the Gaisler Research Leon 3 open-source VHDL processor pipeline. The modules are running 

alongside the host processor, monitoring the behavior of the executing application. Although 

shown with the Leon 3, the RSE framework is general enough to be integrated with any general-

purpose processor. Additionally, the RSE is nonintrusive to the main processor pipeline, as it 

only needs to monitor execution behavior. It does so by inserting probes into the pipeline of the 

host processor that continuously transfers selected state information to the RSE modules. 

 

Reconfigurable hardware slices similar to those in an FPGA may be used to implement the 

modules, allowing for instantiation of the desired modules based on the requirements of the 

current application. Alternatively, a module can be implemented as an ASIC IP core, which is 

imported by a processor designer to suit the demands imposed by the customers and the market. 

In our design, we override the SPARC v8 instruction set architecture’s co-processor operation 

instruction (CPOP1), converting it into a CHK instruction. This CHK instruction is used for 

communication between an instrumented application and the RSE modules. It is ignored by the 

main pipeline of the processor and considered a NOP. The CHK instructions are uniquely 

identified to specify the modules for which they are intended. For example, during application 

initialization, the Information Flow Signatures technique uses CHK instructions to convey the 

signatures of the trusted instructions and critical data that are required to enforce the checks in 

hardware. 
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Fig. 5.1: RSE framework  

The RSE also contains a DMA controller connected to the system bus in parallel with the 

processor. With the RSE, module designers need not worry about making direct changes to a 

processor pipeline. This allows one to focus on the performance of only the components being 

added, rather than their interaction with the rest of the processor. Additionally, the RSE 

minimizes the intrusiveness of developing new techniques, which decreases the chances of RSE 

module designers introducing errors that affect the functionality of the chip in unexpected ways. 

 

Fig. 5.2: New RSE architecture  
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The concept of RSE as an interface to tap in to the pipeline signals remains the same, but the 

architectural interface has been modified to make it easier to extend the RSE interface to 

incorporate new modules for different kinds of monitoring tools without requiring any changes 

in the original source code of the hardware. Figure 5.2 describes the modified architecture for the 

RSE framework. Hence, for a new user who wants to add a module, it is easier to code the 

module without making any changes in the original RSE interface code.  

 

The advantage of having an interface like RSE is that it is very easily extensible.  RSE has been 

implemented such that it is possible to add customized ports by concatenating the bits of required 

control signals from the pipeline to form a customized bundle of signals for a particular port. 

Each individual port can have its own associated logic to control a custom module designed for 

monitoring purposes. This design methodology also eases the use of the interface with a new 

monitoring tool where the user does not have to modify any of the original code and instead just 

needs to define its own port and custom control logic associated with the tool.  As a result, the 

RSE interface does not add any performance overhead in the execution of the main application. 

Communication with the RSE interface depends on the instrumented CHECK instructions. Each 

module has its own check decoders and handlers, which allows the user to conveniently switch 

modules on and off at will. A program not instrumented with CHECK instructions executes as if 

it were oblivious to the existence of such a monitoring interface. The current implementation of 

RSE controls two different modules: IFS for secure computation of the critical data, and CVR 

(critical value recomputation) [67] for reliable computation of data. More details on integrating 

the reliability module (CVR) with the security module to achieve both secure and reliable 

computing are presented in Chapter 8. 
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CHAPTER 6 

 

 

INFORMATION FLOW SIGNATURE MODULE: 

ARCHITECTURE 
 

The Information Flow Signature (IFS) technique is implemented using a combination of 

hardware and software. The hardware implementation requires the addition of a special CHK 

instruction to the instruction set of the processor, but no other direct modifications to the 

pipeline. The critical signature is loaded from an instrumented program at load time by using the 

CHK instruction (recall that the program load path is trusted). CHK instructions are interpreted 

as no-operations by the main processor, and thus are to be used only by the checking module as 

it snoops on signals from the main processor. The processor’s caches are not modified. Instead, a 

content addressable memory (CAM) outside of the processor’s pipeline is used to store the 

critical signature of the application being executed. The check is implemented in hardware, 

which guarantees that the check does not add performance overhead and is performed on every 

executed instruction.  The IFS module itself is implemented as pipelined stages similar to those 

of Leon3 to maintain coherency with the main integer unit pipeline.  This module snoops 

required signals from the Leon 3 processor pipeline through a generic interface (RSE) to control 

its own pipelined stages. These signals include 1) the current instruction and its pointer, 2) 

pipeline stall and flush, and 3) cache control. Signals are used directly from the processor’s 

pipeline without modifications.  Outputs from the checking module trigger an error signal if a 

critical variable (that is included in the application’s critical data signature) is corrupted, which 

in turn raises the integer unit trap signal to stall the propagation of the error to the register files 

and other memory locations. The Check instructions through which the IFS module is configured 
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from the main processor pipeline are implemented as C macros, as shown in Figure 6.1. These C 

macros contain the critical information about the signature needed to configure the instruction 

signature and data signature modules within IFS that enforce runtime checking of the security-

critical variables. These CHK instructions are overwritten coprocessor instructions provided by 

the Leon3-SPARC V8 ISA; after the decode stage of the main pipeline they are transformed to 

NOP instructions and hence do not modify the processor state during the execution. 

 

Fig. 6.1: C Macro for the CHECK instruction and the example CHECK instruction 

 

6.1 Critical Signature  

In this section, we discuss the critical signature for an application source code. The critical 

signature has two components: the instruction signature and the data signature. CHK 

instructions have been implemented to configure the instruction signature and data signature 

during the initial loading of the program. The instruction signature is fully configured at the 

beginning of the program by means of a dump file that marks the critical program counters that 

are virtual addresses. The design has been implemented such that one need not bother about the 

address translation mechanism by the MMU. The data signature, on the other hand, can be 

configured statically using check instructions to protect global and initialized memory locations 

that contain critical global data that are required for the application and can be found in the dump 

files. (Dump files are produced by generating an assembly dump from the source code, from 

which one can find the relative offsets and relative addresses for critical variables. These relative 

addresses are then used to configure the critical data signature in the IFS module.)  Since the 
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application computes and produces critical data during execution and stores them onto the stack 

or heap, the data signature is also configured by the critical instructions annotated during the 

runtime. Consequently, the data signature contains statically initialized global data and 

dynamically computed critical data. This is illustrated in Figure 6.2, where the first entry of the 

data signature is global data configured using a check instruction, while the next four entries 

correspond to the dynamically computed address and data computed during the execution of the 

four corresponding critical instructions. 

 

 

Fig. 6.2: Example code and corresponding instruction and data signature 
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6.2 Instruction Signature  

The instructions that write to critical memory locations are critical to the application, and hence 

the integrity of these instructions must be assured at runtime. Every such instruction has a unique 

identifier (PC) stored in the instruction signature module, which is implemented as a fully 

associative look-up table. Criticality of a fetched instruction is resolved only after comparison 

with the signature stored in the fetch stage of the IFS module.  

 

6.3 Data Signature  

 A Content Addressable Memory (CAM) embedded within the IFS module is used to hold the 

addresses of critical data in the program. The use of the CAM to store the critical data and 

address obviates the need to use system RAM to mark every address’s criticality. This technique 

also eliminates the need to add an extra bit to the main bus width within the main processor [68], 

or tag caches with extra information [41]. Such approaches, which have been used for different 

processor-level security enhancements, require significant effort in modifying and revalidating 

the design of the processor and call for changing architectural characteristics, such as bus widths, 

of current systems. 

 

In order to alleviate any storage limitations that may arise from a fixed-size table, we also 

propose modifications to the TLB that allow for unlimited critical instructions and data. 

However, the currently implemented fixed sized of the instruction and data signature is adequate 

for medium-sized applications. 
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Fig. 6.3: IFS architecture  

 

6.4 IFS Pipeline Stages 

Figure 6.3 illustrates the hardware architecture for the IFS module hooked up to the Leon3 

processor via the RSE interface. 

Fetch: In the fetch stage, the instructions fetched in the main processor IU pipeline are passed on 

to the IFS module either to configure the IFS module or to resolve whether the instruction is 

critical or not.  

Check handler: This stage is the same as the decode stage (of IFS). The instructions fetched 

into the IFS pipeline are decoded to identify the different kinds of check instructions that can be 

handled in the IFS module. There are three different kinds of checks: one for configuring the 

instruction signature and two for configuring the data signature (critical memory address and 

critical memory data). The handler also identifies whether the instruction is a check instruction 

and reorganizes the bits to form a uniform pattern to be fed into the execute stage. 

Execute stage: This stage behaves as the controller for all check instructions, critical 

instructions, and noncritical instructions. It is responsible for generating the control signals 
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corresponding to the check instructions in order to configure the correct signature module. For 

the critical instructions, it also generates signals that are needed in order to synchronize with the 

main processor pipeline when memory is being accessed to load or store critical data into the 

caches or memory. 

Memory Stage: In this stage, the critical data being stored or loaded are also stored and loaded 

from the data signature, to ensure the integrity of the critical data and hence detect a potential 

memory corruption attack. The memory stage (in IFS) overlaps with the memory stage, 

exception stage, and writeback stage of the main pipeline. The reason is that on a cache miss, 

long latency stalls during traps, or annulled instructions, the correct data from memory are 

fetched into the main pipeline during exception or write back stages (bypassing the memory 

stage). So in order to be synchronized with the main pipeline, the memory stage in IFS has to 

work concurrently with the memory, exception, and writeback stages.  Once the instruction in 

the main pipeline has reached the final writeback stage, the final comparison to detect the attack 

is done in the memory stage of the IFS pipeline, because it is only then that the pipeline has the 

correct data loaded from the memory on a load request. 

 

6.5 IFS Runtime Operation  

1. Program initialization: RSE CHK instructions from the main processor pipeline enter the 

IFS module in which the CHK handler in the decode stage generated the control signal to 

initialize the critical instruction and data signatures. 

2. Runtime: The fetch stage of the IFS module checks if the instruction fetched in the main 

processor pipeline is a part of the critical signature. The instruction is read in through the 

RSE interface. 
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3. Critical instructions have their criticality propagated through the IFS pipeline in the 

subsequent clock cycles. Instructions flowing through the IFS pipeline are synchronized 

with the main processor pipeline using the pipeline control signals through the RSE. 

4. In the memory stage, every instruction is checked as to whether it is a load instruction 

using the cache control signals or a part of the critical data signature. 

5. If the instruction is a critical instruction reading critical data, the data are fetched from the 

CAM in the memory stage simultaneous with the retrieval of the actual data from the data 

cache. Hence the integrity of the critical data is resolved in the memory stage without 

allowing the error to be propagated to the next clock cycle.   

 

6.6 Software vs. Hardware (IFS) 

In this section, we will use an example code to discuss the comparative advantage of a hardware-

based implementation of the Information Flow Signature (IFS) module over a software-based 

design. 

 

Fig. 6.4: SSH stub  
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Figure 6.4 shows a stub (which forms the authentication module) of the SSH application. In a 

software version of IFS, the code is re-instrumented, and the encoding and decoding operations 

are as shown like in Figure 6.5. 

 

Fig. 6.5: Instrumented SSH stub: software IFS 

 

6.7 Advantages of Using Custom Hardware over Software Implementation 

 

1. Development of custom logic for runtime checking of application does not suffer from 

the time-of-check-time-of-use (TOCTOU) vulnerability, because the check on the critical 

signature is performed in parallel with the original computation in the main pipeline, 

without insertion of new software instructions. A software implementation cannot solve 

the TOCTOU problem, as new instructions introduce windows of vulnerability that can 

be exploited by malicious attackers, whereas in hardware, the annotated instructions can 

be checked in parallel without time overhead. Of course, extra instructions are required to 

load the critical signature for an application, but after hardware initialization, the window 
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of vulnerability for a critical memory corruption error is practically zero. Hardware 

operates at the level of assembly instructions, so it gives much more granularity to 

enforce integrity than do high-level software checks (which are composed of multiple 

instructions). Also, hardware does not suffer from the limitation of compiler-based static 

analysis (discussed in Chapter 4). 

 

2. Given a sequence of instructions and the critical data that need to be protected, using the 

proposed approach, one can show that the system never enters a compromised state 

(where a compromised state is defined as one in which the critical data can be influenced 

by an untrusted instruction). Attacks are represented as the modification of the 

destination of an instruction in a given instruction sequence to a different object (or 

variable) than the one specified by program semantics. 

 

3. One of the most important assumptions that can be relaxed by enforcing checking in 

hardware is the assumption that instructions cannot be modified during execution. We 

only assume that a critical store instruction cannot be modified to any another instruction. 

Since we have a unique identifier for each instruction that is part of the instruction 

signature, changing one instruction to another critical instruction would not compromise 

the data or instruction signature. For example, if any instruction (other than a critical 

store) changes to a store instruction, because of the unique identifier, it would not be 

treated as a critical instruction, and the integrity of the signature would be preserved. 

Consequently, when any of the following instructions access the data from the same 

critical memory location, the memory corruption error will be detected. In the reverse 

case, when a critical store instruction is modified to some other noncritical instruction 
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(which can be a noncritical store) the signature would not be updated and can be a 

potential hole for a well-crafted attack. If the instruction is not a store instruction, its 

identifier is definitely not one of the critical instruction signature identifiers, so in any 

case such modifications cannot harm the critical signature integrity. 

 

4. The compiler-based software techniques check the validity of the program’s control flow 

using state machines derived by static analysis of the code. The state machines track the 

sequence of calls to the IFS functions and check if the program’s control flow is valid. 

The state is tracked on a per-function basis, since we consider only intra-procedural 

slices. Similarly, the state-machine state is checked just before the function returns to 

ensure that the state machine is in an accepting state, i.e., the state machine has accepted 

the observed sequence of function calls. During the execution of the program, it is 

verified that every function call executed by the program corresponds to a valid state 

transition from the current state of the state machine. Loops in the backward slice of 

critical variables are represented as cycles in the state machine. However, the state 

machines do not include information about the number of iterations executed by a loop. 

That could be exploited by an attacker, who might make the loop execute for more or 

fewer iterations than allowed by the source program. (The attacker’s intent might be to 

bypass security checks performed in loop iterations, or to introduce a semantic violation.) 

Detecting such attacks requires timing/semantic information about the execution counts 

of program loops. Also, it is possible for an attacker to replace a sequence of IFS function 

calls with a legal but invalid sequence in the program (i.e., valid for some other input). In 

order to avoid detection, the attacker must replace the sequence in its entirety with 

another valid sequence, and this is difficult. Shifting the design paradigm to hardware 
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alleviates this problem, since the preprocessing of the source code uses a model-checker-

based instruction-level simulator to analyze the architectural state of the processor and 

embed the checks, which are dynamic in the sense that they monitor memory locations 

during the runtime and do not depend on the static state machines. Crafting attack-based 

loopholes in the state machine would not suffice, as the hardware itself will act as a 

monitor to the set of exhaustive critical memory locations; hence, any invalid jumps 

within the code that arise because of  memory corruption attacks would be detected.  

 

5. A software implementation of the IFS would not protect against attacks launched by the 

operating system (OS) or another process with higher privilege. The reason is that the 

instrumentation is inserted at the granularity of instructions, and consequently it is 

possible for the OS or another process to corrupt the critical data by setting breakpoints 

immediately before and after the update of critical data in the program. The IFS 

technique does not detect these attacks, as it is implemented entirely in software with no 

hardware support. An approach to addressing these attacks would be to store the 

signature in the hardware and prevent even the OS from being able to modify the 

signatures once the application has been loaded. Hence, hardware-based support for IFS 

is much more secure against attacks launched through kernel debuggers or super-users. 

The added advantage of moving IFS to hardware is that the window of vulnerability is 

practically zero, as IFS hardware executes in parallel; hence, setting breakpoints between 

instructions to craft any kind of attack would not work and would be detected during the 

execution of the application. 
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CHAPTER 7 

 

 

QUALITATIVE ANALYSIS:  INSIDER ATTACK 
 

Insider attacks are attacks in which a privileged entity (“insider”) abuses its privilege to attack 

the system. Insider attacks can be mounted at the hardware, virtual machine, operating system, 

and network levels. Various techniques have been applied at different abstraction levels to foil 

insider attacks. For example, there are hardware techniques that protect against exploit through 

backdoors in hardware during the design [69] and synthesis stages [70]. Network-based security 

techniques that assume that the attacker controls the nodes in a network have been deployed 

using enhanced intrusion detection systems to look for anomalous patterns in network traffic [71] 

or using attack graph analysis [72].  Operating-system-based techniques that are commercially 

used include the Rootkit-based detection system, which relies on memory access patterns and 

inspecting data structures [73, 74]. Such techniques ensure that the insider cannot infiltrate the 

system at the level in which the technique is deployed. However, none of these techniques 

address the problem of application-level insiders. The reason is that an application-level insider 

does not need to change the hardware, operating system, virtual machine, or network [75], and 

hence does not trigger the detection mechanisms deployed at these levels.  

 

Further, extension of techniques deployed at lower levels to the application level is not 

straightforward. The reason is that applications are diverse, and hence the technique must be 

generic enough to support a majority of applications. In addition, the technique must be 

automated in order to be widely deployed, because, unlike operating systems or virtual machines, 
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applications come in a wide variety, and it is not possible to modify each application individually 

to incorporate the technique.  

 

The rest of this section discusses security techniques deployed at the application level that 

protect the application from malicious attackers. We classify techniques for protecting 

applications from security attacks into three broad categories: (1) techniques to protect against 

external attackers (e.g., memory safety checking, taintedness detection, address-

space/instruction-set randomization, and system-call-based checking); (2) techniques to protect 

against internal attackers, including application-level insiders (e.g., privilege separation, remote 

audit, code attestation, and oblivious hashing); and (3) techniques to protect critical data in 

applications such as Samurai and redundant data diversity. 

 

External security techniques such as memory safety checking [76] are designed to protect 

applications from memory-corruption attacks (e.g., buffer-overflow or format string). This class 

of techniques is not effective for thwarting insider attacks, as insiders do not need to exploit 

memory-corruption vulnerabilities in order to assume control of the application. Taintedness 

detection techniques [77, 78] and [79] prevent application input from influencing high-integrity 

data in applications such as pointers. However, insiders can directly influence security-critical 

data without going through the inputs, as they are already within the application. Further, it is 

almost impossible to prevent an internal module of the application from writing to generic 

program objects such as pointers without incurring a very high false positive rate [80].  
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Security techniques such as randomization [81, 82] attempt to obscure a program layout or 

instruction set from attackers. However, randomization can be bypassed by insiders who are 

themselves subject to the same randomization as the application. For example, a malicious 

module in an application can examine the address of its local variables and calculate the absolute 

address of a stack variable in a different module, even when both modules are randomized. 

Unlike an external attacker who requires multiple attempts to bypass the randomization [83, 84], 

an insider needs only a single attempt to bypass it. 

 

System-call, based checking is a technique that monitors the sequence of system calls made by 

an application and checks if the sequence corresponds to an allowable sequence as determined by 

static analysis [85]. The main assumption made by system-call checking is that the attacker 

seizes control of the application by executing unwanted or malicious system calls such as exec, 

or by changing the argument of system calls, e.g., seteuid. The reason is that system calls provide 

a conduit for attacking other applications on the same system as well as the operating system 

(OS) itself. However, an application-level insider goal is to subvert the execution of the attacked 

application, and not to attack other applications or the OS. Hence, system-call-based detection 

techniques may not protect against insiders who overwrite only the attacked application data 

and/or control.  

 

Techniques such as oblivious hashing [86, 87] and code attestation [88] detect malicious 

modifications of the application executable code after it has been generated (by the linker). 

However, these techniques do not protect from insider attacks in which the application developer 

links the application with an untrusted third-party library prior to its distribution. A technique 
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that offers limited protection from insider attacks is remote audit [89], which ensures that 

computationally intensive portions of the application code are not skipped at runtime. However, 

remote audit does not protect against malicious modifications of the application data by an 

application-level insider. 

  

The only known technique that can effectively thwart application-level insider attacks is 

privilege separation [90]. In this technique, the application is divided into separate processes, and 

each module executes in its own process. A module can share data with another module only 

through the OS’s inter-process communication (IPC) mechanisms. This prevents an untrusted 

module from overwriting data in the application address space, unless the application explicitly 

shares the data with the untrusted module (through an IPC call). However, privilege separation 

incurs performance overheads of up to 50% when deployed in real applications [91] (measured 

as a fraction of the entire application execution time). Further, a trusted module may load an 

untrusted library function in its address space, thereby annulling the technique’s security 

guarantees. 

 

Finally, Samurai [92] and redundant data diversity [93] protect critical data in applications from 

accidental and malicious corruptions, respectively. However, they both require the programmer 

to manually identify read/write operations on the critical data, which can be cumbersome. 

Further, redundant data diversity requires replication of the entire process and execution of it in 

lock-step, even though the critical data may constitute only a small portion of the application 

data. This leads to unnecessary overheads and wasted resources. 
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Thus, there exists no technique that can detect insider attacks on program data without requiring 

considerable intervention on the part of the programmer or incurring unacceptably high 

performance overheads. In this thesis, we try to demonstrate the efficacy of the IFS concept in 

handling insider attacks while incurring a very low performance overhead. 

 

Example Attack: This section illustrates the IFS technique using a code fragment drawn from 

the OpenSSH application. The section also considers example attacks on the application’s code 

and discusses how IFS detects the attacks. In order to determine the critical data, we assume that 

the goal of the attacker is to subvert the authentication mechanism by making the function return 

1 in spite of the user’s password being invalid. Therefore, we designate the value returned by the 

function as the critical variable (i.e., the authenticated variable, defined in line 6). 

 

 

Fig. 7.1 Example code fragment from the SSH program and functions called from the code 

fragment 

 

7.1 Attacks 

To illustrate the IFS technique, we consider different attack scenarios on the untrusted 

log_user_action function as follows.  
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7.1.1 Generic Attacks  

An attacker has full control over the log_user_action source code and provides a malicious 

library to be used with the authentication module of the SSH application. The attacker can either 

exploit the format string vulnerability in the log_user_action function by crafting an appropriate 

input to the program, or manipulate the source code. For the purpose of illustrating these attacks, 

it is assumed that OS can overwrite any variable(s) and jump anywhere in the program. The 

attacker is oblivious to the implementation of the IFS technique while creating these attacks. 

Since the malicious function is an external library function, the IFS technique does not require 

any knowledge of the function, since the function is not supposed to manipulate or compute 

critical variables.   We consider different kinds of generic attacks as discussed below. 

Attacker executes system call to overwrite critical data: Assume that the attacker launches a 

system call by overwriting the return address on the stack with the address of a system call 

instruction. The attacker also sets up the frame-pointer on the stack such that the system call is 

executed with the parameters specified by the attacker. The IFS technique by itself does not 

prevent the attacker from launching the system call, nor does it prevent the attacker from 

overwriting the return address (as it does not belong to the backward slice of the critical 

variable). However, once the system call has been executed, any attempt by the attacker to 

overwrite the critical data from within the system call will be detected. The reason is that the 

store instruction that modifies the critical instruction within the system call was never a part of 

the application signature of the critical store instructions. Hence, when the store instruction 

executes, it changes the critical memory location, but the integrity of the signature is still intact. 

So when the application tries to read the critical data, there will be a mismatch, as critical data 
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stored in the IFS module were never changed by to the system call, and the attack will be 

detected. 

 

Attacker overwrites function-pointers/return address to impact the program’s critical 

data: Here we assume that the attacker overwrites the return address on the stack from within the 

log_user_action function. The goal of the attacker is to make the function return directly to line 

7, in effect bypassing the initialization of the authenticated variable in line 6 (see Figure 7.1). Let 

us further assume that the authenticated variable is assigned a non-zero value prior to line 6. This 

allows the attacker to falsely authenticate herself/himself to the system. The IFS technique 

detects the attack as follows.  The return address that can be modified to change the control flow 

and authenticate the user is a part of the critical signature. The reason is that SymPLFIED does 

an exhaustive error injection in all the possible valid memory locations and hence identifies the 

return address as one of the critical memory locations that can be modified to achieve the 

attacker’s objective. Because the malicious store instruction (within log_user_action) that 

changes the return address is not a part of the critical signature, if executed, it will result in a 

mismatch in the critical data stores in the IFS module and on the stack, and the attack will be 

detected. 

 

The log_user_action function modifies the contents of encrypted_password: Since the 

attacker has control over the malicious function, there is a malicious store instruction such that 

the value of the pointer variable encrypted_password is assigned to the address of pw_password 

(or vice versa). This would cause the strcmp function in line 8 to return the value 0, and hence 

the authenticated variable will assume the value of 1, which is the attacker’s goal. Since the IFS 
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technique does not require the source code of third-party libraries and the function is not 

supposed to manipulate the critical data, any change made to critical data will be detected, 

because the malicious store instruction would not compromise the integrity of the application’s 

signature. 

 

7.1.2 Targeted Attacks 

An attacker may be aware of the implementation of the IFS technique and hence craft intelligent 

attacks in order to avoid detection. 

Attacker corrupts a data value produced that is stored in the memory: If the corrupted data 

value in any way changes the control flow of the program or directly influences the result of the 

computed critical data, hence leading to a successful attack, the corresponding store instruction 

that stores this data value to memory will be a part of the critical signature for the application. 

Since SymPLFIED does an exhaustive error injection to all possible memory locations, it will 

also identify and annotate the corresponding store instruction during the pre-processing of the 

application, to be included in the signature for the application. If the data value is changed due to 

a memory corruption attack (which would be possible only after the data value has been stored in 

the memory), runtime signature checking will detect the attack, since the signature of the 

application is still correct. 

 

If the data value is corrupted due to register error before it is stored into the memory, the attack 

will not be detected, as the signature will also store the corresponding corrupted value during the 

execution of the store instruction. Register errors are more of a reliability concern and can be 

detected using other modules, such as CVR attached to the RSE interface. The IFS technique can 
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detect all the memory corruption attacks that do not compromise the integrity of the signature.  

Attacks that do not manifest themselves as memory errors, for example register errors, would not 

be detected by the IFS technique as such. From an attacker’s perspective, crafting such an attack 

by manipulating register errors is very complex, because the attacker has to identify the registers 

being used and also has to create a breakpoint at a precise point during the execution of the 

program. Such an attack using high-level language is very difficult, while memory corruption 

attacks are comparatively easier to create at this level of coding. 

 

 

The attacker modifies an instruction in the instruction cache or local instruction memory   

Case 1: Attacker modifies a noncritical instruction to another noncritical instruction: Such 

an attack will not achieve the attacker’s goal because in order to craft a successful attack, the 

attacker has to change application code; if that change indeed results in success, that has to be a 

part of the critical signature. 

 

Case 2: Attacker modifies a critical store instruction:  

a) Critical store instruction changes to a modified critical store instruction with a 

changed data value: The correctness of the signature would not be preserved, as it 

would contain the wrong value. Hence, this kind of attack would go undetected.  

b) Critical store instruction is modified to represent another store with a different 

memory location: The signature would be incorrect in this case, but would be detected if  

the actual critical memory location were indeed protected by more than just one critical 

store instruction (as would happen in most modern security applications, as frequent 

computational changes and updates are made to critical memory locations during the 
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execution of the application). Thus the attacker would be provided with only a small 

window of vulnerability, that is, until the second critical store instruction that uses the 

actual memory location that was to be protected. Protecting a memory location that is not 

critical would just increase the security layer for the application without any performance 

or hardware overhead.  

c) Critical store instruction is modified to another noncritical instruction: This case is 

the same as the one discussed in the previous point, except that there is no noncritical 

memory location being protected. 

 

Case 3: Attacker modifies a noncritical instruction to a critical store instruction: Such an 

attack would not be detected, but modifying a noncritical instruction would not subvert the 

system. The IFS would just be protecting noncritical code with all other critical signatures 

without any performance overhead. This kind of an attack is very complex, since it cannot be 

crafted just by flipping some bits. It would be necessary to change the control flow of the 

program and corrupt the architectural state of the processor, which would usually lead to an 

application crash unless it was done at a precise breakpoint with accurate values. The IFS 

module does not prevent such an attack, but the success of this attack requires other memory 

locations to be corrupted, which can be detected by IFS since SymPLFIED’s exhaustive analysis 

protects those memory locations.  

 

Case 4: Attacker modifies instructions that configure the IFS modules: All these attacks 

would definitely compromise the integrity of the signature, but the implications would be as 

follows.   
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1. Attacker modifies a check instruction to any other instruction: The IFS module 

would not detect such an attack, but this case is similar to the case in which the attacker 

modifies a critical store instruction to a noncritical instruction and hence would result in 

similar implications; that is, it would result in a small window of vulnerability that 

extends until the critical store that updates the same critical memory location. To corrupt 

this particular memory location, the attacker must change all the critical stores that 

modify this memory location, which cannot be done using any static analysis of the code 

or during the compile time. The attacker requires access to hardware debuggers to 

monitor particular memory locations. The other option for the attackers would be to 

modify all the check instructions that configure the IFS hardware, which again is not 

possible using just a static analysis of the code. 

2. Attacker modifies a check instruction such that it is protecting the wrong 

instruction: If the wrong instruction with which the IFS is configured is not a critical 

store instruction, the IFS hardware has been designed and implemented such that it can 

identify such a modification and would behave as if the application had not been 

instrumented with that particular check instruction. Thus, the IFS would be protecting the 

corresponding noncritical memory location. From the attacker’s perspective, this case is 

similar to a modified critical store instruction for which there is a small window of 

vulnerability until the critical memory location is protected by another store or check 

instruction. 
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CHAPTER 8 

 

 

RELIABILITY AND SECURITY: UNIFIED FRAMEWORK 

 
 

In this chapter, we discuss the reliability module called CVR (critical value recomputation).  We 

will then talk about the design and implementation of a unified framework that brings the IFS 

module for security and CVR for reliability on a single on-chip system. A prototype has already 

been developed on an FPGA fabric. This section shows how the Reliability and Security Engine 

is used to interface two different modules with different monitoring purposes, integrating them to 

work on a single platform and hence allowing secure and reliable computation at the same time. 

The hardware overhead corresponding to these modules and the performance overhead are 

discussed in Chapter 9. 

 

8.1 Critical Value Recomputation  

This design method presents a flaw detection technique aimed at offering high levels of coverage 

with a minimal impact on overhead. This module implements the hardware components of the 

statically derived error detectors. It consists of a path-tracking sub-module and a microcontroller-

based checking sub-module. The path-tracking sub-module keeps track of the program control-

flow path, and the checking sub-module executes the checking expressions corresponding to the 

path determined by the path-tracking sub-module. The microcontroller is used as an extension of 

the RSE [6], which is coupled with the Leon3 processor. This design is proposed to provide the 

following solutions:  



69 

 

1. Application-aware reliability and security solutions that mask or detect malicious 

activities and accidental errors with minimal cost.  

2. Processor-level solutions that achieve low-cost, high-performance, scalable security and 

reliability checking in the same framework.  

 

Like the IFS module, the application source code is statically analyzed to extract the backward 

slice for the critical data and then instrumented with the check instructions to maintain the 

integrity of the information. 

The whole procedure for Critical Value Recomputation can be summarized as follows:  

1. Critical variables for an application are determined according to the fanout metric by 

using static analysis. Variables with a higher fanout are deemed more critical than 

variables with a lower fanout. The most critical variables are then selected for protection.  

2. Once a critical variable has been determined, the backward slice of the critical variable is 

derived. The backward slice consists of instructions that are legally (according to C 

language semantics) allowed to contribute to the value of critical variables.  

3. Given the backward slice of each critical variable, optimal placement of a detector as 

well as operations necessary for recomputation are established. Operations required for 

recomputation are determined by optimizing each path, which contributes to the 

computation of a critical variable. (Figure 8.1 describes derivation of detectors from code 

semantics.) Each path is examined, because the computation of variables depends on the 

path being executed. This step produces a textual representation of path transitions 

contained in the backward slice as well as an expression list that describes the operations 
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necessary to recompute a critical variable. Figure 8.2 shows how an injected error on a 

particular control flow path is detected by the CVR module.  

 

Fig. 8.1: Derivation of detectors (hardware recomputation: microcontroller) 

 

Fig. 8.2: Detection of injected error using CVR module 

 

8.2 Overall Unified Framework 

This section describes the design and approach to building dependable (reliable and secure) 

prototype systems using the notion of application-aware dependability.  Application properties 

are automatically extracted using compiler-based static and SymPLFIED-based symbolic error 

injection analysis techniques, and are converted to error and attack detectors. The detectors are 

implemented using programmable hardware as a part of the Reliability and Security Engine 
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(RSE), which is a hardware framework for executing application-aware checks. The RSE 

functionality is as follows: 

1. It derives application-aware error and attack detectors through compiler analysis and a 

symbolic error injection simulator like SymPLFIED. 

2. It implements the derived detectors in a common, programmable hardware framework. 

 

Fig 8.3: Conceptual unified framework for security and reliability 

 

Figure 8.3 shows the components of the framework. The left side of the figure shows the process 

for derivation of error detectors, while the right side shows the process for derivation of security 

attack detectors. 

The major steps in the framework are as follows: 

1. Identification of critical variables: From a reliability perspective, these are variables that 

are highly sensitive to errors in the application. From a security perspective, these are 
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variables that are desirable targets for an attacker who wishes to take over the application.  

For reliability, it is possible to automate the selection of sensitive or critical variables 

through error propagation analysis. This can be done based on analysis of the dynamic 

dependencies in the application. For security, we require the programmer to identify 

security-critical variables in the application through annotations based on knowledge of 

the application semantics.  An example of a security-critical variable is a Boolean 

variable that indicates whether the user has been authenticated, as overwriting the 

variable can lead to authentication of a user with an incorrect password.  

 

2. Extraction of backward program slice: Once the critical variables and the program points 

at which checks must be placed have been identified, the next step is to derive the 

properties of these variables from the application code. These properties can be computed 

based on the backward program slice of the critical variable from the check placement 

point.  The backward program slice of a variable at a program point is defined as the set 

of all program statements that can potentially affect the value of the variable at that 

program point. The slice is computed through static analysis for all legitimate program 

inputs. For error detection, we are interested in re-executing the statements in the slice of 

the critical variable to ensure that the value of the critical variable computed at the check 

placement point is correct; hence, the slice of the critical variable computed for error 

detection needs to preserve the execution order of program statements. For attack 

detection, we are only interested in checking whether the statements/instructions that can 

modify the critical variable in any possible way (e.g., including the conditional 
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dependencies within a backward slice) in fact write to the critical variable (directly or 

indirectly) at runtime.  

 

3. Encoding of slice: The third step is to encode the slice computed for the critical variable 

in the form of a runtime check. For error detection, the check takes the form of an 

executable expression that re-computes the critical variable, whereas for attack detection, 

the check takes the form of a signature that contains the addresses of the instructions that 

can write to the critical variable (directly or indirectly). The compiler inserts calls to the 

checks (expressions or signatures) into the executable file and configures the hardware 

monitors with the checks at application load time.  

 

4. Runtime checking: The final step is performed at runtime. The application is monitored 

(using hardware or software), and the checks inserted by the compiler are executed at the 

appropriate points in the execution. In the case of error detection, the checks compare the 

value of the critical variable computed by the original program with the value of the 

expression derived using static analysis. A value mismatch indicates an error. In the case 

of attack detection, the checks compare the signature derived using static analysis with 

the signature computed at runtime based on the instructions that write to the critical 

variable (directly or indirectly). A signature mismatch indicates an attack. In both cases, 

the execution of the program is stopped, and a suitable recovery action is taken.  
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8.3 Hardware Prototype 

 

Fig. 8.4: Final prototype of the unified framework for security and reliability 

 

Figure 8.4 shows the final hardware prototype that has been developed and demonstrated to 

execute security and reliability checks. The platform used for prototyping the unified framework 

for reliability and security is a Stratix II Altera board. Chapter 9 gives more details on the 

hardware overhead. 
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CHAPTER 9 

 

 

RESULTS AND CONCLUSIONS 
 

9.1 Experimental Evaluation 

The RSE and IFS (along with CVR) have been implemented alongside the Leon 3 processor, 

which includes a 7-stage in-order pipeline, split 16 kB L1 instruction and data caches, a branch 

prediction unit, and a DDR2 memory controller. Synthesis, mapping, translation, and place & 

route were done with Quartus 7.1. The prototype system is implemented on an Altera board 

utilizing the Stratix II FPGA chip with a nominal clock speed of 80 MHz. 

 

 

Fig. 9.1: Tool chain flow for IFS  
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The software tool chain (Fig. 9.1) is based upon the Maude-based model checker, which is used 

for symbolic-fault-injection-based analysis of an application’s source code. The source code is 

translated to SPARC assembly using the sparc-elf-gcc cross-compiler, which is then translated to 

the corresponding Maude equations using a Perl-based SPARC-to-Maude translator. A custom 

library has also been implemented and provided for use with Maude-based applications to 

successfully run and analyze the whole application. After the exhaustive symbolic fault injection 

experiment, the result is automatically parsed to get the signature for the application. Through 

the use of the signature, the original source code of the application is instrumented with the 

necessary check instruction that will configure the IFS hardware and enforce runtime checking. 

The IFS module (along with the reliability module, CVR) is implemented as a part of the RSE 

(Reliability and Security Engine) and is interfaced with the main integer unit pipeline of the 

Leon3 processor. The code base is VHDL, which is synthesized, placed, and routed onto a 

Stratix II FPGA fabric. The ELF (executable and linkable) format can be run as a standalone 

code on this FPGA board to make performance measurements.  

 

9.2 Benchmarks 

We demonstrated the IFS technique on server applications. We chose server applications because 

(1) they are typically executed with superuser privileges, which makes them extremely attractive 

targets for attackers; (2) they are often organized as separate software modules, each of which 

performs a specific function in the program (for example, the authentication module is 

responsible for ensuring that only legitimate users are able to gain access to the system); and (3) 

they consist of different modules executing in a single address space, which allows a malicious 
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module to infiltrate security-critical modules in the application. The server applications 

considered are as follows:  

1. OpenSSH: Implementation of the Secure Shell (SSH) protocol. Consists of over 50000 lines 

of C code.  

2. WuFTP: Implementation of the File Transfer Protocol (FTP), consisting of over 25000 lines 

of C code.  

3. NullHTTP: A small and efficient multithreaded HTTP server consisting of about 2500 lines 

of C code.  

 

9.3 Critical Variables  

In each of the target applications, we chose critical variables based on possible insider attacks 

that may be launched against the application. The insider attacks considered are as follows:  

OpenSSH: The insider allows a colluding user to be authenticated in spite of providing the 

wrong password. WuFTP: The insider allows spoofing of a user identity in order to access the 

user files/directories and perform malicious activities so that the user is blamed for the activities.  

NullHTTP: The insider modifies the client request or the response in order to send malicious or 

unintended content to the user. Table 9.1 [94] shows the critical variables in each application that 

are chosen (manually) to correspond to the above attacks.  

Table 9.1: Benchmark applications with corresponding critical variables  
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9.4 Experimental Results 

Performance Overhead: In order to measure the performance overhead of the IFS technique, 

we executed the original, noninstrumented program, the instrumented version of the program for 

software implementation of IFS, and the instrumented version of the program that is supported 

by the hardware module of the RSE interface. The measurements were conducted on two 

different platforms on a 2.0 GHz Pentium 4 single-core X86 system with 2 GB of RAM and on a 

Leon3 processor (SPARC v8 ISA) with a nominal clock speed of 80 MHz. 

 

 

Fig. 9.2: Performance overhead results for benchmarks 

 

From the results in Figure 9.2, it can be concluded that the performance overhead for the 

software implementation of IFS is highly dependent on the nature of the application and the 

choice of critical data. The reason is that the software IFS implementation is dependent on the 

number of IFS function calls, critical variables, and backward slices computed. For the SSH 
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application, this overhead was as high as 106%, but FTP introduced only 8.5% overhead. For the 

Null-HTTP server application, the software overhead was 89% for a single thread, but decreased 

gradually to 30% when the number of threads was increased to 4. The reason was not the 

increased parallelism but the increasing number of threads on the single core, causing false 

sharing of data structures that lead to cache line invalidations. That increased the time it took the 

application to execute, which made the software version of IFS look more efficient even when 

the overhead was as high as 85% on average. On average, the performance overhead for the 

software implementation varied from 88% to 100% for the benchmark application.  From the 

graphs, one can observe that the hardware-based IFS for all the applications has a performance 

overhead of as low as 3% to 4%, even when the whole stub was guarded by IFS, which resulted 

in a more conservative measurement than we would get from protecting only a few critical 

variables in a function. The overhead is as low as 0.08% for WuFTP, 1.8% for SSH, and 3.7% 

for the http server application. Similar observations can be made when the three different 

versions of the application are run on a platform such as Leon3 processor-based hardware. For 

the software implementation, the overhead varied from 81% for SSH, to 9.4% for WuFTP, to 67-

84% for the nullHTTP. The hardware-based IFS performance overheads were very low for these 

applications: 2% for SSH, 0.06% for WuFTP, and 5% for nullHTTP server application. The 

performance overhead for the hardware-based IFS is due to the check instructions that configure 

the IFS hardware during the initial loading of the program; enforcing runtime checks does not 

hinder the performance, as the checking is done in parallel to the instruction execution without 

any stalling of the pipeline. 
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Hardware Overhead: In this section, we present the hardware resource usage for the 

implementation of the RSE with reliability (CVR) and security (IFS) modules, and we compare 

it to that of other processor units such as cache and MMU. 

 

Fig. 9.3: Hardware logic overhead results of RSE modules 

 

Figure 9.3 depicts the resource usage of the RSE interface along with the CVR and IFS modules 

relative to the Leon3 processor and resources available on the FPGA board. The RSE along with 

the IFS module takes up about 39.8% of the resources used by the Leon3 processor, which 

represents about about 7% of the resources available on the board. RSE with both IFS and CVR 

modules incurs 66.67% of the resource overhead incurred by to the Leon3 processor, which is 

equivalent to 12% of the FPGA board.  
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Fig. 9.4: Hardware (including Leon3) and memory logic overhead results of RSE modules 

 

Figure 9.4 shows that the full-blown processor along with the RSE interface and the IFS and 

CVR modules consumes at most 30% of the board’s logic units. The processor and the IFS 

module consume one out of four logic units available.  If we look at the memory units usage, the 

IFS module itself uses almost 0 memory blocks, and the 2% shown in the graphs is due to the 

other memory components of the processor. The CVR module has its own memory and uses up 

to 5% of the board resources. Other units, like cache and MMU (memory management unit), take 

up much larger chunks of memory on the boards than the IFS and CVR modules do, indicating 

the potential benefit of mapping more components to memory blocks and thereby further 

reducing logic resource use. Also, the availability of large memory blocks can be leveraged to 

protect a larger portion of the application source code and increase the size of the signature. To 

minimize delay in runtime checks, the current implementation of the IFS uses a configurable 

stack frame of registers to store the signature; which could easily be extended to map to local on-
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chip memory components of the boards, having more space to store signatures of multiple 

applications running on top of the operating system. 

 

9.5 Discussion and Future Work 

 

IFS on superscalar processors: Interestingly, the complexity introduced by superscalar 

processor architecture is helpful to the Information Flow Signatures technique. For example, 

because of the reorder buffer and store buffers present on these processors, the technique can 

actually trigger an alarm before an instruction or memory operation is committed. Incorporation 

of control signals from these structures into the RSE is straightforward, and has been 

demonstrated previously on a DLX superscalar processor [95]. 

 

Multicore architectures: Designing the RSE for many-core architectures presents several 

challenges. In order for the Information Flow Signatures technique to work fully, instructions 

executed on each core must be checked against a global view of the signatures. Is this best 

implemented through a single Information Flow Signatures module that has instruction and data 

signature modules containing all running applications from each core? If multiple modules 

protecting each core separately are used, what is the best method for maintaining coherence 

among them? These questions raise topics similar to some found in Intel processor errata. For 

example, erratum AH39 for the Core 2 Duo Centrino architecture states, “Cache Data Access 

Request from One Core Hitting a Modified Line in the L1 Data Cache of the Other Core May 

Cause Unpredictable System Behavior.” Such bugs beg a more general question: If a component 
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of a processor is faulty, to what extent can we rely on processor to provide information needed 

for security protection? 

 

Operating Systems: For multiple applications to take advantage of the security provided by the 

IFS technique, modifications to the kernel code base are needed, because the same virtual 

address can refer to different instructions across different applications running at the same time. 

The operating system on a context switch should also switch the signature of the application to 

the extended task structure and reconfigure the IFS with the stored signature when the scheduler 

schedules the application again. This would allow multiple tasks with different signatures to 

execute at the same time. For embedded applications without MMU support, one needs to export 

the object code assembly generated by an ELF binary dump to create a flat binary, because 

SymPLFIED analysis is done on standalone application source code and not on the whole 

operating system. Running millions of lines of code on model checkers incurs the state explosion 

problem, although there are ways to minimize the time consumed for this analysis. Such systems 

run on OSes that do not have virtual memory implemented and hence would require a small 

modification to the IFS hardware. The current version of IFS works in the absolute addressing 

mode, which is sufficient for most of the modern processors with MMU support and OSes that 

have virtual memory management implemented. Modifying the hardware to work with relative 

addressing mode can easily be done just as the address translation mechanism. The complexity 

introduced by the address translation mechanism can be further reduced with a little software 

support that would introduce slight modification in the SymPLFIED analysis but result in the 

same hardware overhead and almost nil performance overhead. The operating system running on 
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this embedded system would still require the added ability to reconfigure the IFS with signatures 

on a context switch. 

 

9.6 Conclusions 

Because of the current trend towards increasing processor design complexity, more bugs are 

being introduced in new architecture. The security implications of processor errata are 

significant, and we suggest that the current paradigm of protecting a system using a virtual fence 

will not suffice in the near future, as unknown vulnerabilities will be present in the processor or 

computer system. 

 

In this thesis, we presented the hardware architecture used to enforce the Information Flow 

Signatures security technique. This combined hardware-software technique allows for 

trustworthy execution of instructions that influence security-critical data, even in the face of 

vulnerabilities that exist within a system. The technique detects any deviation from the behavior 

of the application described by the source code. By using the Reliability and Security Engine as 

an abstraction of signals in the pipeline, we are able to implement the Information Flow 

Signatures checking module without modification to the processor pipeline. The module itself 

proves to have a small footprint of less than 7% of all the resources present, and has no effect on 

the performance of the processor. Future extensions to the hardware can lower the performance 

overhead introduced by the software portion of the technique.  
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