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Abstract

This dissertation studies the interplay of asset and liability sides of balance sheets, and considers

both the level and the risk attributions of investments and financing sources.

The first chapter links financing frictions on the liability side to investment risk on the asset side.

It studies the effect of financial constraints on equity holders’ risk-shifting incentives within a real

options framework. Within this framework, shareholders trade off the benefit of risk-shifting with

the cost of financial constraints. Therefore risk-shifting is avoided ex post for highly constrained

firms because the cost outweighs the benefit. In fact, both the risk-shifting incentive and the agency

cost of risk-shifting are monotonically decreasing in financial constraints costs. In addition, the

effect of debt maturity is also examined in this framework, and without financial constraints, there

is no short-term debt effect. These model implications are supported in a large sample of firms

over the 1965 to 2009 period: (1) financial constraints help to reduce risk-shifting incentives; (2)

complementing the current view, financially unconstrained firms tend to shift risk even when they are

still healthy; (3) short-term debt helps to strengthen the effect of financial constraints on reducing

risk-shifting incentives; (4) the agency cost of risk-shifting is smaller for more constrained firms. The

results are robust to the availability of internal financings.

The second chapter studies the opposite direction: the effect goes from the asset side to the

liability side. It studies corporate investment and financing in a dynamic trade-off model with a

sequence of irreversible investments. Conditional on future investment and financing opportunities,

juvenile firms underutilize debt when financing investment the first time to retain financial flexibility.

Underutilization of debt persists when adolescent firms mature (i.e. exercise their last investment

options), and it is more (less) severe for more back-loaded (front-loaded) investment opportunities.

Thus, leverage dynamics crucially hinge upon the structure of the investment process and otherwise

identical firms appear to have significantly different target leverage ratios. Structural estimation

of key parameters reveals that simulated model moments can match data moments. Furthermore,

capital structure regressions using model simulated data based on these parameter estimates produce

results in line with the empirical evidence, and explain the empirical puzzle that average leverage

ratios are path dependent and persistent for very long periods of time.

The third chapter narrows down to the liability side and studies the puzzle of whether idiosyn-

cratic risk predicts the cross-section of stock returns and the direction of the prediction. This chapter

examines this relationship by extracting implied idiosyncratic variances from option prices and de-

composing past realized idiosyncratic variances into expected and unexpected components. The

Fama-MacBeth (1973) regressions using different samples show mixed results. The significant posi-

tive (negative) relationship between cross-sectional stock returns and implied idiosyncratic variance

(past realized idiosyncratic variance) is mainly driven by the sample with low (high) idiosyncratic

variances. It is plausible that the mixed results in the literature are caused by the conflicting effects
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of implied idiosyncratic variance for low idiosyncratic variance stocks and persistent idiosyncratic

variance shock for high idiosyncratic variance stocks.
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Chapter 1

Financial Constraints, Risk-shifting
and Debt Maturity

1.1 Introduction

The interplay of firms’ financing and investment decisions has been a major interest in modern corpo-

rate finance. Researchers have done considerable studies to gauge the effect of investment decisions

on optimal capital structure and generated interesting predictions. One direction of such research

focuses on the risk aspect of investments, i.e. the effect of equity holders’ risk-shifting preferences

(asset substitution) on optimal capital structure decisions. However, the opposite direction, namely

the effect of financing activities on investment risk decisions has not been fully explored. This pa-

per provides a link in this direction and quantifies the effect of financial constraints on reducing

risk-shifting incentives as well as its interaction with debt maturity effect. This link produces new

perspectives to look at risk-shifting problem.

Risk choice of corporate investments is a key element in the risk-shifting (asset substitution)

literature. Galai and Masulis (1976) and Jensen and Meckling (1976) pose the risk-shifting problem.

They suggest that the payoff structure of different claim holders induces equity holders of a levered

firm to extract value from current debt holders; they do so by making risky investments in order

to catch the upside benefits and leave the downside risk to debt holders when the firm is near

bankruptcy. This behavior of equity holders is detrimental to firm value and creates an agency cost.

Therefore it is essential to evaluate the magnitude of this agency cost and find ways to reduce/remove

it.

Some studies have sought to identify factors that help to mitigate this problem, e.g. bond

covenants in Smith and Warner (1979), convertible debt in Hennessy and Tserlukevich (2004), debt

maturity in Barnea, Haugen, and Senbet (1980) and Barclay and Smith (1995a), and managerial

compensation in Subramanian (2003). Surprisingly, none of the studies has explored the risk-shifting

problem in the perspective of financing frictions. This paper makes the first attempt to link financial

constraints, one type of financing frictions, to the risk-shifting literature. It formally derives and

empirically tests the effect of financial constraints on corporate risk-shifting behaviors. It also

examines the interaction of this effect with debt maturity effect. The theoretical part formulates

this problem within a real options framework, which allows for a simple model setup to incorporate

financial constraints, debt maturity and risk-shifting incentives. Furthermore, it generates closed-

form solutions for debt, equity and firm values. Based on these values, the optimal risk-shifting and

default thresholds can be solved simultaneously with simple conditions.

Within this framework, the degree of financial constraints is represented by an exogenous cost

of external financing M following Hennessy and Whited (2007). This representation encompasses

not only the “cost constraint”, i.e. constrained firms have to pay a dead-weight cost beyond the fair

cost of external financing, but also covers the “quantity constraint” where M is extremely high, i.e.
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firms cannot raise external funds beyond a certain point no matter how much they are willing to

pay for it. The firm is unconstrained if M is extremely low. Almeida and Campello (2005) provide

discussions of the “cost constraint” v.s. the “quantity constraint” in more detail. The inclusion

of M complements the existing literature and generates new predictions for the role that financial

constraints play in the interplay of financing and investments.

Risk-shifting, the other key component of this study, is defined as an irreversible risk-increasing

investment opportunity in the model. It is called risk-shifting option throughout the paper. In the

model the firm operates at a low risk level initially and the equity holders determine the initial

coupon of a perpetual debt by optimizing the initial firm value. It is assumed that the ex post

risk-shifting behaviors cannot be credibly excluded through contracting with debt holders ex ante.

So once debt is in place, equity holders can choose to exercise the risk-shifting option and raise the

firm’s risk level permanently by investing in a risky project fully funded with equity.

The above two key components, financial constraints and risk-shifting option, yield a trade-

off between the benefit of exercising the risk-shifting option and the cost of financial constraints

M . Given the similarity between equity and option, the equity holders profit from exercising the

risk-shifting option at the cost of M . When firm is less constrained, the gain from risk-shifting

outweighs the cost; equity holders exercise the risk-shifting option when X falls below the optimal

risk-shifting threshold XR for the first time. In contrast, when the cost M dominates the benefit,

equity holders abandon the risk-shifting option. This trade-off provides a channel through which

financial constraints help to reduce the risk-shifting incentives ex post.

In fact, this trade-off is studied with the presence of debt maturity in the model. Debt maturity is

introduced through an exogenously given debt rollover rate m by following the approach in Leland

(1994b). Once the optimal initial debt with par value P is in place, a portion m of P is retired

and reissued continuously with the same coupon and principal amount. This mechanism implies

an average debt maturity of T ≈ 1/m years. Three rollover rates m are used in the numerical

example to represent long-term, medium-term and short-term debt maturities in this paper. With

this mechanism, shorter debt maturity entails higher periodic payments from equity holders, which

can potentially reduce the benefit of risk-shifting.

Combining all three factors above, this model reveals interesting implications of the relationship

between financial constraints, debt maturity and risk-shifting incentives:

1. Risk-shifting incentive decreases with financial constraints. That is, financially constrained

firms are less likely to engage in risk-shifting behaviors than financially unconstrained firms.

2. Financially unconstrained firms tend to risk-shift even when they are healthy. So financial

distress is not the sufficient condition for risk-shifting.

3. Without the presence of financial constraints, the short-term debt effect in Barnea, Haugen

and Senbet(1980) does not exist. Only when financial constraints are controlled for, short-term

debt complements financial constraints in reducing risk-shifting incentives.

4. The agency cost of risk-shifting is lower for financially constrained firms. They have lower loss

in optimal leverages and firm values compared to financially unconstrained firms.

To test these model implications empirically, I use a large sample of firms from the intersection of

COMPUSTAT annual tape and CRSP for the period between 1965 and 2009 and classify them into

financially constrained and unconstrained firms based on four financial constraints criteria. The effect
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of financial constraints on risk-shifting is studied in the investment-expected volatility regression

framework in Eisdorfer (2008). The interaction of expected volatility and financial constraints index

is significantly negative for financially constrained firms implying that the risk-shifting incentive

is low for such firms. Furthermore, when financial constraints are controlled for, financial distress

as indicated by Altman’s Z-score loses its explanatory power in the regressions. What’s more, the

debt maturity effect is introduced by adding dummy variables into the regressions to represent

weighted-average maturities of one, two, three, four and five years. As predicted by the model,

the unconditional short-term debt maturity effect does not exist. It shows up only when financial

constraints are controlled for. In addition, I study the agency cost of risk-shifting by running

regressions of leverage and asset returns on contemporaneous investment with control of financial

constraints and other variables. Consistent with the predictions of the model, the empirical tests also

reveal that financially constrained firms have 0.152% higher of leverage and 0.605% higher of asset

return per 1% investment the firm makes than unconstrained firms, which can be a big reduction in

agency costs if the firm makes heavy investments.

The model of this study imposes a strong assumption that equity holders rely on external fi-

nancing to realize risk-shifting activities, so concerns might arise that these results do not apply to

firms with high internal funds. However, the descriptive statistics show that financially constrained

firms have more cash holdings on average and this is exactly the precautionary step they take due

to financial constraints. Financially unconstrained firms, on the other hand, have less incentive to

indulge their cash holdings because the cost of external financing is relatively low for them. To test

this claim empirically, I control for cash holdings in the empirical tests and find that the effect of

financial constraints still hold even when cash holding is controlled for.

These findings illustrate a novel link between the financial constraints literature and the risk-

shifting literature. The financial constraints literature mainly focuses on the level of investments

and proves the dark side of financial constraints. For example, Campello, Graham and Harvey

(2010) use experimental design to provide direct evidence of the effect of financial constraints on

real investments by surveying 1,050 CFOs in the US, Europe and Asia during the latest credit

crunch. They find that constrained firms experience higher cut in capital spending and pass on

attractive investment opportunities during the crisis. Another line of financial constraints research

shows that financial constraints restrain investment by studying the investment-cash flow sensitivity.

Fazzari, Hubbard and Petersen (FHP) (1988) propose that investment decisions within financially

constrained firms should be influenced not only by the virtue of investment opportunities but also

by the availability of internal funds. There is a monotonic relation between the degree of financial

constraints and the investment-cash flow sensitivity. Thus the effect of financial constraints on

investment spending can be examined by comparing investment-cash flow sensitivities across sub-

samples sorted on characteristics related to financial constraints. However, the monotonic relation of

financial constraints and investment-cash flow sensitivity is challenged by Kaplan and Zingales (1997)

among others (e.g. Erickson and Whited (2000), Gomes(2001) and Alti (2003)). By carrying out an

in-depth investigation of the high investment-cash flow sensitivity sub-sample of that in FHP (1988),

they find contradictory results, casting a doubt on the robustness of FHP (1988). To get around

the Kaplan and Zingales (1997) critique, Almeida, Campello and Weisbach (2004) propose the cash

flow sensitivity of cash to capture the effect of financial constraints. A more recent work by Almeida

and Campello (2007) suggests that asset tangibility has a differential effect on investment-cash flow

sensitivities because asset tangibility increases a firm’s ability to get external finance when it is
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financially constrained but has no effect when it is unconstrained. Campello and Hackbarth (2008)

formulate the credit multiplier effect induced by asset tangibility within a real options framework

and show that investment spending is improved with asset tangibility for financially constrained

firms.

These studies, however, overlook the risk profile of investments. When a firm chooses a very

risky investment, it changes the riskiness of the firm as well. Its impact on the valuations of equity

and debt shows the agency cost to the firm. This attribution of investment can be discovered in the

risk-shifting literature.

Some theoretical studies in the risk-shifting literature try to quantify the agency cost of risk-

shifting, but find mixed results. Leland (1998) investigates it by studying the effect of risk-shifting

(asset substitution) on optimal capital structure, debt maturity and risk management choice using

a real options framework. He introduces a reversible risk-shifting option into a dynamic framework

in which bonds are callable, and finds that risk-shifting restricts leverage and debt maturity and

increases yield spreads, but the effects are small. Ericsson (2000) also studies the simultaneous

choice of leverage and debt maturity in the presence of risk-shifting incentives in a real options

framework. However, the risk-shifting option in his model is irreversible and bonds can not be

called. Contrary to Leland (1998) he finds that, by ruling out risk-shifting, firms can take 20% more

leverage and use distinctively longer-term debt financings. In both models, risk-shifting is free. This

paper differs from the above two in that risk-shifting option is subject to a financial constraints cost

M when exercised. Moreover, risk-shifting is irreversible, the decision to default is endogenous, and

the criterion for abandoning the risk-shifting option is different.

On the other hand, Eisdorfer (2008) presents empirical evidence of the existence of risk-shifting

behaviors in financially distressed firms and estimates the cost of risk-shifting to debt holders to be

6.38% during high volatility periods. He argues that without risk-shifting, the investment-volatility

relation is negative because the option value of waiting-to-invest dominates when volatility is high;

however, when risk-shifting benefit presents, the relation can be reversed. This provides an ideal

framework for the empirical tests in this paper.

The remainder of the paper is organized as follows. Section 3.2 presents the model setup, derives

the optimal risk-shifting and default thresholds, and discusses the model implications. Section 1.3

uses a large dataset to test the hypotheses empirically. Section 1.4 presents some robustness tests

and section 1.5 concludes.

1.2 Model

In this section I consider two real options models: a simple benchmark model with no risk-shifting

prospect, and a risk-shifting model with exogenously given financial constraints costs M . The real

options framework provides a natural venue to tackle the linkage between financial constraint, debt

maturity and risk-shifting behaviors. It abstracts equity holders’ choice of risk as an option to

increase risk and generates closed-form solutions of debt and equity values.

Following the EBIT-based model in Goldstein, Ju and Leland (2001), a typical firm has cash

flows (EBIT) generated by its assets evolving stochastically according to a log-normal process:

dX(t)

X(t)
= µ dt+ σ dW (t), (1.1)
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where µ is the expected rate of return, σ is the risk of return, and dW (t) is the increment of a

standard Wiener process.

At time 0, the firm has an initial cash flow X0 and a low risk level σL. It faces a marginal

tax rate τ and a risk-free rate rf . The firm is levered and it uses a debt with perpetual coupon

payment C and a principal P , a fraction m of which is retired and reissued continuously with the

same structure. The optimal coupon rate C is determined by maximizing the initial firm value for

the exogenously given debt rollover rate m. Once the initial debt is in place, equity holders can

choose to default endogenously at an optimal ex post default threshold XD and the percentage cost

of bankruptcy is α. The firm is also subject to an exogenous financial constraints cost M for future

investments.

1.2.1 The Benchmark Model

To quantify the effect of financial constraints on risk-shifting behavior and its interaction with debt

maturity, I start with a simple benchmark model. In this model, equity holders can credibly pledge

against risk-shifting behaviors ex ante. Their only decision ex post is to determine when to default1,

i.e. what the optimal endogenous default threshold XD is. To do so, equity and debt values need

to be derived first.

The Valuations

According to Goldstein et.al. (2001), equity, debt and firm values can be solved with the following

Ordinary Differential Equation (ODE):

µXVX +
σ2

2
X2VXX − rV + Π = 0, (1.2)

where V can be the equity value SB, the debt value DB or the firm value V B(B stands for

benchmark model), and Π denotes the intermediate cash flows to the claimants. Due to the debt

rollover feature of the model, the current debt holders receive not only the periodic coupon payments

(Π = C), but also the repayment of a fraction m of the principal mP whereas the equity holders

claim on the residual after-tax cash flows.

Debt Value

Following Leland (1998), the general solution for debt value DB(X) can be written as:

DB(X,C,m) = A1X
am +A2X

zm +
C +mP

r +m
, X > XD, (1.3)

where

am =
−(r − σ2

2 )−
√

(r − σ2

2 ) + 2σ(r +m)

σ2
, (1.4)

zm =
−(r − σ2

2 ) +
√

(r − σ2

2 ) + 2σ(r +m)

σ2
(1.5)

1To simplify the model and focus the analysis on risk-shifting, I do not include any investment options other than
the one for risk-shifting in the model.
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and the C+mP
r+m portion stands for the present value of the intermediate cash flows to debt holders.

The constants A1 and A2 can be computed with the boundary conditions when X = XD and

X ↑ ∞.

When the firm is highly profitable ( X ↑ ∞), its debt can be viewed as a perpetuity with

continuous payments of C + mP . On the other hand, when the firm is in bankruptcy (X = XD),

debt holders seize the liquidation value of the firm after paying off the bankruptcy cost, and the

equity holders are left with nothing. These two boundary conditions can be summarized as follows:

DB(∞, C,m) =
C +mP

r +m
, (1.6)

DB(XD,C,m) = (1− α)(1− τ)
XD

r − µ
. (1.7)

Therefore,

DB(X,C,m) =
C +mP

r +m
+ (

X

XD
)am
[
(1− α)(1− τ)

XD

r − µ
− C +mP

r +m

]
, X ≥ XD, (1.8)

where

P = DB(X0, C,m)

=

C
r+m

[
1− ( X0

XD )am
]

+ ( X0

XD )am(1− α)(1− τ)XDr−µ
r

r+m + m
r+m ( X0

XD )am
. (1.9)

The debt value shown in equation (1.8) contains three parts: a risk-free bond value, the contingent

claim of the liquidation value excluding the bankruptcy cost and the loss of future coupons contingent

on default.

Firm Value

Similar to debt value, the general solution to firm value is as follows:

V B(X,C,m) = K1X
a +K2X

z +
(1− τ)X

r − µ
, X ≥ XD, (1.10)

where

a =
−(r − σ2

2 )−
√

(r − σ2

2 ) + 2σr

σ2
, (1.11)

z =
−(r − σ2

2 ) +
√

(r − σ2

2 ) + 2σr

σ2
(1.12)

and (1−τ)X
r−µ is the present value of the intermediate cash flows to the firm. The two coefficients K1

and K2 can be solved by the following two boundary conditions:

V B(∞, C,m) =
(1− τ)X

r − µ
, (1.13)

V B(XD,C,m) = (1− α)(1− τ)
XD

r − µ
. (1.14)
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The firm value can thus be expressed as:

V B(X,C,m) =
(1− τ)X

r − µ
+
τC

r
− (

X

XD
)a
[α(1− τ)XD

r − µ
+
τC

r

]
, X ≥ XD. (1.15)

As shown above, the pre-default firm value can be decomposed into three parts: the unlevered

firm value (1−τ)X
r−µ , the tax benefit of debt τC

r , and the contingent loss at default including the

bankruptcy cost and the loss of tax benefit of debt. At default, the firm value is simply the after-tax

liquidation value minus the bankruptcy cost.

The equity value is the difference between the firm value and the debt value, i.e.

SB(X,C,m) = V B(X,C,m)−DB(X,C,m). (1.16)

Due to the simplification of the model, the valuations above are independent of the financial

constraints cost M because no external financing is needed once debt is in place in the benchmark

model.

The Optimization Problem

The objective of the firm is to get the first-best valuation by choosing the optimal capital structure

ex ante, i.e. the coupon C∗ for the given debt rollover rate m, subject to the condition that the

default threshold XD is determined optimally ex post. This problem can be formulated as follows:

C∗ = max
C

V B(X0, C,m)

s.t.
∂SB(X,C,m)

∂X

∣∣∣
X=XD

= 0 (1.17)

The ex post optimal default threshold XD must satisfy condition (1.17) for any level of C.

When X is higher than XD, the future cash flows are still higher than the coupon payments and the

bankruptcy costs. Therefore it is worthwhile for the equity holders to wait and default at a lower

threshold. On the contrary, if they hold the firm for too long (X < XD), the gains of keeping the

firm alive is outweighed by the coupon payments and the bankruptcy costs. They should exercise

the default option earlier. As a result, the equity value is maximized at XD for a given C and m.

Here’s the formula for XD as a function of C and m:

XD(C,m) =
a τCr − am

C+mP
r+m

1−τ
r−µ

[
1− aα− am(1− α)

] . (1.18)

1.2.2 The Risk-shifting Model

This section continues the discussion by adding the cost of financial constraints M and a risk-shifting

option to the benchmark model. This model gives more insights into the strength of risk-shifting

incentives and the magnitude of the agency cost of risk-shifting in the presence of financial constraints

and debt maturity. I will describe the model by explaining how financial constraints, risk-shifting

and debt maturity are modeled first.
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The financial constraints cost M

In an imperfect capital market, firms facing financial constraints are subject to significant costs

for external financings for reasons such as lack of credit-worthiness, low asset tangibility and bad

economic environment (e.g. Hennessy and Whited (2007)). As a result, financially constrained firms

have to pay the added cost beyond the fair external financing costs. This cost is modeled as an

exogenously given constant M which represents the degree of financial constraints. M is larger for

more constrained firms and lower for unconstrained firms.

The definition of M encompasses not only the “cost constraint” discussed above, but also the

”quantity constraint” discussed in Almeida and Campello (2005), i.e. firms’ inability to raise external

funds regardless of how much cost they are willing to bear. In fact the “quantity constraint” is the

extreme case of M ↑ ∞. The other extreme case, M ↓ 0, gives the unconstrained situation.

The Risk-shifting Option

Considering a firm with an initial perpetual debt having coupon C, the debt holders cannot prevent

the risk-shifting behaviors ex ante by contracting with shareholders, or such prevention can not be

credibly enforced ex post. Under this assumption, the equity holders have a risk-shifting option

to increase investment risk from σL to σH by making a risky investment after the initial debt is

in place. This risk-shifting investment is fully financed by equity and the equity holders bear the

financial constraints cost M 2 if the option is exercised. The ex post optimal risk-shifting and default

thresholds are determined endogenously by shareholders to maximize the equity value. Following

Ericsson (2000), I also assume that risk-shifting is irreversible: once the risk is increased, it will stay

at that level as long as the firm is alive. The addition of this option creates a direct contrast to the

benchmark model. The differences between the two models reveal the real impact of risk-shifting

behaviors.

The Mechanism at Work

In the benchmark model, the equity holders’ only concern is when to default. An additional decision

is in place in the risk-shifting model: shareholders may decide to switch the investment risk to a

higher level before they default on debt. This action makes both the equity3 and the default option

more valuable. As a result, the equity holders hold on to the default option longer, i.e. the post-

shifting default threshold is lower than the benchmark case. This entitles the equity holders to more

cash flows and in turn increases the value of the equity. However this comes with a price, i.e. the

financial constraints cost M . When M is affordable, the gains from risk-shifting outweighs M and

the equity holders exercise the risk-shifting option when X falls to the optimal risk-shifting threshold

XR. In contrast, when M is high so as to dominate the benefits of risk-shifting, the equity holders

will abandon the risk-shifting option. This trade-off provides a channel through which financial

constraints helps to reduce the risk-shifting incentives ex post.

2Note that it is reasonable to assume that the equity holders bear all the financial constraints cost M for risk-
shifting. When risk-shifting behaviors cannot be credibly excluded ex post, bond holders will take it into account and
request higher return ex ante. This leaves all costs to the equity holders.

3Based on Merton (1973), equity can be modeled as an option on firm value. The value of this option increases
with volatility.
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Debt Maturity

The current literature on risk-shifting suggests that short-term debt helps to reduce risk-shifting

incentives (i.e., Barnea, Haugen, and Senbet (1980)), but it receives mixed empirical support. To

study how debt maturity interacts with financial constraints, I introduced a continuous debt rollover

rate m as in Leland (1994b). In this framework, optimal coupon C is determined initially by

maximizing the total firm-value. The debt principal is always kept at its par value P . At any

instant, a fraction m of the principal is retired at par and reissued at market value with identical

characteristics, thus the average debt maturity is T ≈ 1
m . The market value can be different from

the par value, and the difference accrues to equity holders if this is the case. Since this paper does

not attempt to study the optimal debt maturity, the refinancing cost and debt rollover cost are

ignored in order to get a clean view on the mechanism at work. Should they have been introduced,

they would have made short-term debt more costly to use and worked against the short-term debt

effect.

Valuations

Within the same contingent claim valuation framework as in section (1.2.1), the equity, debt and firm

values in this model satisfy the ODE (1.2) and can be expressed in the same general form of equation

(1.3), but follow different boundary conditions in. I use the suffix “H” to denote the valuations for

post-shifting (high volatility) environment and use “L” for valuations before the risk-shifting option

is exercised (low volatility). The option exercising is triggered if X decreases to XR from above for

the first time. After that the firm operates in the benchmark model environment but with the higher

risk level σH because there is no risk-shifting options any more. The optimal post-shifting default

threshold is denoted by XDH. The implicit assumption here is XR > XDH. That is, risk-shifting

can only happen before the equity holders decide to default. When XR ≤ XDH, it is optimal not

to shift risk at all and the firm operates in the same fashion as in the benchmark environment.

After Risk-shifting

The risk-shifting model can be solved using backward induction. After risk-shifting, the equity

holders are left with the default option only. This is the same case as the benchmark model, except

that the risk is higher, i.e. σH , and the default threshold XDH is lower than XD. Thus the post-

shifting debt, equity and firm values, i.e. DH(X,C,m), SH(X,C,m) and V H(X,C,m), take the

same functional forms as in the benchmark case except that σ should be replaced by σH .

Before Risk-shifting

When the firm’s profitability is well above the risk-shifting threshold XR, it is not optimal for

the shareholders to take high risk because the gain from risk-shifting is outweighed by the higher

bankruptcy cost and the loss of future profits. In this case, the equity holders have both the

risk-shifting option and the default option in hand. When X ↑ ∞, the firm is risk-free and the

total firm value is simply the present value of the payout streams to equity and debt holders, i.e.

V L(X ↑ ∞, C,m) = (1−τ)X
r−µ . To the other extreme when X = XR, equity holders will exercise the

risk-shifting option. At this point the firm value should transit smoothly in the vicinity of XR to

avoid arbitrage opportunities. Hence it must satisfy the value-matching condition V L(XR,C,m) =

V H(XR,C,m) −M . Similarly, the debt value should equal to the risk-free bond price C+mP
r+m as

X ↑ ∞ and it should satisfy the value-matching condition at XR: DL(XR,C,m) = DH(XR,C,m).

With the above mentioned conditions and the general solution (1.3), I obtain the closed-form
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solutions of debt and firm values for the pre-and post-shifting stages:

DL(X,C,m) =
C +mP

r +m
+ Φm

[ (1− α)(1− τ)XDH

r − µ
− C +mP

r +m

]
, X ≤ XR,

(1.19)

DH(X,C,m) =
C +mP

r +m
+ (

X

XDH
)aHm

[ (1− α)(1− τ)XDH

r − µ
− C +mP

r +m

]
, X ≤ XDH,(1.20)

V L(X,C,m) =
(1− τ)X

r − µ
+
τC

r

[
1− Φ

]
− α(1− τ)XDH

r − µ
Φ− (

X

XR
)aLM, X ≤ XR, (1.21)

V H(X,C,m) =
(1− τ)X

r − µ
+
τC

r

[
1− (

X

XDH
)aH
]
− α(1− τ)XDH

r − µ
(

X

XDH
)aH , X ≤ XDH,(1.22)

(1.23)

where Φ = ( X
XR )aL( XR

XDH )aH and Φm = ( X
XR )aLm( XR

XDH )aHm are the hitting claims which equal to 1

if equity holders shift risk at XR and zero otherwise. The major difference between Φ and Φm lies

in whether the debt rollover rate m is factored in the definitions of a and z. The principal of debt

is fixed at the initial debt value, i.e.

P = DL(X0, C,m)

=
(1− Φm) C

r+m + Φm
(1−α)(1−τ)XDH

r−µ
r

r+m + m
r+mΦm

. (1.24)

The equity values are simply the difference between the firm and debt values: SL(X,C,m) =

V L(X,C,m)−DL(X,C,m) and SH(X,C,m) = V H(X,C,m)−DH(X,C,m).

As shown in equation (1.21) the firm value is composed of four parts: the unlevered firm value,

the tax benefit of debt, the default cost and the financial constraints cost contingent on risk-shifting.

Once the risk-shifting option is exercised, the firm value contains only the first three components.

The debt values in both stages are composed of three parts: the risk-free bond price, the loss of

future coupons contingent on bankruptcy and the liquidation value seized by the debt holders at

default excluding bankruptcy costs. They differ only in the hitting claims. In the pre-shifting stage,

the hitting claim contains the option of risk-shifting, whereas in the post-shifting stage, the hitting

claim is related to the default-option only.

The Optimization Problem

The closed-form solutions of the equity, debt and firm values in the last subsection make it possible

to quantify the optimal coupon and the default and risk-shifting thresholds. This can be achieved

by solving the following optimization problem:

max
C

V L(X0, C,m)

s.t.
∂SH

∂X

∣∣∣∣
X=XDH

= 0, (1.25)

∂SL

∂X

∣∣∣∣
X=XR

=
∂SH

∂X

∣∣∣∣
X=XR

. (1.26)

The first condition (1.25) shows that the equity holders choose to default in the post-shifting

stage when the equity value is maximized. Please refer to the subsection (1.2.1) for the reasoning.
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This condition solves the optimal post-shifting default threshold:

XDH(C,m) =
aH

τC
r − aHm

C+mP
r+m

1−τ
r−µ

[
1− αaH − (1− α)aHm

] . (1.27)

If the profitability deteriorates after the firm becomes more risky, the equity holders optimally

stop fulfilling their debt service at XDH. From equation (1.27) it is easy to see that XDH is linear

in coupon C and independent of M. Hence highly levered firms are more likely to default ex post.

The second condition (1.26) solves the optimal risk-shifting threshold. It follows from the value-

matching condition to make sure that XR is time-invariant(Dixit (1993)). At this point the benefit

of expropriating values from debt balances off the financial constraints cost M and the increased

loss from bankruptcy. This condition gives the following equation that XR must follow:[τC
r

+
α(1− τ)XDH

r − µ

]
(
XR

XDH
)aH (aH − aL)− aLM

=
[ (1− α)(1− τ)XDH

r − µ
− C +mP

r +m

]
(
XR

XDH
)aHm(aLm − aHm). (1.28)

Notice that both XDH and XR are functions of the ex ante coupon C. Each C produces a

set of thresholds and values. The optimal ex ante coupon C can be determined by varying C and

comparing the corresponding firm values V L(X0, C,m).

The decision of Risk-shifting

The previous subsection presents the condition for determining the optimal risk-shifting threshold

XR. If XR ≤ XDH, it will never be optimal for the equity holders to shift risk. On the other

hand when XR > XDH, if equity holders cannot credibly pledge against risk-shifting behavior ex

ante, debt holders will assume that equity holders implement the risk-shifting model: as soon as

X decreases to XR for the first time, equity holders will make the risk-increasing investment. As

a result, the firm can only issue P = DL(X0, C,m) where C is determined by the optimization

problem (1.25).

However, the condition XR > XDH does not guarantee risk-shifting because it is only an option.

In fact, if equity holders receive higher equity value by abandoning the risk-shifting option, they will

implement the benchmark model ex post at the debt level determined by the risk-shifting model.

The optimal default threshold in this case is denoted by XDL and determined by maximizing the

pre-shifting equity value:
∂SB(aL)

∂X

∣∣∣∣
X=XDL

= 0. (1.29)

Note that the firm mimics the benchmark model using the optimal coupon C from the risk-shifting

model and setting σ = σL in equation (1.18). That is,

XDL(C) =
a τCr − aLm

C+mP
r+m

1−τ
r−µ

[
1− aα− aLm(1− α)

] . (1.30)

This is only a sub-optimal solution compared to the base model, but it is still possible that for some

X > XDL and XR > XDH, SB(X0, C,m) > SL(X0, C,m) and V B(X0, C,m) > V L(X0, C,m).

That is, even a sub-optimal solution of the base model may dominate the risk-shifting model. When
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this happens, the equity holders will abandon the risk-shifting option.

Based on the above discussions we can see that XR can be used as a measure of risk-shifting

incentive. The higher XR is, the more likely that the equity holders will engage in risk-shifting ex

post. In addition, the relative measure K = XR
XDL depicts how far risk-shifting is from default. This

gives us information on how likely equity holders will shift risk when the firm is relatively healthy.

The Magnitude of the Agency Cost of Risk-shifting

The next effect to examine is the magnitude of the agency cost of risk-shifting. According to the

literature (e.g. Leland (1998), Ericsson (2000) and Eisdorfer (2008)), shareholders’ risk-shifting

behavior transfers value from bondholders to equity holders, and destroys firm value at the same

time. Therefore the agency cost can be measured by the reduction of values because of risk-shifting.

That is, the difference of debt or firm values between the risk-shifting model and the benchmark

model quantifies the agency cost of risk-shifting. Equities, on the other hand, benefit from this

behavior thus have a value appreciation. To combine all three effects in a unified measure, it is

appropriate to use leverage, the ratio of debt value to firm value (debt plus equity), to specify the

cost. More specifically, the reduction of the optimal ex ante leverage indicates the cost of risk-

shifting. In fact, the effect of the financial constraints cost M is implicit in the valuations of the

cost.

Due to the complexity of the algebraic expressions, I will illustrate the cost of risk-shifting with

a numerical example in the next subsection.

1.2.3 A Numerical Example

Consider a representative firm with initial cash flow normalized to X0 = 100. The firm faces a

marginal tax rate τ = 20% and a percentage bankruptcy cost α = 0.25. The expected rate of return

on its asset is µ = 1%, and the risk-free rate is rf = 6%. The firm has an option to switch its

current low risk level σL = 25% to a higher one σH = 40%. To make it more realistic, the financial

constraints cost imposed on the firm is expressed as M = M0(1 + i), where i ∈ [0, 0.6]. In this

example, the risk-shifting cost M for the relatively unconstrained firm is M0 = 30, and depending

on the degree of financial constraints it can be up to 60% more costly to do risk-shifting.

Figure 1.1 displays the optimal firm value for three debt maturities represented bym = 0, 0.1 and 0.2

across a range of financial constraints costs. Firm value goes up as financial constraints cost goes

up, and there is a big jump in value when equity holders switch to the base model. The bottom

panel shows exactly when the equity holders give up risk-shifting for the ten-year debt (m = 0.1)

case: they switch to the benchmark model as soon as the equity value of the risk-shifting model

SL(C) drops below the equity value of the base model SB(C). From the figure, we can see that the

firm using the short-term debt (m = 0.2) switches at a lower financial constraints cost (i = 15%),

the medium debt at the highest financial constraints cost (i = 55%) and the long-term debt in the

middle. Therefore, there is no monotonic relation between risk-shifting incentive and debt maturity.

The unconditional short-term debt effect does not hold in this model. The dotted line in the top

panel represents the optimal firm value in the base model where there is no risk-shifting option. The

big difference in value between the suboptimal base models and the optimal base model tells us the

residual agency cost of risk-shifting due to the uncertainty of the risk-shifting behavior.
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Figure 1.2 and Figure 1.3 displays the surfaces of optimal risk-shifting threshold XR, the relative

risk-shifting incentive K, and the optimal coupon C, generated by the set of proportional financial

constraints costs i ∈ [0, 0.6] and the debt rollover rates m ∈ [0, 0.2] which corresponds to average

debt maturities of ∞ down to 5 years.

The following can be observed from these figures:

1. The optimal risk-shifting incentives decrease as financial constraints cost i increases. That is,

more constrained firms are less likely to be exposed to risk-shifting problems.

2. As indicated by K, financially unconstrained firms tend to shift risk even when they are

still healthy whereas financially constrained firms are more likely to shift risk when they are

distressed (K ↓ 1). This result provides a new perspective to look at the risk-shifting problem.

As an extension of the current view that risk-shifting behaviors are more likely to happen

in financially distressed firms, this model predicts that financially healthy and unconstrained

firms are likely to do so as well.

3. The optimal coupon C increases as financial constraints cost i goes up for the long-term debts.

It slightly decreases for the short-term debt. Moreover, C is the lowest for maturities lower

than 10 years. This low leverage induces the low risk-shifting threshold XR and even lower

default threshold XDL for long maturities. This explains the discrepancy we observe in the

first result.

Table 1.1 presents explicitly the results generating Figure 1, 2 and 3 at representative financial

constraints cost i. Panel A shows the results of the benchmark model in which no risk-shifting

prospect exists. Without the agency cost of risk-shifting, the benchmark firm has an initial firm

value of 1738.22, uses a coupon of 17.62 and a leverage of 59.8%, and defaults at XD = 34.55.

Panel B, on the other hand, shows scenarios of the firm with risk-shifting options under different

proportional financial constraints costs i. When i is as low as 0% (M = 30)(unconstrained), the

firm value is 1642.13, a reduction of 5.53% relative to the benchmark. The equity value is almost

doubled and the leverage is reduced by 42.72% comparing to the benchmark case. The credit spread

CSP is reduced by half when the model is switched to the benchmark. Therefore the magnitude

of the agency cost of risk-shifting are prominent for the unconstrained firm. As the firm becomes

more constrained, the agency cost of risk-shifting AC decreases. When i = 50%, it is optimal for

the firm to switch to the base model. The AC drops to 4.14% at this point and keeps decreasing as

i goes up. These results complement the subsection 1.2.2 and show that financial constraints help

to reduce not only the risk-shifting incentives but also the agency costs.

Panel C and D presents the results for the medium (m = 0.1) and short-term (m = 0.2) debt

case respectively. The agency cost AC is much lower, the leverage ratio LR and the risk-shifting

threshold XR are much higher than the long-term case. However, the patterns are the same.

1.3 Empirical Tests

The theoretical model in the previous section generates four testable hypotheses:

Hypothesis 1: Risk-shifting incentive is negatively related to financial constraints. That is,

financially constrained firms are less likely to engage in risk-shifting behaviors than financially un-

constrained firms.
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Hypothesis 2: Financially unconstrained firms tend to risk-shift even when it is healthy. So

financial distress is not the sufficient condition for risk-shifting. The power of financial distress in

explaining risk-shifting will be weakened when financial constraints are controlled for.

Hypothesis 3: There is no monotonic relationship between debt maturity and risk-shifting in-

centive when financial constraints are not controlled for. However, short-term debt maturity helps

to strengthen the effect of financial constraints in reducing risk-shifting incentives when financial

constraints are controlled for.

Hypothesis 4: Since risk-shifting hurts firm value, financially unconstrained firms have lower

asset returns and lower leverage than constrained firms.

To to the empirical test, I implement the regression framework in Eisdorfer (2008). In this

framework, higher risk as represented by higher expected volatility implies two opposing effects on

investments: the risk-shifting effect leading to higher current investment because equity holders gain

from ripping off debt holders; the real options effect leading to lower current investment because

the option value of waiting-to-invest is higher. If there is no risk-shifting, the investment-volatility

relation should be significantly negative. However when risk-shifting takes into effect, this nega-

tive relation is weakened or even reversed. Firms with the strongest risk-shifting incentives will

have a positively significant investment-volatility relation. This logic implies the following: (1) The

investment-volatility relation is significantly negative for financially constrained firms, but insignifi-

cant or even significantly positive for financially unconstrained firms; (2) The investment-volatility

relation is not significant for the interaction of financial distress and volatility when financial con-

straints are controlled for.

1.3.1 Data

I obtain the prices and returns from CRSP and the firm-level financial data from COMPUSTAT’s

North America Fundamental Annual tape. The 45-year sample period spans from 1965 to 2009. In

order for a firm-year observation to be included, it must contain all information needed to calculate

the variables in the tests. All financials are inflation adjusted to year 2004 dollar value. Firms in

the financial (SIC code 5999-7000), utilities (SIC code 4899-4950) and not-for-profit (SIC code 8000

and above) industries are excluded from the tests because they are regulated and behave differently

from the other firms. Leverage ratio is winsorized at 0.99 and Tobin’s Q is capped at 10 to remove

the influence of outliers. The final sample contains 55, 044 firm-year observations for 7, 680 firms.

In addition, I obtain the NBER recession dates and the treasury rates from Federal Reserve Bank

of St. Louis’s FRED database.

1.3.2 Empirical Model

To gauge the differential effect of financial constraints on risk shifting behaviors empirically, I run

OLS regressions of investment on expected future volatility with control of variables that are shown

to be important to investments in the literature. Such baseline model can be formulated as follows:

Ii,t+1 = αi + βi,1ExpV oli,t+1 + βi,2Sizei,t + βi,3Qi,t + βi,4Leveragei,t +

βi,5CashF lowi,t + βi,6DumRecessiont + βi,7DefSpri + βi,8rft + εi,t (1.31)

The subscript i stands for the ith firm in the sample, and t ≥ 0 stands for time. Define investment
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intensity Ii,t+1 as the ratio of capital expenditure to beginning-of-period total asset; Sizei,t as the

log of market value of asset (book value of debt + market value of equity), Qi,t as market value

of asset to book value of asset, Leveragei,t as book value of debt over market value of assets, and

CashF lowi,t as operating cash flow to beginning-of-period total asset. The dummy variable for

NBER recession dates DumRecessiont equals to 1 if the economy in any month of year t is in

recession. The default spread DefSprt is the difference between the Baa-rated and the Aaa-rated

bond yields. The risk-free rate rft is taken as the 1-month Treasury bill rate.

One of the key variables in the model is the expected volatility ExpV oli,t+1. I use the expected

industry volatility as a proxy to minimize the endogenous problem in model estimation caused by the

potential dependency of firm-level volatility on the other control variables. The calculation of this

variable is a two-step procedure. First, the monthly value-weighted industry returns are computed

based on the 2-digit SIC code for the period of 1950 to 2009. Second, a GARCH (1,1) model is

applied to the return series of each industry separately, and the 12-month-ahead volatility forecast

can be obtained for each industry at the end of each year using the model estimates.

The other key variable is the dependent variable Ii,t+1: investment intensity. I use the industry-

adjusted firm-level investment intensity in the tests. In every year, investment intensities are adjusted

by taking out the median investment intensity of the industry defined by the 4-digit SIC code. If

in any given year, there are less than five observations in the industry, I use the 3-digit SIC code

in stead to define this industry. If the same situation occurs again, the 2-digit SIC code is applied.

This procedure is adopted from Eisdorfer(2008) too.

1.3.3 Financial Constraints and Financial Distress Criteria

The tests in this paper require classifying financially constrained and unconstrained firms based on

some criteria. Since there is no consensus on the best criteria to use, I apply two characteristic-based

and two model-based approaches that are widely used in the literature.

The first two criteria are defined with respect to rankings of firms based on size and payout ratio

(i.e. dividends over net income). At the beginning of each year within the sample period, decile

portfolios are constructed according to the rankings and the bottom(top) three deciles are defined

as financially constrained(unconstrained) firms. The Size scheme follows from the arguments in

Gilchrist and Himmelbert(1995) that small firms are young and less well know, thus are more

vulnerable to capital market imperfections. The Payout scheme, on the other hand, follows from

Fazarri et al. (1988) in that financially constrained firms have significantly lower payout ratios.

The next two criteria are model-based. They are good candidates because they are continuous in

financial constraints and make the model predictions directly testable. The first one is the SA index

introduced by Hadlock and Pierce (2010). This index is built from an ordered logit regression. It is

calculated as −(0.737∗Size)+(0.043∗Size2)−(0.040∗Age), where Size equals the log of book assets,

and Age is the number of years the firm is listed with a non-missing stock price on COMPUSTAT.

Size is winsorized at (the log of) 4.5 billion, and Age is winsorized at 37 years. The fact that it is

based on the two relatively more exogenous variables makes it an appealing index to use. The second

continuous measure is the WW index introduced by Whited and Wu (2006). This index is a linear

combination of six variables computed from Compustat data. In addition to size, it also takes cash

flow, dividend payout dummy, long-term leverage, industry sales growth and firm sales growth into

account: WW=-0.091*CF-0.062*Div+0.021*Leverage-0.044*Size+0.102*IndustrySG-0.035*SG. All

values are inflation-adjusted to 2004 dollar value. These two indices are higher if the firms are more
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financially constrained.

In order to define financial distress, I also use Altman’s Z-score to classify the firms. Z-

score = 1.2(Working capital/Total assets)+ 1.4(Retained earnings/Total assets)+3.3(Earnings be-

fore interest and taxes/Total assets)+ 0.6(Market value of equity/Book value of total liabilities)

+ 0.999(Sales/Total assets). A firm with Z-score lower than 1.81 at the beginning of the year is

classified as in financial distress.

1.3.4 Main Results

Table 1.2 summarizes the firm characteristics for sub-samples partitioned based on the above men-

tioned financial constraints criteria. As seen in the table, financially constrained firms are smaller in

size and have lower payout. Except for the Payout scheme, they have lower investments and less cash

flows, and use lower leverage and shorter debt maturities on average. However, they have more in-

vestment opportunities as represented by the higher Tobin’s Q, higher cash holdings, higher Z-Score

and SA index. The Payout scheme is very different from the other three in that it generates more

unbalanced classifications: only 9,312 firm-year observations are financially unconstrained, whereas

the constrained group is almost four times that of the unconstrained. As a result, the pattern of the

variables except size and payout are different from the other three groups.

Before testing the hypotheses, regressions of the industry-adjusted investment intensity on ex-

pected volatility for financially healthy and distressed firms are done to re-examine the results in

Eisdorfer (2008) with the new sample period and the slightly differently defined control variables.

Eisdorfer (2008) normalizes investment and cash flows by beginning-of-the-year PP&Es, whereas in

this paper these two quantities are scaled by lagged total assets. This paper also replaces market-

to-book ratio with Tobin’s Q and book leverage with quasi-market leverage. The results in Table

1.4 shows that Eisdorfer (2008) ’s result still holds in the new sample and with the new defini-

tions of control variables: the financially healthy firms have a significantly negative (t-stat=-2.52)

investment-volatility relationship and the financially distressed firms have a significantly positive

(t-stat=2.41) investment-volatility relationship. This confirms the intuition in this regression frame-

work: the risk-shifting effect dominates the real options effect for the financially distressed firm thus

we can observe a positive regression coefficient.

Hypothesis 1

Table 1.4 examines the effect of financial constraints on reducing risk-shifting incentives. In this

table, the industry-adjusted investment Iadj is regressed on expected industry volatility σInd and

an interactive term of σInd and financial constraints index with the control of beginning-of-period

firm size, investment opportunities (Tobin’s Q), market leverage, operating cash flow, and macro

level effects such as the NBER recession indicator, the default spread and the risk-free interest rate.

Newey and West (1987) procedure is used to correct for heteroskedasticity and serial correlation.

Since there are four financial constraints criteria considered, the financial constraints index in the

interactive term takes the form of a dummy variable for the Size and Payout criteria and equals the

SA and WW indices for the other two. Instead of splitting the sample into financially constrained

and unconstrained sub-samples based on these criteria, I use the interactive term to introduce the

financial constraints effect. This approach is intuitively appealing especially for the SA index and

WW cases because it allows for a comparison of constrained and unconstrained cases on a continuous
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basis.

As in Eisdorfer (2008), when the real options effect dominates, the investment-volatility relation

is significantly negative, whereas as the risk-shifting effect gets stronger the relation can be reversed.

In this study financial constraints work as an added negative effect. This means that when the

degree of financial constraint is high, the negative investment-volatility relation in Eisdorfer’s (2008)

framework strengthens, and the positive investment-volatility relation may be overturned. Hence the

combined result of the real options effect and the financial constraints costs leads to further reduction

of risk-shifting incentives. This intuition is supported by the results in Table 1.4. There exists a

significant negative effect of financial constraints across all four schemes shown by the negative

coefficients on the interactive terms (t-statistics of -2.77, -2.71, -2.66 and -4.02 respectively). The

positive coefficients on expected volatility for the Size and Payout schemes indicate that risk-shifting

effect dominates the other two effects for financially unconstrained firms. Those for the SA index and

WW index schemes are negatively significant because SA and WW are negative in this sample and

these coefficients indicate the negative investment-volatility relationship for financially constrained

firms. Consistent with Hypothesis 1, these results show that the financially constrained firms avoid

risk-shifting behaviors, whereas the unconstrained firms show some systematic tendency to engage

in such activities.

Hypothesis 2

The current view of the risk-shifting literature is that risk-shifting tends to happen when firms are

in financial distress. However, the theoretical model in this paper predicts that unconstrained firms

are more likely to shift risk when they are still healthy, so financial distress is not as informative

as before when financial constraints are controlled for. To incorporate this view into the empirical

tests, I add Altman’s Z-score and an interactive term of Z-score and σInd into the regression model

in Table 1.5. The results are shown in Table 1.6. In this table, the coefficients on the interactive

term for financial constraints are still negatively significant once Z-score is controlled for under all

four financial constraints schemes. Moreover, the interactive terms for financial distress are not

significant, supporting the model prediction.

Hypothesis 3

The summary statistics in Table 1.2 show that financially constrained firms tend to have shorter

debt maturities. Therefore concerns may arise based on the argument in Barnea, Haugen, and

Senbet (1980) that short-term debt will be used in firms with high risk-shifting incentives to re-

duce such incentives because short-term debt values are less sensitive to fluctuations in volatility.

This claim is supported by Barclay and Smith (1995a) and Guedes and Opler (1996) who find

that growth firms use more short-term debt. However Figure 1.1 shows that there is no linear

linkage between short-term debt and reduction of risk-shifting incentive unconditionally. Con-

ditioned on financial constraints, short-term debt may help to strengthen the effect of financial

constraints in reducing risk-shifting incentives. Empirically, this model prediction can be tested

by introducing interactive terms between σInd and dummy variables for different debt maturities

while controlling for financial constraints. The average debt maturity is defined as the weighted

average of debt maturities where the weights are proportion of debts maturing in each year4, i.e.

4This definition uses the debt maturity variables in COMPUSTAT, i.e. dd1, dd2, dd3, dd4 and dd5. For debt
maturing over 5 years, the maturity is defined as 6 years.
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T= 1∗dlc+2∗dd2+3∗dd3+4∗dd4+5∗dd5+6∗(dltt−dd2−dd3−dd4−dd5)
dlc+dltt . The dummy variables D1 = 1 if T <= 1

and 0 otherwise; D2 = 1 if 1 < T ≤ 2 and 0 otherwise; and D3, D4, D5 can be defined in the same

fashion. These dummy variables indicate whether the average debt maturity T falls into each range.

The interactive terms of D1 to D5 with σInd and financial constraints index FC show how debt

maturities affect the effect of financial constraints on risk-shifting. If the short-term debt effect is

very strong, we would observe a significantly negative coefficient on σInd ∗ FC ∗D1 and possibly a

significantly positive coefficient on σInd ∗ FC ∗D5. Table 1.6 presents results from such tests.

The first column in Table 1.6 shows the effect of debt maturity on risk-shifting incentives without

control of financial constraints. The interactive terms for this column are actually between σInd and

Di, i = 1, 2, ...5 only. The insignificant coefficients on the interactive terms shows no sign of risk-

shifting reduction effect. The next four columns present the same results with control of financial

constraints. The 1-year debt significantly helps to strengthen the effect of financial constraints as

seen by the negative coefficients of σInd ∗FC ∗D1 for all criteria except Payout(t-stat=-5.02, -4.10,

-4.50). The 2-year debt maturity helps as well, but the effect is less significant. Surprisingly, the

3-year and 4-year debt contribute more to increases in risk-shifting incentive than the 5-year case,

but this result is not supported by the WW index. This result is consistent with the view that

short-term debt maturity alleviates risk-shifting behaviors, but this works only conditionally when

financial constraints are controlled for. As a result, debt maturity is more of a complement than

substitute to financial constraints for reducing risk-shifting incentives.

Hypothesis 4

The tests in the previous subsections show that financial constraints have a significant effect on

reducing risk-shifting incentives. A natural question following this result is how big the impact is.

Table 1.7 addresses this question. As discussed in section 1.2.2, the agency cost of risk-shifting

can be measured by the reduction of the optimal leverage and the loss of firm value relative to the

benchmark. Financial constraints help in such a way that the reduction is lessened as firms become

more constrained. To illustrate this pattern, I run regressions of industry-adjusted leverage and asset

returns on contemporaneous industry-adjusted investment Iadj , interactions of Iadj with financial

constraints variable FC and other control variables in the baseline model. The first dependent

variable, the industry-adjusted leverage, is computed as the firm-level leverage minus the median

industry leverage in the corresponding year based on the 4-digit SIC code to control the industry

effect (see Frank and Goyal (2009)). The second dependent variable, the industry-adjusted asset

return, is computed similarly where asset return is defined as the percentage change of the market

value of asset(book value of debt plus market value of equity). According to Hypothesis 4, the more

constrained firms should have less reductions in leverage and firm value, so the coefficient of the

interactive terms should be significantly positive.

The first four columns in Table 1.7 present the regression results for the industry-adjusted leverage

under the four financial constraints criteria. Except for the Payout scheme, financial constraints help

to reserve the level of leverage under all schemes (t-statistics are 4.58, 3.64 and 5.76 respectively for

the FC ∗ Iadj term). The coefficient is negatively significant under the Payout scheme because the

classification under this scheme is highly skewed and the constrained sub-sample is more likely to be

contaminated with unconstrained firms. According to the Size scheme, everything else being equal,

financially constrained firms should be able to use 0.152% more leverage for every 1% investment

they make compared to unconstrained firms.
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The next four columns in Table 1.7 shows the regression results for the industry-adjusted asset

return. Everything else being equal, the asset returns of the financially constrained firms are 0.605%

higher than that of the unconstrained firms on average for every 1% investment they make based

on Size scheme. This implies that financially constrained firms make better investment choices by

avoiding risk-shifting behaviors. The more investment they make, the greater the difference they

can make. Similar conclusion can be drawn under the other three schemes.

1.4 Robustness Check

This study assumes that a firm requires external financing when equity holders implement risk-

shifting strategies. What if the firm has enough internal funding so that they can shift risk with a

much lower cost? To address this concern, let’s first look at the summary statistics in Table 1.2.

Cash holdings CH as defined by total cash normalized by lagged total asset represents the amount

of internal funding for a firm. On average, unconstrained firms hold much less cash, so they will

resort to external financing when they make a major investment. Even if the internal fundings are

enough, the low cost of external financing makes it a legitimate thing to do. On the other hand,

financially constrained firms have more cash holdings. However, the difficulty of acquiring external

financing is the exact reason that they preserve more internal fundings. It is never a good idea for

equity holders of the constrained firms to exhaust the internal fundings and make their risk-shifting

attempt so obvious. Therefore, it is reasonable to assume that risk-shifting behaviors are subject to

financial constraints costs potentially. Table 1.8 presents the results of the baseline model in Table

1.5 with added control of CH. The significantly negative coefficients on σInd ∗ FC (t-stat=-2.82, -

2.76, -2.56 and -3.87) show that financial constraints effect still persists even when CH in controlled

for. Overall, even when firm has abundant internal fundings, financial constraints will still lead to

less risk-shifting incentives.

1.5 Conclusion

Risk-shifting has been a center of debate in corporate finance. Various studies have provided evi-

dences on the existence of risk-shifting, the quantitative effect of it and on how to reduce it. This

study addresses all three problems from a novel perspective by looking at the link between financing

frictions and corporate investment via the risk channel. When financial constraints are linked to

risk-shifting investment, it can help reduce risk-shifting incentives. That is, firms are more likely

to shift risk when they are financially unconstrained. Both the theoretical implications and empir-

ical tests support this result. Moreover, this study refreshes the current view that firms shift risk

when they are financially distressed. In fact, even the healthy firms engage in risk-shifting behaviors

when they are financially unconstrained. This differentiation of potential risk-shifting and non risk-

shifting targets can generate interesting implications for the simultaneous choice of capital structure

and investment decisions as well as asset pricing, which will be explored in future research. This

study also find that short-term debt does not reduce risk-shifting incentives unconditionally; it helps

to strengthen the effect of financial constraints. Another interesting finding is that the quantitative

effect of financial constraints in reducing risk-shifting behavior is very high. A constrained firm

typically generates 0.605% more return and uses 0.152% more leverage compared with a similar

unconstrained firm for every 1% investment they make. The effect can be big when firms make
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massive investments. Along this line, it would be interesting to study how this effect breaks down

to equity returns and bond returns. I will leave it as a future research topic.
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Table 1.1: Optimal Risk-shifting Thresholds over a Set of Financial Con-
straints Costs and Debt Maturities

This table presents the effect of financial constraints cost M = M0(1 + i) on reducing risk-shifting incentives and
agency costs of risk-shifting for a representative firm. The fixed cost M0 = 30 is the cost of a risk-shifting investment
for a financially unconstrained firm and the percentage financial constraints cost is denoted by i ∈ [0, 0.55] which
increases with degree of financial constraints. This table also presents the effect for three exogenously given debt
rollover rates: m ∈ 0, 0.1, 0.2, which is equivalent to average debt maturities of ∞, 10 years and 5 years. Panel A
shows the results for the benchmark model in which risk-shifting can be credibly excluded ex ante, whereas Panel
B, C and D shows the results for the risk-shifting model in which risk-shifting option can be exercised ex post for
different debt maturities. The optimal coupon for the benchmark model is denoted as C∗. The other quantities for
the benchmark model,i.e. optimal firm value V B, equity value SB, leverage ratio LR, default threshold XD and
credit spread CSP are all evaluated at C∗. For the risk-shifting model, the optimal coupon C is determined at time 0,
the initial firm value V 0, the initial equity value S0 and the initial equity value evaluated with the benchmark model
SB(C) are all computed at the optimal coupon C in the risk-shifting model. The leverage ratio LR is computed as
initial debt value over firm value. The ex post optimal risk-shifting threshold, default threshold after risk-shifting
and default threshold before risk-shifting are denoted by XR, XDH and XDL respectively. The relative risk-shifting
incentive is K = XR/XDL. The agency cost AC = (V 0 − V B)/V B is percentage loss of firm value relative to
the benchmark model. The credit spread CSP = C/(V 0 − S0) − rf is expressed as basis points. The firm has an
initial cash flow X0 = 100.The marginal tax rate τ = 20% and the expected rate of return µ = 1%. The pre- and
post-shifting risk levels are σL = 25% and σH = 40%. The percentage cost of bankruptcy is α = 0.25 and the risk-free
rate is rf = 6%.

Panel A Benchmark Model, m=0 (T=Inf)

C* VB(C*) SB(C*) LR(C*) XD(C*) CSP(C*)

79.62 1,738.22 698.71 59.80% 34.55 165.9

Panel B Risk-shifting Model, m=0 (T=Inf)

i C V0 S0 SB(C) LR XR XDH XDL K AC CSP

0% 18.58 1,642.13 1,361.71 1,359.95 17.08% 35.86 5.38 8.06 4.45 5.53% 62.6
5% 19.03 1,643.14 1,355.96 1,354.36 17.48% 35.04 5.51 8.26 4.24 5.47% 62.6
10% 19.47 1,644.14 1,350.35 1,348.91 17.87% 34.28 5.64 8.45 4.06 5.41% 62.6
15% 19.90 1,645.11 1,344.86 1,343.60 18.25% 33.58 5.76 8.63 3.89 5.36% 62.6
20% 20.31 1,646.06 1,339.49 1,338.42 18.62% 32.91 5.88 8.82 3.73 5.30% 62.6
25% 20.72 1,646.98 1,334.24 1,333.35 18.99% 32.28 6.00 8.99 3.59 5.25% 62.6
30% 21.12 1,647.89 1,329.10 1,328.40 19.35% 31.69 6.12 9.17 3.46 5.20% 62.6
35% 21.52 1,648.79 1,324.05 1,323.54 19.70% 31.14 6.23 9.34 3.33 5.14% 62.6
40% 21.90 1,649.66 1,319.10 1,318.79 20.04% 30.61 6.34 9.51 3.22 5.09% 62.6
45% 22.28 1,650.52 1,314.24 1,314.13 20.37% 30.11 6.45 9.67 3.11 5.05% 62.6
50% 22.66 1,666.29 1,309.56 1,309.56 21.41% 29.63 6.56 9.83 3.01 4.14% 35.1
55% 23.02 1,667.19 1,305.08 1,305.08 21.72% 29.18 6.67 9.99 2.92 4.09% 35.8

Panel C Risk-shifting Model, m=1/10 (T=10)

i C V0 S0 SB(C) LR XR XDH XDL K AC CSP

0% 32.82 1,651.33 1,170.82 1,162.05 29.10% 51.56 15.30 20.70 2.49 2.37% 83.1
5% 32.84 1,651.50 1,169.58 1,161.83 29.18% 50.37 15.33 20.71 2.43 2.36% 81.4
10% 32.86 1,651.66 1,168.38 1,161.59 29.26% 49.26 15.36 20.72 2.38 2.35% 79.9
15% 32.88 1,651.82 1,167.21 1,161.35 29.34% 48.20 15.39 20.73 2.33 2.34% 78.4
20% 32.90 1,651.98 1,166.07 1,161.10 29.41% 47.19 15.42 20.74 2.28 2.33% 77.0
25% 32.92 1,652.13 1,164.96 1,160.83 29.49% 46.24 15.45 20.75 2.23 2.32% 75.7
30% 32.94 1,652.27 1,163.88 1,160.57 29.56% 45.34 15.48 20.76 2.18 2.31% 74.4
35% 32.96 1,652.42 1,162.83 1,160.30 29.63% 44.47 15.51 20.78 2.14 2.31% 73.2
40% 32.98 1,652.55 1,161.81 1,160.02 29.70% 43.65 15.54 20.79 2.10 2.30% 72.1
45% 33.00 1,652.69 1,160.81 1,159.74 29.76% 42.86 15.57 20.80 2.06 2.29% 71.0
50% 33.03 1,652.82 1,159.83 1,159.46 29.83% 42.11 15.60 20.82 2.02 2.28% 69.9
55% 33.05 1,674.99 1,159.18 1,159.18 30.80% 41.39 15.62 20.83 1.99 0.97% 40.7

Panel D Risk-shifting Model, m=1/5 (T=5)

M C V0 S0 SB(C) LR XR XDH XDL K AC CSP

0% 32.75 1,648.32 1,147.98 1,146.21 30.35% 44.19 18.95 24.04 1.84 1.35% 54.6
5% 32.59 1,648.22 1,149.25 1,148.37 30.27% 43.35 18.89 23.93 1.81 1.36% 53.2
10% 32.44 1,648.13 1,150.48 1,150.45 30.19% 42.55 18.84 23.83 1.79 1.36% 51.8
15% 32.29 1,665.20 1,152.43 1,152.43 30.79% 41.77 18.78 23.73 1.76 0.34% 29.6
20% 32.14 1,665.09 1,154.34 1,154.34 30.67% 41.03 18.73 23.63 1.74 0.35% 29.3
25% 32.01 1,664.98 1,156.17 1,156.17 30.56% 40.32 18.67 23.54 1.71 0.35% 29.0
30% 31.87 1,664.87 1,157.93 1,157.93 30.45% 39.63 18.62 23.45 1.69 0.36% 28.8
35% 31.75 1,664.77 1,159.63 1,159.63 30.34% 38.97 18.58 23.37 1.67 0.37% 28.5
40% 31.63 1,664.67 1,161.26 1,161.26 30.24% 38.34 18.53 23.29 1.65 0.37% 28.2
45% 31.51 1,664.57 1,162.84 1,162.84 30.14% 37.73 18.48 23.21 1.63 0.38% 28.0
50% 31.39 1,664.48 1,164.37 1,164.37 30.05% 37.13 18.44 23.13 1.61 0.38% 27.7
55% 31.28 1,664.39 1,165.84 1,165.84 29.95% 36.56 18.40 23.06 1.59 0.39% 27.5
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Table 1.2: Summary Statistics

This table presents summary statistics for full and sub-samples of financially constrained and unconstrained firms under
four financial constraints schemes: Size, Payout, SA and WW. Book value of asset TA is in millions of dollars. Industry
expected volatility σInd is the expected industry volatility for the year ahead from a GARCH(1, 1) model based on stock
returns over the period of 1950 to 2009. Tobin’s Q is defined as market value of assets over book value of assets. Leverage
ratio LR is the ratio of book value of debt over market value of assets. Investment intensity I, cash flow CF, and Cash
Holding CH are defined as the ratio of capital expenditures, operating cash flows and total cash to beginning-of-period total
assets. Payout ratio Payout is defined as dividends and stock repurchases over operating income. Z-Score is introduced
in Altman (1968) for forecasting bankruptcy. The Size-Age index SA is introduced in Hadlock and Pierce (2010), and the
Whited-Wu index WW is introduced in Whited and Wu (2006). They both are continuous measure of financial constraints.
Average debt maturity T is the weighted average of debts maturing in one, two, three, four and five years. N is the number
of observations in each sample. All financials are inflation-adjusted to 2004 dollar value. The sample data is taken from
CRSP for the period of 1950 to 2009 and COMPUSTAT for the period of 1965 to 2009. Financial, utility and not-for profit
firms are excluded. Leverage ratio is winsorized at 0.99. Q is capped at 10. The top and bottom percentiles of I, CF, AT,
Z-Score and WW are excluded to remove outliers. The final full sample contains 7,680 firms.

Size Payout SA WW

Full Sample Const Unconst Const Unconst Const Unconst Const Unconst

Mean 889.545 36.720 2,618.717 571.253 1,049.521 42.553 306.995 160.581 237.834
TA Median 174.724 29.949 1,409.910 123.572 176.719 33.284 91.620 35.846 87.438

Std. Dev. 2,030.922 30.033 3,064.964 1,448.575 2,379.024 32.311 809.892 738.240 680.643

Mean 0.217 0.215 0.214 0.218 0.218 0.216 0.219 0.219 0.219
σInd Median 0.201 0.198 0.200 0.202 0.200 0.199 0.202 0.200 0.202

Std. Dev. 0.066 0.065 0.066 0.066 0.070 0.066 0.067 0.073 0.067

Mean 1.832 2.069 1.693 1.872 1.936 2.169 1.929 2.116 1.901
Q Median 1.426 1.553 1.387 1.427 1.515 1.660 1.478 1.597 1.454

Std. Dev. 1.246 1.514 1.001 1.308 1.321 1.551 1.357 1.539 1.342

Mean 0.168 0.117 0.222 0.181 0.123 0.116 0.157 0.124 0.154
LR Median 0.116 0.051 0.185 0.123 0.065 0.048 0.089 0.055 0.087

Std. Dev. 0.176 0.149 0.178 0.187 0.152 0.151 0.180 0.155 0.177

Mean 0.068 0.061 0.072 0.073 0.054 0.069 0.069 0.064 0.068
I Median 0.044 0.034 0.052 0.044 0.036 0.039 0.042 0.035 0.041

Std. Dev. 0.075 0.077 0.068 0.082 0.063 0.083 0.080 0.081 0.080

Mean 0.060 -0.00012 0.102 0.046 0.040 -0.005 0.042 -0.011 0.040
CF Median 0.078 0.034 0.099 0.066 0.068 0.031 0.065 0.027 0.063

Std. Dev. 0.158 0.207 0.093 0.168 0.177 0.216 0.178 0.209 0.175

Mean 0.185 0.180 0.204 0.011 0.776 0.163 0.166 0.161 0.165
Payout Median 0.026 0.000 0.110 0.000 0.971 0.000 0.000 0.000 0.000

Std. Dev. 0.303 0.342 0.262 0.024 0.260 0.331 0.315 0.334 0.316

Mean 0.224 0.305 0.118 0.243 0.277 0.350 0.272 0.334 0.269
CH Median 0.088 0.156 0.048 0.092 0.143 0.175 0.118 0.167 0.120

Std. Dev. 0.449 0.534 0.260 0.481 0.534 0.629 0.518 0.600 0.509

Mean 4.789 5.242 3.863 4.778 4.973 5.609 5.101 5.111 5.056
Z-Score Median 3.608 3.912 3.126 3.449 3.962 4.094 3.741 3.644 3.728

Std. Dev. 4.457 5.217 3.179 4.725 4.555 5.498 4.924 5.352 4.862

Mean -3.164 -2.412 -3.903 -2.969 -3.230 -2.285 -2.761 -2.518 -2.850
SA Median -3.119 -2.376 -3.868 -2.950 -3.191 -2.364 -2.834 -2.479 -2.845

Std. Dev. 0.772 0.518 0.543 0.693 0.810 0.347 0.499 0.594 0.622

Mean -0.147 -0.035 -0.263 -0.115 -0.156 -0.039 -0.103 0.014 -0.084
WW Median -0.157 -0.059 -0.279 -0.128 -0.170 -0.061 -0.119 -0.029 -0.112

Std. Dev. 0.142 0.118 0.109 0.137 0.146 0.119 0.130 0.127 0.122

Mean 1.360 1.132 1.473 1.405 1.123 1.152 1.299 1.158 1.299
T Median 1.232 1.000 1.319 1.298 1.000 1.009 1.131 1.000 1.153

Std. Dev. 1.101 1.011 1.063 1.112 1.093 1.006 1.122 1.063 1.112

N 55,044 16,524 16,524 33,281 9,312 16,514 38,530 16,514 38,530
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Table 1.3: Regressions of Investment on Expected Volatility for Finan-
cially Healthy and Distressed Firms

This table presents results from the regressions of investment on expected volatility for the financially healthy and
distressed firms. Firms with Altman’s Z-score no more than 1.81 are classified as financially distressed; the rest
of them are healthy. Column Healthy represent regressions for the healthy firms and Distress for the distressed
firms. Investment intensity I is defined as the ratio of capital expenditures to beginning-of-period total assets. The
dependent variable is the industry-adjusted investment intensity Iadj at the beginning of the year, which is the firm-
level investment intensity minus the median investment intensity of the industry in the corresponding year.σInd is
the expected industry volatility at the beginning of the year estimated by applying GARCH (1,1) model to the value-
weighted industry returns defined by the 2-digit SIC codes. Size is the log of total market value of assets which equals
to the market value of equity and the book value of debt. Tobin’s Q is the market value of assets over the book
value of assets. Leverage LR is the book value of debt over market value of assets. The cash flow CF is the ratio of
operating cash flow to beginning-of-period total assets. Recession is the dummy variable which equals to one if the
firm-year is in recession according to NBER’s recession dates. DefSpr is the spread between Baa-rated and Aaa-rated
long term bond yields. Risk-free Rate rf is the 1-month T-bill rate. N represents the number of observations used in
the regressions. The sample data is taken from CRSP and COMPUSTAT for the period of 1965 to 2009. Financials,
utilities and not-for-profit firms are excluded. The full sample contains 7,680 firms. The regression coefficients and
t-statistics are calculated based on Newey-west standard errors with 6 lags.

Healthy Distressed

σInd -0.014 0.026
(-2.52)* (2.41)*

Size -0.001 0.000
(-2.70)** (-0.15)

Q 0.009 0.011
(22.30)** (10.58)**

LR -0.01 -0.012
(-3.28)** (-2.74)**

CF 0.061 0.04
(20.16)** (6.96)**

Recession -0.003 -0.001
(-4.06)** (-0.49)

DefSpr 0.186 0.398
(2.25)* (2.39)*

rf 0.132 -0.022
(7.44)** (-0.57)

Intercept -0.005 -0.021
(-2.00)* (-4.26)**

N 45,382 9,663

* p < 0.05; ** p < 0.01
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Table 1.4: Regressions of Investment on Expected Volatility and its Inter-
action with Financial Constraints Index

This table presents results from the regressions of investment on expected volatility and its interaction with financial
constraints index. The four columns Size, Payout, SA and WW shows the four financial constraints classification
schemes. The first two are based on the ranking of book size (the log of book value of assets) and payout ratio
(dividends and stock repurchases over operating income). Firms that are in the bottom (top) three deciles are
defined as financially constrained (unconstrained). The next two are continuous in financial constraints. SA index
is introduced in Hadlock and Pierce (2010). It includes the linear terms of size and firm age as well as a quadratic
term of size in the model. WW index is introduced in Whited and Wu (2006) and is a linear combination of cash
flow, dividend payout dummy, total long-term debt, total asset and sales growth. The dependent variable is the
industry-adjusted investment intensity Iadj at the beginning of the year. The independent variables are the expected
industry volatility σInd at the beginning of the year, the financial constraints index FC and the interaction of FC and
σInd. FC is a dummy variable which equals to 1 if the firm is financially constrained and 0 otherwise for the Size and
Payout scheme whereas it equals SA index or WW index for the other two schemes. The other control variables are
defined in Table 1.3. The sample data is taken from CRSP and COMPUSTAT for the period of 1965 to 2009. Only
non-financial and non-utility firms are included. The full sample contains 7,680 firms. The regression coefficients and
t-statistics are calculated based on Newey-west standard errors with 6 lags.

Size Payout SA WW

σInd 0.0110 0.0150 -0.0680 -0.0190
(1.29) (1.58) (-3.00)** (-2.97)**

FC 0.0090 0.0190 0.0140 0.0120
(2.50)* (7.58)** (8.27)** (1.7)

σInd * FC -0.0350 -0.0290 -0.0180 -0.1130
(-2.77)** (-2.71)** (-2.66)** (-4.02)**

Size 0.0000 0.0010 0.0030 -0.0010
(0.04) (2.22)* (8.13)** (-3.90)**

M2B 0.008 0.009 0.007 0.009
(16.04)** (21.59)** (17.56)** (23.83)**

LR -0.0210 -0.0250 -0.0180 -0.0180
(-6.83)** (-9.31)** (-7.42)** (-7.49)**

CF 0.0520 0.0570 0.0620 0.0580
(16.14)** (20.01)** (22.43)** (20.63)**

NBER -0.0020 -0.0030 -0.0020 -0.0030
(-2.34)* (-3.36)** (-3.19)** (-4.09)**

DefSpr 0.3530 0.3240 0.2270 0.1940
(3.55)** (3.50)** (3.00)** (2.54)*

rf 0.133 0.139 0.105 0.114
(6.27)** (7.30)** (6.46)** (6.98)**

Intercept -0.014 -0.026 0.023 -0.002
(-3.01)** (-8.55)** (4.17)** (-1.07)

N 33,050 42,593 55,045 55,045

* p < 0.05; ** p < 0.01
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Table 1.5: Regressions of Investment on Expected Volatility and its Inter-
action with Financial Constraints Index and Z-Score

This table presents results from the regressions of investment on expected volatility and its interaction with financial
constraints index and Altman’s Z-Score. The four columns Size, Payout, SA and WW shows the four financial
constraints classification schemes. The details about the four schemes are described in Table 1.5. The dependent
variable is the industry-adjusted investment intensity Iadj at the beginning of the year. The independent variables are
the expected industry volatility σInd at the beginning of the year, the financial constraints index FC, the Altman’s
Z-Score and the interaction of σInd with FC and Z-Score. FC is a dummy variable which equals to 1 if the firm is
financially constrained and 0 otherwise for the Size and Payout scheme whereas it equals SA index or WW index for
the other two schemes. The Altman’s Z-Score is based on Altman’s (1968) model. The other control variables are
defined in Table 1.3. The sample data is taken from CRSP and COMPUSTAT for the period of 1965 to 2009. Only
non-financial and non-utility firms are included. The full sample contains 7,680 firms. The regression coefficients and
t-statistics are calculated based on Newey-west standard errors with 6 lags.

Size Payout SA WW

σInd 0.015 0.021 -0.059 -0.015
(1.51) (1.92) (-2.50)* (-1.77)

FC 0.008 0.019 0.014 0.01
(2.24)* (7.52)** (8.05)** (1.46)

σInd*FC -0.034 -0.029 -0.016 -0.11
(-2.71)** (-2.66)** (-2.41)* (-3.84)**

Z-Score 0.00002 0.00003 -0.00005 -0.000138
(0.06) (0.11) (-0.21) (-0.54)

σInd*Z-Score -0.002 -0.002 -0.001 -0.001
(-1.11) (-1.44) (-1.05) (-0.88)

SIZE -0.00016 0.001 0.003 -0.001
(-0.3) (2.40)* (8.23)** (-3.91)**

M2B 0.008 0.009 0.007 0.01
(14.75)** (19.95)** (16.37)** (22.07)**

LR -0.027 -0.031 -0.024 -0.025
(-8.76)** (-11.57)** (-9.88)** (-10.22)**

CF 0.053 0.057 0.062 0.058
(15.58)** (19.31)** (21.72)** (19.99)**

NBER -0.002 -0.002 -0.002 -0.002
(-2.24)* (-2.86)** (-2.82)** (-3.72)**

DefSpr 0.334 0.307 0.222 0.187
(3.40)** (3.34)** (2.92)** (2.45)*

rf 0.137 0.144 0.109 0.118
(6.38)** (7.47)** (6.66)** (7.17)**

Intercept -0.012 -0.027 0.022 -0.002
(-2.50)* (-7.80)** (3.88)** (-0.68)

N 32,184 41,670 53,783 53,783

* p < 0.05; ** p < 0.01
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Table 1.6: Regressions of Investment on Expected Volatility and its Inter-
actions with Financial Constraints Index and Debt Maturity
Dummies

This table presents results from the regressions of investment on expected volatility and its interaction with financial
constraints index and debt maturities. The four columns Size, Payout, SA and WW shows the four financial con-
straints classification schemes which are described in detail in Table 1.4. The first column does not take financial
constraints into account. The dependent variable is the industry-adjusted investment intensity Iadj at the beginning
of the year. The independent variables are the expected industry volatility σInd at the beginning of the year, the
financial constraints index FC, the debt maturity dummies D1 to D5 and the interaction of σInd with FC and Di,
i=1,2,3,4,5. Please note that for the first column, these interactions are between σInd and Di, i=1,2,3,4,5 only. FC
equals to 1 if the firm is financially constrained and 0 otherwise for the Size and Payout scheme whereas it equals SA
index or WW index for the other two schemes. The debt maturity dummy variables D1 up to D5 are defined based on
the weighted average debt maturity T=(dlc*1+dd2*2+dd3*3+dd4*4+dd5*5+(dltt-dd2-dd3-dd4-dd5)*6)/(dlc+dltt).
D1=1 if T ≤ 1 and D2=1 if 1 < T ≤ 2, and so on. The variables related to debt maturities and their interactions
with σInd are omitted. The rest of the control variables are defined in Table 1.3. The sample data is taken from CRSP
and COMPUSTAT for the period of 1965 to 2009. Only non-financial and non-utility firms are included. The full
sample contains 7,680 firms. The regression coefficients and t-statistics are calculated based on Newey-west standard
errors with 6 lags.

Size Payout SA WW

σInd -0.013 -0.009 0.014 -0.039 -0.016
(-1.43) (-0.65) (-1.11) (-1.56) (-1.67)

FC 0.006 0.018 0.013 0.008
(1.66) (7.10)** (7.72)** (1.19)

σInd*FC -0.014 -0.036 -0.008 -0.053
(-0.97) (-3.03)** (-1.06) (-1.57)

σInd*FC*D1 0.003 -0.048 0.008 -0.02 -0.117
(0.31) (-5.02)** (0.99) (-4.10)** (-4.50)**

σInd*FC*D2 0.009 -0.019 0.009 -0.011 -0.055
(0.78) (-1.94) (1.05) (-2.15)* (-1.93)

σInd*FC*D3 0.023 0.031 0.029 0.022 0.034
(1.49) (2.28)* (2.40)* (3.08)** (0.9)

σInd*FC*D4 0.032 0.06 0.001 0.037 0.06
(1.44) (2.25)* (0.04) (3.13)** (0.89)

σInd*FC*D5 -0.03 0.041 -0.007 0.006 0.049
(-0.99) (1.2) (-0.25) (0.41) (0.55)

Size -0.0005 -0.0003 0.001 0.003 -0.001
(-2.15)* (-0.54) (2.21)* (8.18)** (-3.88)**

M2B 0.009 0.008 0.009 0.007 0.009
(24.15)** (15.93)** (21.72)** (17.60)** (23.96)**

LR -0.022 -0.028 -0.03 -0.024 -0.023
(-9.15)** (-9.01)** (-10.91)** (-9.67)** (-9.45)**

CF 0.059 0.052 0.057 0.061 0.057
(21.72)** (16.11)** (20.11)** (22.38)** (20.62)**

NBER -0.002 -0.002 -0.003 -0.002 -0.002
(-3.79)** (-2.25)* (-3.34)** (-3.15)** (-4.03)**

DefSpr 0.256 0.376 0.325 0.245 0.21
(3.39)** (3.78)** (3.49)** (3.23)** (2.74)**

rf 0.109 0.123 0.134 0.097 0.109
(6.71)** (5.82)** (7.05)** (5.95)** (6.66)**

Intercept -0.002 -0.005 -0.021 0.023 0.002
(-0.84) (-0.92) (-5.82)** (4.13)** (0.54)

N 55,044 33,048 42,593 55,044 55,044

* p < 0.05; ** p < 0.01
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Table 1.8: Regressions of Investment on Expected Volatility and its Inter-
action with Financial Constraints Index with Control of Cash
Holdings

This table presents results from the regressions of investment on expected volatility and its interaction with finan-
cial constraints index with control of cash holdings. The four columns Size, Payout, SA and WW shows the four
financial constraints classification schemes which are described in detail in Table 1.5.The dependent variable is the
industry-adjusted investment intensity Iadj at the beginning of the year. The independent variables are the expected
industry volatility σInd at the beginning of the year, the financial constraints index FC, the Altman’s Z-Score and
the interaction of σInd with FC. FC is a dummy variable which equals to 1 if the firm is financially constrained and
0 otherwise for the Size and Payout scheme whereas it equals SA index or WW index for the other two schemes.
Cashholdings is total cash over beginning-of-period total asset. The other control variables are defined in Table 1.3.
The sample data is taken from CRSP and COMPUSTAT for the period of 1965 to 2009. Only non-financial and
non-utility firms are included. The full sample contains 7,680 firms. The regression coefficients and t-statistics are
calculated based on Newey-west standard errors with 6 lags.

Size Payout SA WW

σInd 0.013 0.017 -0.065 -0.018
(1.51) (1.76) (-2.83)** (-2.72)**

FC 0.01 0.019 0.014 0.011
(2.63)** (7.53)** (8.31)** (1.61)

σInd*FC -0.036 -0.031 -0.017 -0.112
(-2.82)** (-2.76)** (-2.56)* (-3.87)**

Cashholdings 0.00055 -0.00044 -0.002 -0.00027
(0.58) (-0.49) (-1.85) (-0.32)

Size 0.00009 0.001 0.003 -0.001
(0.18) (2.37)* (8.49)** (-3.75)**

M2B 0.008 0.009 0.007 0.009
(15.58)** (21.11)** (17.31)** (23.25)**

LR -0.021 -0.025 -0.019 -0.018
(-6.76)** (-9.15)** (-7.61)** (-7.40)**

CF 0.053 0.057 0.061 0.058
(16.47)** (20.21)** (22.52)** (20.85)**

NBER -0.002 -0.003 -0.002 -0.003
(-2.26)* (-3.30)** (-3.15)** (-4.04)**

DefSpr 0.35 0.319 0.225 0.193
(3.46)** (3.39)** (2.93)** (2.49)*

rf 0.134 0.14 0.104 0.114
(6.29)** (7.26)** (6.36)** (6.91)**

Intercept -0.016 -0.027 0.023 -0.003
(-3.30)** (-8.58)** (4.13)** (-1.23)

N 32,514 42,038 54,266 54,266

* p < 0.05; ** p < 0.01
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Figure 1.1: The Optimal Firm and Asset Value over a Set of Financial
Constraints Costs for Different Debt Maturities

This figure shows the optimal firm values and the decision to give up risk-shifting graphically over a set of financial
constraints costs. The total financial constraints cost M is defined as M = M0(1 + i) where the fixed cost M0 = 30
and the percentage financial constraints cost i ∈ [0, 0.55]. The upper panel shows the pattern of the initial firm value
with respect to M for debt rollover rates m = 0, 0.1and0.2 which corresponds to debt maturities of ∞, 10 years and
5 years. The lower panel shows the equity values evaluated with the risk-shifting model (SL(C)) and the benchmark
model (SB(C)) for the 10-year debt scenario. The firm has an initial cash flow X0 = 100. The marginal tax rate
τ = 20% and the expected rate of return µ = 1%. The pre- and post-shifting risk levels are σL = 25% and σH = 40%.
The percentage cost of bankruptcy is α = 0.25 and the risk-free rate is rf = 6%.
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Figure 1.2: The Optimal Risk-shifting Incentives v.s. Financial Con-
straints Costs for Different Debt Maturities

This figure shows the optimal absolute and relative risk-shifting incentives graphically over a set of financial constraints
costs and debt maturities. The total financial constraints cost M is defined as M = M0(1 + i) where the fixed cost
M0 = 30 and the percentage financial constraints cost i ∈ [0, 0.55]. The debt rollover rates m ∈ [0, 0.2] corresponds
to debt maturities of ∞ down to 5 years (T = 1

m
). The left panel shows the pattern of the optimal risk-shifting

threshold XR, and the right panel shows the relative measure of risk-shifting incentive: K = XR
XDL

where XDL is
the default threshold should the firm gives up risk-shifting. The firm has an initial cash flow X0 = 100. The marginal
tax rate τ = 20% and the expected rate of return µ = 1%. The pre- and post-shifting risk levels are σL = 25% and
σH = 40%. The percentage cost of bankruptcy is α = 0.25 and the risk-free rate is rf = 6%.
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Figure 1.3: The Optimal Coupon v.s. Financial Constraints Costs for Dif-
ferent Debt Maturities

This figure shows the optimal coupon C graphically over a set of financial constraints costs and debt maturities. The
total financial constraints cost M is defined as M = M0(1 + i) where the fixed cost M0 = 30 and the percentage
financial constraints cost i ∈ [0, 0.55]. The debt rollover rates m ∈ [0, 0.2] corresponds to debt maturities of ∞ down
to 5 years (T = 1

m
). The firm has an initial cash flow X0 = 100. The marginal tax rate τ = 20% and the expected

rate of return µ = 1%. The pre- and post-shifting risk levels are σL = 25% and σH = 40%. The percentage cost of
bankruptcy is α = 0.25 and the risk-free rate is rf = 6%.
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Chapter 2

Dynamic Investment and
Financing

2.1 Introduction

Since Modigliani and Miller (1958), the determinants of capital structure have been a central topic

of corporate finance research. Researchers have considered trading off tax benefit of debt against

bankruptcy costs, information asymmetries leading to a pecking order of internal and external financ-

ing, market timing to benefit from market inefficiencies, several forms of agency costs, managerial

inertia, and other imperfections. Empirical tests have identified determinants of leverage ratios to

distinguish empirical predictions of different theories. Arguably, the trade-off theory receives most

empirical support, yet it is still challenged by some empirical findings which favor other theories.

Therefore, there is no clear consensus in the literature. Furthermore, none of the extant theories

answers the following questions in a unified framework: (1) why firms tend to use debt financing so

conservatively, (2) whether there is a target leverage ratio and partial adjustment towards it, and

(3) why average leverage paths persist for over two decades. This paper attempts to fill this void by

exploring a dynamic framework of corporate investment and financing decisions.

Regarding the first question, Graham (2000) finds that firms, even stable and profitable, use less

debt than predicted by the static view of tax benefit of debt. Two out of five firms have an average

leverage ratio of less than 20%, and the median firm uses only 31.4% leverage over the 1965 to 2000

period, which creates a “low leverage puzzle.” In addition, Strebulaev and Yang (2012) find that

on average 10% of firms have zero leverage and almost 22% firms have less than 5% quasi-market

leverage, which represents a “zero leverage puzzle.” Extending the static trade-off model into a

dynamic one with financing costs helps to significantly reduce the model predicted market leverage

to 36% on average in the cross section and 26% at refinancing points in Strebulaev (2007). However,

these model simulated leverage ratios are still higher than those observed empirically. We emphasize

the importance of endogenous investment in a dynamic trade-off model and also provide an economic

mechanism that explains why firms tend to use debt financing so conservatively. Our model simulated

data sets feature, on average, 20% leverage in dynamics and 19% at investment points.

The second issue is related to the trade-off and the partial adjustment theories. An important

implication of trade-off theory is that firms have fixed target (i.e. optimal) leverage ratios. Whenever

actual leverage deviates from target leverage, the firm makes adjustments. This hypothesis is sup-

ported by Fama and French (2002), among others, who find that firms’ leverage ratios adjust, albeit

slowly, to their targets. Flannery and Rangan (2006) find that, on average, the speed of adjustment

is 30% of the gap per year. In contrast, Baker and Wurgler (2002) argue that managers actively

exploit stock market mispricing and issue stocks when they are over priced, so leverage ratios reflect

such attempts in the past. Welch (2004), on the other hand, claims that managerial inertia leaves

1This chapter is related to the working paper “Dynamic Investment and Financing,” with Dirk Hackbarth.
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stock price changes to dominantly affect leverage ratios. In these two articles, the effects on leverage

are persistent so that there is no target leverage and no partial adjustment. Notably, Leary and

Roberts (2005) defend the partial adjustment findings by arguing that the persistence identified

by the previous two studies is largely due to the inaction induced by the presence of adjustment

cost. Furthermore, Tserlukevich (2008) provides theoretical evidence on gradual and lumpy lever-

age adjustments by considering the effect of real frictions instead of financing frictions. Similarly,

we establish that dynamic trade-off models without endogenous investment (1) overestimate target

leverage ratios, and (2) can be misleading in that their target leverage ratios ignore the investment

process. The latter point means that there is no meaningful measurement of partial adjustment to

target leverage without recognition of the structure of the investment process.

The third question relates to Lemmon, Roberts and Zender (2008), who document persistence of

average leverage of four portfolios, which are based on the level the leverage, for very long periods of

time. That is, they find that leverage ratios tend to converge to medium levels over time, but high

(low) leverage firms preserve their high (low) leverage ratios for over twenty years. They conclude

that their findings are puzzling, because they cannot be explained by previously identified capital

structure determinants or models. It is therefore remarkable that our dynamic model can generate

average leverage ratios that are path dependent and persistent for very long periods of time.

In essence, real frictions in a dynamic trade-off model can generate these three regularities and

hence can go a long way in explaining capital structure. More specifically, the insights of this paper

derive from the simple observation that companies make sequential investments. These investments

are a result of breaking down projects into multiple stages, and the implementation of one stage is

contingent on the completion of the previous stages. Hence financing decisions of investments are

sequential too, so the structure of the investment process strongly affects financing decisions.

More specifically, we consider a two-stage investment option, which is financed by an optimal

mix of equity and debt in each stage.2 The two-stage investment option has two scales, Π1 and Π2,

which determine the structure of the investment process. If the second stage is more profitable than

the first stage, then we refer to it as a “back-loaded” investment process. The optimal leverage ratios

for both stages along with the endogenous investment and default thresholds maximize equity value.

The model’s solution features an intertemporal effect : firms use their debt capacity to balance the

benefits from accelerating the first option with increased debt financing against the costs of delaying

the second option due to decreased debt financing. Conditional on their investment and financing

opportunities, juvenile firms underutilize debt when financing investment the first time to retain

financial flexibility. Underutilization of debt persists when adolescent firms mature (i.e. exercise their

last investment options), and it is more (less) severe for more back-loaded (front-loaded) investment

opportunities. Thus, leverage dynamics crucially hinge upon the structure of the investment process

and otherwise identical firms appear to have significantly different target leverage ratios.

We estimate the key model parameters via Simulated Method of Moments (SMM). In particular,

structural estimation determines the two investment scales, bankruptcy cost, and effective tax rate.

Intuitively, SMM finds the set of parameters, which minimizes the difference of the simulated model

moments and the data moments from COMPUSTAT’s annual tapes for the period of 1965 to 2009.

We then split the full sample into low, medium, and high market-to-book (or Q) subsamples, and

employ SMM also to fit the four parameters for each subsample. We split the sample based on Q,

because it is the most reliable proxy for growth opportunities (see, e.g., Adam and Goyal (2007)).

2Although we study two stages, our model can be extended to multiple stages. Because its implications will be
qualitatively identical, we refer to it as multi-stage model and compare it to an otherwise identical single-stage model.
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Low Q firms tend to have fewer investment opportunities, whereas high Q firms tend to have more

investment opportunities. Therefore, the relative value of Q is informative about the structure of

the investment process in the real data. Indeed, our estimation results reveal that high Q firms have

the most back-loaded investment processes, and low Q firms have the most front-loaded ones.

Using the structural estimation results for the full sample, we perform capital structure regres-

sions on model simulated data and show that our model can replicate stylized facts established

by empirical research. In the spirit of Strebulaev (2007), simulation of the multi-stage model of

corporate investment and financing dynamics reinforces the need to differentiate investment points

from other data points when interpreting coefficient estimates for market-to-book or profitability in

a dynamic world. Moreover, we find that leverage is negatively related to the risk of cash flows, the

cost of bankruptcy, and market-to-book, but positively related the size of the firm and the tax rate,

which are all consistent with the literature (see, e.g., Frank and Goyal (2009)).

Finally, we document that real frictions in a dynamic model can produce average leverage paths

that closely resemble the corresponding ones documented by Lemmon, Roberts and Zender (2008).

Put differently, optimal investment and financing decisions in a dynamic model can largely explain

the otherwise puzzling patterns that, despite of some convergence, average leverage ratios across the

four portfolios are fairly stable over time for both types of sorts (i.e. actual and unexpected leverage)

performed by these authors.3 In particular, an extension of our dynamic framework to randomly

imposed initial variation in leverage reveals that, if model firms are “born” with high (low) leverage

ratios, then they maintain their relatively high (low) levels for over 20 years in spite of the fact that

leverage ratios converge somewhat to more moderate levels over time. This result illustrates that

firms, which know the structure of their investment processes, look very far into the future and make

decisions on debt usage accordingly. This leads to fairly stable leverage ratios, and serves in the

simulations as an important, unobserved determinant of the permanent component of leverage.

This paper builds on dynamic capital structure models by Fischer, Heinkel, and Zechner (1989)

and Goldstein, Ju and Leland (2001), with the latter providing the contingent claims valuation

framework adopted in this paper. Similarly, Strebulaev (2007) studies a dynamic trade-off model

with optimal refinancing in the presence of adjustment costs, which are constant over time. We

examine whether his conclusions carry over to our simulated economies with real frictions that vary

over time. Like us, Hennessy and Whited (2005) analyze a dynamic trade-off model with investment

and perform structural estimation. They largely focus on role of tax regimes, while we focus on the

intertemporal effect. More recently, Tserlukevich (2008) also invokes real fictions to produce gradual

and lumpy leverage adjustments in the absence of financial frictions. Two key differences are that

there is no intertemporal effect in his model and that leverage ratios produced by his model are much

higher than ours. Finally, DeAngelo, DeAngelo, and Whited (2011) study transitory debt that arises

due to unexpected (positive) shocks to investment opportunities whose properties are uncertain as of

time zero. Our model firm optimizes at time zero knowing the structure of the investment process,

so there is no role for transitory debt and yet we obtain average leverage persistence results similar

to DeAngelo, DeAngelo, and Whited (2009).

The rest of the paper is organized as follows. Section 2.2 presents and solves the model. Section

2.3 studies the intertemporal effect. Section 2.4 estimates structural parameters using SMM. Section

2.5 presents the results of cross-sectional capital structure regressions with model simulated data.

Section 2.6 examines capital structure persistence with model simulated data. Section 2.7 concludes.

3In this part of the paper, we employ the structural estimation results for the three subsamples to introduce
industry variation, so sorting on “unexpected leverage” defined as the residuals from a cross-sectional regression of
leverage on firm characteristics and industry indicator variables is different from sorting on actual leverage.
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2.2 Model

This section provides a simple framework to analyze the dynamics of corporate investment and

financing. In particular, we consider two versions of a model with endogenous financing and in-

vestment decisions. While the multi-stage model features two sequentially exercisable investment

options, where the capital expenditure in each stage is financed by a mixture of equity and debt, the

single-stage model has only one investment option. The single-stage model serves as a benchmark to

gauge interactions between investment and financing in the otherwise identical multi-stage model.

2.2.1 Setup

We consider a partial equilibrium model of corporate investment and financing dynamics. Time t is

continuous and uncertainty is modeled by a complete probability space (Ω,F ,P). Corporate assets

generate a continuous stream of cash flows, Xt, which evolve for t > 0 according to a geometric

Brownian motion with drift µ, volatility σ, and initial value initial cash flow X0 > 0 at time t = 0.

Corporate taxes are paid on cash flows at a constant rate τ based on full loss offset provisions.

Agents are risk-neutral and discount cash flows at a constant interest rate r > µ.

At time t = 0, the firm has no assets-in-place and a two-stage project, i.e. a compound option

in that the implementation of the second stage investment is contingent upon the completion of

the first stage. The two constants Π1 and Π2 represent the scales of the two investment options.

Suppressing time dependence of cash flows, ΠiX is the cash flow from investing in stage i = 1, 2,

which requires a capital expenditure, Fi.

The investment cost, Fi, can be financed with a mix of debt and equity. We assume that debt

has an infinite maturity and denote the coupon rate on debt issued in stage i by Ci.
4 The optimal

time to invest is the one that maximizes the market value of equity. The optimal time to default on

debt coupon payments is also endogenously determined (i.e. maximizes equity value). In the event

of default, equityholders receive nothing and debtholders assume ownership of the firm’s assets net

of bankruptcy costs. Bankruptcy costs include the loss of interest tax shields, the loss of the second-

stage option (if it has not been exercised), and the fraction α of the value of assets-in-place. The

endogenous investment thresholds and default thresholds in stage i are XSi and XDi for i = 1, 2.5

At time t = 0, equityholders wait to exercise the first investment option, which is triggered when

cash flows rise to the investment threshold XS1 ∈ (X0,∞) for the first time from below. We denote

this waiting period “stage 0” and call the firm in this stage a “juvenile” firm. When the first option

is exercised, the firm issues debt D1 and equity E1 to finance the fixed investment cost F1. Then

the firm enters “stage 1” and becomes an “adolescent” firm.

In stage 1, the firm has assets-in-place, another investment option, and a default option because

of D1. If cash flows decline to the default threshold XD1 ∈ (0, XS1) before reaching the second

investment threshold XS2 ∈ (XS1,∞), equityholders default. On the other hand, if cash flows reach

the investment threshold XS2 before decreasing to XD1, equityholders exercise the second option

and finance the investment cost F2 with a mix of debt, D22, and equity, E2. We assume that D22

has the same seniority as D1 whose value is denoted as D21 in the second stage. The firm then

enters “stage 2” and becomes a “mature” firm.

In stage 2, the firm has assets-in-place, no further investment options, and a default option be-

cause of D21 and D22. Equityholders default when X touches the default threshold XD2 ∈ (0, XS2)

4The reliance on consol bonds simplifies the analysis substantially but does not alter the economic insights.
5See Appendix A and Section 2.6 for a multi-stage model extended to have also an initial debt coupon C0.
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for the first time from above. Finally, we assume that there are no conflicts of interest and the debt

coupons maximize equity value at time 0. Table 2.1 provides a notational key.

To quantify the dynamic interactions of endogenous investment and financing decisions, we use a

single-stage model as a benchmark. This single-stage model is a truncated version of the multi-stage

model in that there is no intermediate stage 1. In stage 0, the juvenile firm has no asset-in-place and

no debt. It makes one investment of scale Π when X touches the investment threshold XS from below

for the first time, and then becomes a mature firm (i.e. enters stage 2). The capital expenditure, F ,

is funded by a mixture of debt and equity, where C denotes the coupon of the firm’s debt issue.

2.2.2 Solution of the Multi-Stage Model

Using backward induction, we obtain values of debt and equity in each stage and then pin down the

optimal investment and default thresholds via smooth-pasting conditions.

Mature Firm (Stage 2)

In the second stage, both investment options have been converted into assets-in-place. The new

debt, D22, is issued to partially finance the investment cost F2 and the debt issued in the first stage,

D21, offer tax savings but give rise to a default decision (or threshold XD2). Following standard

arguments, the debt value D2i(X,C1, C2), i = 1, 2, has for X ≥ XD2 a solution of the form:6

D2i(X,C1, C2) = A1iX
a +A2iX

z +
Ci
r
, (2.1)

where the two exponents a < 0 and z > 1 are the negative and positive roots of the quadratic

equation y(y − 1)σ2/2 + yµ − r = 0. The constants A1i and A2i solve the following boundary

conditions. When X ↑ ∞, debt becomes risk-free and its value equals the present value of a

perpetuity: D2i(∞, C1, C2) = Ci
r . On the other hand, when X declines to XD2, equityholders default

and the owners of D2i get a proportion of the liquidation value based on the coupon Ci for i = 1, 2:7

D2i(XD2, C1, C2) =
Ci

C1 + C2

(1− α)(1− τ)(Π1 + Π2)XD2

r − µ
, i = 1, 2. (2.2)

Equity value E2(X,C1, C2), on the other hand, has for X ≥ XD2 a solution of the form:

E2(X,C1, C2) = B1X
a +B2X

z + (1− τ)
( (Π1 + Π2)X

r − µ
− (C1 + C2)

r

)
, (2.3)

where the constants B1 and B2 satisfy the following boundary conditions:

E2(XD2, C1, C2) = 0, (2.4)

E2(∞, C1, C2) = (1− τ)
( (Π1 + Π2)X

r − µ
− (C1 + C2)

r

)
. (2.5)

Simple algebra yields the value of the two debt issues for X ≥ XD2:

D2i(X,C1, C2) =
Ci
r

(
1− (

X

XD2
)a
)

+
Ci

C1 + C2

(1− α)(1− τ)(Π1 + Π2)XD2

r − µ
(
X

XD2
)a, (2.6)

6See, e.g., Goldstein, Ju, and Leland (2001) and Hackbarth, Hennessy, and Leland (2007) for details.
7We use equal priority for D2i. See, e.g., Hackbarth and Mauer (2012) for other priority structures.
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with i = 1, 2, and also the value of equity for X ≥ XD2:

E2(X,C1, C2) = (1− τ)
( (Π1 + Π2)X

r − µ
− C1 + C2

r
− (

(Π1 + Π2)XD2

r − µ
− C1 + C2

r
)(

X

XD2
)a
)
, (2.7)

where ( X
XD2

)a denotes the state price for default. Finally, the total firm value in this stage is the

sum of D21, D22 and E2.

As mentioned earlier, the only decision that equityholders makes in this stage is when to default.

The optimal default threshold, XD2, is the one that maximizes the value of equity, E2:

∂E2(X,C1, C2)

∂X

∣∣∣
X=XD2

= 0, (2.8)

which yields a closed-form solution for the endogenous default threshold in the second stage:

XD2 =
a (C1 + C2) (r − µ)

r (a− 1) (Π1 + Π2)
. (2.9)

Adolescent Firm (Stage 1)

In the first stage, only the second investment option has not yet been exercised. The adolescent firm

has assets-in-place and its capital structure consists of a mixture of debt, D1, and equity, E1. It

has both an option to default and an option to invest, so it solves a joint financing and investment

problem. When cash flows rise to the investment threshold, XS2, equityholders exercise the second

option and issues D22. Equityholders default if cash flows decline to the default threshold, XD1.

The values of debt, D1, and equity, E1, have solutions similar to the ones in equation (2.1) and

(2.3), but obey different boundary conditions. When X ↓ XD1, debtholders receive the liquidation

value: D1(XD1, C1, C2) = (1−α)(1−τ)Π1XD1

r−µ . If the firm keeps growing and X rises to the investment

threshold, XS2, equityholders exercise the second-stage investment option, and debt value from stage

1 equals debt value in stage 2: D1(XS2, C1, C2) = D21(XS2, C1, C2). For XD1 ≤ X ≤ XS2, these

value-matching conditions imply the following solution for value of debt in stage 1:

D1(X,C1, C2) =
C1

r

(
1− L(X)− (

XS2

XD2
)aH(X)

)
+ (1− α)(1− τ)

(Π1XD1

r − µ
L(X) +

C1

C1 + C2

(Π1 + Π2)XD2

r − µ
(
XS2

XD2
)aH(X)

)
, (2.10)

where

L(X) =
XzXa

S2 −XaXz
S2

Xz
D1X

a
S2 −Xa

D1X
z
S2

(2.11)

H(X) =
Xz
D1X

a −Xa
D1X

z

Xz
D1X

a
S2 −Xa

D1X
z
S2

(2.12)

denote state prices for default and investment. Intuitively, debt value, D1, is the weighted average

of the present value of the coupon payments C1 up until default in either the first or the second

stage, and the liquidation value that debtholders get when equityholders default in either stage.

Equity value E1, on the other hand, approaches zero when X ↓ XD1: E1(XD1, C1, C2) = 0.

As X ↑ XS2, it satisfies E1(XS2, C1, C2) = E2(XS2, C1, C2)− [F2 −D22(XS2, C1, C2)], because the

fixed investment cost, F2, is funded by a mixture of debt and equity. For XD1 ≤ X ≤ XS2, these
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value-matching conditions yield the following solution for the value of equity in stage 1:

E1(X,C1, C2) = (1− τ)
[
(

Π1X

r − µ
− C1

r
)− (

Π1XD1

r − µ
− C1

r
)L(X) +

(Π2XS2

r − µ
− C2

r
− (2.13)

F2 −D22(XS2, C1, C2)

1− τ
− (

(Π1 + Π2)XD2

r − µ
− C1 + C2

r
)(
XS2

XD2
)a
)
H(X)

]
.

The first two terms in square brackets of equation (2.13) denote the present value of after-tax cash

flows to equityholders until equityholders default in the current stage. The next few terms in this

equation show the value from entering the next stage. Given the value of E1, equityholders determine

the optimal default threshold, XD1, by maximizing equity value:

∂E1(X,C1, C2)

∂X

∣∣∣
X=XD1

= 0. (2.14)

Similarly, the optimal investment threshold, XS2, solves the smooth-pasting condition:

∂E1(X,C1, C2)

∂X

∣∣∣
X=XS2

=
∂E2(X,C1, C2)

∂X

∣∣∣
X=XS2

+
∂D22(X,C1, C2)

∂X

∣∣∣
X=XS2

. (2.15)

Juvenile Firm (Stage 0)

In the initial stage, the juvenile firm has no assets-in-place, an option on a two-stage investment

project, and no pre-existing debt.8 The value of equity in this stage, E0, has a solution similar to the

one in equation (2.3) but without the last term on the right-hand side. As X ↓ 0, equity value goes

to zero: E0(0, C1, C2) = 0. When X touches the investment threshold XS1 for the first time from

below, the option is exercised, and debt and equity finance the exercise cost, F1: E0(XS1, C1, C2) =

E1(XS1, C1, C2)− [F1 −D1(XS1, C1, C2)]. For X ≤ XS1, this yields the following solution:

E0(X,C1, C2) = (1− τ)(
X

XS1
)z
[
(
Π1XS1

r − µ
− C1

r
)− F1 −D1(XS1, C1, C2)

1− τ
−

(
Π1XD1

r − µ
− C1

r
)L(X) +

(Π2XS2

r − µ
− C2

r
− F2 −D22(XS2, C1, C2)

1− τ
−

(
(Π1 + Π2)XD2

r − µ
− C1 + C2

r
)(
XS2

XD2
)a
)
H(X)

]
. (2.16)

Equity value in this stage equals the present value of after-tax cash flows conditional on exercise of

the first-stage option until equityholders default in stage 1 (the first three terms in square brackets

of equation (2.16)). If cash flows grow further and the firm expands a second time, then it enters

into stage 2 with the added value given by the next few terms in square brackets of equation (2.16).

In this stage, equityholders’ choose when to invest and how much debt and equity to issue to

finance the investment cost, F1. When X is low, the benefit from exercising the option is outweighed

by the value of waiting-to-invest, hence the equityholders keep the option alive. When X rises

sufficiently, equityholders exercise the first option at XS1, which solves the smooth-pasting condition:

∂E0(X,C1, C2)

∂X

∣∣∣
X=XS1

=
∂E1(X,C1, C2)

∂X

∣∣∣
X=XS1

+
∂D1(X,C1, C2)

∂X

∣∣∣
X=XS1

. (2.17)

Finally, the debt coupons C1 and C2 maximize initial equity value, E0(X0, C1, C2), subject to the

above-mentioned smooth-pasting conditions for the thresholds XS1, XS2, XD1 and XD2.

8We relax this assumption in Appendix A and Section 2.6 to study the effect an initial debt coupon C0.
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2.2.3 Solution of the Single-Stage Model

Claim values and optimal exercise thresholds for this truncated version of the model are also solved

recursively. When X ↑ ∞ in the last stage, the firm becomes risk-less, so its equity value EB1(X,C)

and its debt value DB1(X,C) converge to the present value of perpetual dividend and interest pay-

ments. On the other hand, when X ↓ XD, equityholders default, and debtholders obtain the entire

liquidation value (net of bankruptcy costs).

In the inital stage, the firm has a single investment option, so firm value equals the value of this

option. If X decreases to zero, the option becomes worthless: EB0(0, C) = 0. But if X rises to the

investment threshold, XS , the option is exercised: EB0(XS , C) = EB1(XS , C)− [F −DB1(XS , C)].

The above-mentioned boundary conditions yield the following solutions for X ≥ XD:

DB1(X,C) =
C

r

[
1− (

X

XD
)a
]

+ (1− α)(1− τ)
ΠXD

r − µ
(
X

XD
)a, (2.18)

EB1(X,C) = (1− τ)
[ ΠX

r − µ
− C

r
− (

ΠXD

r − µ
− C

r
)(
X

XD
)a
]
, (2.19)

and for X ≤ XS :

EB0(X,C) =
[
(1− τ)

ΠXS

r − µ
+
τC

r
− F − [(1− τ)

ΠαXD

r − µ
+
τC

r
](
XS

XD
)a
]
(
X

XS
)z. (2.20)

The optimal default threshold, XD, maximizes the value of equity, EB1, that is:

∂EB1(X,C)

∂X

∣∣∣
X=XD

= 0, (2.21)

which implies the following closed-form solution:

XD =
aC (r − µ)

(a− 1) Π r
. (2.22)

The optimal investment threshold, XS , also maximizes the value of equity, EB1, that is:

∂EB0(X,C)

∂X

∣∣∣
X=XS

=
∂EB1(X,C)

∂X

∣∣∣
X=XS

+
∂DB1(X,C)

∂X

∣∣∣
X=XS

. (2.23)

Finally, debt coupon C maximizes in initial equity value, EB0, subject to the above-mentioned

smooth-pasting conditions for the thresholds XD and XS .

2.3 Financial Flexibility and the Investment Process

In this section, we study the key difference between the multi-stage model and the single-stage

model, which is the intermediate stage of an adolescent firm. This stage creates an intertemporal

effect, which links financial flexibility to the investment process. We illustrate how financing and

investment decisions of the adolescent firm influence those of the mature firm and vice versa.

2.3.1 Intertemporal Effect

Consider the firm in the multi-stage model at time zero. On the one hand, suppose the firm decides

to issue more debt in the first stage (i.e. C1 is higher). This means that equityholders will bear less
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of the investment cost (i.e. F1 −D1 is lower). This reduction in the equity-financing of the exercise

cost enables equityholders to expedite the exercise of the first option. As a result, the firm produces

first-stage cash flows, in expectation, earlier, which translates into a higher initial equity value, E0.

A higher C1, however, reduces financial flexibility going forward. Therefore, the firm will have to

wait longer to exercise the second option and to receive second-stage cash flows, which translates

into a lower initial equity value, E0. Taken together, the level of C1 has two opposing effects in the

multi-stage model, and the optimal level strikes a balance between the two effects.

On the other hand, suppose the firm decides to issue more debt in the second stage (i.e. C2 is

higher). This means that the firm uses more debt to fund the second-stage investment cost and hence

equityholders bear less of the investment cost (i.e. F2−D22 is lower). This expedites the exercise of

the second option and the expected present value of cash flows from the second stage becomes higher,

which increases initial equity value, E0. However, the firm is more likely to default on its debt when

there is more second-stage debt, which lowers the expected present value of cash flows from the second

stage. In addition, the anticipation of the higher second-stage debt level lowers financial flexibility in

the first stage. This leads to a delay of the first-stage investment, which decreases initial equity value,

E0. So, the optimal level of C2 also trades off two opposing effects on initial equity value that follow

from the dynamic interactions between financing and investment decisions in the multi-stage model.

In essence, dynamic financing-investment interactions in the “adolescent” and “mature” stages

lead to an intertemporal effect. The firm trades off reaping exercise (i.e. cash flow) benefits from

issuing debt in stage 1 against retaining financial flexibility for funding more of the investment cost

with debt in stage 2. Note that this intertemporal effect does not depend on bankruptcy costs or

tax benefit, which are constant over time and hence cannot cause timing differences. As we will see,

the intertemporal effect is largely determined by the structure of the firm’s investment process.

To quantify the intertemporal effect, we select economically plausible base case parameter values.

The initial cash flow level, X0, is set to $5 and the risk-free interest rate equals r = 6%. The growth

rate of X is µ = 1% and the volatility of X is σ = 25%. The cost of bankruptcy cost is α = 30%

and the effective corporate tax rate is τ = 10%.9 The scales of the sequential investment option are

Π1 = 1 and Π2 = 1, and the investment costs are F1 = $100 and F2 = $200.

Using this base case environment, Figure 2.1 illustrates the intertemporal effect by mapping debt

coupon pairs, C1 and C2, into initial equity value, E0, on the basis of equation (2.16). The figure

reveals that E0 is convex C1 and C2 and, in particular, that an interior optimum is clearly present.

Thus, the intuition behind the intertemporal effect discussed above leads indeed to an optimal pair

of (C1, C2) that corresponds to the highest attainable point of initial equity value on the surface.

Table 2.2 reports, for the base case environment, optimal capital structure choices, investment

thresholds, default thresholds, and market leverage ratios at the first and at the second investment

point. Market leverage is defined as the ratio of market value of debt over the sum of market value

of debt and market value of equity. Panel A tabulates the optimization results for the single-stage

model, while Panel B shows the corresponding outputs for the multi-stage model. One of the key

differences between the first column in Panel B and the first two columns in Panel A is the role

played by financial flexibility.10 That is, the underutilization of debt capacity, which we can gauge

by the difference in leverage ratios between the single-stage model (42%) and the multi-stage model

9This tax rate is lower than those used in other studies. We do this on purpose, because we want to limit tax
effects and emphasize the intertemporal effect due to the structure of the investment process. In addition, structural
estimation of the multi-stage model in Section 2.4 provides fairly low point estimates of the effective corporate tax
rate.

10Note that in Panel A the benchmark model’s investment cost, F , equals either $100 or $200 to make it comparable
to the first or the second stage of multi-stage model in Panel B. The same applies to the choice of investment scales.
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(28% and 38%), shows that the firm in the multi-stage model has a strong incentive to retain finan-

cial flexibility in the first stage. In addition, the firm in the multi-stage model continues to have a

lower target leverage ratio in the second stage. That is, underutilization persists and leverage ratios

are lower in both stages of the multi-stage model relative to the ones of an otherwise identical firm

in the single-stage model.

It is remarkable that leverage does not vary with characteristics of the investment option in the

single-stage model (Panel A). Hence the intuition for the underutilization of debt in the multi-stage

model (Panel B) is closely related to the one for the intertemporal effect. On the one hand, using

more debt to finance the first investment lowers equityholders’ contribution to the first investment

cost, so equityholders will invest earlier (i.e. at a lower investment threshold). On the other hand,

the pre-existing debt issued in the first stage creates default risk and reduces financial flexibility in

the second stage, so equityholders will invest later (i.e. at a higher investment threshold). These

countervailing effects lead to a variety of realistic outcomes, which depend crucially on the structure

of the investment process (i.e. the relative size of the investment scales, Π1 and Π2). In particular,

our calibrated model shows that firms underutilize debt in the first stage (i.e. when young) to max-

imize the overall value of their series of financing and investing options. Absent any other frictions

or imperfections, dynamic optimization can generate path dependent and persistent leverage ratios

in a standard trade-off model with a sequence of irreversible investment opportunities.

The findings in this section imply that structural models without dynamic financing-investment

interactions (1) overestimate target leverage ratios, and (2) can be misleading in that they imply

a fixed target leverage ratio that is largely taken to be exogenous to the investment process. The

latter point also suggests that there is no meaningful measurement of partial adjustment to target

leverage without recognition of the firm’s investment process. Therefore, we will examine the role

of heterogeneity in the structure of the investment process in the next section.

2.3.2 Structure of the Investment Process

To study how leverage changes with the structure of the investment process, we modify the base

case of Π1 = 1 and Π2 = 1 (see first column in Panel B of Table 2.2) in columns 2–4. Column

2 depicts optimization results for a back-loaded investment structure (Π1 = 0.75 and Π2 = 1.25),

while column 3 contains a front-loaded one (Π1 = 1.25 and Π2 = 0.75). Finally, column 4 reports

the corresponding outcomes for a very front-loaded investment structure (Π1 = 1.5 and Π2 = 0.5).11

These columns highlight several interesting features of the model. First, the firm retains less

(more) financial flexibility in the first stage when the structure of the investment process is front-

loaded (back-loaded). For example, if we reduce the first-stage investment scale by 25% and raise

the second-stage investment scale by 25%, then leverage in stage 1 decreases substantially from 28%

to 20% (a decline of almost a third) and leverage in stage 2 increases from 38% to 40%. This result

for the first stage helps explain the debt conservatism puzzle (see Graham (2000)).

Second, the difference in target leverage ratios across the two stages declines (rises) when the

structure of the investment process is front-loaded (back-loaded). Consider the case in column 2,

where 25% of the first-stage investment scale are pushed into the second stage, so the structure of

the firm’s investment process is more back-loaded than in the base case of column 1. As a result,

the difference in target leverage ratios effectively doubles (i.e. increases from 10% to 20%). That

11Changing Π1 and Π2 in lock step produces the same coupons and leverage ratios as in column 1. All else equal,
only the ratio of Π1 and Π2 matters because of of the scaling property. So we only consider asymmetric changes.
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is, within our multi-stage model, firms that are otherwise identical (i.e. without considering the

structure of investment process) need not follow the same target leverage ratios.

Third, the results in Panel B indicate that typically first-stage leverage is lower than second-

stage leverage, which is consistent with dynamic capital structure models without investment (see,

e.g., Goldstein, Ju, and Leland (2001) and Strebulaev (2007)). However, a sufficiently front-loaded

investment process produces higher leverage in stage 1 than in stage 2 (see column 4). Intuitively,

there is very little incentive to retain financial flexibility in this case and hence the firm utilizes its

debt capacity more aggressively already in the first stage. Thus, unlike dynamic capital structure

models without investment, the multi-stage model can produce increasing and decreasing leverage

ratios over time, which are largely driven by the structure of the firm’s investment process.

Finally and related to the previous point, it is perhaps also surprising that the mature firm with

front-loaded investments selects lower leverage in the second stage (see columns 3 and 4) relative

to the base case (see column 1). Another way to achieve lower leverage ratios in later stages would

be to increase the firm’s asset risk (e.g., because mature markets tend to be more competitive and

hence riskier). It turns out, however, that even when the firm’s asset risk is constant over time

leverage ratios can nevertheless decline over time.

Overall, the analysis shows how incentives to retain financial flexibility in the first stage crucially

depend on the structure of the investment process. The lower the first-stage investment scale, Π1,

is relative to Π2, the more the firm saves debt capacity in the first stage. Given the wide range of

optimal (target) leverage ratios, the results in Table 2.2 suggest that leverage ratios can greatly vary

depending on how the firm grows assets-in-place by exercising its real options. Therefore, it is diffi-

cult to determine target leverage in the conventional sense unless the structure of investment process

is recognized more explicitly in future empirical studies on target leverage and speed of adjustment

to target leverage. In addition, corporate financing-investment dynamics in the multi-stage model

produce a significant fraction of low (and zero) leverage firms and also path dependent, persistent

leverage ratios (see also Section 2.6).

2.3.3 Other Comparative Statistics

We implement a sensitivity analysis to analyze how dynamic financing-investment interactions and

leverage ratios change with parameter values unrelated to the investment process. We therefore vary

the effective corporate tax rate, τ , the cost of bankruptcy, α, the cash flow volatility, σ, and the

cash flow growth rate, µ. In particular, we increase and decrease each parameter by 50% of its base

case value, while keeping the other parameters unchanged. Similar to Table 2.2, Table 2.3 reports

optimal debt coupons, investment thresholds, default thresholds, and leverage ratios.

Not surprisingly, leverage goes up in both stages if the effective corporate tax rate, τ , rises. This

follows from trade-off theory, because higher taxes lead to higher tax benefit of debt. The firm issues

more debt and hence defaults earlier. The net effect of more debt issuance and more default risk is

that optimal investment thresholds do not respond much to higher tax rates. The bankruptcy cost,

α, has a negative impact on the value of debt, so it works in the opposite direction. Because higher

bankruptcy costs lower the firm’s debt capacity to fund the investment expenditure, investment

takes place, in expectation, later. Yet, similar to the role of taxes, bankruptcy costs are also more

related to debt and hence investment thresholds do not change significantly. Finally, notice that

leverage ratios are sensitive to both changes in bankruptcy costs and changes in tax rates.

Since σ is a measure of uncertainty, real option theory tells us that the investment option’s value

rises with σ and that, as a result, exercise should occur, in expectation, later. In the multi-stage
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model, initial equity value equals the value of a sequential investment (compound) option. There-

fore, changes in volatility greatly change investment decisions. When volatility goes up, it is more

valuable to keep the option alive, so the firm waits longer to invest in both stages (XS1 rises from

12.36 to 17.51 in stage 1 and XS2 rises from 23.67 to 33.08 in stage 2 for the case in column 6).

Consistent with many studies building on Leland (1994), varying volatility also leads to significant

variation in leverage. When volatility is high, the firm is riskier (i.e. more likely to go bankrupt) and

hence uses debt more conservatively in both stages and leverage ratios drop significantly relative to

the base case. Thus, it can pose a challenge for structural estimation that volatility strongly affects

both financing and investment decisions.

Finally, a higher growth rate of cash flows, µ, also makes the firm’s options more valuable, be-

cause their intrinsic value is higher for any level of cash flows and hence waiting to invest becomes

costlier. A rise in µ therefore leads to, in expectation, earlier investment (i.e. XS1 declines from

12.36 to 11.99 in stage 1 and XS2 declines from 23.67 to 22.91 in stage 2 as seen in column 8). A rise

in µ also leads the firm to use more debt to finance investment in both stages. However, leverage

ratios are fairly insensitive to 50% increases or decreases in the growth rate, which might also make

structural estimation of µ more challenging.

In sum, the multi-stage can, for reasonable base parameter values, deliver leverage ratios and

variation in leverage ratios, which closely match those observed in practice. In the next section, we

tackle the more demanding question whether several simulated model moments can simultaneously

match a number of desirable data moments. While the sensitivity analysis sheds light on multi-stage

model, it also helps us find informative moments for different model parameters in the next section.

2.4 Simulated Moments Parameter Estimation

We now turn to simulation methods based on indirect inference techniques in Gourieroux, Monfort,

and Renault (1993) and Gourieroux and Monfort (1996). Like Hennessy and Whited (2005, 2007),

we use Simulated Method of Moments (SMM) to estimate a set of structural parameters of the

model. To do so, we solve the multi-stage model numerically and then use this solution to gener-

ate simulated panels of firms. SMM selects parameter values by minimizing the distance between

moments from actual data and corresponding moments from simulated data. That is, the goal of

SMM is to find an optimal vector of unknown structural parameters, say b∗, by matching a set of

simulated moments, denoted by Mm, with corresponding data moments, denoted by Md.

Let b = (Π1,Π2, α, τ) be the vector of unknown structural parameters to be calibrated by SMM.

We simulate S = 6 artificial panels data sets consisting of N = 1, 000 firms for 200 years using the

multi-stage model and a given b. In each panel, we only keep T = 100 years (or 400 quarters given

that ∆t = 0.25) after discarding the first 100 years to avoid undue influence of initial conditions.

Once a firm defaults, we replace it by a new firm with the same characteristics to keep the size of

the simulated data sets constant over time. By iterating b and calculating the distance between the

model moments, Mm, and data moments, Md, SMM returns the optimal vector of parameter values,

b∗. We repeat this indirect inference procedure ten times and report the average of the ten SMM

results for b∗ to reduce noise.12

The moments to match are selected such that they are a priori informative about the unknown

structural parameters, b. Intuitively, a moment is informative about b if it can identify at least some

elements in b, which means it is sensitive to changes in b. Informative moments enable SMM to

12See Hennessy and Whited (2005, 2007) on the benefits and relevance of indirect inference techniques in finance.
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converge faster and to provide more robust economic insights. To this end, we select the following

five moments to estimate the four structural parameters (Π1,Π2, α, τ):13

1. Quasi-Market Leverage (QML): Let QMLit denote the quasi-market leverage ratio (i.e. the

book value of debt divided by the sum of market value of equity and book value of debt) of

the simulated firm i, with i = 1...N , at time t, with t = 1..., T . We first calculate the cross-

sectional average for every time t and then take the average of the cross-sectional averages

over time, i.e. QML = 1
T

∑T
t=1( 1

N

∑N
i=1QMLit). This moment reflects how the net benefits of

debt and, in particular, the structure of the investment process affects the level leverage. So

we expect it to be sensitive to, e.g., Π1 and also responsive to α and τ .

2. Dispersion of Quasi-Market Leverage (DispQML): This moment is defined as the cross-

sectional average of the time-series standard deviations of firms’ quasi-market leverage ratios,

i.e. DispQML = 1
N

∑N
i=1

√
Vari(QMLi1, ..., QMLiT ). This moment reflects how firms respond

to shocks when optimally financing their investment projects. Hence this moment is also likely

to be informative about Π1 as well as α and τ , but it captures cross-firm variation in leverage.

3. Debt Issuance (D/K): We compute D/K as the ratio of net debt issuance to capital at in-

vestment points. This moment reflects the proportion of debt used to finance investment

expenditures, which is higher if bankruptcy costs are lower or if tax rates are higher. It should

be sensitive to the parameters α and τ that determine the net benefits of debt issuance.

4. Market-to-Book (Q): We first calculate the cross-sectional average for every time t and then

take the average of the cross-sectional averages over time, i.e. Q = 1
T

∑T
t=1( 1

N

∑N
i=1Q

i
t), where

Qit is the market value of firm i divided by the book value of firm i at time t. Q proxies for

investment opportunities and hence it should be informative about Π1 and especially Π2.

5. Investment-to-Equity (Inv/Eq): This moment is defined as investment cost (i.e. F1 or F2)

divided by book value of equity at investment points. Since the investment costs are fixed,

this moment depends more on when the firm exercises its options and, in particular, how high

equity value has to rise for exercise to be optimal. Therefore, it is likely related to Π1 and Π2,

but potentially also to τ because equity is a claim on after-tax cash flows.

Table 2.4 presents the sensitivities of the five moments to changes in the model parameters b. The

base case scenario is in the first column. In the other columns, each of the four parameters, namely

Π1, Π2, α and τ , is separately increased by 50%. Panel A displays the absolute changes of the mo-

ments and Panel B shows percentage changes relative to the base case in the first column. The table

reveals that QML and DispQML are indeed most sensitive to Π1. This is because QML reflects the

investment and financing activities in the past, i.e. the level and dispersion of early stage leverage

ratios are primarily determined by how high Π1 is. Tax rate τ and bankruptcy cost α most strongly

affect the debt issuance moment, D/K, because they are the key determinants of both debt capacity

and net tax benefits. Q is very sensitive with respect to changes in Π2 Recall that initial equity value

corresponds to a compound option in the multi-stage model. All else equal, firms with more a back-

loaded investment process (i.e. higher Π2) will have much higher market-to-book ratios. The invest-

ment to book equity ratio Inv/Eq responds the most to τ and Π2 and also a bit less so to Π1. In sum,

Π1 influences mainly QML and DispQML, Π2 matters the most for Q and also changes D/K, α and

τ have the strongest effect on D/K but also affect QML, and finally τ (but not α) impacts Inv/Eq.

We use the COMPUSTAT annual tape for the 45-year period between 1965 and 2009 to estimate

the data moments.14 We refer to this vector as the “Full Sample” moments. We run SMM also on

13Appendix B provides a more detailed description of the structural estimation procedure that we implement here.
14We remove financial firms (SIC between 6000 and 6999) and utilities (SIC between 4900 and 4999), because they

operate in regulated industries. We also remove firm-year observations with total assets less than two million and
plant, property, and equipment less than one million to avoid biases caused by small firms.
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various subsamples to provide insights into the structure of companies’ investment process. There-

fore, the COMPUSTAT sample is split into three subsamples according to Q. For each firm-year,

firms are ranked by the value of Q from the lowest to the highest. Firms in the lowest 33% of the

distribution are classified as the “Low Q” sample, firms with the highest 33% Q belong to the “High

Q” sample, and those in between are the “Medium Q” sample. For each of the subsamples, we also

compute the corresponding data moments. We then run SMM for each of the four samples and

collect the vector of structural parameter estimates, b∗, along with the (fitted) model moments.

The parameter estimates for the full sample and the three subsamples are presented in Panel A

of Table 2.5. The numbers in the parentheses are the standard deviations of model estimates across

the 1,000 panels with the exception of the χ2 test, for which that number is the p-value for the

overidentification test. In particular, the χ2 test of the overidentifying restrictions does not produce

a rejection at the 10% level for any of the four structural estimations in Panel A. Panel B of Table

2.5 reports the data moments and the fitted (model) moments for the full sample and the three

subsamples. For all four estimations, the fitted moments are very close to the data moments. This

implies that the simulated economy with these parameter estimates closely mimics the real economy.

As argued earlier, the ratio of investment scales, Π2/Π1, captures the structure of investment

process. Panel A reveals that the “High Q” sample has a fairly back-loaded investment processes

(Π2/Π1 = 2.284 > 1), whereas the other three samples display various front-loaded investment pro-

cesses. For example, the “Low Q” sample shows the most front-loaded investment process (Π2/Π1 =

0.175 < 1), which is also the only case of Π1 not being reliably measured. Importantly, these results

of the structural estimation are consistent with our theoretical discussion in Section 2.3.2.

Specifically, firms in the “High Q” sample tend to have many future investment opportunities

and thus large growth potential — the structure of the investment process of these firms is indeed

back-loaded, so they initially retain more financial flexibility (i.e. save more debt capacity). This is

why we observe the lowest leverage ratio for this sample. The “Low Q” sample has more mature

firms and they do not have many future investment opportunities. Their investment process tends

to be more front-loaded, so they do not have a motive to save debt capacity for future investments

and this is why we observe the highest leverage ratio for this sample. On average, our 45-year

COMPUSTAT sample contains more firms having fairly front-loaded investment process.

Another interesting observation is that the estimated tax rate, τ , is low for all four samples,

ranging from 4% to 7%. There is more variation in the estimates of the bankruptcy costs, α, but if

we put less weight on the “Low Q” sample, then it is also roughly 30%. This implies that the net

tax benefit of debt is not driving our result, confirming the conclusion of Section 2.3. While, these

findings are also consistent with the debt conservatism puzzle in that the data moments of observed

leverage ratios are in line with relatively low effective tax rates, they establish, more importantly,

that the structure of the investment process is likely to be a more important determinant of leverage

ratios than tax rates or bankruptcy costs, because the SMM indicates that its parameters, Π1 and

Π2, vary much more widely across subsamples than α and τ .

In sum, unobserved heterogeneity in terms of the precise structure of the investment process

(e.g. front-load, mid-loaded, or back-loaded) seems to be large and important for understanding the

cross-sectional distribution of corporate investment and financing decisions within an industry or

for the entire economy. Thus, future capital structure research should try to move more into the

direction of recognizing and treating this important source of cross-firm heterogeneity.
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2.5 Capital Structure Regressions

Simulation is a useful tool for testing theoretical models (see, e.g., Hennessy and Whited (2005),

Leary and Roberts (2005), Strebulaev (2007), and Tserlukevich (2008)). In this section, we inves-

tigate the cross-sectional properties of leverage ratios in dynamic, simulated economies where firms

make infrequent investment and financing decisions. We also compare capital structure regression

results for simulated data to the corresponding results for real data.

2.5.1 Panel Simulations

This section outlines the details of simulating dynamic economies with heterogeneous firms. These

simulations take the solutions for the valuation equations and, in particular, for the optimal invest-

ment and financing decisions in Section 2.2.2 as given and do not involve any additional optimiza-

tions.

It is well-known that systematic (or economy-wide) and idiosyncratic (firm-specific) shocks

have explanatory power for leverage ratios. The former create cross-firm dependencies in dynamic

economies. Hence we decompose the cash flow process into systematic and idiosyncratic components

to allow for a more realistic correlation structure:

dXi(t)/Xi(t) = µdt+βi σS dW
S(t)+σIi dW

I
i (t), Xi(0) = X0 > 0, i = 1, ..., N, t = 1, ..., T (2.24)

where constants σS and σIi represent, respectively, volatilities of systematic and idiosyncratic

shocks. The stochastic processes dWS(t) and dW I
i (t) are independent Wiener processes, dW (t) =

βi dW
S(t) + dW I

i (t), and the parameter βi measures firm i’s exposure to systematic shocks. Thus,

the total risk can be calculated as σi = (σ2
Ii + β2

i σ
2
S)

1
2 .

Based on a discretization of equation (2.24), we simulate 1,000 panel data sets with N = 3, 000

firms for T = 400 quarters. More specifically, we generate 200 years of data (or 800 quarters given

that ∆t = 0.25) based on the multi-stage model and then drop the first 400 quarters to obtain a

stationary sample for each simulated economy and to limit the influence of initial conditions. All

firms in the same panel are governed by the same series of systematic shocks, dWS(t), but the dy-

namics of economies are different across the 1,000 panels. At time t = 0 of each panel, the optimal

policies are determined as a function of firm characteristics (i.e. parameter values). For all t > 0,

firms follow their optimal investment, debt and equity issuance, and default policies given that they

observe the evolution of their cash flow process every quarter. If a firm defaults, it is “reborn,” i.e.

it is replaced in the next quarter by a juvenile firm with identical initial conditions.

Panel A of Table 2.6 provides an overview of the values and distributions of model parameters

that are set once and for all at time t = 0 to produce the simulated economies. To begin, we use the

structural estimation results for the full sample in Section 2.4. That is, the investment scales are

calibrated for all firms to Π1 = 1.966 and Π2 = 1.286. The bankruptcy cost, α, and the tax rate, τ ,

are uniformly distributed with means corresponding to the SMM’s full sample results and ranges of

+/–20% around the means. Similarly, the investment costs, F1, and F2, have uniform distributions

with supports [80, 120] and [160, 240], respectively. The systematic shock is fixed to σS = 0.148

based on estimates reported by Schaefer and Strebulaev (2008). The idiosyncratic shock, σIi, varies

around a mean of 0.217 based on a chi-squared distribution: σIi ∼ 0.05+ 1
30 χ

2(5). Firm i’s exposure

to systematic shocks, βi, follows a uniform distribution, whose first two moments correspond to the

empirical distribution with mean of 0.993 and standard deviation of 0.47 reported by Strebulaev
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(2007). Finally, the other parameters assume the base case values, i.e. risk-free rate r = 6%, growth

rate of cash flows µ = 1%, and initial cash flow level X0 = $5.

Panel B of Table 2.6 presents the cross-sectional distribution of leverage both at investment points

and across all panels (i.e. in dynamics). For each simulated data set, we first calculate statistics

for each quarter. We then average across quarter within each simulated economy, and then average

across economies. However, the rows “Min.” and “Max.” report, respectively, the minimum and

the maximum assumed by the corresponding quantities. Investment points are further classified as

first and second investment points, because the multi-stage model features two investment options.

Market leverage, ML, is defined in Section 2.3.1. Quasi-market leverage, QML, equals book value

of debt divided by the sum of market value of equity and book value of debt in this model, where

book value of debt is defined as the value of debt at the beginning of a stage (i.e. at X = XS1 or

X = XS2). Hence quasi-market leverage and market leverage coincide at investment points.

The table confirms that ML and QML are not very different. Across all panels, the average

ML is 19.7% and the average QML is only 0.8% higher. Yet, the market leverage ratios at first

investment points are almost half of those at second investment points, which is attributable to the

strong incentive of adolescent firms to retain financial flexibility. Taken together, average leverage at

investment points equals 18.7%. This is significantly lower than in similar models without endoge-

nous investment by Goldstein, Ju, and Leland (2001) and Strebulaev (2007), who report 37% and

26%. Hackbarth and Mauer (2012) obtain optimal leverage ratios as low as 12%, but their success

is largely due to debt overhang and debt (dilution) dynamics, whereas our simulations do no rely at

all on agency problems. Moreover, the standard deviations of leverage ratios at investment points

are about half of those for all data points. This is due to the fact that firms tend to make infrequent

investments that occur at optimal times. Thus, even though target leverage ratios differ across firms,

they are less dispersed than leverage ratios in dynamics. In addition, the distribution of leverage ra-

tios at investment points are almost symmetric, whereas the ones in dynamics are right-skewed (i.e.

the mean exceeds the median). Intuitively, because firms in various (investment) stages of the model

or, more generally, their life-cycle, respond differently to economic shocks of the same magnitude,

the behavior of leverage ratios at investment points is quite different from that in dynamics.

In sum, the simulations of heterogeneous firms generate much lower average leverage ratios than

prior work, both at the investment points and in dynamics, and yet it is still able to generate leverage

ratios spanning over the [0, 1] interval. Therefore, we conclude that the structure of firms’ invest-

ment process is crucial for obtaining realistic distributions of leverage ratios in simulated economies.

Intuitively, firms endogenously preserve debt capacity (i.e. retain financial flexibility) for future in-

vestment stages. That is, the intertemporal effect of the multi-stage model of corporate investment

and financing dynamics captures an important mechanism which helps explain the low-leverage

puzzle of Graham (2000). More recently, Strebulaev and Yang (2012) document a closely related,

so-called zero-leverage puzzle given that, e.g., 14.0% of large, public companies had no debt out-

standing in the year 2000. Consistent with their findings, our model produces, on average, also

produces a large and persistent fraction of zero-leverage firms. As seen from the 10th percentile in

Panel B of Table 2.6, the fraction of zero-leverage firms in dynamics exceeds, on average, 10% for

the 1,000 simulated panel data sets. Clearly, this suggest that, at the very least, the model is able

to explain a substantial part, if not most, of the low- and zero-leverage puzzles. It seems that this

success cannot be achieved by alternative models without endogenous investment, so considering

dynamic interactions between corporate investment and financing is crucial.
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2.5.2 Panel Regressions

In this section, we focus on the behavior of quasi-market leverage, market-to-book, and profitability

in simulated data sets. In particular, we estimate capital structure regressions both at investment

points and for all observations in the panels (i.e. in dynamics). This also allows us to examine the

role of other determinants of capital structure that are typically used in the empirical literature.

Growth options might have a negative debt capacity, because debt overhang rises with leverage

(Myers (1977)). Indeed, numerous empirical studies find a negative relation between leverage and

market-to-book, a commonly used proxy for growth options, and interpret it as evidence for agency

problems. For example, Smith and Watts (1992) document a negative relation between quasi-market

leverage ratios and market-to-book ratios. Similarly, Rajan and Zingales (1995) report a reliably

negative relation between quasi-market leverage and the market-to-book ratio across seven different

countries. However, they conclude: “From a theoretical standpoint, this evidence is puzzling. If the

market-to-book ratio proxies for the underinvestment costs associated with high leverage, then firms

with high market-to-book ratios should have low debt...” Yet, Chen and Zhao (2006) find leverage

is positively related to market-to-book for all firms except those with the highest market-to-book

ratios. We therefore examine the leverage-growth relation in our simulated economies.

A distinct yet related line of research studies the relation between leverage and profitability.

Myers (1993) argues that the negative relation between leverage and profitability is one of the most

pervasive patterns of empirical capital structure research. According to Strebulaev (2007), it is also

one of a few relations that enables us to distinguish between the (static and dynamic) trade-off

model and pecking order behavior. We therefore examine whether conclusions from prior research

on the leverage-profitability relation in dynamic capital structure models without investment carry

over to our simulated economies, in which corporate investment and financing are endogenous.

More specifically, the empirical variables of interest are profitability, π, and market-to-book, Q.

The interaction of leverage with these two factors is widely used to differentiate implications of the

trade-off theory of capital structure from the pecking order. Based on the standard trade-off theory,

higher profitability enables firms to reduce the costs of bankruptcy and increase the tax benefit of

debt. Thus, a positive leverage-profitability relation is predicted. This prediction is challenged by

a large body of empirical research, such as Titman and Wessels (1988), Rajan and Zingales (1995),

and Fama and French (2002), and Baker and Wurgler (2002), who all find a negative association

confirming the pecking order’s prediction. Firm behavior according to the pecking order means that

higher profitability allows firms to use more retained earnings. Holding investment fixed, leverage

is thus lower for more profitable firms. As a result, the negative leverage-profitability relation has

traditionally been regarded as evidence in favor of pecking-order and against trade-off behavior.

Regarding the leverage-growth relation, these two theories have opposite predictions too. In the

trade-off world, high growth firms tend to have lower collateral values and hence higher bankruptcy

costs. Trade-off firms with high growth should therefore issue less debt. In the pecking-order world,

debt increases when capital expenditures are higher than retained earnings, and decreases when

capital expenditures are lower than retained earnings. Holding profitability fixed, leverage is thus

higher for pecking-order firms with high growth. Taken together, a positive (negative) leverage-Q

(or leverage-π) relation follows from pecking order (trade-off) arguments.

Recall that we generate 1,000 panel data sets with 800 quarters based on the multi-stage model

and then drop the first 400 quarters to obtain a stationary sample for each simulated economy and to

limit the influence of initial conditions. Using these simulated economies, we estimate four versions
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of a standard capital structure regression model for quasi-market leverage:

QMLi = β0 + β1 xi + β2 σi + β3 αi + β4 τi + εi, (2.25)

where x is either profitability, π, in Panel A of Table 2.7 or market-to-book, Q, in Panel B of Table

2.7. In Panel C of Table 2.7, we include both profitability, π, and market-to-book, Q, as regressors.

We measure profitability, π, as earnings before interest and tax (or cash flows) scaled by firm value,

whereas the market-to-book ratio, Q, is the ratio of total market value of asset over book value of

asset. The other independent variables are time-invariant firm attributes: volatility of cash flows, σ,

bankruptcy cost, α, tax rate, τ , and firm size, ϕ, which equals the sum of book value of debt and

book value of equity. We focus on QML as regressand, because distributions of market leverage and

quasi-market leverage closely mimic each other in our simulated economies (see Table 2.6).

In Table 2.7, the first column reports the regression results at investment points and the other

columns report the ones on simulated economies.15 In particular, the first version of equation (2.25)

is the “Investment Points” regression, whose estimation results are tabulated in the first column

(Inv. Pts.) of Table 2.7.16 The second column (BJK) of Table 2.7 reports OLS regression results

in the fashion of Bradley, Jarrel, and Kim (1984). The dependent variable, QMLi, is calculated as

the sum of book values of debt over the 400 quarters divided by the sum of book values of debt and

market values of equity over the 400 quarters. The independent variables are calculated similarly

(if possible). Note that for this regression the dependent variable and independent variables are

contemporaneous. In the third column (RZ), the independent variables are averaged over quarters

t−1 to t−4 to reduce noise as in Rajan and Zingales (1995), while the dependent variable, QMLi, is

measured at time t. Finally, the fourth column (FF) adopts the Fama-MacBeth regression approach

as in Fama and French (2002). At each time t, QML is regressed on lagged independent vari-

ables. We report averages of the quarter-by-quarter coefficient estimates along with Fama-MacBeth

standard errors that are corrected with the Newey-West method.

Strebulaev (2007) points out empirical capital structure regressions should differentiate refinanc-

ing points from other data points. He develops a dynamic trade-off model with financing frictions,

where firms size if fixed over time. An important question is therefore whether similar conclusions

obtain if firm size is not fixed over time, so firms can make a sequence of optimal investment and

financing decisions. To this end, Table 2.7’s Panel A reveals that the leverage-profitability relation

is positive and significant at investment points (see first column), which is consistent with static

trade-off behavior. Interestingly, it is reliably negative in the other columns, in which we estimate

BJK, RZ, and FF regressions using all data points (i.e. in dynamics). This is the pecking order’s

prediction, but derives entirely from data produced by a dynamic trade-off model with investment

frictions. The effects of cash flow volatility, bankruptcy cost, tax rate, and firm size on leverage

are also significant and go in the expected directions. The upshot of Panel A is that infrequent,

lumpy investment provides an economically important alternative to financing frictions, because we

observe remarkably different patterns at investment points versus in dynamics.

Furthermore, the intertemporal effect of the multi-stage model has implications for the leverage-

growth relation, which we examine in Panel B of Table 2.7. For example, Frank and Goyal (2009)

summarize that market-to-book has a reliably negative relation with leverage, which is consistent

with the prediction of both trade-off theory and market-timing theory. Absent agency problems or

15Coefficient estimates and t-statistics reported in this table are the averages across the 1,000 simulated economies.
16In Strebulaev (2007), the first regression is run at refinancing points only as he considers only financing friction.

Our paper considers only investment frictions. In reality, one would, however, expect both frictions to be important.
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market inefficiencies, this phenomenon is strongly borne out in the regressions on all data points

(i.e. in dynamics). Again, the sign is reversed at investment points. Thus, the interpretation of

cross-sectional tests of the leverage-Q relation changes depending on whether firms are active (i.e. at

investment points) or passive (i.e. in between investment points). While firm size, ϕ, and firm risk,

σ, are both economically and statistically significant in Panel B, bankruptcy cost, α, and tax rate

τ are less reliable variables, consistent with Frank and Goyal (2009). Consider, for example, the RZ

regressions, where α and τ are not even 10% significant. In contrast, α and τ are highly significant

in Strebulaev (2007), where Q is not included as independent variable in the regression analysis.

Finally, Panel C includes both profitability, π, and market-to-book, Q, as regressors. The results

are similar to the ones in Panels A and B. Interestingly, neither π nor Q lose statistical power, even

though both are influenced by the same underlying sources of uncertainty. Thus, this last part of

our regression analysis suggests that profitability and market-to-book are independently important

for explaining the behavior of leverage ratios. More generally, we expect in reality both financing

frictions and investment frictions. So, these complementary types frictions will be present at differ-

ent points in time (i.e. at separate investment and refinancing points) and also at the same points

in time as in our model. Clearly, this can only strengthen the relevance of our conclusions.

To summarize, the regression results based on model simulated data using our structural esti-

mation results are able to replicate stylized facts established by empirical research. In the spirit of

Strebulaev (2007), simulation of the multi-stage model of corporate investment and financing dy-

namics reinforces the need to differentiate investment points from other data points when studying

corporate behavior in a dynamic world.

2.6 Capital Structure Persistence

In a recent article, Lemmon, Roberts and Zender (2008, LRZ) chart the future evolution of leverage

ratios for four portfolios constructed by sorting firms based on their actual leverage (Figure 1) or

unexpected leverage (Figure 2). LRZ report the puzzling evidence that, despite of some convergence,

average leverage ratios across the four portfolios are fairly stable over time for both types of sorts

(i.e. actual and unexpected leverage). During the 39 year period from 1965 to 2003, firms with

relatively high (low) leverage tend to maintain relatively high (low) leverage for over 20 years. LRZ

conclude that the striking stability in leverage paths is unexplained by previously identified determi-

nants (e.g., firm size, profitability, market-to-book, industry, etc.) or changes in sample composition

(e.g., firm exit).

In this section, we establish that investment frictions in a dynamic model can produce average

leverage paths that closely resemble the corresponding ones documented by LRZ. Put differently,

optimal investment and financing decisions in a dynamic model can largely explain the otherwise

puzzling patterns. To see this, we generate simulated data for an extension of our multi-stage model.

At time t = 0, we introduce an initial coupon, C0, that will create variation in initial leverage. But

all firms have the same initial scale, Π0, so they can service this initial debt issue. Given that each

firm has debt in place in stage 0, there is also an endogenous default threshold, XD0. The values of

initial debt in stages 0, 1, 2 are, respectively, denoted by D0, D10, and D20. All other variables are

the same as in Section 2.2 (see Appendix A for more details).

We proceed again by generating simulated economies. In particular, the sample consists of 3,000

firms over 39 years in 1,000 panel data sets with three industries, which have 1,000 firms each and

are defined based on the subsample (i.e. low, medium, high Q) estimation results for b∗ in Section
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2.4. The modeling of firm-level heterogeneity follows the procedure in Section 2.5.1, except that we

replace the SMM’s full sample by the SMM’s three subsample estimation results. For example, the

“Medium Q” industry has investment scales for all firms equal to Π1 = 2.032 and Π2 = 0.848, the

bankruptcy cost, α, and the tax rate, τ , are centered around 0.267 and 0.047, respectively, based on a

uniform distribution with ranges of +/–20% around their centers, etc. The initial scale is normalized

to one, Π0 = 1, but firms have an exogenously assigned initial coupon, C0, which is drawn from a

lognormal distribution: C0 ∼ LogNormal(0.5, 1). For each point in time or quarter, t = 0, ..., 156, in

the simulated economies, we compute book leverage and quasi-market leverage for each firm.17

For the simulated data, we implement the same procedure as outlined in LRZ to track average

leverage ratios of firms in four portfolios, denoted by “Very Low”, “Low”, “High” and “Very High,”

based on these firms’ actual leverage. Figure 2.2 presents the average book and quasi-market lever-

age ratios for these portfolios in “event time,” both for all simulated firms in Panels A and B and

for survivors (i.e. firms that exist at least for 20 years) in Panels C and D. In our simulated data,

firms leave the sample because of bankruptcy. From quarter 76 onward, the length of time for which

we can follow each portfolio is censored because we only simulate data for 156 quarters. Therefore,

we follow LRZ and only perform the portfolio formation through quarter 76 in case of survivors.18

The figure shows for our model simulated data sets that average leverage paths for the four port-

folios formed as in LRZ converge to stable levels in the long run. However, they do not converge to

target leverage, which would be predicted by static trade-off models in which firms always converge

to target as soon as they make adjustments (or as soon as adjustment costs allow them to do so).

Recall that the analysis in Section 2.3 shows that firms that are otherwise identical (i.e. without con-

sidering the structure of investment process) need not follow the same target leverage ratios. That is,

within our multi-stage model, firms that are otherwise identical (i.e. without considering the struc-

ture of investment process) need not follow the same target leverage ratios. Given that the structure

of investment process is hard to observe perfectly, the persistence of leverage in Figure 2.2 therefore

means that this unobservable heterogeneity can give the appearance of a transitory or short-term

component of debt, even though firms dynamically optimize their permanent or long-term component

of debt in our model by trading off net tax benefits, financial flexibility, and investment benefits.

LRZ note that a potential concern regarding their main finding is that constructing portfo-

lios based on actual leverage can implicitly pick up cross-sectional variation in underlying factors,

which themselves influence cross-sectional variation in leverage, such as bankruptcy costs or indus-

try attributes. Like LRZ, we therefore also form four portfolios by ranking firms based on their

“unexpected leverage” and then track again the portfolios’ averages of actual leverage in event

time. Unexpected leverage is defined as the residuals from a cross-sectional regression of leverage

on market-to-book, Q, profitability, π, volatility of cash flows, σ, bankruptcy cost, α, tax rate, τ ,

firm size, ϕ, and industry indicator variables, where all independent variables are lagged one year.

Figure 2.3 presents the graphs for unexpected leverage portfolios. It shows that the results are

nearly identical to those for actual leverage portfolios in Figure 2.2. While there is slightly less cross-

sectional variation in average leverage, the differences in average leverage across the four portfolios

do not quickly disappear in our simulated economies. Thus, unexpected leverage portfolios cannot

remove the key variation in C0 that creates the initial cross-firm differences and then as a result of

large enough, real frictions the striking stability in average leverage paths for very long periods of

time. So we conclude that persistence is not a special case of some parametrization, simulation, or

17We find qualitatively identical results if we simulate 139 years and drop the first 100 years or when C0 obeys a
uniform distribution: C0 ∼ Uniform[0.01, 6]. These unreported results are available from the authors on request.

18We suppress 95% confidence intervals in the figures, because they almost coincide with the average leverage lines.
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sorting procedure but rather a general result of a dynamic trade-off model with investment frictions.

In sum, this section implies that the corporate investment process can be the driving force behind

leverage ratios’ pronounced persistence and remaining variation after long periods of time elapse.

We thus need to focus more on the heterogeneity in companies’ investment processes.
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2.7 Conclusion

This paper examines interactions of corporate investment and financing in a dynamic trade-off model

with a sequence of irreversible investment opportunities. The model produces an intertemporal ef-

fect, which links financial flexibility to the investment process. Firms trade off reaping investment

(i.e. cash flow) benefits from issuing debt in an earlier stage against retaining financial flexibility

for funding more of the investment cost with debt in a later stage. Taking future financing and

investment opportunities into account, (juvenile) firms tend to underutilize debt when financing

investment the first time to retain financial flexibility. Surprisingly, the underutilization of debt

persists even when the adolescent firm matures (i.e. exercises its last investment opportunity). In

addition, underutilization of debt is more (less) severe for the more back-loaded (front-loaded) in-

vestment opportunities. That is, even within a standard trade-off model, firms that are identical

without considering their investment opportunities do not follow the same target leverage ratios.

Parameter estimation via Simulated Method of Moments takes the model to the real data. Struc-

tural estimation results reveal that high growth firms have, on average, a more back-loaded invest-

ment process, which helps explain why they tend to have low leverage ratios. Furthermore, capital

structure regression results for model simulated data using these estimation results produce stylized

facts consistent with the empirical literature. Notably, our dynamic trade-off model with a sequence

of irreversible investments is capable of producing a negative leverage-profitability relation and, in

the absence of agency problems or other frictions, a negative leverage-growth relation. Therefore,

empirical tests without incorporation of the structure of the investment process (and in particular

cross-firm variation thereof) can be uninformative to the extent that their interpretation is not ro-

bust to recognizing heterogeneity in companies’ investment opportunities. Finally, an extension of

our dynamic framework to randomly imposed initial variation in leverage reveals that the model

can fully explain the empirical puzzle that average observed leverage ratios are path dependent and

persistent for very long periods of time.

Overall, we conclude that it is important for studies of capital structure to recognize the struc-

ture of the investment process, which strongly influences both investment and financing dynamics.

The rather rich set of insights and predictions generated by embedding a sequence of irreversible

investments in a dynamic trade-off model suggests that further extension of this class of models will

prove fruitful for future research. prove fruitful for future research.

55



2.8 References

Adam, Tim, and Vidhan K. Goyal, 2008, Investment opportunity set and its proxy variables,

Journal of Financial Research 31, 41–63

Baker, Malcolm, and Jeffrey Wurgler, 2002, Market timing and capital structure, Journal of Fi-

nance 57, 1–32.

Barclay, Michael J., Morellec, Erwan, and Clifford W. Smith Jr., 2006, On the debt capacity of

growth options, Journal of Business 79, 37–59.

Bradley, Michael, Jarrell, Gregg A., and E. Han Kim, 1984, On the existence of an optimal capital

structure: Theory and evidence, Journal of Finance 39, 857–878.

Chen, Long, and Xinlei Zhao, 2006, On the relation between the market-to-book ratio, growth

opportunities, and leverage ratio, Finance Research Letters 3, 253–266.

DeAngelo, Harry, Linda DeAngelo, and Toni M. Whited, 2009, Capital structure dynamics and

transitory debt, Working Paper, University of Rochester.

DeAngelo, Harry, Linda DeAngelo, and Toni M. Whited, 2011, Capital structure dynamics and

transitory debt, Journal of Financial Economics 99, 235–261.

Fama, Eugene F., and Kenneth R. French, 2002, Testing trade-off and pecking order predictions

about dividends and debt, Review of Financial Studies 15, 1–33.

Fischer, Edwin O., Robert Heinkel, and Josef Zechner, 1989, Optimal dynamic capital structure

choice: Theory and tests, Journal of Finance 44, 19–40.

Flannery, Mark J., and Kasturi P. Rangan, 2006, Partial adjustment toward target capital struc-

tures, Journal of Financial Economics 79, 469–506

Frank, Murray, and Vidhan K. Goyal, 2003, Testing the pecking order theory of capital structure.

Journal of Financial Economics 67, 217–248.

Frank, Murray Z., Vidhan K. Goyal, 2009, Capital structure decisions: Which factors are reliably

important?, Financial Management 38, 1–37

Goldstein, Robert, Ju, Nengjiu, and Hayne E. Leland, 2001, An EBIT-based model of dynamic

capital structure, Journal of Business 74, 483–512.

Gourieroux, Christian, and Alain Monfort, 1996, Simulation Based Econometric Methods (Oxford

University Press, Oxford, U.K.).

Gourieroux, Christian, Monfort, Alain, and Eric Renault, 1993, Indirect inference, Journal of

Applied Econometrics 8, S85–S118.

Graham, John R., 2000, How big are the tax benefits of debt? Journal of Finance 55, 1901–1941.

Hackbarth, Dirk, Hennessy, Christopher A., and Hayne E. Leland, 2007, Can the trade-off theory

explain debt structure?, Review of Financial Studies 20, 1389–1428.

Hackbarth, Dirk, and David C. Mauer, 2012, Optimal priority structure, capital structure, and

investment, Review of Financial Studies 25, 748–796.

56



Hennessy, Christopher A., and Toni M. Whited, 2005, Debt dynamics, Journal of Finance 60,

1129–1165.

Leary, Mark T., and Michael R. Roberts, 2005, Do firms rebalance their capital structures?, Journal

of Finance 60, 2575–2619.

Leland, Hayne E., 1994, Corporate debt value, bond covenants, and optimal capital structure,

Journal of Finance 49, 1213–1252.

Lemmon, Michael L., Roberts, Michael R., and Jaime F. Zender, 2010, Back to the beginning:

Persistence and the cross-section of capital structure, Journal of Finance 63, 1575–1608.

Modigliani, Franco, and Merton Miller, 1958, The cost of capital, corporation finance and the

theory of investment, American Economic Review 48, 261–297.

Morellec, Erwan, and Norman Schuerhoff, 2011, Corporate investment and financing under asym-

metric information, Journal of Financial Economics 99, 262-288.

Myers, Stewart C., 1977, Determinants of corporate borrowing, Financial Economics 5, 147–175.

Myers, Stewart C., 1993, Still searching for optimal capital structure, Journal of Applied Corporate

Finance 6, 4–14.

Rajan, Raghuram G., and Luigi Zingales, 1995, What do we know about capital structure? Some

evidence from international data, Journal of Finance 50, 1421–1460.

Schaefer, Stephen, and Ilya A. Strebulaev, 2008, Structural models of credit risk are useful: Evi-

dence from hedge ratios on corporate bonds, Journal of Financial Economics 90, 1–19.

Smith, Clifford W., and Ross L. Watts, 1992. The investment opportunity set, and corporate

financing, dividend, and compensation policies, Journal of Financial Economics 32, 262–292.

Strebulaev, Ilya A., 2007. Do tests of capital structure theory mean what they say?, Journal of

Finance 62, 1747–1789.

Strebulaev, Ilya A., and Baozhong Yang, 2012, The mystery of zero-leverage firms, Working Paper,

Stanford University.

Titman, Sheridan, and Roberto Wessels, 1988, The determinants of capital structure, Journal of

Finance 43, 1–19.

Tserlukevich, Yuri, 2008, Can real options explain financing behavior?, Journal of Financial Eco-

nomics 89, 232–252.

Welch, Ivo, 2004, Capital structure and stock returns, Journal of Political Economy 112, 106–131

57



2.9 Tables and Figures

Table 2.1: Description of Model Parameters and Variables

This table presents a notion index for the single-stage (benchmark) model and the multi-stage model.

Parameter Definition
r Risk-free interest rate
µ Growth rate of cash flows
σ Volatility of cash flows
τ Effective corporate tax rate
α Proportional bankruptcy cost
X0 Cash flow level (in $) at time t = 0

Πi,Π Investment scale of ith stage, i = 1, 2
Fi, F Investment cost (in $) of ith stage, i = 1, 2
Ci, C Debt coupon (in $) of ith stage, i = 1, 2

XSi, XS Investment threshold of ith stage, i = 1, 2
XDi, XD Default threshold of ith stage, i = 1, 2

DB Debt value in stage 1 of the benchmark model
D1 Debt value in stage 1 of the multi-stage model
D2i Debt value in stage 2 of the multi-stage model, i = 1, 2
EBi Equity value in stage i of the benchmark model, i = 0, 1
Ei Equity value in stage i of the multi-stage model, i = 0, 1, 2

MLi,ML Market leverage in ith stage, i = 1, 2
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Table 2.2: Financing and Investment in Single-Stage and Multi-Stage
Models

This table shows the optimal investment and financing decisions of the single-stage benchmark model in
Panel A and the multi-stage model in Panel B. The base case parameter values are as follows: risk-free rate
r = 6%, growth rate of the cash flow process µ = 1%, volatility of the cash flow process σ = 25%, corporate
tax rate τ = 10%, bankruptcy cost α = 30%, initial value of the cash flow process X0 = $5, the scales of
investment Π1 = 1 and Π2 = 1, and the investment costs F1 = $100 and F2 = $200. The notation index is
given in Table 2.1.

Panel A. Single-Stage Model

Π = 1 Π = 1 Π = 1.5 Π = 0.5
F = $100 F = $200 F = $100 F = $200

C 6.522 13.034 6.521 13.034
XS 12.487 24.973 8.325 49.947
XD 2.830 5.657 1.887 11.313
ML 0.419 0.419 0.419 0.419

Panel B. Multi-Stage Model

Π1 = 1 Π1 = 0.75 Π1 = 1.25 Π1 = 1.5
Π2 = 1 Π2 = 1.25 Π2 = 0.75 Π2 = 0.5

C1 5.591 5.447 5.972 6.261
C2 19.428 14.760 27.205 43.219
XS1 12.364 16.424 9.930 8.300
XS2 23.666 19.359 30.764 44.611
XD1 2.154 2.477 1.959 1.770
XD2 5.429 4.385 7.199 10.737
ML1 0.283 0.201 0.349 0.390
ML2 0.378 0.401 0.359 0.343
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Table 2.4: Sensitivity of Model Moments

This table presents the sensitivities of the moments used in the Simulated Method of Moments (SMM)
estimation. The structural model parameters that we fit by SMM are the investment scales, Π1 and Π2,
the bankruptcy cost, α, and the tax rate, τ . The other parameters assume the base case values from Table
2.2. Column 1 presents the model moments for the base case (i.e., Π1 = 1, Π2 = 1, α = 0.3, and τ = 0.1).
In columns 2 to 5, each parameter is increased by 50% while keeping the others fixed. The following five
moments are used in the SMM. The average quasi-market leverage, QML, is obtained by first calculating
cross-sectional averages of quasi-market leverage ratios for every time t and then averaging across time.
Quasi-market leverage is defined as the book value of debt divided by the sum of market value of equity
and book value of debt. The dispersion of quasi-market leverage ratios, DispQML, is the cross-sectional
average of the time-series standard deviations of firms’ quasi-market leverage ratios. D/K denotes net
debt issuance normalized by capital. D/K is calculated only at the investment points. Q is the average
market-to-book ratio. Similar to QML, the average is taken first across firms and then across time. Inv/Eq
is the average of investment expenditure scaled by the book value of equity at investment points. Panel A
displays the sensitivities of the model moments in terms of their absolute changes, while Panel B displays
their changes relative to the base case values in the first column of Panel A.

Panel A. Absolute Changes

Base Π1 = 1.5 Π2 = 1.5 α = 45% τ = 15%

QML 0.064 0.115 0.064 0.067 0.057
DispQML 0.070 0.107 0.070 0.072 0.065

D/K 0.267 0.305 0.231 0.221 0.337
Q 1.184 1.335 1.678 1.190 1.139

Inv/Eq 0.413 0.427 0.394 0.405 0.432

Panel B. Relative Changes

Π1 = 1.5 Π2 = 1.5 α = 45% τ = 15%

QML 0.805 0.008 0.057 -0.105
DispQML 0.527 0.001 0.027 -0.064

D/K 0.140 -0.135 -0.172 0.260
Q 0.128 0.418 0.005 -0.038

Inv/Eq 0.033 -0.048 -0.020 0.046
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Table 2.5: Estimation of Model Parameters with Simulated Method of
Moments

This table presents the estimation results of the model parameters via Simulated Method of Moments
(SMM). The structural model parameters that we fit by SMM are the investment scales, Π1 and Π2, the
bankruptcy cost, α, and the tax rate, τ . The other parameters assume the base case values from Table 2.2.
The following five moments are used in the SMM. The average quasi-market leverage, QML, is obtained by
first calculating cross-sectional averages of quasi-market leverage ratios for every time t and then averaging
across time. Quasi-market leverage is defined as the book value of debt divided by the sum of market
value of equity and book value of debt. The dispersion of quasi-market leverage ratios, DispQML, is the
cross-sectional average of the time-series standard deviations of firms’ quasi-market leverage ratios. D/K
denotes net debt issuance normalized by capital. D/K is calculated only at the investment points. Q is
the average market-to-book ratio. Similar to QML, the average is taken first across firms and then across
time. Inv/Eq is the average of investment expenditure scaled by the book value of equity at investment
points. The data moments are calculated using COMPUSTAT’s annual tapes for the 1965–2009 period.
Four sets of data moments are obtained by using the full sample and three subsamples, which are generated
by the tercile cutoffs of Q. Panel A presents the fitted model parameters. The numbers in parentheses are
the standard deviation of the fitted parameters b∗ across the iterations of SMM with the exception of the
χ2 column in Panel A, in which the numbers in parentheses are the p-values for the overidentification test.
Panel B presents the target and fitted moments for each sample.

Panel A. Parameter Estimates

Π1 Π2 α τ χ2

Full Sample b∗ 1.966 1.286 0.324 0.043 0.021
(0.104) (0.095) (0.055) (0.012) (0.111)

Low Q b∗ 3.036 0.531 0.440 0.039 0.034
(0.503) (0.389) (0.018) (0.003) (0.146)

Medium Q b∗ 2.032 0.848 0.267 0.047 0.036
(0.134) (0.144) (0.091) (0.015) (0.133)

High Q b∗ 1.264 2.887 0.284 0.071 0.035
(0.079) (0.402) (0.104) (0.030) (0.132)

Panel B. Fitted and Data Moments

QML DispQML D/K Q Inv/Eq

Full Sample Data 0.199 0.183 0.166 1.685 0.366
Fitted 0.198 0.157 0.166 1.761 0.412

Low Q Data 0.290 0.198 0.126 0.905 0.336
Fitted 0.284 0.207 0.134 1.054 0.407

Medium Q Data 0.216 0.169 0.210 1.335 0.373
Fitted 0.220 0.165 0.224 1.403 0.420

High Q Data 0.087 0.108 0.176 2.839 0.390
Fitted 0.086 0.086 0.189 2.731 0.394
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Table 2.6: Parameters for Simulation and Descriptive Statistics of Simu-
lated Data

This table presents the parameter values and distributions used for the simulation in Panel A and the
descriptive statistics of the simulated leverage ratios in Panel B. To add heterogeneity to the simulated data,
several model parameters are randomized at time 0 and kept fixed over time: the investment costs, F1 and
F2, the bankruptcy cost, α, and the tax rate, τ . In addition, to allow for a correlation structure, the volatility
of cash flows is decomposed into a systematic part, σS , and an idiosyncratic part, σI . β measures a firm’s
exposure to systematic risk. The investment scales, Π1 and Π2, and the means of the bankruptcy cost, α, and
the tax rate, τ , are set to the full sample SMM estimates for b∗ in Table 2.5. The other parameters assume the
base case values from Table 2.2. Panel B reports the distributions of market leverage (ML) and quasi-market
leverage (QML). Investment points (Inv. Pts.) refers to the data points where firms are at their investment
points. Investment points are further classified as the first and second investment points because there are
two stages in the model. All other statistics are given for all data points (i.e. in dynamics). The market
leverage ratio, ML, is defined as the market value of debt over the sum of market value of debt and market
value of equity, and the quasi-market leverage ratio, QML, is the book value of debt over the sum of market
value of equity and book value of debt. For each leverage ratio, the mean, the 1st, 5th, 10th, 50th, 90th, 95th,
99th percentiles, and the standard deviation are reported. For each data set, the statistics are first calculated
for each quarter, then averaged across quarters, and then averaged across simulated data sets. Min. and
Max. give the minimum and maximum of statistics over the 1,000 data sets. The statistics are based on 1,000
simulated economies, which each contain 400 quarters (after dropping the first 400 quarters) for 3,000 firms.

Panel A. Model Parameters for Simulation

Parameter Value Parameter Distribution

Π1 2.093 F1 Uniform[80, 120]
Π2 1.304 F2 Uniform[160, 240]
σS 0.148 α Uniform[0.362, 0.542]
N 3,000 τ Uniform[0.022, 0.032]
∆t 0.25 β Uniform[0.179, 1.807]
T 100 σI 0.05 + 1

30
χ2(5)

Panel B. Descriptive Statistics for Leverage

Percentiles

Mean 1% 5% 10% 50% 90% 95% 99% Std. Dev.

ML
Inv. Pts. 0.187 0.023 0.046 0.067 0.175 0.323 0.368 0.462 0.099
1st Inv. Pts. 0.162 0.021 0.039 0.057 0.152 0.283 0.318 0.386 0.086
2nd Inv. Pts. 0.237 0.042 0.080 0.109 0.225 0.380 0.426 0.521 0.106
Avg. 0.197 0.000 0.000 0.000 0.089 0.571 0.707 0.899 0.241
Min. 0.113 0.000 0.000 0.000 0.000 0.362 0.503 0.784 0.174
Max. 0.255 0.000 0.000 0.000 0.181 0.698 0.833 0.960 0.285

QML
Avg. 0.205 0.000 0.000 0.000 0.088 0.606 0.752 0.933 0.254
Min. 0.116 0.000 0.000 0.000 0.000 0.378 0.538 0.838 0.185
Max. 0.266 0.000 0.000 0.000 0.182 0.747 0.876 0.977 0.299
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Table 2.7: Capital Structure Regressions on Simulated Data

This table reports average coefficient estimates and average t-statistics (in parentheses) of four cross-sectional
regressions over the 1,000 simulated panel data sets from Table 2.6. That is, the regressions are based on
1,000 simulated economies, which each contain 400 quarters (after dropping the first 400 quarters) for 3,000
firms. The regression model is as follows:

QMLi = β0 + β1 xi + β2 σi + β3 αi + β4 τi + β4 ϕi + εi, (2.26)

where x is either profitability, π, in Panel A or market-to-book, Q, in Panel B. In Panel C, we include
both profitability, π, and market-to-book, Q, as regressors. We measure profitability, π, as earnings before
interest and tax (or cash flows) scaled by total assets, whereas the market-to-book ratio, Q, is the ratio
of total market value of asset over book value of asset. The other independent variables are constant firm
attributes. They include volatility of cash flows, σ, bankruptcy cost, α, tax rate, τ , and firm size, ϕ, which
equals the sum of book value of debt and book value of equity. The first column (Inv. Pts.) shows OLS
regression results using data at investment points only. The regressions in the other columns are for all
data points (i.e. in dynamics). The second column (BJK) reports OLS regression results in the fashion of
Bradley, Jarrel, and Kim (1984). The dependent variable, QMLi, is calculated as the sum of book values
of debt over the 400 quarters divided by the sum of book values of debt and market values of equity over
the 400 quarters. The independent variables are calculated similarly (if possible). This definition implies
that the dependent variable and independent variables are contemporaneous. The third column (RZ)
follows Rajan and Zingales (1995), who define all independent variables as averages over quarters t − 1 to
t − 4. In this version, the dependent variable QMLi is measured at time t. The last column (FF) adopts
the Fama-MacBeth regression approach as in Fama and French (2002). At each time t, QML is regressed
on lagged independent variables. Then the time-series of the coefficient estimates are averaged and the
standard errors are corrected using the Newey-West method with six lags.

Panel A. Profitability

Inv. Pts. BJK RZ FF

Constant 0.293 0.371 0.323 0.364

(18.67) (12.20) (6.40) (47.45)

π 2.208 -0.053 -0.004 -0.012

(10.25) (-11.04) (-5.46) (-11.83)

σ -0.791 -0.779 -0.754 -0.843

(-52.55) (-30.94) (-18.03) (-48.66)

α -0.328 -0.176 -0.097 -0.107

(-14.43) (-2.77) (-0.94) (-10.57)

τ 2.785 1.427 0.707 0.775

(16.40) (3.00) (0.92) (10.06)

ϕ 0.028 0.067 0.184 0.182

(7.45) (8.14) (18.93) (27.62)

R2 0.804 0.313 0.229 0.224

N 2,637 3,000 3,000 1,197,000
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Table 2.7 (cont.)

Panel B. Tobin’s Q

Inv. Pts. BJK RZ FF

Constant 0.369 0.403 0.430 0.471

(38.06) (14.10) (9.02) (59.55)

Q 0.026 -0.049 -0.076 -0.084

(28.90) (-20.17) (-20.23) (-32.85)

σ -0.945 -0.937 -1.072 -1.152

(-112.52) (-37.49) (-25.65) (-66.97)

α -0.338 -0.208 -0.128 -0.136

(-16.67) (-3.49) (-1.31) (-14.37)

τ 2.892 1.679 0.916 0.966

(19.16) (3.77) (1.26) (13.58)

ϕ 0.033 0.167 0.265 0.259

(9.93) (19.96) (27.95) (36.20)

R2 0.844 0.405 0.344 0.233

N 2,637 3,000 3,000 1,197,000

Panel C. Profitability and Tobin’s Q

Inv. Pts. BJK RZ FF

Constant 0.212 0.423 0.444 0.485

(15.20) (15.21) (9.39) (59.39)

π 3.162 -0.058 -0.005 -0.015

(16.43) (-13.08) (-7.34) (-11.96)

Q 0.025 -0.052 -0.079 -0.088

(25.46) (-21.57) (-20.95) (-33.27)

σ -0.805 -0.958 -1.088 -1.161

(-58.13) (-39.36) (-26.25) (-67.00)

α -0.333 -0.208 -0.129 -0.136

(-17.70) (-3.59) (-1.33) (-14.44)

τ 2.752 1.681 0.924 0.980

(19.57) (3.89) (1.28) (13.76)

ϕ 0.065 0.157 0.259 0.252

(9.28) (19.11) (27.48) (36.01)

R2 0.866 0.439 0.357 0.240

N 2,637 3,000 3,000 1,197,000
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Figure 2.1: Initial Equity Values as a Function of Debt Coupon Choices

This figure charts the intertemporal effect by mapping debt coupon pairs (C1, C2) into initial equity value, E0, on
the basis of equation (16). C1 varies from $4 to $7, and C2 from $16 to $22. The base case parameter values are
as follows: risk-free rate r = 6%, growth rate of the cash flow process µ = 1%, volatility of the cash flow process
σ = 25%, corporate tax rate τ = 10%, bankruptcy cost α = 30%, initial value of the cash flow process X0 = $5, the
scales of investment Π1 = 1 and Π2 = 1, and the investment costs F1 = $100 and F2 = $200.
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Figure 2.2: Average Leverage of Actual Leverage Portfolios in Event Time

The sample consists of 3,000 firms over 39 years in 1,000 simulated economies based on the extended multi-stage model
in Appendix A with three industries, which have 1,000 firms each and are defined based on the subsample (i.e. low,
medium, high Q) estimation results for b∗ in Table 2.5. The modeling of firm-level heterogeneity follows the procedure
in Table 2.6, except that we use here the three subsample estimation results for b∗ in Table 2.5. While the initial
investment scale is normalized to one, Π0 = 1, firms have an exogenously assigned initial coupon, C0, which is drawn
from a lognormal distribution: C0 ∼ LogNormal(0.5, 1). Each panel presents the average leverage of four portfolios
in event time (i.e. quarters), where event time zero is the portfolio formation period. That is, for each quarter in the
simulated economies, we form four portfolios by ranking firms based on their actual leverage. Holding the portfolios
fixed for the next 20 years, we compute the average leverage for each portfolio. We repeat this process of sorting and
averaging for every quarter in our simulated economies. After performing this sorting and averaging for each quarter
from quarter 0 to quarter 156, we then average the average leverages across “event time” in each of the simulated
economies and then average them across the 1,000 simulated economies to obtain the lines in the figure. The results for
book and quasi-market leverage are presented in Panels A and C, where book (quasi-market) leverage is defined as the
ratio of book value of debt to book value of assets (sum of book value of debt and market value of equity). Panels B and
D present similar results for book and quasi-market leverage, respectively, but for a subsample of firms required to exist
for at least 80 quarters (consequently, we can only perform the portfolio formation through quarter 76 for this sample).
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Figure 2.3: Average Leverage of Unexpected Leverage Portfolios in Event
Time.

The sample consists of 3,000 firms over 39 years in 1,000 simulated economies based on the extended multi-stage
model in Appendix A with three industries, which have 1,000 firms each and are defined based on the subsample
(i.e. low, medium, high Q) estimation results for b∗ in Table 2.5. The modeling of firm-level heterogeneity follows
the procedure in Table 2.6, except that we use here the three subsample estimation results for b∗ in Table 2.5. While
the initial investment scale is normalized to one, Π0 = 1, firms have an exogenously assigned initial coupon, C0,
which is drawn from a lognormal distribution: C0 ∼ LogNormal(0.5, 1). Each panel presents the average leverage
of four portfolios in event time (i.e. quarters), where event time zero is the portfolio formation period. That is, for
each quarter in the simulated economies, we form four portfolios by ranking firms based on their unexpected leverage
(defined below). Holding the portfolios fixed for the next 20 years, we compute the average leverage for each portfolio.
We repeat this process of sorting and averaging for every quarter in our simulated economies. After performing this
sorting and averaging for each quarter from quarter 0 to quarter 156, we then average the average leverages across
“event time” in each of the simulated economies and then average them across the 1,000 simulated economies to
obtain the lines in the figure. The results for book and quasi-market leverage are presented in Panels A and C, where
book (quasi-market) leverage is defined as the ratio of book value of debt to book value of assets (sum of book value
of debt and market value of equity). Panels B and D present similar results for book and quasi-market leverage,
respectively, but for a subsample of firms required to exist for at least 80 quarters (consequently, we can only perform
the portfolio formation through quarter 76 for this sample). Unexpected leverage is defined as the residuals from
a cross-sectional regression of leverage on market-to-book, Q, profitability, π, volatility of cash flows, σ, bankruptcy
cost, α, tax rate, τ , firm size, ϕ, and industry indicator variables, where all independent variables are lagged one year.
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Chapter 3

Does Idiosyncratic Risk Matter for
the Cross-section of Stock
Returns? Evidence from the
Option Markets

3.1 Introduction

This paper re-examines whether idiosyncratic risk explains the cross-section of stock returns using

implied idiosyncratic variance extracted from option prices. Starting from the mean-variance analysis

by Markowitz (1959), asset pricing models such as the Capital Asset Pricing Model (CAPM) of

Sharpe (1964), Lintner (1965) and Black (1972), the Ross (1976) arbitrage pricing theorem (APT),

and the Fama-French (1993) three-factor model establish a framework in which idiosyncratic risk

does not explain stock returns because it can be eliminated through diversification. However, if

investors can not hold fully diversified portfolios, they will care about idiosyncratic risks and request

compensation for bearing it. Based on this argument, Merton (1987) provides a theoretical model

implying that the conditional expected stock return is positively related to its own idiosyncratic

variance, i.e. firm-specific component of the firm’s return variance.

Enlightened by Merton (1987)’s model, this paper re-examines the linear relationship between

expected stock returns and idiosyncratic risk by studying idiosyncratic variance instead of volatility.

This has never been done in the literature. Moreover, the majority of the studies in this literature

use past realized idiosyncratic volatility as a proxy for expected idiosyncratic volatility, and find

conflicting relationships. This paper adopts the implied idiosyncratic variances extracted from option

prices as the measure of expected idiosyncratic risk. This measure is also used in Diavatopoulos,

Doran and Peterson (2008) (DDP hereafter). According to DDP, implied idiosyncratic volatility is

a better measure for expected idiosyncratic volatility than past realized idiosyncratic volatility, but

their tests fail to provide support to this claim. They also document a positive relationship between

implied volatility and future stock returns, which is consistent with Merton (1987)’s prediction and

poses a challenge to the standard asset pricing models. This paper differs from DDP in many aspects.

First, it focuses on reconciling the conflicting empirical findings in the literature by decomposing

realized idiosyncratic variance into expected (implied) and unexpected components. Second, the

sample in this paper covers stocks with tradable options during an extended period of January 1996

to December 2006, compared to January 1996 to June 2005 in DDP. Third, it provides a formal test

of the predictive power of implied idiosyncratic variance on future realized idiosyncratic variance

and shows further evidence that implied idiosyncratic variance is a better predictor than historical

idiosyncratic variance. Last but not least, DDP uses the implied volatilities of standardized options

in OptionMetrics directly, whereas in this paper, the implied idiosyncratic variances are extracted

from the implied volatilities on one-month-to-expiration at-the-money options. The stock holding
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period returns are calculated corresponding to the terms of these options, i.e. from immediately after

the option expiration Saturday in calendar month t to option expiration date in calendar month t+1.

There are two advantages for this approach. First, the underlying stocks of these options are the

worst candidates for short-sale constraints, which set a proper setting to test Merton (1987) model

(frictionless market). Second, implied volatilities for these options tend to be a better measure of

future idiosyncratic volatilities than other measures.

To study the effect of implied, unexpected and realized idiosyncratic variances on stock returns,

Fama-MacBeth (1973) regressions are carried out for the full sample, DDP’s sample period as well

as NYSE and NYSE/AMEX sub-samples. The tests imply a significant positive effect of implied

idiosyncratic variance for low idiosyncratic variance sample, a significant negative effect of past

realized idiosyncratic variance for high idiosyncratic variance sample and no significant effect for a

sample with medium level of idiosyncratic variance. Furthermore, the positive relationship in DDP

does not hold in the extended sample period. More specifically, no significant relationship exists

between implied idiosyncratic variance and future stock returns for the period of January 1996

through December 2006. Instead, past realized idiosyncratic variance shows a significant negative

effect on future stock returns for both the extended sample period and the sample period in DDP.

This second finding is consistent with Ang, Hodrick, Xing and Zhang (2006a) (AHXZ hereafter).

What is more interesting and confusing lies in the results of sub-sample analyses. The positive

relationship found in DDP resurfaces for NYSE stocks sub-sample. Neither implied nor past realized

idiosyncratic variances is significant for NYSE/AMEX stocks sample. Therefore there is no single

robust relationship between implied (realized) idiosyncratic variance and future stock returns. In an

attempt to resolve the puzzling findings, I show that the negative effect of past realized idiosyncratic

variance is driven by the persistent idiosyncratic variance shock and it is the most significant for

high idiosyncratic variance stocks. The positive effect of implied idiosyncratic variance is the most

significant for low idiosyncratic variance stocks. The tradeoff between these two contradictive effects

can yield negative, positive and even no relationships between idiosyncratic risk and cross-sectional

stock returns. Therefore the mixed findings in the literature can be contributed to this tradeoff.

The rest of the paper is organized as follows: Section 3.2 provides a review of the related literature

on the idiosyncratic risk-stock returns relationship and the information content in implied volatility.

Section 3.3 defines idiosyncratic risk measures, presents descriptive statistics of the samples, and

tests the predictive power of implied idiosyncratic variance for future realized idiosyncratic variance.

Section 3.4 re-examines the relationship between implied (past) idiosyncratic variance and future

stock returns in DDP’s sample periods and another two sub-samples. Section 3.5 briefly discusses

the cause of the mixed results and section 3.6 concludes.

3.2 Related Literature

In addition to Diavatopoulos, Doran and Peterson (2008) with pieces of evidence from the options

markets, there is a strand of research debating on whether idiosyncratic risk matters for expected

stock returns using stock market information.

Theoretically Merton (1987) indicates that if investors are not able to hold the market portfolio,

firms with larger idiosyncratic variance have higher returns to compensate the investors for bearing

the idiosyncratic risk. Barberis and Huang (2001) also develop an intertemporal behavior model

that implies a positive relation between idiosyncratic risk and stock returns because of investors’

loss aversion and mental accounting on stock level.
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Supporting the theoretical models, Malkiel and Xu (2004) find a significantly positive explanatory

power of idiosyncratic volatility for cross-sectional expected stock returns at the portfolio level. Goyal

and Santa-Clara (2003) use time-series analysis to identify a significant positive relationship between

average total (85% idiosyncratic) volatility and the return of the S&P 500 index market. Chua et

al (2006) decompose idiosyncratic volatility into expected and unexpected components using AR

(2) model and find that expected (unexpected) stock returns is positively associated with expected

(unexpected) idiosyncratic volatilities. Fu (2009) and Spiegel and Wang (2005) consider the time-

varying property of the conditional idiosyncratic volatilities. Using monthly data, they estimate the

conditional idiosyncratic volatilities with more advanced models such as GARCH and EGARCH

and find significantly positive relation.

On the contrary, Bali and Cakici (2006) argue that the empirical evidence is not robust to

different choices of data frequency, weighting scheme, conditioning variables, and sample periods.

Wei and Zhang (2005) revisit the study by Goyal and Santa-Clara (2003) with longer sample periods

but find no sustained results. Ang, Hodrick, Xing and Zhang (2006a)(AHXZ hereafter) measure

idiosyncratic volatility of individual stocks relative to Fama-French (1993) three-factor model and

then build portfolios by sorting on stock’s idiosyncratic volatility. Contrary to all of the above

findings, AHXZ show a strong negative relationship and impose a puzzle to this literature.

The main contribution of DDP is the use of implied idiosyncratic volatility extracted from option

market information as the measure for expected idiosyncratic volatility. Canina and Figlewski (1993)

examine S&P 100 index options (OEX) from 1983 to 1987 and conclude that implied volatility has

no correlation with future volatility. Christensen and Prabhala (1998) use a longer data period,

correct for biases related to measurement error and find that implied volatility of S&P 100 index

options outperforms past volatility in forecasting future index volatility. Granger and Poon (2003)

survey the literature on forecasting the volatility and conclude that the market forecast embedded

in implied volatility is the best forecast of future realized volatility. Goyal and Saretto (2006)

investigate the predictability of the cross-section of individual equity option implied volatilities

and conclude that the cross-section of stock implied volatilities lead to better predictions of future

volatility than those provided by the market’s implied volatility. Giot (2005) finds that VIX is

useful for predicting returns on various indices formed on the basis of size and growth versus value

characteristics. Banerjee, Doran, and Peterson (2007) find that VIX levels and innovations predict

the returns of characteristic based portfolios.

3.3 The Idiosyncratic Volatility Measures and the Data

Instead of using calendar months as holding periods of stocks, I use the one month period from the

first trading day (usually Monday) immediately after the option expiration date (usually Saturday)

in month t to the option expiration date in month t + 1. Throughout this paper I will refer to

months as the definition here and calendar months as regular months. Defining holding period in

this way has a few advantages. First, one-month-to-expiration at-the-money options are the most

liquid option contracts. Hence the underlying stocks of these options are least likely subject to

short-sale constraints. Second, implied volatility of at-the-money options is directly related to the

underlying volatility. It carries similar statistical properties as it is very persistent. Therefore it is

a good measure of market’s expectation on the underlying volatility and is superior to past realized

volatility.
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3.3.1 The Measures of Idiosyncratic Variances

Idiosyncratic Variance

Fama and French (1993) three-factor model as shown below has been one of the most successful

factor-based asset pricing models.

rit = αi + βiMKTMKTt + βiSMBSMBt + βiHMLHMLt + εit, (3.1)

where MKT is the market excess return measured by subtracting the one-month T-bill rate from

the market return, SMB is the return difference between small size stock portfolio and big size

stock portfolio. HML is the return on high book-to-market stock portfolio minus the return on low

book-to-market stock portfolio. Daily MKT, SMB and HML are provided by Kenneth French on

his website1.

By using Fama-French three-factor model (3.1) to describe the cross-section of stock returns, I

am able to extract the idiosyncratic variance from a stock’s total variance by following the approach

in Ang et al (2006a). At the end of each month, for every stock i with options trading on it, daily

stock returns over this month are regressed on MKT, SMB and HML. The idiosyncratic variance

for stock i at t ( IV it ) is defined as the variance of the residuals in model (3.1), i.e.

IV it = V ar(εit). (3.2)

IV it is then annualized by multiplying 252
N , where N is the number of trading days in that month.

This measure is based on historical realized returns, hence is the realized idiosyncratic variance.

Idiosyncratic variance can also be defined as the annualized variance of residuals from the CAPM.

I prefer to using Fama-French three-factor model because it is more powerful in capturing the cross-

sectional variations in stock returns (Fama and French (1993)). Given that CAPM fails to explain

the cross-section of stock returns for the recent period (Fama and French (1992a)), idiosyncratic

variance measured relative to Fama-French three-factor model is more appropriate.

Implied Idiosyncratic Variance

Implied idiosyncratic variance (IIV it ) is the idiosyncratic component of implied variance. As is the

argument for implied volatility, if option market is efficient, implied idiosyncratic variance should

reflect market investors’ expectation on future idiosyncratic variance of the underlying stock returns.

Without the availability of implied volatilities on SMB and HML portfolios, I use the market model

(3.3) to express the cross sectional stock return processes for decomposing implied variance.

rit = αi + βiMKTt + εit, (3.3)

where MKTt is the excess return on the market and βi is defined as stock i’s Beta. Taking variances

on both sides, we can see that the implied idiosyncratic variance of stock i is the difference between

its implied variance and the implied variance of the market scaled by Beta-squared.

IIV it = ImpV arit − (βi)2ImpV arMKT
t , (3.4)

1http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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where ImpV arit and ImpV ariMKT are the implied variances for stock i and the market at the end

of month t.

The Chicago Board Options Exchange Volatility Index (VIX) is a popular measure of the 30-day

implied volatility of S&P 500 index options. It is annualized and in percentage term. In this paper

I use VIX as a proxy for the implied volatility of the market. Hence ImpV arMKT
t = (V IXt100 )2.

ImpV arit is the square of the average of implied volatilities for at-the-money put and call options

with one month to expiration. βi is estimated with the market model 3.3 using previous 90 daily

returns. Therefore stocks in my sample are required to have at least 91 consecutive trading days.

Theoretically implied idiosyncratic variance is non-negative. But it could be negative if we calculate

it with equation (3.4). So I set IIV it to zero if this happens. Given that the proportion of such

data is really low in the sample (less than 5%) this adjustment should not have a significant effect

empirically.

Unexpected Idiosyncratic Variance

The difference between the actual realized idiosyncratic variance for month t + 1 and the implied

idiosyncratic variance estimated at the beginning of month t is called unexpected idiosyncratic

variance at t + 1 (UIVt+1). This is a measure of idiosyncratic variance shock and is known to the

investors only after idiosyncratic variance is realized.

UIVt+1 = IVt+1 − IIVt. (3.5)

Although the definition is similar, UIVt+1 is not the idiosyncratic volatility risk premium. The

implied idiosyncratic variance is biased and is not the idiosyncratic component of the risk-neutral

implied volatility. It can be thought of as the idiosyncratic variance realized out of investors’ expec-

tations.

3.3.2 The Data and The Descriptive Statistics

The Data

The daily implied volatility data for this paper is obtained from the OptionMetrics Ivy database

for the period of January 1996 to December 2006. Daily stock prices, returns, number of shares

outstanding are provided by CRSP and book value of equity can be obtained from COMPUSTAT.

I download daily VIX levels calculated with the new methodology from Chicago Board Options

Exchange (CBOE) website2 and daily returns for Fama-French factors (MKT, SMB and HML) from

Kenneth French’s website.

The sample includes stocks with tradable options during the period of January 1996 to December

2006. I restrict the sample to stocks traded on New York Stock Exchange (NYSE), American Stock

Exchange (AMEX) and NASDAQ. I also require that the firms in the sample to have at least 90

previous consecutive daily stock returns and implied volatilities are available on the first trading day

after option expiration date in a month. This leaves me with an overall sample of 3185 firms.

The Descriptive Statistics

For my analysis in Section 3.4, I use four samples: (1) the complete sample covering the period

of January 1996 to December 2006; (2) DDP sample: for the sub-period of January 1996 to June

2http://www.cboe.com/micro/vix/historical.aspx
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2005; (3) NYSE and AMEX stocks sub-sample; (4) NYSE stocks sub-sample. All the ETFs, foreign,

financial and utility stocks are excluded from sample (2) to (4). Panel A to E in Table 3.1 shows the

descriptive statistics for these samples. There are 3185 firms in sample (1), 2136 in sample (2), 1241

in sample (3), and 1192 in sample (4). For all of the variables in the table except #firms/month,

time-series averages for each firm are taken first, and then descriptive statistics are calculated for

the cross-section of these time-series means. For #firms/month, number of firms in every month is

calculated first and then the average is taken for these monthly numbers.

SIZE is the market value of equity in thousand of million dollars and is computed by multiplying

stock’s close price and number of shares outstanding at each option expiration date. Book-to-market

equity ratio (B/M) at the end of each month t is the book value of equity at the end of the previous

year divided by the market value of equity at the end of month t. Beta is the slope in the market

model estimated with previous 90 daily stock returns. RV is the realized variance measured by the

variance of daily stock returns in a month. ImpV ar is the squared implied volatility for one-month-

to-expiration at-the-money options. IV represents the one-month realized idiosyncratic variance.

IIV refers to the one-month implied idiosyncratic variance and UIV the unexpected idiosyncratic

variance. All of the variance measures are annualized.

As shown in Panel A, the average (median) size for the complete sample is 4.08 (0.92) thousand

of million dollars. This indicates that the sample firms are on average large firms and are less likely

to make short sale constraints binding. About 50% of the sample firms are low book-to-market firms.

The median firm has a B/M equal to 0.4. The sample provides a good spread for Betas. Half of

the firms are less risky than the market and the other half riskier. As to the variances, the average

firm has an implied variance (volatility) of 31.80% (56.39%), higher than the mean realized variance.

Realized variance is on average 27.84%, 89% of which is the idiosyncratic component. This is similar

to Goyal and Santa-Clara (2003)’s finding. The average realized idiosyncratic variance (24.95%) is

only 0.43% higher than the average implied idiosyncratic variance (24.51%), implying that implied

idiosyncratic variance is a good proxy for realized idiosyncratic variance. We can also observe that

on average investors receive a positive shock of 0.43% to their expected idiosyncratic variance. So

the investors tend to underestimate idiosyncratic variance on average. Note that the shocks can be

both positive and negative.

Comparing Panel A through E, we can see that all four samples are similar in B/M and Beta.

The NYSE sample contains the largest stocks and the complete sample the smallest. DDP sample

is the most volatile sample. Between the NYSE/AMEX sample and the NYSE sample, the firm size

for NYSE sample is 260 millions larger on average and the variances are about 1.5% lower except

for UIV . The characteristics of my DDP sample do not match DDP’s. Their sample has larger

size, lower volatilities. This sample difference is caused by our different filters for stocks. They keep

stocks other than those traded on NYSE/AMEX/NASDAQ and require at least five years of trading

history. So their sample filters are in favor of large established firms. Giving a thorough consideration

of all the characteristics of the samples, the NYSE sample is the closest to DDP’s sample. Therefore,

one can expect to see a positive relationship between implied idiosyncratic variance and future stock

returns with this sample.

3.3.3 The Predictive Power of Implied Idiosyncratic Variance

Before jumping into the tests of the relationship of interest, a natural question to ask is: why

bother using implied idiosyncratic variance instead of historical idiosyncratic variance in the tests?

Aside from the impact of mitigating short sale constraints that options have on their underlying
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stocks, implied idiosyncratic variances derived from option prices are also a better predictor of

future idiosyncratic variances than historical idiosyncratic variance. In this section, I study the

predictive power of implied and past realized idiosyncratic volatility to show the second point. The

typical regressions for showing this in the literature are given as follows:

IVt+1 = aiiv + biivIIVt + et+1, (3.6)

IVt+1 = α+ ηIIVt + γIVt + et+1, (3.7)

IVt+1 = aiv + bivIVt + et+1. (3.8)

If implied idiosyncratic variance contains information about future realized idiosyncratic variance,

we expect to see biiv significantly positive. Moreover, if the joint test of a = 0 and bt = 1 is rejected,

IIVt is biased and if γ > 0 is supported, it is informationally inefficient.

The tests take two steps. As the first step, I run regressions 3.6, 3.7 and 3.8 for each firm in the

sample. Then the mean of the coefficient estimates across firms are calculated and inferences are

drawn based on these coefficient means.

Table 3.2 presents the coefficient estimates and t-statistics for the above regressions. Both implied

and past realized idiosyncratic variances have significantly positive predictive power, but when used

together both of them are still significant. With coefficient estimates of 0.5804 and 0.3361 which

are far from 1, they are biased estimators. Although the results are not reported in the table, the

augmented Dickey-Fuller tests support this claim. Therefore, implied and past realized idiosyncratic

variances are both biased and inefficient estimator. However given that it explains 17.64% of the

variations in future realized idiosyncratic variance, i.e. 3.62% higher than past realized idiosyncratic

variance does, implied idiosyncratic variance is a better estimator for future idiosyncratic variance

than past realized idiosyncratic variance. Tests using implied idiosyncratic variances are likely to

draw a better picture of relationship between idiosyncratic risk and expected stock returns.

My findings here confirm DDP’s claim about the predictive power of implied idiosyncratic vari-

ance. Instead of using realized idiosyncratic variance directly as the dependent variable, they run

the regression of total realized variance on implied idiosyncratic variance with control of market

implied variance. Yet they do not report the adjusted R-square.

3.4 Fama-MacBeth (1973) Regressions of Stock Returns on

Implied and Past Realized Idiosyncratic Variances

3.4.1 The Methodology

I examine the relationship between cross-sectional stock returns and implied and past realized id-

iosyncratic variances using Fama-MacBeth (1973) regressions. This is a two-stage procedure. In

the first stage, for every month t+ 1, monthly holding period returns for all stocks are regressed on

contemporaneous implied idiosyncratic variances, past realized idiosyncratic variances, firm char-

acteristics and other controls. In the second stage, I calculate the mean of the time-series of the

coefficient estimates from the first stage regression for each independent variable, and test if they

are significantly different from zero. The regressions in the first stage take the form:

rit+1 = αt+1 + βIIV,t+1IIV
i
t + βIV,t+1IV

i
t + βsize,t+1LnSIZE

i
t

+βB/M,t+1LnB/M
i
t + βr,t+1r

i
t + ηBeta,t+1Beta

i + ξt+1z
i + εit+1, (3.9)
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where rit+1 is stock i’s holding period return from t to t+ 1; IIV it is stock i’s implied idiosyncratic

variance estimated at the end of t for the term from t to t + 1; IV it is the realized idiosyncratic

variance for stock i over the previous month from t− 1 to t; LnSIZEit is the natural log of firm i’s

market value of equity at t; LnB/M i
t is the natural log of firm i’s book-to-market equity ratio; rit is

the realized holding period return for the previous month from t−1 to t, and Betai is stock i’s Beta

in the market model; zi represents other possible controls. I choose past unexpected idiosyncratic

variances UIV it and past expected idiosyncratic variance IIV it−1 as the extra controls in some of the

regressions. This will help us find out the potential driver of the results. Since the stocks are held

for one month only, the holding periods are non-overlapping.

In these regressions the coefficients βIIV,t+1 and βIV,t+1 should be zero under the null hypothesis

that standard asset pricing models hold. I run regressions on a monthly basis with all the returns

and variances being annualized. The sign and significance of βIIV,t+1 and βIV,t+1 show the relation

between implied and past realized idiosyncratic variances and expected stock returns. Merton (1987)

model predicts that βIIV,t+1 > 0 and significant.

3.4.2 Regressions in the Complete Sample

Table 3.3 reports the coefficient estimates of the Fama-MacBeth (1973) cross-sectional regressions

with t-statistics reported in parentheses. All regressions have common controls for LnSIZEit ,

LnB/M i
t , past return rit, and factor loading Betai, but have variations in adding current implied

idiosyncratic variance IIV it , implied idiosyncratic variance for the previous month IIV it−1, past

realized idiosyncratic variance IV it , and past unexpected idiosyncratic variance UIV it .

As in Fama and French (1993), SIZE and B/M have significant explanatory power to the cross-

section of stock returns. Past return has significant negative effect showing strong mean reversion

and the factor loading on market is not significant here.

Column (1) to column (3) indicates that βIIV,t+1 is not significantly different from zero, i.e. IIV it
does not explain the cross-section of stock returns for the complete sample period. In the first two

regressions, βIIV,t+1 are slightly negative, contrary to Merton (1987)’s prediction.

On the other hand, βIV,t+1 is significant at 5% level as shown in column (3) to (5). Condi-

tional on firm characteristics, past return and factor loading, 1% past realized idiosyncratic variance

translates to 0.0733% decrease in expected stock return. The findings here are contrary to DDP’s

main findings, but consistent with AHXZ. Another interesting finding here is that past unexpected

idiosyncratic variance, UIV it has a significantly negative effect on future stock returns when past

expected idiosyncratic variance is controlled. When UIV it is used together with IV it , it takes away

IV it ’s explanatory power. This suggests that the UIV it might be the driver of the significant negative

explanatory power of past realized idiosyncratic variance.

To see if difference in sample period contributes to the contradiction to DDP, I run the regressions

using their sample period in the next section.

3.4.3 Regressions for my DDP Sample Period

Table 3.4 shows the coefficient estimates for the same set of regressions as in Table 3.3, but for a

shortened sample period of January 1996 to June 2005. This is the same period used in DDP. All

the ETFs, foreign stocks, financial and utilities stocks are excluded, following DDP. This leaves me

with 2136 firms in total, 117 less than their sample. I restrict my sample to optionable stocks traded
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on NYSE/AMEX/NASDAQ only while they keep all optionable stocks. This difference in filters

causes the difference in our sample sizes and sample characteristics.

From the table you can see that current implied idiosyncratic variance positively explains con-

temporaneous stock returns. In column (3), 0.0774% stock returns can be explained by 1% contem-

poraneous implied idiosyncratic variance. The coefficients in this table can not be directly compared

to those in DDP because they use volatility measures as opposed to variance measures in this paper.

Although the sign of βIIV,t+1 is consistent with DDP, it is not significant here.

The significant negative effect of past realized idiosyncratic variance found in the previous section

is sustained and strengthened for this sample period. Moreover past unexpected idiosyncratic vari-

ance is still significantly negatively correlated with future stock returns conditional on past expected

implied idiosyncratic variances. 1% shock in past idiosyncratic variance leads to 0.0921% decrease

in future stock return.

To this point, it appears to us that implied idiosyncratic variance has no relationship with future

stock returns. But historical idiosyncratic variance is negatively correlated with future stock returns,

consistent with Ang et al. (2006a). There is no evidence supporting Merton (1987) up to now, but

it is not clear whether the result here is robust. In the next two sections, I check the robustness of

the findings in NYSE/AMEX sub-sample and NYSE sub-sample.

3.4.4 Regressions for NYSE/AMEX Stocks

To address the concern that the results in Section 3.4.2 and 3.4.3 are driven by small stocks which are

more likely to be subject to short sale constraints, I exclude NASDAQ together with all the ETFs,

foreign, financial and utility stocks from the complete sample. As shown in Table 3.5, now βIIV,t+1

is larger, positive and more powerful, but still not significant. The significance of the negative

correlation between rt+1 and IVt disappear and the sign of the correlation switches to positive. It

seems that neither implied idiosyncratic variance nor past realized idiosyncratic variance matters

for the cross-section of stock returns for normal to large size stocks.

3.4.5 Regressions for NYSE Stocks Only

Altogether 1192 firms are used in Table 3.6, about 1/3 of the complete sample. Among all the

samples I examine in section 3.4, this sub-sample has the largest stock market values and the

lowest idiosyncratic variances on average. When NYSE stocks are considered alone, DDP’s finding

resurfaces. Implied idiosyncratic variance is significantly positively associated with stock returns at

5% level. 1% implied idiosyncratic variance explains 0.2410% future stock returns. The effect of

past realized idiosyncratic variance becomes positive but insignificant.

As discussed in Section 3.3, this sample is the one most similar to the sample used by DDP.

So it is not surprising that we find significant positive relationship for this sample. Given the

characteristics of this sub-sample, we can conclude that the significant positive relationship in DDP

is mainly driven by large size and low volatility stocks.

In summary, in the process of moving from small, high idiosyncratic variance stocks sample to

large, low idiosyncratic variances stocks sample, the positive correlation between implied idiosyn-

cratic variance and future stock return strengthens and the negative correlation between past realized

idiosyncratic variance and future stock return weakens. So there is no single robust relationship be-

tween idiosyncratic variance and stock returns based on both measures. It seems that two conflicting
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effects related to size and level of idiosyncratic variance co-exist. Therefore what we observe relies

on which factor dominates.

3.5 A Possible Explanation

This section serves the purpose of explaining the puzzling finding in Section 3.4. The analysis in

the last section show that: (1) small size and high idiosyncratic variance stocks are sensitive to

idiosyncratic variance shocks; (2) the idiosyncratic variance shock UIVt is the driving factor for

the significant negative effect that past realized idiosyncratic variance has on future stock returns,

However it is not very efficient in that its own power is gone when IVt is controlled. So there must

be a better driving factor; (3) large size and low idiosyncratic variance stocks are more sensitive to

the positive effect of implied idiosyncratic variance.

These findings could be explained by a possible behavioral story. It is possible that investors

view idiosyncratic variance shocks for high variance stocks and low variance stocks differently. For

low idiosyncratic variance stocks, a small shock on average to the idiosyncratic variance would not

surprise investors much because even after the shock the idiosyncratic variances are still low and

the shock tends to be eliminated through mean-reversion process soon. Thus their expectations on

idiosyncratic variance do not change much. So the effect of the expectation dominates past shock.

It is a different story for high idiosyncratic variance stocks. They are more volatile and riskier

to investors, and usually experience large idiosyncratic shocks. For this type of stocks investors

pay close attention to the idiosyncratic variances and shocks especially the type of shocks that

persists. Also they require a volatility risk premium. Therefore the effect of past shock dominates

expectations.

Table 3.7 reports the coefficient estimates for the following regression with the samples used in

Section 3.4.

rit+1 = αt+1 + βIIV,t+1IIV
i
t + βIV,t+1IV

i
t + βUIV UIV

i
t−1 + βsize,t+1LnSIZE

i
t

+βB/M,t+1LnB/M
i
t + βr,t+1r

i
t + ηBeta,t+1Beta

i + εit+1, (3.10)

where UIV it−1 is the unexpected idiosyncratic variance two months before stock return is realized.

It is a proxy for persistent idiosyncratic variance shock. The testable hypotheses for the discussion

above are: (1) if βIIV is significantly positive, Merton (1987) is supported; (2) if βIV is not significant

while βUIV is significantly negative, the persistent shock UIVt−1 is the driving factor of the negative

relation between stock returns and past realized idiosyncratic variance.

Looking horizontally at Table 3.7, we can see that (1) βIIV has correct sign according to Merton

(1987) in three of the samples and is significant at 5% level in the NYSE sample which contains

large size and low volatility stocks. For the complete sample, βIIV is negative but insignificant. This

is a distortion caused by the large negative influence of the persistent shock UIVt−1; (2) IVt has

no significant predictive power for stock returns once UIVt−1 is controlled. UIVt−1 shows strong

negative correlation with stock returns at 10% level for the complete model and 5% level for the

DDP sub-sample. It is negative but not significant for the other two samples having larger and

less volatile stocks. This means that the negative relationship between stock returns and IVt comes

from the effect of unexpected idiosyncratic variance one month before IVt is realized. This effect

dominates when sample stocks are more volatile and is dominated by implied idiosyncratic variance

when sample stocks are less volatile. This illustrative analysis is consistent with the story above.
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The explanations in this section shed light on the mixed results found in the literature. It is

possible that previous studies all find a specific situation caused by the interaction of two factors

with opposite effect on future stock returns. This paper tells us what is going on behind the scene.

3.6 Conclusion

I revisit the relationship between idiosyncratic risk and the cross-section of stock returns using

information from the options market. By decomposing realized idiosyncratic variance into expected

(implied) and unexpected (shock) components, I find that there is a significant positive correlation

driven by implied idiosyncratic variance for large size and low volatility stocks, and a significant

negative correlation of past realized idiosyncratic variance for future stock returns for small size

and high volatility stocks. Moreover, no relationship is found for NYSE/AMEX stocks that have

moderate size and volatilities. These results provide an explanation to the mixed findings in the

literature. It is likely that investors have different perceptions towards idiosyncratic variance shocks.

Persistent idiosyncratic variance shocks affect future stock returns negatively and investors of small

size and high idiosyncratic volatility stocks pay more attention to this shock. Therefore, the negative

effect dominates. On the other hand, implied idiosyncratic variances has a positive effect and

investors of stocks with large size and low idiosyncratic risk pay more attention to this effect. The

combined influence of these two conflicting factors could result in positive relationship, negative

relationship or none depending on the strength of the two effects. The tests can be extended by

controlling for momentum, which is left as a future research.
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Table 3.2: Forecasting Future Realized Idiosyncratic Variance

This table shows the tests of the forecasting power of implied idiosyncratic
variance (IIVt).The coefficients for regressions (3.6)-(3.8) in section 3.3.3
are reported and t-statistics are in parentheses. The dependent variable
IVt+1 is the future realized idiosyncratic variance. IVt is the past realized
idiosyncratic variance. Only stocks with at least 30 observations are included
in this analysis. This gives 2180 firms in the final sample.

Dependent Variable: IVt+1

IIVt 0.5804** 0.472**
(67.73) (52.48)

IVt 0.3361** 0.1816**
(76.76) (40.52)

Adj. R2 17.64% 14.02% 22.15%

Note: **: significant at 1% level; *: significant at 5% level
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Table 3.3: Cross-sectional Regressions of Stock Returns on Idiosyncratic
Volatilities

The table reports the coefficient estimates of the Fama and MacBeth (1973) cross-sectional regressions
with t-statistics reported in parentheses. The sample is composed of stocks with tradable options on
NYSE/AMEX/NASDAQ during the 11-year period of January 1996 through December 2006.The dependent
variable is the future one-month holding period return of the stocks . The contemporaneous implied (IIVt),
realized(IVt+1), lagged unexpected (UIVt) idiosyncratic variances and other lagged variables are used as
independent variables to examine the relation between stock return and idiosyncratic volatility. Natural log
of SIZE(LnSIZE), natural log of Book-to-market(LnB/M), one-month lagged return (rt) and Beta from the
market model are controlled for. All returns and variances are annualized. Adjusted R-square is reported
as Adj.R2.

Dependent Variable: rt+1

X (1) (2) (3) (4) (5) (6) (7)

IIVt -0.0038 -0.0183 0.0101
(-0.05) (-0.25) (0.14)

IIVt−1 0.0304 -0.044
(0.44) (-0.55)

IVt -0.0687* -0.0733* -0.0743* -0.044
(-2.27) (-2.03) (-2.52) (-0.55)

UIVt -0.0456 -0.0304 -0.0743*
(-1.88) (-0.43) (-2.52)

LnSIZE -0.0331** -0.0335** -0.0358** -0.0375** -0.0345** -0.0345** -0.0345**
(-3.07) (-3.14) (-3.45) (-3.24) (-3.64) (-3.64) (-3.64)

LnB/M 0.0248 0.0246 0.0228 0.0234 0.0237 0.0237 0.0237
(1.85) (1.85) (1.81) (1.67) (1.82) (1.82) (1.82)

rt -0.0258** -0.0266** -0.0272** -0.0267** -0.0273** -0.0273** -0.0273**
(-4.23) (-4.32) (-4.91) (-4.30) (-4.38) (-4.38) (-4.38)

Beta 0.0309 0.0338 0.0346 0.0331 0.0323 0.0323 0.0323
(0.86) (0.94) (0.99) (0.96) (0.96) (0.96) (0.96)

Adj. R2 6.79% 6.95% 7.05% 6.30% 6.93% 6.66% 6.93%

Note: **: significant at 1% level; *: significant at 5% level
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Table 3.4: Cross-sectional Regressions of Stock Returns on Idiosyncratic
Volatilities (Jan 1996-June 2005)

The table reports the coefficient estimates of the Fama and MacBeth (1973) cross-sectional regressions
with t-statistics reported in parentheses. The sample is composed of stocks with tradable options on
NYSE/AMEX/NASDAQ during the period of January 1996 through June 2005.All ETFs, foreign, financial
and utility stocks are excluded. The dependent variable is the future one-month holding period return of
the stocks. The contemporaneous implied (IIVt), realized(IVt+1), lagged unexpected (UIVt+1) idiosyncratic
variances and other lagged variables are used as independent variables to examine the relation between stock
return and idiosyncratic volatility. Natural log of SIZE(LnSIZE), natural log of Book-to-market(LnB/M),
one-month lagged return rt and Beta from the market model are controlled for. All returns and variances
are annualized. Adjusted R-square is reported as Adj.R2.

Dependent Variable: rt+1

X (1) (2) (3) (4) (5) (6) (7)

IIVt 0.0573 0.0391 0.0774
(0.70) (0.48) (0.98)

IIVt−1 0.0799 -0.0122
(1.00) (-0.13)

IVt -0.0946** -0.0844* -0.0921** -0.0122
(-2.75) (-2.07) (-2.80) (-0.13)

UIVt -0.0524 -0.0799 -0.0921**
(-1.94) (-1.00) (-2.80)

LnSIZE -0.0318* -0.0325** -0.0356** -0.0412** -0.0357** -0.0357** -0.0357**
(-2.56) (-2.65) (-3.03) (-2.98) (-3.17) (-3.17) (-3.17)

LnB/M 0.0425 0.0421 0.0394 0.0394 0.0398 0.0398 0.0398
(1.97)* (1.97)* -1.86 -1.73 -1.85 -1.85 -1.85

rt -0.0242 -0.0254 -0.0261 -0.026 -0.0267 -0.0267 -0.0267
(-3.72)** (-3.86)** (-3.99)** (-3.88)** (-3.97)** (-3.97)** (-3.97)**

Beta 0.0314 0.0361 0.0376 0.0351 0.0355 0.0355 0.0355
-0.77 -0.88 -0.94 -0.9 -0.93 -0.93 -0.93

Adj. R2 7.72% 7.90% 8.01% 7.30% 8.00% 7.73% 8.00%

Note: **: significant at 1% level; *: significant at 5% level
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Table 3.5: Cross-sectional Regressions of Stock Returns on Idiosyncratic
Variances (NYSE/AMEX stocks only)

The table reports the coefficient estimates of the Fama and MacBeth (1973) cross-sectional regressions
with t-statistics reported in parentheses. The sample is composed of stocks with tradable options on
NYSE/AMEX during the period of January 1996 through June 2006.All ETFs, foreign, financial and utility
stocks are excluded. The dependent variable is the future one-month holding period return of the stocks.
The contemporaneous implied (IIVt), realized(IVt+1), lagged unexpected (UIVt+1) idiosyncratic variances
and other lagged variables are used as independent variables to examine the relation between stock return
and idiosyncratic volatility. Natural log of SIZE (LnSIZE), natural log of Book-toBmarket equity (LnB/M),
one-month lagged return (rt) and Beta from the market model are controlled for. All returns and variances
are annualized. Adjusted R-square is reported as Adj.R2.

Dependent Variable: rt+1

X (1) (2) (3) (4) (5) (6) (7)

IIVt 0.1404 0.1207 0.1143
(1.58) (1.35) (1.3)

IIVt−1 0.0722 0.098
(0.83) (0.77)

IVt -0.005 0.0206 0.0044 0.0765
(-0.10) (0.39) (0.09) (0.77)

UIVt -0.0017 -0.0722 -0.0017
(-0.04) (-0.83) (-0.09)

LnSIZE -0.0272** -0.0269** -0.0279** -0.0324** -0.0298** -0.0298** -0.0298**
(-3.27) (-3.25) (-3.49) (-3.73) (-3.80) (-3.80) (-3.80)

LnB/M 0.0463** 0.0463** 0.0453** 0.047** 0.0443** 0.0443** 0.0443**
(3.23) (3.23) (3.21) (3.21) (3.14) (3.14) (3.14)

rt -0.0278** 0.0463** -0.028** -0.0299** -0.0306** -0.0306** -0.0306**
(-3.71) (-3.58) (-3.77) (-4.04) (-4.09) (-4.09) (-4.09)

Beta 0.0513 0.0496 0.0498 0.0467 0.0477 0.0477 0.0477
(1.53) (1.48) (1.53) (1.47) (1.5) (1.5) (1.5)

Adj. R2 5.78% 5.99% 6.08% 5.46% 6.08% 6.08% 6.08%

Note: **: significant at 1% level; *: significant at 5% level
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Table 3.6: Cross-sectional Regressions of Stock Returns on Idiosyncratic
Variances (NYSE stocks only)

The table reports the coefficient estimates of the Fama and MacBeth (1973) cross-sectional regressions with
t-statistics reported in parentheses. The sample is composed of stocks with tradable options on NYSE
during the period of January 1996 through June 2006. All ETFs, foreign, financial and utility stocks
are excluded. The dependent variable is the future one-month holding period return of the stocks. The
contemporaneous implied (IIVt), realized(IVt+1), lagged unexpected (UIVt+1) idiosyncratic variances and
other lagged variables are used as independent variables to examine the relation between stock return and
idiosyncratic volatility. Natural log of SIZE (LnSIZE), natural log of Book-to-market equity (LnB/M),
one-month lagged return (rt) and Beta from the market model are controlled for. All returns and variances
are annualized.Adjusted R-square is reported as Adj.R2.

Dependent Variable: rt+1

X (1) (2) (3) (4) (5) (6) (7)

IIVt 0.2410* 0.229* 0.2124*
(2.52) (2.36) (2.20)

IIVt−1 0.145 0.1737
(1.58) (1.71)

IVt 0.0131 0.0642 0.0287 0.1737
(0.25) (1.19) (0.56) (1.71)

UIVt -0.0109 -0.145 0.0287
(-0.24) (-1.58) (0.56)

Ln(SIZE) -0.0277** -0.0276* -0.0283* -0.0353* -0.0309* -0.0309* -0.0309*
(-3.33) (-3.34) (-3.53) (-4.08) (-3.93) (-3.93) (-3.93)

Ln(B/M) 0.0431** 0.0429** 0.0418** 0.0433** 0.0415** 0.0415** 0.0415**
(3.04) (3.05) (3.01) (3.02) (2.98) (2.99) (2.99)

rt -0.0277** -0.0266* -0.0278** -0.0299** -0.031** -0.031** -0.031**
(-3.74) (-3.59) (-3.77) (-4.04) (-4.15) (-4.15) (-4.15)

Beta 0.0537 0.0517 0.0498 0.046 0.0468 0.0468 0.0468
(1.58) (1.53) (1.51) (1.43) (1.46) (1.46) (1.46)

Adj. R2 5.80% 6.02% 6.09% 5.43% 6.06% 6.06% 6.06%

Note: **: significant at 1% level; *: significant at 5% level
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Table 3.7: Cross-sectional Regressions of Stock Return on Persistent UIV

This table present coefficient estimates and t-statistics (in parentheses) for Fama-MacBeth
(1973) regressions. The dependent variable is the future stock return rt+1. The indepen-
dent variables are current implied idiosyncratic variance (IIVt), past realized idiosyncratic
variance (IVt−1) and the past unexpected idiosyncratic variance (UIVt−1). Natural log of
SIZE (LnSIZE), natural log of Book-to-market equity (LnB/M), one-month lagged return
(rt) and Beta from the market model are controlled for. All returns and variances are
annualized. Adjusted R-square is reported as Adj.R2.

Dependent Variable: rt+1

X Complete Sample DDP Sample NYSE/AMEX Sample NYSE Sample

IIVt -0.0286 0.0324 0.1078 0.1984*
(-0.40) (0.41) (1.17) (1.98)

IVt−1 -0.0455 -0.0657 -0.0157 0.0005
(-1.48) (-1.84) (-0.32) (0.01)

UIVt−1 -0.0496 -0.0596* -0.004 -0.0421
(-1.90) (-2.03) (-0.10) (-1.00)

LnSIZE -0.0345** -0.034** -0.0267** -0.0268**
(-3.41) (-2.94) (-3.38) (-3.40)

LnB/M 0.0231 0.0409 0.0441** 0.0409**
(1.76) (1.92) (3.10) (2.93)

rt -0.0278** -0.0271** -0.0282** -0.0281**
(-4.52) (-4.08) (-3.37) (-3.76)

Beta 0.034 0.0376 0.0512 0.0527
(0.97) (0.94) (1.55) (1.58)

Adj. R2 7.20% 8.19% 6.32% 6.31%

Note: **: significant at 1% level; *: significant at 5% level
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Appendix A

Extension of the Multi-Stage
Model

Extension of the Multi-Stage Model

This appendix presents an extension of the multi-stage model with an initial debt coupon. Let C0

denote the initial coupon, and Π0 the scale of the firm in stage 0. As the firm has debt in place in

stage 0, there is also an endogenous default threshold is XD0. The values of this initial debt issue

in stages 0, 1, 2 are denoted by D0, D10, and D20. Other variables are the same as in Section 2.2.

Mature Firm (Stage 2)

In the second stage, the investment options have been exercised, so the firm faces a pure financing

decision. The new debt D22 is issued in this stage to partially finance the investment cost F2 and

equityholders bear the remainder of the cost. The new debt D22 together with the debt issued in

the first stage D21 and the initial debt D20 offers tax savings but creates default risk. The solutions

of the debt values are simple generalizations of equation (2.6). We again assume that D22 has the

same seniority as D21 and D20. The values of the three debt issues for X ≥ XD2 are given by:

D2i(X,C0, C1, C2) =
Ci
r

(
1− (

X

XD2
)a
)

+

Ci
C0 + C1 + C2

(1− α)(1− τ)(Π0 + Π1 + Π2)XD2

r − µ
(
X

XD2
)a, (A.1)

where i = 0, 1, 2. The value of equity for X ≥ XD2 can be obtained similarly:

E2(X,C0, C1, C2) = (1− τ)
( (Π0 + Π1 + Π2)X

r − µ
− C0 + C1 + C2

r
−

(
(Π0 + Π1 + Π2)XD2

r − µ
− C0 + C1 + C2

r
)(

X

XD2
)a
)
. (A.2)

The only decision that the firm’s equityholders make in stage 2 is when to default. To maximize

the value of this option, equityholders select an endogenous default threshold XD2 such that:

∂E2(X,C0, C1, C2)

∂X

∣∣∣
X=XD2

= 0, (A.3)

which yields a closed-form solution for the optimal default threshold in the second stage:

XD2 =
a(C0 + C1 + C2)(r − µ)

r(a− 1)(Π0 + Π1 + Π2)
. (A.4)
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Adolescent Firm (Stage 1)

In the first stage, the first investment option has been exercised. The adolescent firm has some

assets-in-place and its capital structure is a mix of debt, D10 and D11, and equity, E1. It has both

an option to default and an option to invest, so it solves a joint financing and investment problem.

Using similar arguments as in Section 2.2, each of the valuation equations for D10, D11 and E1

needs to satisfy two boundary conditions. Consider debt D1i(X,C0, C1, C2), with i = 0, 1. When

X ↓ XD1, equityholders default and debtholders get the liquidation value:

D1i(XD1, C0, C1, C2) =
Ci

C0 + C1

(1− α)(1− τ)(Π0 + Π1)XD1

r − µ
. (A.5)

If the firm keeps growing and X increases to the investment threshold XS2, the firm will exercise

the second-stage investment option, and debt values from stage 1 equal debt values in stage 2:

D1i(XS2, C0, C1, C2) = D2i(XS2, C0, C1, C2). For XD1 ≤ X ≤ XS2, these conditions imply the

following solution for debt value in stage 1:

D1i(X,C0, C1, C2) =
Ci
r

(
1− L(X)− (

XS2

XD2
)aH(X)

)
+ (1− α)(1− τ)( Ci

C0 + C1

(Π0 + Π1)XD1

r − µ
L(X) +

Ci
C0 + C1 + C2

(Π0 + Π1 + Π2)XD2

r − µ
(
XS2

XD2
)aH(X)

)
, (A.6)

where i = 0, 1 and where

L(X) =
XzXa

S2 −XaXz
S2

Xz
D1X

a
S2 −Xa

D1X
z
S2

(A.7)

H(X) =
Xz
D1X

a −Xa
D1X

z

Xz
D1X

a
S2 −Xa

D1X
z
S2

(A.8)

denote state prices that, respectively, take the value of one if X first reaches the default threshold

XD1 from above or the investment threshold XS2 from below.

The value of equity, E1, on the other hand, approaches zero when X ↓ XD1. When X ↑
XS2, it satisfies the value-matching condition E1(XS2, C0, C1, C2) = E2(XS2, C0, C1, C2) − [F2 −
D22(XS2, C0, C1, C2)] because the fixed investment cost, F2, is funded by a mix of debt and equity.

For XD1 ≤ X ≤ XS2, these conditions imply the following solution for equity value in stage 1:

E1(X,C0, C1, C2) = (1− τ)
[
(
(Π0 + Π1)X

r − µ
− (C0 + C1)

r
)− (

(Π0 + Π1)XD1

r − µ
− C0 + C1

r
)L(X) +(Π2XS2

r − µ
− C2

r
− F2 −D22(XS2, C0, C1, C2)

1− τ
−

(
(Π0 + Π1 + Π2)XD2

r − µ
− C0 + C1 + C2

r
)(
XS2

XD2
)a
)
H(X)

]
. (A.9)

The first two terms in equation (A.9) denote the present value of after-tax cash flows to equityhold-

ers until the firm defaults in the current stage. The next few terms in this equation show the value

from entering into the second stage. Given E1, equityholders can determine the optimal default
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threshold, XD1, by maximizing equity value:

∂E1(X,C0, C1, C2)

∂X
|X=XD1

= 0. (A.10)

Furthermore, the optimal investment threshold, XS2, solves the smooth-pasting condition:

∂E1(X,C0, C1, C2)

∂X
|X=XS2

=
∂E2(X,C0, C1, C2)

∂X
|X=XS2

+
∂D22(X,C0, C1, C2)

∂X
|X=XS2

. (A.11)

Juvenile Firm (Stage 0)

In the initial stage, the juvenile firm now has some assets-in-place, an option on a two-stage invest-

ment project, and pre-existing debt. The firm thus faces a joint financing and investment problem.

As X ↓ XD0, equityholders default and end up with nothing, E0(XD0, C0, C1, C2) = 0, whereas

debtholders receive the liquidation value D0(XD0, C0, C1, C2) = (1 − τ)(1 − α)Π0XD0

r−µ . When X

touches the first investment threshold XS1 the first time from below, the first option is exercised

and hence:

E0(XS1, C0, C1, C2) = E1(XS1, C0, C1, C2)− [F1 −D11(XS1, C0, C1, C2)], (A.12)

because debt and equity finance the exercise cost F1. In addition, the initial debt satisfies the

value-matching condition:

D0(XS1, C0, C1, C2) = D10(XS1, C0, C1, C2). (A.13)

For XD0 ≤ X ≤ XS1, these conditions yield the following solutions for debt and equity values:

D0(X,C0, C1, C2) =
C0

r

(
1− L̃(X)− [L(XS1) + (

XS2

XD2
)aH(XS1)]H̃(X)

)
+

(1− α)(1− τ)
(Π0XD0

r − µ
L̃(X) +

C0

C0 + C1

(Π0 + Π1)XD1

r − µ
L(XS1)H̃(X) +

C0

C0 + C1 + C2

(Π0 + Π1 + Π2)XD2

r − µ
(
XS2

XD2
)aH(XS1)H̃(X)

)
, (A.14)

and

E0(X,C0, C1, C2) = (1− τ)
[
(

Π0X

r − µ
− C0

r
)− (

Π0XD0

r − µ
− C0

r
)L̃(X) +

(
(
Π1XS1

r − µ
− C1

r
)−

F1 −D11(XS1, C0, C1, C2)

1− τ
− (

(Π0 + Π1)XD1

r − µ
− C0 + C1

r
)L(X) +

(
Π2XS2

r − µ
− F2 −D22(XS2, C0, C1, C2)

1− τ
− C2

r
−

(
(Π0 + Π1 + Π2)XD2

r − µ
− C0 + C1 + C2

r
)(
XS2

XD2
)a)H(X)

)
H̃(X), (A.15)

where H(X) and L(X) are defined in equation (A.7), and where

L̃(X) =
XzXa

S2 −XaXz
S1

Xz
D0X

a
S1 −Xa

D0X
z
S1

(A.16)

H̃(X) =
Xz
D0X

a −Xa
D0X

z

Xz
D0X

a
S1 −Xa

D0X
z
S1

(A.17)
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denote state prices that, respectively, take the value of one if X first reaches the default threshold

XD0 from above or the investment threshold XS1 from below.

Finally, the firm’s equityholders will choose an optimal pair (C1, C2) by maximizing initial firm

value subject to the smooth-pasting conditions for XD0, XD1, XD2, XS1 and XS2 mentioned above:

max
C1,C2

D0(X0, C0, C1, C2) + E0(X0, C0, C1, C2) (A.18)

subject to:

∂E0(X,C0, C1, C2)

∂X

∣∣∣
X=XD0

= 0, (A.19)

∂E1(X,C0, C1, C2)

∂X

∣∣∣
X=XD1

= 0, (A.20)

∂E2(X,C0, C1, C2)

∂X

∣∣∣
X=XD2

= 0, (A.21)

∂E0(X,C0, C1, C2)

∂X

∣∣∣
X=XS1

=
E1(X,C0, C1, C2)

X

∣∣∣
X=XS1

+
D11(X,C0, C1, C2)

X

∣∣∣
X=XS1

, (A.22)

∂E1(X,C0, C1, C2)

∂X

∣∣∣
X=XS2

=
E2(X,C0, C1, C2)

X

∣∣∣
X=XS2

+
D22(X,C0, C1, C2)

X

∣∣∣
X=XS2

. (A.23)
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Appendix B

Simulated Method of Moments

Simulated Method of Moments

We calibrate the structural parameters of the model via Simulated Method of Moments (SMM),

which is based on indirect inference techniques in Gourieroux, Monfort, and Renault (1993) and

Gourieroux and Monfort (1996). By varying the vector of model parameters, b, SMM minimizes the

distance between model moments, denoted as Mm(b), and data moments, denoted as Md. Note that

we explicitly state the dependence of the simulated moments, Mm(b), on the vector of structural

parameter values, b.

The simulated moments parameter estimation procedure can be summarized as follows (see, e.g.,

Hennessy and Whited (2005, 2007) for further details):

1. We first compute Nd data moments from COMPUSTAT to generate the vector of data mo-

ments, Md. We use fixed firm and year effects in the estimation of all of our data moments to

remove heterogeneity from the actual data.

2. The variance-covariance matrix of the data moments yields the optimal weighting matrix:

Wd = [NdVar(Md)]
−1
. (B.1)

Intuitively, this weighing matrix places more weight on more precisely measured moments.

3. For each vector of structural parameter values, b, we simulate a set of S panel data sets with

i.i.d. firms each containing 2 ∗ T firm-year observations. We discard the first T years of data

to avoid non-stationarity and other problems arising from the initial conditions of the simu-

lations. We then calculate the same set of moments as in step 1 using our S simulated panel

data sets to generate Mm(b).

4. We then calculate the weighted distance between the model moments and the data moments:

JNd(b) =
[
Md −

1

S

S∑
i=1

Mm(b)
]′
Wd

[
Md −

1

S

S∑
i=1

Mm(b)
]
, (B.2)

where Wd is the weighting matrix from step 2.

5. Finally, by varying b iteratively, we find an optimal set of structural parameter values, b∗,

which minimizes the objective function, JNd(b):

b∗ = arg min
b

[
Md −

1

S

S∑
i=1

Mm(b)
]′
Wd

[
Md −

1

S

S∑
i=1

Mm(b)
]
. (B.3)
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