
© 2012 by Cameron Talischi. All rights reserved.

RESTRICTION METHODS FOR SHAPE AND TOPOLOGY OPTIMIZATION

BY

CAMERON TALISCHI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Glaucio H. Paulino, Chair and Director of Research
Professor C. Armando Duarte
Professor Robert B. Haber
Professor Eduard-Wilhelm Kirr
Professor Oscar Lopez-Pamies
Professor Eric de Sturler, Virginia Tech

Abstract

This dissertation deals with problems of shape and topology optimization in which the goal
is to find the most efficient shape of a physical system. The behavior of this system is
captured by the solution to a boundary value problem that in turn depends on the given
shape. As such, optimal shape design can be viewed as a form of optimal control in which the
control is the shape or domain of the governing state equation. The resulting methodologies
have found applications in many areas of engineering, ranging from conceptual layout of
high-rise buildings to the design of patient-tailored craniofacial bone replacements.

Optimal shape problems and more generally PDE-constrained inverse problems, how-
ever, pose several fundamental challenges. For example, these problems are often ill-posed in
that they do not admit solutions in the classical sense. The basic compliance minimization
problem in structural design, wherein one aims to find the stiffest arrangement of a fixed
volume of material, favors non-convergent sequences of shapes that exhibit progressively
finer features. To address the ill-posedness, one either enlarges the admissible design space
allowing for generalized micro-perforated shapes, an approach known as “relaxation,” or al-
ternatively places additional constraints to limit the complexity of the admissible shapes, a
strategy commonly referred to as “restriction.” We discuss the issue of existence of solutions
in detail and outline the key elements of a well-posed restriction formulation for both den-
sity and implicit function parametrizations of the shapes. In the latter case, we demonstrate
both mathematically and numerically that without an additional “transversality” condition,
the usual smearing of the Heaviside map (which links the implicit functions to the governing
state equation), no matter how small, will transform the problem into the so-called vari-
able thickness problem, whose theoretical optimal solutions do not have a clearly-defined
boundary. Within the restriction setting, we also analyze and provide a justification for the
so-called Ersatz approximation in structural optimization where the void regions are filled
by a compliant material in order to facilitate the numerical implementation.

Another critically important but challenging aspect of optimal shape design is dealing
with the resulting large-scale non-convex optimization systems which contain many local
minima and require expensive function evaluations and gradient calculations. As such,
conventional nonlinear programming methods may not be adequately efficient or robust.
We develop a simple and tailored optimization algorithm for solving structural topology

ii

optimization problems with an additive regularization term and subject only to a set of
box constraints. The proposed splitting algorithm matches the structure of the problem
and allows for separate treatment of the cost function, the regularizer, and the constraints.
Though our mathematical and numerical investigation is mainly focused on Tikhonov reg-
ularization, one important feature of the splitting framework is that it can accommodate
nonsmooth regularization schemes such as total variation penalization.

We also investigate the use of isoparametric polygonal finite elements for the discretiza-
tion of the design and response fields in two-dimensional topology optimization problems.
We show that these elements, unlike their low-order Lagrangian counterparts, are not sus-
ceptible to certain grid-scale instabilities (e.g., checkerboard patterns) that may appear as
a result of inaccurate analysis of the design response. The better performance of polyg-
onal discretizations is attributed to the enhanced approximation characteristics of these
elements, which also alleviate shear and volumetric locking phenomena. In regards to the
latter property, we demonstrate that low-order finite element spaces obtained from polyg-
onal discretizations satisfy the well-known Babuska-Brezzi condition required for stability
of the mixed variational formulation of incompressible elasticity and Stokes flow problems.
Conceptually, polygonal finite elements are the natural extension of commonly used linear
triangles and bilinear quads to all convex n-gons. To facilitate their use, we present a simple
but robust meshing algorithm that utilizes Voronoi diagrams to generate convex polygonal
discretizations of implicit geometries. Finally, we provide a self-contained discretization
and analysis Matlab code using polygonal elements, along with a general framework for
topology optimization.

iii

To my family

iv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Professor
Glaucio Paulino for repeatedly providing me with challenging and exceptional opportunities
to develop my professional skills, for the freedom he gave me to explore new research areas
and for his continued encouragement and support of my pursuit of mathematics from my
early days as an undergraduate student. His wife, Berta, has extended to me her warm
hospitality many times during my years at the University of Illinois, and I am deeply
grateful for their insight, support, and friendship.

To collaborate with Ivan Menezes and Anderson Pereira has been greatly fulfilling on
both a professional and personal level. It has been gratifying to have many pleasant yet
productive conversations with people who have become close friends. I owe a great deal of
gratitude to Pete Lenzini for the profound impact he has had on my academic life. It was
his support and advice that set me on the path of research. Many thanks go to Professors
Duarte, Haber, Kirr, Lopez-Pamies, and de Sturler for taking part in my PhD defense
committee. I would also like to thank Ilinca Stanciulescu, Emilio Silva, Marco Alfano
and the former and current members of Professor Paulino’s research group for their en-
couragement and the pleasure of their acquaintance. I gratefully acknowledge the financial
support of the DOE Computational Science Graduate Fellowship Program (under the grant
DE-FG02-97ER25308) as well as help and dedication of the staff at the Krell Institute.

I am very thankful for my friends, especially Lauren Stromberg, Alessandro Beghini,
Tomas Zegard, Sofie Leon, Wylie Ahmed, George Symeonides, and Christopher Kantas.
Without your compassion, humor and camaraderie, my life would lack its finest qualities. I
would also like to thank Mary Kate Dunne for her confidence, care, and kindness over the
years as well as her help proofreading this thesis. If any errors remain, she is to be blamed.

My deepest gratitude and love are for my father, Ahmad, my mother, Faranak, and my
brother Koushyar, to whom this thesis is dedicated. My family’s belief in the importance
of education, scholarship, and rational thought has profoundly influenced my choices and
shaped my character. Their unconditional encouragement and loving care instill in me the
drive and enthusiasm to continue to seek new challenges. As in the words of Albert Camus,
“An achievement is a bondage. It obliges one to a higher achievement.”

v

Table of Contents

List of Tables . viii

List of Figures . ix

List of Symbols . xiv

Chapter 1 Introduction . 1

1.1 Statement of the classical problem . 2
1.2 Continuous parametrization . 4
1.3 Restriction and regularity of sizing functions 8
1.4 Discretization . 10
1.5 Optimization algorithm . 16
1.6 Numerical results . 18
1.7 Outline of the thesis . 25

Chapter 2 Theoretical Basis for Restriction Formulations 27

2.1 Two-phase material distribution problem . 28
2.2 Implicit function description . 31
2.3 Counterexample to existence of solutions . 31
2.4 Relaxation . 34
2.5 Compactness condition . 35
2.6 Restriction of space of density functions . 39
2.7 Restriction of space of implicit functions . 41
2.8 Approximation of the Heaviside map . 42
2.9 Comments on some existing algorithms . 46
2.10 Single-phase problem and the Ersatz approximation 54

Chapter 3 Tikhonov Regularization and a Splitting Algorithm 60

3.1 Model problem . 62
3.2 Restriction and Tikhonov regularization . 64
3.3 Proposed optimization algorithm . 65
3.4 Comparison with filtering methods . 68
3.5 Definition of the projection map . 69
3.6 Relation to forward-backward splitting method 71
3.7 Numerical investigations . 72
3.8 Extension to nonsmooth regularizers . 78

vi

Chapter 4 A Closer Look at the Splitting Algorithm 80

4.1 Problem statement . 81
4.2 General splitting algorithm . 83
4.3 Optimality criteria and sensitivity filtering 86
4.4 Embedding the reciprocal approximation . 87
4.5 Finite element approximation . 91
4.6 The discrete problem . 93
4.7 Algorithms for the discrete problem . 96
4.8 Two-metric projection variation . 98
4.9 Numerical investigations . 100
4.10 Discussion and closing remarks . 106

Chapter 5 Discretizations Based on Polygonal Finite Elements 110

5.1 Convex polygonal finite elements . 113
5.2 A benchmark problem in elasticity . 116
5.3 Mixed variational problems and stability . 117
5.4 Numerical investigation using the inf-sup test 121
5.5 Topology optimization for fluid flow . 123
5.6 Numerical results . 127

Chapter 6 Polygonal Mesh Generation Using Voronoi Diagrams 130

6.1 Distance functions and implicit geometries 130
6.2 Voronoi diagrams, CVTs, and Lloyd’s algorithm 133
6.3 Voronoi meshing algorithm . 138
6.4 Two mesh modification procedures . 145
6.5 Examples of domains and meshes . 148
6.6 Extensions . 149

Chapter 7 Conclusions and Extensions . 151

Appendix A Educational Codes . 154

A.1 PolyMesher . 156
A.2 PolyTop . 163

Bibliography . 186

vii

List of Tables

3.1 Summary of the results for the MBB beam problem 76
3.2 Summary of mesh refinement study for the bridge problem with β = 0.02

and L
2-projection . 77

4.1 Summary of influence of various factors in the algorithm for the MBB prob-
lem with β = 0.06. The acronym FBS designates the forward-backward al-
gorithm and TMP refers to the two-metric projection algorithm. Forth and
fifth columns show the total number of iterations and backtracking steps.
The remaining columns show the final value of compliance �(uρ), regular-
ization term R(ρ), volume fraction V (ρ) = |Ω|−1 ´

Ω ρdx, the regularized
objective J̃(ρ), the relative change in cost function value E1 and the error in
satisfaction of the first order conditions of optimality E2 101

4.2 Summary of the results for the MBB beam problem with β = 0.01 105
4.3 Summary of the results for gradient projection and MMA algorithm for the

MBB beam problem with β = 0.06. The asterisk indicates that the maximum
allowed iteration count of 1,000 was reached before the convergence criteria
was met . 108

5.1 Summary of results for Cook’s problem . 117

A.1 Various uses and commands for the Domain function 157
A.2 List of fields in the input structures. The fields marked with the superscript

†, if empty, are populated inside PolyTop 166
A.3 Breakdown of the code runtime for 200 optimization iterations: times are

in seconds with percentage of total runtime of PolyScript provided in the
parentheses . 173

A.4 Runtime comparison of PolyScript with the 88 line code [12] (times are re-
ported in seconds for 200 optimization iterations) 174

viii

List of Figures

1.1 Extended design domain and boundary conditions for the governing state
equation . 2

1.2 (a)(b)(c) greyscale plot of three “smooth” density functions ρ taking values
in [0, 1]; (d)(e)(f) the corresponding interpreted shapes defined by χ{ρ≥0.5} . . 7

1.3 Illustration of the effects of filtering mapping and its discretization: (a) ηh =�
N

�=1 z�χΩ�
for a random vector of design variables z = [z�]

N

�=1; (b) PF (ηh) for
the design function ηh shown in (a) and linear kernel F . Note that despite
the severe oscillations of ηh, PF (ηh) has smooth variation dictated by F ; (c)
Ph

F
(ηh) which is the element-wise constant approximation to PF (ηh) on the

same finite element partition based on which ηh is defined 14
1.4 MBB beam problem (a) domain geometry, loading and boundary conditions;

The mesh is composed of 5,000 elements (27 4-gons, 1,028 5-gons, 3,325 6-
gons, 618 7-gons, and two 8-gons) and 9,922 nodes. Final topologies using
(b) SIMP (c) RAMP (d) SIMP with Heaviside filtering (e) RAMP with
Heaviside filtering for prescribed volume fraction v = 0.5 19

1.5 Compliance minimization problems with non-trivial domain geometries: (a)
domain of wrench problem, R = 0.03, v = 0.4; (b) final topology for wrench
problem with RAMP functions; (c) domain of suspension triangle problem,
R = 0.25, v = 0.45, magnitude of horizontal load is eight times larger than
the vertical load; (d) final topology for suspension problem with RAMP
functions . 20

1.6 Compliance minimization problems with non-trivial domain geometries: (a)
domain of serpentine beam problem, R = 0.25, v = 0.55; (b) final topol-
ogy for serpentine beam problem with SIMP functions; (c) domain of hook
problem, R = 2.0, v = 0.40; (d) final topology for hook beam problem with
SIMP functions . 21

1.7 Symmetric solution to the wrench problem 23
1.8 Force inverter mechanism: design domain and boundary conditions (left)

and final solution (right) . 24
1.9 Gripper mechanism: design domain and boundary conditions (left) and final

solution (right) . 25

2.1 Illustration of the boundary value problem for the two-phase material distri-
bution problem . 28

2.2 Illustration of the arrangement of the two phases in the minimizing sequence
(2.33) . 32

ix

2.3 Low volume fraction solution to the MBB beam problem based on Tikhonov
regularization. Notice that this solution exhibits the orthogonality of tension
and compression members characteristic of Michell optimal frame layouts (cf.
[21, 104, 103, 143]) . 36

2.4 Three terms in the minimizing sequence (2.33). The total variation
´

Ω |∇χ| dx
for these arrangements from left to right is 4L, 6L, and 10L, respectively . . 39

2.5 (a) The extended design domain (with height h = 1 and width w = 1.6)
and the boundary conditions for the cantilever problem (b) The “variable
thickness” solution to the cantilever problem 44

2.6 The evolution of the design field χ = Hγ(ϕ) associated with interpolation
functions (2.57) plotted in greyscale (a) initial guess (b) iteration 10 (c)
iteration 20 (d) iteration 150. Since the value of ϕ in the grey regions is in
the range (−γ, γ), the implicit function field is becoming flat near zero as
the design evolves . 45

2.7 Plot of strain energy field (C+ −C
−) �

�
uHγ(ϕ)

�
: �

�
uHγ(ϕ)

�
for ϕ corre-

sponding to the material distribution shown in Figure 2.6(a). Note that the
legend terminates at 0.5 for better illustration of the strain energy distrobu-
tion inside the stiff phase C

+ . 47
2.8 The evolution of the design field χ = Hγ(ϕ) using modified sensitivities (a)

iteration 10 (b) iteration 20 (c) iteration 40 and (d) final design 48
2.9 Initial guess Hγ(PF (η)) plotted in greyscale and the associated auxiliary field

η . 49
2.10 The final design using the material interpolation functions (2.64) for various

filtering radii. The design field Hγ(ϕ), the auxiliary function η, and the
implicit function ϕ = PF (η) are shown in the left, middle and right columns,
respectively. 51

2.11 The initial configuration (left column) and final design (right column) . . . 52

3.1 Approximate Green’s function computed numerically on a square domain Ω 68
3.2 Design domain and boundary conditions for (a) the MBB beam problem

(the design domain has height h = 1 and width w = 6) and (b) the bridge
problem (the design domain has height h = 1 and width w = 2). In both
cases, the applied load has unit magnitude. 72

3.3 Solutions to the MBB beam problem using the forward-backward algorithm,
i.e, α = βτ , and complexity parameter (a) β = 0.01 (b) β = 0.03 and (c)
β = 0.06 . 73

3.4 Solutions to the MBB beam problem using the L
2 projection, i.e, α = 0, and

complexity parameter (a) β = 0.01 (b) β = 0.02 and (c) β = 0.05 75
3.5 Solutions to the the bridge problem using (a) L

2-projection, isotropic regular-
ization and structured square mesh (b) L

2-projection, isotropic regularization
and unstructured polygonal mesh (c) equivalent (same β and τ as the pre-
vious two cases) density filtering (d) L

2-projection scheme with anisotropic
regularization term . 77

3.6 The original image (left) with noise added (middle) and its reconstruction
(left) using total variation minimization algorithm of the form (3.40). Images
courtesy of [43] . 78

x

3.7 Solution to the MBB beam problem using total variation regularization and
the forward-backward splitting algorithm 79

4.1 Plot of E(ρ)−λ for two solutions to the MBB beam problem with β = 0.01:
(a) corresponds to solution shown in Figure 4.5(b) and (b) corresponds to
the solution shown in Figure 4.5(c). The black line is the contour line for
ρ = 1/2 and the dashed white line is the contour line where E(ρ) = λ. Note
that only half the design domain is shown and the range of the color-bar is
limited to [−λ, 6λ] for better visualization. 83

4.2 (a) The solution to the MBB beam problem using the sensitivity filtering
method (consisting of (4.21) and (4.15)) (b) The solution using the update
steps (4.22) and (4.15). In both cases, P was taken to be the Helmholtz filter
and the move limit was set to mn = 0.25 . 88

4.3 Comparison between scaling terms appearing in the OC update and right
hand side of (4.26). The OC is more aggressive in regions eλ(ρn) > 1 and
less aggressive when eλ(ρn) < 1. 89

4.4 Final density field for the MBB problem and β = 0.06 plotted in grayscale.
This result was generated using the TMP algorithm with τ0 = 2 and mn = 1 101

4.5 Final densities plotted in grayscale for the MBB problem and β = 0.01. The
results are generated using the TMP algorithm with (a) τ0 = 2, mn = 1 (b)
τ0 = 1, mn = 1 (c) τ0 = 1, mn = 0.03 . 103

4.6 Final densities plotted in grayscale for the MBB problem with β = 0.06 and
SIMP penalty exponent (a) p = 4 (b) p = 5 104

4.7 Results of the mesh refinement study with (a) 600 × 100 (b) 1200 × 200
elements. 106

4.8 The design domain and boundary conditions for the force inverter problem
(left) and the optimal topology (right). For this example, �k1� = �k2� . . . 107

5.1 The solutions to the MBB beam problem using structured quadrilateral (left)
structured hexagonal (middle) and unstructured polygonal (right) meshes . 111

5.2 Solutions to the Michell cantilever beam problem based on (a) 10,000 polyg-
onal elements and (b) 10,220 quadratic triangular elements. Both meshes
are constructed to be symmetric about the horizontal axis 112

5.3 (a) Illustration of the triangular areas Ai(ξ) := A(pi−1,pi, ξ) used to define
the interpolant αi (b) triangulation of the reference regular polygon and inte-
gration points defined on each triangle (c) Wachspress interpolation function
for a regular hexagon . 114

5.4 The geometry, boundary conditions, and material properties for Cook’s prob-
lem (b) polygonal mesh with 4 elements (c) polygonal mesh with 16 elements
(d) typical quadrilateral mesh with 16 elements (each edge is divided evenly) 116

5.5 Illustration of the convergence of numerical results for Cook’s problem . . . 117
5.6 Results of the inf-sup test for the example problems 124
5.7 The domain and boundary conditions for the benchmark optimal flow prob-

lems (a) double pipe (b) pipe bend. For both examples, the boundary veloc-
ity g on each portion of Γg has parabolic profile as indicated in the figures. 125

xi

5.8 Double pipe solutions for (a) w = h (b) w = 1.5h where w is the width of the
domain and h is its height. The prescribed volume fraction for this problem
is v = 1/3 . 126

5.9 (a) Velocity field (magnitude plotted in the background) (b) pressure field
for the double pipe solution with w = 1.5h 126

5.10 Pipe bend solutions with (a) 5,000 elements (b) 10,000 elements (c) same as
part (b) but with the final value of q = 10 for the penalty parameter in κ(ρ).
The prescribed volume fraction for this problem is v = 0.08π 128

6.1 (a) Explicit parametrization of domain boundary: the ray connecting point
x̃ to point o, known to lie outside the domain, intersects ∂Ω an even number
of times, indicating x̃ /∈ Ω (b) Implicit representation of the domain: the
sign of the distance function dΩ(x) determines if x lies inside the domain (c)
Surface plot of the signed distance function: note that ∂Ω is given by the
zero level set of dΩ . 131

6.2 (a) For x ∈ R2, the direction to the closest boundary point, xb, is given
by ∇dΩ(x), which can be used to compute the reflection RΩ(x) (b) The
distance function exhibit kinks at points that are equidistant to more than
one boundary point. Here ∇dΩ(x) denotes the one-sided gradient at such a
point x . 132

6.3 Correspondence between set operations and the sign of distance functions . 133
6.4 (a) Voronoi diagram and its dual, the Delaunay triangulation (b) Illustrating

the difference between Vy, defined in Equation (6.10) as the Voronoi cell, and
Vy∩∆, as the regions making up the Voronoi tessellation of ∆ (cf. Equation
6.9) . 134

6.5 (a) Random initial point set P1 and the corresponding Voronoi diagram
(b) First iteration of Lloyd’s method: the Voronoi diagram generated by
P2 = L(P1), i.e., the centroids of the Voronoi cells of P1 (c) Distribution of
seeds and the diagram after 80 iterations (d) Monotonic convergence of the
energy functional and decay in the norm of its gradient 135

6.6 Random seed placement (a) resulting mesh with coefficient of variation of
edge lengths plotted in gray-scale (b) histogram of interior angles of the mesh
(c) histogram of element areas . 137

6.7 Quasi-random seed placement (a) resulting mesh with coefficient of variation
of edge lengths plotted in gray-scale (b) histogram of interior angles of the
mesh (c) histogram of element areas . 137

6.8 CVT mesh generation (a) mesh with coefficient of variation of edge lengths
plotted in gray-scale (b) histogram of interior angles of the mesh (c) his-
togram of element areas . 138

6.9 Illustration of the meshing approach: the Voronoi edges shared between seeds
and their reflection approximate the boundary of the domain. Note that the
reflections of the interior seeds “far” from the boundary (e.g. point z in the
figure) do not contribute to the final mesh 139

6.10 To accurately capture a corner, nearby seeds need to be reflected about both
boundary segments incident on that corner 140

xii

6.11 In this non-convex domain, the reflection RΩ(y) is closer to the boundary
of the domain than the seed y itself, i.e., |dΩ(RΩ(y))| < |dΩ(y)|. Not only
this reflection does not contribute to the approximation of the boundary, it
causes interference with seed z . 141

6.12 In the algorithm, only the seeds in band of length α(n, Ω) near the boundary
(shaded area in the figure) are reflected . 142

6.13 Small edges can form in elements near a curved boundary since the generating
seeds are not the same distance from that boundary. The issue can be
addressed by a post-processing step of collapsing these edges onto a single
node . 145

6.14 Illustration of small interior edges in a CVT and definition of angle β in
Equation (6.28) . 146

6.15 Sparsity pattern for the stiffness of polygonal mesh with 500 elements and
1002 nodes before RCM resequencing (left) and after resequencing (right).
The bandwidth is reduced from 966 to 75. 146

6.16 Distance functions (left) and sample meshes (right) for various domains (a)
MBB beam (b) cantilever (c) Horn (d) Wrench 147

6.17 Suspension triangle (a) geometry and (b) discretization 148
6.18 In the left figure, the reflection of point y1 has interfered with the approxima-

tion of the horizontal boundary by seeds z and y2. In the right figure, seeds
y1, y2 and y3 are fixed in such way that they all have y as their reflection . 149

6.19 Sample graded meshes: the left figures show the initial distribution of seeds
generated using a mesh size function and rejection method and the right
figures show the final mesh after Lloyd’s iterations 150

A.1 Uniform discretizations of the MBB beam domain obtained from appropriate
placements of the seeds . 162

xiii

List of Symbols

Ω an open bounded subset of Rd with smooth boundary ∂Ω

χω characteristic function associated with the set ω

|ω| Lebesgue measure of the set ω

uω solution to the governing state equation corresponding to ω

J objective or cost function of the optimal design problem

O space of admissible shapes

W
m,p(Ω) standard Sobolev space over Ω with 1 ≤ p ≤ ∞ and m ≥ 0

�·�
m,p,Ω norm associated with W

m,p(Ω)

|·|
m,p,Ω semi-norm associated with W

m,p(Ω)

L
p(Ω) Lebesgue space W

0,p(Ω) for 1 ≤ p ≤ ∞

H
m(Ω) Sobolev space W

m,2(Ω) for m ≥ 0

BV (Ω) space of functions of bounded variation over Ω

L
p(Ω; K) set of functions f ∈ L

p(Ω) with f(x) ∈ K almost everywhere in Ω

�f� average of function f over its domain Ω defined by |Ω|−1 ´
Ω fdx

A space of admissible designs (e.g. characteristic or density functions)

PC , PR classical and restricted two-phase material distribution problems

PS single-phase shape optimization problem

mE, mV material interpolation functions for stiffness and volume

PF filtering map with kernel F

∧,∨ pointwise max and min operators

ΠA projection map onto space A

I, I identity map and identity matrix

xiv

H Heaviside map defined by H(ϕ) = χ{ϕ>0}

Hγ smeared or approximate Heaviside map with width γ

dΩ signed distance function associated with Ω

RΩ reflection operator for domain Ω

T (P; Ω) Voronoi tessellation associated with point set P and domain Ω

E(P; Ω) energy functional associated with Voronoi tessellation T (P; Ω)

MΩ(P) Voronoi mesh of domain Ω using the point set P

xv

Chapter 1

Introduction

This thesis deals with the theoretical and computational issues associated with problems
of shape and topology optimization. Due to the inherent difficulties of parametrization of
shapes in sufficient generality, the classical shape optimization problem suffers from several
pathologies and current methodologies consist of concepts that span several fields in applied
and computational mathematics. In this introductory chapter, we describe examples of
structural shape design and review the various steps taken from the classical problem one
sets out to solve to the final discrete “sizing” problem that is passed to a suitably designed
optimization algorithm. The main purpose is to provide the context for the theoretical
and computational results presented throughout the thesis as well as the general numerical
framework implemented in the educational code provided in the appendix.

Although this chapter serves as a review for the field, at certain points, we provide a
perspective that departs from the usual narrative in order to address certain common mis-
conceptions, in particular those related to the Ersatz approach, filtering methods and their
finite element discretization. For example, we note that the Ersatz approach, which con-
sists of filling the void region with a compliant material, has to do with the approximation
of the governing state equation and not the particular “sizing” formulation adopted. We
emphasize that the purpose of filtering is to implicitly ensure smoothness of the design field.
It is evident from formulations in which the positive lower bound on the design variables
(used as a means to implement the Ersatz approximation) and filtering parameters are re-
lated that these separate concepts are sometimes mixed up. Moreover, in some papers, the
use of filtering in the compliance problem is inconsistent as it appears only in evaluating
the stiffness terms and not the volume constraint. Similarly, we show that the so-called
“nonlinear” filtering formulations essentially amount to a modification of the material inter-
polation functions rather than a change in the filtering operation. We will also discuss the
rationale behind filtering at the continuum level, and show the approximation steps (often
not explicitly presented) that lead to the discrete operation commonly used. Within this
narrative, we will partially address the important but often neglected question of “what
optimization problem is solved after the various parametrization and the restriction steps
are taken.”

1

ΓN

ΓD

ω

Ω

Figure 1.1: Extended design domain and boundary conditions for the governing state equation

1.1 Statement of the classical problem

The goal of topology optimization is to find the most efficient shape ω ⊆ Rd
, d = 2, 3 of

a physical system whose behavior is represented by the solution uω to a boundary value
problem. More specifically, one deals with problems of the form

inf
ω∈O

J(ω,uω) (1.1)

Here O denotes the set of admissible shapes, J is the cost functional that measures the
performance of each candidate shape or design ω. The geometric restrictions on the admis-
sible shapes such as bound on their volume may be prescribed in O. As shown in Figure
1.1, one typically defines an extended design domain or a “hold-all” set Ω in which all the
shapes lie, that is, ω ⊆ Ω for all ω ∈ O. This working domain Ω also helps facilitate the
description of the governing boundary value problem.

It is well-known that existence of optimal solutions to this problem is, in general, not
guaranteed if O is defined to be the set of all open or measurable subsets of Ω (see, for
example, [96, 3]). Therefore, we must impose constraints on the complexity of the admissible
shape in O in order to ensure that the optimization problem admits a solution, an approach
typically known as restriction in the literature [142, 28]. This is in contrast to relaxation
which begins with O defined as the set of all measurable subsets of Ω and addresses the
ill-posedness of the problem by further enlarging the space. We will further elaborate on
the distinction between the two approaches and the regularity conditions imposed on O in
chapter 2.

For most of the examples in this thesis, we consider linear elasticity as the governing
state equation, which is typical in continuum structural optimization. The solution uω ∈ Vω

satisfies the variational problem
ˆ

ω

C∇uω : ∇vdx =

ˆ
Γ̃N

t · vds, ∀v ∈ Vω (1.2)

2

where
Vω =

�
v ∈ H

1(ω)d : v|∂ω∩ΓD = 0
�

(1.3)

is the space of admissible displacements, C is the stiffness tensor of the material of which
the shape ω is made, ΓD and ΓN form a partition of ∂Ω and Γ̃N ⊆ ΓN is where the non-zero
tractions are specified. For optimal design problem (1.1) to be non-trivial, we shall assume
that for each admissible shape ω, ∂ω ∩ ΓD has non-zero surface measure and Γ̃N ⊆ ∂ω.
This reflects the desire that the admissible shapes are supported on ΓD and subjected to
the design loads defined on Γ̃N . Note that in (1.2), the free boundary of ω, i.e., ∂ω\∂Ω, is
traction-free. As we can see, the loading is assumed to be independent of the design. We
refer to [32, 37] for formulation and analysis of problems with design-dependent loads such
as pressure loading and self-weight.

A benchmark model problem in structural optimization is that of minimizing the com-
pliance of the unknown shape subject to a penalty on its volume. In particular, the cost
functional is given by

J(ω,uω) =

ˆ
Γ̃N

t · uωds + λ |ω| (1.4)

where the penalty parameter λ > 0 determines the trade-off between the stiffness provided
by the material and the amount that is used (which presumably is proportional to the cost
of the design).

The optimal design problem (1.1) with the boundary value problem constraint, as stated
in (1.2), is not amenable to typical discretization and optimization strategies without an
appropriate parametrization of the space of admissible shapes. For example, the implicit
constraints on the space of admissible shapes O often cannot be directly enforced in the
discrete setting. Note also that the internal virtual work term and the space of admissi-
ble displacements Vω change with the shape ω further complicating the prospects of dis-
cretization. Therefore it is useful to recast the boundary value problem on Ω by using the
characteristic function χω associated with ω. That is, we replace (1.2) with

ˆ
Ω

χωC∇uω : ∇vdx =

ˆ
Γ̃N

t · vds, ∀v ∈ V (1.5)

where now the space of admissible displacement,

V =
�
v ∈ H

1(Ω)d : v|ΓD = 0
�

, (1.6)

unlike (1.3), is independent of ω. Accordingly, for the optimal design problem (1.1), we
define the admissible space AO = {χω : ω ∈ O}. Now the geometric attributes of shapes
ω can be described in terms of the associated characteristic functions in AO. In fact, such
distributed parametrization simplifies definition and imposition of such constraints. For

3

example, the volume and perimeter of a shape ω can written as

V (ω) =

ˆ
Ω

χωdx, P (ω) =

ˆ
Ω

|∇χω| dx (1.7)

where the integral in the second expression is understood as the total variation of function
χω. We refer the reader to the monograph by Delfour and Zolesio [61] for a more de-
tailed discussion of representation of shapes by characteristic functions and the associated
concepts of geometric measure theory.

The parametrization of the set of admissible shapes via characteristic functions, although
a very useful starting point, does not address all the theoretical and practical issues. First,
we note that existence and uniqueness of solutions to the extended boundary value problem
(1.5) are not guaranteed as the energy bilinear form is no longer coercive (where χω is zero,
there is no contribution to the internal virtual work from the displacement; this loss of
coercivity corresponds to the singularity of the stiffness matrix in the finite element dis-
cretization of this variational equation). The common approach in topology optimization,
sometimes referred to the Ersatz material model in the level set literature, consists of filling
these void regions with compliant material of stiffness εC. This amounts to replacing χ

with ε+(1− ε) χ in the bilinear form of (1.5). The transmission conditions on the boundary
∂ω\∂Ω approximate the traction-free state in (1.2). The validity of this approximation for
the optimal design problem (1.1) hinges not only on the convergence of the solutions to the
state equation but also on the convergence of the optimal shapes with the modified state
equation as ε → 0. It is clear that the ill-posedness of the optimal shape problem further
complicates the analysis of the Ersatz approximation. We refer the reader to [5] for a partial
result on degeneracy of compliance minimization in the homogenization framework and to
[32] for compliance minimization with design-dependent loads in a restriction framework.
In chapter 2, we discuss a sufficient set of regularity conditions that can be imposed on O
and a general proof for consistency of the Ersatz approximation for this space of admissible
shapes.

1.2 Continuous parametrization

A major drawback of parametrization of domains with characteristic functions from a prac-
tical perspective is that such parametrization does not lend itself to the use of typical nonlin-
ear programming techniques. In particular, note that AO is not a vector space and natural
discretization of characteristic functions leads to integer programming problems that are
too large in practice to be tractable. For this reason, a “continuous” parametrization of the
shape is often adopted by the topology optimization community. This essentially means
that the control in the optimization problem is a function that can take values in some

4

continuous interval. Henceforth we will call this a sizing function. This reformulation must
be accompanied by a modification of the state equation or addition of a new constraint to
the problem so as to recover binary nature of the design.

For example, in density methods, the sizing function is a volume fraction or density func-
tion, ρ, that takes values in [0, 1] and replaces the characteristic function in the description
of the state equation and the objective and constraint functions. To recover “binary” fields
in the optimal regime, one can add an explicit penalty term of the form

α

ˆ
Ω

ρ(1− ρ)dx, α > 0 (1.8)

to the objective function of the problem. For sufficiently large α, the intermediate values
of the densities are penalized by virtue of the integrand being strictly positive. Moreover,
this penalization is consistent in that if ρ is a characteristic function, the penalty functional
vanishes. In practice, however, this approach does not work very well since it adds to
nonconvexity and nonlinearity of the problem.

A better alternative is to use one’s a priori knowledge of the problem and implicitly pe-
nalize the intermediate densities by augmenting the state equation via an suitable material
interpolation function. For instance, in the so-called SIMP formulation (in the restriction
setting) the space of admissible designs A is a sufficiently regular subset of L

∞(Ω; [0, 1])1,
and the state equation is given by:

ˆ
Ω

[ε + (1− ε) ρ
p]C∇u : ∇vdx =

ˆ
Γ̃N

t · vds, ∀v ∈ V (1.9)

where p > 1 is a penalization exponent [20, 136, 135]. Meanwhile, ρ enters linearly in the
geometric constraints such as the volume or perimeter of the design:

V (ρ) =

ˆ
Ω

ρdx, P (ρ) =

ˆ
Ω

|∇ρ| dx (1.10)

Intuitively, the intermediate volume fractions are penalized as they are assigned a smaller
stiffness compared to their contribution to volume. If one can establish that the optimal
solution to the SIMP problem is a characteristic function, it follows from the fact that
ρ

p = ρ for all ρ ∈ A ∩ L
∞(Ω; {0, 1}), that enlarging the design space from characteristic

functions to volume fraction functions is justified. Unfortunately, this is typically not
the case when one is operating in a restriction setting since the admissible densities are
smooth and the variation between the extreme values occurs over a transition region. Such
results are, however, available for certain discrete formulations of SIMP [145, 133, 112]. As

1Here L
∞(Ω; K) denotes the space of measurable functions defined on Ω that take values in K ⊆ R. For example,

L
∞(Ω; {0, 1}) and L

∞(Ω; [0, 1]) denote the space of measurable functions that take values in {0, 1} and interval [0, 1],
respectively.

5

discussed in chapter 3, there is also numerical evidence that one can obtain near binary
optimal densities for a well-posed compliance minimization problem based on total variation
regularization.

We note that there is an alternative rationale for density methods, such as SIMP, that
has its roots in the relaxation of the optimal design problem (1.1) [96, 97, 98, 165, 48, 3].
This so-called material distribution perspective inherently involves the concept of homoge-
nization. The intuition is that severe oscillations of near optimal solutions (the root-cause
of the ill-posedness of the classical problem) is taken into account by enlarging the space of
admissible designs to include the corresponding generalized shapes. Since these oscillations
take place at a fine scale, their effect in such generalized designs is captured through the
homogenized properties of the corresponding (composite) material in the enlarged space. A
density function that measures the volume fraction of these oscillations at the macroscopic
scale characterizes each generalized design (see chapter 2).

Here, we are adopting a different perspective—that of an approximation of a character-
istic function—since we are operating in the restriction setting which is natural for most
practical applications of topology optimization where layout or manufacturing constraints
are present. It is difficult to extend the relaxation philosophy to the restriction framework
since it amounts to distributing material freely at the microscale but subject to a restricted
variation at the macroscale. In a sense, this undermines the notion of relaxation from
both mathematical and physical perspectives. Nevertheless, one can explicitly construct
composite materials that follow the SIMP model [23], i.e., ones whose stiffness and volume
fraction coincide with SIMP, and so, in principle, the designs can be realized. For yet an-
other physical justification of SIMP based on fictitious fabrication cost, we refer the reader
to [135, 183]. We note, however, that the SIMP problem without additional regularity
conditions imposed on the admissible density functions is still ill-posed.

At this point a natural question arises: which space of admissible shapes O corresponds
to the “continuous” and restricted design space A? Considering the fact that the optimal
density function ρ

∗ is typically not a characteristic function, one usually interprets the
result to obtain a classical shape ω

∗ ⊆ Ω via a post-processing routine. The question is: in
what sense is ω

∗ optimal?
If the performance of the density functions, in the optimal regime, is well-approximated

by that of the corresponding classical shapes, we can then argue that ω
∗ is “nearly” optimal

when the space of admissible shapes O consists of shapes corresponding to the approximate
characteristic functions in A. Note that in such a scenario, the set of admissible shapes
O is reasonably well-defined and perhaps captures the intention of the restriction scheme
while the continuous parametrization setting is justified.

To further illustrate the notion of “post-processing” and what is meant by the “optimal
regime,” consider the three smooth density functions ρ taking values in [0, 1] shown in

6

(a) (b) (c)

(d) (e) (f)

Figure 1.2: (a)(b)(c) greyscale plot of three “smooth” density functions ρ taking values in [0, 1];
(d)(e)(f) the corresponding interpreted shapes defined by χ{ρ≥0.5}

Figure 1.2. The last two functions approximate a characteristic function: the bottom row
shows the associated characteristic functions defined by χ{ρ≥0.5}

2. It is clear that only
in the last two cases, ρ and χ{ρ≥0.5} are “close.” Furthermore, the continuous density
formulations of SIMP is set up so that in the optimal regime, only designs of this kind
appear, i.e., ones for which ρ ≈ χ{ρ≥0.5}. The continuous parametrization is acceptable if,
in addition, the values of objective and constraints functions are well approximated, that
is, J(ρ) ≈ J

�
χ{ρ≥0.5}

�
3. These conditions are evidently true for compliance minimization

with SIMP though a mathematical proof is not available in the continuum setting.
So far in this discussion, the notion of a sizing function may seem synonymous with

densities4. However, we note that the continuous parametrization is not limited to density
methods, and level set formulations [8, 173, 19, 59, 168] can be also placed in the same
framework: the level set or implicit function ϕ can assume both positive and negative
values and can be required to belong to the bounded interval [−α, α] for some α > 0

[19]. What enters in the state equation and constraint functions, in place of χω, is H(ϕ),
where H is the Heaviside function (or a smooth approximation to it). Note that we are
not commenting on the choice of the optimization algorithm that is ultimately used in
the discrete setting (the evolution of the optimal shape in level set methods in some of
the above-mentioned references is based on shape sensitivity analysis and motion of the
shape boundary). Similar to the density formulations, some constraints must be imposed

2This function takes value of 1 at point x ∈ Ω if ρ(x) ≥ 0.5 and is zero otherwise – this is a simple choice of
post-processing

3Throughout this thesis, with a slight abuse of notation, we will use J to denote the objective as a function of
the underlying design parametrization, which should be evident from the context. For example, within a density
framework, J is a function of the density field ρ with the dependence of J on uρ implied.

4Variants of density methods involve different material interpolation functions, but are similar in spirit [144, 36].

7

on the variation of the implicit functions so that the resulting optimization problem is well-
posed. Also some mechanism must ensure that the implicit function in the optimal regime
is sufficiently steep near the boundary so that the stiffness is near binary throughout the
domain. The precise nature of this so-called transversality condition and its implication
are discussed in detail in the next chapter.

1.3 Restriction and regularity of sizing functions

We now discuss the issue of the regularity of the space of admissible sizing functions.
As mentioned before, this is relevant from a theoretical perspective since it is related to
the well-posedness of the problem. We emphasize that continuous parametrization (by
replacing characteristic functions with sizing functions) by itself does not address this issue.
Moreover, restriction provides an appropriate setting for justifying the commonly used
Ersatz approach. From a practical point of view, restricting the variations of the sizing
functions is related to manufacturing constraints on the admissible geometries considered.

One set of restriction formulations imposes local or global regularity constraints ex-
plicitly with the aid of the “continuous” parametrization. For example, in the perimeter
constraint formulation, the addition of the following constraint [11, 88, 127] to A

ˆ
Ω

|∇ρ| dx ≤ P (1.11)

ensures that the admissible densities do not oscillate too much by requiring that the total
variation of the design field be bounded by the prescribed perimeter P . A Tikhonov-type
scheme introducing the additional constraint

ˆ
Ω

|∇ρ|2 dx ≤ M (1.12)

is similar in that it also restricts large variations (gradients) of the density field. These two
formulations are considered in chapters 3 and 4 in alternative but equivalent forms wherein
regularizing terms are added to the cost functional to enforce regularity only in the optimal
regime rather than restricting the entire design space.

In the slope constraint formulation [128], A ⊆ W
1,∞(Ω) (admissible functions are weakly

differentiable with essentially bounded derivatives) and

ess sup
x∈Ω

|∇ρ(x)|∞ ≤ G (1.13)

which means that the gradient of ρ ∈ A cannot be too large (i.e., exceed the specified
value G) throughout the extended domain Ω. In contrast to the “global” total variation

8

and Tikhonov constraints, this is an example of a local constraint on density variation. The
discretization of this local constraint leads to a large number of linear constraints for the
optimization problem and can be prohibitively expensive.

The alternative approach, emphasized in this chapter, is to impose regularity on A
implicitly with the aid of a “regularization” map P . For example, in the popular filtering
formulation [31, 29], A consists of density functions that are produced via convolution with
a smooth filter function F , that is,

A = {PF (η) : η ∈ L
∞(Ω; [0, 1])} (1.14)

where PF is the integral operator defined as

PF (η)(x) :=

ˆ
Ω

F (x,y)η(y)dy (1.15)

The expression (1.14) states that for each ρ ∈ A, there exists a measurable function η such
that ρ = PF (η). By the virtue of the properties of the map PF , the sizing function ρ inherits
the smoothness characteristics of the kernel F . Therefore, even if η is rough, ρ is guaranteed
to be smooth (see Figure 1.3(a) and (b)). As we shall discuss in the next section, it is the
discretization of η that produces the set of design variables for the optimization problem.
Thus, we can see that the use of PF in defining the sizing functions eliminates the need to
explicitly impose regularity on ρ.

The linear “hat” kernel of radius R, which is the common choice for filtering, is given by

F (x,y) = c(x) max

�
1− |x− y|

R
, 0

�
(1.16)

where c(x) is defined as a normalizing coefficient such that
ˆ

Ω

F (x,y)dy = 1 (1.17)

for all x ∈ Ω. It is easy to see that the expression for this coefficient is

c(x) =

�ˆ
BR(x)∩Ω

�
1− |x− y|

R

�
dy

�−1

(1.18)

where BR(x) is the ball of radius R around x. The condition (1.17) guarantees that the
bounds for the filtered field PF (η) are the same as those set for the design function η (e.g.,
0 and 1 for design space in (1.14)). We emphasize, however, that in light of the previous
discussion on definition of A, the role of the map PF is simply to restrict the space of
admissible densities. This distinction has been made in [141] where the author refers to

9

ρ ∈ A as the “physical” density function to distinguish it from η ∈ L
∞(Ω; [0, 1]).

We can prescribe other layout or manufacturing constraints on admissible shapes via
implicit maps in the same manner that the filtering approach enforces smoothness. We
illustrate this idea via an example for enforcing symmetry and remark that manufacturing
constraints such as extrusion, pattern repetition and gradation can be imposed in a similar
way [99, 10, 146]. Suppose Ω ⊆ R2 is a symmetric domain with respect to the x1−axis and
let Ω+ = {(x1, x2) ∈ Ω : x2 ≥ 0}. Rather than adding constraints of the form

ρ(x1, x2) = ρ(x1,−x2) (1.19)

for all x = (x1, x2) ∈ Ω (which is conceivable in the discrete setting), we can build symmetry
into the space of admissible sizing functions by defining the operator Ps that maps function
η defined on Ω+ to the function Ps(η) defined on Ω with the property that

Ps(η)(x) = η(x1, |x2|) (1.20)

for every x = (x1, x2) ∈ Ω and setting5

A =
�
Ps(η) : η ∈ L

∞(Ω+; [0, 1])
�

(1.21)

Again this means that ρ ∈ A if ρ = Ps(η) for some η ∈ L
∞(Ω+; [0, 1]) and so ρ automatically

satisfies (1.19). Given this discussion, it is easy to combine the symmetry and filtering using
composition of the two maps P = PF ◦ Ps.

1.4 Discretization

Two main features of common well-posed topology optimization formulations are interpola-
tion models and regularity of admissible designs. Many topology optimization formulations
can thus be cast in the form of a sizing problem

inf
ρ∈A

J(ρ,uρ) (1.22)

where the space of admissible sizing functions is

A =
�
P(η) : η ∈ L

∞ �
Ω;

�
ρ, ρ

���
(1.23)

5The distinction between the η and the admissible function Ps(η) should be more apparent here: η is defined on
half of the domain Ω+ while Ps(η) is defined over all of Ω.

10

and uρ ∈ V solves
ˆ

Ω

mE(ρ)C∇uρ : ∇vdx =

ˆ
Γ̃N

t · vds, ∀v ∈ V (1.24)

Here mE is the material interpolation function that relates the value of ρ at a point to
the stiffness at that point6. Similarly, interpolation functions for other geometric measures
such as the perimeter may be needed for the formulation. For example, the compliance
minimization problem

J(ρ,uρ) =

ˆ
Γ̃N

t · uρds + λ

ˆ
Ω

mV (ρ)dx (1.25)

requires one additional interpolation function, mV , for the volume constraint. Aside from
mV and mE, in this framework we need to provide bounds, ρ and ρ, as well as the mapping
P .

The reformulation of the optimal design problem in the form of distributed sizing op-
timization (1.22) lends itself to a tractable discretization and optimization scheme. In
particular, the finite element (FE) discretization of the design field A requires partitioning
of the extended domain Ω without the need for remeshing as the design is evolving in the
course of the optimization. Often the displacement field is discretized based on the same
FE partition although this choice can lead to certain numerical artifacts such as checker-
board patterns [62, 91, 142]. For example, one often obtains spurious solutions when using
lower-order Lagrangian elements such as linear triangles and bilinear quadrilateral in the
absence of the restriction of the density fields. In contrast, as we will demonstrate in chap-
ter 5, polygonal discretizations are not susceptible to such numerical instabilities. Note
also that in the restriction setting, such coupled discretization strategies can be shown to
be convergent under mesh refinement so the aforementioned numerical instabilities are ex-
pected to disappear when a sufficiently fine mesh is used (e.g., when the mesh size is smaller
than the filtering radius). In chapter 4, we prove a finite element convergence result for
Tikhonov regularization. Similar results are available for filtering formulations as well (see,
for example, [128, 31, 29]).

We will next discuss the various steps in the discretization process based on one finite
element mesh. The goal is to identify the design variables for the discrete optimization
problem and how they are related to the parameters defining the state equations and
subsequently the cost functional. As we shall see, this involves an approximation of the
mapping P which is usually not discussed in the topology optimization literature.

Let Th = {Ω�}N

�=1 be a partition of Ω, i.e., Ω� ∩ Ωk = ∅ for � �= k and ∪�Ω� = Ω with h

denoting the characteristic mesh size. In the analysis of convergence of FE solutions to a
6
mE essentially determines the dependence of the state equation on the design

11

solution of (1.22), h is sent to zero. We intend to identify the discrete counterpart to (1.22)
based on this partition and so in the remainder of this section Th is fixed. The piecewise
constant discretization of A in (1.23) is defined as:

Ah =
�
P(ηh) : ηh ∈ L

∞ �
Ω;

�
ρ, ρ

��
, ηh|Ω�

= const ∀�
�

(1.26)

In other words, each ρ ∈ Ah is the image of map P acting on a design function ηh that
takes a constant value over each element Ω�. Note that ηh belongs to a finite dimensional
space of functions of the form:

ηh(x) =
N�

�=1

z�χΩ�
(x) (1.27)

where χΩ�
(x) is the characteristic function associated with element Ω� and z� is the constant

value that ηh assumes over Ω�. Furthermore, (1.26) is defined such that each ρh ∈ Ah can
be written as ρh = P(ηh) for some ηh in the form of (1.27). Thus each candidate design
in Ah can be defined by a set of design of variables z := [z�]

N

�=1, which is provided to
the optimization algorithm for this partitioning. The only difference between A and Ah

with the above definition is the restriction placed on ηh. It is precisely the discretization
of the functions η that produces the design variables z that on the one hand, completely
characterize the discrete space of admissible designs Ah and on the other hand become the
parameters passed to the optimization algorithm for sizing.

As mentioned before, it is convenient that the state equation, more specifically the dis-
placement field V , is discretized on the same partition Th. Let Vh be this finite dimensional
subspace and suppose each uh ∈ Vh has the expansion

uh(x) =
M�

i=1

UiNi(x) (1.28)

that is, {Ni}M

i=1 is the basis for Vh and M is the number of displacement degrees of freedom.
The Galerkin approximation to the state equation (1.24) with ρ = ρh ∈ Ah can be written
as

KU = F (1.29)

where U = [Ui]
M

i=1 is the vector of nodal displacements,

[F]
i
=

ˆ
Γ̃N

t ·Nids (1.30)

12

are the nodal loads, and

[K]
ij

=

ˆ
Ω

mE(ρh)C∇Ni : ∇Njdx

=
N�

�=1

ˆ
Ω�

mE(ρh)C∇Ni : ∇Njdx (1.31)

The integral inside the summation is the (i, j)-th entry of the stiffness matrix for element Ω�

in the global node numbering. We note that ρh = P(ηh) may not be constant over Ω� and
therefore cannot be pulled outside of this integral. Similarly, quantities like the volume of
the design cannot be readily computed given the finite element partition. This highlights the
fact that in common algorithms for topology optimization an additional approximation step
is used beyond what is explicitly stated in the definition ofAh in (1.26). This approximation
in solving the state equation in fact amounts to the discretization of the operator P and
therefore could be explicitly expressed in the definition of the space of admissible designs
Ah.

Typically, in practice, the sizing function ρh is replaced by a function ρ̃h that is constant
over each finite element, that is,

ρ̃h(x) =
N�

�=1

y�χΩ�
(x) (1.32)

One choice for the elemental values y� is to sample the value of ρh at the centroid of element
�,

y� = ρh(x
∗
�
) (1.33)

where we have denoted by x
∗
�

the location of the centroid of the element Ω�. For example,
in the case of filtering, we have

y� = ρh(x
∗
�
)

= PF (ηh)(x
∗
�
)

=

ˆ
Ω

F (x∗
�
,x)ηh(x)dx

=
N�

k=1

zk

ˆ
Ωk

F (x∗
�
,x)dx

� �� �
:=w�k

(1.34)

Collecting the weights computed in a matrix [P]
�k

= w�k, we can relate the elemental values
of ρ̃h to those of ηh by

y = Pz (1.35)

13

(c)

(b)

(a)

Figure 1.3: Illustration of the effects of filtering mapping and its discretization: (a) ηh =�
N

�=1 z�χΩ� for a random vector of design variables z = [z�]N�=1; (b) PF (ηh) for the design function
ηh shown in (a) and linear kernel F . Note that despite the severe oscillations of ηh, PF (ηh) has
smooth variation dictated by F ; (c) Ph

F
(ηh) which is the element-wise constant approximation to

PF (ηh) on the same finite element partition based on which ηh is defined

14

Note that the weights w�k are independent of the design variables z and can be computed
once at the beginning of the algorithm. Moreover, many of the weights are zero since x

∗
�

is not in the support of PF (χk) when Ω� and Ωk are far apart in the mesh. Therefore, P

can be efficiently stored in a sparse matrix. In the appendix, it is shown that these weights
correspond to the usual discrete filtering formulas used for the linear hat function (1.16).

The matrix P must be viewed as the discrete counterpart to the mapping PF . In fact,
such discretization of any linear map7 P in the definition of A produces a constant matrix.
Let us define the “discretized” map8

Ph : η →
N�

�=1

P(η)(x∗
�
)χΩ�

(1.36)

Note that for each piecewise constant design function ηh and linear map P ,

P(ηh)(x
∗
�
) = P

�
N�

k=1

zkχΩk

�
(x∗

�
) =

N�

k=1

zkP(χΩk
)(x∗

�
) = Pz (1.37)

where
[P]

�k
= P(χΩk

)(x∗
�
) (1.38)

This illustrates the relationship between Ph and matrix P. Just as the vector z represents
the elemental values of design function ηh, vector Pz gives the elemental values of the
piecewise constant function Ph(ηh).

A more precise description of the space of admissible designs Ah associated with Th that
accounts for this approximation is thus given by

Ah =
�
Ph(ηh) : ηh ∈ L

∞ �
Ω;

�
ρ, ρ

��
, ηh|Ω�

= const ∀�
�

(1.39)

Figure 1.3 illustrates the effects of the filtering mapping PF with a linear hat kernel F and
its discretization Ph

F
.

With ρ̃h replacing ρh in expression (1.31), which amounts to replacing P(ηh) with Ph(ηh),
the stiffness matrix is simplified to:

K =
N�

�=1

mE(y�)k� (1.40)

where [k�]ij =
´

Ω�
C∇Ni : ∇Njdx is the �th element stiffness matrix. As mentioned before,

it is not just the calculation of the stiffness matrix that benefits from the approximation P .
7Filtering, symmetry, pattern repetition, and extrusion constraints can all be implemented by means of such

linear maps
8Alternatively we can view Ph = Ih ◦ P where Ih maps any ρh to ρ̃h, that is, Ih(ρ) =

PN
�=1 ρ(x∗�)χΩ�

15

Evaluation of objective and constraint functions that involve volume and surface integrals
are also now greatly simplified. For example, the volume term can be written as

ˆ
Ω

mV (ρ̃h)dx =
N�

�=1

mV (y�) |Ω�| (1.41)

We note that this additional approximation is often not explicitly considered in the con-
vergence proofs (e.g. in [29]) but is justifiable since its effect disappears as the mesh size
h goes to zero. However, accuracy considerations become relevant. Since there is only one
mesh used, the variation of ηh and accuracy of ρ̃h and uh are tied to the same FE mesh.

We conclude this section by stating the discrete compliance minimization problem de-
fined on Th

inf
ρh∈Ah

ˆ
Γ̃N

t · uhds + λ

ˆ
Ω

mV (ρh)dx (1.42)

where the space of admissible functions Ah is given in (1.39), and uh ∈ Vh = span {Ni}M

i=1

solves the discretized state equation
ˆ

Ω

mE(ρh)C∇uh : ∇vdx =

ˆ
Γ̃N

t · vds, ∀v ∈ Vh (1.43)

The only difference between (1.42) and the continuum problem (1.22) is that spaces A and
V are replaced by their finite dimensional counterparts Ah and Vh.

This problem is completely equivalent to the familiar discrete form9

min
z∈[ρ,ρ]

N
J(z) = F

T
U(z) + λA

T
mV (Pz) (1.44)

where F given by (1.30) is independent of the design variables z, U(z) solves (1.29) in which
K depends “linearly” on mE(Pz) as stated in (1.40), [A]

�
= |Ω�| is the vector of element

volumes, and P is defined in (1.38).

1.5 Optimization algorithm

Next we discuss the main features of the algorithms commonly used in structural optimiza-
tion for solving the discrete problem (1.44). The basic approach consists of replacing the
objective and constraint functions with some suitable approximations in the neighborhood
of the current design point. That is, one solves the following approximate problem in each
iteration:

min
zL≤z≤zU

Japp(z) (1.45)

9In the remainder of the thesis, we understand mE(y) and mV (y) to be vectors with entries mE(y�) and mV (y�)

16

where Japp is an approximation to the objective function and z
L and z

U specify the lower
and upper bounds for the search region where the approximation is valid. For example, if
m denotes the admissible move limit and z0 is the design at the current iteration, then

z
L
�

= max
�
ρ, z

0
�
−m

�
, z

U
�

= min
�
ρ, z

0
�

+ m
�
, � = 1, . . . , N (1.46)

The key to the success of such an algorithm is the choice of the approximation functions
in terms of their accuracy, the cost of computation, and the effort needed to solve the
resulting optimization algorithm. Here we will discuss the scheme that leads to the so-
called Optimality Criteria (OC) algorithm commonly used in topology optimization. In
chapters 3 and 4, a new class of algorithms is developed that separate the treatment of the
structural cost functional and the regularization terms.

First note that the objective function (1.44) can be written as J(z) = f(z) + λg(z)

where g is a linear function of z and so it can be written as

g(z) = g
�
z

0
�

+
N�

�=1

�
z� − z

0
�

�
∂�g

�
z

0
�

(1.47)

To obtain the approximate function Japp(z), the first term f(z) = F
T
U(z) is linearized in

the exponential intermediate variables10

�
z� − ρ

ρ− ρ

�a

(1.48)

with a ≤ 1 around the current value of the design variables z = z
0. The first order Taylor

expansion in these intermediate variables yields

fapp(z) = f
�
z

0
�

+
N�

�=1

1

a

�
z

0
�
− ρ

� ��
z� − ρ

z
0
�
− ρ

�a

− 1

�
∂�f

�
z

0
�

(1.49)

Observe that fapp(z) is a separable convex function if ∂�f(z0) ≤ 0 for all �. This is the case
for the compliance function as can be seen from the expression for its gradient given in
equation (A.9) of the appendix. The approximate cost function Japp(z) = fapp(z) + λg(z)

is also separable and so the minimization over cube
�
z

L
, z

U
�

reduces to N one-dimensional
minimization problems for each component of z. Using the convexity of Japp, the minimizer

10The significance of approximating response dependent cost functions in “reciprocal” variables, i.e., when a = −1,
are discussed in [82] and references therein. For a = 1, one recovers the usual Taylor linearization.

17

z
new is given by

z
new
�

=






z
U
�
, z

∗
�
≥ z

U
�

z
L
�
, z

∗
�
≤ z

L
�

z
∗
�
, otherwise

, � = 1, . . . , N (1.50)

where z
∗ = [z∗

�
]N
�=1 is the stationary point of Japp, i.e., ∇Japp(z∗) = 0. Upon substitution of

(1.49) and (1.47), we can find an explicit expression for z
∗
�
,

z
∗
�

= ρ +

�
−∂�f(z0)

λ∂�g(z0)

� 1
1−a �

z
0
�
− ρ

�
, � = 1, . . . , N (1.51)

The update scheme consisting of (1.51) and (1.50) is commonly known as the Optimality
Criteria (OC) method. The quantity ζ = 1/(1−a) is sometimes referred to as the damping
coefficient. For the so-called reciprocal approximation, a = −1 and so ζ = 1/2. This is the
value usually used for compliance minimization since, on physical grounds, the reciprocal
approximation is known to be accurate for compliance. For more information on this
derivation, the reader is referred to [82].

1.6 Numerical results

We now present some numerical results for compliance minimization problems based on the
density filtering formulation. All the results are obtained using the Matlab code PolyTop
presented in the appendix. This code is based on the sizing formulation and optimization
algorithm discussed in this chapter. In all cases, the Ersatz parameter ε was set to 10−4 and
the Young’s modulus and Poisson’s ratio of the solid phase C were taken to be E = 1 and
ν = 0.3, respectively. The maximum tolerance for the change in design variables was taken
to be 1%. Volume penalty parameter λ was adjusted in each iteration of the optimization
algorithm to fix the volume fraction |Ω|−1 ´

Ω ρdx at the prescribed level v.
The first example is the MBB beam problem [119] whose domain, loading and support

conditions are shown in Figure 1.4(a). A mesh of 5,000 polygonal elements was generated
using PolyMesher (see chapter 6 and the appendix). The final result shown in Figure 1.4(b)
was obtained using a linear filter of radius 0.04 (the rectangular domain has unit height)
and the SIMP model with continuation performed on the penalty parameter p as follows:
the value of p was increased from 1 to 4 using increments of size 0.5 and for each value of p,
a maximum of 150 iterations was allowed. Similarly, the RAMP functions [144, 24] defined
by

mE(ρ) = ε + (1− ε)
ρ

1 + q(1− ρ)
, mV (ρ) = ρ (1.52)

were used to generate the result shown in Figure 1.4(c). The parameter q was initially set

18

(e)(d)

(b) (c)

(a)

Figure 1.4: MBB beam problem (a) domain geometry, loading and boundary conditions; The
mesh is composed of 5,000 elements (27 4-gons, 1,028 5-gons, 3,325 6-gons, 618 7-gons, and two
8-gons) and 9,922 nodes. Final topologies using (b) SIMP (c) RAMP (d) SIMP with Heaviside
filtering (e) RAMP with Heaviside filtering for prescribed volume fraction v = 0.5

19

(a) (b)

(c) (d)

Figure 1.5: Compliance minimization problems with non-trivial domain geometries: (a) domain
of wrench problem, R = 0.03, v = 0.4; (b) final topology for wrench problem with RAMP functions;
(c) domain of suspension triangle problem, R = 0.25, v = 0.45, magnitude of horizontal load is
eight times larger than the vertical load; (d) final topology for suspension problem with RAMP
functions

20

(a) (b)

(c)

(d)

(d)

Figure 1.6: Compliance minimization problems with non-trivial domain geometries: (a) domain
of serpentine beam problem, R = 0.25, v = 0.55; (b) final topology for serpentine beam problem
with SIMP functions; (c) domain of hook problem, R = 2.0, v = 0.40; (d) final topology for hook
beam problem with SIMP functions

to zero and continuation was subsequently carried out by doubling its value from 1 to 128.
As the same filtering radius was used, the difference between the two results highlights the
difference between the performance of these interpolation functions.

Yet another example of a material interpolation model is the Heaviside projection [85].
Even though it is typically considered a nonlinear filtering approach, it is easy to see that
it can be cast in the present framework where the regularization map is linear. More
specifically, if it is used in conjunction with SIMP, the material interpolation functions are
given as

mE(ρ) = ε + (1− ε) [h(ρ)]p (1.53)

mV (ρ) = h(ρ) (1.54)

where

21

h(x) = 1− exp (−βx) + x exp (−β) (1.55)

is the approximate Heaviside function and ρ belongs to the space of admissible designs
defined in (1.14), that is, ρ is obtained from the usual linear filtering. This shows that
the Heaviside filtering essentially amounts to a modification of the material interpolation
functions. The additional parameter β controls the amount of grey scales that appears in
the optimal solutions. Note, however, that SIMP penalization plays a crucial role since with
p = 1, we have mE(ρ) ≈ mV (ρ) for any ρ and so the optimal solution will consist mostly
of intermediate densities no matter how large β is. One can similarly define material inter-
polation functions for the Heaviside scheme based on the RAMP functions. Figures 1.4(d)
and (e) show the Heaviside filtering results with SIMP and RAMP with the same penalty
parameters and radius of filtering as in the previous results. Moreover the continuation of
p and q were interleaved with the continuation on value of β as follows: the value of β was
initially set to 1 and for each increment of p or q, it was doubled. As expected, the results
depend on the manner in which the continuation of the penalty parameter and β is carried
out.

The next set of results are for problems with non-trivial domain geometries or loading
and support conditions. The design domains with the boundary conditions are shown in
the left column of Figures 1.5 and 1.6. The wrench and suspension triangle were solved
with RAMP functions while the hook and serpentine beam problems were solved with
the SIMP interpolation function, both using the same continuation schemes as before.
Even though the location of holes can be prescribed by means of passive elements in a
uniform mesh (similar to what is done in the 99-line Maltab code [140]), it is evident
that describing arbitrary geometries such as those shown here on a regular grid becomes
cumbersome if not intractable. Moreover, the use of an unstructured mesh is necessary if
one is to resolve the domain geometry, accurately specify the design loads and compute the
structure’s response. Problems of this sort typically arise in the practical applications, for
example, the suspension triangle (cf. Figure 1.6(c)) is an industrial application of topology
optimization presented in [7].

Next, we show how symmetry and similar layout constraints can be enforced in the
present framework. We consider the wrench problem and wish to enforce symmetry along
the horizontal axis. An unstructured but symmetric polygonal mesh was generated using
PolyMesher (cf. chapter 6 and the appendix). For � = 1, . . . , N/2, element Ω�+N/2 is the
reflection of element Ω� about the horizontal axis. As discussed in section 1.3, symmetry
can be enforced via the mapping Ps given in (1.20). For this mesh, the matrix associated
with the discretization of Ps (cf. equation (1.38)) is defined by

22

Figure 1.7: Symmetric solution to the wrench problem

[Ps]�k =





1, if � = k or � = k + N/2

0, otherwise
(1.56)

where � = 1, . . . N and k = 1, . . . , N/2. To apply filtering as well, we set:

P = PFPs (1.57)

where PF is the linear filtering matrix. Figure 1.7 shows the optimal wrench topology with
symmetry enforced along the horizontal axis. This problem has asymmetric loading and
imposing symmetry amounts to requiring the optimal design to also withstand identical
upward loads. One can show that this symmetric topology is identical to the solution for
the multiple load problem consisting of mirrored loading cases with equal weights.

Compliant mechanism design

The discussion so far and the above numerical examples have been limited to the minimum
compliance problems. We next consider the design of compliant mechanisms, a problem
whose cost functional is not self-adjoint and therefore, unlike compliance, the gradient field
may take both negative and positive values in the domain. We begin with a brief description
of the formulation of such problems within the framework of linear elasticity11.

The objective of mechanism design is to identify a structure that maximizes the force
exerted on a workpiece under the action of an external actuator. We assume in this setting
that both the workpiece and the actuator are elastic and their stiffness are represented by
vector fields k1 ∈ L

∞(ΓS1) and k2 ∈ L
∞(ΓS2), respectively. Here ΓS1 , ΓS2 are segments of

the traction boundary ΓN ⊆ ∂Ω where the structure is interacting with these elastic bodies.
The tractions experienced by the structure through this interaction for a displacement field
u can be written as

11Since compliant mechanisms often undergo large deformations, linear elasticity may not be an accurate model
of the response of the structure. Moreover, accounting for large deformation often leads to a different optimal design
[24].

23

Ω

k2 k1t

Figure 1.8: Force inverter mechanism: design domain and boundary conditions (left) and final
solution (right)

tSr(u) = − (kr · u)
kr

|kr|
on ΓSr for r = 1, 2 (1.58)

Accordingly, the displacement uρ for a given distribution of material ρ in Ω is the solution
to the following boundary problem
ˆ

Ω

mE(ρ)C∇uρ : ∇vdx +
�

r=1,2

ˆ
ΓSr

(kr · uρ) (kr · v)

|kr|
ds =

ˆ
Γ̃N

t · vds, ∀v ∈ V (1.59)

The cost functional for the mechanism design problem is defined as

J(ρ,uρ) = −
ˆ

ΓS1

k1 · uρds + λ

ˆ
Ω

mV (ρ)dx (1.60)

where the second term again represents a constraint on the volume of the design. The first
term of this objective is a measure of the (negative of) force applied to the workpiece in
the direction of k1 which can be seen from the following relation:

ˆ
ΓS1

k1 · uρds =

ˆ
ΓS1

[−tS1(uρ)] ·
k1

|k1|
ds (1.61)

Viewed another way, the minimization of the first term of (1.60) amounts to maximizing
the displacement of the structure at the location of the workpiece in the direction of k1.

The discrete counterpart to minimization of J(ρ,uρ) over the admissible space A defined
by (1.23), obtained through the discretization procedure of section 1.4, can be written as

min
z∈[ρ,ρ]

N
J(z) = −L

T
U(z) + λA

T
mV (Pz) (1.62)

24

Ω

k2

k1

k1

t

Figure 1.9: Gripper mechanism: design domain and boundary conditions (left) and final solution
(right)

where [L]
i
=
´

ΓS1
k1 ·Nids and U(z) solves

[K(z) + Ks]U = F (1.63)

Here K(z) and F as defined before in (1.31) and (1.30) and

[Ks]ij =
�

r=1,2

ˆ
ΓSr

(kr ·Ni) (kr ·Nj)

|kr|
ds (1.64)

which, we note, is independent of the design z.
It can be seen from the expression of the gradient of f(z) = −L

T
U(z) that it can be

both positive and negative (see eq. (A.10) in the appendix) and therefore the exponential
approximation (1.49) may not be convex. One alternative is to carry out the linearization
in mixed intermediate variables. For example, the CONLIN method [77] uses reciprocal
intermediate variables when ∂�f < 0 and a linear expansion for the remaining terms. As in
(1.49), this strategy again leads to a convex separable approximation. A similar approach
is adopted in the Method of Moving Asymptotes [153], which we used to generate the
numerical results for the mechanism design examples shown in Figures 1.8 and 1.9. In both
examples, |k1| = |k2| = 1, R = 0.02 and the width of the design domain is one.

1.7 Outline of the thesis

The remainder of this thesis is organized as follows. In the next chapter, we present some
theoretical results establishing the well-posedness of a large class of restriction formula-
tions. In particular, we discuss a sufficient compactness condition for existence of solutions
and investigate its theoretical and practical consequences for density and implicit function
parametrizations. We also provide a proof for the validity of the Ersatz approximation

25

within the restriction setting. In chapter 3, we focus on Tikhonov and total variation
regularization of the density-based compliance minimization problem and develop an op-
timization algorithm using the concept of operator splitting. The algorithm is further
analyzed and refined in chapter 4 and a connection is made with the heuristic sensitivity
filtering method. We also provide a convergence proof for a standard finite element approx-
imation of the Tikhonov-regularized problem. In chapter 5, we shift our attention to the
choice of discretization spaces and in particular investigate the use of unstructured polygo-
nal meshes with Wachspress-type interpolation. These discretizations are not susceptible to
numerical instabilities such as checkerboard patterns that can appear for compliance mini-
mization problem and mixed variational formulation of the incompressible Stokes equation.
In the latter context, we demonstrate that polygonal discretizations satisfy the well-known
Babuska-Brezzi conditions. We also discuss and present results for topology optimization
problems for incompressible Stokes flow. Next, in chapter 6, we develop a general-purpose
meshing algorithm that can generate unstructured convex polygonal meshes using the con-
cept of Voronoi diagrams. Concluding remarks and potential extensions of the work are
given in chapter 7. The appendix includes educational Matlab codes that feature self-
contained discretization and analysis routines using polygonal finite elements. Also, an
implementation of general topology optimization framework based on the material in this
introductory chapter is presented.

The work in this dissertation has resulted in publications [162, 163, 164, 160, 159]. Addi-
tional manuscripts based on the material in chapter 2 and 5 are currently under preparation.

26

Chapter 2

Theoretical Basis for Restriction
Formulations

In this chapter, we examine the ill-posedness of the continuum topology optimization prob-
lem and discuss elements of a well-posed restriction formulation. We limit our attention
mainly to the two-phase material distribution problem since, as discussed before, the Ersatz
approximation of the single-phase shape optimization leads to such a problem. However,
a result is presented at the end of the chapter regarding the theoretical justification of the
Ersatz model and the connection between the two classes of problems in the degenerate
limits of the compliant phase. To illustrate the inherent tendency of the classical problem
to produce rapidly oscillating designs, a simple counterexample for the compliance design is
discussed. This counterexample is used later to elaborate on the significance of the regular-
ity conditions that can be imposed on the implicit functions to ensure existence of solutions.
We present and prove a sufficient compactness condition that guarantees existence of solu-
tions for the two-phase problems, a result that serves as the basis for the analysis of various
restriction formulations presented in this thesis.

The latter part of the chapter is devoted to a formulation based on implicit functions that
satisfies this compactness condition. Recently, there has been great interest in implicit func-
tion formulations for solving topology optimization problems, but often the ill-posedness
of the continuum problem is neglected in the construction of the algorithms. Since the
inherent pathology of the topology optimization problem is its tendency to produce highly
oscillatory shapes, a uniform smoothness condition for the implicit functions is naturally
expected. What is perhaps less obvious is a “transversality” condition that requires im-
plicit functions to be steep around the zero level set. We will demonstrate numerically
that one obtains smeared designs (i.e., optimal implicit functions having values close to
zero throughout most of the design domain) when a smooth Heaviside function maps the
implicit function to the coefficients of the state equation. In fact, we will show that the use
of the smeared Heaviside transforms the problem into the variable thickness problem. In
light of these theoretical considerations, we will discuss several existing formulations and
provide possible explanations for the some of the heuristics employed.

27

ΓD

ΓN

ωχ

Ω

C+

C−

Figure 2.1: Illustration of the boundary value problem for the two-phase material distribution
problem

2.1 Two-phase material distribution problem

Consider two linear elastic isotropic materials with elasticity tensors C
+ and C

− such that
C
− ≤ C

+ in the sense of quadratic forms. We refer to C
+ and C

− as the stiff and
compliant phases, respectively. In the two-phase material distribution problem, the goal is
to fill a given design domain Ω by an optimal arrangement of these material. In particular,
we identify the optimal region ω ⊆ Ω occupied by the phase C

+ that provides the best
performance of the mixture. The remainder, Ω\ω, will be filled by C

−(see Figure 2.1). Since
a priori there are no restrictions on regularity of ω, we only require that it is measurable.
Thus, we define the classical space of admissible shapes based on the characteristic functions
associated with each set as

AC = L
∞(Ω; {0, 1}) (2.1)

Given χ ∈ AC , the overall elasticity tensor in Ω, corresponding to the distribution of phases
defined by χ, can be written as

Cχ = χC
+ + (1− χ)C− (2.2)

The response of such a mixture is characterized by the solution to the following boundary
value problem defined over Ω

div [Cχ�(u)] = 0 in Ω

u = g on ΓD (2.3)

[Cχ�(u)] · n = t on ΓN

Here u is the displacement field; �(u) = (∇u +∇u
T)/2 is the linearized strain tensor; ΓD

and ΓN form a partition of ∂Ω (i.e., ΓD ∩ΓN = ∅ and ∂Ω = ΓD ∪ΓN) and unless otherwise

28

stated, it is assumed that ΓD has non-zero surface measure; n is the unit normal vector to
∂Ω; and finally g ∈ H

1/2(ΓD)d and t ∈ L
2(ΓN)d are the displacement and traction boundary

data, respectively. This boundary value problem has a unique weak solution uχ ∈ U , which
solves the variational problem

a(uχ,v; χ) = �(v), ∀v ∈ V (2.4)

Here V = {u ∈ H
1(Ω)d : u|ΓD = 0} is the space of admissible kinematic variations,

U = g
� + V where g

� ∈ H
1(Ω)d such that g

� = g on ΓD (in the sense of trace), and

a(u,v; χ) =

ˆ
Ω

Cχ�(u) : �(v)dx, �(v) =

ˆ
ΓN

t · uds (2.5)

are the energy bilinear and load linear forms. The linear and bilinear forms are continu-
ous and the V-ellipticity of the bilinear form follows from Korn’s inequality and positive-
definiteness of the elasticity tensors (cf. [49]). Thus there exist strictly positive constants
M and c such that for all χ ∈ L

∞(Ω; [0, 1]),

|a(u,v; χ)| ≤ M �u�1,2,Ω �v�1,2,Ω , ∀u,v ∈ H
1(Ω)d (2.6)

and
a(v,v; χ) ≥ c �v�2

1,2,Ω , ∀v ∈ V . (2.7)

That the linear form � : V → R is bounded follows from the regularity assumptions on the
applied tractions t. Not only do these properties show the existence of a weak solution
to (2.3), they can also be used to establish boundedness of a sequence of solutions to the
state equation. Indeed for any χ ∈ L

∞(Ω; [0, 1]) and the corresponding state solution uχ,
we have

c �uχ − g
��2

1,2,Ω ≤ a(uχ − g
�
,uχ − g

�; χ)

= a(uχ,uχ − g
�; χ)− a(g�,uχ − g

�; χ)

≤ �(uχ − g
�) + M �g��1,2,Ω �uχ − g

��1,2,Ω

≤
�
���+ M �g��1,2,Ω

�
�uχ − g

��1,2,Ω (2.8)

which implies

�uχ�1,2,Ω ≤ �uχ − g
��1,2,Ω + �g��1,2,Ω ≤

1

c
���+

�
1 +

M

c

�
�g��1,2,Ω (2.9)

Observe that the right hand side is independent of χ.
The performance of each candidate design is measured by an objective or cost function

29

J : AC × U → R, which we assume satisfies the following continuity requirements:

J(·,u) : L
∞(Ω; [0, 1]) → R is strongly continuous in L

1(Ω) (2.10)

J(χ, ·) : U → R is strongly continuous in H
1(Ω)d (2.11)

Note that since Ω has finite measure and all the functions in L
∞(Ω; [0, 1]) are bounded,

strong convergence in L
1(Ω) is equivalent to strong convergence in L

p(Ω) for any 1 ≤ p < ∞.
We also remark that these continuity requirements are relatively weak and are met by
most objective functions of interest. For example, the objective function for the minimum
compliance problem is of the form

J(χ,uχ) =

ˆ
ΓN

t · uχds−
ˆ

ΓD

g · [Cχ� (uχ)] ds + λ

ˆ
Ω

χdx (2.12)

The last term in J represents a penalty on the volume of the stiff material used. Minimizing
this objective amounts to finding the stiffest arrangement of the two phases while using
the least amount of the solid phase. Note that the first term in (2.12) minimizes the
displacement under the applied traction t and the second term maximizes the reactions
under applied displacement g. The parameter λ determines the trade-off between the
stiffness provided by the stiff material and the amount that is used.

Similarly, given a target (measured) displacement z ∈ L
2(E)d with E ⊆ Ω, and knowl-

edge of the boundary conditions imposed on Ω, one may wish to recover the distribution
of material inside the domain. A suitable objective function for this problem is

J(χ,uχ) =

ˆ
E

|uχ − z|2 dx (2.13)

Finally, one can minimize the average effective stress in a structure made of limited amount
of stiff phase by choosing the objective function as

J(χ,uχ) =

ˆ
Ω

�
|σe(χ,uχ)|2 + λχ

�
dx (2.14)

Here σe(χ,u) is some effective measure of stress, e.g., the von Mises stress given by

σe =

�
3

2
s : s, s = σ − 1

3
tr(σ)I, σ = Cχ�(uχ) (2.15)

The classical two-phase optimal shape problem PC is defined by

inf
χ∈AC

J(χ,uχ) (2.16)

As mentioned before, this problem, in general, suffers from non-existence of solutions.

30

2.2 Implicit function description

The space of characteristic functions AC for the material distribution problem can be
defined in terms of implicit or embedding functions with the aid of the Heaviside map H:

H : ϕ �−→ χ{ϕ>0} (2.17)

In particular, we can define the function space

FC = L
∞(Ω; [−α, α]) (2.18)

where α > 0 is a fixed constant. Then any χ ∈ AC can be written as H(ϕ) for some ϕ ∈ FC

(in fact, one can choose ϕ = χ itself). It is obvious from the definition of H that H(ϕ) is
a characteristic function for any ϕ ∈ FC . In short, we can write the classical space as

AC = H(FC) (2.19)

The motivation for formulating the problem in the language of implicit functions is
twofold: a class of well-posed optimal design problems can be obtained by placing con-
straints on the function space FC . One such restriction approach is outlined later in
this chapter in section 2.7. Moreover, this continuous parameterization is amenable to
usual gradient-based optimization algorithms provided that the Heaviside operator is ap-
proximated by a smooth function. In addition to implicit function formulations, level set
methods are also based on such characterization of shapes.

2.3 Counterexample to existence of solutions

We now describe a simple counterexample, borrowed from [3], for the minimum compliance
problem in order to highlight the inherent pathology of the optimal shape problems, in
particular, the tendency of the minimizing sequences to rapidly oscillate. We will later
use this counterexample to illustrate the significance of the constraints in the restriction
framework of section 2.7. A class of counterexamples for minimization of the Kohn-Strang
functional with affine boundary conditions is analyzed in [5, 57]. For the sake of simplicity,
it is assumed that both phases have zero Poisson’s ratio.

Consider the minimum compliance problem with pure uniaxial tractions given by

J(χ,uχ) = �(uχ) + λ 1
2

ˆ
Ω

χdx, ΓD = ∅, t = σ0 · n, σ0 = t0(ed ⊗ ed) (2.20)

where ed is the dth unit basis vector, t0 is a positive constant, and the penalty parameter

31

xd

x1 t

C+ C−

Figure 2.2: Illustration of the arrangement of the two phases in the minimizing sequence (2.33)

has value:
λ 1

2
=

2t20 (µ+ − µ
−)

(µ+ + µ−)2 (2.21)

Here µ
+ and µ

− denote the shear moduli of C
+ and C

−, respectively. As we shall see in a
moment, with this value of penalty parameter, the optimal behavior of the system is such
that it requires equal volume of the two phases. Note further that prescribed tractions t

satisfy the compatibility condition
´

∂Ω t · wds = 0 where w is rigid body motion w. It
follows that, even though ΓD = ∅, (2.3) admits a solution unique up to rigid body motions.

We prove the lack of existence of solutions in AC in three steps. First we establish a
lower bound for J(χ,uχ) over AC . We then show that this lower bound cannot be achieved
by any χ ∈ AC . Finally, with the aid of homogenization theory, we construct a sequence
of classical shapes in AC “converging” to a composite design that is optimal (i.e., has
performance equal to this lower bound). The intuition is that distributing the stiff phase
in strips along the direction of the applied tractions yields stiffer designs (see Figure 2.2).
The thinner these strips, the more efficient the arrangement. The limit of this process is
a composite of the two phases with a laminated microstructure. Mathematically speaking,
the minimizing sequence corresponding to this construction is not convergent in the space
AC . The sequence of shapes associated with this minimizing sequence does not converge
to a classical shape but rather to a generalized composite.

Using the principle of minimum complementary energy, we can write the compliance
functional as

�(uχ) = inf
τ∈H0

ˆ
C
−1
χ

τ : τdx (2.22)

where the space of admissible stresses H0 consists of stress fields that are divergent-free and
satisfy the boundary conditions, i.e.,

H0 =
�
τ ∈ L

2(Ω)d×d : divτ = 0 in Ω, τ · n = t on ΓN

�
(2.23)

The “quadratic” integrand of (2.22) is convex at each x ∈ Ω and so its value is larger than

32

the tangent hyperplane at (�Cχ� , σ0). In particular, one can write for any τ ∈ H0:

Cχ(x)−1τ (x) : τ (x) ≥ �Cχ�−1 σ0 : σ0 − �Cχ�−1 (Cχ(x)− �Cχ�) �Cχ�−1 σ0 : σ0

+2 �Cχ�−1 σ0 : (τ (x)− σ0) (2.24)

Integrating both sides over Ω and noting
´

Ω τdx = |Ω|σ0, we get
ˆ

C
−1
χ

τ : τdx ≥ |Ω| �Cχ�−1 σ0 : σ0 (2.25)

In turn, this implies

inf
χ∈AC

inf
τ∈H0

ˆ �
C
−1
χ

τ : τ + λχ
�
dx ≥ |Ω| inf

χ∈AC

�
�Cχ�−1 σ0 : σ0 + λ 1

2
�χ�

�
(2.26)

Noting that �Cχ� = C
+ �χ� + C

−1 (1− �χ�), we can see that the right hand side is only a
function of �χ�. Moreover, its minimum value over the range �χ� ∈ [0, 1] is given by

L =
2µ+

t
2
0 |Ω|

(µ+ + µ−)2 (2.27)

We next show that no classical shape can realize this lower bound L. Suppose, to the
contrary, that χ ∈ AC has performance equal to this value. Then the remainder in the
equation (2.24) should vanish at almost every point in the domain. So for almost x ∈ Ω,

Cχ(x)−1
�
σχ(x)−Cχ(x) �Cχ�−1 σ0

�
:
�
σχ(x)−Cχ(x) �Cχ�−1 σ0

�
= 0 (2.28)

Here σχ denotes the stress field corresponding to χ, i.e., σχ = Cχ�(uχ). Then we must
have

σχ(x) = Cχ(x) �Cχ�−1 σ0 (2.29)

and so the stress field can only take values of C
+ �Cχ�−1 σ0 or C

− �Cχ�−1 σ0, which are
both different from the boundary value σ0

1.
Now suppose Ω is filled by a rank-1 laminate made up of C

+ and C
− in equal amounts

and with the laminations in direction of e1. The (constant) stiffness tensor C
∗ satisfies2

(C∗)−1 σ0 : σ0 =
t
2
0

µ+ + µ−
(2.30)

1Unless, of course, χ is a constant function. But it is easy to verify that for χ ≡ 1 or χ ≡ 0, we have J(χ) > L.
2For any symmetric second order tensor ξ such that ξe1 = 0, we have C

∗ξ = 1
2

`
C

+ + C
−´

ξ =
`
µ

+ + µ
−´

ξ

33

since σ0 · e1 = 0. Moreover, it is not difficult to show that

σ0 = argminτ∈H0

ˆ
Ω

(C∗)−1 τ : τdx (2.31)

and so value of the objective function for this design is equal to the lower bound

J
∗ = |Ω| (C∗)−1 σ0 : σ0 +

1

2
|Ω|λ 1

2
=

|Ω| t20
µ+ + µ−

+
1

2
|Ω| 2t

2
0 (µ+ − µ

−)

(µ+ + µ−)2 = L (2.32)

Now consider the following sequence of characteristic functions

χn = H(ϕn), ϕn(x) = α sin(nx1) (2.33)

The weak∗ limit of this sequence in L
∞(Ω) is the constant function ρ ≡ 1/2, and so´

Ω χndx → |Ω| /2. Moreover, C
∗ is the so-called G−limit of the sequence of elasticities Cχn

(the definition is given in the next section), which implies the convergence of energies

C
−1
χn

σχn : σχn → (C∗)−1 σ0 : σ0 (2.34)

Therefore, we have J(χn,uχn) → L, and so L is indeed the infimum of J over AC even
though no element of AC can achieve it.

2.4 Relaxation

The details of the proof of convergence of energy in (2.34) is outside the scope of this docu-
ment, but it is important to note how the mathematical theory of homogenization appears
in discussion of the optimal shape problem. We recall the definition of G−convergence,
which provides the theoretical basis for the relaxation of optimal shape problem PC . The
relaxation of an ill-posed variational problem consists of finding a well-posed problem (one
that admits a solution) that is “equivalent” to the original problem in the sense that the
two problems have the same infima, and moreover, the solutions of the relaxed problem are
precisely the (weak) limits of the minimizing sequences of the original problem [96].

A sequence of symmetric elasticity tensors Cn G−converges to tensor C
∗ provided that

un � u
∗ weakly in H

1(Ω)d (2.35)

where un and u
∗ are solutions to the boundary value problem (2.3) with Cn and C

∗ as
the elasticity tensor. The relaxation of PC consists of enlarging the space of admissible
domains AC to include all the weak limits of sequence χn and the G−limits of the associated
elasticity tensors Cχn in the state equation. In short, this relaxation approach amounts

34

to replacing AC by its G−closure (and accordingly modifying the state equation and the
objective function). The composite designs in this larger space encode the behavior of the
minimizing sequences of the classical problem.

We refer the reader to the extensive literature on theory and numerics of relaxation, for
example, [96, 4, 92, 107, 22]. Despite significant advances in this framework, an explicit
characterization of the G−closure of AC is not yet known, and so “true” relaxation of
PC is limited to a certain class of objective functions such as compliance and eigenvalue
minimization problems. For these problems, restricting the space of composites to the
sequential laminates is known to be sufficient to obtain the full relaxation.

Another noteworthy connection is with density formulations discussed in chapter 1 of
this thesis. As mentioned there, a density function can be viewed as measuring the volume
fraction of the two phases at each point in the given composite design. The material
models such as SIMP describe the relationship between the volume fraction and the stiffness
at each point. Effectively this amounts to solving the problem over a restricted class of
composites that obey the material model (the microstructures of the two-phase composites
that follow the SIMP power relation have been numerically computed in [23]). For this
reason, these formulations are sometimes referred to as partial relaxation. However, note
that the partially relaxed problem is again ill-posed unless some restrictions are placed on
the variation of the density fields. For this reason, in chapter 1, we provided an alternative
explanation of such density formulations based on approximation of characteristic functions
that make more sense both from theoretical and practical perspective.

2.5 Compactness condition

The key idea of restriction is to replace the space of admissible designs by a strictly smaller
space that does not allow for oscillations of the minimizing sequence favored by the opti-
mization problem. In particular, one must identify a sufficiently regular subset AR ⊆ AC

in order to guarantee existence of solutions. Accordingly, the “restricted” optimal design
problem PR is defined as

inf
χ∈AR

J(χ,uχ) (2.36)

Before proceeding to the central result, few remarks are in order about the philosophical
justification of the restriction approaches. For many inverse problems that arise in the
context of shape optimization (e.g., problem (2.13)), one has some a priori knowledge
of the unknown shape and its regularity. So it may not make sense, as is the case with
relaxation, to allow rapid oscillations only to retain the infimum of the objective function.
Similarly, in some engineering applications such as structural design, the manufacturing
requirements place some constraints on the space of admissible geometries that can be

35

Figure 2.3: Low volume fraction solution to the MBB beam problem based on Tikhonov regular-
ization. Notice that this solution exhibits the orthogonality of tension and compression members
characteristic of Michell optimal frame layouts (cf. [21, 104, 103, 143])

built. Such practical considerations as well as one’s understanding of the nature of the
unknown solutions are often enough to sufficiently restrict the space of admissible shapes.
Furthermore, in some cases, one can demonstrate that despite the artificial effects of the
restriction schemes, the characteristics of the original ill-posed problem (e.g., orthogonality
of Michell networks—see Figure 2.3) can still appear in the solutions in the restricted space.
Finally, restriction provides a natural context for the validity of the Ersatz approximation,
i.e., relating the one-phase shape optimization problem to the material distribution problem
in the limit of vanishing weak phase. Relaxation faces some technical difficulties since the
theory of homogenization is inoperative in the degenerate regime. We should mention,
however, the work by Allaire et al. [4] on the relaxation of single-phase minimum compliance
problem, which relies on a generalized notion of compliance defined over AC . Even in such
a limited case, only partial results connecting the two classes of problems are obtained.
In summary, while the restriction approach may seem like an arbitrary modification of the
original problem one is set out to solve, it does have some justification from both theoretical
and practical points of view.

The main issue in the analysis of existence of minimizers is that the cost function J

depends implicitly on χ through the solution of the state equation. The key result in this
chapter, given by the following proposition, relates the convergence of shapes and that of
the state solutions in the appropriate topologies. An immediate consequence is given in
Theorem 2.2 which gives a sufficient compactness condition for AR such that PR has a
solution. As we shall see, all the restriction formulations discussed in this thesis for the
material distribution problem satisfy this condition, a fact that may not be evident by
glancing at the seemingly dissimilar proofs in the literature. In some instances (see section
3.2 and comments preceding Proposition 3.1), it allows us to improve the existing results.

Proposition 2.1. Consider χn, χ ∈ L
∞(Ω; [0, 1]) such that χn → χ strongly in L

1(Ω).
Then uχn → uχ strongly in H

1(Ω)d.

Proof. By (2.9), the sequence uχn is bounded and so there is a subsequence, again denoted
by uχn , that converges weakly to some u ∈ U . Since Ω is bounded, we shall assume that
by going to another subsequence χn → χ a.e. in Ω. We will show that u is the solution to

36

the state equation corresponding to χ, i.e., u = uχ. For any v ∈ V ,

|a(uχn ,v; χn)− a(u,v; χ)| ≤ |a(uχn ,v; χn)− a(uχn ,v; χ)| (2.37)

+ |a(uχn ,v; χ)− a(u,v; χ)|

≤
����
ˆ

Ω

(Cχn −Cχ) �(uχn) : �(v)dx

���� (2.38)

+ |a(uχn − u,v; χ)|

The second term vanishes since ∇uχn � ∇u weakly in L
2(Ω)d×d. Regarding the first term,

we appeal to Egoroff’s theorem [134]: given δ > 0, there exists a measurable subset Ωδ ⊆ Ω

such that |Ω\Ωδ| ≤ δ and χn → χ uniformly on Ωδ. Moreover, �∇uχn�0,2,Ω is bounded, so
for some constant k,

����
ˆ

Ω

(Cχn −Cχ) �(uχn) : �(v)dx

���� =

����
ˆ

Ωδ

(χn − χ)
�
C

+ −C
−�

�(uχn) : �(v)dx

���� + kδ

≤ k

�
�χn − χ�0,∞,Ω + δ

�
(2.39)

Since δ is arbitrary, this quantity vanishes as n → ∞. Hence �(v) = a(uχn ,v; χn) →
a(u,v; χ) for each v ∈ V , which implies that u solves the state equation corresponding to
χ

3. Since uχ is unique, it follows that every convergent subsequence of the entire sequence
uχn converges to u = uχ. Therefore, the convergence holds for the entire sequence.

We next show that the convergence of state solutions is in fact strong. Since uχn−uχ ∈
V , we have:

c �uχn − uχ�2
1,2,Ω ≤ a(uχn − uχ,uχn − uχ; χn)

= a(uχn ,uχn ; χn)− a(uχn ,uχ; χn)− a(u,uχn − uχ; χn) (2.40)

= �(uχn)− �(uχ)− a(uχ,uχn − uχ; χn)

As uχn � uχ weakly, �(uχn) → �(uχ) and a(uχ,uχn − uχ; χn) → 0. Hence the right-hand
side of (2.40) vanishes and uχn → uχ in norm.

We note that a weaker form of the above proposition, establishing only weak convergence
of the state solutions, follows from homogenization theory since the convergence χn → χ

in L
1(Ω) implies that Cχn G-converges to Cχ (see Lemma 1.2.22 of [3] for the analogous

result in conductivity). The following theorem gives a sufficient condition for existence of
solutions.

3An alternative way to show that the first term in (2.38) vanishes is to note that Cχn −Cχ converges a.e. to
the zero tensor and (Cχn −Cχ) �(v) converges in L

2(Ω)d×d to the zero tensor. Since �(uχn) is bounded, it follows
that the term vanishes as n →∞.

37

Theorem 2.2. Suppose AR is compact in the strong topology of L
1(Ω)4. Then there exists

a solution to PR.

Proof. By compactness ofAR, any minimizing sequence χn ∈ AR admits a subsequence that
converges to some χ ∈ AR in L

1(Ω). By the previous proposition, the associated solutions
to the state equation also converge strongly to the solution uχ. From the continuity of the
objective function on L

1(Ω)×H
1(Ω)d, we conclude that J(χn,uχn) → J(χ,uχ).

Perhaps the most well-known example of a restriction approach is the perimeter con-
straint formulation by Ambrosio and Buttazzo [11] and implemented by, among others,
Haber and co-workers [88]. The restricted space of admissible domains consists of those
domains with bounded perimeter. More specifically,

AR =
�
χ ∈ BV (Ω; {0, 1}) :

´
Ω |∇χ| dx ≤ P

�
(2.41)

where P is the specified upper bound for the total variation of the characteristic functions.
Observe that the total variation functional has the following nontrivial definition

ˆ
Ω

|∇χ| dx := sup

�ˆ
Ω

χdivψdx : ψ ∈ C
1
0(Ω)d

, �ψ�0,∞,Ω ≤ 1

�
(2.42)

which for sufficiently regular characteristic function χ measures the total length (area) of
the interface between the set {χ = 0} and {χ = 1}. The compactness of this space follows
from the compact embedding of BV (Ω) into L

1(Ω) (cf. [75]).
Returning to the counterexample of section 2.3, we can see the total perimeter between

the two phases in the minimizing sequence (2.33) grows without bound (see Figure 2.4).
Given the finite upper P on the perimeter, only the initial segment of sequence belongs to
the space (2.41). Therefore, the perimeter constraint restricts the rapid oscillations in the
phase boundary.

Under certain growth assumption on the objective function, one can show that the
optimal solution to the perimeter constraint problem in fact forms an open set [11]. Also,
for two-dimensional compliance minimization problem, Chambolle and Larsen [44] proved
that the optimal solution has C

∞ boundary.
Within the restriction framework outlined here, existence of solutions for a larger class of

problems can be established. For example, inclusion of stress constraints will not pose any
difficulties since the strong convergence of the state solutions guarantees that, in the limit,
the pointwise stress criteria is satisfied. More specifically, we can consider the admissible
space

Aσ

R
= {χ ∈ AR : σe(χ,uχ) ≤ σ a.e. in Ω} (2.43)

4Again note that, since Ω has finite measure and all the characteristic functions are bounded, by Vitali’s theorem,
convergence in L

p(Ω) implies convergence in L
q(Ω), 1 ≤ q < ∞, i.e., they all induce the same topology.

38

L

Figure 2.4: Three terms in the minimizing sequence (2.33). The total variation
´
Ω |∇χ|dx for

these arrangements from left to right is 4L, 6L, and 10L, respectively

where σ > 0 is the given maximum allowable effective stress. If sequence χn ∈ Aσ

R
converges

to χ, then by Proposition 2.1, the associated stresses also converge strongly, that is, σχn →
σχ strongly in L

2(Ω)d×d. Thus, up to a subsequence, we have σe(χn,uχn) → σe(χ,uχ)

almost everywhere. To obtain the same result, we can also appeal to a more general
result by Lipton [108] on the stress-constrained G−closure, since by Proposition 2.1, strong
convergence of χn to χ implies G−convergence of the elasticity tensors Cχn to Cχ.

2.6 Restriction of space of density functions

In the previous section, we remained within the space of characteristic functions by requir-
ing AR ⊆ AC which may suggest that the above compactness condition excludes many
restriction-type methods that have been proposed in the context of density methods. Ex-
amples include the filtering method [31], the slope constraint formulation [128], regularized
intermediate volume approach [28, 29] as well as the Tikhonov and total variation regular-
ization formulations presented later in this thesis.

However, the main ingredient in the proof of existence for these formulation is Proposi-
tion 2.1 as it relates the convergence of design field to the convergence of the displacement
field. Note that the proposition is stated and proved in the larger space L

∞(Ω; [0, 1]) of
density functions and is therefore applicable in the larger context. For example, consider
the density formulation based on the SIMP model. Provided that the space of admissible
densities is compact in L

1(Ω), given a minimizing sequence ρn, one can extract a sub-
sequence, again denoted by ρn, such that ρn → ρ in L

1(Ω) for some admissible density
function ρ. It follows that ρ

p

n
→ ρ

p as well (since the density functions are bounded) and
by Proposition 2.1, the associated solutions to the state equation also converge. Given the
continuity requirements on the cost functional J , we again conclude that compactness is
L

1(Ω) is a sufficient condition for existence of solutions.
All the above-mentioned density methods (see also section 1.3) indeed satisfy this condi-

tion. For example, consider the filtering method in which the space of admissible densities

39

is defined as
AR = {ρ : ρ = PF (η) for some η ∈ L

∞(Ω; [0, 1])} (2.44)

where F is the filtering kernel. The next proposition shows that this space is compact in
L

1(Ω) under some mild assumptions on the kernel F (see also Theorem 3.3 of [29]). It is
easy to see that the linear hat kernel defined by (1.16) satisfies these assumptions.

Proposition 2.3. Let F : Ω×Ω → R be a measurable and non-negative function. Moreover,
assume that for some constant c > 0,

�F (x, ·)�0,1,Ω ≤ c for a.e. x ∈ Ω (2.45)

Then the space AR defined by (2.44) is compact in L
1(Ω).

Proof. Given a sequence ρn ∈ AR, by definition, there exists a sequence ηn ∈ L
∞(Ω; [0, 1])

such that ρn = PF (ηn). By boundedness of ηn, we have η ∈ L
∞(Ω) such that ηn � η in

weak∗ topology of L
∞(Ω). We next show that η ≥ 0 almost everywhere. Suppose to the

contrary η < 0 over a measurable subset B ⊆ Ω with |B| > 0. Let ε = −
´

B
ηdx. Since

χB ∈ L
1(Ω) and ε > 0, for sufficiently large n, we have

´
Ω χB (ηn − η) dx < ε/2 and so

−
ˆ

B

ηdx =

ˆ
Ω

χB (ηn − η) dx−
ˆ

Ω

χBηndx < ε/2 (2.46)

which is a contradiction. A similar proof show that η ≤ 1 a.e. and so η ∈ L
∞(Ω; [0, 1]).

The fact that F (x, ·) ∈ L
1(Ω) implies that for almost every x ∈ Ω,

ρn(x) =

ˆ
Ω

F (x,y)ηn(y)dx →
ˆ

Ω

F (x,y)η(y)dx ≡ ρ(x) (2.47)

Thus ρn converges almost everywhere to ρ = PF (η). Moreover, ρn is uniformly bounded
since

|ρn(x)| ≤ �F (x, ·)�0,1,Ω �ηn�0,∞,Ω = c (2.48)

Since Ω has finite measure, by Lebesgue dominated convergence, ρn → ρ in L
1(Ω). This

shows that space (2.44) is compact in L
1(Ω).

The intuition behind the filtering formulation is that while the auxiliary field η may
be rough (there are no restrictions placed on its regularity), the corresponding density
function is necessarily smooth by virtue of its construction via the convolution operation.
Note that in the above proof, the sequence ηn was only convergent in the weak (average)
sense. However, passing this weakly convergence sequence through the filtering operation
produces a strongly convergent sequence of density functions5. The compactness condition

5This property of the filtering map is also emphasized by Borrvall and Petersson [29] and is at the heart of their

40

requires convergence in the strong topology to ensure that the corresponding solutions to
the state equation also converge. Similar to filtering, the regularity conditions such as bound
on total variation or peak gradient (cf. (1.11) and (1.13)) can be viewed as “compactifying”
conditions since they guarantee that the space is compact in the strong topology.

2.7 Restriction of space of implicit functions

We next focus our attention to the requirements for a well-posed implicit function for-
mulation for the two-phase topology optimization problem. In particular, we discuss an
appropriate set of conditions that need to be imposed on the implicit functions parameter-
izing the shapes to ensure existence of solutions.

The following formulation is due to Liu et al. [109] (also pursued in [158]) and its
particular relevance to the implicit function formulation is that it is essentially obtained by
imposing additional constraints on FC . In particular, the classical space of characteristic
functions AC is replaced by

AR = H(FR) (2.49)

where H is the Heaviside map and the implicit functions ϕ ∈ FR ⊆ W
1+θ,p ∩ FC satisfy

(R1) : �ϕ�1+θ,p,Ω ≤ K (2.50)

(R2) : |ϕ(x)|+ |∇ϕ(x)| ≥ ν a.e. in Ω (2.51)

for some positive constants θ, K and ν
6.

Before giving the proof for compactness of AR, it is instructive to discuss the significance
of each constraint in relation to the counterexample described in the section 2.3. (R1)
excludes the possibility of rapid oscillations of a minimizing sequence ϕn. Note that for the
sequence defined by (2.33) for the counterexample,

�ϕ�1+θ,p,Ω →∞ (2.52)

The condition (R2) ensures that the set {ϕ = 0} has zero measure. This set corresponds to
the “boundary” of the domain defined by H(ϕ) and is precisely where the Heaviside function
is discontinuous. To show this, we appeal to a classical result (see [75, 105]), which states
that for every ϕ ∈ W

1,p

loc (Ω), 1 ≤ p ≤ ∞, we have χ{ϕ=0}∇ϕ = 0 a.e. in Ω. If ϕ satisfies
(R2), then |∇ϕ| ≥ ν a.e. on {ϕ = 0} and so χ{ϕ=0} = 0 a.e. on Ω. Without (R2), the

proposed regularized intermediate density method. However, their existence proof in [29], as stated, is limited to
the compliance minimization problem.

6The first condition, (R1), can be weakened to allow certain local oscillations of associated domains. In particular,
we only need to require ϕ ∈ W

1,p
loc (Ω) to satisfy �ϕ�1+θΣ,p,Σ ≤ KΣ for all Σ ⊂⊂ Ω and θΣ > 0 (cf. [109]).

41

sequence,
ϕn(x) =

α

n2+θ
sin(nx1) (2.53)

is a non-convergent minimizing sequence for the counterexample even though it satisfies
(R1). Observe that H(ϕn) produces the same laminated designs as (2.33) even though the
gradient of ϕn in this case is bounded. In some sense, the Heaviside magnifies the small
amplitude oscillations in ϕn around zero. In [105], the “transversality” condition7 (R2) is
examined in relation to the issue of level set “fattening,” which concerns the propagation
of boundary {ϕ = 0} by Hamilton-Jacobi equations (for example, in mean curvature type
flows). Since the level set methods are based on the motion of the level set front, these
relatively weak regularity conditions clearly delineate the conditions that the level set func-
tion must meet. These conditions together introduce a length scale into a problem that
otherwise has no characteristic length.

Proposition 2.4. The space of admissible designs AR defined by (2.49) is compact in
strong topology of L

1(Ω).

Proof. Let χn = H(ϕn) be a sequence in AR. By Sobolev embedding theorems [1], there
exists ϕ

∗ ∈ W
1,p(Ω) such that, up to a subsequence, ϕn → ϕ

∗ strongly in W
1,p(Ω). This

in turn implies that, for possibly another subsequence, ϕn → ϕ
∗ and ∇ϕn → ∇ϕ

∗ a.e. in
Ω. It follows that ϕ

∗ ∈ FR. It remains to show that χn → χ
∗ := H(ϕ∗). If ϕ

∗(x) > 0,
then there exists nx such that ϕn(x) > 0 for all n ≥ nx. Thus χ

∗(x) = χn(x) = 1 for all
n ≥ nx. A similar argument can be made for the case ϕ

∗(x) < 0. Since ϕ
∗(x) = 0 only over

a set of measure zero, it follows that χn → χ
∗ a.e. and by Lebesgue dominated convergence

theorem in L
1(Ω) norm.

2.8 Approximation of the Heaviside map

Most implicit function or level set formulations for the topology optimization in the liter-
ature replace the Heaviside map in the numerical calculation by a smeared approximation
of it. This is done with little attention to the ill-posedness of the continuum problem
which, as we shall now demonstrate, completely transforms the problem. It is precisely the
transversality condition (R2) that guarantees that this approximation is valid.

The typical approximation Hγ of Heaviside map is of the form

Hγ(ϕ)(x) =






0, ϕ(x) < −γ

ζ (γ−1
ϕ(x)) , −γ ≤ ϕ(x) ≤ γ

1, ϕ(x) > γ

(2.54)

7This designation comes from the fact that this condition requires the graph of ϕ to cut the zero hyperplane
“transversally”

42

where 0 < γ � α is the smearing width and ζ is a smooth function that satisfies ζ(−1) = 0

and ζ(1) = 1. An example of such function is ζ(y) = 1
2

�
1 + sin

�
πy

2

��
.

When AC is replaced by Hγ (FC), regardless of the width of the approximate Heaviside,
the classical optimal design problem is transformed into the so-called variable thickness
problem. The variable thickness problem is defined by PC when L

∞(Ω; [0, 1]) is used in
place of AC . In the two-dimensional setting and when C

− ∝ C
+, each ρ ∈ L

∞(Ω; [0, 1]) has
the interpretation of the thickness of a plate occupying Ω. Indeed, for any ρ ∈ L

∞(Ω; [0, 1]),
there exists ϕ ∈ L

∞(Ω; [−α, α]) such that ρ = Hγ(ϕ). Conversely, Hγ(ϕ) is a “thickness”
function for any implicit function ϕ.

It is straightforward to show the existence of solutions for this problem (see, for example
[126]). Also the optimal solutions of the variable thickness problem generally take on
intermediate values (i.e., values not equal to 0 or 1) over large areas of Ω. Therefore,
regardless of how small γ is, the solutions to the problem with approximate Heaviside will
consist of large areas with an intermediate phase. In a sense, this is a manifestation of the
ill-posedness of PC .

In the present restriction framework, the transversality condition (R2) prevents the
implicit functions from remaining in the smeared range of the Heaviside far away from
the boundary. Without such a condition imposed, it is expected that the optimization
would favor implicit functions that are flat in order to achieve composite designs. We also
note that the first order condition of optimality for the compliance design problem with
approximate Heaviside states that for each point in Ω,

δγ(ϕ)
��

C
+ −C

−�
�
�
uHγ(ϕ)

�
: �

�
uHγ(ϕ)

�
− λ

�
= 0 (2.55)

where δγ is the smooth Dirac delta function, defined by

δγ(ϕ)(x) =





γ
−1

ζ
� (γ−1

ϕ(x)) , −γ < ϕ(x) < γ

0, otherwise
(2.56)

Without the transversality requirement, we can have δγ(ϕ) �= 0 over large parts of the
domain, in which case, (2.55) would be identical to the necessary and sufficient condition
of optimality for the variable thickness problem (cf. [126]).

We demonstrate this phenomenon numerically using the computational framework pre-
sented in the chapter 1 (with its implementation in the appendix). The sizing function
in this case is ϕ, which in order to guarantee its smoothness, is defined using the filtering
operator as ϕ = PF (η). The auxiliary field η belongs to the space L

∞(Ω; [−α, α]). Observe
that by choosing a sufficiently smooth filtering kernel F , we can ensure that ϕ satisfies the
(R1) smoothness condition. For example, in the case of the linear hat kernel (cf. (1.16)),

43

Ω
(a) (b)

Figure 2.5: (a) The extended design domain (with height h = 1 and width w = 1.6) and
the boundary conditions for the cantilever problem (b) The “variable thickness” solution to the
cantilever problem

we can choose the radius R to be sufficiently large.
In order to observe the effects of Heaviside approximation, we choose the following

material interpolation functions for the compliance problem

mE(ϕ) = Hγ(ϕ) + ε [1−Hγ(ϕ)] , mV (ϕ) = Hγ(ϕ) (2.57)

We consider the design of a cantilever problem whose extended domain and boundary
conditions shown in Figure 2.5(a). The initial guess is shown in Figure 2.6(a) and the
following parameters are used in the calculations

α = 0.1, R = 0.06, γ = 0.03 (2.58)

The volume parameter λ is updated in each iteration so that
´

Ω mV (ϕ)dx is fixed at |Ω| /2
and a move limit of m = 0.01 is used (cf. section 1.5).

Despite starting from an implicit function that satisfies the transversality condition
(and therefore the has two phases separated), the final arrangement contains large regions
of intermediate values. Notice from Figure 2.6 that as the design evolves and implicit
function becomes flat, the shape loses its definition. For comparison, Figure 2.5(b) shows
the solution to variable thickness problem for the same cantilever configuration starting
from a uniform initial thickness of 1/28.

With (R1) and (R2) imposed on the implicit functions, we can show that replacing
H by Hγ is justified in the sense that the optimal solutions to the approximate problem
converge to a minimizer of J over AR as γ → 0. Let us define the space Aγ

R
= Hγ(FR)

for each γ > 0. Observe that Aγ

R
� AR since the smeared Heaviside can produce design

fields with intermediate values in (0, 1). It is straightforward to show that Aγ

R
is compact

8This was computed using SIMP model with p = 1 which in fact produces a convex problem

44

(d)

(b)(a)

(c)

Figure 2.6: The evolution of the design field χ = Hγ(ϕ) associated with interpolation functions
(2.57) plotted in greyscale (a) initial guess (b) iteration 10 (c) iteration 20 (d) iteration 150. Since
the value of ϕ in the grey regions is in the range (−γ, γ), the implicit function field is becoming
flat near zero as the design evolves

in L
1(Ω) and so J(χ,uχ) has a minimizer χ

∗
γ

is Aγ

R
. We next prove that the sequence χ

∗
γ

has a subsequence that converges to a minimizer χ
∗ of J in AR.

Proposition 2.5. For each 0 < γ ≤ α, let χ
∗
γ

denote a minimizer of J in the space
Aγ

R
= Hγ(FR). There exists a minimizer χ

∗ of J in H(FR) such that, up to a subsequence,
χ
∗
γ
→ χ

∗ strongly in L
1(Ω) as γ → 0.

Proof. Let ϕγ ∈ FR such that χ
∗
γ

= Hγ(ϕ∗γ). As in the proof of Proposition 2.4, we can
show that there exists ϕ

∗ ∈ FR such that ϕ
∗
γ
→ ϕ

∗ a.e. in Ω. Define χ
∗ = H(ϕ∗). As before

{ϕ∗ = 0} is a set of measure zero. Suppose ϕ
∗(x) > 0 for some x ∈ Ω. Then, there exists

γx such that for all γ < γx,

χ
∗
γ
(x) = Hγ(ϕ

∗
γ
)(x) = 1 = H(ϕ∗)(x) = χ

∗(x) (2.59)

A similar argument can be made for the case ϕ
∗(x) < 0 and so χ

∗
γ
→ χ

∗ pointwise and
subsequently, by Lebesgue dominated convergence theorem, in L

1(Ω) norm. It remains to
show that χ

∗ is a minimizer of J in AR. To this end, let ϕ ∈ FR and define χ = H(ϕ) and
χγ = Hγ(ϕ). Observe that χγ → χ strongly in L

1(Ω) as γ → 0. By optimality of ϕ
∗
γ

in Aγ

R
,

we have
J(χ∗

γ
,uχ∗γ) ≤ J(χγ,uχγ) (2.60)

45

Passing to the limit γ → 0, it follows from the continuity of J that

J(χ∗,uχ∗) ≤ J(χ,uχ) (2.61)

Hence χ
∗ is a minimizer of J over AR.

2.9 Comments on some existing algorithms

As seen from the discussion in the previous section, the transversality condition is necessary
in order to introduce a limiting length scale into an otherwise ill-posedness problem. Many
level set and implicit function methods in the literature do not appropriately address the
ill-posedness issue and therefore it is not surprising the resulting numerical algorithms
often involve various heuristic measures which are sensitive to the choice of parameters. In
this section will review and examine a handful of existing level set and implicit functions
methods in light of the findings of the previous two sections, namely the need for two
distinct regularity conditions. This is accompanied by some numerical investigations and
illustrations.

One manifestation of the absence of a length-scale in level set methods based on the
Hamilton-Jacobi evolution equation is that the complexity of the optimal solutions depend
on the complexity of the initial guess used, which together with the mesh size9 are the only
length parameters that appear in the discrete problem. This phenomena is often attributed
to the inability of the evolution equation to generate holes and so one approach to remedy it
is to use topological derivatives to judiciously introduce holes in the course of the algorithm.
However, such an approach is difficult to justify from a theoretical perspective since any
complexity limit needed to guarantee existence of solutions is violated by the introduction of
“infinitesimal” holes. From a practical perspective, such techniques are not very robust and
very sensitive to the various parameter (e.g., how often a topological sensitivity analysis
is carried out and holes are introduced), a fact that be easily demonstrated using the
educational code by Challis [42].

Modification of sensitivities

With regards to the transversality condition, one mechanism in Hamilton-Jacobi-based
level set methods that directly affects the gradient of implicit functions, especially at the
boundary, is the so-called reinitialization step. The reason for reinitialization is that implicit
function can become too steep near boundary or too flat in the interior regions in the course
of the design evolution [8] which in turn can lead to accumulation of numerical errors in

9Incidentally, despite the fact that the issue of mesh-dependency is well-known in the topology optimization
community in the context of density methods, it is rarely mentioned or examined in the level set literature

46

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2.7: Plot of strain energy field (C+ −C−) �
�
uHγ(ϕ)

�
: �

�
uHγ(ϕ)

�
for ϕ corresponding to

the material distribution shown in Figure 2.6(a). Note that the legend terminates at 0.5 for better
illustration of the strain energy distrobution inside the stiff phase C+

solving the Hamilton-Jacobi equation. The reinitialization process creates a new implicit
function ϕ with the same zero level set as before (so that boundary of the domain does
not change) but with unit slope, i.e., |∇ϕ| = 1 everywhere in the extended domain. In
other words, a signed-distance function is computed to replace the implicit function to
represent the current shape. Observe that the reinitialization step is directly related to the
transversality condition since it affects the slope of the implicit function near the boundary.

Since the reinitialization routine is computationally costly, it is usually performed as
infrequently as possible10. In a number of level set formulations in order to avoid the
difficulties associated with reinitialization, the velocity (sensitivity) field that drive the
evolution of the boundary is modified in an inconsistent manner. For the compliance
minimization problem, Wang et al. [175] propose a formulation based on radial basis
functions11 to eliminate the need for reinitialization and allow for the generation of holes.
However, without much explanation, they also set the strain tensor �(u) in the C

− phase
to zero when computing the velocity field. A similar approach is adopted in [178] where,
interestingly, “too much” reinitialization is reported to adversely affect the evolution of the
design. In this work, the authors use a geometrically exact reinitialization in every iteration
in order to maintain the signed distance property of the implicit function at all times. In
this manner, the Hamilton-Jacobi equation reduces to the basic gradient descent update,
which for the compliance problem reads as,

dϕ

dt
=

�
C

+ −C
−�

�
�
uHγ(ϕ)

�
: �

�
uHγ(ϕ)

�
− λ (2.62)

However, they report “numerical instabilities” appearing in the form of oscillations in the
10Notice that determining the frequency of the reinitialization steps is not a trivial task itself and is often based

on trial and error.
11The radial basis functions have also been in level set formulation of fluid flow problem in [129, 100]. As discussed

in chapter 5, the mixing of the phases is naturally excluded for certain fluids problems.

47

(d)

(b)(a)

(c)

Figure 2.8: The evolution of the design field χ = Hγ(ϕ) using modified sensitivities (a) iteration
10 (b) iteration 20 (c) iteration 40 and (d) final design

boundary of final solutions. Again without much justification, they propose to remedy this
problem by multiplying the first term in the sensitivity field by Hγ(ϕ) and thus use the
following evolution equation

dϕ

dt
= Hγ(ϕ)

�
C

+ −C
−�

�
�
uHγ(ϕ)

�
: �

�
uHγ(ϕ)

�
− λ (2.63)

A closer inspection of (2.62) reveals that as the deformation in the compliant phase is
usually large (see Figure 2.7), the value of ϕ in the compliant phase is expected to increase
in that phase while it would be lowered in the stiff phase, effectively flattening the level
set function and producing a region of intermediate phases. By contrast, the Hγ(ϕ) factor
in (2.63) removes this “excessive” deformation in the C

− phase and prevents the mixing of
the two phases.

As further evidence that such modifications of the sensitivity field may have a similar
effect to the enforcement of transversality condition, we use the same formulation and
algorithm that generated the result in Figure 2.6 but change the strain energy field as
in (2.63). As shown in Figure 2.8, with this modification of sensitivities, the implicit
function remains steep near the boundary and two phases are kept separate throughout
the algorithm even though no transversality condition is imposed. Though this discussion
can perhaps shed some light on the formulations in the above-mentioned references, the
modification of sensitivities remains to be a heuristic and requires further justification and

48

Figure 2.9: Initial guess Hγ(PF (η)) plotted in greyscale and the associated auxiliary field η

examination before it can be used as the basis for an optimization algorithm. Notice that
the present analysis is limited to the compliance problems and as usual the extension to
the non-self-adjoint problems may not be straightforward.

It is worthwhile to mention a recent publication by van Dijk and co-workers [169] where
the authors consider an explicit level set formulation based on consistent sensitivity infor-
mation and the exact Heaviside map. In their formulation, the elements in the mesh that
intersect the zero level set are assigned an intermediate stiffness and volume (the value is
given by the normalized integral of H(ϕ) over the element). Though at first glance it is ex-
pected that intermediate phase in this setting is only limited to one layer of elements around
the boundary, they obtain final solutions that contain “grey” regions over several adjacent
elements. In these regions, the level set function oscillates rapidly around zero so that the
boundary {ϕ = 0} intersects all the neighboring elements. The authors correctly conclude
that “the presence of these gray areas with numerically superior performance demonstrates
the consistency of the approach.”

Use of multiple Heaviside approximations

There exists a handful of implicit function methods in the literature (not based on the
Hamilton-Jacobi equation) that, without offering an explicit justification, use different ap-
proximate Heaviside functions for the compliance and volume terms. For example, Be-
lytschko et al. [19] use two different smeared Heaviside functions for the compliance and
volume terms for the standard compliance minimization problem. Their proposed Heav-
iside function for stiffness lies below the function used for the volume term. The stated
reason for such choice is that the method is otherwise “unworkable.” In another paper
[177], Yamada et al. use a smooth interpolation function for the volume in place of an
approximate Heaviside, which they claim allows for the appearance of intermediate regions
and therefore contributes to “numerical stability” of the algorithm. Their argument is that
“[e]limination of grayscales is important when using the equilibrium equations but is not
important in the volume calculation.” A similar approach is also effectively used in [87].

A simpler explanation in these cases is that the use of such distinct interpolation models

49

for volume and stiffness penalizes the appearance of intermediate phases in the same manner
as the SIMP model in density formulations. Clearly, as demonstrated by the result in Figure
2.6, using the same smeared Heaviside function for both volume and stiffness leads to large
regions of intermediate phases, contrary to the claim by Yamada and co-workers. The fact
that both methods are capable of topological changes (e.g., introducing holes) during the
optimization is also not surprising.

For this class of methods, penalization is the mechanism that enforces transversality.
We explore this phenomenon numerically using the following interpolation functions:

mE(ϕ) = [Hγ(ϕ)]p + ε {1− [Hγ(ϕ)]p} , mV (ϕ) = Hγ(ϕ) (2.64)

where p > 1 is the penalization exponent. As before, the implicit function space is defined
as {PF (η) : η ∈ L

∞(Ω; [−α, α])} to ensure their smoothness and satisfaction of the (R1)
condition. Notice that sensitivity calculations in this case are consistent with the above
material interpolation functions. We present the numerical results for the MBB beam
problem (cf. Figure 1.4) with the following parameters

α = 1, p = 4, γ =
0.4α

R
(2.65)

Here R is the radius of the linear filtering kernel F .
This formulation leads to an optimization algorithm that evolves the design by variations

only at the boundary since due to the presence of δγ(ϕ), the sensitivity field is zero away
from the boundary provided that ϕ is sufficiently steep. We observed that the algorithm
tends to stop at local minima when the auxiliary field η takes its extreme values throughout
most of the domain. To continue the progress of the design, we reset η at such times in the
algorithm to

η =
α

3

�
χ{ϕ>0} − χ{ϕ≤0}

�
(2.66)

which preserves the topology of the current design. The algorithm is terminated when there
is no change in the design after such resetting. Note that we are not advocating this as
an efficient or well-designed algorithm and this “trick” is just used to get past certain local
minima.

Figure 2.9 shows the initial guess that was used for the auxiliary field η and the cor-
responding design function Hγ(PF (η)). The final results for various values of the filtering
radius R are shown in Figure 2.10. First observe the effects of the penalization. In all the
optimal solutions, η takes extreme values of −α and α at the boundary similar to what is
seen in density formulations. As a result, the implicit function field transitions between its
extreme values near boundary over a distance of approximately 2R and so its slope at the

50

R = 0.200

R = 0.150

R = 0.100

R = 0.075

Figure 2.10: The final design using the material interpolation functions (2.64) for various filtering
radii. The design field Hγ(ϕ), the auxiliary function η, and the implicit function ϕ = PF (η) are
shown in the left, middle and right columns, respectively.

boundary is approximately α/R. These results indicate that, for the compliance problem,
the transversality constant ν in (R2) can be related to the ratio α/R. Note also that the
width of the Heaviside function γ was set to a fraction of this ratio (see eq. (2.65)).

With the transversality condition enforced, the complexity of the final solutions depends
on the level of smooth imposed on the implicit functions, in this case determined by the
filtering and its radius R. This can also been from the results presented in Figure 2.11
where different initial guesses were used for the same value of R. Despite the fact that the
complexity of the initial is different, the final solutions, though different, have the same of
degree of complexity as dictated by the filtering radius.

More direct approaches

In conclusion of this section, we mention and discuss some implicit function methods in the
literature where the transversality condition is prescribed more explicitly in the formulation
[55, 167, 166]. Note that these references do not directly discuss the existence issue and the
use of additional “slope-penalty” terms is attributed to the desire for obtaining the “ideal”
implicit function, namely a signed distance function, in the optimal regime.

To ensure smoothness of the implicit function field, these papers advocate the use of a
Tikhonov regularizer of the form

51

Figure 2.11: The initial configuration (left column) and final design (right column)

β1

ˆ
Ω

|∇ϕ|2 dx (2.67)

which is added to the objective function. Of course, this term further encourage the flatness
of the implicit function field unless other measures are taken. Moreover, in [167] and [166],
an additional total variation regularization term

β2

ˆ
Ω

|∇Hγ (ϕ)| dx (2.68)

is included to penalize the total boundary of the shapes. For the class of inverse problem
(cf. (2.13)) considered in these papers, the total variation regularization is often standard.
However, noting that |∇Hγ(ϕ)| = δγ(ϕ) |∇ϕ|, it is not clear why (2.68) would be needed
along with the Tikhonov regularization term (2.67). Note that (2.68) only contains infor-
mation about ϕ near the interface and does not control roughness of ϕ that may occur in
the course of the optimization. This concentration further encourages the flatness of im-
plicit functions near the boundary. Moreover, the presence of multiple regularization terms
make the appropriate selection of prefactors β1 and β2 more complicated.

Regarding the transversality condition, Cunha [55] adds an additional term of the form

β̂

ˆ
Ω

�
|∇ϕ|2 − 1

�2
dx (2.69)

to force the implicit function to approach a signed distance function with |∇ϕ| ≈ 1. Note

52

that while the Tikhonov term (2.67) attempts to minimize the L
2-norm of ∇ϕ, the new

term (2.69) encourage |∇ϕ| to remain close to 1 the throughout most of Ω. Therefore,
these terms have opposing effects and the degree of influence of each term depends on the
relative value of the coefficients β1 and β̂.

In a more recent work, van den Doel and Ascher [167] find this penalization strategy to
be too stringent and propose a more forgiving global penalty term

β̂

�ˆ
Ω

�
|∇ϕ|2 − 1

�
dx

�2

(2.70)

which penalizes flatness in ϕ in the average sense. Expanding this term, we can see it is
equivalent to using the

β̂

�ˆ
Ω

|∇ϕ|2 dx

�2

− 2β̂ |Ω|
ˆ

Ω

|∇ϕ|2 dx (2.71)

Notice that the second term directly opposes the effects of the Tikhonov regularizer. Just
as in [55], the coefficients need to be carefully chosen and adapted in the course of the
optimization in to obtain the right balance between these competing penalty terms.

Lastly, Terrel and Long [166] propose an alternative formulation that in fact closely
resembles the (R2) condition in part due to the fact they approach the issue from a different
perspective. Rather than obtaining a signed-distance function, their goal is to minimizer
the measure of set where ϕ takes values in the smeared range (−γ, γ) of the approximate
Heaviside in order to ensure the discreteness of the design field Hγ(ϕ). Recognizing that
this quantity depends on both γ and ∇ϕ, they add a pointwise inequality constraint of the
form �

ϕ

γ

�2

+ |∇ϕ|2 ≥ 1− δ (2.72)

where δ is a small positive constant. It is evident that this constraint has the effect of
regulating the slope of the implicit function near the boundary without affecting its variation
in the interior. Though this constraint is the most direct enforcement of the transversality
condition, there are several computational difficulties associated with imposing a pointwise
constraint especially for large-scale problems defined on fine computational grids. In [166],
the authors state that they impose this inequality constraint using a barrier method but
provide very little information on the implementation details. Therefore, we did not include
this formulation in our numerical investigations but we note that there is room for more
work in this direction for topology optimization.

We numerically tested the first two formulations to assess their performance for the
minimum compliance problem. In both cases, we were unable to find appropriate values for
the coefficients of the two conflicting terms. When β1 was chosen larger relative to β̂, the

53

Tikhonov regularizer simply dominated the problem and as expected we obtained variable-
thickness type solutions (similar to results in Figure 2.6). In the case where β̂ was larger, the
optimal solution consisted of rapid oscillations with small amplitude (ranging between γ and
−γ) in large parts of the domain. In this way, the magnitude of the slope |∇ϕ| remain close
to one even though most of the domain, just as in the variable thickness, consisted of the
intermediate phases. In relation to (R1) and (R2) conditions, the transversality condition
was satisfied in this regime but the smoothness condition was violated. We observe both
types of behavior even when starting from a near optimal solution (e.g., using ϕ shown in
Figure 2.10 as the initial guess).

2.10 Single-phase problem and the Ersatz approximation

In this section, we examine the validity of the Ersatz approximation and the connection be-
tween the two-phase material distribution problem and the single-phase shape optimization
in the limit of vanishing stiffness of the compliant phase.

Recall from chapter 1 that the unknown in the single-phase optimal shape problems is
the domain on which the boundary value problem is defined. This domain is occupied by
only one material, say the stiff phase C = C

+. As such the space of admissible shapes,
denoted by O, requires more regularity since measurability alone is not sufficient to ensure
the well-posedness of the boundary value problem. For now, we shall assume the domains
are open and contained in Ω, and that they are sufficiently smooth such that for each
ω ∈ O, the governing state equation

div
�
C

+�(u)
�

= 0 in ω

u = g on ∂ω ∩ ΓD (2.73)
�
C

+�(u)
�
· n = t on ∂ω ∩ ΓN

�
C

+�(u)
�
· n = 0 on ∂ω\∂Ω

admits a unique weak solution. As before, the solution uω ∈ Uω satisfies the variational
problem ˆ

ω

C
+�(uω) : �(v)dx =

ˆ
ΓN

t · vds, ∀v ∈ Vω (2.74)

Observe that, unlike the two-phase problem, the trial and test spaces given by

Uω =
�
u ∈ H

1(ω)d : u
��
∂ω∩ΓD

= g

�
, Vω =

�
v ∈ H

1(ω)d : v
��
∂ω∩ΓD

= 0

�
(2.75)

depend on the shape ω. To avoid trivial scenarios, we also require that ΓN ⊆ ∂ω ∩ ∂Ω and
∂ω ∩ ΓD is non-trivial (i.e., has non-zero surface measure) for all admissible shapes ω (see

54

Figure 1.1).
The single-phase shape optimization problem PS is of the form:

inf
ω∈O

J(ω,uω) (2.76)

where uω solves (2.73). The objective function J is assumed to satisfy continuity conditions
(2.10) and (2.11). For consistency, we require that J is defined in such a way that it does
not depend on u over Ω\ω. For example, in the case of the inverse problem (2.13), we shall
require that E ⊆ ω for each ω ∈ O. For compliance minimization, the condition that ∂ω

contains the boundary segment ΓN where the nonzero tractions are applied ensures that J

is defined appropriately. As an example of a generic objective that satisfies this condition,
we can consider

J(ω,u) =

ˆ
Ω

χωg(u)dx (2.77)

where g(·) is a sufficiently regular functional.
Similar to the two-phase material distribution problem, there exists an extensive litera-

ture on the issue of existence of solutions for the shape optimization problem PS. Since PS

already begins with a smaller set of admissible shapes (in order for the state equation to
be well defined), various researchers have identified smaller spaces of domains that possess
a suitable uniform regularity to ensure existence of solutions. For example, Chenais [47]
proved that a sufficient condition for existence of solutions is that the shapes in O satisfy
the cone condition [1] or equivalently the Lipschitz property uniformly. We shall use the
results of this work in what follows. In two-dimensions, Sverak proved a stronger result
that only requires the number of connected components of Ω\ω to be bounded by a fixed
number for all ω ∈ O [155]. We refer to [6], [130] and the introduction of [109] for a review
of various results in the literature.

A natural question concerns the relationship between PS and the two-phase material
distribution problem. Leaving aside the “size” of the space of admissible shapes, we note
that the state equation (2.3), is an approximation to (2.73) when the compliant phase C

−

has small stiffness. For each 0 < ε ≤ 1, let us denote by u
ε

ω
the solution to the boundary

value problem associated with the Ersatz approximation given by
ˆ

Ω

[χω + ε(1− χω)]C+�(uε

ω
) : �(v)dx =

ˆ
ΓN

t · vds, ∀v ∈ VΩ (2.78)

Observe that this is the same as (2.4) with χ = χω and C
− = εC

+.
The so-called interface conditions

�
C

+�(u)
�
· nω = −

�
εC

+�(u)
�
· nω, on ∂ω\∂Ω (2.79)

55

which are encoded in the weak form (2.78), approach (at least formally) the homogeneous
Neumman boundary condition that is specified on the free boundary ∂ω\∂Ω in (2.73). In
fact, it can be shown that the computed solution to (2.78) indeed converges to the solution
of (2.73) as the stiffness of the compliant phases vanishes. In particular, it is shown in [58]
that for sufficiently small ε,

�uε

ω
− uω�1,2,ω

≤ C(ω, Ω, t,g)ε (2.80)

where u
ε

ω
and uω denote the solutions to (2.78) and (2.73), respectively12. This estimate

indicates that u
ε

ω
, when restricted to ω, is a good approximation to uω. A weaker result,

establishing convergence of u
ε

ω

��
ω

to uω, is given in section 3.1.4 of [3] for the analogous
problem in conductivity. We use elements of this latter proof in Theorem 2.6.

Despite the relationship between the state equations, the link between the optimal solu-
tions for the two class of problems is not obvious. As discussed before, the so-called Ersatz
approach is used by the topology optimization community to solve PS using the material
distribution problem as its approximation. Sometimes this is attributed to reduction in the
computational effort associated with the “Eulerian” framework of analysis afforded by the
two-phase description. This may be viewed as a matter of choice since in principle and in
practice, it is possible to carry out the analysis using a Lagrangian approach with the aid
of remeshing techniques without necessarily restrict topological changes. For example, the
evolution of domain can be done in the same manner as the existing level set methods on
a fixed mesh while the analysis (which produces the front velocities) is carried out on a
conforming finite element mesh (see example in [123]). However, most existing methods,
especially level set formulations, rely so heavily on the such an approximation that it is
difficult to separate the optimization algorithm from the choice of analysis.

We can analyze the issue of Ersatz approximation within the restriction framework of
section 2.7. A similar analysis is carried out in [117] for a scalar transmission problem.
As pointed out in [117], by choosing the parameter θ in (R1) sufficiently large, we can
ensure that the shapes corresponding to ϕ ∈ FR have a uniform Lipschitz constant thereby
recovering the admissible space considered by Chenais [47]. For example, if θp > n, then
W

1+θ,p(Ω) is embedded in W
1,∞(Ω), which is exactly the space of Lipschitz functions over

Ω [74]. From the transversality condition and implicit function theorem of Clarke [50], it
follows that the boundary ∂ω = {ϕ = 0} is Lipschitz. In the remainder of this chapter, we
define

O = {ω ⊆ Ω : χω = H(ϕ) for some ϕ ∈ FR} (2.81)

with the additional requirements associated with the boundary conditions implicitly satis-
12This result [58] is given for the case of a scalar elliptic equation but it is expected that it would also hold for

elasticity.

56

fied. In addition to being compact with respect to the L
1(Ω)-metric, this a space of shapes

satisfy the so-called “uniform extension” property [47, 61]. This means that the extension
operator from the shapes to the extended domain Ω is uniformly continuous. More specif-
ically, for some constant K > 0 and for all ω ∈ O, there is a linear continuous extension
operator Ψω : H

1(ω)d → H
1(Ω)d such that

�Ψω(u)�1,2,Ω ≤ K �u�1,2,ω
(2.82)

This property will play a central role in the proof of the main result in this section.
For the sake of concreteness and brevity, we limit our attention to the compliance

minimization where
J(ω,u) =

ˆ
ΓN

t · uds + λ

ˆ
Ω

χωdx (2.83)

and assume homogenous displacement boundary data g = 0. Given a shape ω ∈ O,
the compliance associated with the Ersatz approximation is given by J(ω,u

ε

ω
) while the

compliance associated with the single-phase problem is J(ω,uω). Let ωε ∈ O denote an
optimal solution to the Ersatz approximation. We will show that the sequence of shapes
ωε converges to a solution of PS. Note, however, that the proof also extends to the generic
objective function defined by (2.77). This result provides a justification for using the Ersatz
approximation to solve a material distribution problem as a surrogate for the single-phase
shape optimization problem.

Theorem 2.6. For each 0 < ε ≤ 1, let ωε denote a minimizer of J(ω,u
ε

ω
) in O. There

exists ω
∗ ∈ O such that, up to a subsequence, χωε → χω∗ in L

1(Ω) as ε → 0. Moreover, ω
∗

is a minimizer of J(ω,uω) in O.

Proof. By the compactness result of section 2.5, there exists ω
∗ ∈ O such that for some

subsequence, again denoted by ωε, χωε → χω∗ in L
1(Ω) as ε → 0. By going to another sub-

sequence, we may assume that the convergence of the characteristic functions is pointwise.
Next we define an appropriate limit for the corresponding displacement fields u

ε

ωε
which,

by definition, solve the following variational problem
ˆ

Ω

[χωε + ε (1− χωε)]C
+�(uε

ωε
) : �(v)dx =

ˆ
ΓN

t · vds, ∀v ∈ VΩ (2.84)

Notice that we cannot appeal to the estimate (2.9) since the ellipticity constant c now
depends on ε and goes to zero with ε. Substituting v = u

ε

ωε
in (2.84), and using (2.74)

with ω = ωε (note that u
ε

ωε

��
ωε
∈ Vωε) for the right hand side

ˆ
ωε

C
+�(uε

ωε
) : �(uε

ωε
)dx + ε

ˆ
Ω\ωε

C
+�(uε

ωε
) : �(uε

ωε
)dx =

ˆ
ωε

C
+�(uωε) : �(uε

ωε
)dx (2.85)

57

From the standard estimate for (2.74),

�uωε�1,2,ωε
≤ K �t� (2.86)

and by virtue of Korn’s inequality13
��∇u

ε

ωε

��
0,2,ωε

≤ K̃
���(uε

ωε
)
��

0,2,ωε
, we can conclude from

(2.85) that ��∇u
ε

ωε

��
0,2,ωε

+ ε
1/2

��∇u
ε

ωε

��
0,2,Ω\ωε

(2.87)

is bounded for all ε. Another use of Korn’s inequalities shows that the sequence u
ε

ωε

��
ωε

is bounded in H
1(ωε)d. From the uniform extension property (cf. (2.82)), the sequence

of extensions Ψωε(u
ε

ωε

��
ωε

) is also bounded in H
1(Ω)d and therefore, up to a subsequence,

converges weakly to some limit u
∗ ∈ H

1(Ω)d.
By analyzing the limit of (2.84) as ε → 0, we next show that u

∗
��
ω∗

is the displacement
field associated with the limit shape ω

∗. Fix v ∈ VΩ . We have:
ˆ

Ω

χωεC
+�(uε

ωε
) : �(v)dx =

ˆ
Ω

χωεC
+�

�
Ψωε(u

ε

ωε

��
ωε

)
�

: �(v)dx

→
ˆ

Ω

χω∗C
+�(u∗) : �(v)dx (2.88)

=

ˆ
ω∗

C
+�(u∗) : �(v)dx

The proof of this convergence is similar to that in the Proposition 2.1. By boundedness of
ε
1/2∇u

ε

ωε
in Ω\ωε, we have for the other term in the bilinear form,

ˆ
Ω

ε(1− χωε)C
+�(uε

ωε
) : �(v)dx → 0 (2.89)

as ε → 0. Therefore, we have for any v ∈ VΩ

ˆ
ω∗

C
+�(u∗) : �(v)dx =

ˆ
ΓN

t · vds (2.90)

Since any v ∈ Vω∗ can be extended to an element of VΩ, this proves that u
∗
��
ω∗

= uω∗ .
Moreover, it follows from continuity of J that

J(ωε,u
ε

ωε
) → J(ω∗,uω∗) (2.91)

To complete the proof of the statement, we must show that ω
∗ is indeed a solution to PS.

To see this, take any ω̃ ∈ O. By a similar argument as above, we can show that (this also
13We must note that the constant associated with Korn’s inequality does depend on the domain ωε. However,

this constant is bounded due to the uniform Lipschitz property of O [70]. The same is true for the constant K in
(2.86).

58

follows from estimate (2.80)),
J(ω̃,u

ε

ω̃
) → J(ω̃,uω̃) (2.92)

For each ε, we have by optimality of ωε that

J(ωε,u
ε

ωε
) ≤ J(ω̃,u

ε

ω̃
) (2.93)

Taking the limit of (2.93) as ε → 0 and using (2.91) and (2.92) yields J(ω∗,uω∗) ≤ J(ω̃,uω̃).

The above proof of convergence in (2.91) can be simplified by making use of estimate
(2.80) since it implies

��J(ωε,u
ε

ωε
)− J(ωε,uωε)

�� ≤ kC(ωε, Ω, t,g)ε (2.94)

and we can treat J(ωε,uωε) following the single-phase analysis of Chenais [47]. The only
issue is that the constant in this estimate, as stated, depends on the shapes ωε. Though
expected, it is unclear from the proof in [58] if this constant is uniform on O.

59

Chapter 3

Tikhonov Regularization and a Splitting
Algorithm

We have discussed in the previous two chapters the lack of existence of solutions to the
classical topology optimization problems. For example, it was shown that the problem
of minimizing compliance in structural optimization favors non-convergent minimizing se-
quences of shapes that exhibit progressively finer features. The commonly used density
formulations, such as the popular Solid Isotropic Material with Penalization (SIMP) ap-
proach [20, 136, 135], wherein characteristic functions representing the shapes are replaced
by density fields, continue to suffer from this pathology as the built-in penalization mech-
anism recovers solutions that are nearly binary in the optimal regime. A manifestation
of this behavior in the finite element discretization of the problem is the dependence of
solutions on the level of refinement of the spatial discretization. The problem of mesh
dependency, just as the ill-posedness of the continuum problem, has led many researchers
to devise formulations that are stable under mesh refinement. The search for a robust and
yet mathematically consistent approach continues as evidenced by the growing number of
publications on this issue [31, 131, 85, 86, 172, 141, 94, 171].

We limit the following literature survey to density formulations but, as discussed above,
the difficulty stems from a fundamental property of the original topology optimization prob-
lem and therefore similar measures are needed for other parameterizations of geometries,
most notably the implicit functions methods (see chapter 2). Placing a restriction on the
perimeter of the admissible shapes is perhaps the oldest approach in the field. The set of
admissible characteristic functions is restricted to a subset of functions of bounded variation
with a prescribed upper bound on their total variation [11]. Existence of solutions follows
from relative compactness of bounded sequences in BV in the L

1-topology and carries over
to the corresponding density formulation [127]. Due to the difficulty of discretization of
functions of bounded variation and robust linearization of the total variation functional
[181], the perimeter formulation has perhaps fallen out of favor in the topology optimiza-
tion community though it remains a significant point of reference. More recent approaches
are based on the concept of filtering, which consists of implicitly imposing regularity on
each admissible density function by means of convolution of an auxiliary field with a fixed
and smooth filter. With such construction, all the admissible densities inherit the regular-
ity of the filter, thereby ensuring compactness of the design space in the L

1-topology [31].

60

The filtering approach works well in practice since no explicit constraints on regularity of
density functions are needed. Moreover the level of complexity of the final solutions (in fact
all the admissible densities) is controlled directly by the regularity of the filtering kernel.
Herein lies the major drawback: the smoother the filtering kernel, the larger the amount of
the intermediate densities since the transition between the extreme values of density over
the domain cannot occur too rapidly. Therefore, with more complexity control comes more
“gray” regions and this, in some respect, undermines the basic premise of the density ap-
proach in that near characteristic functions are no longer recovered in the optimal regime
(i.e., “0-1” or “black-and-white” designs are not obtained). We note that a similar issue arises
in the slope constraint method of Petersson and Sigmund [128] where regularity is imposed
explicitly by placing a constraint on the pointwise magnitude of the density gradient.

A recent trend [85, 141, 94, 171] has focused on the so-called nonlinear filtering ap-
proaches. As pointed out in section 1.6 (see also [164]), the introduced nonlinearity usually
amounts to a modification of the material interpolation model (e.g., SIMP) rather than
a change in the filtering operation. For example, in the Heaviside filtering approach [85],
both power law relations of SIMP—dependence of Young’s modulus on ρ

p and volume on
ρ—are augmented by the use of a smoothed Heaviside function. The additional parameter
defining the sharpness of the Heaviside function controls the amount of gray that appears.
To obtain good solutions, these parameters are often carefully increased throughout the
course of the optimization algorithm.

It is no surprise that more fine-tuning is needed as one moves away from the simplicity
of the original penalized density formulation. These schemes contain multiple penalty
parameters in addition to the averaging effect of the underlying filter, which can adversely
affect the quality of the reciprocal approximations of the objective function in the commonly
used optimization algorithms, such as MMA [153], ultimately slowing down convergence
rate or compromising the quality of the final solutions.

In this chapter, we examine the use of a simple Tikhonov-type regularization scheme
for topology optimization. The admissible densities are defined as a subset of H

1 space
with a uniform bound on their norm. In practice, this is achieved by appending the H

1

semi-norm of the density function as a penalty term to the objective function. Existence
of solutions follows from the compact embedding of H

1 in L
1. Such an approach has been

previously studied by Borrvall in a review paper [28] where he examines penalty terms
involving the L

p-norm of the density gradient (recovering the total variation regularization
for p = 1 and the slope constraint for p = ∞). This term also appears in phase field
methods [32, 174, 38, 184, 157, 60] as an interfacial energy term and is accompanied by a
double-well potential penalizing intermediate densities. The two terms taken together with
appropriately chosen coefficients (cf. eq. (3.38)) serve as an approximation to the perimeter
of the interface.

61

As we shall see in the present setting, filtering, in the form of inverse of the Helmholtz
operator, naturally appears when the optimization iterations are obtained from a semi-
implicit discretization of gradient flow associated with the regularized objective function.
In contrast to the density and sensitivity filters, the effects of regularization term appear
through smoothening of the gradient descent steps associated with the unregularized ob-
jective function. The next iterate is obtained from projection of the provisional density
onto the space of admissible densities in order to enforce the 0-1 (void-solid) box constraint
(and the pointwise move limit commonly introduced to stabilize the density evolution). We
will show that, with a particular choice of projection map, this update scheme recovers
the well-known forward-backward splitting algorithm [106, 46, 53, 33]. This provides an
alternative perspective on the proposed approach, which is used to further investigate the
theoretical and computational aspects of the algorithm leveraging the abundant literature
of operator splitting and related methods. In particular, the uncoupled treatment of the
Tikhonov term in the forward-backward method can be useful for more general (possibly
nonsmooth) regularization approaches for topology optimization.

Finally, we note that the separation of filtering (i.e., the smoothening effect of regu-
larization term) and projection operation in the general case offers some flexibility. In
the extreme case of the L

2-projection, this algorithm, with the aid of SIMP penalization,
eliminates nearly all intermediate densities regardless of the level of regularization and
complexity of the final shapes. Numerically we have observed qualitatively good solutions
obtained in moderate number of iterations without the need for continuation on the SIMP
penalty parameter.

For the sake of brevity, in this chapter, we denote the inner product and norm associated
with L

2(Ω) by �·, ·� and �·�, respectively. Similarly, the inner product, norm and semi-
norm associated with H

1(Ω) are denoted by �·, ·�1, �·�1 and |·|1, respectively. Moreover,
for u, v ∈ H

1(Ω), we shall define the inner product �u, v�
α

:= (1− α) �u, v� + α �u, v�1.
Observe that for 0 < α < 1, the associated norm given by �·�

α
:= �·, ·�1/2

α
is equivalent to

the standard norm �·�1.

3.1 Model problem

For the sake of completeness, we briefly recall the density formulation of the compliance
minimization problem. Let Ω ⊆ Rd

, (d = 2, 3) be a bounded set with a sufficiently
smooth boundary representing the design domain for the problem and consider a nontrivial
partition1 of the boundary ∂Ω into disjoint sets ΓD and ΓN . The objective function is given

1That is, ΓD ∩ ΓN = ∅, ∂Ω = ΓD ∪ ΓN , and |ΓD| �= 0

62

by
J(ρ) =

ˆ
ΓN

uρ · tds + λ

ˆ
Ω

ρdx (3.1)

The displacement field uρ is the solution to the elasticity boundary value problem, given
in the weak form by

a(u,v; ρ) = �(v), ∀v ∈ V (3.2)

where V = {u ∈ H
1(Ω)d : u|ΓD = 0} is the space of admissible displacements and, as

before,
a(u,v; ρ) =

ˆ
Ω

Cρ�(u) : �(v)dx, �(v) =

ˆ
ΓN

t · vds (3.3)

are the energy bilinear and load linear forms. Moreover, �(u) = (∇u + ∇u
T)/2 is the

linearized strain tensor, t ∈ L
2(ΓN)d is the prescribed tractions on ΓN . In the SIMP model,

Cρ = [ε + (1− ε) ρ
p]C (3.4)

where p > 1 is the penalty parameter, C is the elasticity tensor of the constituent material,
and 0 < ε � 1 is the Ersatz parameter which ensures the well-posedness of the governing
equations for every non-negative ρ ∈ L

∞(Ω). In particular, observe that the bilinear form
is continuous and coercive (cf. (2.6) and (2.7)) and so given a measurable density function
ρ taking values between zero and one, (3.2) admits a unique weak solution uρ in H

1(Ω)d.
For future use, we also recall that by the principle of minimum potential energy, uρ is
alternatively characterized by

uρ = argmin
v∈V

�
1

2
a(v,v; ρ)− �(v)

�
(3.5)

where the term in the brackets is the potential energy associated with deformation field v.
Since the second term in (3.1) represents a penalty on the volume of the material used,

minimizing this objective amounts to finding the stiffest arrangement of C while using
the least amount of material. The parameter λ > 0 determines the trade-off between the
stiffness provided by the material and the amount of material that is used. Because of
the monotonicity of these competing terms, it is expected that in the optimal regime, the
density functions take extreme values of 0 and 1 throughout most of Ω provided that the
penalty parameter p is sufficiently large. This fact was proven in [145, 133, 112] within the
discrete setting where existence of solutions follows from the finite dimensionality of the
problem.

We remark that frequently in the formulation of the minimum compliance problem,

63

instead of using a penalty term as in (3.1), an explicit constraint of the form
ˆ

Ω

ρdx ≤ v |Ω| , 0 ≤ v ≤ 1 (3.6)

is placed on the volume of the design. The two approaches are equivalent in the sense
that for any prescribed volume fraction v, there exists a penalty parameter λ such that the
minimizer of (3.1) is also a solution to the problem with the explicit volume constraint. The
converse is also true in that given λ > 0, we can define the equivalent v to be |Ω|−1 ´

Ω ρ
∗
λ
dx

where ρ
∗
λ

is a minimizer of the J(ρ). The drawback of the present formulation is that one
needs to find a suitable value for the penalty parameter λ, which may not be immediately
obvious. On the other hand, it has been our experience that for the compliance minimization
problem, the penalty approach is more forgiving (the volume can exceed the final volume
in the course of the algorithm) and leads to qualitatively better solutions.

3.2 Restriction and Tikhonov regularization

To guarantee existence of solutions to the minimum compliance problem, the space of
admissible densities must be restricted to a sufficiently regular subset of L

∞ (Ω; [0, 1]). One
sufficient condition, investigated here, is to require each admissible ρ to belong to H

1(Ω)

with |ρ|1 ≤ M for some fixed positive constant M (see also, [24, 28]). In particular, we
define the space of admissible densities to be

Ã =
�
ρ ∈ H

1(Ω) : 0 ≤ ρ ≤ 1 a.e., |ρ|1 ≤ M
�

(3.7)

Based on the compactness result of chapter 2, to establish existence of solutions, it is
sufficient to prove that this space is compact in L

1(Ω). We note that the existence of
solutions for essentially the same problem is analyzed in [24] but only a weaker result that
requires a bound on p is proven.

Proposition 3.1. The space of admissible densities Ã is compact in L
1(Ω).

Proof. Let ρn be a sequence in Ã. Since �ρn� ≤ |Ω| and |ρn|1 ≤ M , the sequence is
bounded in H

1(Ω) and so there exists ρ̂ ∈ H
1(Ω) and a subsequence, again denoted by

ρn, such that ρn � ρ̂ weakly in H
1(Ω). By Rellich-Kondrachov theorem [74] and going

to another subsequence, ρn → ρ̂ strongly in L
1(Ω). It remains to prove that ρ̂ belongs

to Ã. To see that ρ̂ satisfies the bound constraint, we can go to another subsequence
such that the convergence of ρn to ρ is pointwise. It follows that 0 ≤ ρ̂ ≤ 1 almost
everywhere. Moreover, from the lower semicontinuity of norm under weak convergence,
|ρ̂|1 ≤ lim infn |ρn|1 ≤ M .

64

An alternative to adding the “compactifying” constraint |ρ|1 ≤ M is to modify the
objective function as follows

J̃(ρ) = J(ρ) +
β

2
|ρ|21 (3.8)

where β is a positive coefficient. As in the case of the volume constraint, we can show that
minimization of J(ρ) over Ã is equivalent to the minimization of J̃(ρ) over the space

A =
�
ρ ∈ H

1(Ω) : 0 ≤ ρ ≤ 1 a.e.
�

(3.9)

in the sense that one obtains the same solution provided that M and β are suitably chosen.
Observe that the Tikhonov regularization term β

2 |ρ|
2
1 ensures that the minimizing sequences

in A are compact in L
1(Ω) even though A itself is not compact. Henceforth, we focus on

the latter form (3.8).
The Tikhonov regularization in (3.8) is commonly used for ill-posed inverse problems and

we refer the reader to the abundant literature available (see, for example, [71] and references
therein). We remark that from a theoretical perspective, regularization of densities in
H

1(Ω) is more restrictive than in BV (Ω) which is sufficient for guaranteeing existence of
solutions for the compliance problem. However, from a practical point of view, H

1(Ω) is a
simpler space to work with and, unlike total variation, the Tikhonov regularizer is smooth
(differentiable) and has a quadratic form. Moreover, practical (engineering) considerations
of complexity control in topology optimization (i.e., controlling feature size and orientation)
can be accommodated here. A more general form of the regularization term is given by

R(ρ) =
1

2
�∇ρ, κ∇ρ� =

1

2

ˆ
Ω

∇ρ(x) · κ(x)∇ρ(x)dx (3.10)

where κ belongs to L
∞(Ω)d×d and for some constants 0 < k1 < k2 satisfies k1I ≤ κ(x) ≤ k2I

in the sense of quadratic forms for all x ∈ Ω. The existence of solutions can be shown in a
similar manner since R(ρ) is equivalent to the H

1 semi-norm. A suitable choice of κ can
ensure the desired regularity of ρ in various parts of Ω, a fact illustrated later through a
numerical example.

3.3 Proposed optimization algorithm

In this section, we present a rather formal derivation of the proposed optimization algorithm
in order to better illustrate the main concept. A more rigorous treatment is given in the
next chapter. The goal is to solve the regularized topology optimization problem

min
ρ∈A

J̃(ρ) = J(ρ) + R(ρ) (3.11)

65

where J(ρ) is defined in (3.1), R(ρ) = β

2 |ρ|
2
1, and the space of admissible density functions

is given by (3.9). The unconstrained gradient flow corresponding to this minimization is
given by

dρ

dt
= −J̃

�(ρ) = − [J �(ρ) + R
�(ρ)] (3.12)

where t is a pseudo-time variable that formally characterizes the evolution of the density
function ρ(t) along this descent flow. The gradient of compliance in the above expression
can be written as [24]

J
�(ρ) = − (1− ε) pρ

p−1
C�(uρ) : �(uρ) + λ (3.13)

The first term is a strain energy density field whose evaluation requires the solution uρ to
(3.2). The gradient of regularization term is simply

R
�(ρ) = −β∆ρ (3.14)

provided that ∂ρ/∂n = 0 on ∂Ω2. An explicit discretization of (3.12) yields the usual gradi-
ent descent update, which due to the presence of the Laplacian term in R

�(ρ) requires small
time increments, governed by the Courant-Friedrichs-Lewy condition, and subsequently a
large number of iterations. Also, the resulting discrete dynamics may introduce additional
regularization effects depending on the number and size of time increments, as discussed in
[14], which in turn depend on the spatial discretization of ρ.

Due to the dependence of J
�(ρ) on the state equation, an implicit treatment of J

�(ρ)

in (3.12) is not possible. Thus we consider a semi-implicit temporal discretization of the
gradient flow equation, an approach also advocated by Bourdin and Chambolle [32] in their
phase field method. Considering a fixed time increment τ and denoting by ρn the current
density iterate at t = nτ , the semi-implicit discretization of (3.12) takes the form

ρ
∗
n+1 − ρn

τ
= −J

�(ρn)−R
�(ρ∗

n+1) (3.15)

where ρ
∗
n+1 is the interim or provisional iterate that may lie outside the admissible space

A (i.e., violate the bounds on the admissible densities). We define the next iterate ρn+1 to
2A remark is in order regarding the regularity of ρ and its boundary conditions implied by (3.14). We will

essentially use the variational form of the gradient flow (3.12):

�dρ/dt, ψ� = dJ̃(ρ) [ψ] , ∀ψ ∈ H
1(Ω)

to evolve the density function (cf. eq. (3.31)). Here dJ̃(ρ) [ψ] is the Gateaux derivative of J̃ at ρ in the direction
of ψ. Observe dJ(ρ) [ψ] = �J �(ρ), ψ� where J

�(ρ) is defined in (3.13) and dR(ρ) [ψ] = β �∇ρ,∇ψ�. If additionally
ρ ∈ H

2(Ω) and ∂ρ/∂n = 0 on ∂Ω, then dR(ρ) [ψ] = �−β∆ρ, ψ� = �R�(ρ), ψ� but we do not need to place any
additional constraints beyond ρ ∈ H

1(Ω).

66

be the projection of ρ
∗
n+1 onto A, that is,

ρn+1 = ΠA(ρ∗
n+1) (3.16)

The algorithm defined by (3.15) and (3.16) may be viewed as a semi-implicit form of the
gradient projection method [39], which consists of the projection of an explicit update of
(3.12). The proposed algorithm is similar to the two-step procedures for solution of the
incompressible Navier-Stokes equations (cf. [114]). The standard optimality criteria (OC)
algorithm also has the same two-step structure where the projection enforcing the box
constraints constitutes the final step [24].

A minor modification to (3.16) allows us to accommodate a common approach for stabi-
lizing the topology optimization algorithm, which consists of limiting the point-wise change
in density in consecutive iterations. We can simply replace A in (3.16) by the subset

An = {ρ ∈ A : ρn −m ≤ ρ ≤ ρn + m a.e.} (3.17)

where m ∈ (0, 1] is a prescribed move limit. Defining ρ
U
n

= 1 ∨ (ρn + m) and ρ
L
n

= 0 ∧
(ρn −m), we can write

An =
�
ρ ∈ H

1(Ω) : ρ
L
n
≤ ρ ≤ ρ

U
n

a.e.
�

(3.18)

The next iterate, accounting for this move limit constraint, is then

ρn+1 = ΠAn

�
ρ
∗
n+1

�
(3.19)

Although reducing the time step τ can also increase the conservatism of the algorithm,
based on our numerical experience so far, the move limit approach tends to perform better
in practice and allows the use of a larger fixed step size τ . Of course, by setting m = 1, we
get An = A recovering the update (3.16).

In the numerical results in this chapter, the criterion for convergence of the algorithm
is based on the change in the value of objective function |J̃(ρn+1)− J̃(ρn)|/|J̃(ρn)|. Aside
from the choice of the projection map ΠAn , the proposed update scheme contains two
algorithmic parameters, namely τ and m, both of which are independent of β and the
spatial discretization of ρ. More generally, in an extension of this algorithm, τ and m

can be varied during the course of the algorithm to speed up convergence and/or improve
stability (see chapter 4).

67

Figure 3.1: Approximate Green’s function computed numerically on a square domain Ω

3.4 Comparison with filtering methods

Substituting (3.14) into (3.15) and rearranging, we can see that the provisional iterate
satisfies the modified Helmholtz equation

ρ
∗
n+1 − βτ∆ρ

∗
n+1 = ρn − τJ

�(ρn) (3.20)

with homogenous Neumann boundary conditions. It is interesting to note that the right-
hand side term is the gradient descent update, with step size τ , for the unregularized
objective function J(ρ). Denoting by Gβτ the Green’s function associated with Helmholtz
operator in (3.20), we can write

ρ
∗
n+1(x) =

ˆ
Ω

Gβτ (x,y) [ρn(y)− τJ
�(ρn)(y)] dy (3.21)

This shows that the candidate update ρ
∗
n+1 is obtained by filtering the “original” gradient

descent update by the Gaussian kernel Gβτ whose support size depends on βτ (see Figure
3.1). Although the Helmholtz equation has been previously used as a means to carry out
filtering in topology optimization [102, 94], the update expression (3.21) fundamentally
differs from both density and sensitivity filtering methods.

It is in fact instructive to compare the proposed algorithm with the usual linear density
filter, which essentially consists of the same two steps of smoothening and projection.
Defining the filtering operator P = (1− βτ∆)−1, the update equation for the proposed

68

algorithm can be written succinctly as

ρn+1 = (ΠAn ◦ P) [ρn − τJ
�(ρn)] (3.22)

In the linear filtering method, the space of admissible densities is defined by (see section
1.3)

A = {P(η) : η ∈ L
∞(Ω; [0, 1])} (3.23)

The idea is that each density function automatically inherits its smoothness from the prop-
erties of P while the auxiliary functions η ∈ L

∞(Ω; [0, 1]) are updated in the optimization
algorithm, and so smoothness does not need to be enforced explicitly. If the gradient pro-
jection method is adopted3 to do the optimization, the update expression for the auxiliary
field is

ηn+1 = ΠAn

�
ηn − τJ

�
η
(ηn)

�
(3.24)

where J
�
η

denotes the gradient of J with respect to η and, analogously to (3.17), An consists
of η ∈ L

∞(Ω; [0, 1]) such that |η − ηn| ≤ m almost everywhere. The expression for the
density update ρn+1 is thus

ρn+1 = P(ηn+1) =
�
P ◦ ΠAn

�
{ηn − τP [J �(ρn)]} (3.25)

Comparing expressions (3.22) and (3.25), the most notable difference is the order of projec-
tion and filtering. In the density filter, by construction, the smoothness of the densities is
dictated by the properties of P (e.g., the value of βτ) while in the proposed algorithm, the
projection map also plays a role in the smoothness of the update. In the density filtering,
ηn is typically binary in the optimal regime in the presence of SIMP penalization and yet,
as discussed in the introduction, ρn = P(ηn) may contain large regions of intermediate
densities depending on the smoothening effect of the filtering map P . In the proposed
algorithm, the projection map ΠAn can be defined such that near binary densities are al-
lowed. Of course, the two spaces An and An have different structures and require different
projection maps. The precise description of the projection operation is discussed next.

3.5 Definition of the projection map

We proceed to explore the possible definitions for the projection map. To this effect,
consider projection with respect to the metric generated by �·�

α
defined in section the

3The optimality criteria (OC) is usually preferred to gradient (steepest) descent in structural optimization. We
refer to [13] on the relationship between the two methods.

69

introduction. For each ψ ∈ H
1(Ω), let

Πα

B(ψ) := argmin
ρ∈B

�ψ − ρ�
α

(3.26)

As noted before, �·�
α

defines an equivalent norm to the usual H
1 norm for 0 < α < 1. Pro-

vided that B is a closed convex subset of H
1(Ω), the projection Πα

B(ψ) exists and is unique
for any ψ ∈ H

1(Ω). It is straightforward to show that An is closed and convex in H
1(Ω)

and since ρ
∗
n+1 ∈ H

1(Ω) (cf. (3.20)), the update ρn+1 is well-defined if we set ΠAn = Πα

An

in (3.19). Note that even with the addition of an explicit volume constraint (cf. (3.6)), the
space An remains closed and convex. However, in a more general setting and when dealing
with nonconvex constraints, the projection operation may not be well-defined. Extending
the present algorithm to such cases would require replacing the nonconvex constraints by
suitable convex approximations.

The parameter α determines the smoothness of the projection map. Noting that

�ρ�2
α

= �ρ, ρ�+ α �∇ρ,∇ρ� = �ρ�2 + α |ρ|21 (3.27)

we can see that the value of α determines the trade-off between minimizing the L
2 mismatch

or matching the gradient values in the projection operation defined by Πα

B. As shown in the
next section, the choice α = βτ has a particular significance for the proposed algorithm.

Also of significance is the case α = 0 when Πα

B reduces to usual the L
2-projection. This is

precisely the projection used in the density filtering algorithm (see equation (3.28) below),
since the auxiliary functions in An need not be (weakly) differentiable. Even though An

is not closed with respect to the L
2-norm, we nevertheless consider this case and define

ρn+1 = Π0
Ãn

(ρ∗
n+1) where Ãn =

�
ρ ∈ L

∞(Ω), ρL
n
≤ ρ ≤ ρ

U
n

a.e.
�
. In fact, in the continuum

setting, we can explicitly write

ρn+1 =
�
ρ
∗
n+1 ∧ ρ

L
n

�
∨ ρ

U
n

(3.28)

Observe that the density ρn+1 resulting from this projection need not lie in H
1(Ω) and so

R(ρn+1) = β

2 |ρn+1|21 may not be defined. As such, the use of L
2 projection is inconsistent

for solving the optimization problem (3.11). However, our numerical results show that it
can produce noteworthy results (optimal densities that are nearly binary even for large
β values). At any rate, the intention behind regularization for the topology optimization
problem is controlling the complexity of final topologies. Restricting densities to H

1(Ω) is
not necessary (or perhaps desirable) from a practical perspective. In fact, one can ignore
the derivation and only focus on update equation (3.22) that features a particular use of
filtering.

70

3.6 Relation to forward-backward splitting method

We next show that the proposed algorithm is related to the forward-backward splitting
method (more broadly to the auxiliary problem principle [52, 51] and cost approximation
[122] methods) when ΠA = Πβτ

An
, i.e., α = βτ in the definition of the projection map. This

connection allows us to place the algorithm on a more solid theoretical grounds and tap
into the vast literature and results on these methods and explore the use of their many
variations.

To this effect, we expand the update equation (3.19), which for the projection map
defined in (3.26), can be equivalently written as

ρn+1 = argmin
ρ∈An

��ρ
∗
n+1 − ρ

��2

α
(3.29)

Since adding or removing constant terms or multiplying by a scalar does not affect the
minimizer, we have

ρn+1 = argmin
ρ∈An

�ρ, ρ� − 2
�
ρ
∗
n+1, ρ

�
+ α

�
∇ρ− 2∇ρ

∗
n+1,∇ρ

�

= argmin
ρ∈An

�ρ, ρ� − 2
�
�ρn − τJ

�(ρn), ρ� − βτ
�
∇ρ

∗
n+1,∇ρ

��
+ α

�
∇ρ− 2∇ρ

∗
n+1,∇ρ

�

= argmin
ρ∈An

�ρ− [ρn − τJ
�(ρn)]�2 + α �∇ρ,∇ρ�+ 2 (βτ − α)

�
∇ρ

∗
n+1,∇ρ

�

= argmin
ρ∈An

1

2τ
�ρ− [ρn − τJ

�(ρn)]�2 +
α

βτ
R(ρ) +

�
1− α

βτ

�
dR(ρ∗

n+1) [ρ] (3.30)

where dR(ρ∗
n+1) [ρ] denotes the Gateaux derivative of R at ρ

∗
n+1 in the direction of ρ. Note

that in the second equality above, we have used the fact that ρ
∗
n+1 solves the variational

form of (3.20) given by

�
ρ
∗
n+1, ρ

�
+ βτ

�
∇ρ

∗
n+1,∇ρ

�
= �ρn − τJ

�(ρn), ρ� , ∀ρ ∈ H
1(Ω) (3.31)

The first term in the minimization problem (3.30) measures the L
2 distance of ρ with

the gradient descent step associated with J while the last two terms give an interpolation
between R(ρ) and its derivative at ρ

∗
n+1 as determined by projection parameter α. For

α = βτ , this reduces to

ρn+1 = argmin
ρ∈An

1

2τ
�ρ− [ρn − τJ

�(ρn)]�2 + R(ρ) (3.32)

which is precisely the iterations defined by the so-called forward-backward splitting proce-
dure for minimization problem (3.11) [46]. The intuition behind (3.32) is that the next
iterate ρn+1 is close to the gradient descent update on J , i.e., ρn−τJ

�(ρn) while minimizing

71

Ω

(a) (b)

Ω

Figure 3.2: Design domain and boundary conditions for (a) the MBB beam problem (the design
domain has height h = 1 and width w = 6) and (b) the bridge problem (the design domain has
height h = 1 and width w = 2). In both cases, the applied load has unit magnitude.

the complexity term R(ρ). The forward-backward splitting allows for separate treatment of
the constituent terms of J̃ , which is particularly useful when R(ρ) is nonsmooth. Defining

K(ρ; ψ) =
1

2τ
�ρ− [ψ − τJ

�(ψ)]�2 + R(ρ) (3.33)

it can be readily shown that if ρ̂ minimizes K(ρ; ρ̂) in A, then ρ̂ is also a minimizer of
J̃(ρ) [52]. This illustrates the fact that if the sequence ρn produced by iterations (3.32)
converges, then the limit is the solution to the minimization problem (3.11).

It is insightful to note that the forward-back iteration is equivalent to

ρn+1 = argmin
ρ∈An

J(ρn) +
�
J
�(ρn), ρ− ρn

�
+

1

2τ
�ρ− ρn�2 + R(ρ) (3.34)

We can see that, in the forward-backward subproblem, J is replaced by a local quadratic
model whose curvature depends on 1/τ . The magnitude of τ affects how far ρn+1 is from ρn.
As noted before, the move limit constraint introduced in An also limits the change between
ρn and ρn+1 and so, for α = βτ and fixed m, larger values of τ may accelerate convergence
of the algorithm. Also, in light of (3.34), we can improve the performance of the algorithm
by varying the step size parameter in the course of the algorithm. For example, we may
choose step size τn in the nth iteration such that τ

−1
n

I is a better approximation to the
Hessian J

��(ρn). This issue is examined more closely in the next chapter.

3.7 Numerical investigations

In this section, we assess the performance of the proposed algorithm and present some
numerical results for the compliance minimization problem. First we discuss some imple-
mentation aspects and efficiency considerations related to this algorithm. The numerical
results are presented next with emphasis placed on the two extreme choices of the pro-

72

(c)

(b)

(a)

Figure 3.3: Solutions to the MBB beam problem using the forward-backward algorithm, i.e,
α = βτ , and complexity parameter (a) β = 0.01 (b) β = 0.03 and (c) β = 0.06

jection parameter, namely α = 0 (the L
2-projection) and α = βτ (the forward-backward

algorithm).
The density field here is discretized by means of finite elements which allow for the

use of unstructured grids necessary for representing arbitrary design domains Ω. Given an
appropriate set of basis functions {Ni}M

i=1, each admissible density function is written as
ρ =

�
M

i=1 Nizi where 0 ≤ zi ≤ 1 for all i and so it is characterized by the vector of nodal
values z = [zi]

M

i=1. The Galerkin discretization of (3.20) yields the linear system

(M + βτG) z∗
n+1 = Mzn − τFn (3.35)

where [M]
ij

= �Ni, Nj� and [G]
ij

= �∇Ni,∇Nj� are the standard finite element matrices
and [Fn]

i
= �J �(ρn), Ni�. Note that the matrix M + βτG does not change during the

course of the algorithm (unless the mesh is changed) and thus can be factored once in
the beginning of the algorithm. The cost of solving (3.35) is then negligible during the
subsequent iterations. We note that for large-scale problems where factorization is not
feasible and iterative solvers are necessary, one could use Krylov recycling (see, for example,
[72] and [121]) to take the advantage of the fact only the right-hand-side changes in the
sequence of linear systems (3.35).

The discrete counterpart to the projection (3.29) is

zn+1 = argmin
zL

n≤z≤zU
n

�
z− z

∗
n+1

�T

(M + αG)
�
z− z

∗
n+1

�
(3.36)

where z
L
n

and z
U
n

are defined in an obvious way. Note that minimization problem (3.36)

73

is a sparse (strictly) convex quadratic program subject to simple bound constraints and
can be solved efficiently using, for example, the active set method. However, we can again
exploit the fact that Hessian M + αG is fixed in the course of the optimization. Using the
Cholesky decomposition M + αG = R

T
R, we can write

zn+1 = argmin
zL

n≤z≤zU
n

��Rz−Rz
∗
n+1

��2 (3.37)

where �·� denotes the standard Euclidean norm. Therefore, upon calculation of R once
in the beginning of the algorithm, we only need to solve a bound constrained sparse least
squares problem in each iteration, a simpler problem which can be solved efficiently, for
example, by algorithms proposed in [2]. In fact, with this approach, the dominant cost
in each iteration of the topology optimization algorithm is computing the compliance sen-
sitivities, i.e., vector Fn, which requires the solution to the elasticity system (3.2). We
note that this is still the case if one wishes to enforce the volume constraint explicitly (cf.
(3.6)). This requires including an additional linear constraint of the form v

T
z ≤ v |Ω| where

[v]
i
=
´

Ω Nidx and the above-mentioned algorithms for solving sparse quadratic programs
or least squares problems are capable of handling it.

For the sake of simplicity and following the common approach, we use the same finite
element mesh describing the density field to solve the state equation. The concept of gener-
alized isoparametric finite elements [95] is fitting as the density field (and consequently Cρ)
and the displacement field are discretized on the same mesh. Within this framework, two
accuracy considerations concerning (3.20) and (3.2) should guide the appropriate choice of
finite element discretization (type of basis functions and level of mesh refinement). Though,
we chose to use a fixed grid for the entire course of optimization for the results in this paper,
these criteria can be used to devise an adaptive finite element strategy.

We consider two benchmark compliance minimization problems, namely the MBB beam
problem [119] and the bridge problem, whose domain geometry and prescribed loading and
boundary conditions4 are shown in Figure 3.2. The value of volume coefficient λ was set to
200 |Ω|−1 and 70 |Ω|−1 for these problems, respectively. For all the results, the constituent
material C was assumed to be isotropic with unit Young’s modulus and Poisson’s ratio of
ν = 0.3 and the Ersatz stiffness was set to � = 10−4. The SIMP penalty parameter, the
move limit, and the step size were fixed at p = 3, m = 0.02 and τ = 0.75λ−1 throughout the
course of optimization (i.e., no continuation was carried out) and the convergence tolerance
of 10−6 was used. The initial guess in all cases was taken to be uniform density field with
value of 0.5.

4Strictly speaking, point loads and supports do not satisfy the regularity assumptions stated earlier and the
solution to the governing boundary value problem in the continuum setting may not exist in H

1(Ω)d. However, we
use these boundary conditions so that resulting topology optimization solutions can be compared to those in the
literature.

74

(c)

(b)

(a)

Figure 3.4: Solutions to the MBB beam problem using the L2 projection, i.e, α = 0, and
complexity parameter (a) β = 0.01 (b) β = 0.02 and (c) β = 0.05

The first set of results explores the influence of β on the complexity of solutions to the
MBB beam problem. The results were obtained using a uniform mesh of 360×60 standard
bilinear quadrilateral elements for both density and displacement fields. Figure 3.3 shows
the solutions obtained using the forward-backward algorithm, i.e., α = βτ , for various
values of β. As expected, increase in β results in smoother final solutions with fewer but
large members. The same is true for the L

2-projection (with α = 0) as shown in Figure 3.4.
Note, however, that the final densities are nearly binary with this type of projection even
for large of values of β. In fact, only 10% of the nodal densities in the solution shown in
3.4(c) had values in the range (0.05, 0.95) in contrast to the 25% for the solution in 3.3(c)
using the forward-backward algorithm. For the sake of comparison, we have computed
another measure of discreteness, proposed in [141], and the results are presented in Table
3.1.

Next we investigate the influence of mesh size on the final densities. The MBB beam
problem was solved using finer grids consisting of 600× 100 and 900× 150 elements using
the same complexity parameters as in the previous results. The final topologies were nearly
identical for all the parameters (forward-backward and L

2-projection schemes) and due
to the similarity with those obtained from coarser 360 × 60 mesh are not shown. In the
case of L

2-projection, even though we evidently have convergence of the final densities
under mesh refinement with respect to the L

p-norm, the regularization term R(ρ) blows
up and convergence does not hold in H

1(Ω). For β = 0.01, the values of the regularization
term for the final solutions were 7.56, 9.89 and 9.93 for the 360 × 60, 600 × 100 and
900 × 150 meshes, respectively. We note, however, that the perimeter (total variation of
optimal density field) remained bounded under mesh refinement, which suggests a possible

75

Projection type α = βτ α = 0
β 0.01 0.03 0.06 0.01 0.02 0.05´

ΓN
uρ · tds 101.91 101.32 100.72 95.92 95.16 94.57

λ
´
Ω ρdx 15.43 16.22 16.83 16.40 16.73 17.53

β
2

´
Ω |∇ρ|2 dx 5.706 8.626 8.927 7.563 11.11 11.29

4
|Ω|
´
Ω ρ(1− ρ)dx 7.62% 13.7% 14.7% 3.22% 5.00% 8.65%

Table 3.1: Summary of the results for the MBB beam problem

connection with perimeter constraint problem. For the case of β = 0.01, the total variation
of the final solutions were 33.3, 32.9 and 32.7 for these meshes, respectively. Similarly, for
β = 0.05, the total variation of the final solutions were 20.1, 19.7, and 19.5, respectively.

We intend to investigate this observation more in our future work but for now we note
that the phase field approximation of the perimeter constraint problem is given by (see, for
example [32, 38])

min
ρ∈A

J(ρ) + γ

�
δ |ρ|21 +

1

δ

ˆ
Ω

W (ρ)dx

�
(3.38)

where δ > 0 and W (ρ) is a strictly positive function that only vanishes at ρ = 0 and ρ = 1.
Observe that the first term is identical to the present Tikhonov regularization term when
γδ = 2β. Moreover, a binary density field (which is what our algorithm nearly produces
when α = 0) minimizes the second term in the phase field approximation. This formal
argument supports our numerical observations and highlights the fact that the underlying
penalization mechanism in SIMP (combined with effects of nonsmooth L

2-projection) is
an effective replacement for the penalization term in the phase field approximation of the
perimeter constraint problem.

The last set of numerical results, shown in Figure 3.5, is for the bridge problem. The
results were obtained for β = 0.02 and α = 0 (i.e., the L

2-projection) using a structured
square mesh and an unstructured mesh consisting of linear convex polygons (see [149, 162]
and chapter 5 for the finite element formulation). Both meshes are made up of 20,000
elements. The final densities, shown in 3.5(a) and (b), are nearly identical despite the
difference in the choice of the spatial discretization. It is interesting to note that even
though the polygonal mesh used was not symmetric about the midspan axis, the final
topology is symmetric. A summary of the mesh refinement study for the bridge is given
in Table 3.2. Again we can see that the total variation of final solutions remains constant
under mesh refinement while the regularization term grows.

For the sake of comparison, we also solved an equivalent problem (i.e., with the same
parameter values for β and τ) using the density filtering method (cf. equations (3.24) and
(3.25))5. It can be seen from Figure 3.5(c) that the final topology is the same but the

5Note that the smoothness of filter P depends on βτ for both density filtering and the proposed L
2-projection

76

(a) (b)

(c) (d)

Figure 3.5: Solutions to the the bridge problem using (a) L2-projection, isotropic regularization
and structured square mesh (b) L2-projection, isotropic regularization and unstructured polygonal
mesh (c) equivalent (same β and τ as the previous two cases) density filtering (d) L2-projection
scheme with anisotropic regularization term

Grid size 100× 50 150× 75 200× 100 300× 150

Number of iterations 91 105 94 93´
ΓN

uρ · tds 20.35 20.84 21.22 21.81

λ
´
Ω ρdx 25.06 24.43 24.15 23.94

β
2

´
Ω |∇ρ|2 dx 3.340 3.828 4.214 4.544´
Ω |∇ρ|dx 11.53 11.55 11.54 11.51

Table 3.2: Summary of mesh refinement study for the bridge problem with β = 0.02 and L2-
projection

77

An Algorithm for Total Variation Minimization and Applications 93

for every w ∈ sK , and, as well,

〈g − v′, w − v′〉 ≤ 0

for every w ∈ s ′K . Letting θ = s ′/s, and choosing
w = v′/θ in the first inequality and w = θv in the
second, we find

〈g − v, v′ − θv〉 ≤ 0 and 〈g − v′, θv − v′〉 ≤ 0.

Hence

〈θv − v′, v − v′〉 ≤ 0, that is,

θ f (s)2 − (1 + θ)〈v, v′〉 + f (s ′)2 ≤ 0.

Since 〈v, v′〉 ≤ f (s) f (s ′), we find

(f (s ′) − θ f (s))(f (s ′) − f (s)) ≤ 0,

that is, f (s ′) is between f (s) and θ f (s).
We deduce that s '→ f (s) is non-decreasing, while

s '→ f (s)/s is non-increasing. Notice that for any s >

0, f (s)/s ≤ supv∈K ‖v‖ ≤ c = κ N , where κ ≤ 2
√

2
is the norm of the operator div : Y → X , introduced
in Section 3. The previous study shows that if s ′ ≥ s,
we have

0 ≤ f (s ′) − f (s) ≤ θ f (s) − f (s)

= (s ′ − s)
f (s)
s

≤ c(s ′ − s),

so that f is c-Lipschitz continuous, and satisfies

0 ≤ f ′(s) ≤ f (s)
s

≤ c

for a.e. s ≥ 0. Eventually, we can easily show that any
u ∈ X with 〈u〉 = 0 can be written div p for some p ∈
Y , so that there exists s∗ ≥ 0 such that g − 〈g〉 ∈ s∗K ,
hence f (s) = ‖g − 〈g〉‖ for every s ≥ s∗. This ends
the proof of the lemma.

We thus propose the following algorithm, in order to
solve (11). We assume Nσ is between 0 and ‖g −〈g〉‖.
We need to find a value λ̄ for which f (λ̄) = Nσ .
We first choose an arbitrary starting value λ0 > 0, and
compute v0 = πλ0 K (g) with the algorithm described in
Section 3, as well as f0 = f (λ0) = ‖v0‖. Then, given
λn , fn , we let λn+1 = (Nσ/ fn)λn , and compute vn+1 =
πλn+1 K (g) and fn+1 = ‖vn+1‖. We easily deduce from
Lemma 4.1 the following theorem.

Theorem 4.2. As n → ∞, fn → Nσ while g − vn

converges to the unique solution of (11).

Proof: Assume for instance that f0 ≤ Nσ . By in-
duction, we easily show that λn ≤ λn+1 and that fn ≤
fn+1 ≤ Nσ for any n ≥ 0. Indeed, if fn ≤ Nσ , then
λn+1 = (Nσ/ fn)λn ≥ λn , and Lemma 4.1 yields

f (λn) ≤ f (λn+1) ≤ (λn+1/λn) f (λn),

that is, fn ≤ fn+1 ≤ Nσ . If λn ≥ s∗ (the same s∗

introduced in the end of the proof of Lemma 4.1), then
fn = ‖g − 〈g〉‖ ≥ Nσ , hence fn = Nσ and λn+1 =
λn . Hence (λn)n≥0 and (fn)n≥0 are non-decreasing and
bounded. Let f̄ = limn→∞ fn and λ̄ = limn→∞ λn . It
is clear that (being f continuous) f̄ = f (λ̄) = Nσ .
Letting v̄ = πλ̄K (g), we deduce that g − v̄ is the unique
solution of (11). Now, it is straightforward to show
that vn must converge to v̄. This proves the theorem. If
f0 ≥ Nσ the proof is identical.

We show some examples of images processed with
this algorithm. In practice, we have observed that we
can replace λ with the new value Nσ/‖div pn‖ after
each iteration (9) of the main algorithm of Section 3,
and get a very quick convergence to the limit u
solving (11).

In the examples of Figs. 2 and 3, the original im-
age is the image of Fig. 1 to which a noise of standard

Figure 1. An image.

94 Chambolle

Figure 2. The image of Fig. 1 and its reconstruction (σ = 12).

Figure 3. Same as Fig. 2 with now σ = 25.

deviation respectively 12 and 25 has been added. The
original is a 256 × 256 square image with values
ranging from 0 to 255. The CPU time for comput-
ing the reconstructed images is in both case approx-
imately 1.9 seconds, on a 900 MHz Pentium III pro-
cessor with 2 Mb of cache. The criterion for stopping
the iteration just consists in checking that the max-
imum variation between pn

i, j and pn+1
i, j is less than

1/100. Notice that this algorithm can very easily be
parallelized.

5. Zooming

In the case of zooming, the inverse problem that has
to be solved is now (in its most simple formulation, as

94 Chambolle

Figure 2. The image of Fig. 1 and its reconstruction (σ = 12).

Figure 3. Same as Fig. 2 with now σ = 25.

deviation respectively 12 and 25 has been added. The
original is a 256 × 256 square image with values
ranging from 0 to 255. The CPU time for comput-
ing the reconstructed images is in both case approx-
imately 1.9 seconds, on a 900 MHz Pentium III pro-
cessor with 2 Mb of cache. The criterion for stopping
the iteration just consists in checking that the max-
imum variation between pn

i, j and pn+1
i, j is less than

1/100. Notice that this algorithm can very easily be
parallelized.

5. Zooming

In the case of zooming, the inverse problem that has
to be solved is now (in its most simple formulation, as

Figure 3.6: The original image (left) with noise added (middle) and its reconstruction (left) using
total variation minimization algorithm of the form (3.40). Images courtesy of [43]

density field is heavily smeared. In fact, only less than 48% of the nodal densities are in the
range [0, 0.05]∪ [0.95, 1] in contrast to 91% for the solution using the L

2-projection scheme.
In terms of the discreteness measure of [141], the density filtering solution has a value of
33.1% while it is 7.04% for the L

2-projection result.
Lastly, we solved the bridge problem for the more general regularization term (3.10)

with

κ (x) =

�
0.05 −0.03

−0.03 0.05

�
(3.39)

taken to be constant over the entire domain. The eigenvectors of κ, namely v1 = (1, 1)T
/
√

2

and v2 = (1,−1)T
/
√

2, are rotated 45◦ from the horizontal axis and the corresponding
eigenvalues are β1 = 0.02 and β2 = 0.08, respectively. We can see from the solution in Figure
3.5(d) that the introduced anisotropy of the regularization term breaks the symmetry. The
diagonal members on the right half, which are nearly perpendicular to v2, are penalized
more and are thus collapsed into one member. This example illustrate the potentials of the
proposed regularization scheme for control of local orientation and feature size.

3.8 Extension to nonsmooth regularizers

The use of operator splitting methods (such as the forward-backward algorithm) seems
promising for nonsmooth regularizers for the topology optimization. In particular, it would
be interesting to explore such a decoupling approach for the perimeter constrained problem
where the regularization term R(ρ) is defined to be the total variation of the density field´

Ω |∇ρ| dx. In this case, the forward-backward splitting leads to simpler subproblems of

scheme. By contrast, the introduced complexity in the forward-backward algorithm only depends on β as evident
from (3.34).

78

Figure 3.7: Solution to the MBB beam problem using total variation regularization and the
forward-backward splitting algorithm

the form
min

ρ∈BV (Ω;[0,1])
�ρ− gn�2 + k

ˆ
Ω

|∇ρ| dx (3.40)

for which efficient algorithms can be found in the image processing literature (e.g., [43, 33];
also see Figure 3.6 for an example of an image denoising problem). Owing to the simple
structure of (3.40), there is no need to approximate total variation by a differentiable
functional and therefore the effects of this regularizer can be captured with high degree of
fidelity.

As a preliminary result, we solved the MBB beam problem using a piecewise constant
discretization of the density field on a grid of 420 × 70 elements. The forward-backward
subproblem was solved using the FISTA algorithm [17]. It can be seen from the result shown
in Figure 3.7 that the final solution is almost completely binary (over 97% of element
densities are zero or one) which is expected since the total variation does not penalize
discontinuities.

We end with a general remark on the justification of restriction formulations for topol-
ogy optimization such as the one presented here. Though they seemingly involve an arbi-
trary modification of the original problem (e.g., requiring the density fields to be uniformly
smooth in the filtering method or belonging to a bounded subset of H

1 in the present
work), such restrictions are more than a theoretical tool since they can be used to enforce
manufacturing constraints on the admissible shapes that can be built for engineering appli-
cations or, in the case of inverse problems (e.g. obstacle identification), introduce a priori
knowledge about the regularity of the unknown geometry. The ultimate test of the resulting
algorithms, aside from usual criteria of robustness, feasibility and ease of implementation
and computational cost, currently rests on “qualitative” inspection of the final topologies.

79

Chapter 4

A Closer Look at the Splitting
Algorithm

In this chapter, we continue to explore the use of splitting algorithms for solving regular-
ized topology optimization problems. The context is the classical structural design problems
(minimum compliance and complaint mechanism design), parameterized by means of den-
sity functions, whose ill-posedness is addressed by introducing a Tikhonov regularization
term. The proposed forward-backward splitting algorithm treats the constituent terms of
the cost functional separately which allows for employing suitable approximations of the
structural objective. We will show that one such approximation, inspired by the optimality
criteria (OC) algorithm and reciprocal expansions, improves convergence and leads to an
update scheme that resembles the well-known heuristic sensitivity filtering method.

As previously discussed, the density filtering method, implicitly enforces a prescribed
degree of smoothness on all the admissible density fields that define the topology [31].
This method and its variations are consistent in their use of sensitivity information in the
optimization algorithm since the sensitivity of the objective and constraint functions are
computed with respect to the associated auxiliary fields whose filtering defines the densities.
By contrast, the sensitivity filtering method [142], which precedes the density filters and is
typically described at the discrete level, performs the smoothening operation directly on the
sensitivity field after a heuristic scaling step. The filtered sensitivities then enter the update
scheme that evolves the design despite the fact they do not correspond to the cost function
of the optimization problem. While the sensitivity filtering has proven effective in practice
for certain class of problems (for compliance minimization, it enjoys faster convergence
than the density filter counterpart), a proper justification has remained elusive. As pointed
out by Sigmund [141], it is generally believed that “the filtered sensitivities correspond to
the sensitivities of a smoothed version of the original objective function” even though “it
is probably impossible to figure out what objective function is actually being minimized.”
This view is confirmed in this chapter, as we will show that an algorithm with calculations
similar to what is done in the sensitivity filtering can be derived in a consistent manner
from a proper regularization of the objective.

It was shown in chapter 3 that the derived update expression for the forward-backward
algorithm naturally contains a particular use of Helmholtz filtering (cf. eq. (3.22)), where
in contrast to density and sensitivity filtering methods, the filtered quantity is the gradient

80

descent step associated with the original structural objective. The key observation made
here is that if the gradient descent step in this algorithm is replaced by the OC update, then
the interim density has a similar form to that of the sensitivity filter and in fact produces
similar results (cf. Figure 4.2). To make such a leap rigorous, we essentially embed the
same reciprocal approximation of compliance that is at the heart of the OC scheme in the
forward-backward algorithm. This leads to a variation of the forward-backward splitting
algorithm that is consistent, demonstrably convergent and computationally tractable.

Within the more general framework presented here, we will examine the choice of move
limits and the step size parameter more closely and discuss strategies that can improve
the convergence of the algorithm while maintaining the quality of final solutions. We also
discuss a two-metric variant of the splitting algorithm that removes the computational over-
head associated with the bound constraints on the density field without compromising con-
vergence and quality of optimal solutions. In particular, we present and investigate scheme
based on the two-metric projection method of [25, 79] that allows for the use of a more
convenient metric for the projection step enforcing these bound constraints. This algorithm
requires a simple and computationally inexpensive modification to the splitting scheme but
features a min/max-type projection operation similar to OC-based filtering methods. We
will see from the numerical examples that the two-metric variation retains the convergence
characteristics of the forward-backward algorithm for various choices of algorithmic param-
eters. The details of the two types of algorithms are described for the finite-dimensional
optimization problem obtained from the usual finite element approximation procedure,
which we prove is convergent for Tikhonov-regularized compliance minimization problem.

As in chapter 3, the inner product and norm associated with L
2(Ω) are denoted as �·, ·�

and �·�, respectively. Also the inner product, norm and semi-norm associated with H
k(Ω)

are denoted by �·, ·�
k
, �·�

k
and |·|

k
, respectively. Given a bounded and positive-definite

linear operator B, we write �u, v�B ≡ �u,Bv� and the associated norm by �u�B ≡ �u, u�1/2
B .

Similarly, the standard Euclidean norm of a vector v ∈ Rm is denoted by �v� and given a
positive-definite matrix B, we define �v�

B
=

�
v

T
Bv

�1/2. The ith components of vector v

and the (i, j)-th entry of matrix B are written as [v]
i
and the [B]

ij
, respectively.

4.1 Problem statement

As in chapter 3, we consider the Tikhonov regularized compliance minimization problem
given by

min
ρ∈A

J̃(ρ) = J(ρ) +
β

2
|ρ|21 (4.1)

81

where β > 0 is a positive constant and J(ρ) is defined by (3.1) with the minor difference
that we use the classical SIMP model for stiffness,

Cρ = ρ
p
C (4.2)

and accordingly define the space of admissible densities to be

A =
�
ρ ∈ H

1(Ω) : δρ ≤ ρ ≤ 1 a.e.
�

(4.3)

where 0 < δρ � 1 is a small positive constant. The reason is that later in section 4.3,
we will consider Taylor expansions of the objective function in 1/ρ and the positive lower
bound on the density field simplifies the notation. Notice that the governing boundary
value problem is again well-posed since the energy bilinear form is continuous and coercive
with uniform constants for all ρ ∈ A.

For brevity and emphasizing the quadratic form of the Tikhonov regularization, in the
next two sections, we write the regularizer generically as

1

2
�ρ,Rρ� (4.4)

where R is a linear, self-adjoint and positive semi-definite operator on A. Recall that
under an additional assumption of ∂ρ/∂n = 0 on ∂Ω and ρ ∈ H

2(Ω), the Tikhonov regu-
larization term can be written as 1

2 �ρ,−β∆ρ�. Similarly, the more general regularization
term 1

2 �∇ρ, κ∇ρ� in which κ(x) is a bounded and positive-definite matrix can be writ-
ten as 1

2 �ρ,−∇ · (κ∇ρ)�. However, the additional assumption on densities are in fact not
required.

Lastly, we recall that the gradient of compliance (with respect to variations of density
in the L

2-metric) is given by [24]

J
�(ρ) = −E(ρ) + λ (4.5)

where E(ρ) = pρ
p−1

C�(uρ) : �(uρ) is a strain energy density field. Note that E(ρ) is
non-negative for any admissible density and this is related to the monotonicity of the self-
adjoint compliance problem: given densities ρ1 and ρ2 such that ρ1 ≤ ρ2 a.e., one can
show �(uρ1) ≥ �(uρ2). This property is the main reason why we restrict our attention to
compliance minimization (though in section 4.9, we will provide an example of compliant
mechanism design which is not self-adjoint). Observe that ρ̂ is a stationary point of J if

82

(b)(a)

Figure 4.1: Plot of E(ρ) − λ for two solutions to the MBB beam problem with β = 0.01: (a)
corresponds to solution shown in Figure 4.5(b) and (b) corresponds to the solution shown in Figure
4.5(c). The black line is the contour line for ρ = 1/2 and the dashed white line is the contour line
where E(ρ) = λ. Note that only half the design domain is shown and the range of the color-bar is
limited to [−λ, 6λ] for better visualization.






E(ρ̂)(x) < λ, if ρ̂(x) = δρ

E(ρ̂)(x) = λ, if δρ < ρ̂(x) < 1

E(ρ̂)(x) > λ, if ρ̂(x) = 1

(4.6)

Thus, in regions where E(ρ̂) exceeds the penalty parameter λ (regions that experience
“large” deformation), density is at its maximum. Similarly, below this cutoff value the
density is equal to the lower bound δρ. Everywhere else, i.e., in the regions of intermediate
density, the strain energy density is equal to the penalty parameter λ.

Figure 4.1 shows the distribution of E(ρ) − λ for solutions to (4.1) obtained using the
proposed algorithm (cf. section 4.9 and Figures 4.5(b) and (c)). Superimposed are the
contour lines associated with ρ = 1/2 (plotted in black) representing the boundary of the
optimal shape and E(ρ) = λ (plotted in dashed white). The fact that these lines are nearly
coincident shows that the solutions to the regularized problem, at least for sufficiently
small regularization parameter β, are close to ideal in the sense that they nearly satisfy the
stationarity condition for the structural objective J .

4.2 General splitting algorithm

In this section, we discuss a generalization of the forward-backward splitting algorithm
presented in chapter 3 for solving the regularized compliance minimization problem. The
key idea behind this and other similar decomposition methods [52, 46, 122] is the separate
treatment of constituent terms of the cost function.

A general algorithm for finding a minimizer of J̃(ρ) consists of subproblems of the form:

ρn+1 = argmin
ρ∈An

J(ρn) + �ρ− ρn, J
�(ρn)�+

1

2τn

�ρ− ρn�2
Hn

+
1

2
�ρ,Rρ� (4.7)

83

where Hn is a bounded and positive-definite linear operator. Compared to (4.1), we can see
that while the regularization term has remained intact, J is replaced by a local quadratic
model around ρn in which Hn may be viewed as an approximation to the Hessian of J

evaluated at ρn. Note that constant terms such as J(ρn) and �ρn, J
�(ρn)� do not affect the

optimization but are provided to emphasize the expansion of J . Moreover, τn > 0 is a step
size parameter that determines the curvature of this approximation. For sufficiently small
τn (large curvature), the approximation is conservative in that it majorizes (lies above) J ,
which is crucial in guaranteeing descent in each iteration and overall convergence of the
algorithm.

We have included another limiting measure in (4.7), a minor departure from the above-
mentioned references, by replacing the constraint set A by a subset An in order to limit
the point-wise change in the density to a specified move limit mn. More specifically, as in
chapter 3, we have defined

An = {ρ ∈ A : |ρ− ρn| ≤ mn a.e.} =
�
ρ ∈ H

1(Ω) : ρ
L
n
≤ ρ ≤ ρ

U
n

a.e.
�

(4.8)

where in the latter expression

ρ
L
n

= δρ ∧ (ρn −mn) , ρ
U
n

= 1 ∨ (ρn + mn) (4.9)

The presence of move limits (akin to a trust region strategy) is common in topology opti-
mization literature as a means to stabilize the topology optimization algorithm, especially
in the early iterations to prevent members from forming too prematurely. As we will show
with an example, this is only important when a smaller regularization parameter is used
and the final topology is complex. Near the optimal solution, the move limit strategy is
typically inoperative. Of course, by setting mn ≡ 1, we can get A = An and recover the
usual form of (4.7).

Ignoring the constant terms and with simple rearrangement, we can show that (4.7) is
equivalent to

ρn+1 = argmin
ρ∈An

��ρ− ρ
∗
n+1

��2

(Hn+τnR)
(4.10)

where the interim density ρ
∗
n+1 is given by

ρ
∗
n+1 = (Hn + τnR)−1 [Hnρn − τnJ

�(ρn)] (4.11)

Alternatively, the interim density can be written as a Newton-type update where the gra-
dient of J̃ is scaled by the inverse of its approximate Hessian, namely

ρ
∗
n+1 = ρn − τn (Hn + τnR)−1 [J �(ρn) +Rρn] (4.12)

84

Returning to (4.10), we can see that next density ρn+1 is defined as the projection of the
interim density, with respect to the norm defined by Hn + τnR, onto the constraint space
An. From the assumptions on properties of Hn and the Tikhonov regularization operator
R and the fact that An is a closed convex subset of H

1(Ω), it follows that the projection is
well-defined and there is a unique update ρn+1.

By settingR = −β∆, which corresponds to the regularization term of (4.1) and choosing
Hn to be the identity map I, we recover the forward-backward algorithm investigated in
the previous chapter. In this case, the interim update satisfies the Helmholtz equation

(I − τnβ∆) ρ
∗
n+1 = ρn − τnJ

�(ρn) (4.13)

Note that the right hand side is the usual gradient descent step (with step size τn) associated
with J (the forward step) and the interim density is obtained from application of the inverse
of the Helmholtz operator (the backward step), which can be viewed as the filtering of right-
hand-side with the Gaussian Green’s function of the Helmholtz equation1. As mentioned
in the introduction, this appearance of filtering is fundamentally different from density and
sensitivity filtering methods. Moreover, the projection operation in this case is with respect
to a scaled Sobolev metric, namely

ρn+1 = argmin
ρ∈An

��ρ− ρ
∗
n+1

��2
+ βτn

��ρ− ρ
∗
n+1

��2
1

(4.14)

which numerically requires the solution to a box-constrained convex quadratic program. In
chapter 3, we also explored an “inconsistent” variation of this algorithm where we neglected
the second term in (4.14) and essentially used the L

2-metric for the projection step. Due
to the particular geometry of the box constraints in An, the L

2-projection has the explicit
solution given by

ρn+1 =
�
ρ
∗
n+1 ∧ ρ

L
n

�
∨ ρ

U
n

(4.15)

The appeal of this min/max type operation is that it is trivial from the computational
point of view. Moreover, it coincides with the last step in the OC update scheme [24].
However, this is an inconsistent step for Tikhonov regularized problem since ρn+1 need not
lie in H

1(Ω). In fact, strictly speaking, (4.15) is valid only if An is enlarged from functions
in H

1(Ω) to all functions in L
2(Ω) bounded below by ρ

L
n

and above by ρ
U
n
. In spite of this

inconsistency, the algorithm composed of (4.13) and (4.15) was convergent and numerically
shown to produce noteworthy solutions with minimal intermediate densities. This merits
a separate investigation since as suggested in chapter 3, this algorithm may in fact solve
a smoothed version of the perimeter constraint problem where the regularization term is

1The designations “forward” and “backward” step come from the fact that (4.13) can be written as ρ
∗
n+1 =

(I + τnR)−1 (I − τnJ
�) ρn. Similarly, (4.11) has equivalent expression ρ

∗
n+1 =

`
I + τnH−1

n R
´−1 `

I − τnH−1
n J

�´
ρn.

85

the total variation of the density field. We will return to the use of L
2-projection later in

section 6.4 but this time in a consistent manner with the aid of the two-metric projection
approach of [25, 79].

4.3 Optimality criteria and sensitivity filtering

In structural optimization, the optimality criteria (OC) method is preferred to the gradient
descent algorithm since it typically enjoys faster convergence (see [13] on the relationship
between the two methods). Our interest here in the OC method is that the density and
sensitivity filtering methods are typically implemented in the OC framework. Moreover, as
we shall see, this examination will lead to the choice of Hn in the algorithm (4.7).

The interim density in the OC method for the compliance minimization problem (in the
absence of regularization) is obtained from the fixed point iteration

ρ
∗
n+1 = ρn

�
E(ρn)

λ

�1/2

≡ ρn [eλ(ρn)]1/2 (4.16)

Note that the strain energy density E(ρn) and subsequently its normalization eλ(ρn) are
non-negative for any admissible density ρn and therefore ρ

∗
n+1 is well-defined. Recalling the

necessary condition of optimality for an optimal density ρ̂ stated in (4.6), it is evident that
such ρ̂ is a fixed point of the OC iteration. Intuitively, the current density ρn is increased
(decreased) in regions where E(ρn) is greater (less) than the penalty parameter λ by a
factor of [eλ(ρn)]1/2. The next density ρn+1 in the OC is given by (4.15).

It is more useful here to adopt an alternative view of the OC scheme, namely that the
OC update can be seen as the solution to an approximate subproblem where compliance
is replaced by a Taylor expansion in the intermediate field ρ

−1 [82]. The intuition behind
such expansion is that locally compliance is inversely proportional to density. In particular,
ρ
∗
n+1 can be shown to be the stationary point of the “reciprocal approximation” around ρn

defined by

Jrec(ρ; ρn) ≡ �(uρn) +

�
ρn

ρ
(ρ− ρn) ,−E(ρn)

�
+ λ

ˆ
Ω

ρdx (4.17)

Note that the expansion in the inverse of density is carried out only for the compliance
term, and the volume term, which is already linear, is not altered. The expression for
Jrec(ρ; ρn) can be alternatively written as

Jrec(ρ; ρn) = J(ρn) + �ρ− ρn, J
�(ρn)�+

1

2

�
ρ− ρn,

2E(ρn)

ρ
(ρ− ρn)

�
(4.18)

which highlights the fact that the (nonlinear) curvature term in (4.18) makes it a more

86

accurate approximation of compliance compared to the linear expansion. With regard to
the OC update, one can show that the interim update satisfies J

�
rec(ρ

∗
n+1; ρn) = 0, and its

L
2-projection is indeed the minimizer of Jrec(ρ; ρn) over An (again enlarged to L

2).
We now turn to the sensitivity filtering method, which is described with the OC al-

gorithm. Let P denote a linear filtering map, for example, the Helmholtz filter P =

(I − r
2∆)−1 discussed before or the convolution filter of radius radius r [31, 29]

P(ψ)(x) ≡
ˆ

Ω

Fr(x− y)ψ(y)dy (4.19)

where the kernel is the linear hat function Fr(x) = max (1− |x| /r, 0). The main idea
in the sensitivity filtering method is that eλ(ρn) is heuristically replaced by the following
smoothed version2

ẽλ(ρn) ≡ 1

ρn

P [ρneλ(ρn)] (4.20)

before entering the OC update. The interim density update is thus given by

ρ
∗
n+1 = ρn [ẽλ(ρn)]1/2 = ρn

�
P [ρneλ(ρn)]

ρn

�1/2

= ρ
1/2
n
P [ρneλ(ρn)]1/2 (4.21)

A key observation made here is that if we replace the gradient decent step in forward-
backward algorithm (cf. (4.13)) with the OC step, we obtain a similar update scheme to
that of the sensitivity filtering method. More specifically, note that (4.13) can be written as
ρ
∗
n+1 = P [ρn − τnJ

�(ρn)]. Substituting the term in the bracket with ρn [e(ρn)]1/2 gives

ρ
∗
n+1 = P

�
ρn [eλ(ρn)]1/2

�
(4.22)

which resembles (4.21). In fact, as illustrated in Figure 4.2, the two expressions produce very
similar final results (in particular, observe the similarity between the patches of intermediate
density in the corners that is characteristic of the sensitivity filtering method). Of course,
the leap from the forward-backward algorithm to (4.22), just like the sensitivity filtering
method, lacks mathematical justification. However, we will expand upon this observation
and next derive the algorithm similar to this empirical modification of the forward-backward
algorithm in a consistent manner.

4.4 Embedding the reciprocal approximation

Recalling the role of the reciprocal approximation of compliance in the OC method, the
key idea is to embed such an approximation in the general subproblem of (4.7). We do so

2Notice that the filtering map is applied to the scaling of eλ(ρn) by the density field itself, which is not easy to
explain/justify.

87

(b)

(a)

Figure 4.2: (a) The solution to the MBB beam problem using the sensitivity filtering method
(consisting of (4.21) and (4.15)) (b) The solution using the update steps (4.22) and (4.15). In both
cases, P was taken to be the Helmholtz filter and the move limit was set to mn = 0.25

by choosing Hn to be the Hessian of Jrec(ρ; ρn) evaluated at ρn, namely3

Hn = J
��
rec(ρn; ρn) =

2E(ρn)

ρn

I (4.23)

As noted earlier, E(ρ) is a non-negative function for any admissible ρ but may vanish in
some subset of Ω. This means that Hn is only positive semi-definite and does not satisfy
the definiteness requirement for use in (4.7). We can remedy this by replacing E(ρn) in
(4.23) with E(ρn) ∧ δE where 0 < δE � λ is a prescribed constant. However, in most
compliance problems (e.g., the benchmark problem considered later in section 4.9) the
strain energy field is strictly positive for all admissible densities. In fact, the regions with
zero strain energy density do not experience any deformation and in light of the conditions
of optimality (4.6) should be assigned the minimum density. Therefore, to simplify the
matters, we assume in the remainder of this section that the loading and support conditions
defined on Ω are such that E(ρ) ≥ δE almost everywhere for all ρ ∈ L

∞(Ω; [δρ, 1]).
Comparing the quadratic approximation of J with this choice of Hn and the reciprocal

approximation itself (cf. (4.18)), we see that the difference is in their curvature terms (the
linear terms of course match). The curvature of the quadratic model depends on and can
be controlled by τn while the nonlinear curvature in Jrec is a function of ρ.

Substituting (4.23) into (4.11), the expression for the interim density becomes
�
2E(ρn)

ρn

I + τnR
�

ρ
∗
n+1 = 2E(ρn) + τn [E(ρn)− λ] = (2 + τn) E(ρn)− τnλ (4.24)

3We note that the use of quadratic approximations of the reciprocal approximation has also been pursued in
[83, 84].

88

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

e(ρ)

e1/2

3
2
− 1

2e

1 + m

1−m

ρ∗ n
+

1
/ρ

n

eλ(ρn)

OC

Eq. (4.26) with β = 0

Figure 4.3: Comparison between scaling terms appearing in the OC update and right hand side
of (4.26). The OC is more aggressive in regions eλ(ρn) > 1 and less aggressive when eλ(ρn) < 1.

Multiplying by ρn/ [2E(ρn)] and simplifying yields
�
I +

ρn

2E(ρn)
τnR

�
ρ
∗
n+1 = ρn

��
1 +

τn

2

�
− τn

2eλ(ρn)

�
(4.25)

To better understand the characteristics of this update, let us specialize to the case of
Tikhonov regularization and set τn = 1 (so that the quadratic model and the reciprocal
approximation have the same curvature at ρn). This gives

�
I − ρn

2E(ρn)
β∆

�
ρ
∗
n+1 = ρn

�
3

2
− 1

2eλ(ρn)

�
(4.26)

First note that in the absence of regularization (i.e., β = 0), the update relation has the
same fixed-point iteration form as the OC update with the ratio eλ(ρn) determining the
scaling of ρn. The scaling field here is 3/2 − 1/ [2eλ(ρn)] whereas in the OC method it
is given by [eλ(ρn)]1/2. As shown in Figure 4.3, the scaling fields and their derivatives
coincide in the regions where eλ(ρn) = 1, which means that locally the two are similar. The
reduction in density is more aggressive with this scaling when eλ(ρn) < 1 whereas the OC
update leads to larger increase for eλ(ρn) > 1.

As with the forward-backward algorithm (cf. equation (4.13)), the presence of regular-
ization again leads to the appearance of Helmholtz filtering (the inverse of left-hand-side
operator) but with two notable differences. First, the right-hand-side term now is an OC-
like scaling of density instead of the gradient descent step (the same is true in (4.25) for

89

an arbitrary step size τn). Furthermore, the filtering is not uniform across the domain and
its degree of smoothening is scaled by ρn/ [2E(ρn)]. The important result here is that, by
embedding the reciprocal approximation of compliance in our quadratic model, we are able
to obtain a relation for the ρ

∗
n+1 that features an OC-like right-hand-side and its filtering,

very much similar in form to the (heuristically) fabricated update scheme of (4.22) that
was compared to the sensitivity filtering.

Another key difference between the forward-backward algorithm and the OC-based fil-
tering methods is that the projection of ρ

∗
n+1 defining the next iterate ρn+1 in the forward-

backward scheme is with respect to the metric induced by Hn + τnR in contrast to the
L

2-projection given by (4.15). As discussed before L
2-projection is well-suited for the ge-

ometry of the constraint setAn due to decomposition of box constraints. It may be tempting
to inconsistently use the interim density (4.25) with the L

2-projection but this is not nec-
essarily guaranteed to decrease the cost function4. Arbitrary projections of unconstrained
Newton steps is not mathematically warranted.

In section 4.8, we explore a variant of the splitting algorithm that is related to the two-
metric projection method of [25, 79], and allows for the use of a more convenient metric
for the projection step. This can be done provided that the operator whose associated
norm defines the gradient5 is modified appropriately in the regions where the constraints
are active. More specifically, in the interim update step (cf. (4.12)), Hn + τnR is modified
to produce a linear operator Dn with a particular structure that eliminates the coupling
between regions of active and free constraints. The projection of the interim density given
by

ρ
∗
n+1 = ρn − τnD−1

n
[J �(ρn) +Rρn] (4.27)

with respect to the L
2-norm is then guaranteed to decrease the cost function6. Note that

when there are no active constraints (e.g., in the beginning of the algorithm when the
density field takes mostly intermediate values), Dn = Hn + τnR and (4.25) holds for the
interim update and its L

2-projection produces the next iterate. In general, (4.25) holds
locally for the regions where the box constraints are not active (i.e., regions of intermediate
density) and so the analogy to the sensitivity filtering method holds in such regions.

To avoid some technical nuisances (that the L
2-projection on H

1(Ω) is not well-defined)
and avoid the cumbersome notation required to precisely define Dn in the continuum set-
ting (that may obscure the simple procedure for its construction), we defer the details to

4Numerically one would observe that such an inconsistent algorithm excessively removes material and leads to
final solutions with low volume fraction

5Recall that B−1
f
�(ρ) is the gradient of functional f with respect to the metric induced by B. As such, Newton’s

method and its variations (such as the present framework) can be thought of as gradient descent algorithms with
respect to a variable metric defined by the (approximate) Hessian.

6There is the technical issue that L
2-projection on a subset of H

1(Ω) is not well-defined, which is why we defer
the exact outline of the two-metric projection method to the discrete setting where this issue does not arise.

90

section 4.8 where we describe the algorithm for the finite-dimensional optimization problem
obtained from the usual finite element approximation procedure. The intuition developed
in the preceding discussion carries over to the discrete setting.

4.5 Finite element approximation

We begin with describing the approximate “finite element” optimization problem, based
on a typical choice of discretization spaces, and establish the convergence of the corre-
sponding optimal solutions to a solution of the continuum problem (4.1) in the limit of
mesh refinement. Our result proves strong convergence of a subsequence of solutions, and
therefore rules out the possibility of numerical instabilities such as checkerboard patterns
observed in density-based methods. We remark that similar results are available for the
density-based restriction formulations (see for example [128, 127, 31]) and the proof is along
the same lines. Such convergence results are essential in justifying an overall optimization
approach where one first discretizes a well-posed continuum problem and then chooses an
algorithm to solve the resulting finite dimensional problem (this is the procedure adopted
in this work). Then, with the FE convergence result in hand, the only remaining task is
to analyze the convergence of the proposed optimization algorithms, which is discussed in
sections 4.7 and 4.8.

Consider partitioning of Ω into pairwise disjoint finite elements Th = {Ωe}l

e=1 with
characteristic mesh size h. Let Ah be the FE subspace of A based on this partition:

Ah =
�
ρ ∈ C

0(Ω) : ρ|Ωe ∈ P (Ωe),∀e = 1, . . . , l
�
∩ A (4.28)

where P (Ωe) is a space of polynomial (rational in the case of polygonal elements—see
section 5.1) functions defined on Ωe. Similarly, we define:

Vh =
�
u ∈ C

0(Ω)d : [u]
i
|Ωe ∈ P (Ωe),∀e = 1, . . . , l,∀i = 1, . . . , d

�
∩ V (4.29)

We also assume that the mesh Th is chosen in such a way that the transition from ΓD to
ΓN is properly aligned with the mesh. In practice, both density and displacement fields are
discretized with linear elements (e.g., linear triangles, bilinear quads or linearly-complete
convex polygons in two spatial dimensions). To avoid any ambiguity regarding the definition
of the FE partitions, we assume a regular refinement of the meshes such that the resulting
finite element spaces are ordered, e.g., Ah ⊇ Ah� whenever h ≤ h

�. We consider the limit
h → 0 to establish convergence of solutions under mesh refinement.

What is needed in the proof of convergence is the existence of an interpolation operator

91

Ih : V → Vh such that for all u ∈ V ∩H
k(Ω)d,

�Ih (u)− u�1 ≤ Ch
k−1 |u|

k
(4.30)

which in turn shows that Ihu → u as h → 0. Similarly, we need the mapping ih : A → Ah

for the design space such that ih (ρ) → ρ as h → 0. The construction of such interpolants
is standard in finite element approximation theory, see for example [34].

The approximate finite element problem, specialized to Tikhonov regularization, is de-
fined by

min
ρ∈Ah

J̃h(ρ) := Jh(ρ) +
β

2
|ρ|21 (4.31)

where Jh(ρ) := �(uρ,h) + λ
´

Ω ρdx and uρ,h is the solution to the Galerkin approximation of
the state equation given by

a(uh,vh; ρ) = �(vh), ∀vh ∈ Vh (4.32)

By the principle of minimum potential (cf. (3.5)), we can write

�(uρ,h) = −2 min
vh∈Vh

�
1

2
a(vh,vh; ρ)− �(vh)

�
= max

vh∈Vh

[2�(vh)− a(vh,vh; ρ)] (4.33)

From the above relation, it is easy to see that Vh ⊆ V implies �(uρ,h) ≤ �(uρ) for any given
ρ, and therefore

J̃h(ρ) ≤ J̃(ρ) (4.34)

that is, the finite approximation of the state equation leads to a smaller computed value of
the cost function for any density field.

Consider a sequence of FE partitions Th with h → 0 and let ρh be the optimal solution
to the associated finite element approximation (4.31), i.e., minimizer of J̃h in Ah. We first
show the sequence ρh is bounded in H

1(Ω). To see this, fix h0 in this sequence. If ρ̂h is the
minimizer of J̃ in Ah (there is no approximation of the displacement field involved here),
then

J̃(ρ̂h) ≤ J̃(ρh0) (4.35)

since ρh0 ∈ Ah0 ⊆ Ah. Now, from the definition of ρh and (4.34), we have J̃h(ρh) ≤ J̃h(ρ̂h) ≤
J̃(ρ̂h) and so

J̃h(ρh) ≤ J̃(ρh0) = J̃h0(ρh0) + [J(ρh0)− Jh0(ρh0)] := J̃h0(ρh0) + �h0 (4.36)

where �h0 is the finite element error in computing compliance of ρh0 on mesh Th0 . Since

92

(4.36) holds for all h ≤ h0, we conclude that

lim sup
h→0

J̃h(ρh) ≤ J̃h0(ρh0) + �h0 (4.37)

Both the compliance and volume terms in J̃h(ρh) are uniformly bounded, and so (4.37)
shows lim sup

h
|ρh|21 < ∞ . Thus the sequence ρh is bounded in H

1(Ω).
By Rellich’s theorem [74], we have convergence of a subsequence, again denoted by

ρh, strongly in L
2(Ω) and weakly in H

1(Ω) to some ρ
∗ ∈ A7. We next show that ρ

∗ is a
solution to continuum problem, thereby establishing the convergence of the FE approximate
problem. First note that by lower semi-continuity of the norm under weak convergence,

|ρ∗|21 ≤ lim inf
h

|ρh|21 (4.38)

Furthermore, to show convergence of uρh,h to uρ∗ in H
1(Ω)d, first note that Proposition 2.1

implies that up to a subsequence uρh
→ uρ∗ as h → 0. Moreover,

�uρ∗ − uρh,h�1 ≤ �uρ∗ − uρh
�1 + �uρh

− uρh,h�1

≤ �uρ∗ − uρh
�1 +

M

c
�uρh

− Ih(uρh
)�1 (4.39)

≤ �uρ∗ − uρh
�1 + Ĉh |uρh

|2

where the second inequality follows from Cea’s lemma [34] (here M and c denote the
continuity and ellipticity constants for the bilinear form) and last inequality follows from
estimate (4.30). Hence uρh,h → uρ∗ in H

1(Ω)d and so Jh(ρh) → J(ρ∗). Together with the
above inequality, we have

J̃(ρ∗) ≤ lim inf
h

J̃h(ρh) (4.40)

To establish optimality of ρ
∗, take any ρ ∈ Ah. The definition of ρh as the optimal solution

to (4.31) implies
J̃h(ρh) ≤ J̃h [ih(ρ)] (4.41)

Using a similar argument as above, we can pass (4.41) to the limit to show J̃(ρ∗) ≤ J̃(ρ).

4.6 The discrete problem

We proceed to obtain explicit expressions for the discrete problem (4.31) for a given finite
element partition Th. For each ρh ∈ Ah, we have the expansion ρh(x) =

�
m

k=1 [z]
k
Nk(x)

where z is the vector of nodal densities characterizing ρh and {Nk}m

k=1 the set of finite
7To see that ρ

∗ satisfies the bound constraints, as in the proof of Proposition 3.1, we can consider a subsequence
for which the convergence is pointwise.

93

element basis functions for Ah
8. The finite-dimensional space corresponding to Ah is simply

the closed cube [δρ, 1]m. Moreover, the vector form for the Tikhonov regularization term is

β

2
|ρh|21 =

1

2
z

T
Gz (4.42)

where G is the usual finite element matrix defined by [G]
k�

= β
´

Ω∇Nk · ∇N�dx, which
is positive semi-definite. Similarly, the volume term

´
Ω ρdx can be written as z

T
v where

[v]
k

=
´

Ω Nkdx.
With regard to state equation (4.32), we make one approximation in the energy bilinear

form9 by assuming that the density field has a constant value over each element, equal
to the centroidal value, in the bilinear form. If xe denotes the location of the centroid of
element Ωe, we replace each ρh(x) by10

l�

e=1

χΩe(x)ρh(xe) (4.43)

in the state equation. The use of piecewise element density is common practice in topology
optimization (cf. section 1.4) and makes the calculations and notation simpler. If {Ni}q

i=1

denotes the basis functions for the displacement field such that uh(x) =
�

q

i=1 [U]
i
Ni(x),

the vector form of (4.32) is given by

KU = F (4.44)

where the load vector [F]
i
=
´

ΓN
t ·Nids and the stiffness matrix, with the above approxi-

mation of density, is

[K]
ij

=

ˆ
Ω

ρ
p

h
C∇Ni : ∇Njdx =

l�

e=1

[ρh(xe)]
p

ˆ
Ωe

C∇Ni : ∇Njdx (4.45)

Let us define the matrix P whose (e, k)-entry is given by [P]
ek

= Nk(xe). Then

ρh(xe) =
m�

k=1

Nk(xe) [z]
k

=
m�

k=1

[P]
ek

[z]
k

= [Pz]
e

(4.46)

The vector Pz thus gives the vector of elemental density values. Returning to (4.45) and
denoting the element stiffness matrix by ke =

´
Ωe

C∇Ni : ∇Njdx, we have the simplified
8Naturally we assume that the basis functions are such that for any z ∈ [δρ, 1]m, the associated density field

takes values in [δρ, 1]. This is satisfied, for example, if 0 ≤ Nk ≤ 1 for all k, which is the case for linear convex
n-gons [162].

9This is a departure from the previous section but it can be accounted for in the convergence analysis.
10As before, χA is the characteristic function associated with set A.

94

expression for the global stiffness matrix

K(z) =
l�

e=1

([Pz]
e
)p

ke (4.47)

The summation effectively represents the assembly routine in practice. We note the con-
tinuity and ellipticity of the energy bilinear form and non-degeneracy of the finite element
partition imply that the eigenvalues of K(z) are bounded below by ch and above by Mh

(which depend on the mesh size, cf. chapter 9 of [34]) for all admissible density vectors
z ∈ [δρ, 1]m.

The discrete optimization problem (4.31) can now be equivalently written as (with a
slight abuse of notation for J and J̃)

min
z∈[δρ,1]m

J̃(z) := J(z) +
1

2
z

T
Gz (4.48)

where
J(z) = F

T
U(z) + λz

T
v (4.49)

and U(z) is the solution to K(z)U = F. Observe that matrices P and G, the vector v, as
well as the element stiffness matrices ke and load vector F are all fixed and do not change in
the course of optimization. Thus they can be computed once in the beginning and stored.

The gradient of J with respect to the nodal densities z can readily computed as

∂kJ(z) = −U(z)T (∂kK)U(z) + λ[v]
k

(4.50)

The expression for ∂kK can be obtained from (4.47). Defining the vector of strain energy
densities [E(z)]

e
= p [Pz]p−1

e
U(z)T

keU(z), we have

∇J(z) = −P
T
E(z) + λv (4.51)

With the first order gradient information in hand, we can find the reciprocal approxima-
tion11 of compliance about point y as

Jrec(z;y) ≡ J(y) + λ (z− y)T
v +

m�

k=1

�
[y]

k

[z]
k

�
([z]

k
− [y]

k
)
�
−P

T
E(y)

�
k

(4.52)

The Hessian of Jrec(z;y), evaluated at z = y, is a diagonal matrix with entries

hk(y) = ∂kkJrec(y;y) =
2

[y]
k

�
P

T
E(y)

�
k
, k = 1, . . . ,m (4.53)

11The reciprocal approximation to f(x) at point y is given by f(y) +
Pm

k=1

ˆ
x
−1
k yk (xk − yk) ∂kf(y)

˜

95

The entries of the vector E(y) are non-negative for all admissible nodal densities but can
be zero and therefore Hessian of Jrec(z;y) is only positive semi-definite.

4.7 Algorithms for the discrete problem

We begin with the generalization of the forward-backward algorithm for solving the discrete
problem (4.48) before discussing the two-metric projection variation. As in section 4.2, we
consider a splitting algorithm with iterations of the form

zn+1 = argmin
zL

n≤z≤zU
n

QJ(z; zn, τn) +
1

2
z

T
Gz (4.54)

where, compared to (4.48), the regularization term is unchanged while J is replaced by the
following local quadratic model around current iterate zn

QJ(z; zn, τn) = J(zn) + (z− zn)T ∇J(zn) +
1

2τn

�z− zn�2
Hn

(4.55)

The move limit constraint is accounted for through the bounds

�
z

L
n

�
k

= max (δρ, [zn]
k
−mn) ,

�
z

U
n

�
k

= min (1, [zn]
k
+ mn) , k = 1, . . . ,m (4.56)

In order to embed the curvature information from the reciprocal approximation (4.52) in
the quadratic model, we choose

Hn = diag(ĥ1(zn), . . . , ĥm(zn)) (4.57)

where ĥk(zn) ≡ max(hk(zn), δE) and, as defined before, 0 < δE � λ is a small positive
constant. This modification not only ensures that Hn is positive definite but also that the
eigenvalues of Hn are uniformly bounded above and below, a condition that is useful for
the proof of convergence of the algorithm [26]. Observe that for all z ∈ [δρ, 1]m,

0 ≤ hk(z) ≤ 2δ−1
ρ
�E(z)�∞ ≤ 2pδ−p−1

ρ
Mh �U(z)�2 ≤ 2pδ−p−1

ρ
Mhc

−2
h
�F�2 (4.58)

where we used the fact that U
T
keU ≤ δ

−p

ρ
U

T
K(z)U ≤ δ

−p

ρ
Mh �U(z)�2 and that the

eigenvalues of K
−1 are bounded above by c

−1
h

.
The step size parameter τn in (4.54) must be sufficiently small so that the quadratic

model is a conservative approximation and majorizes J . If τn > 0 is chosen so that the
update zn+1 satisfies

J(zn+1) ≤ QJ(zn+1; zn, τn) (4.59)

96

then one can show [26]

J̃(zn)− J̃(zn+1) ≥
1

2τn

�zn − zn+1�2
Hn

(4.60)

If zn is a stationary point of J̃ , that is (z − zn)T∇J̃(zn) ≥ 0 for all z ∈ [δρ, 1]m, then
zn+1 = zn for all τn > 0. To see this, we write (4.54) equivalently as

min
zL

n≤z≤zU
n

(z− zn)T∇J̃(zn) +
1

2τn

�z− zn�2
Hn+τnG

(4.61)

Since Hn + τnG is positive definite and zn is a stationary point, the objective function is
strictly positive for all z ∈

�
z

L
n
, z

U
n

�
, z �= zn while it vanishes at z = zn, thereby establishing

optimality of zn for subproblem (4.54). Otherwise, if zn is not a stationary point of J̃ , then
zn+1 �= zn for sufficiently small τn, and (4.60) shows that there is a decrease in the objective
function. This latter fact shows that the algorithm is monotonically decreasing.

A step size parameter satisfying (4.59) is guaranteed to exist if J has a Lipschitz gradient,
that is, for some positive constant L,

�∇J(z)−∇J(y)� ≤ L �z− y� , ∀z,y ∈ dom(J) (4.62)

One can show12
J(z) ≤ QJ(z; zn; τn) for all z ∈ [δρ, 1]m if the step size satisfies

τ
−1
n

Hn > LI (4.63)

in the sense of quadratic forms, i.e., τ
−1
n

Hn−LI is positive definite [26]. We verify that the
gradient of compliance ∇J given by (4.51) is indeed Lipschitz:

�∇J(z)−∇J(y)� = p �E(z)− E(y)�

≤ p

�
l�

e=1

�
[Pz]p−1

e
δ
−p

ρ
Mh �U(z)�2 − [Py]p−1

e
δ
−p

ρ
Mh �U(y)�2�2

�1/2

≤ pδ
−p

ρ
Mh

�
l�

e=1

�
[Pz]

e
c
−2
h
�F�2 − [Py]

e
c
−2
h
�F�2�2

�1/2

(4.64)

≤ pδ
−p

ρ
Mhc

−2
h
�F�2 �Pz−Py�

≤ pδ
−p

ρ
Mhc

−2
h
�F�2 �z− y�

The step size τn can be selected with a priori knowledge of the Lipschitz constant L but
this may be too conservative and may slow down the convergence of the algorithm. Instead,
in each iteration, one can gradually decrease the step size via a backtracking routine until

12This is in fact stronger than (4.59)

97

zn+1 satisfies (4.59). An alternative, possibly weaker, descent condition is the Armijo rule
which requires that for some constant 0 < ν < 1, the update satisfies

J̃(zn)− J̃(zn+1) ≥ ν (zn − zn+1)
T ∇J̃(zn) (4.65)

Though the implementation of such step size routines is straightforward, due to the high
cost of function evaluations for the compliance problem (which requires solving the state
equation to compute the value of J), the number of trials in satisfying the descent condition
must be limited. Therefore, there is a tradeoff between attempting to choose larger step sizes
to speed up convergence and the cost associated with the selection routine. As shown in the
next section, we have found that fixing τn = 1, which eliminates the cost of backtracking
routine, generally leads to a stable and convergent algorithm. In some cases, however, the
overall cost can be reduced by using larger step sizes.

Ignoring constant terms in zn and rearranging, we can write (4.54) equivalently as

zn+1 = argmin
zL

n≤z≤zU
n

��z− z
∗
n+1

��2

Hn+τnG
(4.66)

where the interim update z
∗
n+1 is the given by

z
∗
n+1 = zn − τn (Hn + τnG)−1

�
∇J̃(zn)

�
(4.67)

With the appropriate choice of step size (satisfying any one of the conditions (4.59), (4.63),
or (4.65)) and boundedness of Hn, it can be shown that every limit point of the the sequence
zn generated by the algorithm is a critical point of J̃ . For the particular case of quadratic
regularization, it is evident from (4.67) that the algorithm reduces to the so-called scaled
gradient projection algorithm, and the convergence proof can be found in [26]. A more
general proof can be found in the review paper on proximal splitting method by [18] though
the metric associated with the proximal term, i.e., �z− zn�2

Hn+τnG
in (4.54), is fixed there.

As seen from (4.54) or (4.66), the forward-backward algorithm requires the solution to
a sparse, strictly convex quadratic program subject to simple bound constraints which can
be efficiently solved using a variety of methods, e.g., the active set method. Alternatively,
the projection of z

∗
n+1 can be recast as a bound constrained sparse least squares problem

and solved using algorithms in [2].

4.8 Two-metric projection variation

Next we discuss a variation of the splitting algorithm that simplifies the projection step
(4.66) by augmenting the interim density (4.67). More specifically, we adopt a variant of
the two-metric projection method [25, 79], in which the norm in (4.66) is replaced by the

98

usual Euclidean norm, and the scaling matrix Hn + τnG in the interim step (4.67) is made
diagonal with respect to the active components of zn.

Let In = I
L
n
∪ I

U
n

denote the set of active constraints where

I
L
n

=
�

k : [zn]
k
≤ δρ + � and

�
∇J̃(zn)

�

k

> 0
�

(4.68)

I
U
n

=
�

k : [zn]
k
≥ 1− � and

�
∇J̃(zn)

�

k

< 0
�

(4.69)

Here � is an algorithmic parameter (we fix it at 10−3 for the numerical results) that enlarges
the set of active constraints in order to avoid the discontinuities that may otherwise arise
[25]. Then

[Dn]
ij
≡





0 if i �= j and i ∈ In or j ∈ In

[Hn + τnG]
ij

otherwise
(4.70)

is a scaling matrix formed from Hn + τnG that is diagonal with respect to In and therefore
removes the coupling between the active and free constraints. The operation in (4.70)
essentially consists of zeroing out all the off-diagonal entries of Hn + τnG for the active
components. Note that any other positive matrix with the same structure as Dn can be
used. The new interim density is then defined as

z
∗
n+1 = zn − τnD

−1
n

�
∇J̃(zn)

�
(4.71)

and the next iterate is given by the Euclidian projection of this interim density onto the
constraint set

zn+1 = argmin
zL

n≤z≤zU
n

��z− z
∗
n+1

��2 (4.72)

which has an explicit solution

[zn+1]k = min
�
max

��
z

L
n

�
k
,
�
z
∗
n+1

�
k

�
,
�
z

U
n

�
k

�
, k = 1, . . . ,m (4.73)

Since D
−1
n
∇J̃(zn) can be viewed as the gradient of J̃ with respect to the metric induced by

Dn, we can see that the present algorithm consisting of (4.71) and (4.72) utilizes two sep-
arate metrics for differentiation and projection operations. The significant computational
advantage of carrying out the projection step with respect to the Euclidian norm is due to
the particular separable structure of the constraint set. Compared to the forward-backward
algorithm discussed before, at the cost of modifying the scaling matrix, the overhead asso-
ciated with solving the quadratic program (cf. (4.66)) is eliminated.

As in the previous algorithm, one can show that zn is a critical point of J̃ if and only if
zn+1 = zn for all τn > 0. Similarly, if zn is not a stationary point, then for a sufficiently small
step size, the next iterate decreases the value of the cost function, i.e., J̃(zn+1) < J̃(zn).

99

The choice of τn can be again obtained from an Amijo-type condition along the projection
arc (cf. [25]), namely,

J̃(zn)− J̃(zn+1) ≥ νd
T

n
∇J̃(zn) (4.74)

where the direction vector dn is given by

[dn]
k

=





[zn]

k
− [zn+1]k k ∈ In�

τnD
−1
n
∇J̃(zn)

�

k

k /∈ In

(4.75)

In the next section, we will compare the performance of the forward-backward algorithm
consisting of (4.66) and (4.67) with the two-metric projection consisting of (4.71) and (4.73).

4.9 Numerical investigations

The model compliance minimization problem adopted here is the benchmark MBB beam
problem, whose domain geometry and prescribed loading and boundary conditions are
shown in Figure 3.2. Using appropriate boundary conditions, the symmetry of the problem
is exploited to pose and solve the state equation only on half of the extended domain. The
constituent material C is assumed to be isotropic with unit Young’s modulus and Poisson
ratio of 0.3. The volume penalty parameter is λ = 200/ |Ω| where |Ω| is the area of the
extended design domain. For all the results in this section, the lower bound on the density
is set to δρ = 10−3 and, unless otherwise stated, the SIMP penalty exponent is fixed at
p = 3. A simple backtracking algorithm is used to determine the value of the step size
parameter. Given constants τ0 > 0 and 0 < σ < 1, the step size parameter in the nth
iteration is given by

τn = σ
knτ0 (4.76)

where kn is the smallest non-negative integer such that τn satisfies (4.65) or (4.74). In
practice, this means that we begin with the initial step size τ0 and reduce it by a factor
of σ until descent conditions are satisfied. The descent parameter is set to ν = 10−3

and the backtracking parameter is σ = 0.6. Note that larger ν leads to a more severe
descent requirement and subsequently smaller τn. Similarly, smaller σ reduces the step size
parameter by a larger factor which can decrease the number of backtracking step. Note,
however, that using small step sizes may lead to slow convergence of the algorithm.

Since each backtracking step involves evaluating the cost functional and therefore solving
the state equation, as a measure of computational cost, we keep track of the total number
of backtracking steps (i.e.,

�
n
kn) in addition to the total number of iterations. The

100

algorithm Hn τ0 # it. # bt. �(uρ) R(ρ) V (ρ) J̃(ρ) E1 E2

FBS identity 1 316 0 100.019 8.553 0.5120 210.965 9.962e-6 9.943e-5
FBS identity 2 215 154 100.093 8.537 0.5114 210.914 9.178e-6 5.812e-5
FBS reciprocal 1 186 0 99.937 8.594 0.5125 211.032 9.769e-6 9.363e-5
FBS reciprocal 2 91 39 100.095 8.568 0.5117 211.008 4.926e-6 9.746e-5

TMP identity 1 330 0 100.076 8.533 0.5117 210.951 9.958e-6 9.973e-5
TMP identity 2 151 78 100.060 8.556 0.5116 210.938 9.639e-6 5.900e-5
TMP reciprocal 1 179 0 99.943 8.592 0.5125 211.031 9.878e-6 9.453e-5
TMP reciprocal 2 85 34 100.078 8.578 0.5117 210.999 9.043e-6 8.074e-5

Table 4.1: Summary of influence of various factors in the algorithm for the MBB problem with
β = 0.06. The acronym FBS designates the forward-backward algorithm and TMP refers to the
two-metric projection algorithm. Forth and fifth columns show the total number of iterations and
backtracking steps. The remaining columns show the final value of compliance �(uρ), regularization
term R(ρ), volume fraction V (ρ) = |Ω|−1 ´

Ω ρdx, the regularized objective J̃(ρ), the relative change
in cost function value E1 and the error in satisfaction of the first order conditions of optimality
E2

Figure 4.4: Final density field for the MBB problem and β = 0.06 plotted in grayscale. This
result was generated using the TMP algorithm with τ0 = 2 and mn = 1

convergence criteria adopted here is based on the relative decrease in the objective function

E1 =

��J̃(zn+1)− J̃(zn)
��

��J̃(zn)
�� ≤ �1 (4.77)

and the satisfaction of the first order conditions of optimality according to

E2 =

��Π[zn+1 −∇J̃(zn+1)]− zn+1

��
��zn+1

�� ≤ �2 (4.78)

Here Π is the Euclidian projection onto the constraint set [δρ, 1]m defined by [Π(y)]
i

=

min (max (δρ, [y]
i
) , 1). Unless otherwise stated, we have selected �1 = 10−5 and �2 = 10−4.

We begin with the investigation of the behavior of two forms of the algorithm with
different choice of parameters discussed in the previous section. In particular, we compare
the forward-backward algorithm with the two-metric projection method and investigate the
influence of the Hessian approximation. In addition to the choice of Hn defined by (4.57),
we also consider a fixed scaling of the identity matrix

101

Hn ≡ αI, n = 1, 2, . . . (4.79)

for which the algorithm becomes the basic forward-backward algorithm with the same
proximal term in every iteration. The scaling coefficient α is set to 4λA where A is the area
of an element. This choice is made so that the step size parameter τn is the same order of
magnitude as with reciprocal Hessian. The other parameter investigated here is the initial
step size parameter τ0 and we consider two choices τ0 = 1 and τ0 = 2. In all cases, the
move limit is fixed at mn = 1 for all n and thus An = A.

The model problem is the MBB beam discretized with a grid of 300× 50 bilinear quad
elements and Tikhonov regularization parameter is set to β = 0.06. The initial guess in
all cases is taken to be uniform density field ρh ≡ 1/2. All the possible combinations of
the above choices produce the same final topology, similar to the representative solution
shown in Figure 4.4. This shows the framework exhibits stable convergence to the same
final solution and is relatively insensitive to various choices of algorithmic parameters for
this level of regularization. What is different, however, is the speed of convergence and the
required computational effort as measured by the number of the backtracking steps, total
number of iterations, and cost per iteration. The results are summarized in Table 4.1.

First we note that the initial step size τ0 = 1 does not lead to any backtracking steps
which means that in each iteration the step size parameter is τn = 1. By contrast, using
the larger initial step size parameter τ0 = 2 requires backtracking steps to satisfy the
descent condition but substantially reduces the total number of iterations. Moreover, in all
cases, the constant Hessian (4.79) requires nearly twice as many iterations and backtracking
steps compared to the “reciprocal” Hessian. This highlights the fact that embedding the
reciprocal approximation of compliance does indeed lead to faster convergence. Overall, the
best performance is obtained using the reciprocal approximation and larger initial step size
parameter.

For this problem, the forward-backward algorithm and the two-metric projection method
roughly have the same number of iterations and backtracking steps. However, the cost per
iteration for the two-metric projection is significantly lower since the projection step is
computationally trivial. Therefore, the two-metric projection is more efficient.

Next we investigate the performance of the algorithm for a smaller value of the regular-
ization parameter which is expected to produce more complex topologies. For the next set
of results, we set β = 0.01. In all cases considered, the forward-backward and the two-metric
projection algorithms both give identical final topologies with roughly the same number of
iterations and so we only report the results for the two-metric projection algorithm. Also,
as demonstrated by the first study, the use of reciprocal approximation leads to better and
faster convergence of the algorithm so we limit the remaining results to the “reciprocal”

102

(c)

(b)

(a)

Figure 4.5: Final densities plotted in grayscale for the MBB problem and β = 0.01. The results
are generated using the TMP algorithm with (a) τ0 = 2, mn = 1 (b) τ0 = 1, mn = 1 (c) τ0 = 1,
mn = 0.03

Hn. The tolerance level �2 = 10−4 for satisfaction of the optimality condition is relatively
stringent in this case due to the complexity of final designs (compared to β = 0.06) and
leads to a large number of iterations with little change in density near the optimum. We
therefore increase the tolerance to �2 = 2×10−4 which gives nearly identical final topologies
but with fewer iterations.

We examine the influence of the step size parameter and move limit, which unlike the
previous case of large regularization parameter, can lead to different final solutions. We
consider two possible initial step size parameters τ0 = 1 and τ0 = 2, as well as two choices
for the move limit mn ≡ 1 and mn ≡ 0.03. Here we are using a fixed move limit mn for
all iteration n. It may be possible to devise a strategy to increase mn in the later stages
of optimization to improve convergence. The results are summarized in Table 4.2 and the
final solutions are shown in Figure 4.5.

First note that with no move limit constraints, i.e., mn = 1, the final solution with
the more aggressive choice of initial step size parameter (τ0 = 2) is less complex and has
fewer members compared to τ0 = 1, which as before does not require any backtracking
steps. Note, however, that the more aggressive scheme in fact requires more iterations to
converge. In the presence of move limits, there is no backtracking step with either choice
of step size but the larger step size does reduce the total number of iterations. The final
topologies are identical and have more members compared to the solutions obtained without
the move limits. It is interesting to note that the overall iteration count is lowest for τ0 = 2

and mn = 0.03 despite the limit on the change in density in each iteration. As noted earlier,
the use of move limits can stabilize the convergence of the topology optimization problem.

103

(a)

(b)

Figure 4.6: Final densities plotted in grayscale for the MBB problem with β = 0.06 and SIMP
penalty exponent (a) p = 4 (b) p = 5

The overall trend that the move aggressive choice of parameters produce less complex
final solutions is due to the fact that member formation occurs early on in the algorithm.
The most aggressive algorithm (τ0 = 2, mn = 1) still produces the best solution as measured
by J̃ while the solution obtained enforcing the move limit mn = 0.03 has the lowest value
of compliance J (due to distribution of members and slightly higher volume fraction).

We note that aside from the higher degree of complexity, the optimal densities for
β = 0.01 contain fewer intermediate values compared to the solution for β = 0.06. One
measure of discreteness used in [141] is given by

M(ρ) =
1

|Ω|

ˆ
Ω

4 (ρ− δρ) (1− ρ) dx (4.80)

which is equal to zero if ρ takes only values of δρ and 1. For the solutions shown in Figure
4.5, M(ρ) is equal to 6.98%, 7.64% and 8.90% from top to bottom, respectively. In contrast,
the optimal density for β = 0.06 (cf. Figure 4.4) has a discreteness measure of 15.0%. By
increasing the value of the SIMP exponent p, the optimal densities can be made more
discrete. The results for β = 0.06 using p = 4 and p = 5 are shown in Figure 4.6. While the
optimal topologies are nearly identical to that the solution for p = 3, the discrete measure
is lower to 13.1% and 12.1%, respectively. Observe, however, that the layer of intermediate
densities around the boundary cannot be completely eliminated even when p is increase to
a very large value since the Tikhonov regularizer is singular in the discontinuous limit of
density.

As shown in the previous section, the optimal solutions to the discrete problem converge
to an optimal solution of the continuum problem as the finite element mesh is refined.
We next demonstrate numerically that solutions produced by the present optimization
algorithms appear to be stable with respect to mesh refinement. We do this for the case of
β = 0.01 using the two-metric projection algorithm with τn ≡ 1 where the final topology is

104

algorithm τ0 mn # it. # bt. �(uρ) R(ρ) V (ρ) J̃(ρ) E1 E2

TMP 1 1 138 0 102.306 4.669 0.4740 201.779 6.989e-6 1.978e-5
TMP 2 1 169 62 102.716 4.075 0.4720 201.189 9.780e-6 1.679e-5
TMP 1 0.03 153 0 100.738 5.185 0.4855 203.014 7.217e-6 1.998e-4
TMP 2 0.03 98 0 100.568 5.173 0.4862 202.970 9.795e-6 1.566e-4

Table 4.2: Summary of the results for the MBB beam problem with β = 0.01

relatively complex and the algorithm is expected to be more sensitive. As shown in Figure
4.7, we solve the problem using finer grids consisting of 600× 100 and 1200× 200 bilinear
square elements. The final density distribution is nearly identical indicating convergence of
optimal densities in the L

p-norm.
We conclude this section with design of a compliant force inverter for which the cost

functional is no longer self-adjoint and therefore, unlike compliance, the gradient field may
take both negative and positive values in the domain. The objective of mechanism design
is to identify a structure that maximizes the force exerted on a workpiece under the action
of an external actuator. As illustrated in Figure 4.8, the force inverter transfers the input
force of the actuator to a force at the prescribed output location in the opposite direction.
We refer to the section 1.6 for the formulation of this problem. The cost functional, in the
discrete setting, is given by

J(z) = −L
T
U(z) + λz

T
v (4.81)

where [L]
i

=
´

ΓS1
k1 · Nids and U(z) solves and, as before, U(z) is the solution to

[K(z) + Ks]U = F. Here Ks is the stiffness matrix associated with linear springs k1

and k2. The gradient of J can be readily computed as ∇J(z) = −P
T
E(z) + λv where

�
E(z)

�
e
= p [Pz]p−1

e
U(z)T

keU(z) (4.82)

and U(z) is the solution to the adjoint problem

[K(z) + Ks]U = L (4.83)

It is evident that ∇J can take both positive and negative values. The main implication of
this for the proposed algorithm is that the reciprocal approximation of the cost functional is
not convex and so we cannot use its Hessian directly in the proximal term of the quadratic
model. A simple alternative that we tested is to use (4.57) with the diagonal entries modified
as

hk(y) =

����
2

[y]
k

�
P

T
E(y)

�
k

���� (4.84)

Such an approximation has been previously explored by [83, 84] and is similar in spirit
to approximations in Svanberg’s Method of Moving Asymptotes [153]. We defer a more

105

(b)

(a)

Figure 4.7: Results of the mesh refinement study with (a) 600× 100 (b) 1200× 200 elements.

detailed study of suitable approximation of the Hessian for general problems to our future
work which, as illustrated here, must be based on a priori knowledge of the cost functional.

The compliant mechanism design is known to be more prone to getting trapped in
suboptimal local minima. One such local minimum is ρh ≡ δρ where the entire structure
is eliminated and virtually no work is transferred between the input actuator and the
output location. For this case, the value of the cost functional is roughly zero since there
is no density variation and minimum volume of material. To avoid converging to this
solution, we use a smaller step size parameter τn = 0.1. We also begin with small volume
penalty parameter of λ = 0.02 which is then increased to λ = 0.15 once the value of cost
functional reaches a negative value. This point roughly corresponds to an intermediate
density distribution in which the structure connects the input force to the output location.
The final solution for β = 3 × 10−4, a grid of 160 × 160 quadrilateral elements, and the
two-metric projection algorithm is shown in Figure 4.8. This solution required a total of
140 iterations.

4.10 Discussion and closing remarks

Since the splitting algorithm presented here is a first-order method, it is also appropriate
to compare its performance to the gradient projection algorithm, which is among the most
basic first-order methods for solving constrained optimization problems. The next iterate
in the gradient projection method is simply the projection of the unconstrained gradient
descent step onto the admissible space. In the absence of move limits and in the discrete
setting, we have the following update expression

zn+1 = argmin
z∈[δρ,1]m

���z−
�
zn −

τn

α
∇J̃(zn)

����
2

(4.85)

where the scaling parameter α = 4λA is defined as before in order to allow for a direct
comparison with the forward-backward splitting in the case Hn = αI. We determine the

106

Ω

k2 k1t

h = w = 4

Figure 4.8: The design domain and boundary conditions for the force inverter problem (left) and
the optimal topology (right). For this example, �k1� = �k2�

step size parameter τn in each iteration using the backtracking procedure (4.76) based on
the Armijo-type descent condition (4.65). Note that due to the simple structure of the
constraint set, computing the gradient ∇J̃ constitutes the main computational cost of the
gradient projection algorithm in each iteration. Table 4.3 summarizes the results for the
MBB beam problem with β = 0.06 for two different choice of initial step size parameter τ0.
First observe that the step sizes are smaller compared to the forward-backward algorithm,
a fact that can be seen from the equivalent expression for (4.85) given by

zn+1 = argmin
z∈[δρ,1]m

J̃(zn) + (z− zn)T ∇J̃(zn) +
1

2τn

�z− zn�2
αI

(4.86)

This shows that in each iteration, we construct a quadratic model for the composite objec-
tive J̃ . By constrast, the quadratic model in (4.54) is only used for J and the regularization
term appears exactly. Since ∇J̃ has a larger Lipschitz constant compared to ∇J , it is there-
fore expected that τn must be smaller to ensure descent. It is also instructive to recall the
informal derivation of the forward-backward algorithm in section 3.3 where the main dif-
ference with the gradient projection algorithm was the use of a semi-implicit (in place of
an explicit) temporal discertization of the gradient flow equation. Note that the gradient
projection algorithm converged to the same solution as before (cf. Figure 4.4) though in
the case of τ0 = 0.25, the convergence was too slow and we terminated the algorithm after
1,000 iterations.

Since the Method of Moving Asymptotes [153] is the most widely used algorithm in the
topology optimization literature, we also tested its performance using the same MBB prob-
lem. We followed the common practice and used the algorithm as a black-box optimization
routine. In particular, we provided the algorithm with the gradient of composite objective
J̃ and did not make any changes to the open source code provided by Svangberg13. MMA

13We remark that with a few exceptions, MMA is used in the same way by Borrvall in a review paper [28] where

107

algorithm τ0 # it. # bt. J̃(ρ) E2

GP 0.25 1000* 0 210.74 1.362e-4
GP 0.5 568 79 210.68 8.939e-5

MMA – 1000* 0 213.39 1.913e-4

Table 4.3: Summary of the results for gradient projection and MMA algorithm for the MBB
beam problem with β = 0.06. The asterisk indicates that the maximum allowed iteration count of
1,000 was reached before the convergence criteria was met

internally generates a separable convex approximation to J̃ using reciprocal-type expan-
sions with appropriately defined and updated asymptotes. Though such approximations
are suitable for the structural term, they may be inaccurate for the Tikhonov regularizer
and the composite objective. As shown in Table 4.3, MMA did not converge (according to
the convergence criteria described earlier) in 1,000 iterations before it was terminated. Fur-
thermore, not only was the final value of the objective function larger than that obtained by
gradient projection or either splitting algorithm, the final density was topologically different
from the solution shown in the Figure 4.4.

The fact that the present splitting framework outperforms MMA should not be sur-
prising. Unlike MMA, which is far more general and can handle a much broader class of
problems [154], the present algorithm is tailored to the specific structure of (4.1) (or (4.48)
in the discrete) and provides an ideal treatment of its constituents. First, the composite
objective is the sum of two terms and algorithm deals with each term separately. The reg-
ularization term R is represented with a high degree fidelity since the resulting subproblem
with its simple structure can be solved efficiently. The structural term J , while expensive
to compute, contains many local minima and very fast convergence usually at best reaches
a suboptimal local minimum. Moreover, J tends to be rather flat near stationary points
and so one should not require a high level accuracy for satisfaction of the first order con-
ditions of optimality. As a side remark, these characteristics indicate that second order
methods do not pay off given their significantly higher computational cost per iteration14.
The other drawback of using exact second order information is the storage requirements,
quadratic in the size of the problem, which can be prohibitive for large-scale problems such
as those encountered in practical applications of topology optimization. Therefore, first
order methods are better suited for minimizing J .

In the splitting algorithm proposed here, we use additional knowledge about the behavior
of J to construct accurate approximations using only first order information and minimal
storage requirements. Furthermore, the two-metric approach allows for a computationally
efficient treatment of the constraint set. In fact, the proposed approach is aligned with

he compares various regularizations schemes, including Tikhonov regularization.
14Computing exact Hessian information is especially expensive for PDE-constrained problem since every Hessian-

vector product requires the solution to an adjoint system.

108

the renewed interest in first-order convex optimization algorithms for solving large-scale
inverse problems in signal recovery, statistical estimation, and machine learning [176, 53,
33, 69]. Our rather restricted and narrow comparison with MMA is meant to motivate the
virtue of developing such tailored algorithms. In the topology optimization community,
frequently when new formulations or new physical problems are presented, the resulting
numerical optimization problems are solved using blackbox algorithms. As a result, not
only is the computational performance frequently poor but also the quality of the final
solutions, depending on the choice of algorithmic parameters or continuation schemes, may
be adversely affected. This shows that, aside from efficiency, robustness is also a major
issue. Although the extremely high sensitivity to parameters to a large extent is intrinsic
to the size, nonconvexity and nonsmoothness of optimal shape problems, we emphasize
that it should be minimized as much as possible. Developing an appropriately-designed
optimization algorithm that fits the structure of the problem at hand can be key to achieving
this.

109

Chapter 5

Discretizations Based on Polygonal
Finite Elements

For all the numerical examples presented in this thesis, the same computational mesh is
used to define the discretization of the design field (e.g., densities or implicit functions) and
the response field associated with the governing state equation (e.g., displacements). This
approach is advantageous from a practical point of view since one only needs to keep track of
the information for a single mesh despite the fact that (at least) two independent fields are
present in the problem. However, it was mentioned in chapter 1 that this procedure can lead
to certain numerical instabilities, most notably the appearance of checkerboard patterns in
the optimal solutions to the compliance minimization problem. It is well-known that lower-
order Lagrangian elements (e.g., linear triangles and bilinear quadrilaterals in two spatial
dimensions), when used for the discretization of displacements, produce spurious minimum
compliance designs in the absence of any regularization of the density field [62, 91, 142].

The appearance of these numerical instabilities, akin to those plaguing some finite el-
ement discretizations of mixed variational problems, is indicative of inadequate or poor
approximation characteristics of the chosen spaces. In other words, they are associated
with the poor numerical modeling of the response of the design. For example, the checker-
board pattern has an artificially high stiffness1 when modeled by bilinear quadrilateral
elements and therefore is economical in the optimization process in stiffness problems [62].
Figure 5.1 shows MBB beam solutions using piecewise constant discretization of the den-
sity field (with no additional restriction imposed) for different levels of mesh refinement.
For the solutions on the left column, the displacement field was discretized using bilinear
quadrilateral elements while regular hexagonal Wachspress elements (see section 5.1) were
used for the middle column. For the quad mesh, the spurious checkerboard patterns are
present for all meshes indicating the problem is not resolved with mesh refinement. By
contrast, the polygonal solutions are free of such anomalies. This can be attributed to
the fact that fine-scale patterns in a hexagonal tessellation, when modeled by Wachspress
elements, are not artificially stiff. In [161], the numerical (homogenized) stiffness of some
possible patterns were computed and shown to be close to the stiffness of penalized ho-
mogeneous distribution of material. The MBB solutions obtained from an unstructured
polygonal discretization are also checkerboard-free as shown in the right column of Figure

1Physically, a checkerboard patch should have zero stiffness since it consists of eccentric point connections.

110

Figure 5.1: The solutions to the MBB beam problem using structured quadrilateral (left) struc-
tured hexagonal (middle) and unstructured polygonal (right) meshes

5.1. These observation serve as a motivation to study the use of polygonal finite elements
as means to discretize the topology optimization problem. As discussed later, the chosen
isoparametric formulation is a natural extension of standard linear triangles and bilinear
quadrilaterals to all convex n-gons.

It is important to emphasize that the regularization mechanism in the various restriction
formulations discussed so far in this thesis can eliminate the appearance of the fine-scale
instabilities provided that the mesh is sufficiently refined. For example, in the density
filtering formulation, the most rapid variation of an admissible density function is limited
by the radius (support size) of the filtering kernel. Checkerboard or similar patterns (e.g.,
islands and layers in the case of piecewise linear density discretization) are excluded if the
mesh resolves this length scale. Similarly, the norm of the density gradient or its total
variation can be made arbitrarily large for such grid-scale oscillations by refining the mesh.
However, given the fact that the stabilities are related to poor approximation of the state
equation, there remains some interest in obtaining stable finite element formulations without
the need for imposing any further constraints on the design field. We remark that for certain
topology optimization problems arising in fluid mechanics (see section 5.6 for examples),
the original continuum problem is well-posed and so there is no need for regularization of
design field. Yet an appropriate discretization of the fluid flow equations must be chosen
to ensure accurate analysis of the design. Certain mixed formulations, for example, are
known to yield poor approximations of the velocity field (due to the so-called locking
phenomenon) and incorrect pressure field (due to the presence of spurious modes) and
are therefore not reliable for use in optimization. We show by means of numerical examples
and investigation of the so-called Babuska-Brezzi condition that a stable mixed formulation
for incompressible Stokes equation can be obtained using polygonal finite elements. In
summary, it is advantageous in topology optimization (or more broadly speaking, PDE-

111

Figure 5.2: Solutions to the Michell cantilever beam problem based on (a) 10,000 polygonal ele-
ments and (b) 10,220 quadratic triangular elements. Both meshes are constructed to be symmetric
about the horizontal axis

constrained optimization problems) to use a numerical method that best suits the physics
of the problem in order to compute the response of the candidate designs as accurately
and efficiently as possible. The use of polygonal discretizations, in this regard, seems to be
appropriate for certain two-dimensional problems in solid and fluid mechanics problems.

We close this section with another observation regarding the influence of mesh geometry
in the present context. In topology optimization literature, uniform structured meshes are
often used since they reduce the computational cost associated with element calculations.
As discussed in the appendix, when using an unstructured mesh, the invariant quantities
such as the element stiffness matrices and the global stiffness matrix connectivity can be
computed once and stored for use in subsequent optimization iterations, which in turn
eliminates the overhead associated with repeated element calculations.

A problem less often noted is that the constrained geometry of structured meshes, in
certain settings, can lead to mesh-dependent sub-optimal designs. For example, in [127], it
is pointed out for the perimeter constraint formulation, a straightforward calculation of the
total variation of density with a piecewise constant discretization on a regular grid “will en-
courage the structural edges to be parallel with the FE-edges” and thus “the method suffers
from a slight rotational mesh-dependence.” The consequence is that the finite element solu-
tions, defined on such meshes, may not converge to a solution of the continuum problem2.
The approach advocated in the above-mentioned paper is to replace the total variation
functional by a non-isotropic version in order to make the discretization compatible with

2We must note that this rotational mesh-dependency is not present for the filtering or Tikhonov regularization
schemes and the standard finite element discretizations are consistent. Aside the from the convergence proof for the
Tikhonov regularization in chapter 4, we also refer to the results shown in Figure 3.5(a) and (b) which illustrate
the final densities are not sensitive to the mesh geometry.

112

this new measure of perimeter. An alternative solution would be to use an unstructured
mesh with higher degree of isotropy. We do not pursue this issue further in this thesis
but we illustrate the influence of mesh geometry on the optimal layouts with an exam-
ple. Consider the minimum compliance design for the so-called Michell cantilever beam,
whose optimal frame layout consists of an orthogonal network of members [152]. In Figure
5.2, we compare the solutions obtain from piecewise constant density discretization (with
no additional constraints) on a structured triangular mesh and an unstructured polygonal
discretization. Both meshes are constructed to be symmetric about the horizontal axis at
mid-depth and quadratic triangles were used to avoid checkerboard-type instabilities. Since
the geometry of the mesh in this setting dictates the possible layout of material and orienta-
tion of members, one expects that the solution obtained on a less-biased mesh to be better.
Indeed the polygonal mesh has more members and thus exhibits higher resolution and the
general layout of members is in better agreement with the Michell solution. The members
intersect at roughly 90◦ angles and are spaced more evenly and the principal stresses for
the optimal design are aligned with the members according to the Michell layout theory
(see also Figure 22 in [162]). The triangular mesh, on the other hand, suffers from the
limitation of its geometry. Members that line up with the mesh must strictly conform to
it, while others are poorly approximated (see the members marked in Figure 5.2).

5.1 Convex polygonal finite elements

In this section, we present the element formulation for convex n-gons outlined in [149] which
consists of Wachspress interpolation functions and standard isoparametric transformations.
The resulting finite element approximation space is conforming on convex polygonal meshes,
for example, those constructed using the Voronoi meshing algorithm developed in the next
chapter. For n = 3 and n = 4, the element is identical to the commonly used constant
strain triangle and isoparametric bilinear quadrilateral, respectively.

Consider a regular n-gon V
n ⊆ R2 with vertices located at

pi =

�
cos

2πi

n
, sin

2πi

n

�
, i = 1, . . . , n (5.1)

The Wachspress interpolation function corresponding to node i is defined as [170, 149]

Ni(ξ) =
αi(ξ)�

n

j=1 αj(ξ)
(5.2)

113

ξ2

cos(2π
n)

ξ1

pi

pi+1

pi−1

ξ

Ai(ξ)

Ai+1(ξ)

(a) (b) (c)

Figure 5.3: (a) Illustration of the triangular areas Ai(ξ) := A(pi−1,pi, ξ) used to define the
interpolant αi (b) triangulation of the reference regular polygon and integration points defined on
each triangle (c) Wachspress interpolation function for a regular hexagon

where αi are defined by3

αi(ξ) =
A(pi−1,pi,pi+1)

A(pi−1,pi, ξ)A(pi,pi+1, ξ)
(5.3)

Here A denotes the area of the triangle with vertices located at its arguments (see Figure
5.3(a)). Since the n-gon is regular, A(pi−1,pi,pi+1) is the same for all i and thus can be
factored out of expression (5.2). In particular, instead of (5.3), we can use

αi(ξ) =
1

A(pi−1,pi, ξ)A(pi,pi+1, ξ)
(5.4)

in (5.2). Note that ξ must be restricted to the interior of V
n for the interpolants to be

well-defined. However, the Wachspress functions, which are infinitely differentiable on the
interior of V

n, can be extended continuously to V n such that if ξ lies on the edge between
pi and pi+1, we have

Ni(ξ) = 1− �ξ − pi�
�pi+1 − pi�

, Ni+1(ξ) =
�ξ − pi�
�pi+1 − pi�

, Nj(ξ) = 0 ∀j �= i, i + 1 (5.5)

This shows that Wachspress functions are linear along the edge of the polygon and satisfy
the so-called Kronecker-delta property (see Figure 5.3(c)). Also immediate from above
construction is that the Wachspress functions are non-negative and form a partition of
unity. More specifically, for ξ ∈ V n

Ni(ξ) ≥ 0,
n�

i=1

Ni(ξ) = 1 (5.6)

3By convention, we set pn+1 = p1 in this expression

114

One can in fact show for all ξ ∈ V n (see the appendix of [113]),

ξ =
n�

i=1

Ni(ξ)pi (5.7)

Given these properties, the Wachspress functions can be used to construct an isoparametric
mapping from V

n to any strictly convex4
n-gon W . If {xi}n

i=1 denotes the location of the
vertices of W , ordered counterclockwise, then the isoparametric map ϕ : V n → W defined
by

ϕ
W

(ξ) =
n�

i=1

Ni(ξ)xi (5.8)

is one-to-one and onto [78]. Notice that by virtue of (5.5), ϕ
W

maps the vertices and
edges of V

n to the corresponding vertices and edges of W . Subsequently one can define the
following interpolation functions over W using the isoparametric mapping

Ñi(x) = Ni

�
ϕ−1

W
(x)

�
, x ∈ W, i = 1, . . . , n (5.9)

It is straightforward to see that these interpolation functions satisfy the basic requirements
for convergence5 in finite elements [90]. In particular, they are smooth in W and can rep-
resent any linear field on W exactly (see Proposition 2 in section 3.3 of [90]). Furthermore,
Ñi are also linear along the edges of W , which means that the resulting approximation
space is C

0-conforming. More precisely, consider a smooth bounded domain Ω ⊂ R2 and
its tessellation {Ωe}m

e=1 consisting of strictly convex polygons. Let ne denote the number of
edges of Ωe and define P (V n) = span {Ni}n

i=1. Then the finite element space
�

u : Ω → R : u
��
Ωe

= ûe ◦ϕ−1
Ωe

for some ûe ∈ P (V ne) and e = 1, . . . ,m
�

(5.10)

is contained in C
0(Ω). Notice that the local restriction ûe is linear on the edges of V

ne and
ϕΩe

preserves this linearly along the edges of Ωe.
From a practical point of view, the calculations are done in the same manner as the

usual isoparametric formulations. The interpolations functions are defined on the parent
domain, in this case the set of reference n-gons, where the weak form integrals are mapped
to and evaluated numerically. In particular, there is no need to construct the interpolation
functions (5.9) in the physical domain. In this thesis, we adopt a simple procedure for
numerical integration. For n = 3 and n = 4, we use the standard quadrature rules for
triangles and quads and for n ≥ 5, we divide V

n into n triangles (by connecting the
4By “strictly” convex, we mean that no three vertices of the polygon are collinear.
5We also refer the reader to the recent paper by Gillette et al. [80] with local error estimates for Wachspress and

other barycentric interpolation functions on convex polygons.

115

48

44

16 p = 1

E = 1
ν = 1/3

C

(a) (b) (c) (d)

Figure 5.4: The geometry, boundary conditions, and material properties for Cook’s problem (b)
polygonal mesh with 4 elements (c) polygonal mesh with 16 elements (d) typical quadrilateral
mesh with 16 elements (each edge is divided evenly)

centroid to the vertices) and use the well-known quadrature rules on each triangle (see
Figure 5.3(b)). However, this integration procedure is not optimal and recently specific
quadratic rules with higher accuracy have been developed for polygonal domains (see, for
example, [115, 116]) .

5.2 A benchmark problem in elasticity

We assess the performance of the polygonal finite elements using a benchmark problem
from linear elasticity. For standard patch tests and convergence studies, we refer the reader
to [147, 156] where the formulation is shown to exhibit the expected rates of convergence
for linearly precise elements.

Figure 5.4(a) shows the set up for the so-called Cook’s problem [54, 180], which consists
of a tapered swept panel subjected to uniform shear loading. The quantity of interest is the
tip deflection at mid-depth (point C), which was computed on several quadrilateral and
polygonal discretizations, some of which are shown in Figure 5.4. Note that the refinement
for quadrilateral meshes is progressive (i.e., the finer meshes are embedded in the coarser
ones), while the polygonal meshes are constructed independently. The results were com-
pared to the reference value of 23.96, reported in reference [180]. The values for deflection
and absolute error are plotted in Figure 5.5 and provided in Table 5.1.

As expected, convergence to the exact solution is monotonic for both types of elements.
However, polygonal elements are not as stiff as the quadrilateral elements and produce
better results, especially with coarser meshes. It is interesting to observe that even though
the polygonal mesh with four elements is made up of three quadrilaterals and only one
pentagon, it gives a significantly more accurate deflection value than the corresponding
quadrilateral mesh. In fact, the accuracy obtained on this mesh is comparable to that of

116

101 102 1038

10

12

14

16

18

20

22

24

26

Number of Elements

D
ef

le
ct

io
n

at
 P

oi
nt

 C

4−gons (Q4)
n−gons
Reference

C
om

pu
te

d
de

fle
ct

io
n

at
po

in
t

C

Number of elements

Polygonal mesh

Quadrilateral mesh

Figure 5.5: Illustration of the convergence of numerical results for Cook’s problem

the quadrilateral mesh with 16 elements. Since numerical instabilities such as checkerboard
patterns are caused by their artificial stiffness in the finite element approximation, it is
reasonable that polygonal elements are not susceptible to such pathologies.

Polygonal Quadrilateral

elements # nodes deflection % error # nodes deflection % error

4 10 18.3081 23.59 9 11.8090 50.71

16 34 22.1011 7.758 25 18.2902 23.66

64 130 23.4535 2.114 81 22.0781 7.854

256 514 23.8177 0.594 289 23.4303 2.211

1024 2050 23.9235 0.152 1089 23.8176 0.594

4096 8194 23.9527 0.031 4225 23.9245 0.148

Table 5.1: Summary of results for Cook’s problem

5.3 Mixed variational problems and stability

In this section, we investigate the stability of polygonal finite elements for mixed variational
problems. In particular, we focus on the incompressible Stokes flow problem6 where we
show that a low-order velocity-pressure discretization using polygonal elements leads to
a stable finite element formulation. Our interest in the issue of stability for the Stokes

6This problem is identical to incompressible elasticity with a reinterpretation of the physical meaning of the
variables.

117

problem is twofold. First, this formulation, featuring piecewise constant pressure fields, is
conceptually simple and computationally efficient. In the next section, we show examples
of topology optimization problems with Stokes flow as the governing state equation where
the design field as well as the velocity and pressure fields are discretized on the same
mesh. Moreover, as discussed in the introduction of this chapter, checkerboard instabilities
observed in topology optimization are reminiscent of similar instabilities that occur in mixed
finite element discretizations of the Stokes problem. This connection is further established
in [91] where it is shown that the incremental linearization of the stationarity conditions
for the minimum compliance problem leads to a system that has a similar structure to that
of the Stokes problem.

Let Ω denote an open, bounded and connected set in Rd with a Lipschitz continuous
boundary. The incompressible Stokes flow problem is given by [63]

−µ∆u +∇p = f in Ω

div u = 0 in Ω (5.11)

u = 0 on ∂Ω

where ∆ is the vector Laplacian, u and p are the velocity and pressure fields, respectively,
f ∈ L

2(Ω)d is the applied body force, and µ > 0 is the dynamic viscosity of the fluid.
Defining the velocity and pressure spaces

V = H
1
0 (Ω)d and Q = L

2
0(Ω) :=

�
q ∈ L

2(Ω) :

ˆ
Ω

qdx = 0

�
(5.12)

the mixed variational form of (5.11) consists of finding (u, q) ∈ V ×Q such that7

a(u,v) + b(p,v) = �(v), ∀v ∈ V (5.13)

b(q,u) = 0, ∀q ∈ Q (5.14)

where

a(u,v) = µ

ˆ
Ω

∇u : ∇vdx, b(p,v) = −
ˆ

Ω

p div udx, �(v) =

ˆ
Ω

f · vdx (5.15)

A sufficient set of conditions for the well-posedness of the abstract variational problem
(5.13)–(5.14) is that bilinear forms a(·, ·) and b(·, ·) and the linear form �(·) are continuous,

7For the sake of simplicity, we have assumed that only homogenous velocity boundary conditions are imposed in
(5.11). However, the same abstract variational problem can be obtained for inhomogenous boundary conditions by
“lifting” the boundary conditions and changing variables [73]. The theoretical results also hold when the velocity
boundary conditions are imposed on ΓD � ∂Ω, |ΓD| �= 0 since �∇v�0,1,Ω will again define a norm for the velocity
space

˘
v ∈ H

1(Ω) : v|ΓD = 0
¯
.

118

a(·, ·) is coercive on V0 := {v ∈ V : b(q,v) = 0,∀q ∈ Q}, i.e.,

∃α > 0 such that a(v,v) ≥ α �v�2
V , ∀v ∈ V0 (5.16)

and there exists a constant β > 0 such that

inf
q∈Q

sup
v∈V

b(q,v)

�q�Q �v�V
≥ β (5.17)

The last condition is known as the Ladyzhenskaya-Babuska-Brezzi (LBB) condition.
In the Stokes problem, the natural norm associated with the velocity space is �v�V =

�∇v�0,1,Ω
8 and so it can be readily seen that a(·, ·) is continuous and coercive on V (and

subsequently on V0). Continuity of b(·, ·) and �(·) are also easy to verify. Finally, the
condition (5.17) follows from the fact that the divergence operator is a surjection from
H

1
0 (Ω)d onto L

2
0(Ω) [81].

Considering the finite element subspaces Vh ⊂ V and Qh ⊂ Q, the Galerkin approxima-
tion of the above variational problem consists of seeking (uh, ph) ∈ Vh ×Qh such that

a(uh,vh) + b(ph,vh) = �(vh), ∀vh ∈ Vh (5.18)

b(qh,uh) = 0, ∀qh ∈ Qh (5.19)

The approximate problem (5.18)–(5.19) is well-posed if, in addition to the above continuity
and coercivity requirements9,

βh := inf
qh∈Qh

sup
vh∈Vh

b(qh,vh)

�qh�Q �vh�V
> 0 (5.20)

which is nothing but the discrete version of the LBB condition (5.17). Moreover, under these
conditions, the finite element solutions pair (uh, ph) satisfies the following error estimates
[35, 73]

�u− uh�V
≤

�
1 +

M

α

� �
1 +

K

βh

�
inf

vh∈Vh

�u− vh�V +
K

α
inf

qh∈Qh

�p− qh�Q (5.21)

�p− ph�Q
≤ M

βh

�
1 +

M

α

� �
1 +

K

βh

�
inf

vh∈Vh

�u− vh�V

+

�
1 +

K

βh

+
MK

αβh

�
inf

qh∈Qh

�p− qh�Q (5.22)

8The norm associated with Q is of course the L
2-norm �q�Q = �q�0,1,Ω

9Observe that for the Stokes problem a(·, ·) is coercive on all of V. Subsequently, it is also coercive on V0
h :=

{vh ∈ Vh : b(qh,vh) = 0, ∀q ∈ Qh}. However, in general, coercivity of a(·, ·) on V0 does not imply its coercivity on
V0

h since we may have V0
h � V0. In such cases, the latter must be verified independently for the given spaces Vh and

Qh.

119

for some positive constants M and K
10.

With the typical choice of finite element spaces, standard interpolation errors show that
the distances infvh∈Vh

�v − vh�V and infqh∈Qh
�p− qh�Q vanish under mesh refinement as

h → 0 (see, for example, (4.30)). The above estimates then prove convergence of the finite
element solutions provided that βh remains bounded away from zero (meaning that βh ≥ β0

for some constant β0 > 0 and all h). In fact, it is desirable that βh becomes independent
of h so as to achieve an optimal rate of convergence. In this case, the distance between
(u, p) and (uh, ph) is on the order of the distance between (u, p) and its best approximation
in Vh ×Qh. Otherwise, if βh → 0 with h, the finite element formulation is said to exhibit
locking. Intuitively, locking occurs when, given a finite element pressure space Qh, the
velocity space Vh is not sufficiently rich to both satisfy the weak incompressibility constraint
(5.14) and approximate the flow equation (5.13). Mesh refinement does not alleviate the
problem since it also enriches the pressure space Qh. Therefore, it is important to recognize
that preventing locking involves the appropriate selection of Vh with respect to the given
choice of pressure discretization.

Aside from locking, the other important issue related to stability of the mixed finite
element formulations is the appearance of spurious pressure modes. The pair of spaces Vh

and Qh admits a spurious pressure mode if there exists p̃h ∈ Qh\ {0} such that

b(p̃h,vh) = 0 ∀vh ∈ Vh (5.23)

If pressure modes are present, then the LBB condition (5.20) cannot be satisfied (the inf-
sup quantity is simply zero) and so the finite element problem is not well-posed. Observe
that if (uh, ph) is the solution to (5.18)–(5.19), then (uh, ph + sp̃h) is also a solution for
any s ∈ R and a spurious pressure mode p̃h. Conversely, for finite-dimensional spaces Vh

and Qh, the violation of the LBB condition implies existence of spurious modes. Even
though it is possible in some instances to obtain good approximations to uh in presence
of spurious modes11, such formulations are in general deemed unreliable. We also note
that the appearance pressure modes is problem-dependent (for the same velocity-pressure
element, the pressure mode may or may not exist depending on the boundary conditions of
the problem) while locking is intrinsic to the degree of interpolation of velocity and pressure
fields.

10These constants are in fact the norms associated with the bilinear forms a(·, ·) and b(·, ·). Notice that in these
estimates, we have used the fact that a(·, ·) is α-coercive on V0

h (see the remark in the previous footnote).
11There are certain improved error estimates, most notably for bilinear-velocity constant-pressure element, which

show that despite the failure to satisfy the LBB condition (due to both locking and presence of pressure modes),
the approximate velocity solution in some cases can be accurate [35].

120

5.4 Numerical investigation using the inf-sup test

Given a finite element formulation, i.e., a particular construction of space Vh and Qh, it
is often difficult to establish the satisfaction of the LBB condition and the stability of the
formulation as h → 0 (that βh remains bounded away from zero). In [45], a numerical
test is advocated for assessing the stability of FE formulations. By presenting results for
various known stable and unstable formulation, this test is shown to be a reliable substitute
for analytical verification of these stability criteria. We use this procedure to establish the
stability of the proposed finite element formulation based on polygonal discretizations.

Let us first define the space of spurious pressure modes

Q0
h

= {qh ∈ Qh : b(qh,vh) = 0,∀vh ∈ Vh} (5.24)

The so-called inf-sup test consists of computing

β̃h := inf
qh∈(Q0

h)
⊥

sup
vh∈Vh

b(qh,vh)

�qh�Q �vh�V
(5.25)

for a sequence of progressively finer discretizations for suitably chosen benchmark problems.
If the computed quantity β̃h approaches zeros with h, then the formulation is expected to
be unstable.

Observe that compared to βh in (5.20), the pressure space Qh in the above expression
is replaced by the orthogonal complement of the space of pressure modes (Q0

h
)⊥. If no

pressure modes exists, i.e., Q0
h

= {0}, then (Q0
h
)⊥ = Qh and so β̃h is the same as the inf-

sup quantity βh. Otherwise, we know from previous discussion that βh and the FE problem
is not well-posed. The advantage of working with the restricted space is that, as shown
below, it makes the numerical evaluation of (5.25) possible. Moreover, the proposed test
is mainly concerned with the convergence of the finite element formulation as the mesh is
refined. Note that for a given mesh, one can directly check for the existence of pressure
modes by computing the rank of the matrix associated with b(·, ·). At any rate, as we
shall, the test is also capable of detecting the presence of spurious pressure modes for the
considered meshes.

To see how β̃h can be numerically evaluated, let us denote by Πh the projection onto
Qh. For any g ∈ L

2(Ω), the projection Πh(g) satisfies
ˆ

Ω

qhΠh (g) dx =

ˆ
Ω

qhgdx, ∀qh ∈ Qh (5.26)

With this definition, it is straightforward to show that12

12Note that for any qh ∈ Q0
h, we have

´
Ω

qhΠh (div wh) dx =
´
Ω

qh div whdx = 0 for all wh ∈ Vh

121

�
Q0

h

�⊥
= {Πh (div wh) : wh ∈ Vh} (5.27)

Therefore, we can rewrite (5.25) alternatively as

β̃h = inf
wh∈Vh

sup
vh∈Vh

b (Πh (div wh) ,vh)

�Πh (div wh)�Q �vh�V
(5.28)

Moreover, from (5.26), we have

b (Πh (div wh) ,vh) =

ˆ
Ω

Πh (div wh) div vhdx =

ˆ
Ω

Πh (div wh) Πh (div vh) dx (5.29)

which gives the symmetric expression

β̃h = inf
wh∈Vh

sup
vh∈Vh

´
Ω Πh (div wh) Πh (div vh) dx

�Πh (div wh)�Q �vh�V
(5.30)

Let us denote by {Ni}nu

i=1 the set of basis functions for the velocity space Vh and define the
following matrices associated with the terms in (5.30):

[Sh]ij =

ˆ
Ω

∇Ni : ∇Njdx, [Gh]ij =

ˆ
Ω

Πh (div Ni) Πh (div Nj) dx (5.31)

Observe that Sh is positive definite and Gh is positive semi-definite. We have the following
relation for β̃h

β̃h = inf
W∈Rnu

sup
V∈Rnu

W
T
GhV

(WTGhW)1/2 (VTShV)1/2
(5.32)

From this and after some algebra, one can show that

β̃h =
�

λk (5.33)

where λk is the smallest nonzero eigenvalue for the following eigenvalue problem

GhV = λShV (5.34)

From a practical point of view, while the calculation of Sh is straightforward, computing Gh

involves projection onto the pressure space and is more involved. In the case of piecewise
constant pressure space, we can derive a simple expression for Gh. Let {Ωe}np

e=1 denote a
tessellation of the domain Ω. The basis for the piecewise constant pressure space Qh is given
by {χΩe}np

e=1 and so we have the following simple expression for the projection operator

122

Πh(g) =

np�

e=1

1

|Ωe|

�ˆ
Ωe

gdx

�
χΩe (5.35)

In turn, this yields

[Gh]ij =

np�

e=1

1

|Ωe|

�ˆ
Ωe

div Nidx

� �ˆ
Ωe

div Njdx

�
(5.36)

As mentioned before, the number of spurious pressure modes can also obtained from the
eigenvalue problem (5.34). If there are k − 1 zero eigenvalues, then there are precisely
max (k − 1− (nu − np) , 0) spurious pressure modes possible. We note that β̃h > 0 in this
case even though βh = 0 and the LBB condition is not satisfied.

We consider two benchmark problems both posed on the unit square Ω = [0, 1]2. In
the first example, as in (5.11), the homogenous velocity boundary conditions are imposed
on the entire boundary ∂Ω. The second example is borrowed from [45] where the velocity
at x = (0, 0) and its horizontal component along the left edge is set to zero. The velocity
field is discretized by means the isoparametric Wachpress interpolation functions presented
in the last section (cf. (5.10)) and an element-wise constant pressure field is used. We
consider three types of meshes. First is the regular square grid for which the velocity
element is the usual bilinear square element. The second is uniform hexagonal tessellations
similar to the one shown in Figure 5.1. The last one is an unstructured mesh consisting of
convex polygons generated using the Voronoi algorithm in chapter 6. For each example and
mesh type, the quantity β̃h was computed on four or five progressively finer meshes. The
results are plotted in Figure 5.6. As expected, for the bilinear quads, β̃h decays with mesh
refinement. However, this value is nearly constant, beyond a certain level of refinement, for
both types of polygonal meshes. Moreover, two checkerboard pressure modes were detected
for every square grid in the first example. Owing to the nature of boundary conditions, no
pressure modes were permitted for the same meshes in the second example. Both uniform
hexagonal and unstructured polygonal meshes were free of any spurious pressure modes for
both problems13.

5.5 Topology optimization for fluid flow

In this section, we will discuss the formulation of topology optimization in Stokes flow
problems. As usual, let Ω ⊆ Rd denote the extended design domain and g be a given
smooth velocity field defined on ∂Ω such that

´
Ω g · nds = 0. Moreover, let Γg denote the

portion of the boundary where g is nonzero. We consider ω ⊆ Ω to be an admissible shape
13The only exception was the polygonal mesh with 4 elements which, as a result of CVT iterations, consisted of

four quads!

123

100 101 102

10 1

100

data1
data2
data3
data4
data5
data6

100 101 102

10 1

100

data1
data2
data3
data4
data5
data6

Quadrilateral

Number of elements

β̃h

Example 1

Example 2

Polygonal
Hexagonal

Figure 5.6: Results of the inf-sup test for the example problems

if ∂ω ⊇ Γg and it is sufficiently smooth so that the incompressible Stokes equations

−µ∆u +∇p = 0 in ω

div u = 0 in ω

u = g on ∂ω ∩ ∂Ω (5.37)

u = 0 on ∂ω\∂Ω

admit a unique and stable solution (uω, pω). A benchmark optimal shape problem consists
of finding an admissible ω that minimizes the dissipated power subject to a constraint on
its volume. In particular we seek to minimize the following cost functional:

J(ω) =
1

2

ˆ
ω

µ∇uω : ∇uωdx + λ |ω| (5.38)

It can be shown that minimizing the first term amounts to minimizing the average pressure
drop between the inlet and the outlet. The second term, with λ > 0, is of course a penalty
on the volume of the shape.

Similar to our treatment of optimal shape problems in elasticity, we follow a two-step
procedure to reformulate this problem into one of sizing optimization with the control field
defined on the entire extended domain Ω. The first step consists of approximating the
governing state equation with a boundary value problem defined on Ω in analogous manner
to the Ersatz approach. For a fixed shape ω, one can show that the solution (uε

ω
, p

ε

ω
) to the

generalized Stokes problem given by

124

Ω

(b)

g

h/5

w/5

w = hΩ

(a)

g

h/6

h/4

w

Figure 5.7: The domain and boundary conditions for the benchmark optimal flow problems (a)
double pipe (b) pipe bend. For both examples, the boundary velocity g on each portion of Γg has
parabolic profile as indicated in the figures.

−µ∆u +
1

ε
(1− χω)u +∇p = 0 in Ω

div u = 0 in Ω (5.39)

u = g on ∂Ω

when restricted to ω, is a good approximation to (uω, pω) for sufficiently small ε > 0

[76]. Intuitively, the new dissipative term in this generalized Stokes system forces u
ε

ω
to

vanish in Ω\ω when the “permeability” coefficient ε is close to zero. In contrast to the
Ersatz approximation in elasticity, observe that the viscous term with the highest order
derivatives is left intact in this approximation.

As a surrogate to the minimization of (5.38), we fix 0 < ε � 1 and consider the following
optimization problem

inf
χ∈L∞(Ω;{0,1})

J(χ) =
1

2

ˆ
Ω

�
µ∇uχ : ∇uχ +

1

ε
(1− χ)uχ · uχ

�
dx + λ

ˆ
Ω

χdx (5.40)

where uχ is the solution to (5.39) with χω = χ. Few remarks are in order regarding
the optimization problem (5.40). Unlike the related compliance minimization problem in
elasticity, (5.40) is well-posed in that it admits minimizers in L

∞(Ω; {0, 1}) [76]. Therefore,
there is no need to impose additional regularity conditions on the characteristic functions.
This is in part a consequence of the fact that the design field appears in the coefficient
of the lower order term in the governing state equation (5.39). On physical grounds, the
favorability of highly oscillatory shapes in the compliance problem is related to the stiffening
effect of fine mixtures (cf. counterexample in section 2.3). By contrast, such arrangements
in the fluid flow problem lead to larger viscous dissipation and are naturally excluded in
the optimal regime.

Moreover, we note that the mere fact that (5.39) is an approximation to (5.37) by itself

125

(b)(a)

Figure 5.8: Double pipe solutions for (a) w = h (b) w = 1.5h where w is the width of the domain
and h is its height. The prescribed volume fraction for this problem is v = 1/3

(b)(a)

Figure 5.9: (a) Velocity field (magnitude plotted in the background) (b) pressure field for the
double pipe solution with w = 1.5h

does not justify the approximation of (5.38) by (5.40). Just as in the case of elasticity, the
space of admissible shapes associated with the latter problem is significantly larger than
that of the former. Indeed, one needs a result similar to what is presented in section 2.10
for the Ersatz approximation.

The second step in the deriving a sizing optimization problem is to replace the space of
characteristic functions L

∞(Ω; {0, 1}) by the larger space L
∞(Ω; [0, 1]). Interestingly, this

relaxation does not require any additional modification of the problem (e.g., introducing
penalization of intermediate fields) since one can show that there exists a characteristic
function minimizing J in the large space L

∞(Ω; [0, 1]) [30, 76]. This result implies that
enlarging the space of admissible designs does not change the value of the optimization
problem even though it makes the problem amenable to gradient-based optimization algo-
rithms.

The final sizing optimization problem is given by

126

min
ρ∈L∞(Ω;[0,1])

1

2

ˆ
Ω

[µ∇uρ : ∇uρ + κ(ρ)uρ · uρ] dx + λ

ˆ
Ω

ρdx (5.41)

where uρ is a solution to

−µ∆u + κ(ρ)u +∇p = 0 in Ω

div u = 0 in Ω (5.42)

u = g on ∂Ω

and the inverse permeability coefficient κ(ρ) = ε
−1(1− ρ).

It is interesting to note that Borrvall and Petersson [30] arrive at the same sizing problem
in two dimensions with

κ(ρ) =
5µ

2ρ2
(5.43)

by considering the three-dimensional Stokes problem under plane flow assumptions wherein
ρ represent the distance between two encapsulating plates. The dissipative term κ(ρ) in that
setting is due to the out-of-plane shear effects. Naturally, the fluid movement is restricted
in the regions where ρ is close to zero. In this context

´
Ω ρdx is the total volume of the

fluid in the domain, and so their derivation gives some physical meaning to the design field
ρ. The authors, however, recognize that the sizing formulation can also be used in three
dimensional problems and with interpolation functions for κ(ρ) that are more suited for
numerical calculations. In fact, they advocate the use of

κ(ρ) =
1

ε

q (1− ρ)

q + ρ
(5.44)

along with a continuation procedure consisting of gradually increasing q. It is easy to see
that this rational function approaches the linear function in (5.42) as q →∞. Also, referring
to (5.43), ε is set to 4 × 10−5

/µ which corresponds to minimum distance of 0.01 between
the encapsulating plates. We note that the authors in [30] also use a small positive lower
bound on κ(ρ) (at ρ = 1) but it is not clear why this is needed either from a theoretical or
a computational point of view.

5.6 Numerical results

We consider two benchmark optimal flow problems from [30]. For all the numerical results,
the extended domain is discretized using unstructured convex polygonal meshes. As in the
last section, the velocity field is defined using the isoparametric Wachpress functions while
the pressure field is piecewise constant. A piecewise constant discretization is also used for
the design space similar to section 1.4. Following [30], the inverse permeability is given

127

(b)(a) (c)

Figure 5.10: Pipe bend solutions with (a) 5,000 elements (b) 10,000 elements (c) same as part
(b) but with the final value of q = 10 for the penalty parameter in κ(ρ). The prescribed volume
fraction for this problem is v = 0.08π

by (5.44) and q is gradually increased from initial value of 0.01 to terminal value of 0.1.
The resulting optimization algorithm, with the volume constraint explicitly enforced for
the prescribed volume fraction v, is solved using the Method of Moving Asymptotes [153].

The first example is the double pipe problem which consists of two velocity inlets and
outlets as shown in Figure 5.7(a). The flow velocity profile is parabolic and orthogonal to
the domain boundary in each case. In particular, we have g = 0 except for the locations
indicated in the figure and g = gn on Γg where g is parabolic with unit amplitude. Depend-
ing on the aspect ratio of Ω, the optimal shape consists of two separate pipes (cf. Figure
5.8(a)) or one connected pipe transporting the fluid. Note that design field ρ is plotted in
greyscale where ρ = 0 is shown in black (corresponding to the solid region where flow is
restricted) and ρ = 1 is indicated in white. We can see from Figure 5.8(b) that for the
wider domain, a single wider pipe is more advantageous even though it requires the fluid
to travel a longer path. By contrast, in the square domain, the optimal design consists of
two straight pipes. Of course, due to the unstructured nature of the polygonal mesh, the
optimal solution is not completely straight or symmetric.

The pressure and velocity fields for the single pipe solution are plotted in Figure 5.9.
We can see that owing to the small permeability coefficient, the flow velocity is small in
the region where ρ = 0 and the zero flow condition along the boundary of pipe is well
represented. Morever, the pressure field is smooth and free of any spurious modes.

The next example is the pipe bend problem whose domain and boundary conditions are
shown in Figure 5.7(b). While one might expect a quarter torus as the optimal shape, the
solution shown in Figure 5.10 is an almost straight pipe connecting the inlet and the outlet,
which, as explained in [30], is reasonable for the fluid modeled by the Stokes flow. We also
solve the problem on a finer mesh to exhibit the convergence of the design field without
the need for any regularization. Both solutions are binary and nearly represent the same
shape. A proof for the convergence of finite element solutions can be found in [30] and is a

128

consequence of the fact that weak convergence of the design field is sufficient to establish
convergence (on a subsequence) of the associated velocity fields. The same mesh used for
Figure 5.10(b) was used to investigate the effects of the penalty parameter q. The solution
shown in Figure 5.10(c) is generated using the terminal value of q = 10. As predicted
by the theory, the final sizing function is almost completely binary though the outline of
corresponding shape is similar to that of Figure 5.10(b).

129

Chapter 6

Polygonal Mesh Generation Using
Voronoi Diagrams

In this chapter, we discuss a mesh generation algorithm based on the concept of Voronoi
diagrams that can be used to discretize arbitrary two-dimensional domains using convex
polygons. The main ingredients of the proposed mesh generator are the implicit represen-
tation of the domain and the use of Centroidal Voronoi diagrams for its discretization. The
signed distance function contains all the essential information about the meshing domain
needed in this algorithm. As pointed out in [125], this implicit description provides great
flexibility to construct a relatively large class of domains with algebraic expressions. A
discretization of the domain is constructed from a Centroidal Voronoi tessellation (CVT)
that incorporates an approximation to its boundary. The approximation is obtained by in-
cluding the set of reflections of the seeds associated with the Voronoi tessellations [27, 179].
The Lloyd’s method is used to establish a uniform (optimal) distribution of seeds and thus
a high quality mesh [162]. We remark that CVTs have been previously used for generation
and analysis of triangular discretizations (see, for example, [66, 67, 93]) and, in some cases,
superconvergence of numerical solutions has been observed [89].

6.1 Distance functions and implicit geometries

Let Ω be a subset of R2 with smooth boundary. The signed distance function associated
with Ω is the mapping dΩ : R2 → R defined by:

dΩ(x) = sΩ(x) min
y∈∂Ω

�x− y� (6.1)

where ∂Ω denotes the boundary of Ω, �·� is the standard Euclidean norm in R2 (so �x− y�
here is the distance between x and point y on the boundary of the domain), and the sign
function is given by:

sΩ(x) = 1− 2χΩ(x) =





−1, x ∈ Ω

1, x ∈ R2\Ω
(6.2)

130

~

o

x

!

"!

level sets of d
!

y
z

!

d
!
()<0z

d
!
()>0y

"! d
!
()=0x

(a) (b) (c)

Figure 6.1: (a) Explicit parametrization of domain boundary: the ray connecting point x̃ to
point o, known to lie outside the domain, intersects ∂Ω an even number of times, indicating x̃ /∈ Ω
(b) Implicit representation of the domain: the sign of the distance function dΩ(x) determines if x
lies inside the domain (c) Surface plot of the signed distance function: note that ∂Ω is given by
the zero level set of dΩ

Thus, if x lies inside the domain Ω, dΩ(x) is minus the distance of x to the closest boundary
point. The following characterizations are immediate from this definition:

Ω =
�
x ∈ R2 : dΩ(x) ≤ 0

�
, ∂Ω =

�
x ∈ R2 : dΩ(x) = 0

�
(6.3)

In the proposed meshing algorithm, we need to determine if a candidate point (seed) x lies
in the interior of domain Ω. With an explicit representation of Ω, based on parametrization
of its boundary, this may be difficult as it requires counting the number of times a ray
connecting x and some exterior point intersects the boundary [120]. Given the signed
distance function, we recover this information by evaluating the sign of dΩ(x) (see Figure
6.1).

Other useful information about the domain geometry is provided by the signed distance
function. Its gradient, ∇dΩ, gives the direction to the nearest boundary point. If Ω has
smooth boundary and x ∈ ∂Ω, then ∇dΩ(x) is the unit vector normal to the boundary. In
general, for almost every point x ∈ R2, we have:

�∇dΩ(x)� = 1 (6.4)

It is possible that the distance function exhibits kinks even when ∂Ω is smooth. In par-
ticular, if x is equidistant to more than one point of ∂Ω, then ∇dΩ(x) fails to exist. As
illustrated in Figure 6.2(b), the variation of the distance function changes depending on
which boundary point is approached. In such a case, numerical differentiation may result
in �∇dΩ(x)� �= 1.

In the proposed algorithm, we use the property of the gradient to find the reflection of

131

x

!"
level sets

of d
"

R d d
" " "
()= -2 () ()x x x x#

xb

| ()|d
"

x

#d
"
()x

!"1

level sets

of d
"

xb

xb

1

2

#d"
()x

locus of equidistant

points to the two

boundaries

#
d

" (
)x

!"2

(a) (b)

Figure 6.2: (a) For x ∈ R2, the direction to the closest boundary point, xb, is given by ∇dΩ(x),
which can be used to compute the reflection RΩ(x) (b) The distance function exhibit kinks at
points that are equidistant to more than one boundary point. Here ∇dΩ(x) denotes the one-sided
gradient at such a point x

x about the closest boundary point. Denoting the reflection by RΩ(x), we have (cf. Figure
6.2(a)):

RΩ(x) = x− 2dΩ(x)∇dΩ(x) (6.5)

Note that this expression is valid for both interior and exterior points, i.e., for any x ∈ R2.

We can see from the discussion so far that when Ω is characterized by its signed distance
function, a great deal of useful information about Ω can be readily extracted. An essential
task then is to construct dΩ for a given domain Ω that we wish to discretize. For many
simple geometries, the signed distance function can be readily identified. For example, if Ω

is a circle of radius r centered at point xo, its distance function is given by:

dΩ(x) = �x− xo� − r (6.6)

Moreover, set operations such as union, intersection, and complementation can be used to
piece together and combine different geometries. Given domains Ω1 and Ω2, the expressions

dΩ1∪Ω2(x) = min (dΩ1(x), dΩ2(x))

dΩ1∩Ω2(x) = max (dΩ1(x), dΩ2(x)) (6.7)

dR2\Ω1(x) = −dΩ1(x)

capture the “sign” property of the distance function for the combined geometry, as illustrated
in Figure 6.3. However, we note that the “distance” property may not necessarily hold

132

Ω1 ∩ Ω2

Ω1\Ω2 Ω2\Ω1

R2\(Ω2 ∪ Ω1)

dΩ1 < 0

dΩ2 < 0

dΩ2 > 0

dΩ1 < 0

dΩ1 > 0

dΩ2 < 0

dΩ1 > 0

dΩ2 > 0

Figure 6.3: Correspondence between set operations and the sign of distance functions

everywhere1. A reference commonly cited in conjunction with these equations is the work
of [132] but there the implicit functions do not carry the distance property. In our meshing
algorithm, we require access to the distance functions of the constituent domains, in part,
to address this issue.

Transformations such as rotation and translation can also be incorporated to obtain
desired geometries. For example, if Tθ is the matrix for rotation by angle θ about the
origin, the signed distance function for rotated domain Ωθ is given by:

dΩθ
(x) = dΩ(T−1

θ
x) (6.8)

Also, a signed distance function can be obtained from the level sets of a given implicit
function by solving a nonlinear system of equations (cf. [125]) or more generally using
marching algorithms (see, for example, [151, 138, 120, 182]). We will revisit the issue
of computing distance functions in relation to our meshing algorithm and later through
examples.

6.2 Voronoi diagrams, CVTs, and Lloyd’s algorithm

The concept of Voronoi diagrams plays a central role in the proposed algorithm. Given
a set of n distinct points or seeds P, the Voronoi tessellation2 of the domain ∆ ⊆ R2 is
defined by:

T (P; ∆) = {Vy ∩∆ : y ∈ P} (6.9)
1For example, consider Ω1 =

˘
(x1, x2) ∈ R2 : x1 < 0

¯
and Ω2 =

˘
(x1, x2) ∈ R2 : x2 < 0

¯
. The formula

dΩ1∪Ω2(x) = min (dΩ1(x), dΩ2(x)) has incorrect distance “value” in the third quadrant, i.e., for x1 < 0, x2 < 0. In
this region, the closest boundary point is the new corner x = (0, 0) formed by the union operation.

2A tessellation or tiling of ∆ is a collection of open sets Si such that ∪iSi = ∆ and Si ∩ Sj = ∅ if i �= j.

133

Voronoi
diagram

Delaunay
triangulation

y V
y

y

V
y

z

V
z

!"

#!

(a) (b)

Figure 6.4: (a) Voronoi diagram and its dual, the Delaunay triangulation (b) Illustrating the
difference between Vy, defined in Equation (6.10) as the Voronoi cell, and Vy ∩∆, as the regions
making up the Voronoi tessellation of ∆ (cf. Equation 6.9)

where Vy is the Voronoi cell associated with point y:

Vy =
�
x ∈ R2 : �x− y� < �x− z� ,∀z ∈ P\ {y}

�
(6.10)

Therefore Vy consists of points in the plane closer to y than any other point in P. To
simplify the notation for the meshing algorithm, we are defining the cells over the entire
R2, while it is common in the literature to define Vy ∩∆ to be the Voronoi cell (see Figure
6.4).

The properties of Voronoi diagrams have been studied extensively and we refer the
reader to review paper [15] on the topic. One relevant property in two dimensions is
that if a Voronoi cell is bounded, it is necessarily a convex polygon since it is formed by
finite intersection of half-planes (each of which is a convex set). Hence, as we shall see in
the next section, the meshing algorithm produces discretizations consisting only of convex
polygons. This is pertinent to the isoparametric formulation for polygonal finite elements
which requires convexity of all the elements in the mesh [149, 148, 162].

The regularity of Voronoi diagrams is determined entirely by the distribution of the
generating point set. A random or quasi-random set of generators may lead to a discretiza-
tion not suitable for use in finite element analysis. Therefore, we restrict our attention to
a special class of Voronoi tessellations that enjoy a higher level of regularity. A Voronoi
tessellation T (P; ∆) is centroidal if for every y ∈ P:

y = yc where yc :=

´
Vy∩∆ xµ(x)dx´
Vy∩∆ µ(x)dx

(6.11)

134

!"" !"! !"#
!$

#"

#$

%"

%$

!" #

!" !

!""

!"!

N
or

m
of

en
er

gy
gr

ad
ie

nt
,
�∇

E�

E
ne

rg
y,
E

E(Pi)

�∇E(Pi)�

Iteration, i

(a) (b)

(c) (d)

Figure 6.5: (a) Random initial point set P1 and the corresponding Voronoi diagram (b) First
iteration of Lloyd’s method: the Voronoi diagram generated by P2 = L(P1), i.e., the centroids of
the Voronoi cells of P1 (c) Distribution of seeds and the diagram after 80 iterations (d) Monotonic
convergence of the energy functional and decay in the norm of its gradient

and µ(x) is a given density function defined over ∆. Hence, in a Centroidal Voronoi tessel-
lation (CVT), each generating point y coincides with the centroid yc of the corresponding
region (i.e., Vy ∩∆).

An alternative variational characterization of a CVT is based on the deviation of each
Voronoi region from its generating seed, measured by the following energy functional:

E(P; ∆) =
�

y∈P

ˆ
Vy(P)∩∆

µ(x) �x− y�2 dx (6.12)

Note that the energy depends on points in P not only through the appearance of y in the
integral but also the Voronoi cells in domain of the integral. Critical points of E(P; ∆)

are point sets that generate CVTs since the gradient of energy functional with respect to a
given y ∈ P is given by [65, 110]:

135

∇yE = 2my (y − yc) where my =

ˆ
Vy∩∆

µ(x)dx (6.13)

Clearly ∇yE = 0 when relation (6.11) holds. Moreover, CVTs can be further classified
based on the minimization of the energy functional. The CVTs corresponding to saddle
points of E are called unstable while local and global minimizers (for fixed number of seeds)
of the energy functional are known as stable and optimal CVTs, respectively [68, 110]. The
CVTs in the latter groups form a more compact tessellation of the domain and due to this
property find many applications in areas other than mesh generation—see [65] for a survey
on the topic.

A simple but powerful method for computing CVTs is the Lloyd’s algorithm, which
iteratively replaces the given generating seeds by the centroids of the corresponding Voronoi
regions. Lloyd’s algorithm can be thought of as a fixed point iteration for the mapping
L = (Ly)T

y∈P
: Rn×2 → Rn×2 where each component function is given by:

Ly(P) =

´
Vy(P)∩∆ xµ(x)dx´
Vy(P)∩∆ µ(x)dx

(6.14)

Therefore, L maps the point set P to the set of centroids of the Voronoi cells in T (P; ∆).
Given an initial point set P1, the Lloyd’s method produces point set Pk+1 = L(Pk) at
the kth iteration. From the above relation, it is clear that a fixed point of this map, i.e.,
one that satisfies P = L(P), forms a CVT. In [64], it is shown that the energy functional
decreases in consecutive iterations of Lloyd’s algorithm, that is,

E(Pi+1; ∆) ≤ E(Pi; ∆) (6.15)

which means that the Lloyd’s algorithm can be viewed as a descent method for the energy
functional. This property is illustrated in Figure 6.5.

As discussed later, Lloyd’s algorithm is incorporated in the proposed meshing scheme
to construct more uniform polygonal meshes. We assess the performance of the Lloyd’s
algorithm by comparing the quality and uniformity of the resulting CVT meshes to meshes
obtained from random and quasirandom placement of seeds. The latter approach is recom-
menced in [27, 179] where the authors obtain more uniform Voronoi tessellations by enforc-
ing a minimum allowable distance between the interior seeds. This minimum separation
eliminates the bunching up of the random seeds, and can also be used to generate graded
meshes. However, the approach may produce distorted elements not suitable for use in
finite element analysis. We consider the discretization of a square domain with a circular
hole using random and quasi-random seed placement, and the proposed procedure. The
resulting meshes shown in Figures 6.6, 6.7 and 6.8 consists of n = 1000 elements. In the

136

20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

angle

re
la

ti
v
e
 f
re

q
u
e
n
c
y

σ = 26.5◦
µ = 120◦

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.05

0.1

0.15

0.2

0.25

0.3

element area

re
la

ti
v
e
 f
re

q
u
e
n
c
y

µ = 3.7× 10−3

σ = 1.6× 10−3

(a) (b)

(c)

Figure 6.6: Random seed placement (a) resulting mesh with coefficient of variation of edge
lengths plotted in gray-scale (b) histogram of interior angles of the mesh (c) histogram of element
areas

20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

angle

re
la

ti
v
e
 f
re

q
u
e
n
c
y

µ = 120◦

σ = 16.8◦

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.05

0.1

0.15

0.2

0.25

0.3

element area

re
la

ti
v
e
 f
re

q
u
e
n
c
y

µ = 3.7× 10−3

σ = 0.6× 10−3

(a) (b)

(c)

Figure 6.7: Quasi-random seed placement (a) resulting mesh with coefficient of variation of edge
lengths plotted in gray-scale (b) histogram of interior angles of the mesh (c) histogram of element
areas

137

20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

angle

re
la

ti
v
e
 f
re

q
u
e
n
c
y

σ = 7.7◦
µ = 120◦

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.05

0.1

0.15

0.2

0.25

0.3

element area

re
la

ti
v
e
 f
re

q
u
e
n
c
y

µ = 3.7× 10−3

σ = 0.2× 10−3

(a) (b)

(c)

Figure 6.8: CVT mesh generation (a) mesh with coefficient of variation of edge lengths plotted
in gray-scale (b) histogram of interior angles of the mesh (c) histogram of element areas

case of quasi-random discretization, we use a minimum allowable distance of
�

0.68ab/n,
as prescribed by Bolander and Saito [27] for a rectangular domain with dimensions a and
b. The CVT mesh was constructed with 100 iterations of Lloyd’s algorithm. As a measure
of mesh quality, the coefficient of variation of edge lengths for each element is plotted in
gray-scale. The coefficient of variation for a regular polygon is zero (indicated as white in
the figures) since all the edges have the same length. We observe that the CVT mesh is
superior in terms of element quality. The histograms of interior angle (at the triple joints)
and element area are also shown in these figures. These plots indicate that Lloyd’s itera-
tions drive the Voronoi mesh towards a regular hexagonal packing. Moreover, we note that
the CVT mesh is significantly more uniform in size over the domain.

6.3 Voronoi meshing algorithm

Before discussing the details of the proposed meshing algorithm, we illustrate the main
ideas based on the concepts developed so far. As shown by Bolander et al. [27, 179], a
polygonal discretization can be obtained from the Voronoi diagram of a given set of seeds
and their reflections.

138

!"

y

R
"
()y

y
b

z

R
"
()z

z
b

x

R
"
()x

x
b

Figure 6.9: Illustration of the meshing approach: the Voronoi edges shared between seeds and
their reflection approximate the boundary of the domain. Note that the reflections of the interior
seeds “far” from the boundary (e.g. point z in the figure) do not contribute to the final mesh

Explanation of the approach

Assume Ω ⊆ R2 is a bounded convex domain with smooth boundary and P is a given set
of distinct seeds in Ω. To construct a polygonal discretization of Ω, we first reflect each
point in P about the closest boundary point of Ω and denote the resulting set of points by
RΩ(P):

RΩ(P) := {RΩ(y) : y ∈ P} (6.16)

Convexity of Ω ensures that all of the reflected points lie outside of Ω. We then construct
the Voronoi diagram of the plane by including the original point set as well as its reflection.
In other words, we compute T (P ∪ RΩ(P); R2). If the Voronoi cells of a point y and its
reflection have a common edge, i.e., if Vy ∩ VRΩ(y) �= ∅, then this edge is tangent to ∂Ω

at the yb (see Figure 6.9). Therefore, these edges form an approximation to the domain
boundary and a reasonable discretization of Ω is given by the collection of Voronoi cells
corresponding to the points in P. For a given point set P, such a discretization is uniquely
defined and is denoted by MΩ(P). Thus, we have:

MΩ(P) =
�
Vy ∈ T (P ∪RΩ(P); R2) : y ∈ P

�
(6.17)

We further note that the convexity of Ω implies that the boundary edges lie on the exterior
of the domain and so the discretization MΩ(P) covers Ω.

Clearly a better approximation is obtained if the points in P are distributed more
“evenly” in Ω. In our algorithm, we will incorporate Lloyd’s iterations to obtain a point set
P that produces a CVT. Since optimal CVTs consist of Voronoi cells that are congruent
to a basic cell (and thus are uniform in size) [68], it is expected ∪V ∈MΩ(P)V ≈ Ω especially

139

!"
#

!"
$

" "

!"
#

!"
$

x

R
"
()x

#

R
"
()y

$
y R

"
()yy

$

x

R
"
()x

#

R
"
()x

$

R
"
()y

#

Figure 6.10: To accurately capture a corner, nearby seeds need to be reflected about both
boundary segments incident on that corner

for a large number of generating points. This gives a systematic and consistent approach
for discretizing Ω under the given assumptions.

Algorithm

The basic ideas laid above can be extended for discretization of more general domains,
in particular those that are non-convex and have piecewise smooth boundaries (e.g. ∂Ω

has corner points where there is a jump in the normal vector). These features lead to a
number of complications that require modifications of the previous approach. For example,
reflecting a point about the nearest boundary point may not be sufficient to capture a
nearby corner (see Figure 6.10). We resolve this issue by reflecting the seeds about both
boundary segments incident on the corner. Similarly, for non-convex domains, reflection of
a seed far from the boundary may land inside the domain or interfere with the reflection of
another seed (Figure 6.11). We check the sign and value of the distance function to exclude
such a scenario. Finally, as seen in Figure 6.9, the reflection of most of the seeds in the
interior of the domain has no effect on the approximation of the boundary. Thus, we add
a condition to reflect only seeds that are in a band near the boundary. This significantly
reduces the computational cost and improves the robustness of algorithm by alleviating the
problem of interference, which is important in dealing with complex non-convex domains.
Based on these considerations, the following algorithm is proposed.

We consider domains Ω that are formed by finite union, intersection and/or difference
of smooth but perhaps unbounded regions Ωi, i = 1, . . . ,m. Using formulas in (6.7), the
distance function associated with Ω can be written as a function of dΩi :

dΩ(x) = F (dΩ1(x), . . . , dΩm(x)) (6.18)

140

y

R
!
()y

z

R
!
()z

"!

yb

Figure 6.11: In this non-convex domain, the reflection RΩ(y) is closer to the boundary of the
domain than the seed y itself, i.e., |dΩ(RΩ(y))| < |dΩ(y)|. Not only this reflection does not
contribute to the approximation of the boundary, it causes interference with seed z

Algorithm 1 Initial random seed placement
input: B,n %%B ⊃ Ω is the bounding box and n is the desired number of seeds

set P = ∅
while |P| < n do

generate random point y ∈ B
if dΩ(y) < 0 then

P ← P ∪ {y}
end if

end while

output: P

It is expected that Ωi’s and operations represented by F are defined in such a way that
distance to the every boundary segment of Ω can be found among the values of dΩi .

The first step in the algorithm is to generate an initial set of points P. Algorithm 1 shows
the basic steps for obtaining a random point set of n size. The implementation of random
seed generation is simplified by specifying a bounding box B = [xmin, xmax] × [ymin, ymax]

that contains Ω. A random seed y ∈ B is accepted only if it lies inside the domain and this
is determined by evaluating the sign of the dΩ(y).

As discussed above, the set of reflections must be chosen carefully in order to deal with
possible non-convex and non-smooth features of Ω. In Equation (6.17), RΩ(P) may not be
sufficient for producing a good discretization MΩ. The procedure for computing the new
set of reflections, denoted by R(P), is outlined in Algorithm 2. A seed y ∈ P is reflected
about boundary segment ∂Ωi provided that:

141

Figure 6.12: In the algorithm, only the seeds in band of length α(n,Ω) near the boundary
(shaded area in the figure) are reflected

|dΩi(y)| < α(n, Ω) (6.19)

where α(n, Ω) is a distance value proportional to the width of an element:

α(n, Ω) := c

�
|Ω|
n

�1/2

(6.20)

We choose the constant of proportionality c to be greater than 1 so that α is larger than the
average element width. Note that convex corners are captured as nearby seeds are reflected
about both boundary segments incident on these corners.

The reflection y = RΩi(y) is accepted if it lies outside the domain, i.e., dΩ(y) > 0.
Moreover, the following criterion is added to avoid interference with the reflection of other
seeds:

|dΩ(y)| > η |dΩi(y)| (6.21)

where 0 < η < 1 is a specified parameter to adjust for numerical errors (round-off and
numerical differentiation). Figure 6.11 illustrates the idea behind this criterion: In the
case of a convex domain, |dΩ(y)| = |dΩi(y)| so no complication will occur. In general,
however, the reflection may be closer to a boundary segment of Ω, other than the one that
generated it (i.e., Ωi), in which case the reflection will not help with the approximation of
the boundary and may possibly interfere with the reflection of another seed. In particular,
we expect an interference when dΩ(y) < −dΩi(y). Hence we exclude this possibility by
accepting only the reflections that satisfy the condition in Equation (6.21).

Once the set of reflections are determined, the Voronoi diagram of the P ∪ R(P) is
constructed. For each y ∈ P, we compute the centroid of Voronoi cell Vy to complete
the first iteration of the meshing routine. Following the idea of Lloyd’s algorithm, the set

142

Algorithm 2 Reflection
input: P, α, η

R(P) = ∅
for each y ∈ P do

if |dΩ(y)| < α then

for i = 1 to m do

if |dΩi(y)| < α then

let y = RΩi(y)
if dΩ(y) > 0 and |dΩ(y)| > η |dΩi (y)| then

R(P) ← R(P) ∪ {y}
end if

end if

end for

end if

end for

output: R(P)

of centroids Pc will replace P in the next iteration until convergence is achieved. The
convergence criterion is based on the magnitude of the gradient of the energy functional.
In particular, the algorithm should terminate when �∇E� ≈ 0. Recalling Equation (6.13),
the norm of the gradient is given by:

�∇E� :=

�
�

y∈P

�∇yE�2

�1/2

=

�
�

y∈P

m
2
y
�y − yc�2

�1/2

(6.22)

We can see that this quantity is in fact a measure of the movement of the seeds in two
consecutive iterations, weighted by the “size” of their Voronoi cells through terms my. To
identify the appropriate convergence tolerance, we note:

my ∝
1

n

ˆ
Ω

µ(x)dx, �y − yc�2 ∝ |Vy| ∝
|Ω|
n

(6.23)

and so the norm of the gradient scales as:

�∇E� ∝
�
n

�
1

n

ˆ
Ω

µ(x)dx

�2 |Ω|
n

�1/2

=
|Ω|1/2

n

ˆ
Ω

µ(x)dx (6.24)

We define the following “non-dimensional” error parameter:

Er :=
n �∇E�

|Ω|1/2 ´
Ω µ(x)dx

(6.25)

143

Algorithm 3 Main function
input: n, M , �tol %%number of seeds n, max. number of iterations M , tolerance �tol

generate P, a random point set of size n
i ← 0, Er ← 1, Pc ← P %Initialization of variables
while i ≤ M and Er ≥ �tol do

P ← Pc

compute reflections R(P)
construct diagram T (P ∪R(P); R2)
calculate Pc ← {yc : y ∈ P}
compute Er using Equation (6.25)
i ← i + 1

end while

output: MΩ(P) =
�
Vy ∈ T (P ∪R(P); R2) : y ∈ P

�

Thus convergence is established when:

Er < �tol (6.26)

Here 0 < �tol � 1 is the specified convergence tolerance. The pseudo-code for the main
routine is shown in Algorithm 3. Note that the mesh is still defined by expression (6.17)
with RΩ(P) replaced by R(P).

Remarks on min/max formulas

A remark is in order regarding min/max formulas in (6.7) and implicitly used in (6.18)
and their influence on the behavior of the meshing algorithm. As mentioned before, these
expressions may produce incorrect distance values in certain regions of the plane. A close
inspection of the algorithm shows that the magnitude of dΩ generated by equation (6.18)
is used only in the evaluation of interference criterion (6.21). Elsewhere—in generating an
initial point set, checking condition (6.19), or computing reflection of a seed—we either use
the sign of dΩ or the distance values of the constituent domains. The requirement on F and
the structure of min/max formulas implicitly used in F guarantee that |dΩ(y)| =

��dΩj(y)
��

for some index j. Here dΩ denotes the distance function generated by F , which may be
different from the exact distance functions associated with Ω in some regions of the plane.
In such a case, the violation of condition (6.21) implies

��dΩj(y)
�� = |dΩ(y)| ≤ η |dΩi(y)| < |dΩi(y)| (6.27)

and so the reflection y = RΩi(y) is “correctly” rejected because it is expected to cause
interference with approximation of Ωj. In fact, in this algorithm, we do not need the exact
distance function associated with Ω. Note our need for dΩi ’s is primarily due to the issue
of corners and capturing non-convex features.

144

before collapsing
the small edges

after collapsing
the small edges

Figure 6.13: Small edges can form in elements near a curved boundary since the generating seeds
are not the same distance from that boundary. The issue can be addressed by a post-processing
step of collapsing these edges onto a single node

6.4 Two mesh modification procedures

We discuss two procedures that are applied to the Voronoi discretization to make it suitable
for use it finite element applications. The first mesh modification procedure addresses the
issue of small edges that can appear in the Voronoi meshes in the interior or around the
boundary of the domain. In latter case, this phenomenon is due to the use of numerical
differentiation to compute the gradient of the distance function and unequal distance of
seeds to curved boundaries, as illustrated in Figure 6.13. A small interior edge can also
form in the interior of the domain when four seeds are almost co-circular (see Figure 6.14).
The presence of these edges can in turn lead to a high condition number of the finite element
stiffness matrix associated with the mesh.

A simple remedy is to collapse the edges that are small compared to the element size
into a single node. This operation does not distort the mesh topology (elements remain
to be strictly convex polygons) and ensures a uniform quality of the mesh. An alternative
approach is discussed in [139], which augments the energy functional to penalize the small
edges. In our implementation, we search all the edges in the mesh by looping over all
the elements. Given an edge of an element, we compute the angle β between the vectors
connecting the center (the location with mean value of the coordinates of the nodes) of the
element and the vertices forming the edge. The edge will be collapsed into a single node
when

β < �a

�
2π

�

�
(6.28)

Here � is the number of vertices of the element and �a is a user-defined tolerance.
The second issue regarding the Voronoi meshes is that since the seeds are placed ran-

145

small edge

o

!

Figure 6.14: Illustration of small interior edges in a CVT and definition of angle β in Equation
(6.28)

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Before resequencing

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

After resequencing

Figure 6.15: Sparsity pattern for the stiffness of polygonal mesh with 500 elements and 1002
nodes before RCM resequencing (left) and after resequencing (right). The bandwidth is reduced
from 966 to 75.

146

(a)

(b)

(c)

(d)

Figure 6.16: Distance functions (left) and sample meshes (right) for various domains (a) MBB
beam (b) cantilever (c) Horn (d) Wrench

domly, the element and node numbering of the resulting mesh will be random. This can
cause the associated stiffness matrix to exhibit an undesirable sparsity pattern with a large
bandwidth. A remedy to this problem consists of using the Reverse Cuthill-McKee (RCM)
algorithm, which is designed to reduce the bandwidth and profile (skyline) of sparse sym-
metric matrices by systematically reordering the node numbers [56]. For example, a typical
mesh with 500 elements and 1, 002 nodes produced by the meshing algorithm has the spar-
sity pattern shown in Figure 6.15. After applying RCM, the bandwidth is reduced from 966

(almost full) to 75. This can lead to substantial savings in the computational time needed
for solving the resulting linear systems with certain direct solvers.

147

(a) (b)

Figure 6.17: Suspension triangle (a) geometry and (b) discretization

6.5 Examples of domains and meshes

Figures 6.16 shows the contour plot of the distance function and a sample mesh for several
domains that have been used for topology optimization examples throughout the thesis.
The domains are relatively simple and can be constructed from basic constituent geometries
such as half planes and circles. In the appendix, we show how these distance functions can
be constructed using a basic library of distance functions. For these meshes, it is assumed
µ(x) ≡ 1 and so yc is the centroid of a polygon, my = |Vy| and the expression for the error
is simplified as:

Er =
n

|Ω|3/2

�
�

y∈P

|Vy|2 �y − yc�2

�1/2

(6.29)

In all cases, the parameters c = 1.5, �a = 0.1 and �tol = 5×10−3 were used. Notice that the
mesh in Figure 6.16(b) is symmetric about the horizontal axis. This was done by simply
constraining the seeds to one half of the domain and reflecting them about the axis of
symmetry in each iteration to obtain the interior point set.

One can also describe more complicated geometries using the same basic ingredients. We
show two such examples where the construction of the distance functions involves several
constituent geometries and set operations. The first is an extended domain for the design
of a socket wrench and the other is domain for a suspension triangle which is presented as
an industrial application of topology optimization in [7]. The constituent domains of the
suspension triangle are shown in Figure 6.17(a). The meshes in Figures 6.17(d) and 6.17(b)
are both made up of 1,000 elements.

148

y2

y1y1

y2

z

y1

y2 y3

y

Figure 6.18: In the left figure, the reflection of point y1 has interfered with the approximation
of the horizontal boundary by seeds z and y2. In the right figure, seeds y1, y2 and y3 are fixed in
such way that they all have y as their reflection

6.6 Extensions

We conclude the chapter by discussing a few extensions of our meshing algorithm, which
were left out of the present algorithm (and the Matlab code in the appendix) for the
sake of simplicity and clarity. The first is related to the approximation of certain non-
convex corners, which may not be adequately captured with the reflection criteria described
above. An example of a domain that exhibits such geometry is the L-shaped domain
shown in Figure 6.18. Since the seeds near the non-convex corner are placed independently
(during the Lloyd’s iterations), their reflections may interfere with each other. One possible
solution is to place some seeds at an equal distance from the corner and fix them during
the Lloyd’s iteration. This process can be made systematic by choosing, as the fixed seeds,
the reflections of appropriately places seed outside such a corner (e.g. point y in Figure
6.18).

The second extension is regarding the generation of non-uniform meshes. The Lloyd’s
algorithm with constant density function, µ(x), leads to a uniform distribution of seeds
and subsequently a Voronoi discretization that is uniform in size over the entire domain.
It is possible to generate non-uniform meshes with desirable gradation by selecting an
appropriate density function, which biases the placement of points in certain regions (see the
effects on varying density function in [65]). Note that, to generalize the code further in this
direction, an integration scheme for convex polygons is needed to compute the centroids.
Alternatively, we can choose an initial distribution of seeds such that regions that need
refinement contain more seeds. Persson and Strang [125] and Persson [124] have employed
a rejection method that relies on defining a mesh size function h(x) over the domain. Figure

149

Figure 6.19: Sample graded meshes: the left figures show the initial distribution of seeds gen-
erated using a mesh size function and rejection method and the right figures show the final mesh
after Lloyd’s iterations

6.19 shows examples of graded meshes that can be generated by the algorithm presented in
this work in conjunction with the rejection method. Note that Lloyd’s iterations naturally
lead to a smooth gradation in the mesh. Although not explored, it is also possible to combine
the two approaches and specify suitable and related density and mesh size functions. Since
the gradation in the mesh is often dictated by the geometry of the domain, it is natural
that both µ and h be defined based on the distance function dΩ.

150

Chapter 7

Conclusions and Extensions

In this thesis, we explored various theoretical and computational aspects of restriction
methods for shape and topology optimization. In particular, we discussed three main set
of issues, namely appropriate parametrization and restriction of shapes, finite element dis-
cretization of the associated sizing optimization problem, and the algorithm for solving the
resulting large-scale discrete system. Regarding the first issue, we discussed and analyzed
the Ersatz approximation in elasticity (and briefly a similar procedure for Stokes flow)
as a first step in the “sizing” transformation. We presented a framework for analysis of
the well-posedness of restriction methods and considered the implications for density and
implicit function formulations. We provided an alternative rationale for density formula-
tions that dispenses with the notion of microscopic material distribution in the presence of
macroscopic restrictions on the density variation. In the case of implicit functions, since
a clear delineation of regularity conditions is less frequently addressed in the literature,
we discussed the significance of the transversality condition for these methods in practice,
especially as it pertains to the issue of approximation of the Heaviside map. These observa-
tions can potentially serve as a starting point to devise more transparent implicit function
and level-set methods and possibly eliminate the commonly used numerical heuristics such
as modification of gradient information and frequent use of reinitialization.

We also explored various regularization schemes including the popular filtering methods,
Tikhonov and total variation regularization and their characteristics from a numerical point
of view. Noting that the choice of regularization is intimately linked with one’s choice of
parametrization of the unknown geometry, there are more possibilities that can be explored.
One strategy worth pursuing is to consider an appropriately defined hierarchical basis (e.g.,
wavelets) and prescribe complexity of the optimal shapes through the degree of sparsity in
such basis. This would in turn allow multi-resolution control of geometric features. Recall
that total variation regularization can be viewed as a means to promote the sparsity of
the spatial gradient of the optimal field. Such a perspective plays an important role in
image processing. At the heart of the burgeoning field of compressed sensing [40, 41], for
example, is the use of a priori knowledge that the unknown signals (e.g., images) have a
sparse structure and can be reconstructed with fewer measurements than previously thought
possible (on the order of internal sparsity) by means of an appropriately posed sparse

151

optimization problem. Analogously, in the optimal shape design, one would prescribe a
desirable degree of sparsity of the unknown optimal shape which then would be recovered
using a tailored sparse optimization framework.

With respect to the second issue, we discussed how the discretization of the design and
response fields in optimal shape design can be non-trivial and that naive finite element
approximations of the problem may suffer from numerical instabilities such as spurious
checkerboard patterns. These grid-scale anomalies are in part due to the inaccurate analysis
of the design response. For two-dimensional problems, we showed that isoparametric polyg-
onal finite elements, unlike their low-order Lagrangian counterparts, are not susceptible to
such instabilities. This behavior is attributed to the enhanced approximation characteristics
of these elements, which also alleviate shear and volumetric locking phenomena. Regarding
the latter property, we also showed that low-order polygonal discretizations satisfy the so-
called Babuska-Brezzi condition required for stability of mixed variational formulation of
incompressible elasticity and Stokes flow problems. Conceptually, the polygonal elements
are the natural extension of commonly used linear triangles and bilinear quads to all con-
vex n-gons. To facilitate their use, we developed a simple but robust meshing algorithm
that utilizes Voronoi diagrams to generate convex polygonal discretizations of implicit ge-
ometries. A set of self-contained discretization and analysis Matlab codes using polygonal
elements has been developed and made available for the community. While the meshing
algorithm does readily extend to three dimensions, developing an element formulation for
conforming polyhedra that retains the simplicity of its 2D counterpart remains an open
question.

What lies at the heart of the above-mentioned numerical instabilities is the fact the
parameterization of design and approximation of its response in topology optimization, are
rigidly linked through the discretization process. Ideally, for each application, one should
use the numerical solver that best suits the physics of the problem in order to compute
the response of the candidate designs as efficiently and accurately as possible. To do so,
the discretization of the governing equation must therefore be decoupled from that of the
design field. This in turn requires an efficient data structure capable of supporting multiple
dynamic discretizations and the transfer of information between them, systematic addition
of sensitivity analysis routines to PDE-solvers, as well as guidelines for adaptivity of the
design and response fields based on rigorous error estimates.

Finally, with regards to the optimization algorithms, we discussed the general sequential
approximation optimization approach underlying popular algorithms such as the optimality
criteria method and MMA. We also developed and explored at great length an operator
splitting algorithm to solve topology optimizations problems with an additive regulariza-
tion term and subject to convex constraints. The key idea is that the splitting algorithm
matches the structure of the problem and treats the structural performance objective (that

152

depends on the state equation), the regularization term (that controls the geometric com-
plexity) and the constraints, separately. On the one hand, this decomposition opens up the
possibility to improve the quality of optimal designs by modifying its various ingredients.
For example, we discovered that by augmenting the projection operation that enforces the
box-constraints, the algorithm produces binary solutions with sharp boundaries even for
large regularization effects. This is in contrast to the usual filtering methods, in which, as
noted earlier, with more complexity control comes more severe smearing of the boundary.
On the other hand, the convex subproblems generated by the splitting algorithm in each
iteration are significantly simpler to solve since the dependence on the state equation is
removed. As a result, the algorithm is able to accommodate nonsmooth regularization
schemes. In the case of total variation regularization, for example, the subproblems are
identical to the classical image de-noising problems for which efficient algorithms can be
found in the image processing literature. We were also able to significantly speed up the
convergence of the algorithm by introducing a diagonal approximation to the Hessian of the
structural objective, which amounts to using a variable metric in computing the gradients
in course of the optimization. In the extensions of this work, it would be interesting to con-
sider nonsmooth regularizers such as the total variation within the present variable metric
scheme. This would require the extension of available denoising algorithms (e.g., [43, 33])
for solving the resulting subproblems in each iteration. Also of interest is the use of accel-
erated first order methods such as those proposed in [118] and [16] that can improve the
convergence speed of the algorithms. Developing a two-metric variation of such algorithms
for the constrained minimization problems of topology optimization is especially promising.

153

Appendix A

Educational Codes

Sharing and publication of educational software has become a tradition in the topology
optimization community. For instance, in addition to the popular “99 line” code [140] and
its successor [12], Allaire and Pantz [9] presented a structural optimization code based on
FreeFem++. Liu et al. [111] introduced a coupled level set method using the FEMLAB
package and Challis [42] presented a discrete level-set Matlab code very much in the spirit
of the “99 line” code. More recently, Suresh [150] developed a 199 line code for Pareto-
optimal tracing with the aid of topological derivatives. We aim to extend and complement
the previous works by presenting a Matlab implementation of topology optimization that,
among other things, features a general framework for finite element discretization and
analysis.

Many engineering applications of topology optimization cannot be defined on a rectan-
gular domain or solved on a structured square mesh. The description and discretization
of the design domain geometry, specification of the boundary conditions for the governing
state equation, and accurate computation of the design response may require the use of
unstructured meshes. One main goal here is to provide the users a self-contained analysis
tool in Matlab and show how the topology optimization code should be structured so as to
separate the analysis routine from the particular formulation used. We elected to focus on
polygonal discretizations in this educational effort for the following reasons: (i) The con-
cept of Voronoi diagrams offers a simple way to discretize two-dimensional geometries with
convex polygons. In chapter 6, we discussed a simple and robust Voronoi mesh generation
scheme that relies on an implicit description of the domain geometry; (ii) Polygonal finite
elements outperform linear triangles and quads in topology optimization as they are not
susceptible to numerical instabilities such as checkerboard patterns [101, 137, 161, 162]; (iii)
The isoparametric formulation for polygonal finite elements can be viewed as extension of
the common linear triangles and bilinear quads to all convex n-gons [149, 148, 162]. As a
special case, these codes can generate and analyze structured triangular and quadrilateral
meshes.

First, we present a simple and robust Matlab code, called PolyMesher, for Voronoi
polygonal mesh generation algorithm discussed in chapter 6. The mesh generator can
provide, among other things, the input needed for finite element and optimization codes

154

that use linear convex polygons. The use of polygonal elements makes possible meshing
of complicated geometries with a self-contained Matlab code. The main ingredients of
the present mesh generator are the implicit description of the domain and the centroidal
Voronoi diagrams used for its discretization. The signed distance function provides all the
essential information about the domain geometry and offers great flexibility to construct
a large class of domains via algebraic expressions. Examples are provided to illustrate the
capabilities of the code, which is compact and has fewer than 135 lines.

Next we present a simple and efficient Matlab code, called PolyTop, for solving topology
optimization problems that features a general finite element analysis routine and encom-
passes a large class of formulations as discussed in chapter 1. We address the use of arbitrary
meshes in topology optimization and discuss certain practical issues that have received lit-
tle attention in the literature. For example, higher computational cost associated with
unstructured meshes, cited as a motivation for adopting uniform grids, is sometimes at-
tributed to the need for repeated calculations of the element stiffness matrices. However,
as we demonstrate, the invariant quantities such as the element stiffness matrices and the
global stiffness matrix connectivity can be computed once and stored for use in subsequent
optimization iterations. This approach is feasible since the amount of memory required is
relatively small considering the hardware capacities of current personal computers. More-
over, the overhead associated with computing multiple element stiffness matrices is small
compared to the overall cost of the optimization algorithm which may require solving hun-
dreds of linear systems. The Matlab code PolyTop retains the readability and efficiency of
previous educational codes while offering a general FE framework. In terms of efficiency,
our Matlab implementation has performance that is on par with the recently published 88
line code [12] and is faster for large meshes. As an example of arbitrary meshes, we have
implemented the FE routine based on isoparametric polygonal finite elements. However, we
note that that since the FE code is general, it is straightforward for the users to implement
new elements (e.g. higher order, non-conforming, etc.) or use meshes generated by other
software (an example of a Matlab mesh generator is distMesh by [125]).

Another related goal of this work is to present a modular code structure for topology
optimization in which the analysis routine for solving the state equation and computing
the sensitivities is made independent of the specific formulation chosen. This means that
the analysis routine need not know about the specific formulation used which in turn
allows the code to accommodate various formulations without compromising its clarity
or pragmatism. By contrast, previous educational software, e.g., the 99- and 88-line and
similar codes, often mix the analysis and formulation—perhaps in the interest of keeping
the code short and compact—and so require multiple versions [12]. Within the present
framework, the analysis routine can be developed, modified, or extended without any effect
on the optimization code. Conversely, if a new problem demands a different type of analysis,

155

a suitable analysis package can replace the one presented. We note that other Matlab codes
for topology optimization can make use of our general analysis code. The formalism of this
decoupling approach is crucial when one seeks to develop the framework for solving more
complicated and involved topology optimization problems including multiphysics response,
multiple geometry or state constraints, though for the simple compliance benchmarks the
difference may seem minor.

A.1 PolyMesher

We begin by describing the structure of the code, the input and output parameters and the
user-defined Domain function that characterizes the meshing domain. Next we make some
comments on the routines inside the meshing kernel. The kernel of the mesh generator is
implemented in the PolyMesher function. The following variables are the user inputs to
this function:

[Node,Element,Supp,Load,P] = PolyMesher(@Domain,NElem,MaxIter,P)

Domain: This is a Matlab function defining the domain. As shown above, a handle to this
function (e.g., @MichellDomain) is passed to the kernel, providing access to information
about domain geometry (i.e., the sign distance function), the bounding box B, and the
boundary conditions. The details of this function are discussed below.

NElem: This is an integer that represents the desired number of elements in the mesh.
When an initial point set P is specified, NElem is replaced by the number of elements in P.

MaxIter: This integer specifies the maximum number of Lloyd’s iterations. By setting
MaxIter to zero and providing an initial point set, the user can obtain/recover the Voronoi
mesh produced by that point set.

P: The user has the option of inputting an initial set of seeds through the array P, in which
the kth row represents the coordinates of the kth seed. If no such input is passed to the code,
an initial random point set is generated (see description of the function PolyMshr_RndPtSet
below).

The PolyMesher function computes and returns the Voronoi discretization along with
the final set of seeds and the boundary conditions arrays (Supp and Load as described
below). The mesh is represented by the commonly used data structure in finite element
community, namely a node list and an element connectivity matrix. The node list, Node, is
a two-column array whose ith row represents the coordinates of the node with index number

156

Use Input Output

bounding box Domain(‘BdBox’)
coordinates of bounding box
[xmin,xmax,ymin,ymax]

distance values Domain(‘Dist’,P)
(m + 1)× n matrix of distance values for

point set P consisting of n points
boundary conditions Domain(‘BC’,Node) cell consisting of Load and Supp arrays

Table A.1: Various uses and commands for the Domain function

i. The connectivity Element is stored inside a Matlab cell of size NElem. The kth entry of
the cell contains the indices of the nodes incident on the kth element in counter-clockwise
order1.

All the domain-related information is included in Domain defined outside the kernel.
This provides more flexibility for generating meshes for new domains and eliminates the
need for the repeated modifications of the kernel. The domain function is used in the
kernel for three distinct purposes: (1) retrieving the coordinates of the bounding box for
the domain, (2) obtaining the distance of a given point set to the boundary segments, and
(3) determining the boundary condition arrays for a given node list. In the sample domain
functions, the input string Demand specifies the type of information requested. Table A.1
summarizes the different input and output choices.

Within the Domain function, the user must define the distance function of the meshing
domain. This function, called DistFnc in the sample domain functions, accepts the coor-
dinates of a point set P and return a matrix of (m + 1) × n distance values. The entry
located at ith column and jth row represents the signed distance value dΩi(Pj), while the
last column is the signed distance for the entire domain Ω. If d is a matrix of distance
values, this last column can be quickly accessed by command d(:,end).

The user also defines the function that returns the lists of nodal loads and supports
given the node list for the mesh. The nodal support array Supp has three columns, the
first holds the node number, the second and third columns give support conditions for that
node in the x- and y-direction, respectively. Value of 0 means that the node is free, and
value of 1 specifies a fixed node. The nodal load vector Load is structured in a similar way,
except for the values in the second and third columns represent the magnitude of the x-
and y-components of the force.

Comments on the functions in the kernel

We now proceed to discuss some of the details of the implementation of the kernel and
comment on its functions. We remark that in this implementation, it is assumed µ(x) ≡ 1.

1The cell structure allows for storing vectors of different size and is therefore suitable for connectivity of polygonal
elements with different number of nodes.

157

PolyMesher: The main function follows closely the pseudo-code in Algorithm 3 in section
6.3. On line 7, we check to see if an initial point set is provided by the user. The variable
NElem is updated on line 8 to make sure it is consistent with size of P. The iteration counter
It and error value Err are initialized such that the while-loop is executed at least once.
Upon the first execution, line 15 recovers the initial points in variable P. The area of the
domain, needed for computing Er and α, is initially set to the area of the bounding box on
line 11. This value is updated when the centroids of the elements are computed2.

Since the output of the Matlab voronoin command on line 17 is the set of vertices and
connectivity of the entire Voronoi diagram (i.e., with all the cells in T (P∪R(P); R2)) and
the discretization is composed only of the cells in MΩ, we need to extract the nodes and
connectivity of these cells. This is done in the PolyMshr_ExtrNds function (line 24). The
mesh is updated once more in PolyMshr_CllpsEdgs to remove small edges that can appear
in a CVT (line 25). Furthermore, since resulting node numbering and connectivity are
random (as a consequence of random placement), the bandwidth of finite element stiffness
matrix may be too large. This issue is addressed in the PolyMshr_RsqsNds function (line
26). The main function ends with obtaining the boundary condition arrays from the domain
function (line 27) and plotting the final mesh (line 28).

PolyMshr_RndPtSet: This function generates an initial random point set of size NElem. A
candidate point set Y of size NElem is generated using the coordinates of the bounding box
and rand function in Matlab (lines 33-34). Only seeds in Y that lie inside the domain are
accepted. The variable Ctr counts the number of seeds accepted so far. The while-loop
terminates when the desired number of seeds is reached.

PolyMshr_Rflct: The implementation of this function follows Algorithm 2 in section 6.3.
The gradient of the distance function is computed by means of numerical differentiation:

n := ∇dΩi(y) ≈ �
−1
d

(dΩi(y + (�d, 0))− dΩ(y), dΩi(y + (0, �d))− dΩi(y)) (A.1)

Here �d is a small positive number, set to 10−8 by default on line 43. We compute the
normal vector for the entire point set at once on lines 46 and 47, where n1 and n2 denote
the first and second components of the normal, respectively. The logical array index I,
computed on line 48, is then used to identify and reflect the seeds only about the nearby
boundary segments, i.e., those within distance of α. In order to compute the reflections
R_P at once, the point set P is extended, by repeating its columns, to two matrices of the
same size as n1 and n2 on lines 49 and 50. Once the candidate set of reflections R_P of the
boundary-adjacent seeds are obtained (lines 51-52), the two conditions for accepting the

2This small overhead can be removed after a few iterations once a good estimate value is obtained

158

reflections are enforced on line 55 by means of another logical array index J.

PolyMshr_CntrdPly: This function returns the areas and centroids of the first NElem cells
in the mesh. Since the density is assumed to be constant, we can compute the area and
centroid of each cell using the available formulae for polygons. The signed area for an
�-sided polygon is given by:

A =
1

2

��

k=1

�
v

[k]
x

v
[k+1]
y

− v
[k+1]
x

v
[k]
y

�
(A.2)

where (v[k]
x , v

[k]
y) is the coordinates of the kth vertex of the polygon, k = 1, . . . , �. In the

above equation, we are defining (� + 1)th vertex to be the same as the first. Similarly, The
formula for computing the centroid is:

cx =
1

6A

��

k=1

�
v

[k]
x

+ v
[k+1]
x

� �
v

[k]
x

v
[k+1]
y

− v
[k+1]
x

v
[k]
y

�
(A.3)

cy =
1

6A

��

k=1

�
v

[k]
y

+ v
[k+1]
y

� �
v

[k]
x

v
[k+1]
y

− v
[k+1]
x

v
[k]
y

�
(A.4)

PolyMshr_ExtrNds: The original discretization is passed to this function through variables
Element0 and Node0. The connectivity of the Voronoi cells that make up the mesh are
stored in the first n arrays of the cell variable Element0 as a result of passing the seeds P in
the first block of the input to Matlab function voronoin on line 17. However, the vertices
of these cells are not necessarily stored in the first block of rows of Node0. The extraction of
the additional nodes requires modification of both the node list and the connectivity matrix.
The function PolyMshr_ExtrNds first creates a one-dimensional array, map, containing the
indices of the nodes that must remain in the mesh (the Matlab function unique is used
to remove the appearance of duplicate nodes). The array cNode, needed for updating the
node list and element connectivity matrix, is constructed on lines 69-70. By setting the
entries of cNode that correspond to the nodes that must be removed to the maximum value
in map (which is necessarily the index of a node that will remain in the node list) on line
70, we ensure that they are removed in PolyMshr_RbldLists function (see below for the
description of this function).

PolyMshr_CllpsEdgs: This function addresses the issue of appearance of small edges in the
meshes. The simple remedy, implemented in PolyMshr_CllpsEdgs function, is to collapse
the edges that are small compared to the element size into a single node. We search all
the edges in the mesh by looping over all the elements (for-loop in lines 76-84). Given an

159

edge of an element, we compute the angle between the vectors connecting the center (the
location with mean value of the coordinates of the nodes) of the element and the vertices
forming the edge (lines 79-80). The edge will be collapsed into a single node according
to 6.28. To update the node list and element connectivity matrices, the set of edges that
needs to be collapsed is stored in array cEdge (line 86). The input cNode is defined on line
89 such that the two nodes at the end of a tagged edge are replaced by a single node in
PolyMshr_RbldLists.

PolyMshr_RsqsNds: In this function, a call is made to Reverse Cuthill-McKee function in
Matlab to renumber the nodes once more to ensure that the finite element stiffness matrix
associate with the mesh will a small bandwidth. The sparsity pattern of the corresponding
stiffness matrix is first computed (lines 98-104). The assembly of this pseudo-stiffness
matrix K is carried out by the use of Matlab’s sparse assembly function (on line 105). The
Matlab function symrcm returns the reverse Cuthill-McKee ordering, stored in variable p,
which is then used to compute the cNode array passed to PolyMshr_RbldLists function.
The reader is referred to the Matlab documentation on functions sparse and symrcm for
further information of this implementation.

PolyMshr_RbldLists: This auxiliary function is used in all three mesh modification func-
tions (PolyMshr_ExtrNds, PolyMshr_CllpsEdgs, and PolyMshr_RsqsNds) for updating
the node list and element connectivity according to the information contained in the input
array cNode. This is an array of integer with the same length as the input node list Node0. If
the ith entry of cNode is set to have value k, then after the update, the ith node, Node0(i),
is replaced by the coordinates of kth node, Node0(k). For example, in order to collapse
nodes i and j, we can set cNode(i)=j (see line 89 in PolyMshr_CllpsEdgs function). Sim-
ilarly, if we wish to remove the node with index i from the node list (which is the case in
PolyMshr_ExtrNds function), we set cNode(i) to be the highest index of the nodes that
will remain in the mesh after the modification. On line 112, we use the unique function in
Matlab to identify the duplicate nodes and the resulting index array ix allows us to extract
the desired nodal coordinates from Node0. When reducing the node list size we need to
make sure that the last mapped node is the maximum node of the input map cNode (line
113). The connectivity Element is updated on line 116 while lines 117-119 guarantee that
final arrangement of nodes in the connectivity cell Element is ordered counter-clockwise.
Note that the voronoin does not necessarily store the nodes in the connectivity cell in a
counter-clockwise order requiring this correction.

PolyMshr_PlotMsh: This function plots the mesh and boundary conditions. In order to
use the Matlab patch function to plot the entire mesh at once, we create an element

160

connectivity matrix ElemMat that is padded with NaNs. This matrix has NElem rows and
MaxNVer columns (as computed on line 125, MaxNVer is the maximum number of vertices
of elements in the mesh). The location of support and loads are also marked provided that
Supp and Load arrays are passed to the function.

Examples

We will now show to how construct the distance functions associated with the geometries
shown in Figure 6.16 in order to illustrate the use of the code. The Domain functions for
these example geometries and the library of distance functions are provided as supplemen-
tary material in [163].

MBB beam The domain is a rectangular box with width of 3 and height of 1, and bottom
left corner located at the origin. The distance function is simply given by:

d = dRectangle(p,0,3,0,1)

and the bounding box is the entire domain, i.e., BdBox = [0 3 0 1]. The boundary con-
ditions for the MBB problem are specified by searching the nodes located along the left
edge and bottom corner. The following command was used to generate the result in Figure
6.16(a):

[Node,Element,Supp,Load,P] = PolyMesher(@MbbDomain,200,100);

Michell cantilever The second example is the extended domain for the Michell cantilever
beam problem. The support is a circular hole and the a vertical load is applied at midspan
of the free end. The distance function is constructed as follows:

d1 = dRectangle(p,0,5,-2,2)
d2 = dCircle(p,0,0,1)
d = dDiff(d1,d2)

The mesh shown in Figure 6.16(b) consists of 1000 elements, and was constructed to be sym-
metric about horizontal axis (located at the midspan). The initial point set was restricted
to the upper half of the domain by modifying line 36 as follows:

I = find(d(:,end)<0 & Y(:,2)>0);

Also during the iterations that point set was reflected about the x-axis to obtain the com-
plete set of generating seeds. In particular, we replaced P = Pc on line 15 by the following
line of code:

P = [Pc(1:NElem/2,:);[Pc(1:NElem/2,1),-Pc(1:NElem/2,2)]];

161

Figure A.1: Uniform discretizations of the MBB beam domain obtained from appropriate place-
ments of the seeds

Horn The third example has the geometry of a horn, which comes from the difference of
two half-circles. The distance function is computed by:

d1 = dCircle(p,0,0,1)
d2 = dCircle(p,-0.4,0,0.55)
d3 = dLine(p,0,0,1,0)
d = dIntersect(d3,dDiff(d1,d2));

The mesh in Figures 6.16(c) consists of 500 elements.

Uniform meshes The proposed algorithm can also be used to generate certain uniform
meshes (regular tessellations), as shown in Figure A.1 for the MBB domain. The user must
specify the set of seed P and turn off the Lloyd’s iterations by setting MaxIter to zero.
The following set of seeds generates a uniform rectangular mesh with nelx elements in the
x-direction and nely elements in the y-direction for the MBB beam problem:

dx = 3/nelx; dy = 1/nely;
[X,Y] = meshgrid(dx/2:dx:3,dy/2:dy:1);
P = [X(:) Y(:)];

162

A.2 PolyTop

The framework of the educational code reflects the findings of chapter 1, which reviewed
the various steps taken in casting the optimal shape problem as a sizing optimization prob-
lem and identified the structure of the resulting discrete optimization problem in sufficient
generality. As mentioned before, the code also features a modular structure in which the
analysis routine and the optimization algorithm are separated from the specific choice of
topology optimization formulation. Within this framework, the finite element and sensi-
tivity analysis routines contain no information related to the formulation and thus can be
extended, developed and modified independently.

The model problem is compliance minimization problem (see the derivation in section
1.4)

min f(z) subject to g(z) ≤ 0 (A.5)

where the objective and constraint functions are defined by

f(z) = F
T
U, g(z) =

A
T
mV (Pz)

AT1
− v (A.6)

Here F is given by (1.30) and is independent of the design variables z, U solves (1.29) in
which K depends “linearly” on mE(Pz) as stated in (1.40), A = (|Ω�|) is the vector of
element volumes, and P is defined in (1.38).

Modular framework, formulation, and optimizer

The structure of the discrete optimization problem (A.5) allows for the separation of the
analysis routine from the particular topology optimization formulation chosen. The analysis
routine is defined to be the collection of functions in the code that compute the objective
and constraint functions and thus require access to mesh information (e.g. the FE analysis
and functions computing the volume or perimeter of the design). We can see that for the
minimum compliance problem vectors E := mE(y) and V := mV (y), i.e., the element
stiffnesses and volume fractions, are the only “design” related information that need to be
provided to the analysis functions. The analysis functions need not know about the choice
of interpolations functions which corresponds to the choice of sizing parametrization or the
mapping P that places constraints on the design space. Therefore a general implementation
of topology optimization in the spirit of this discussion must be structured in such a way
that the finite element routines contain no information related to the specific topology
optimization extended, developed and modified independently.

We can also see that certain quantities used in the analysis functions, such as element
areas A and stiffness matrices k� as well as the “connectivity” of the global stiffness matrix
K need to be computed only once in the course of the optimization algorithm. Therefore, for

163

the sake of efficiency of the implementation, one should store the invariant quantities. We
emphasize that this is independent of the uniformity of the FE partition Th, i.e., whether
or not it is a structured mesh. Similarly the matrix P can be computed once in a pre-
processing step and stored.

To use a gradient-based optimization algorithm for solving the discrete problem (A.5),
which is the case in our Matlab code, we must also compute the gradient of the cost
functions with respect to the design variables z. The sensitivity analysis can be “separated”
along the same lines. The analysis functions would compute the sensitivities of the cost
functions with respect to their own internal parameters. Note that by the chain rule:

∂f

∂zk

=
N�

�=1

�
∂E�

∂zk

∂f

∂E�

+
∂V�

∂zk

∂f

∂V�

�
(A.7)

or in equivalent vector form:

∇f =
∂E

∂z

∂f

∂E
+

∂V

∂z

∂f

∂V
(A.8)

Therefore the analysis functions would only compute the sensitivities of f with respect to
the internal parameters E and V. In the compliance problem, f = F

T
U and we have:

∂f

∂E�

= −U
T

∂K

∂E�

U = −U
T
k�U,

∂f

∂V�

= 0 (A.9)

This means that the FE function that computes the objective function also returns the
negative of the element strain energies as the vector of sensitivities ∂f/∂E. Similarly, for
compliant mechanism design where f = −L

T
U (see section 1.6), we have

∂f

∂E�

= U
T ∂K

∂E�

U = U
T

k�U (A.10)

where U is the solution to the adjoint problem

(K + Ks)U = L (A.11)

The remaining terms in (A.8) depend on the formulation, i.e., on how the design variables
z are related to the analysis parameters. For example, E = mE(Pz) and V = mV (Pz)

implies:
∂E

∂z
= P

T
JmE(Pz),

∂V

∂z
= P

T
JmV (Pz) (A.12)

where JmE(y) := diag(m�
E
(y1), . . . ,m�

E
(yN)) is the Jacobian matrix of map mE. The evalu-

ation of expression (A.8) is carried out outside the analysis routine and the result, ∂f/∂z,
is passed to the optimizer to update the values of the design variables.

164

In the same way that the analysis routine ought to be separated from the rest of topology
optimization algorithm, the optimizer responsible for updating the values of the design
variables should also be kept separate. This is perhaps better known in the topology
optimization community as optimizers like MMA [153] are generally used as black-box
routines. Of course, it is important to know and understand the inner workings of the
optimizer. As noted in [82], certain choices of approximations of cost functionals in a
sequential optimization algorithm lead to an Optimality-Criteria type update expression
when there is only one constraint. An attempt to directly change the OC expression, for
example, to accommodate a more general formulation such as the one presented may not
be readily obvious. In order to account for the general box constraints (i.e., upper and
lower bounds other than 0-1), one needs an additional intermediate variable. Also, the
volume constraint in the compliance problem should be linearized if one wishes to adopt
the sequential approximation interpretation. This is not an issue in SIMP since the volume
functional is already linear in the design variables.

Matlab implementation

We now describe the Matlab implementation of the discrete topology optimization prob-
lem (A.5). The function PolyTop is the kernel of the code that contains the optimizer
and analysis routines, including the FE routine and functions responsible for computing
cost functional and their sensitivities. The prototype is written to solve the compliance
minimization problem, but specific functions are designated to compute the objective and
constraint functions. All the parameters related to topology optimization that link design
variables with the analysis parameters (e.g. filter matrix, material interpolation functions),
as well as the finite element model (e.g. the mesh, load and support boundary conditions
for the state equation) are defined outside in PolyScript, a Matlab script that calls the
kernel. This functional decoupling allows the user to run various formulations or discretiza-
tions without the need to change the kernel. Also interpolation and regularization functions
can be changed easily for the purposes of continuation, for example, on the penalization
parameter or filtering radius.

Input data & PolyScript

All the input and internal parameters of the code are collected in two Matlab struct arrays.
One struct, called fem, contains all the FE-related parameters while the other, opt, has
the variables pertaining to the topology optimization formulation and optimizer. Table
A.2 shows the list of fields in these structure arrays. Note that some of the fem fields are
populated inside the PolyTop kernel unless they are already specified. Also the user has
access to all the model parameters since these structures reside in the Matlab workspace.

165

fem field Definition
fem.NNode Number of nodes
fem.NElem Number of elements
fem.Node [NNode x 2] array of nodes
fem.Element [NElem x Var] cell array of elements
fem.Supp [NSupp x 3] support array
fem.Load [NLoad x 3] load array
fem.Nu0 Poisson’s ratio of solid material
fem.E0 Young’s modulus of solid material
fem.Reg Tag for regular meshes
fem.ElemNDof

† Array showing number of DOFs of elements
fem.ShapeFnc

† Cell array with tabulated shape functions & weights
fem.k

† Array of local stiffness matrix entries
fem.i

† Index array for sparse assembly of fem.k
fem.j

† Index array for sparse assembly of fem.k
fem.e

† Array of element IDs corresponding to fem.k

fem.ElemArea
† Array of element areas

fem.F
† Global load vector

fem.FreeDofs
† Array of free degrees of freedom

opt field Definition
opt.zMin Lower bound for design variables
opt.zMax Upper bound for design variables
opt.zIni Initial array of design variables
opt.MatIntFnc Handle to material interpolation function
opt.P Matrix that maps design to element variables
opt.VolFrac Specified volume fraction constraint
opt.Tol Convergence tolerance on design variables
opt.MaxIter Max. number of optimization iterations
opt.OCMove Allowable move step in the OC update scheme
opt.OCEta Exponent used in the OC update scheme

Table A.2: List of fields in the input structures. The fields marked with the superscript †, if
empty, are populated inside PolyTop

166

In the representative implementation of PolyScript, the auxiliary functions PolyMesher
and PolyFilter are called to initialize the finite element mesh and construct the linear fil-
tering matrix P with input radius R. The implementation of PolyFilter is short but
efficient and is provided as supplementary material. To construct the filtering matrix, this
function simply computes the distances between the centroids of the elements in the mesh
and defines the filtering weight based on the input filtering radius.

We briefly derive the usual discrete filtering formulas, corresponding to the linear hat
filter (1.16), by sampling the integrand in (1.34) at the element centroids:

w�k =

ˆ
Ωk

F (x∗
�
,x)dx

= c(x∗
�
)

ˆ
Ωk

max

�
1− |x∗

�
− x|
R

, 0

�
dx (A.13)

≈ c(x∗
�
) |Ωk|max

�
1− |x∗

�
− x

∗
k
|

R
, 0

�

If we similarly approximate the integral defining c(x∗
�
) and denote by S(�) the set of indices

of the elements Ωk whose centroid falls within radius R of the centroid of element Ω�, i.e.,
|x∗

�
− x

∗
k
| ≤ R

y� =

�
k∈S(�) zk |Ωk| (1− |x∗

�
− x

∗
k
| /R)

�
k∈S(�) |Ωk| (1− |x∗

�
− x

∗
k
| /R)

(A.14)

which is the commonly used expression. We note that often the |Ωk| terms are omitted
because the underlying mesh is uniform. We also reiterate that the vector representation of
this expression is more appropriate for implementation in Matlab. Thus, the filter matrix
P given by

[P]
�k

=
max (0, |Ωk| (1− |x∗

�
− x

∗
k
| /R))�

k∈S(�) |Ωk| (1− |x∗
�
− x

∗
k
| /R)

(A.15)

is stored as a sparse matrix.
If the filtering radius is too small, PolyFilter returns the identity matrix. One can also

intentionally input a negative value to get the identity matrix. In such a case, each design
variable corresponds to an element property—this is sometimes known as the “element-
based” approach in the literature and, as discussed before, corresponds to an ill-posed
continuum formulation and not surprisingly suffers from mesh-dependency. However, it may
be used, for example, to recover Michell-type solutions, provided that numerical instabilities
such as checkerboard patterns are suppressed.

Another auxiliary function given is the material interpolation function, whose function
handle is passed to the kernel via the opt.MatIntFnc field. Given an input vector y,
this function must return the vector of the corresponding stiffnesses and volume fractions
arrays E = mE(y) and V = mV (y) of the same length as y and the sensitivity vectors

167

∂E/∂y := m
�
E
(y) and ∂V/∂y := m

�
V
(y)3. For example in the case of SIMP:

function [E,dEdy,V,dVdy] = MatIntFnc(y,penal)
eps = 1e-4;
E = eps+(1-eps)*y.^penal;
V = y;
dEdy = (1-eps)*penal*y.^(penal-1);
dVdy = ones(size(y,1),1);

Note also that the stiffness of the void region can be set here. This again highlights the
fact that the material interpolation model and the Ersatz approximation are independent
of the choice of regularization scheme or bounds on the design variables. The material
interpolation function can accept input parameters (e.g. the penalization exponent penal
in SIMP) so that, if desired, they can be changed by the user in the workspace (for example,
for the purpose of continuation). To use another material interpolation function, we only
need to change the MatIntFnc outside the PolyTop kernel.

The continuation on the penalty is implemented in PolyScript, outside the PolyTop
kernel, as follows:

for penal = 1:0.5:4
opt.MatIntFnc = @(y)MatIntFnc(y,‘SIMP’,penal);
[opt.zIni,V,fem] = PolyTop(fem,opt);

end

This is the default example in PolyScript provided in the supplementary material. Upon
running the script (for example, by simply entering PolyScript in the command prompt),
a call is made to PolyMesher to generate the mesh, the struct arrays fem and opt are
defined and the PolyTop kernel is executed inside this continuation loop. All the results
presented in chapter 1 are generated using this setup.

Comments on the functions in PolyTop

The kernel PolyTop possesses fewer than 190 lines, of which 116 lines pertain to the fi-
nite element analysis including 81 lines for the element stiffness calculations for polygonal
elements. In this section we explain the implementation of various functions in the kernel.

Main function: The function begins with initialization of the iteration parameters Iter,
Tol and Change as well as the initial analysis parameters for the initial guess z=opt.zIni
on line 8. The function InitialPlot, executed on line 10, plots a triangulation of the

3Again we understand m
�
E(y) and m

�
V (y) as vectors with elements m

�
E(y�) and m

�
V (y�). Essentially m

�
E(y) and

m
�
V (y) are the diagonal entries of Jacobian matrices JmE (y) and JmV (y)

168

mesh using the patch function and outputs a handle to the figure and also vector FigData
that will be used to update the patch colors. The iterative optimization algorithm is
nested inside the while-loop that terminates when either the maximum number of iterations,
opt.MaxIter, is exceeded or the change in design variables, Change, is smaller than the
prescribed tolerance. In each iteration, the current values of E and V are passed to analysis
functions ObjectiveFnc and ConstraintFnc to, as their names suggest, compute the values
and sensitivities of the objective and constraint functions (lines 14-15). The sensitivities
with respect to the design variables are computed on lines 17-18 according to expressions
(A.8) and (A.12). Note that the entry-by-entry multiplication dEdy.*dfdE produces the
same vector as the matrix-vector multiplication JmE (y) ∂f

∂E
because the Jacobian matrix

JmE (y) is diagonal and has dEdy as its diagonal elements. The design sensitivities are then
passed to UpdateScheme to obtain the next vector design variables. The analysis parameters
for the new design are computed on line 21. Finally, the new value of the objective function
and the maximum change in the current iteration are printed to the screen and element
patch colors in the plot are updated to reflect the updated design.

FEAnalysis: Before describing the functions responsible for computing the objective
and constraint functions, we discuss the implementation of the FE analysis in function
FEAnalysis and its specific features pertaining to the topology optimization. As noted
before, the structure of the global stiffness matrix is such that not only element stiffness
matrices are invariant but also the connectivity of the mesh is fixed.

Efficient assembly of the global stiffness matrix in Matlab makes use of the built-in
function sparse that generates a sparse matrix from an input array of values using two
index arrays of the same length. To assemble the global stiffness matrix, we place all the
entries of the local stiffness matrices (with the stiffness of reference solid material) in a single
vector fem.k4. The index vectors fem.i and fem.j contain the global degrees of freedom
of each entry in fem.k. In particular, this indicates to the sparse function that fem.k(q)
should be placed in row fem.i(q) and column fem.j(q) of the global stiffness matrix.
These vectors are computed and stored on lines 69-79. Our convention is that 2n− 1 and
2n are the horizontal and vertical degrees of freedom corresponding to the nth node. By
design, the sparse function sums the entries in fem.k that have the same corresponding
indices. To account for the different values of E that must be assigned to each element to
represent the current design, we compute and store an additional index vector fem.e. This
array keeps track of the elements to which the local stiffness matrix entries in fem.k belong.
So the expression E(fem.e) returns the elongated list of element stiffnesses that has the

4The local stiffness matrices are obtained by calling the function LocalK on either line 68 or line 70. If the mesh
is known to be uniform, by setting the fem.Reg tag equal to 1 in the initialization of the fem structure, only one
such call is made (on line 68) and thus there is no overhead for repeated calculation of the same element stiffness
matrices.

169

same size as the index vectors. The entry-by-entry multiplication E(fem.e).*fem.k then
appropriately scales the local stiffness matrix values in fem.k. The assembly of the global
stiffness matrix is therefore accomplished with the following line of code:

K = sparse(fem.i,fem.j,E(fem.e).*fem.k);

Lines 80-89, executed only during the first iteration, compute the list of free degrees of
freedoms fem.FreeDofs and global load vector fem.F from the given Supp and Load matri-
ces5. Note that only four lines of code are executed in the FEAnalysis function to obtain
the nodal displacement after the initialization in the first iteration (lines 91-94). We have
included line 92, following the recommendation of [12], to ensure that the “backslash” solver
recognizes the stiffness matrix K as symmetric, which in turn reduces the time for solving
the linear system.

ObjectiveFnc: This function computes the objective function of the optimization prob-
lem using the current values of E and V. Note again that this function is not given any
information related to the optimization formulation. In the prototype implementation, we
evaluate the compliance simply using the inner product of the global force and displacement
vector, which are computed in call to the FEAnalysis function. The function also returns
the sensitivity of the objective function with respect to E and V. In the case of compliance,
dfdV is the zero vector while dfdE is the array consisting of negative of the element strain
energies (cf. equation A.9). Since the index vectors fem.i, fem.j, and fem.k contain all
the relevant FE information, they can be used to efficiently compute the strain energies.
For element Ω�, we need to compute −

�
Ui (k�)ij

Uj where the sum is taken over all DOFs
i and j of element Ω�. This requires summing the block of -U(fem.i).*fem.k.*U(fem.j)
that corresponds to element �. Lines 30-33 carry out this computation using cumsum, the
cumulative sum function in Matlab.

ConstraintFnc: This function computes the constraint function of the optimization prob-
lem, which for the compliance problem, is the volume fraction constraint (cf. (A.5)). Similar
to the initialization step in FEAnalysis, the vector of areas is computed only once. Lines
43-45 compute the value and sensitivity of this function with respect to E and V.

UpdateScheme: The input to this function consists of the gradients of the objective and
constraint functions dfdz and dgdz, the current set of design variables z0, and the current

5These matrices are expected to have the following format: Supp must have three columns, the first holding
the node number, the second and third columns giving support conditions for that node in the x- and y-direction,
respectively. Value of 0 indicates that the node is free, and value of 1 specifies a fixed node. The nodal load vector
Load is structured in a similar way, except for the values in the second and third columns, which represent the
magnitude of the x- and y-components of the force

170

value of the constraint function g. With this information, we can compute, for example,
the approximate constraint function: the expression g+dgdz’*(zNew-z0) on line 56 gives
gapp(znew), the value of the linearized constraint function at the candidate design variables.
The implementation of the update scheme is consistent with the material in Appendix
B. The bisection method is used (similar to the 88- and 99-line codes) to solve the dual
problem. The move limit M is defined to be opt.OCMove*(zMax-zMin)on line 49.

LocalK: This function computes the local stiffness matrix of the isoparametric polygonal
elements. The implementation and notation used follows the standard conventions6 in most
finite element textbooks (see, for example, [90]). Though closed-form expressions for the
polygonal shape functions can be obtained (see the appendix of reference [156]), we use
a more costly geometric construction in this code for the sake of brevity, as discussed in
section 5.1. However, we eliminate the overhead associated with redundant shape function
calculations by computing the needed quantities only once. For an isoparametric element,
only the values of shape functions and their gradients at the integration points of the
reference element are needed. This can be seen from the quadrature loop on lines 100-110 for
computing the local stiffness matrix. The shape function values and the quadrature weights
are computed in function TabShapeFnc and stored in fem.ShapeFnc (the description is
given below). Note that this approach only affects the overhead of computing the element
stiffness matrices in the initialization process.

TabShapeFnc: This function populates the field fem.ShapeFnc which contains the tabu-
lated values of shape functions and their gradients at the integration points of the reference
element along with the associated quadrature weights. fem.ShapeFnc is a cell of length
Nmax, the maximum number of nodes for an element in the input mesh. The nth cell,
fem.ShapeFnc{n}, is itself a structure array with three fields N, dNdxi, and W whose values
are obtained from the reference n-gon (see lines 115-125). The only uses of these shape
function values in PolyTop are in LocalK function on lines 99 and 101.

PolyShapeFnc: This function computes the set of linear shape functions for a reference
n-gon at an interior point ξ. As discussed in chapter 5, the Wachspress shape function
corresponding to node i, 1 ≤ i ≤ n, is defined as:

Ni(ξ) =
αi(ξ)�

n

j=1 αj(ξ)
(A.16)

6Regarding the connection between (1.40) and the well-known expression
´
Ω�

B
T
I DBJdx for the element stiffness

matrix, we refer the reader to section 2.8 of [90].

171

where, adopting the notation Ai(ξ) := A(pi−1,pi, ξ), the interpolants αi are given by7

αi(ξ) =
1

Ai(ξ)Ai+1(ξ)
(A.17)

In the code, on lines 131-136, the area of the triangles formed by ξ and the vertices as well
as their gradient with respect to it are computed using expressions:

Ai(ξ) =
1

2

�������

ξ1 ξ2 1

p1,i−1 p2,i−1 1

p1,i p2,i 1

�������
,

∂Ai

∂ξ1
=

1

2
(p2,i−1 − p2,i) ,

∂Ai

∂ξ2
=

1

2
(p1,i − p1,i−1) (A.18)

The derivatives of the interpolant are simply given by (computed on lines 140-141)

∂αi

∂ξk

= −αi

�
1

Ai

∂Ai

∂ξk

+
1

Ai+1

∂Ai+1

∂ξk

�
, k = 1, 2 (A.19)

and from (A.16) we have the following expression for the shape function gradients (lines
147):

∂Ni

∂ξk

=
1�

n

j=1 αj

�
∂αi

∂ξk

−Ni

n�

j=1

∂αj

∂ξk

�
, k = 1, 2 (A.20)

PolyTrnglt: This function generates a directed triangulation of the reference n-gon by
connecting its vertices to the input point ξ that lies in its interior. As shown in the Figure
5.3, the nodes of the reference n-gon are located at pi = (cos 2πi/n, sin 2πi/n). This
function is used both in the definition of the polygonal shape functions and the quadrature
rule.

PolyQuad: One scheme to carry out the integration on the reference n-gon is to divide it
into n triangles (by connecting the origin to the vertices) and use well-known quadrature
rules on each triangle. For the verification problem in the next section, we have used three
integration points per triangle. We note that numerical integration can alternatively be
carried out using special quadrature rules recently developed for polygonal domains (see,
for example, [115, 116]) that are more accurate.

TriQuad, TriShape: These functions are called by PolyQuad and provide the usual quadra-
ture rule for the reference triangle and its linear shape functions.

7By convention, we set pn+1 = p1 in this expression

172

mesh size 90× 30 150× 50 300× 100 600× 200

computing P 0.25 (1.6%) 0.876 (2.1%) 9.12 (4.9%) 93.79 (9.2%)

populating fem 0.20 (1.3%) 0.50 (1.2%) 2.05 (1.1%) 8.08 (0.8%)

assembling K 5.86 (37.8%) 16.73 (41.1%) 69.50 (37.2%) 289.09 (28.5%)

solving KU = F 3.56 (23.0%) 11.64 (28.6%) 60.06 (32.1%) 302.95 (29.8%)

mapping z and E,V 0.17 (1.1%) 0.86 (2.1%) 12.86 (6.9%) 203.82 (20.1%)

compliance sensitivities 0.94 (6.1%) 2.76 (6.8%) 12.94 (6.9%) 50.82 (5.0%)

plotting the solutions 2.53 (16.3%) 3.15 (7.7%) 6.20 (3.3%) 18.76 (1.8%)

OC update 0.96 (6.2%) 1.99 (4.9%) 5.17 (2.8%) 14.39 (1.4%)

total time of PolyScript 15.50 40.74 187.02 1015.89

Table A.3: Breakdown of the code runtime for 200 optimization iterations: times are in seconds
with percentage of total runtime of PolyScript provided in the parentheses

Efficiency

We discuss the breakdown of the computational cost of the code and compare its efficiency
to the 88 line code [12]. For the purposes of comparison, the MBB problem was solved
using regular square meshes. A filtering radius of R = 0.12 (the height of the MBB beam
is H = 1) was used8. In the case of the 88 line, the input tag ft was set to 2 to use the
“consistent” density filter. In both cases, the SIMP penalty parameter was fixed at p = 3

and 200 optimizations iterations were performed on a machnine with an Intel(R) Core i7,
3.33GHz processor and 24.0GB of RAM running Matlab R2009b. Of course, the two codes
produced identical topologies at each iteration.

The breakdown of the runtime of PolyScript is shown in Table A.3. We can see that
the initialization time, which includes populating the fem structure and computing the
filtering matrix, were modest for all mesh sizes. During subsequent iterations of PolyTop,
assembling the stiffness matrix and solving the linear system of FE equations constituted
the largest portion of the code runtime. The relative cost of mapping the design variables
z to analysis quantities E and V and associated analysis sensitivities (lines 14-15 and 21 of
the code) increased with the mesh size. Note that both operations involve multiplication
with the filtering matrix which demands more memory for larger meshes. This increase was
most significant for the 600× 200 mesh perhaps due to the large size of the filtering matrix
relative to available memory.

Table A.4 lists the runtime of PolyScript and the 88 line code. We note that the
present Matlab implementation was faster than the 88 line for every mesh except the

8The larger the radius of filtering, the longer it takes to compute the filtering matrix and also the larger the
amount of memory needed to store it.

173

mesh size 90× 30 150× 50 300× 100 600× 200

total time of PolyScript 15.5 40.7 187 1016

total time of 88 line 14.8 44.4 360 4463

Table A.4: Runtime comparison of PolyScript with the 88 line code [12] (times are reported in
seconds for 200 optimization iterations)

smallest mesh. Also, the difference between the runtime of the two codes became larger
as the mesh size grew. This suggests that as the size of the problem increases, PolyTop
becomes more efficient than the 88 line—notice that there is more than a four-fold speedup
for the 600× 200 mesh. This observation prompted an investigation to identify the source
of discrepancy.

We noticed that in every bisection iteration inside the OC update function of the 88
line code, the design volume is computed by summing the “physical” densities obtained
from multiplying the candidate design variables by the filtering matrix. But this volume
function can be rewritten as

V (z) =
N�

�=1

[Pz]
�
= 1

T (Pz) =
�
1

T
P

�
z =

�
P

T
1
�T

z (A.21)

where 1 is the vector of length N with unit entries. Observe that the vector P
T
1 can be

computed once so that the calculation of V is subsequently reduced to taking the inner
product of this vector with z, thereby eliminating the need for costly multiplications by P

in every bisection step.
Though the above expression is not explicitly used in PolyTop, the decoupling of the

OC scheme from the analysis routine naturally leads to this more efficient calculation. Note
that P

T
1 is in fact the sensitivity vector dgdz provided to the UpdateScheme function in

PolyTop9. The update equations are based on the linearization of the constraint function
g(z) in the form (see section 1.5):

g(z) = g
�
z

0
�

+
�
z− z

0
�T ∇g

�
z

0
�

(A.22)

where z
0 is the design variables from the current iteration. Since the volume constraint is

linear, this is identical to the expression for the volume function (the reader can verify the
equivalence of the two expressions). This observation is perhaps further illustration of the
virtue of decoupling philosophy advocated here.

We conclude with a remark regarding the overhead associated with computing multi-
9Note, however, that in PolyTop the volume function is normalized by the volume of the entire domain and

elements can have different areas (so 1 is replaced by A in PolyTop). Also, the constraint function is defined as the
difference between the normalized volume and specified volume fraction v.

174

ple element stiffness matrices. As mentioned before, the initialization of fem.k was done
computing the element stiffness matrix only once (by setting fem.Reg=1) for the purposes
of comparison with the 88 line. However, even without the use of fem.Reg tag, the cost
associated with the repeated element stiffness matrix calculations as a percentage of total
cost is small. For example, for the mesh of 300× 100 quads, this took 6.12s which consti-
tuted 3.3% of the total cost of 200 optimization iterations. Likewise, for a polygonal mesh
of 10,000 elements, the element matrix calculations took 8.39s which was 5.8% of the total
cost of 200 optimization iterations.

Implementation of the two-metric projection algorithm

Finally we briefly discuss some implementation aspects of the two-metric projection al-
gorithm for the Tikhonov regularized topology optimization problem (cf. section 4.8) as
a representative of the operator splitting approaches developed in chapters 3 and 4. In
particular, we will discuss a simple implementation in the framework of PolyTop. Note
that unlike the forward-backward splitting method, which requires a sparse quadratic pro-
gramming optimizer (an external library was used to generate the results in the thesis), the
two-metric projection, owing to its use of a more convenient metric for projection, can be
readily and efficiently implemented in Matlab.

The design variables in this formulation are the nodal density fields and so the matrix
P in opt.P represents the node-to-element mapping with its (e, k)-entry given by [P]

ek
=

Nk(x∗e). As with the filtering matrix, this should be computed outside of PolyTop once
in a pre-processing step. To remain consistent with the formulation presented in chapter
4, the volume function is defined as g(z) = A

T
mV (Pz) and in place of a volume fraction

parameter, the user will specify the value of the penalty parameter λ, which we assume is
stored in opt.lambda.

To define the regularization term, a function must be added to the PolyTop code to
compute the matrix G defined in section 4.6, which requires that the user defines the
regularization parameter β. Storing G in field opt.G, the Tikhonov regularizer and its
gradient can be computed in each iteration (in the while-loop on lines 11-25) as

R=0.5*z’*opt.G*z; dRdz=opt.G*z;

The other input to the optimizer is the Hessian approximation Hn as defined in equation
(4.23). Its diagonal entries can be computed from dfdz in each iteration as

h_hat = max(max(-2*dfdz./z,1e-8);

From this, we compute and store Hn in the opt struct in order to pass it to the UpdateScheme
function using the following line of code

opt.H = spdiags(h_hat(:),0,fem.NNode,fem.NNode);

175

The main change from the standard PolyTop code is the replacement of the current OC-
based UpdateScheme routine by the two-metric projection algorithm. Here we consider the
special case of a fixed step size parameter, i.e., τn ≡ τ0 but implementation of the descent
condition (4.74) is straightforward. We remark, however, that the from a conceptual point
of view, this requires the optimizer to calculate the value of objective function for each new
candidate design, which in turn would need access to the fem structure. One approach that
preserves the modularity of the code is to check the descent condition and update the step
size parameter in a loop in the main function of PolyTop and outside of UpdateScheme. In
this case, the UpdateScheme performs an update for the input value of tau with the call

[z,Change] = UpdateScheme(dfdz,dgdz,dRdz,z,opt,tau);

Inside this function, we first compute the gradient of the composite objective ∇J̃ which is
given by

dJtdz = dfdz+opt.lambda*dgdz+dRdz;

Then the indices for the active and free constraints are obtained as follows

ActCnstr = find((z0-zMin<=eps&dJtdz>0)|(zMax-z0<=eps&dJtdz<0));
FreeCnstr = setdiff(1:length(z0),ActCnstr);

The scaling matrix Dn, stored in variable D, is the diagonal matrix with respect to the
active constraints obtained from Hn + τnG and can be computed as follows

D_full = opt.H+tau*opt.G;
D = spdiags(spdiags(D_full,0),0,length(z0),length(z0));
D(FreeCnstr,FreeCnstr) = D_full(FreeCnstr,FreeCnstr);

The interim update, defined according to equation (4.71), is simply

zCnd = z0-tau*(D\dJtdz);

and its projection onto the constraint set gives the next iterate

zNew = max(max(min(min(zCnd,z0+move),zMax),z0-move),zMin);

Note that this is identical to line 55 of the current PolyTop code.

176

Code: PolyMesher

1 %------------------------------ PolyMesher -------------------------------%
2 % Ref: C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyMesher: A %
3 % general-purpose mesh generator for polygonal elements written in %
4 % Matlab," Struct Multidisc Optim, Vo. 42, pp. 309-328, 2012 %
5 %---%
6 function [Node,Element,Supp,Load,P] = PolyMesher(Domain,NElem,MaxIter,P)
7 if ¬exist('P','var'), P=PolyMshr_RndPtSet(NElem,Domain); end
8 NElem = size(P,1);
9 Tol=5e-3; It=0; Err=1; c=1.5;

10 BdBox = Domain('BdBox');
11 Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));
12 Pc = P; figure;
13 while(It≤MaxIter && Err>Tol)
14 Alpha = c*sqrt(Area/NElem);
15 P = Pc; %Lloyd's update
16 R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); %Generate the reflections
17 [Node,Element] = voronoin([P;R_P]); %Construct Voronoi diagram
18 [Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);
19 Area = sum(abs(A));
20 Err = sqrt(sum((A.^2).*sum((Pc-P).*(Pc-P),2)))*NElem/Area^1.5;
21 fprintf('It: %3d Error: %1.3e\n',It,Err); It=It+1;
22 if NElem≤2000, PolyMshr_PlotMsh(Node,Element,NElem); end;
23 end
24 [Node,Element] = PolyMshr_ExtrNds(NElem,Node,Element); %Extract node list
25 [Node,Element] = PolyMshr_CllpsEdgs(Node,Element,0.1); %Remove small edges
26 [Node,Element] = PolyMshr_RsqsNds(Node,Element); %Reoder Nodes
27 BC=Domain('BC',Node); Supp=BC{1}; Load=BC{2}; %Recover BC arrays
28 PolyMshr_PlotMsh(Node,Element,NElem,Supp,Load); %Plot mesh and BCs
29 %--- GENERATE RANDOM POINTSET
30 function P = PolyMshr_RndPtSet(NElem,Domain)
31 P=zeros(NElem,2); BdBox=Domain('BdBox'); Ctr=0;
32 while Ctr<NElem
33 Y(:,1) = (BdBox(2)-BdBox(1))*rand(NElem,1)+BdBox(1);
34 Y(:,2) = (BdBox(4)-BdBox(3))*rand(NElem,1)+BdBox(3);
35 d = Domain('Dist',Y);
36 I = find(d(:,end)<0); %Index of seeds inside the domain
37 NumAdded = min(NElem-Ctr,length(I)); %Number of seeds that can be added
38 P(Ctr+1:Ctr+NumAdded,:) = Y(I(1:NumAdded),:);
39 Ctr = Ctr+NumAdded;
40 end
41 %--- REFLECT POINTSET
42 function R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha)
43 eps=1e-8; eta=0.9;
44 d = Domain('Dist',P);
45 NBdrySegs = size(d,2)-1; %Number of constituent bdry segments
46 n1 = (Domain('Dist',P+repmat([eps,0],NElem,1))-d)/eps;
47 n2 = (Domain('Dist',P+repmat([0,eps],NElem,1))-d)/eps;
48 I = abs(d(:,1:NBdrySegs))<Alpha; %Logical index of seeds near the bdry
49 P1 = repmat(P(:,1),1,NBdrySegs); %[NElem x NBdrySegs] extension of P(:,1)
50 P2 = repmat(P(:,2),1,NBdrySegs); %[NElem x NBdrySegs] extension of P(:,2)
51 R_P(:,1) = P1(I)-2*n1(I).*d(I);
52 R_P(:,2) = P2(I)-2*n2(I).*d(I);
53 d_R_P = Domain('Dist',R_P);
54 J = abs(d_R_P(:,end))≥eta*abs(d(I)) & d_R_P(:,end)>0;

177

55 R_P = R_P(J,:);
56 %-- COMPUTE CENTROID OF POLYGON
57 function [Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem)
58 Pc=zeros(NElem,2); A=zeros(NElem,1);
59 for el = 1:NElem
60 vx=Node(Element{el},1); vy=Node(Element{el},2); nv=length(Element{el});
61 vxS=vx([2:nv 1]); vyS=vy([2:nv 1]); %Shifted vertices
62 temp = vx.*vyS - vy.*vxS;
63 A(el) = 0.5*sum(temp);
64 Pc(el,:) = 1/(6*A(el,1))*[sum((vx+vxS).*temp),sum((vy+vyS).*temp)];
65 end
66 %--- EXTRACT MESH NODES
67 function [Node,Element] = PolyMshr_ExtrNds(NElem,Node0,Element0)
68 map = unique([Element0{1:NElem}]);
69 cNode = 1:size(Node0,1);
70 cNode(setdiff(cNode,map)) = max(map);
71 [Node,Element] = PolyMshr_RbldLists(Node0,Element0(1:NElem),cNode);
72 %--- COLLAPSE SMALL EDGES
73 function [Node0,Element0] = PolyMshr_CllpsEdgs(Node0,Element0,Tol)
74 while(true)
75 cEdge = [];
76 for el=1:size(Element0,1)
77 if size(Element0{el},2)<4, continue; end; %Cannot collapse triangles
78 vx=Node0(Element0{el},1); vy=Node0(Element0{el},2); nv=length(vx);
79 beta = atan2(vy-sum(vy)/nv, vx-sum(vx)/nv);
80 beta = mod(beta([2:end 1]) -beta,2*pi);
81 betaIdeal = 2*pi/size(Element0{el},2);
82 Edge = [Element0{el}',Element0{el}([2:end 1])'];
83 cEdge = [cEdge; Edge(beta<Tol*betaIdeal,:)];
84 end
85 if (size(cEdge,1)==0), break; end
86 cEdge = unique(sort(cEdge,2),'rows');
87 cNode = 1:size(Node0,1);
88 for i=1:size(cEdge,1)
89 cNode(cEdge(i,2)) = cNode(cEdge(i,1));
90 end
91 [Node0,Element0] = PolyMshr_RbldLists(Node0,Element0,cNode);
92 end
93 %--- RESEQUENSE NODES
94 function [Node,Element] = PolyMshr_RsqsNds(Node0,Element0)
95 NNode0=size(Node0,1); NElem0=size(Element0,1);
96 ElemLnght=cellfun(@length,Element0); nn=sum(ElemLnght.^2);
97 i=zeros(nn,1); j=zeros(nn,1); s=zeros(nn,1); index=0;
98 for el = 1:NElem0
99 eNode=Element0{el}; ElemSet=index+1:index+ElemLnght(el)^2;

100 i(ElemSet) = kron(eNode,ones(ElemLnght(el),1))';
101 j(ElemSet) = kron(eNode,ones(1,ElemLnght(el)))';
102 s(ElemSet) = 1;
103 index = index+ElemLnght(el)^2;
104 end
105 K = sparse(i,j,s,NNode0, NNode0);
106 p = symrcm(K);
107 cNode(p(1:NNode0))=1:NNode0;
108 [Node,Element] = PolyMshr_RbldLists(Node0,Element0,cNode);
109 %-- REBUILD LISTS
110 function [Node,Element] = PolyMshr_RbldLists(Node0,Element0,cNode)
111 Element = cell(size(Element0,1),1);
112 [foo,ix,jx] = unique(cNode);

178

113 if size(Node0,1)>length(ix), ix(end)=max(cNode); end;
114 Node = Node0(ix,:);
115 for el=1:size(Element0,1)
116 Element{el} = unique(jx(Element0{el}));
117 vx=Node(Element{el},1); vy=Node(Element{el},2); nv=length(vx);
118 [foo,iix] = sort(atan2(vy-sum(vy)/nv,vx-sum(vx)/nv));
119 Element{el} = Element{el}(iix);
120 end
121 %-- PLOT MESH
122 function PolyMshr_PlotMsh(Node,Element,NElem,Supp,Load)
123 clf; axis equal; axis off; hold on;
124 Element = Element(1:NElem)'; %Only plot the first block
125 MaxNVer = max(cellfun(@numel,Element)); %Max. num. of vertices in mesh
126 PadWNaN = @(E) [E NaN(1,MaxNVer-numel(E))]; %Pad cells with NaN
127 ElemMat = cellfun(PadWNaN,Element,'UniformOutput',false);
128 ElemMat = vertcat(ElemMat{:}); %Create padded element matrix
129 patch('Faces',ElemMat,'Vertices',Node,'FaceColor','w'); pause(1e-6)
130 if exist('Supp','var')&&¬isempty(Supp)&&¬isempty(Load)%Plot BC if specified
131 plot(Node(Supp(:,1),1),Node(Supp(:,1),2),'b>','MarkerSize',8);
132 plot(Node(Load(:,1),1),Node(Load(:,1),2),'m^','MarkerSize',8); hold off;
133 end
134 %---%

179

Code: PolyScript

1 %------------------------------ PolyScript -------------------------------%
2 % Ref: C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyTop: A Matlab %
3 % implementation of a general topology optimization framework using %
4 % unstructured polygonal finite element meshes", Struct Multidisc Optim, %
5 % Vo. 45, pp. 329-357, 2012 %
6 %---%
7

8 %% -- CREATE 'fem' STRUCT
9 [Node,Element,Supp,Load] = PolyMesher(@MbbDomain,5000,30);

10 fem = struct(...
11 'NNode',size(Node,1),... % Number of nodes
12 'NElem',size(Element,1),... % Number of elements
13 'Node',Node,... % [NNode x 2] array of nodes
14 'Element',{Element},... % [NElement x Var] cell array of elements
15 'Supp',Supp,... % Array of supports
16 'Load',Load,... % Array of loads
17 'Nu0',0.3,... % Poisson's ratio of solid material
18 'E0',1.0,... % Young's modulus of solid material
19 'Reg',0 ... % Tag for regular meshes
20);
21 %% -- CREATE 'opt' STRUCT
22 R = 0.04;
23 VolFrac = 0.5;
24 m = @(y)MatIntFnc(y,'SIMP',3);
25 P = PolyFilter(fem,R);
26 zIni = VolFrac*ones(size(P,2),1);
27 opt = struct(...
28 'zMin',0.0,... % Lower bound for design variables
29 'zMax',1.0,... % Upper bound for design variables
30 'zIni',zIni,... % Initial design variables
31 'MatIntFnc',m,... % Handle to material interpolation fnc.
32 'P',P,... % Matrix that maps design to element vars.
33 'VolFrac',VolFrac,... % Specified volume fraction cosntraint
34 'Tol',0.01,... % Convergence tolerance on design vars.
35 'MaxIter',150,... % Max. number of optimization iterations
36 'OCMove',0.2,... % Allowable move step in OC update scheme
37 'OCEta',0.5 ... % Exponent used in OC update scheme
38);
39 %% -- RUN 'PolyTop'
40 figure;
41 for penal = 1:0.5:4 %Continuation on the penalty parameter
42 disp(['current p: ', num2str(penal)]);
43 opt.MatIntFnc = @(y)MatIntFnc(y,'SIMP',penal);
44 [opt.zIni,V,fem] = PolyTop(fem,opt);
45 end
46 %% --

180

Code: PolyTop

1 %----------------------------- PolyTop -----------------------------------%
2 % Ref: C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyTop: A Matlab %
3 % implementation of a general topology optimization framework using %
4 % unstructured polygonal finite element meshes", Struct Multidisc Optim, %
5 % Vo. 45, pp. 329-357, 2012 %
6 %---%
7 function [z,V,fem] = PolyTop(fem,opt)
8 Iter=0; Tol=opt.Tol*(opt.zMax-opt.zMin); Change=2*Tol; z=opt.zIni; P=opt.P;
9 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);

10 [FigHandle,FigData] = InitialPlot(fem,z);
11 while (Iter<opt.MaxIter) && (Change>Tol)
12 Iter = Iter + 1;
13 %Compute cost functionals and analysis sensitivities
14 [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V);
15 [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,opt.VolFrac);
16 %Compute design sensitivities
17 dfdz = P'*(dEdy.*dfdE + dVdy.*dfdV);
18 dgdz = P'*(dEdy.*dgdE + dVdy.*dgdV);
19 %Update design variable and analysis parameters
20 [z,Change] = UpdateScheme(dfdz,g,dgdz,z,opt);
21 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);
22 %Output results
23 fprintf('It: %i \t Objective: %1.3f\tChange: %1.3f\n',Iter,f,Change);
24 set(FigHandle,'FaceColor','flat','CData',1-V(FigData)); drawnow
25 end
26 %--- OBJECTIVE FUNCTION
27 function [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V)
28 [U,fem] = FEAnalysis(fem,E);
29 f = dot(fem.F,U);
30 temp = cumsum(-U(fem.i).*fem.k.*U(fem.j));
31 temp = temp(cumsum(fem.ElemNDof.^2));
32 dfdE = [temp(1);temp(2:end)-temp(1:end-1)];
33 dfdV = zeros(size(V));
34 %-- CONSTRAINT FUNCTION
35 function [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,VolFrac)
36 if ¬isfield(fem,'ElemArea')
37 fem.ElemArea = zeros(fem.NElem,1);
38 for el=1:fem.NElem
39 vx=fem.Node(fem.Element{el},1); vy=fem.Node(fem.Element{el},2);
40 fem.ElemArea(el) = 0.5*sum(vx.*vy([2:end 1])-vy.*vx([2:end 1]));
41 end
42 end
43 g = sum(fem.ElemArea.*V)/sum(fem.ElemArea)-VolFrac;
44 dgdE = zeros(size(E));
45 dgdV = fem.ElemArea/sum(fem.ElemArea);
46 %--- OPTIMALITY CRITERIA UPDATE
47 function [zNew,Change] = UpdateScheme(dfdz,g,dgdz,z0,opt)
48 zMin=opt.zMin; zMax=opt.zMax;
49 move=opt.OCMove*(zMax-zMin); eta=opt.OCEta;
50 l1=0; l2=1e6;
51 while l2-l1 > 1e-4
52 lmid = 0.5*(l1+l2);
53 B = -(dfdz./dgdz)/lmid;
54 zCnd = zMin+(z0-zMin).*B.^eta;

181

55 zNew = max(max(min(min(zCnd,z0+move),zMax),z0-move),zMin);
56 if (g+dgdz'*(zNew-z0)>0), l1=lmid;
57 else l2=lmid; end
58 end
59 Change = max(abs(zNew-z0))/(zMax-zMin);
60 %-- FE-ANALYSIS
61 function [U,fem] = FEAnalysis(fem,E)
62 if ¬isfield(fem,'k')
63 fem.ElemNDof = 2*cellfun(@length,fem.Element); % # of DOFs per element
64 fem.i = zeros(sum(fem.ElemNDof.^2),1);
65 fem.j=fem.i; fem.k=fem.i; fem.e=fem.i;
66 index = 0;
67 if ¬isfield(fem,'ShapeFnc'), fem=TabShapeFnc(fem); end
68 if fem.Reg, Ke=LocalK(fem,fem.Element{1}); end
69 for el = 1:fem.NElem
70 if ¬fem.Reg, Ke=LocalK(fem,fem.Element{el}); end
71 NDof = fem.ElemNDof(el);
72 eDof = reshape([2*fem.Element{el}-1;2*fem.Element{el}],NDof,1);
73 I=repmat(eDof ,1,NDof); J=I';
74 fem.i(index+1:index+NDof^2) = I(:);
75 fem.j(index+1:index+NDof^2) = J(:);
76 fem.k(index+1:index+NDof^2) = Ke(:);
77 fem.e(index+1:index+NDof^2) = el;
78 index = index + NDof^2;
79 end
80 NLoad = size(fem.Load,1);
81 fem.F = zeros(2*fem.NNode,1); %external load vector
82 fem.F(2*fem.Load(1:NLoad,1)-1) = fem.Load(1:NLoad,2); %x-crdnt
83 fem.F(2*fem.Load(1:NLoad,1)) = fem.Load(1:NLoad,3); %y-crdnt
84 NSupp = size(fem.Supp,1);
85 FixedDofs = [fem.Supp(1:NSupp,2).*(2*fem.Supp(1:NSupp,1)-1);
86 fem.Supp(1:NSupp,3).*(2*fem.Supp(1:NSupp,1))];
87 FixedDofs = FixedDofs(FixedDofs>0);
88 AllDofs = [1:2*fem.NNode];
89 fem.FreeDofs = setdiff(AllDofs,FixedDofs);
90 end
91 K = sparse(fem.i,fem.j,E(fem.e).*fem.k);
92 K = (K+K')/2;
93 U = zeros(2*fem.NNode,1);
94 U(fem.FreeDofs,:) = K(fem.FreeDofs,fem.FreeDofs)\fem.F(fem.FreeDofs,:);
95 %--- ELEMENT STIFFNESS MATRIX
96 function [Ke] = LocalK(fem,eNode)
97 D=1/(1-fem.Nu0^2)*[1 fem.Nu0 0;fem.Nu0 1 0;0 0 (1-fem.Nu0)/2];%plane stress
98 nn=length(eNode); Ke=zeros(2*nn,2*nn);
99 W = fem.ShapeFnc{nn}.W;

100 for q = 1:length(W) %quadrature loop
101 dNdxi = fem.ShapeFnc{nn}.dNdxi(:,:,q);
102 J0 = fem.Node(eNode,:)'*dNdxi;
103 dNdx = dNdxi/J0;
104 B = zeros(3,2*nn);
105 B(1,1:2:2*nn) = dNdx(:,1)';
106 B(2,2:2:2*nn) = dNdx(:,2)';
107 B(3,1:2:2*nn) = dNdx(:,2)';
108 B(3,2:2:2*nn) = dNdx(:,1)';
109 Ke = Ke+B'*D*B*W(q)*det(J0);
110 end
111 %--- TABULATE SHAPE FUNCTIONS
112 function fem = TabShapeFnc(fem)

182

113 ElemNNode = cellfun(@length,fem.Element); % number of nodes per element
114 fem.ShapeFnc = cell(max(ElemNNode),1);
115 for nn = min(ElemNNode):max(ElemNNode)
116 [W,Q] = PolyQuad(nn);
117 fem.ShapeFnc{nn}.W = W;
118 fem.ShapeFnc{nn}.N = zeros(nn,1,size(W,1));
119 fem.ShapeFnc{nn}.dNdxi = zeros(nn,2,size(W,1));
120 for q = 1:size(W,1)
121 [N,dNdxi] = PolyShapeFnc(nn,Q(q,:));
122 fem.ShapeFnc{nn}.N(:,:,q) = N;
123 fem.ShapeFnc{nn}.dNdxi(:,:,q) = dNdxi;
124 end
125 end
126 %-- POLYGONAL SHAPE FUNCTIONS
127 function [N,dNdxi] = PolyShapeFnc(nn,xi)
128 N=zeros(nn,1); alpha=zeros(nn,1); dNdxi=zeros(nn,2); dalpha=zeros(nn,2);
129 sum_alpha=0.0; sum_dalpha=zeros(1,2); A=zeros(nn,1); dA=zeros(nn,2);
130 [p,Tri] = PolyTrnglt(nn,xi);
131 for i=1:nn
132 sctr = Tri(i,:); pT = p(sctr,:);
133 A(i) = 1/2*det([pT,ones(3,1)]);
134 dA(i,1) = 1/2*(pT(3,2)-pT(2,2));
135 dA(i,2) = 1/2*(pT(2,1)-pT(3,1));
136 end
137 A=[A(nn,:);A]; dA=[dA(nn,:);dA];
138 for i=1:nn
139 alpha(i) = 1/(A(i)*A(i+1));
140 dalpha(i,1) = -alpha(i)*(dA(i,1)/A(i)+dA(i+1,1)/A(i+1));
141 dalpha(i,2) = -alpha(i)*(dA(i,2)/A(i)+dA(i+1,2)/A(i+1));
142 sum_alpha = sum_alpha + alpha(i);
143 sum_dalpha(1:2) = sum_dalpha(1:2)+dalpha(i,1:2);
144 end
145 for i=1:nn
146 N(i) = alpha(i)/sum_alpha;
147 dNdxi(i,1:2) = (dalpha(i,1:2)-N(i)*sum_dalpha(1:2))/sum_alpha;
148 end
149 %-- POLYGON TRIANGULATION
150 function [p,Tri] = PolyTrnglt(nn,xi)
151 p = [cos(2*pi*((1:nn))/nn); sin(2*pi*((1:nn))/nn)]';
152 p = [p; xi];
153 Tri = zeros(nn,3); Tri(1:nn,1)=nn+1;
154 Tri(1:nn,2)=1:nn; Tri(1:nn,3)=2:nn+1; Tri(nn,3)=1;
155 %--- POLYGONAL QUADRATURE
156 function [weight,point] = PolyQuad(nn)
157 [W,Q]= TriQuad; %integration pnts & wgts for ref. triangle
158 [p,Tri] = PolyTrnglt(nn,[0 0]); %triangulate from origin
159 point=zeros(nn*length(W),2); weight=zeros(nn*length(W),1);
160 for k=1:nn
161 sctr = Tri(k,:);
162 for q=1:length(W)
163 [N,dNds] = TriShapeFnc(Q(q,:)); %compute shape functions
164 J0 = p(sctr,:)'*dNds;
165 l = (k-1)*length(W) + q;
166 point(l,:) = N'*p(sctr,:);
167 weight(l) = det(J0)*W(q);
168 end
169 end
170 %-- TRIANGULAR QUADRATURE

183

171 function [weight,point] = TriQuad
172 point=[1/6,1/6;2/3,1/6;1/6,2/3]; weight=[1/6,1/6,1/6];
173 %--- TRIANGULAR SHAPE FUNCTIONS
174 function [N,dNds] = TriShapeFnc(s)
175 N=[1-s(1)-s(2);s(1);s(2)]; dNds=[-1,-1;1,0;0,1];
176 %--- INITIAL PLOT
177 function [handle,map] = InitialPlot(fem,z0)
178 Tri = zeros(length([fem.Element{:}])-2*fem.NElem,3);
179 map = zeros(size(Tri,1),1); index=0;
180 for el = 1:fem.NElem
181 for enode = 1:length(fem.Element{el})-2
182 map(index+1) = el;
183 Tri(index+1,:) = fem.Element{el}([1,enode+1,enode+2]);
184 index = index + 1;
185 end
186 end
187 handle = patch('Faces',Tri,'Vertices',fem.Node,'FaceVertexCData',...
188 1-z0(map),'FaceColor','flat','EdgeColor','none');
189 axis equal; axis off; axis tight; colormap(gray);
190 %---%

184

Code: PolyFilter

1 %---%
2 function [P] = PolyFilter(fem,R)
3 if R<0, P = speye(fem.NElem); return; end %P is set to identity when R<0
4 ElemCtrd = zeros(fem.NElem,2);
5 for el = 1:fem.NElem %Compute the centroids of all the elements
6 vx=fem.Node(fem.Element{el},1); vy=fem.Node(fem.Element{el},2);
7 temp = vx.*vy([2:end 1])-vy.*vx([2:end 1]);
8 A = 0.5*sum(temp);
9 ElemCtrd(el,1) = 1/(6*A)*sum((vx+vx([2:end 1])).*temp);

10 ElemCtrd(el,2) = 1/(6*A)*sum((vy+vy([2:end 1])).*temp);
11 end
12 [d] = DistPntSets(ElemCtrd,ElemCtrd,R); %Obtain distance values & indices
13 P = sparse(d(:,1),d(:,2),1-d(:,3)/R); %Assemble the filtering matrix
14 P = spdiags(1./sum(P,2),0,fem.NElem,fem.NElem)*P;
15 %---------------------------------- COMPUTE DISTANCE BETWEEN TWO POINT SETS
16 function [d] = DistPntSets(PS1,PS2,R)
17 d = cell(size(PS1,1),1);
18 for el = 1:size(PS1,1) %Compute the distance information
19 dist = sqrt((PS1(el,1)-PS2(:,1)).^2 + (PS1(el,2)-PS2(:,2)).^2);
20 [I,J] = find(dist≤R); %Find the indices for distances less that R
21 d{el} = [I,J+(el-1),dist(I)];
22 end
23 d = cell2mat(d); %Matrix of indices and distance value
24 %---%

185

Bibliography

[1] R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2nd ed., 2003.

[2] M. Adlers, Sparse Least Squares Problems with Box Constraints, Department of
Mathematics, Linkoping University, Thesis, 1998.

[3] G. Allaire, Shape Optimization by the Homogenization Method, Springer, New
York, 2001.

[4] G. Allaire, E. Bonnetier, G. A. Francfort, and F. Jouve, Shape optimiza-
tion by the homogenization method, Numer Math, 76 (1997), pp. 27–68.

[5] G. Allaire and G. A. Francfort, Existence of minimizers for non-quasiconvex
functionals arising in optimal design, Ann I H Poincare-An, 15 (1998), pp. 301–339.

[6] G. Allaire and A. Henrot, On some recent advances in shape optimization, Jan
2001.

[7] G. Allaire and F. Jouve, A level-set method for vibration and multiple loads
structural optimization, Comput Methods Appl Mech Engrg, 194 (2005), pp. 3269–
3290.

[8] G. Allaire, F. Jouve, and A.-M. Toader, Structural optimization using sensi-
tivity analysis and a level-set method, J Comput Phys, 194 (2004), pp. 363–393.

[9] G. Allaire and O. Pantz, Structural optimization with FreeFem++, Struct Mul-
tidisc Optim, 32 (2006), pp. 173–181.

[10] S. R. M. Almeida, G. H. Paulino, and E. C. N. Silva, Layout and material
gradation in topology optimization of functionally graded structures: a global-local
approach, Struct Multidisc Optim, 42 (2010), pp. 885–868.

[11] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penal-
ization, Calc Var Partial Dif, 1 (1993), pp. 55–69.

[12] E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund,
Efficient topology optimization in MATLAB using 88 lines of code, Struct Multidisc
Optim, 43 (2011), pp. 1–16.

[13] J. S. Arora, Analysis of optimality criteria and gradient projection methods for
optimal structural design, Comput Methods Appl Mech Engrg, 23 (1980), pp. 185–
213.

186

[14] U. M. Ascher, H. Huang, and K. van den Doel, Artificial time integration,
BIT, 47 (2007), pp. 3–25.

[15] F. Aurenhammer, Voronoi diagrams–a survey of a fundamental geometric data
structure, Comput Surv, 23 (1991), pp. 345–405.

[16] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J Image Sci, 2 (2008), pp. 183–202.

[17] , Fast gradient-based algorithms for constrained total variation image denoising
and deblurring problems, IEEE Trans Image Proc, 18 (2009), pp. 2419–2434.

[18] , Gradient-based algorithms with applications to signal recovery problems, in Con-
vex Optimization in Signal Processing and Communications, Cambridge university
press, 2010.

[19] T. Belytschko, S. P. Xiao, and C. Parimi, Topology optimization with implicit
functions and regularization, Int J Numer Meth Engng, 57 (2003), pp. 1177–1196.

[20] M. P. Bendsøe, Optimal design as material distribution probelm, Struct Optimiza-
tion, 1 (1989), pp. 193–202.

[21] M. P. Bendsøe and R. B. Haber, The Michell layout problem as a low volume
fraction limit of the perforated plate topology optimization problem: An asymptotic
study, Struct Optimization, 6 (1993), pp. 263–267.

[22] M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural de-
sign using a homogenization method, Comput Methods Appl Mech Engrg, 71 (1988),
pp. 197–224.

[23] M. P. Bendsøe and O. Sigmund, Material interpolation schemes in topology op-
timization, Arch Appl Mech, 69 (1999), pp. 635–654.

[24] , Topology Optimization: Theory, Methods and Applications, Springer, 2003.

[25] D. P. Bertsekas, Projected newton methods for optimization problems with simple
constraints, SIAM J Control Opt, 20 (1982), pp. 221–246.

[26] , Nonlinear Programming, Athena Scientific, 2nd ed., 1999.

[27] J. E. Bolander and S. Saito, Fracture analyses using spring networks with ran-
dom geometry, Eng Fract Mech, 61 (1998), pp. 569–591.

[28] T. Borrvall, Topology optimization of elastic continua using restriction, Arch Com-
put Method E, 8 (2001), pp. 251–285.

[29] T. Borrvall and J. Petersson, Topology optimization using regularized interme-
diate density control, Comput Methods Appl Mech Engrg, 190 (2001), pp. 4911–4928.

[30] , Topology optimization of fluids in stokes flow, Int J Numer Meth Eng, 41 (2003),
pp. 77–107.

187

[31] B. Bourdin, Filters in topology optimization, Int J Numer Meth Eng, 50 (2001),
pp. 2143–2158.

[32] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization,
ESAIM Contr Optim Ca, 9 (2003), pp. 19–48.

[33] K. Bredies, A forward–backward splitting algorithm for the minimization of non-
smooth convex functionals in Banach space, Inverse Probl, 25 (2009), p. 015005.

[34] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Springer, 2nd ed., 2002.

[35] F. Brezzi and M. Fortin, Mixed and hybrid finite element method, Springer, New
York, 1991.

[36] T. E. Bruns, A reevaluation of the SIMP method with filtering and an alternative
formulation for solid-void topology optimization, Struct Multidisc Optim, 30 (2005),
pp. 428–436.

[37] M. Bruyneel and P. Duysinx, Note on topology optimization of continuum struc-
tures including self-weight, Struct Multidisc Optim, 29 (2005), pp. 245–256.

[38] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with
local stress constraints, SIAM J Control Optim, 45 (2006), pp. 1447–1466.

[39] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained
problems, Math Program, 39 (1987), pp. 93–116.

[40] E. J. Candes, J. Romberg, and T. Tao, Stable signal recovery from incomplete
and inaccurate measurements, Comm Pure Appl Math, 59 (2006), pp. 1207–1223.

[41] E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE
Signal Process Mag, 25 (2008), pp. 21–30.

[42] V. J. Challis, A discrete level-set topology optimization code written in matlab,
Struct Multidisc Optim, 41 (2009), pp. 453–464.

[43] A. Chambolle, An algorithm for total variation minimization and applications, J
Math Imaging Vis, 20 (2004), pp. 89–97.

[44] A. Chambolle and C. Larsen, C-infinity regularity of the free boundary for a two-
dimensional optimal compliance problem, Calc Var Partial Dif, 18 (2003), pp. 77–94.

[45] D. Chapelle and K. J. Bathe, The inf-sup test, Comput Struct, 47 (1993),
pp. 537–545.

[46] G. H. G. Chen and R. T. Rockafellar, Convergence rates in forward-backward
splitting, SIAM J Optimiz, 7 (1997), pp. 421–444.

[47] D. Chenais, On the existence of a solution in a domain identification problem, J
Math Anal Appl, 52 (1975), pp. 189–219.

188

[48] A. Cherkaev, Variational Methods for Structural Optimization, Springer Verlag,
New York, 2000.

[49] P. G. Ciarlet, Mathematical Elasticity: Volume 1: Three-Dimensional Elasticity,
Elsevier, 1988.

[50] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[51] A. Cohen and R. Masson, Wavelet methods for second-order elliptic problems,
preconditioning, and adaptivity, SIAM J Sci Comput, 21 (2000), pp. 1006–1026.

[52] G. Cohen, Optimization by decomposition and coordination: a unified approach,
IEEE Trans Autom Control, 23 (1978), pp. 222–232.

[53] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward
splitting, Multiscale Model Sim, 4 (2006), pp. 1168–1200.

[54] R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applications of
Finite Element Analysis, Wiley, New York, 4th ed., 2002.

[55] A. L. Cunha, A fully Eulerian method for shape optimization, with application to
Navier-Stokes flows, Master’s thesis, Carnegie Mellon University, 2004.

[56] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices,
in Proceedings of 24th National Conference ACM, 1969, pp. 157–172.

[57] B. Dacorogna and P. Marcellini, Existence of minimizers for non-quasiconvex
integrals, Arch Ration Mech An, 131 (1995), pp. 359–399.

[58] M. Dambrine and D. Kateb, On the Ersatz material approximation in level-set
methods, ESAIM Contr Optim Ca, 16 (2009), pp. 618–634.

[59] M. J. de Ruiter and F. V. Keulen, Topology optimization using a topology de-
scription function, Struct Multidisc Optim, 26 (2004), pp. 406–416.

[60] L. Dede, M. J. Borden, and T. J. R. Hughes, Isogeometric analysis for topology
optimization with a phase field model, ICES-Report 11-29, The Institute for Compu-
tational Engineering and Sciences, 2011.

[61] M. C. Delfour and J. P. Zolésio, Shapes and geometries: analysis, differential
calculus, and optimization, Society for Industrial and Applied Mathematics, Philadel-
phia, 2001.

[62] A. Diaz and O. Sigmund, Checkerboard patterns in layout optimization, Struct
Optimization, 10 (1995), pp. 40–45.

[63] J. Donea and A. Huerta, Finite Element Methods for Flow Problems, John Wiley
and Sons, Ltd., West Sussex, England, 2003.

[64] Q. Du, M. Emelianenko, and L. Ju, Convergence of the Lloyd algorithm for
computing centroidal Voronoi tessellations, SIAM J Numer Anal, 44 (2006), pp. 102–
119.

189

[65] Q. Du, V. Faber, and M. D. Gunzburger, Centroidal Voronoi tessellations:
Applications and algorithms, SIAM Rev, 41 (1999), pp. 637–676.

[66] Q. Du and M. D. Gunzburger, Grid generation and optimization based on cen-
troidal Voronoi tessellations, Appl Math Comput, 133 (2002), pp. 591–607.

[67] Q. Du, M. D. Gunzburger, and L. Ju, Constrained centroidal Voronoi tessella-
tions for surfaces, SIAM J Sci Comput, 24 (2003), pp. 1488–1506.

[68] Q. Du and D. Wang, The optimal centroidal Voronoi tessellations and the Gersho’s
conjecture in the three-dimensional space, Comput Math Appl, 49 (2005), pp. 1355–
1373.

[69] J. Duchi and Y. Singer, Efficient online and batch learning using forward backward
splitting, J Mach Learn Res, 10 (2009), pp. 2899–2934.

[70] R. G. Duran and M. A. Muschietti, The Korn inequality for Jones domains,
Electron J Differential Equations, 127 (2004), pp. 1–10.

[71] H. W. Engl, M. Hangke, and A. Neubauer, Regularization of Inverse Problems,
Kluwer Academic Publishers, 1996.

[72] J. Erhel and F. Guyomarc’h, An augmented conjugate gradient method for solv-
ing consecutive symmetric positive definite linear systems, SIAM J Matrix Anal Appl,
21 (2000), pp. 1279–1299.

[73] A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, Springer
Verlag, New York, 2004.

[74] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics,
American Mathematical Society, Rhode Island, 1998.

[75] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,
CRC Press, 1991.

[76] A. Evgrafov, The limits of porous materials in the topology optimization of Stokes
flows, Appl Math Optim, 52 (2005), pp. 263–277.

[77] C. Fleury and V. Braibant, Structural optimization: a new dual method using
mixed variables, Int J Numer Meth Eng, 23 (1986), pp. 409–428.

[78] M. S. Floater and J. Kosinka, On the injectivity of Wachspress and mean value
mappings between convex polygons, Adv Comput Math, 32 (2010), pp. 163–174.

[79] E. M. Gafni and D. Bertsekas, Two-metric projection methods for constrained
optimization, SIAM J Control Opt, 20 (1984), pp. 936–964.

[80] A. Gillette, A. Rand, and C. Bajaj, Error estimates for generalized barycentric
interpolation, Adv Comput Math, DOI 10.1007/s10444-011-9218-z (2012).

[81] V. Girault and P. A. Raviart, Fintie Element Method for Navier-Stokes equa-
tions, Springer Verlag, 1986.

190

[82] A. A. Groenwold and L. F. P. Etman, On the equivalence of optimality crite-
rion and sequential approximate optimization methods in the classical topology layout
problem, Int J Numer Meth Eng, 73 (2008), pp. 297–316.

[83] , A quadratic approximation for structural topology optimization, Int J Numer
Meth Eng, 82 (2010), pp. 505–524.

[84] A. A. Groenwold, L. F. P. Etman, and D. W. Wood, Approximated approxi-
mations for SAO, Struct Multidisc Optim, 41 (2010), pp. 39–56.

[85] J. K. Guest, J. H. Prevost, and T. Belytschko, Achieving minimum length
scale in topology optimization using nodal design variables and projection functions,
Int J Numer Meth Eng, 61 (2004), pp. 238–254.

[86] X. Guo and Y. X. Gu, A new density-stiffness interpolation scheme for topology
optimization of continuum structures, Eng Computation, 21 (2004), pp. 9–22.

[87] X. Guo, K. Zhao, and M. Y. Wang, A new approach for simultaneous shape and
topology optimization based on dynamic implicit surface function, Control Cybern, 34
(2005), pp. 255–282.

[88] R. B. Haber, C. S. Jog, and M. P. Bendsøe, A new approach to variable-topology
shape design using a constraint on perimeter, Struct Optimization, 11 (1996), pp. 1–
12.

[89] Y. Huang, H. Qin, and D. Wang, Centroidal Voronoi tessellation-based finite
element superconvergence, Int J Numer Meth Eng, 76 (2008), pp. 1819–1839.

[90] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis, Dover Publications, 2000.

[91] C. S. Jog and R. B. Haber, Stability of finite element models for distributed-
parameter optimization and topology design, Comput Methods Appl Mech Engrg, 130
(1996), pp. 203–226.

[92] C. S. Jog, R. B. Haber, and M. P. Bendsøe, Topology design with optimized,
self-adaptive materials, Int J Numer Meth Eng, 37 (1994), pp. 1323–1350.

[93] L. Ju, M. D. Gunzburger, and W. Zhao, Adaptive finite element methods for
elliptic PDEs based on conforming centroidal Voronoi-Delaunay triangulations, SIAM
J Sci Comput, 28 (2006), pp. 2023–2053.

[94] A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, and
S. Nishiwaki, Heaviside projection based topology optimization by a PDE-filtered
scalar function, Struct Multidisc Optim, 44 (2010), pp. 19–24.

[95] J. H. Kim and G. H. Paulino, Isoparametric graded finite elements for nonho-
mogeneous isotropic and orthotropic materials, J Appl Mech-T ASME, 69 (2002),
pp. 502–514.

[96] R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems
I, Comm Pure Appl Math, 39 (1986), pp. 113–137.

191

[97] , Optimal design and relaxation of variational problems II, Comm Pure Appl
Math, 38 (1986), pp. 139–182.

[98] , Optimal design and relaxation of variational problems III, Comm Pure Appl
Math, 39 (1986), pp. 353–377.

[99] I. Kosaka and C. C. Swan, A symmetry reduction method for continuum structural
topology optimization, Comput Struct, 70 (1999), pp. 47–61.

[100] S. Kreissl, G. Pingen, and K. Maute, An explicit level set approach for gener-
alized shape optimization of fluids with the Lattice Boltzmann method, Int J Numer
Meth Fl, 65 (2011), pp. 496–519.

[101] M. Langelaar, The use of convex uniform honeycomb tessellations in structural
topology optimization, Proceedings of 7th World Congress on Structural and Multi-
disciplinary Optimization, (2007).

[102] B. S. Lazarov and O. Sigmund, Filters in topology optimization based on
Helmholtz-type differential equations, Int J Numer Meth Eng, 86 (2011), pp. 765–
781.

[103] T. Lewinski, M. Zhou, and G. I. N. Rozvany, Extended exact least-weight truss
layouts–Part II: Unsymmetric cantilevers, Int J Mech Sci, 36 (1994), pp. 399–419.

[104] , Extended exact solutions for least-weight truss layouts–Part I: Cantilever with
a horizontal axis of symmetry, Int J Mech Sci, 36 (1994), pp. 375–398.

[105] O. Ley, Lower-bound gradient estimates for first-order Hamilton-Jacobi equations
and applications to the regularity of propagating fronts, Adv Differential Equations, 6
(2001), pp. 547–576.

[106] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear
operators, SIAM J Numer Anal, 16 (1979), pp. 964–979.

[107] R. Lipton, A saddle-point theorem with application to structural optimization, J
Optimiz Theory App, 81 (1994), pp. 549–568.

[108] , Stress constrained G-closure and relaxation of structural design problems, Quart
Appl Math, 62 (2004), pp. 295–322.

[109] W. B. Liu, P. Neittaanmaki, and D. Tiba, Existence for shape optimization
problems in arbitrary dimension, SIAM J Control Opt, 41 (2002), p. 1440.

[110] Y. Liu, W. Wang, B. Levy, F. Sun, D.-M. Yan, L. Lu, and C. Yang, On
centroidal Voronoi tesselleations–Energy smoothness and fast computation, ACM T
Graphic, 28 (2009), pp. 1–17.

[111] Z. Liu, J. Korvink, and R. Huang, Structure topology optimization: fully coupled
level set method via FEMLAB, Struct Multidisc Optim, 29 (2005), pp. 407–417.

[112] J. M. Martinez, A note on the theoretical convergence properties of the SIMP
method, Struct Multidisc Optim, 29 (2005), pp. 319–323.

192

[113] M. Meyer, A. Barr, H. Lee, and M. Desbrun, Generalized barycentric coordi-
nates on irregular polygons, J Graphics Tools, 7 (2002), pp. 13–22.

[114] M. L. Minion, Higher-order semi-implicit projection methods, tech. rep., Lawernce
Livermore National Laboratory, 2001.

[115] S. E. Mousavi, H. Xiao, and N. Sukumar, Generalized Gaussian quadrature rules
on arbitrary polygons, Int J Numer Meth Eng, 82 (2010), pp. 99–113.

[116] S. Natarajan, S. Bordas, and D. R. Mahapatra, Numerical integration over
arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, Int J
Numer Meth Eng, 80 (2009), pp. 103–134.

[117] P. Neittaanmaki and D. Tiba, Existence and approximation in optimal shape
design problems, University of Jyvaskyla, Report, (1998).

[118] Y. Nesterov, Gradient methods for minimizing composite objective function. avail-
able at http://www.ecore.be/DPs/dp1191313936.pdf., 2007.

[119] N. Olhoff, M. P. Bendsøe, and J. Rasmussen, On CAD-integrated structural
topology and design optimization, Comput Methods Appl Mech Engrg, 89 (1991),
pp. 259–279.

[120] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,
vol. 153 of Applied Mathematical Sciences, Springer-Verlag, New York, 2003.

[121] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti,
Recycling Krylov supaces for sequences of linear systems, SIAM J Sci Comput, 28
(2006), pp. 1651–1674.

[122] M. Patriksson, Cost approximation: A unified framework of descent algorithms for
nonlinear programs, SIAM J Optimiz, 8 (1998), pp. 561–582.

[123] P.-O. Persson. http://persson.berkeley.edu/thesis/structoptim/.

[124] , Mesh size functions for implicit geometries and PDE-based gradient limiting,
Eng Comput, 22 (2006), pp. 95–109.

[125] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM
Rev, 46 (2004), pp. 329–345.

[126] J. Petersson, A finite element analysis of optimal variable thickness sheets, SIAM
J Numer Anal, 36 (1999), pp. 1759–1778.

[127] , Some convergence results in perimeter-controlled topology optimization, Comput
Methods Appl Mech Engrg, 171 (1999), pp. 123–140.

[128] J. Petersson and O. Sigmund, Slope constrained topology optimization, Int. J.
Numer. Meth. Engng, 41 (1998), pp. 1417–1434.

[129] G. Pingen, M. Waidmann, A. Evgrafov, and K. Maute, A parametric level-
set approach for topology optimization of flow domains, Struct Multidisc Optim, 41
(2010), pp. 117–131.

193

[130] O. Pironneau, Optimal Shape Design of Elliptic Systems, Springer-Verlag, 1983.

[131] T. A. Poulsen, A new scheme for imposing a minimum length scale in topology
optimization, Int J Numer Meth Eng, 57 (2003), pp. 741–760.

[132] A. Ricci, A constructive geometry for computer graphics, Comp J, 16 (1973), pp. 157–
160.

[133] A. Rietz, Sufficiency of a finite exponent in SIMP (power law) methods, Struct
Multidisc Optim, 21 (2001), pp. 159–163.

[134] H. Royden, Real Analysis, Prentice Hall, 3rd ed., 1988.

[135] G. I. N. Rozvany, A critical review of established methods of structural topology
optimization, Struct Multidisc Optim, 37 (2009), pp. 217–237.

[136] G. I. N. Rozvany, M. Zhou, and T. Birker, Generalized shape optimization
without homogenization, Struct Optimization, 4 (1992), pp. 250–252.

[137] A. Saxena, A material-mask overlay strategy for continuum topology optimization
of compliant mechanisms using honeycomb discretization, J Mech Design, 130 (2008),
p. 082304.

[138] J. A. Sethian, Fast marching methods, SIAM Rev, 41 (1999), pp. 199–235.

[139] D. Sieger, P. Alliez, and M. Botsch, Optimizing Voronoi diagrams for polyg-
onal finite element computations, Proceedings of the 19th International Meshing
Roundtable, (2010), pp. 435–350.

[140] O. Sigmund, A 99 line topology optimization code written in matlab, Struct Multidisc
Optim, 21 (2001), pp. 120–127.

[141] , Morphology-based black and white filters for topology optimization, Struct Mul-
tidisc Optim, 33 (2007), pp. 401–424.

[142] O. Sigmund and J. Petersson, Numerical instabilities in topology optimization: A
survey on procedures dealing with checkerboards, mesh-dependencies and local minima,
Struct Optimization, 16 (1998), pp. 68–75.

[143] T. Sokół, A 99 line code for discretized Michell truss optimization written in Math-
ematica, Struct Multidisc Optim, 43 (2011), pp. 181–190.

[144] M. Stolpe and K. Svanberg, An alternative interpolation scheme for minimum
compliance topology optimization, Struct Multidisc Optim, 22 (2001), pp. 116–124.

[145] , On the trajectories of penalization methods for topology optimization, Struct
Multidisc Optim, 21 (2001), pp. 128–139.

[146] L. L. Stromberg, A. Beghini, W. F. Baker, and G. H. Paulino, Application
of layout and topology optimization using pattern gradation for the conceptual design
of buildings, Struct Multidisc Optim, 43 (2011), pp. 165–180.

194

[147] N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach,
Int J Numer Meth Eng, 61 (2004), pp. 2159–2181.

[148] N. Sukumar and E. A. Malsch, Recent advances in the construction of polygonal
finite element interpolants, Arch Comput Method E, 13 (2006), pp. 129–163.

[149] N. Sukumar and A. Tabarraei, Conforming polygonal finite elements, Int J Nu-
mer Meth Eng, 61 (2004), pp. 2045–2066.

[150] K. Suresh, A 199-line matlab code for Pareto-optimal tracing in topology optimiza-
tion, Struct Multidisc Optim, 42 (2010), pp. 665–679.

[151] M. Sussman, E. Fatemi, P. Smereka, and S. Osher, An improved level set
method for incompressible two-phase flows, Comput Fluids, 27 (1998), pp. 663–680.

[152] K. Suzuki and N. Kikuchi, A homogenization method for shape and topology op-
timization, Comput Methods Appl Mech Engrg, 93 (1991), pp. 291–318.

[153] K. Svanberg, The Method of Moving Asymptotes–A new method for structural op-
timization, Int J Numer Meth Eng, 24 (1987), pp. 359–373.

[154] , A class of globally convergent optimization methods based on conservative convex
separable approximations, SIAM J Optimiz, 12 (2001), pp. 555–573.

[155] V. Sverak, On optimal shape design, J Math Pures Appl, 72 (1993), pp. 537–551.

[156] A. Tabarraei and N. Sukumar, Application of polygonal finite elements in linear
elasticity, Int J Comput Methods, 3 (2006), pp. 503–520.

[157] A. Takezawa, S. Nishiwaki, and M. Kitamura, Shape and topology optimization
based on the phase field method and sensitivity analysis, J Comput Phys, 229 (2010),
pp. 2697–2718.

[158] C. Talischi, Existence of solutions for a restriction-type topology optimization for-
mulation, Report, (2009).

[159] C. Talischi and G. H. Paulino, A consistent operator splitting algorithm and a
two-metric variant: Application to topology optimization, Under review, (2012).

[160] , An operator splitting algorithm for Tikhonov-regularized topology optimization,
Comput Methods Appl Mech Engrg, in press (2012).

[161] C. Talischi, G. H. Paulino, and C. H. Le, Honeycomb Wachspress finite elements
for structural topology optimization, Struct Multidisc Optim, 37 (2009), pp. 569–583.

[162] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, Polygonal
finite elements for topology optimization: A unifying paradigm, Int J Numer Meth
Eng, 82 (2010), pp. 671–698.

[163] , PolyMesher: A general-purpose mesh generator for polygonal elements written
in Matlab, Struct Multidisc Optim, 45 (2012), pp. 309–328.

195

[164] , PolyTop: A Matlab implementation of a general topology optimization frame-
work using unstructured polygonal finite element meshes, Struct Multidisc Optim, 45
(2012), pp. 329—357.

[165] L. Tartar, An introduction to the homogenization method in optimal design, Optimal
Shape Design: Lecture Notes in Mathematics, Springer, 2000, pp. 47–156.

[166] A. R. Terrel and K. R. Long, Evaluation of level set topology optimization for-
mulations for design of minimum-dispersion microfluidic devices, in NECIS Summer
Proceedings, 2006.

[167] K. van den Doel and U. M. Ascher, On level set regularization for highly ill-posed
distributed parameter estimation problems, J Comput Phys, 216 (2006), pp. 707–723.

[168] N. P. van Dijk, M. Langelaar, and F. van Keulen, A discrete formulation
of a discrete level-set method treating multiple constraints, Proceedings of 8th World
Congress on Structural and Multidisciplinary Optimization, (2009).

[169] , Explicit level-set-based topology optimization using an exact Heaviside function
and consistent sensitivity analysis, Int J Numer Meth Eng, 91 (2012), pp. 67–97.

[170] E. L. Wachspress, A Rational Finite Element Basis, Academic Press, 1975.

[171] F. Wang, B. Lazarov, and O. Sigmund, On projection methods, convergence
and robust formulations in topology optimization, Struct Multidisc Optim, 43 (2011),
pp. 767–784.

[172] M. Y. Wang and S. Y. Wang, Bilateral filtering for structural topology optimiza-
tion, Int J Numer Meth Eng, 63 (2005), pp. 1911–1938.

[173] M. Y. Wang, X. M. Wang, and D. M. Guo, A level set method for structural
topology optimization, Comput Methods Appl Mech Engrg, 192 (2003), pp. 227–246.

[174] M. Y. Wang and S. Zhou, Synthesis of shape and topology of multi-material struc-
tures with a phase-field method, J Comput-Aided Mater, 11 (2004), pp. 117–138.

[175] S. Y. Wang, K. M. Lim, B. C. Khoo, and M. Y. Wang, An extended level set
method for shape and topology optimization, J Comput Phys, 221 (2007), pp. 395–421.

[176] S. J. Wright, Optimization in machine learning, in Neural Information Processing
Systems (NIPS) Workshop, 2008.

[177] T. Yamada, K. Izui, S. Nishiwaki, and A. Takezawa, A topology optimiza-
tion method based on the level set method incorporating a fictitious interface energy,
Comput Methods Appl Mech Engrg, 199 (2010), pp. 2876–2891.

[178] S. Yamasaki, S. Nishiwaki, T. Yamada, K. Izui, and M. Yoshimura, A struc-
tural optimization method based on the level set method using a new geometry-based
re-initialization scheme, Int J Numer Meth Eng, 83 (2010), pp. 1580–1624.

[179] M. Yip, J. Mohle, and J. E. Bolander, Automated modeling of three-dimensional
structural components using irregular lattices, Comput-Aided Civ Inf, 20 (2005),
pp. 393–407.

196

[180] L. Yuqui and X. Yin, Generalized conforming triangular membrane element with
vertex rigid rotational freedoms, Finite Elem Anal Des, 17 (1994), pp. 259–271.

[181] W. H. Zhang and P. Duysinx, Dual approach using a variant perimeter con-
straint and efficient sub-iteration scheme for topology optimization, Comput Struct,
81 (2003), pp. 2173–2181.

[182] H. Zhao, A fast sweeping method for Eikonal equations, Math Comput, 74 (2004),
pp. 603–627.

[183] M. Zhou and G. I. N. Rozvany, The COC algorithm, part II: Topological, geo-
metrical and generalized shape optimization, Comput Methods Appl Mech Engrg, 89
(1991), pp. 309–336.

[184] S. Zhou and M. Y. Wang, Multimaterial structural topology optimization with a
generalized Cahn-Hilliard model of multiphase transition, Struct Multidisc Optim, 33
(2007), pp. 89–111.

197

