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ABSTRACT

As traditional approaches for reducing power in microprocessors are be-

ing exhausted, extreme power challenges call for unconventional approaches

to power reduction. Recent research has shown substantial promise for

application-specific stochastic computing, i.e., computing that exploits appli-

cation error tolerance to enable careful relaxation of correctness guarantees

provided by hardware in order to reduce power. This dissertation explores

the feasibility, challenges, and potential benefits of stochastic computing in

the context of programmable general purpose processors. Specifically, the

dissertation describes design-level techniques that minimize the power of a

processor for a non-zero error rate or allow a processor to fail gracefully

when operated over a range of non-zero error rates. It presents microarchi-

tectural design principles that allow a processor to trade off reliability and

energy more efficiently to minimize energy when exploiting error resilience.

It demonstrates the benefit of using compiler optimizations that optimize a

binary to enable more energy savings when operating at a non-zero error

rate. It also demonstrates significant benefits for a programmable stochas-

tic processor prototype that improves energy efficiency by carefully relaxing

correctness and exposing errors in applications running on a commodity pro-

cessor. This dissertation on programmable stochastic processors conclusively

shows that the architecture and design of processors and applications should

be approached differently in scenarios where errors are allowed to be ex-

posed from the hardware to higher levels of the compute stack. Significant

energy benefits are demonstrated for design-, architecture-, compiler-, and

application-level optimizations for general purpose programmable stochastic

processors.
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CHAPTER 1

INTRODUCTION

The primary driver for innovations in computer systems has been the phe-

nomenal scalability of the semiconductor manufacturing process, governed

by Moore’s law, that has allowed us to literally print circuits and systems

growing at exponential capacities for the last three decades. The resulting

exponentially reducing cost per function has resulted in an unprecedented

penetration of technology in homes and beyond, leading to profound impacts

on society and quality of life.

Moore’s law has come under threat, however, due to the resulting exponen-

tially deteriorating effects of material properties on chip reliability and power.

As transistors become smaller (the oxide in a 22 nm process is only five atomic

layers thick, and gate length is only 42 atoms across), it is becoming in-

creasingly expensive for the current design and manufacturing technology to

keep transistors functioning deterministically, even under normal operating

conditions. There are three primary sources of non-determinism [1]. First,

decreasing transistor sizes lead to different transistors being doped differently

during the manufacturing process, causing them to have non-deterministic

electrical characteristics [2]. Second, transistors have become smaller than

the wavelength of the light used to pattern them (by more than 6×) [3]. This

causes non-determinism in the dimensions and characteristics of the manu-

factured transistors. Finally, the unprecedented increase in the power density

of chips, coupled with time and context-dependent variation in temperature

and utilization across the chip, cause voltage and timing variations in cir-

cuits [4]. These variations are dynamic and largely non-deterministic. The

most immediate impact of such non-determinism is decreased chip yields. A

growing number of parts are thrown away, since they do not meet timing and

power-related specifications. A 5% yield loss on a 90 nm process today di-

rectly translates into a cost to the manufacturer that exceeds 2× the design

cost for a typical cellphone manufacturer [5], arguably one of the highest
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volume parts. Clearly the status quo cannot continue. Left unaddressed,

the entire computing and information technology industry will soon face the

prospect of parts that neither scale in capability nor cost. We must find a

solution to the non-determinism problem if semiconductor technology and in-

dustry are to remain a viable driver of scientific innovation and technological

capabilities for the future.

Paradoxically, the problem is not non-determinism, per se, but how com-

puter system designers approach it. Chip components no longer behave like

the precisely chiseled machines of the past; yet, the basic approach to de-

signing and operating computing machines has remained unchanged. While

there have been many swings in computing platform paradigms, such as from

general purpose to specialized, and from single-core to multi-core, the con-

tract between hardware and software has remained unchanged. This contract

guarantees that hardware will return correct values for every computation,

under all conditions. In other words, we demand hardware to be overde-

signed to meet the mindsets in computer systems and software design of the

past. Guardbands imposed to fake determinism on non-deterministic hard-

ware result in increased cost [6], because getting the last bit of performance

incurs too much area and power overhead, especially if performance is to be

optimized for all possible computations. Conservative guardbands also leave

enormous performance and energy potential untapped, since the software as-

sumes lower performance than what a majority of instances of that platform

may be capable of attaining most of the time. As we enter an era where

power and performance are first-order design concerns, the cost of faking de-

terminism could be prohibitive, and we may want to revisit the traditional

hardware-software contract.

There is another reason why we may want to revisit the hardware-software

contract. Several classes of applications can tolerate errors. However, we

still design our processors for perfection, as if no application could tolerate

any errors. Thus, the traditional compute stack is really overdesigned for

many applications that could actually tolerate errors. A more efficient system

would perhaps be one in which the reliability of hardware is matched to the

reliability requirements of software.

Keeping in mind the non-determinism of hardware and the error tolerance

of software, this dissertation examines the feasibility of a computing stack

where hardware is allowed to expose errors to software. Specifically, it ex-
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plores programmable processors that are designed and architected from the

ground up to allow errors under nominal conditions. These processors are

called programmable stochastic processors. The number and nature of errors

that the hardware can expose is determined by the error tolerance available

in software or hardware, and error distribution statistics are used to deter-

mine how to optimize the processors and applications to maximize energy

savings for a given distribution of errors that can be tolerated. This disser-

tation discusses efforts toward understanding the feasibility, challenges, and

potential benefits of building general purpose programmable processors that

expose errors to applications and are optimized not for correct operation but

for non-zero error rates.

The dissertation is organized as follows. Chapter 2 provides background

information, beginning with the foundations of stochastic computing. Chap-

ter 3 introduces a simple implementation of a programmable stochastic pro-

cessor and presents benefits for an example multimedia application. Chap-

ters 4, 5, and 6, respectively, describe design-, architecture-, and compiler-

level optimization techniques for general purpose programmable stochastic

processors that are optimized for non-zero error rates. Chapter 7 presents a

stochastic processor prototype that demonstrates energy benefits for appli-

cations running on a commodity processor. Finally, Chapter 8 summarizes

the work and outlines some future directions of research.
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CHAPTER 2

BACKGROUND

This chapter provides background information on stochastic computing, be-

ginning with the foundational underpinnings and subsequently describing

how the notion of stochastic computing has developed.

2.1 Early Foundations of Stochastic Computing

The foundations of stochastic computing were laid decades ago by comput-

ing pioneers such as John von Neumann. Von Neumann believed that proper

handling of errors would be achieved not by treating errors as accidental oc-

currences, but as an essential and meaningful part of computation [7]. He

also believed that existing solutions to manage errors through redundancy

were unsatisfactory and ad hoc, and desired to see errors treated with the-

oretical rigor, similarly to the way Shannon had approached the domain of

information theory [8]. This dissertation adopts a similar view of stochastic

computing as computation on inherently unreliable hardware, where errors

are treated as first-class citizens, to be expected in the common case and

accounted for during system optimization.

In a seminal work on stochastic computing [7], von Neumann developed

the beginnings of a theoretical framework, proving that reliable systems could

be synthesized from unreliable components (he considered 3-input majority

gates), granted that the component probability of failure is bounded. Con-

versely, he also proved that for such logics it is impossible to build reliable

systems if component reliability is below a certain threshold (1/6 for his for-

mulation using 3-input majority gates [8]). Von Neumann also proposed a

formulation of probabilistic computing in which variables are represented by

N-bit bitstrings, where the value of a variable is encoded as the probability

that a bit in the string is ‘1’. While von Neumann’s work laid the groundwork
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for stochastic computing theory, it is worth noting that these initial formula-

tions had significant limitations. For example, even for low component error

rates, a huge number of bits (N) are needed to synthesize a reliable system.

Based on the theory that developed as a result of early work in the field,

several early stochastic processors were built [9], focusing on special pur-

pose arrays of stochastic computing elements, including machines built at

Illinois [10]. Theoretical works also built on the work of von Neumann, pro-

ducing formulations and bounds for systems comprised of different funda-

mental components [11, 12, 13], and components with larger error rates [14].

A major drawback of these works is that the reliability of the systems synthe-

sized from unreliable components is substantially lower than the component

reliability unless large, complex, redundant networks of components are em-

ployed. Also the proposed systems unrealistically assume that component

failures are completely independent – a nearly impossible scenario to repro-

duce in the real world.

The early formulations of stochastic computing primarily focus on pro-

viding reliability for systems built from inherently unreliable components.

Later work, however, takes stochastic computing a step further. While mod-

ern computing systems are indeed synthesized from inherently and increas-

ingly unreliable devices, and our goal is to perform acceptable computation

on such systems, not all applications require perfect hardware to achieve

acceptable output quality. Application-specific stochastic computing tech-

niques exploit error tolerance in applications to carefully relax hardware cor-

rectness, especially when hardware correctness is expensive to guarantee. As

such, in addition to ensuring acceptable computation on unreliable hardware,

application-specific stochastic computing may also provide significant energy

benefits.

2.2 Application-Specific Stochastic Computing

One of the early works on application-specific stochastic computing proposes

algorithmic noise tolerance (ANT) [15]. ANT proposes the use of low-energy

soft digital signal processing (DSP). A soft DSP design uses voltage overscal-

ing or better-than-worst-case design to reduce energy consumption at the

expense of some timing errors. Faced with these errors, ANT uses knowledge
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of an application’s expected output signal distributions to qualify results and

filter out outliers. Specifically, ANT employs a reduced complexity estimator

block in parallel with the main circuit block. The estimator block computes

a reduced-precision, but error-free, version of the output, which is compared

against the output of the main block. A large difference between the outputs

indicates that a timing error has occurred in the main block. In the case that

an outlier is detected, ANT discards the erroneous main block output and

uses instead the reduced-precision version of the output. By reducing voltage

and mitigating the effect of erroneous computations on output quality, ANT

enables reduced energy consumption while minimizing degradation in output

SNR.

Following the statistically rigorous communication-inspired design style of

ANT, a stochastic sensor network-on-a-chip [16] (SSNOC) uses robust esti-

mation techniques to tolerate errors induced by process variation and voltage

overscaling. Due to localized sources of variation, such as particle strikes,

thermal hotspots, and process variations, a single, centralized computation

resource may be vulnerable to static and dynamic non-idealities. To over-

come this vulnerability, an SSNOC architecture decomposes a centralized

computation resource into a network of statistically similar [16] sensors. Sta-

tistical similarity implies that although individual sensor reading may contain

errors, the average value of each sensor equals the expected value of the orig-

inal computation resource. To reduce implementation cost, the distributed

sensors are designed to have reduced complexity. The outputs of the sensors

are fused together by a fusion circuit block to produce the final output, using

principles of robust estimation theory.

Two sources of errors affect SSNOC computations – estimation errors due

to the reduced precision of the distributed sensors and errors induced by

process and dynamic variations. Although the mean value of the estimation

error is expected to be zero, the distribution of variation-induced errors is

unknown. Therefore, there is a random variation component in the final

output of the SSNOC.

The fusion block in an SSNOC architecture is responsible for combining

sensor outputs to produce the final output of the network, using robust esti-

mation. Depending on the type of computation being performed, the fusion

block may take on a different form. This brings to light some potential disad-

vantages of SSNOC. Namely, the computation must be decomposable into a
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distributed network of statistically similar sensors, and the fusion block used

to combine sensor data must be custom designed for each SSNOC. In cases

where an SSNOC implementation is possible, error detection probability can

be significantly improved, due to hardware replication and distribution.

Also following in the communication-inspired vein of ANT and SSNOC is

soft N-modular redundancy (NMR) [17]. Like traditional NMR, soft NMR

votes between redundant computations, but instead of a majority voter uses

a soft voter that employs data and error statistics along with detection theory

to determine the most likely correct output. Compared to conventional NMR,

soft NMR can significantly reduce system error probability and, in some

scenarios, may even be able to produce a correct output when all N redundant

computations have errors.

Another early work on application-specific stochastic computing focuses

on using relaxed-correctness devices to generate randomness in application-

specific circuits that require random inputs with certain probability distribu-

tions. Probabilistic CMOS (PCMOS) [18] attempts to exploit the stochastic-

ity of low-energy circuits as a source of randomness in inherently probabilistic

applications. PCMOS claims that an inverter operating close to the thermal

noise margin will act as a probabilistic bit, with a tunable probability of out-

putting a ‘1’ or a ‘0’. Since operating near the thermal noise margin requires

a much lower voltage than the nominal voltage, PCMOS logic can produce

“random” outputs with lower power consumption. Thus, an application that

uses random values should be able to save energy by generating the random

values with PCMOS logic.

PCMOS work proposes to create application-specific random value gener-

ators, aside from deterministic logic, such that there is a strict partitioning

between probabilistic and deterministic components in a PCMOS design.

Thus, the probabilistic logic acts as a co-processor that is polled whenever

the deterministic components require random values. Because of the strict

partitioning that is required, the PCMOS design style may only be suitable

for algorithms with well-defined probabilistic steps. Strict partitioning also

incurs costs for communication between the deterministic host and the prob-

abilistic co-processor. If the probabilistic step is critical to an application,

this communication link may become a bottleneck.

On another note, PCMOS design relies on high quality and controllability

of random values produced by probabilistic logic, since the values are inte-
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gral to application output quality. It should be noted that the efficiency of

PCMOS logic depends on the desired output probability distribution. Also,

supporting a wide range of probabilities degrades the efficiency of PCMOS.

Another strand of research extremely relevant to stochastic computing

takes advantage of the fact that not all applications or operating conditions

exercise the worst-case physical margins of a design. As such, for some ap-

plications and operating conditions, energy efficiency can be improved by

operating at a better-than-worst-case (BTWC) operating point where hard-

ware correctness is not guaranteed. Relaxing physical design margins and

targeting BTWC operation is called timing speculation (TS) [19, 6, 20, 21].

Typically, TS improves energy efficiency by either scaling up the operat-

ing frequency (frequency overscaling) or scaling down the operating voltage

(voltage overscaling). An overscaled design has higher performance or lower

power than its counterpart worst-case design. However, since the delay of

some paths may now be greater than the clock period under certain condi-

tions, timing violations can occur, when the correct output of a logic path

has not reached the path output in time to be captured in the output regis-

ter. To account for this occurrence, TS designs often include mechanisms to

prevent [22, 23, 24] or detect and correct [6, 19, 20, 21] errors. Since allowing,

tolerating, or correcting errors costs performance, power, or output quality,

the benefits achieved by TS designs depend on the error rate that overscaling

induces.

Razor is a circuit-level TS technique that detects and corrects any timing

errors that occur during BTWC operation. It detects timing violations by

supplementing critical flip-flops with a shadow latch that strobes the output

of a logic stage at a fixed delay after the main flip-flop. If a timing violation

occurs, the main flip-flop and shadow latch have different values, signaling the

need for correction. Error correction in Razor-based designs involves recovery

using the correct value(s) stored in the shadow latch(es). A pipeline restore

signal is generated by OR-ing together error signals of individual Razor flip-

flops. The signal overwrites the shadow latch data into the errant flip-flop.

Recovery mechanisms for Razor-based designs include the use of clock gating

and a counter-flow pipeline [25].

Another strand of research relevant to stochastic computing is the work on

testing techniques that have been proposed to increase chip yields for specific

applications based on the observation that some applications can perform
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acceptable computation even when some components of a chip do not work

perfectly. Intelligible testing identifies and addresses two potentially limiting

characteristics of conventional testing techniques. First, conventional testing

techniques classify all chips on a pass-fail basis. There is no range of gradation

between these two extremes. Second, conventional testing techniques do

not take application characteristics into account and thus cannot rate chips

based on how they function for specific target applications. Because classic

testing strategies create a strict dichotomy between defect-free and faulty

chips, a single hardware fault can cause a chip to be discarded, even if the

chip could work acceptably for some applications, regardless of the fault.

As we enter the multi-core era (and possibly the dark silicon era), it may

become increasingly likely that chips contain circuitry that is not used for

all applications. Consequently, scenarios in which faulty chips can function

acceptably may also become more prevalent.

For instance, some faults may not affect the behavior of all applications,

while other faults may only degrade performance or output quality without

causing application failures. If these degradations are tolerable, chips with

such faults can still be used. Intelligible testing increases yield by salvaging

chips in these two categories. Although these chips have faults, they are either

fault-free for some target applications or they have acceptable performance

and output quality for the target applications, despite the manifestation of

occasional faults.

One limitation of intelligible testing is that it increases test time and cost.

Normally, test time is restricted for economic reasons. However, the positive

effect on yield due to salvaged chips may be worth the extra testing cost,

especially as variability continues to increase with technology scaling.

2.3 Our Work

Application-specific stochastic computing techniques have demonstrated the

potential for significant energy benefits from exploiting error tolerance to al-

low careful relaxation of correctness. However, due to the application-specific

nature of error tolerance, benefits have been demonstrated for stochastic

computing largely in the context of application-specific circuits (ASICs). Ex-

tending stochastic computing to the context of general purpose processors
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presents several challenges. For instance, general purpose stochastic proces-

sors must adapt their hardware reliability to meet the reliability requirements

of different applications with different amounts of error tolerance, such that

the error tolerance of each application is exploited for maximum energy re-

duction. Such processors should be able to make graceful tradeoffs between

energy and reliability over a range of non-zero error rates. They should

efficiently provide support for applications with multiple phases that have

different reliability requirements. They should guarantee safe execution of

applications when errors are exposed from hardware to higher levels of the

compute stack. Processor hardware should be able to adapt to expose only

the number and nature of errors that can be tolerated for a given form of

software or hardware error tolerance. Adoption of general purpose stochastic

processors requires techniques for bolstering the robustness of several classes

of applications to increase the scope of applications that can achieve energy

benefits through stochastic computing and to increase the energy benefits

available to error-tolerant applications. Widespread adoption also requires

the development of automated tools for design and architecture of proces-

sors and applications that support a wide range of logic and applications

styles. This dissertation explores the feasibility, challenges, and potential

benefits of application-aware stochastic computing in the context of general

purpose programmable stochastic processors. Specifically, it explores design-,

architecture-, compiler-, and application-level optimizations for general pur-

pose programmable stochastic processors.
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CHAPTER 3

A PROGRAMMABLE STOCHASTIC

PROCESSOR

Future microprocessors will increasingly rely on an unreliable CMOS fabric

due to aggressive scaling of voltage and frequency and shrinking design mar-

gins. Fortunately, many emerging applications can tolerate computational

errors caused by unreliable hardware, at least during certain execution inter-

vals. In this chapter, we present an introductory example of programmable

stochastic processors – computing platforms for error-tolerant applications

that are able to scale gracefully according to performance demands and power

constraints while producing outputs that are, in the worst case, stochastically

correct. Scalability is achieved by exposing to the application layer multiple

functional units that differ in their architecture but share the same function-

ality. A mobile video encoding application presented here is able to achieve

the lowest power consumption at any bitrate demand by dynamically switch-

ing between functional unit architectures.

3.1 Introduction

The emergent ubiquitous computing paradigm promises new applications in

environmental monitoring, automation, and health care. For these new appli-

cations to be practical, the computing platform must offer high performance

while operating within a very limited power budget (often mW or even nW).

While technology scaling driven by Moore’s law has offered continued re-

duction in power consumption and size, recent projections from the ITRS

roadmap suggest that this scaling trend alone will not be sufficient to meet

the demands of these future applications [1].

Conventional dynamic voltage and frequency scaling techniques [26] are

I would like to acknowledge the contribution of Sriram Narayanan, who worked in
collaboration with me to create the mobile video communication application described in
this chapter.
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necessarily limited by the particular path delay characteristics of the un-

derlying architecture. In the present day design flow, architectural choices

for the various functional units (FUs) are made not with an intent to allow

voltage or frequency scaling but to minimize power and area for operation

at the nominal voltage and frequency. In traditional high-performance de-

signs, all timing paths are tuned to match the length of the critical path. An

implication of this design style is that when one timing path fails, a large

number of other timing paths fail, since all path lengths are bunched around

the critical path length [27]. This design style prevents effective deployment

of hardware-based error tolerance mechanisms [28], suggesting that compu-

tational platforms should be designed from the ground up to allow aggressive

scaling.

Fortunately, a large class of emerging applications can tolerate a small

number of timing errors in computations. Recent research efforts exploit in-

herent error-tolerance of some applications [29, 30]. While these approaches

have been shown to overcome hardware errors, they impose a nontrivial over-

head when error rates are low or zero. For instance, if there are execution

phases when the system demands the maximum reliability, then it is desirable

that the architecture scales to meet these demands.

With the above in mind, we propose programmable stochastic processors [31,

32, 33, 34], a computing platform for error-tolerant applications that is able

to scale gracefully according to performance demands and power constraints

while producing outputs that are, in the worst case, stochastically correct.

Our proposed architecture gains power savings by exposing to the application

multiple functionally equivalent units that exhibit several levels of reliability.

This processor scales to changing application demands and constraints by

dynamically switching between multiple functional units. We choose a video

encoding application as an example to showcase the benefits of this design.

3.2 Soft Architectures

Scalability can be achieved by replacing or supplementing traditional func-

tional units with gracefully degrading units. Such functional units may be

incorporated into present day systems at three broad design levels:

12



(a) Design D1 (b) Design D2

(c) Design D3

Figure 3.1: The scalable architecture introduces alternative functional units
at three levels. In (a), all the functional units of the core are replaced by
scaling friendly versions; (b) shows two different FU architectures that can
be selectively used; and (c) shows a reliability-defined heterogeneous
multi-core system.

D1. Fixed: In this design, the baseline architecture is modified by re-

placing one or more functional units with an alternatively designed functional

unit that is more conducive to voltage and frequency scaling. As shown in

Figure 3.1(a), the execution unit consists of voltage scaling-friendly blocks

(dotted lines) and is able to reduce computation accuracy gradually with

supply voltage. This design is suitable for applications that never demand

maximum reliability but impose a very limited power budget. This design

point represents the least change to existing instruction set architecture (ISA)

and programming models, but the ability to scale comes at the cost of com-

promising best power and performance when such scalability is not desired.

D2. FU selectable: In this design, the baseline processor is equipped

with two different functional unit architectures. The application may choose

to switch between the two functional units such that the overscaling range

is extended. The execution unit in Figure 3.1(b) contains two types of logic

blocks – traditional performance optimized version (solid lines) and an alter-

native design that is friendly to voltage scaling (dotted lines). This design

is suitable for applications that have time-varying power or performance de-

mands. We envision a modified ISA that allows the application layers to

choose particular functional units. Reliability requirements of applications

can be annotated in software, and these annotations can be used to select
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the appropriate functional unit for a program or program phase. The current

reliability target can be used to control the select lines of a MUX that routes

an instruction through the most power-efficient module. Since tuning a mod-

ule for a specific error rate requires voltage scaling, module switching incurs

overhead time for voltage scaling when the module must achieve different

reliability targets within the same program.

D3. Core selectable: This design consists of a multi-core system where

each core possesses a different architecture for the functional units. Fig-

ure 3.1(c) illustrates such a dual-core design along with a task-to-core sched-

uler that is responsible for assigning tasks according to their reliability re-

quirement. Unlike other multi-core designs such as [30], the scalable cores of

this design can dynamically be made error-free by adjusting the supply volt-

age or clock frequency. This design is suitable for applications that can be

decomposed into subcomputations that have different power or performance

demands. This design may include design D2 if each core has selectable FU

architectures. These cores may or may not share a common ISA. This design

is in contrast to systems such as [35] where error-prone cores are avoided or

healed; our system exploits them for power savings.

For a class of embedded applications that are data-dominated, it is com-

mon for the execution units to significantly contribute to the total power

dissipation. For an audio decoding benchmark in the Philips TM3270 media

processor [36], the execute module consumes around 0.255 mW/MHz out of a

total processor power consumption of 0.935 mW/MHz (a 27% contribution).

We restrict our power-reduction design techniques to this class of processors.

3.3 Functional Unit Architectures

To characterize their power and reliability characteristics, functional units

are synthesized in the IBM9SF 90 nm CMOS technology with Synopsys

DesignCompiler [37], and layout is performed in Cadence SoC Encounter [38].

To measure power and error rate across a range of voltages, we use voltage-

specific Synopsys Liberty (.lib) files prepared with Cadence SignalStorm [39].

To obtain an accurate characterization of module behavior, we perform gate-

level simulations using an input set of 180k random input samples.

As instances of different functional unit architectures, we consider the
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Figure 3.2: The KSA can be scaled to a much lower voltage before reaching
the critical point, but fails catastrophically afterward. Errors start to occur
for the RCA after the nominal voltage, but they only increase gradually as
voltage is scaled down.

Kogge-Stone adder (KSA), which is highly optimized and fails catastrophi-

cally with voltage overscaling, and the ripple-carry adder (RCA), which fails

gracefully but is much slower than the KSA. Figure 3.2 shows how the error

rate of each adder architecture varies as voltage is scaled down.

The KSA can be scaled to a much lower voltage (0.9 V compared to 1.2 V

for the RCA) before producing errors. However, once errors occur, the adder

fails catastrophically. On the other hand, the error rate of the RCA in-

creases gradually as voltage is scaled down. However, the onset of erroneous

behavior is much earlier than in the KSA so that a conservative voltage

must be chosen to guarantee fidelity of the output. Because of these fail-

ure characteristics, the functionally equivalent modules have very different

power-reliability characteristics. Figure 3.3 compares the power consumption

of the adders at different error rates.

For reliable operation (0% error rate), the KSA consumes 25% less power

than the RCA. This is because for the same frequency, voltage on the KSA

can be scaled down to save power, while scaling down voltage on the RCA

would cause timing errors. However, power-reliability tradeoffs are not possi-

ble for the KSA, since reducing voltage past the critical point causes massive

failure, so power consumption is the same for all error rates. While the
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Figure 3.3: The RCA allows power-reliability tradeoffs so that power is
reduced as error rate is allowed to increase. The KSA, on the other hand,
consumes less power for reliable operation, but does not allow
power-reliability tradeoffs.

RCA is less efficient when operating completely reliably, its gradual failure

characteristic allows reliability to be traded for power savings, making RCA

favorable for noisy environments. For all non-zero error rates, the RCA con-

sumes less power than the highly optimized KSA.

As the error rate increases, gate-level error-recovery mechanisms (e.g., [19])

that exploit gracefully degrading architectures suffer recovery overhead that

dominates power savings achieved through voltage scaling. The trend in

Figure 3.4 suggests that gate-level techniques that seek to correct every in-

stance of hardware errors may be inefficient in comparison with system-level

approaches that do not correct every error instance and allow some errors

to be masked. An architecture that allows instructions to be routed to the

optimal module for a given system-level error rate can achieve benefits over

a static module selection.

3.4 Error-Tolerant Applications

The stochastic processor architecture described above targets aggressive power

reduction for a class of error-tolerant applications, i.e., applications that can
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Figure 3.4: Razor error recovery can provide some power savings for
gracefully failing designs (RCA) after the point of first error. However,
these benefits are limited, since only a small number of errors can be
gainfully tolerated before recovery overhead outweighs voltage scaling
power reduction. Note that the quantity on the x-axis is the error rate prior
to recovery.

operate with a priori known reliability requirements. The reliability require-

ment may change with time and execution phases within the application.

Multimedia applications are typical examples of error-tolerant applications.

Here, the input (such as a feed from a camera or a microphone) is already

contaminated by measurement noise. Since these applications are increas-

ingly implemented on fixed-point mobile platforms, quantization poses an-

other source of noise. Furthermore, the outputs in these applications need

only meet the fidelity discernible by human sensory acuity. Programmable

stochastic processor architectures can offer significant power and/or through-

put gains to these applications, if we treat computational errors as a new

source of noise.

As a particular example, we showcase the advantages of a stochastic pro-

cessor architecture for the popular H.264 video encoding application. The

high compression efficiency of this new video encoding standard has enabled

exciting applications in wireless video communication and is increasingly im-

plemented on battery-constrained mobile devices. An important subsystem

of the video encoder, motion estimation, is often reported as contributing

around 40% to 50% of the total encoder power consumption on ASIC imple-

mentations [40]. The main computational kernel of the motion estimation
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engine is the sum of absolute difference (SAD) that computes |A−B| for two

inputs A and B. We seek to gain power savings through voltage overscal-

ing while allowing any resulting timing errors. A computational error in the

motion estimation engine simply results in poorer encoding efficiency (i.e.,

a larger bitrate). Such errors could result in non-zero motion vectors even

if the current and reference frames are identical (i.e., there was no motion

in the video sequence), which would adversely impact the power overhead

of wireless communication. Consequently, during periods of relative inactiv-

ity in the input video sequence or favorable wireless channel conditions, the

motion estimation block may contain some slack that can be exploited for

power reduction. Since models describing wireless communication overhead

are beyond the scope of this chapter, we will use the bitrate as a measure

of performance. By controlling the occurrence of timing errors in motion

estimation, a stochastic processor can trade bitrate for power reduction. But

for this approach to work, the bitrate must worsen gradually with scaling

supply voltage or clock frequency.

To study the impact of voltage overscaling on compression efficiency of

the H.264 video encoder, we used a PC implementation of the JM reference

software [41]. The experimental setup described in Section 3.3 was used to

obtain the probabilities of bit error for a 16-bit word length. This probability

model was used to inject errors into the motion estimation block of the JM

reference software. Similar probabilistic models for bit errors caused due to

voltage overscaling have also been developed by other researchers [42].

We used three frames of a quarter common intermediate format (QCIF)

video source in 4:2:0 YUV format as our input. If there is demand for the

lowest achievable bitrate, the application chooses the KSA and is able to

consume around 20% less power (when compared with the lowest power

option for the RSA that offers this best bitrate). If the application is able

to tolerate some worsening of the bitrate, then it switches to the RCA. A

small increase in bitrate of around 12 kbits/s (i.e., a 1.2% loss) is able to

reduce the power consumption by around 60%. The stochastic processor

architecture that is able to switch between the FU architectures at runtime

is able to maintain optimal power consumption at all levels of bitrate demand,

as shown in Figure 3.5.

As an example implementation, consider design D2. The stochastic proces-

sor will receive input from the wireless subsystem (responsible for packetizing
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Figure 3.5: The RCA is able to significantly lower the power consumed (per
adder) without compromising bitrate of the output. But the KSA is able to
offer around 20% lower power consumption when no bitrate degradation
can be allowed.

and communicating encoded video data) regarding the quality of the com-

munication channel. Under adverse channel quality conditions, the processor

will use the KSA adders by issuing the correspondingly annotated instruc-

tions. Under more favorable channel conditions, it will issue the instructions

annotated to use the RCA adders. The processor will then proceed to lower

the supply voltage according to channel information received from the wire-

less subsystem. By constantly adapting the issued instructions to changing

wireless channel quality, this stochastic processor architecture maintains low-

est possible power consumption.

3.5 Summary

Many emerging applications can tolerate occasional computational errors, at

least during some execution phases. The stochastic processor architectures

presented in this chapter expose multiple alternative functional units to the

application and thereby allow more favorable voltage-reliability tradeoffs over

a wide range of voltages. This scalability affords 20% to 60% power savings

in the motion estimation block of a mobile video communication application.
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CHAPTER 4

DESIGN-LEVEL OPTIMIZATION OF

PROGRAMMABLE STOCHASTIC

PROCESSORS

The example processor in the previous chapter served to introduce the con-

cept and potential benefits of programmable stochastic processors. However,

the example was limited in that only a specific class of error-tolerant appli-

cations was targeted, and energy-reliability tradeoffs were performed only by

routing instructions to different functional units. Subsequent chapters will

discuss design-, architecture-, compiler-, and application-level optimization

approaches for general purpose programmable stochastic processors. This

chapter discusses design-level optimizations that minimize the energy of a

processor for a non-zero error rate or allow a processor to make smooth

energy-reliability tradeoffs over a range of non-zero error rates.

Conventional CAD methodologies optimize a processor module for correct

operation and prohibit timing violations during nominal operation. We pro-

pose recovery-driven design, a design approach that optimizes a processor

module for a target timing error rate instead of correct operation. The tar-

get error rate is chosen based on how many errors can be gainfully tolerated

by a hardware or software error resilience mechanism. We show that signifi-

cant power benefits are possible from a recovery-driven design approach that

deliberately allows errors caused by voltage overscaling ([15],[19]) to occur

during nominal operation, while relying on an error resilience technique to

tolerate these errors. We present a detailed evaluation and analysis of such a

CAD methodology that minimizes the power of a processor module for a tar-

get error rate. We show how this design-level methodology can be extended

to design recovery-driven processors – processors that are optimized to take

advantage of hardware or software error resilience. We also discuss a grad-

ual slack recovery-driven design approach that optimizes for a range of error

rates to create soft processors – processors that have graceful failure charac-

I would like to acknowledge the contribution of Seokhyeong Kang, who worked in
collaboration with me to develop the CAD flows described in this chapter.
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teristics and the ability to trade throughput or output quality for additional

energy savings over a range of error rates. We demonstrate significant power

benefits over conventional design – 11.8% on average over all modules and

error rate targets, and up to 29.1% for individual modules. Processor-level

benefits were 19.0%, on average. Benefits increase when recovery-driven de-

sign is coupled with an error resilience mechanism or when the number of

available voltage domains increases.

4.1 Introduction

Conventional hardware is designed and optimized using techniques that aim

to ensure correct operation of the hardware under different conditions. Con-

servative design techniques are aimed at ensuring correct hardware operation

under worst-case conditions. Better-than-worst-case design techniques [43]

save power by eliminating guardbands, but are still aimed at ensuring correct

hardware operation under nominal conditions.

In this research, we ask the following question: Should the availability of an

error resilience mechanism change the way we approach hardware design and

optimization? That is, given that mechanisms exist to tolerate hardware er-

rors, should hardware continue to be designed for correct operation or should

it be optimized for a target error rate even during nominal operation? To

address this question, we propose and evaluate a novel approach to hardware

design, called recovery-driven design. Rather than optimizing for correct op-

eration, a recovery-driven design deliberately allows timing errors ([15],[19])

to occur during nominal operation, while relying on an error resilience mech-

anism to tolerate these errors. In other words, a recovery-driven design

optimizes a circuit for a non-zero target error rate that can be gainfully

tolerated by hardware [19] or software-based [15] error resilience. The expec-

tation behind recovery-driven design is that the “underdesigned” hardware

will have significantly lower power or higher performance than hardware op-

timized for correct operation. Also, because errors are now allowed, the

design methodology can exploit workload-specific information (e.g, activity

of timing paths, architecture-level criticality of timing errors, etc.) to further

maximize the power and performance benefits of underdesign.

In this chapter, we show that optimizing power for a target timing error
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rate for voltage overscaling-induced errors indeed results in significant power

savings for similar levels of performance. We show that this is true when er-

rors are detected and corrected by a hardware error tolerance mechanism [19]

or allowed to propagate to an error-tolerant application [18] where the errors

manifest themselves as reduced performance or output quality [15]. Increas-

ing the target error rate for a processor module increases the potential for

power savings, since the module can be operated at a lower voltage. In prac-

tice, the target error rate is chosen such that an error recovery mechanism

can correct the resulting errors and still reduce energy (after considering the

error recovery overhead) for an acceptable degradation in performance or

output quality. The power benefits of exploiting error resilience are maxi-

mized by redistributing timing slack from paths that cause very few errors to

frequently exercised paths that have the potential to cause many errors. This

reduces the error rate at a given voltage, and hence reduces the minimum

supply voltage and power for a target error rate.

This chapter presents a detailed evaluation and analysis of a recovery-

driven design methodology that minimizes the power of a processor module

for a target error rate by performing slack redistribution. Our cell sizing-

based design-level methodology has been extended to create recovery-driven

processors that are optimized for different target error rates or error resilience

mechanisms. Since some error resilience mechanisms (e.g., error-tolerant

applications) require adaptation to multiple reliability targets, we have also

extended our recovery-driven design approach to create gradual slack designs

– designs that are optimized not for a single error rate, but instead, for a

range of error rates. Such gradual slack designs (or soft processors) have the

ability to trade performance or output quality for energy savings over a range

of reliability targets. We make the following contributions in this chapter.

• To the best of our knowledge, we present the first design flow for power

minimization that deliberately allows errors under nominal conditions.

We demonstrate that such a design flow can result in power savings of

11.8%, on average over all modules and error rate targets, and up to

29.1% for individual modules.

• We explore the heuristic choices and tradeoffs that are fundamental to

the optimization quality of slack redistribution-based, recovery-driven
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designs. We evaluate choices for path priority and traversal during opti-

mization, optimization radius, accuracy of path selection, error budget

utilization, starting netlist, voltage step size granularity, and iterative

optimization in terms of their effects on the optimization result, heuris-

tic runtime, and sensitivity to target error rate.

• To support the proposed recovery-driven design flow, we present a fast

and accurate technique for post-layout activity and error rate estima-

tion. We use collected functional information to redistribute slack effi-

ciently in a circuit and significantly extend the range of voltage scaling

for a target error rate.

• We extend our recovery-driven design methodology to create recovery-

driven processors (processors that are optimized for different target er-

ror rates or error recovery mechanisms) and soft processors (processors

that are optimized for efficiency over a range of target error rates). We

demonstrate the power and energy benefits of such processor designs.

• We demonstrate that the power benefits of recovery-driven processors

and soft processors increase when a hardware or software-based error

resilience mechanism is used. We consider Razor [19] and application-

level noise tolerance [44] as examples and show additional energy reduc-

tions of 19% and 20% with respect to the best correctness-optimized

processors that exploit the same error resilience mechanisms.

4.1.1 Understanding How Slack and Activity Distributions

Determine Error Rate

Before exploring how design-level optimizations affect the efficiency of pro-

grammable stochastic processors, we first provide details about our fault

model and how slack and activity determine the error rate. The extent of

energy benefits gained from exploiting timing error resilience depends on the

error rate of a processor. In the context of voltage overscaling-based timing

speculation, for example, benefits depend on how the error rate changes as

voltage decreases. Likewise, in the context of frequency overscaling, benefits

depend on how the error rate changes as frequency increases. If the error
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rate increases steeply, only meager benefits are possible [32]. If the error rate

increases gradually, greater benefits are possible. In this dissertation, voltage

overscaling-based timing speculation is used as a proxy for variation-induced

errors. Nonetheless, conclusions should be applicable for other sources of

timing variation as well. Note that voltage overscaling may affect reliability

in other contexts (e.g., susceptibility to soft errors); however, energy effi-

ciency analysis that considers reliability in other contexts is left as a subject

of future work.

The timing error rate of a processor in the context of voltage overscal-

ing depends on the timing slack and activity distributions of the paths of

the processor. Figure 4.1 shows an example slack distribution. The slack

distribution is a histogram that shows the number of paths in a design at

each value of timing slack. As voltage scales down, path delay increases,

and path slack decreases. The slack distribution shows how many paths can

potentially cause errors because they have negative slack (shaded region).

Negative slack means that path delay is longer than the clock period.

From the slack distribution, it is clear which paths can cause errors (timing

violations) at a given voltage and frequency. In order to determine the error

rate of a processor, however, the activity of the negative slack paths must

be known. A negative slack path causes a timing error when it toggles.

Therefore, knowing the cardinality of the set of cycles in which any negative

slack path toggles reveals the number of cycles in which a timing error occurs.

For example, consider the circuit in Figure 4.2 consisting of two timing

paths. P1 toggles in cycles 2 and 4, and P2 toggles in cycles 4 and 7. At

voltage V1, P1 is at critical slack, and P2 has 3 ns of timing slack. Scaling

down the voltage to V2 causes P1 to have negative slack. Since P1 toggles in

2 of 10 cycles, the error rate of the circuit is 20%. At V3, the negative slack

paths (now P1 and P2) toggle in 3 of 10 cycles (cycles 2,4,7), and the error

rate is 30%.
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Figure 4.1: Voltage scaling shifts the point of critical slack. Paths in the
shaded region have negative slack and cause errors when toggled.
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Figure 4.2: Slack and activity distributions determine the error rate.

25



Figure 4.3: Our recovery-driven design optimization redistributes slack from
infrequently exercised paths to frequently exercised paths and performs cell
downsizing for average-case conditions. These optimizations reduce the
power consumption of a circuit and extend the range that voltage can be
scaled before a target error rate is exceeded. The combination of these
factors produces a design with significantly reduced power consumption.

4.2 Heuristic Design

4.2.1 Motivation

The goal of recovery-driven design in context of voltage overscaling can be

stated formally as follows. Given an initial netlist N0, a set of cell libraries

characterized for allowable operating voltages, toggle rates for the toggled

paths in the netlist, and a target error rate ERtarget, produce the optimized

netlist NVopt
and operating voltage Vopt that minimize the total power con-

sumption WVopt
of the circuit, such that the error rate of the optimized netlist

does not exceed ERtarget. Figure 4.3 demonstrates the goal.

In this chapter, we present a cell sizing-based design methodology that

relies on efficient redistribution of timing slack from infrequently exercised

critical paths to frequently exercised paths to reduce the error rate at a given

voltage, allowing a reduction in voltage for a given target error rate.
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Figure 4.4: The power minimization heuristic reshapes the path slack
distribution by redistributing slack from paths that rarely toggle to paths
that toggle frequently.

4.2.2 An Abstract Heuristic for Power Minimization

Our heuristic for slack redistribution-based power minimization uses a two-

pronged approach – extended voltage scaling through cell upsizing on critical

and frequently exercised circuit paths (OptimizePaths), and leakage power

reduction achieved by downsizing cells in non-critical and infrequently exer-

cised paths (ReducePower). The heuristic searches for the combination of

the two techniques that results in the lowest total power consumption for the

circuit, by performing path optimization and power reduction at each volt-

age step and then choosing the operating power at which minimum power is

observed.

Figure 4.4 illustrates the evolution of the circuit path slack distribution

throughout the stages of the power minimization procedure. Each iteration

begins as voltage is scaled down by one step (a). After partitioning the

paths into sets containing positive and negative slack paths, OptimizePaths

attempts to reduce the error rate by increasing timing slack on negative slack

paths (b). Next, the heuristic allocates the error rate budget by selecting

paths to be added to the set of negative slack paths, and downsizes cells to

achieve area and power reduction (c). This cycle is repeated over the range

of voltages to find the minimum power netlist and corresponding voltage (d).
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Figure 4.5: Algorithmic flow of a heuristic for minimizing power for a target
error rate. Pa is the set of all paths toggled during simulation. Pp is the set
of all non-negative slack paths. Pn is the set of all negative slack paths in
Pa. χtoggle(p) is the set of cycles in which path p is toggled.
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In Figure 4.4, P+ is a set of paths that must have non-negative slack after

power reduction, and P− is a set of paths that are allowed to have negative

slack. We ensure positive slack for P+ paths by characterizing timing with

worst-case libraries.

Figure 4.5 presents the algorithmic flow of our power minimization heuris-

tic, which couples path optimization to extend the range of voltage scal-

ing (OptimizePaths) with area minimization to achieve power reduction

(ReducePower).

4.2.3 Heuristic Procedures

Path Optimization. The goal of the path optimization procedure

(OptimizePaths) presented in Algorithm 1 is to minimize the error rate

at a voltage level by transforming negative slack paths into non-negative

slack paths. This is accomplished by performing cell swaps within the nega-

tive slack paths to increase path slack. Negative slack paths with maximum

toggle rates are selected first during optimization, since they have the most

potential to reduce the error rate if converted into non-negative slack paths.

When a path is targeted for optimization, cell swaps are attempted on

all cells in the path to increase slack as much as possible until non-negative

path slack is achieved.1 Once a cell has been visited during optimization,

it is marked to prevent degradation of timing slack on any path that the

cell is on. Before accepting a cell swap, path slack is checked for all paths

that the cell or any visited fanin or fanout cell is on. If the swap caused a

decrease in slack for any such path, the move is rejected, and the original

cell is restored. Previously optimized (visited) fanin and fanout cells are

protected from slack decrease because they belong to paths that have higher

toggle rates and, thus, higher priority of optimization. If cell swaps on a path

fail to shift the path back into the set of non-negative slack paths, then the

path is ignored during subsequent iterations of path optimization.

Any cell swap that increases the error rate (by causing a path to switch

from the set of non-negative slack paths to the set of paths allowed to have

negative slack) is rejected. Otherwise, we recompute the sensitivity of the

swapped cell and all cells in its fanin and fanout networks and select the next

1We consider only setup timing slack, since hold violations can typically be fixed by
inserting hold buffers in a later step.
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cell for downsizing.

Power Reduction. After path optimization, the error rate of the circuit

is minimized at the present voltage. From this state, we proceed to mini-

mize the power at the present voltage by utilizing the available error rate

budget. Algorithm 1 (ReducePower) describes our power reduction proce-

dure. The goal of the power reduction heuristic is to efficiently allocate the

remaining error budget to infrequently exercised paths in order to maximize

power reduction achieved by cell downsizing. Typically, cells on P− paths

can exploit additional downsizing, because these paths are not bound by the

normal timing constraint of the circuit.

The first step in power reduction is to choose additional paths to become

negative slack paths until the target error rate of the circuit is matched.

Paths are selected in order to minimize the additional contribution to the

error rate of the circuit. After defining the partition between negative and

non-negative slack paths, cell downsizing is performed for all cells in the

circuit in order of minimum sensitivity. We define the sensitivity of a cell in

Equation 4.1 as the change in cell slack (∆sc) divided by the change in cell

power (∆wc) when the cell c is downsized by one size. The slack of cell c

is defined as the minimum slack on any timing arc containing c. The power

of cell c is the sum of static power (wstat(c)) and dynamic power (wdyn(c))

for the cell. This formulation of sensitivity is similar to those proposed by

previous works targeting leakage power reduction [45, 46].

Sensitivity(c) =
sc − sc′

wc − wc′
, where wc = wstat(c) + wdyn(c) (4.1)

4.2.4 Path Extraction and Error Rate Estimation

Path Extraction. Our heuristic has many path-based procedures –

OptimizePaths, ReducePower, and ComputeErrorRate – and it is impractical

to consider all of the topological paths in these procedures. Therefore, we

reduce the number of paths that we consider by extracting only paths toggled

during functional simulation. The value change dump (VCD) file can be

used to extract toggled paths. To produce a VCD file, we perform gate-

level simulation with Cadence NC-Verilog [47] at a frequency slow enough to
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Algorithm 1 Pseudocode (OptimizePaths, ReducePower).
Procedure OptimizePaths(P, NVi

, Vi)

1. Clear ‘visited’ mark in all cells in the netlist NVi
;

2. while P 6= ∅ do

3. Select path p from P with maximum toggle rate;
4. for each cell c in path p do

5. if c.visited == true then continue;
6. c.visited← true;
7. for each logically equivalent cell m for the cell instance c do

8. Resize cell c with logically equivalent cell m;
9. Q← c ∪ visited fanin and fanout cells of c;

10. for each path q in P that contains a cell in Q do

11. if ∆slack(q, c, m, Vi) < 0 then restore cell change;
12. end for

13. end for

14. end for

15. P ← P − p;
16. end while

Procedure ReducePower(Pp, Pn, NVi
, Vi, ERtarget)

1. P+ ← Pp and P− ← Pn;
2. while P+ 6= ∅ do

3. Select path p from P+ with minimum ∆ER(p);
4. ER← ComputeErrorRate(P− + p);
5. if ER ≤ ERtarget then

6. P− ← P− + p; P+ ← P+ − p;
7. else

8. break;
9. end if

10. end while

11. Insert all downsizable cells into set C;
12. ComputeSensitivity(C, NVi

, Vi,−1);
13. while C 6= ∅ do

14. Downsize cell c from C with minimum Sensitivity(c);
15. Q← c ∪ fanin and fanout cells of c;
16. for each path p in P+ that contains a cell in Q do

17. if slack(p, Vi) < 0 then

18. Restore cell change;
19. C ← C − c;
20. continue while loop;
21. end if

22. end for

23. ComputeSensitivity(Q, NVi
, Vi,−1);

24. if cell c is not downsizable then

25. C ← C − c;
26. end if

27. end while
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Figure 4.6: VCD file format and path extraction.

capture all possible signal transitions. Figure 4.6 shows an example VCD file

and the path extraction method. The VCD file contains a list of toggled nets

corresponding to each time at which a transition occurs, as well as their new

values. We can use this information to extract toggled paths in each cycle.

Nets that glitched or toggled in each cycle are marked, and these nets are

traversed to find toggled paths. We detect a toggled path when toggled nets

compose a connected path of toggled cells from a primary input or flip-flop

input to a primary output or flip-flop output. In Figure 4.6, nets a, x, and

y have toggled in the first and third cycles (#1, #3), and nets b and y have

toggled in the second and fourth cycles (#2, #4). We extract two paths:

a− x− y and b− y.

Toggle Rate and Error Rate Estimation. In order to accurately

minimize power for a target error rate, we must be able to produce accurate

estimates for error rate during our optimization flow. Thus, we propose a

novel approach to error rate estimation that enables design for a target error

rate.

We calculate the toggle rate of an extracted path using the number of

cycles in which the path toggles. χtoggle(p) represents the set of cycles in

which path p has toggled during the simulation. TR(p) represents the toggle

rate of path p and is defined as:

TR(p) =
|χtoggle(p)|

Xtot

(4.2)

where |χtoggle(p)| is the number of cycles in which path p has toggled, and

Xtot is the total number of cycles in the simulation. Using the toggled cycle
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information of negative slack paths, we can calculate the error rate precisely.

The error rate (ER) of the design is calculated as:

ER =
|
⋃

p∈Pn
χtoggle(p)|

Xtot

(4.3)

where Pn is the set of negative slack paths in the set of all toggled paths.

In Figure 4.6, if paths a − x − y and b − y both have a toggle rate of 0.4

(number of toggled cycles is 2 and number of total cycles is 5), and if path

a− x− y has negative slack, then timing errors will occur in cycles #1 and

#3. Therefore, the error rate is 0.4 for this example

Our novel technique for error rate estimation has proven to be much faster

than functional simulation and more accurate than previous estimation tech-

niques. Results comparing our VCD-based technique to functional simulation

and previous estimation approaches can be found in [48].

4.2.5 Heuristic Design Choices

In this section, we discuss heuristic design choices.

Experiment 1: Path Ordering During Optimization. The order in

which we select paths for optimization affects the optimization result, since

we prevent cells from being visited multiple times during optimization. The

order also matters because we protect previously optimized paths from slack

degradation due to other attempted cell swaps, as previously optimized paths

have a higher optimization priority. We evaluate two prioritization functions

for path selection during optimization. The first ranks paths in order of

decreasing toggle rate (TR(p)). Paths with the highest toggle rates have

the greatest potential to decrease error rate when optimized. We compare

against a function that ranks paths in order of decreasing TR(p)/|slack(p)|.

In this alternative, we prefer paths with smaller negative slack, since the least

effort is required to convert these paths into non-negative slack paths.

Experiment 2: Optimization Radius. The goal of optimization is to

maximize the slack of a targeted path through cell swaps. We evaluate two

alternatives for the radius of optimization. In one case, we only swap cells

on the target path. In the second case, we target both the cells on the path

as well as cells in their fanin and fanout networks, since swaps in the fanin
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and fanout networks can also affect cell slack.

Experiment 3: Path Traversal During Optimization. When opti-

mizing a path, the order in which cells are visited can have an effect on the

optimization result, since cell swaps affect input slew and output load. We

consider two options – traversal from front to back and from back to front.

We iterate over the cells in a path and make swaps until there is no further

increase in the path slack.

Experiment 4: Accuracy of Path Selection During Power Reduc-

tion. During power reduction, non-negative slack paths are selected to

be added to the set of paths allowed to have negative slack, thus utilizing

the available error rate budget. Paths are prioritized in order of increasing

incremental contribution to error rate, ∆ER(p). However, after moving a

path from P+ to P−, ∆ER(p) can change for paths that shared error cycles

with the moved path.

To obtain precise ordering in terms of error rate contribution, we can up-

date ∆ER(p) after each path selection. However, this introduces a runtime

overhead, since we must continuously update ∆ER(p) for all remaining P+

paths. We compare such precise prioritization against the alternative case

where ∆ER(p) is calculated only once for all P+ paths before path partition-

ing.

Experiment 5: Error Rate Budget Utilization. During power reduc-

tion, the final error rate after cell downsizing could be less than the target

error rate, ERtarget, since some paths in P− might still have non-negative

slack, even after maximum downsizing on the path cells. In this case, we

might continue to reduce the power of the design by selecting more paths to

add to P− and downsizing cells again. We evaluate two cases – one where a

single pass is performed for path selection and cell downsizing, and one where

the ReducePower procedure is repeated until there is no further reduction in

power (i.e., repeat ReducePower whenever some paths added to P− still have

non-negative slack after cell downsizing).

Experiment 6: Starting Netlist. Here, we evaluate heuristic per-

formance for different starting netlists corresponding to loose (clock period

increased by 10%) and tight (reduced by 40%) timing constraints. This can

significantly affect the final voltage reached, the dependence on engineering
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change order (ECO), and the amount of power savings afforded by the power

minimization algorithm.

Experiment 7: Voltage Step Size. In each iteration of the power

minimization heuristic, we step down the voltage by a value Vstep and run

the OptimizePaths and ReducePower procedures to produce a netlist for the

present level of voltage scaling. The size of Vstep can influence the optimiza-

tion result and runtime of the heuristic. Thus, we compare two values of Vstep

– 0.01 V and 0.05 V – and compare the characteristics of the final netlist as

well as the heuristic runtime.

Experiment 8: Iterative Optimization. In each iteration of the

heuristic, we perform optimization of negative slack paths at that voltage

level. During the next iteration, we have a choice between starting from the

previously optimized netlist (NVi−1
) or the original netlist (N0). We compare

the netlists produced in each case to see if they have similar power and

runtime characteristics.

4.2.6 Gradual Slack Design

We extend our design methodology to implement another form of recovery-

driven design called gradual slack design [33], which reshapes the slack dis-

tribution of a processor to create a gradual failure characteristic, rather than

the typical critical wall. While error rate-optimized, recovery-driven designs

achieve better energy efficiency at a single target error rate, gradual slack

designs have the ability to trade reliability, throughput, or output quality for

energy savings over a range of error rates. Figure 4.7 shows the optimization

approach for gradual slack design.

To achieve a gradual slack distribution with our recovery-driven design

flow, we do not optimize for a single target error rate by selecting P− paths.

Instead, we select the maximum target error rate corresponding to the desired

range of scalability, and optimize only the negative slack paths in the scaling

range with the highest switching activity, in order to maximize the range

of voltage scalability for the target range of error rates. We downsize only

cells that have negligible activity so that the slack distribution for the active

paths and the error rate of the processor are not affected. In this way, we

maintain the desired gradual sloping slack distribution rather than create

35



Figure 4.7: The goal of the ‘gradual slope’ slack optimization is to
transform a slack distribution having a critical ‘wall’ into one with a more
gradual failure characteristic. This allows performance-power tradeoffs over
a range of error rates.

a critical wall distribution with a cluster of active paths in the permanent

negative slack region.

4.2.7 Processor Power Reduction

Algorithm 2 gives a heuristic for minimizing the power of a processor core

for a target error rate. The first step of the above power-minimization heuris-

tic involves characterizing the modules of the processor core in terms of their

power consumption at different error rate and voltage targets. These data

are provided by PowerOptimizer and are used to select the optimal oper-

ating voltage(s) for the processor core, as well as the error rate targets to

assign to the processor modules.

The next step in the processor-level heuristic is to use the data from

PowerOptimizer to solve an optimization problem. The optimization objec-

tive is to minimize the power of the processor core subject to the constraint

that the processor error rate must be less than the chosen target rate. Us-

ing the data from PowerOptimizer, we can formulate expressions for the

power and error rate of the processor core in terms of the module error rates

and the operating voltage. Thus, the goal of the optimization problem for a

particular voltage is to find the assignment of error rate targets to modules
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Algorithm 2 Processor-Level Design Heuristic.

Procedure OptimizeProcessor(ERtarget, MODULES, DOMAINS)

1. for each module m in the optimization list of MODULES do

2. for each error rate ER < ERtarget do

3. PowerOptimizer(N(m), ER);
4. end for

5. Use the results from PowerOptimizer to characterize Pm(V, ER)
6. end for

7. for each voltage V ∈ Vrange do

8. Minimize Pcore(V ) = Σ(Pm(V, ER)) s.t. ERcore(ERmodule1
, ..., ERmoduleM

) ≤
ERtarget

9. Record minimum power Pmin
core (V ) and module error rate assignment S(V ) =

[ERmodule1
, ..., ERmoduleM

]
10. end for

11. Select the voltage Vopt at which power Pmin
core is minimized

12. Let V ∗(S(V )[m]) be the voltage that minimizes power for module m at ER = S(V )[m]
13. Locate the DOMAINS neighbors {V1, ..., VDOMAINS} nearest to the set of voltages

V ∗(S(Vopt))
14. Assign each module m to the voltage domain VD[m] ∈ {V1, ..., VDOMAINS} that min-

imizes power Pm(VD[m], S(Vopt)[m])
15. Layout the processor, selecting for each module m ∈ MODULES the netlist

N(m, VD[m], S(Vopt)[m]);

that satisfies the optimization objective. We use a disjunctively constrained

knapsack-based [49] approach to solve the optimization problem. The knap-

sack solver selects the voltage and error rate assignment for which the power

of the processor core is minimized and uses the selected error rate-optimized

netlist of each module to lay out the processor.

For multiple voltage domain designs (DOMAINS > 1), the heuristic

selects the voltage level of each domain and the partitioning of modules to

voltage domains to minimize core power. This process involves first selecting

the error rate targets for the modules based on a minimum-power global

assignment, then selecting the levels for the voltage domains and module-to-

level assignments such that the power of the modules is minimized. The latter

step is performed using a nearest neighbor search to identify the neighbors

nearest to the set of optimal module voltages corresponding to the module

error rate assignments in the space of voltages.
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4.3 Recovery-Driven Processors

The proposed design methodology enables recovery-driven processors – pro-

cessors that are optimized to deliberately produce timing errors at a rate that

can be gainfully tolerated by an error recovery mechanism. Below, we de-

scribe two recovery-driven processor designs – one targeting hardware-based

error resilience and another targeting software-based error resilience.

Case Study: Circuit-Level Timing Speculation. One popular

hardware-based scheme for error detection and correction is circuit-level tim-

ing speculation [19, 50]. Circuit-level timing speculation-based techniques

detect errors by sampling the same computation twice – once using the reg-

ular clock and again using a delayed clock. The two outputs are compared.

When the outputs do not match, an error is signaled. Correction involves

treating the delayed clock output as the correct output. Razor [19] and error

detection sequential (EDS) circuits [50] provide good examples of circuit-level

timing speculation.

A recovery-driven processor design targeted for Razor takes into account

the frequency of errors that can be gainfully tolerated by Razor (determined

by the dynamic error recovery overhead) as well as the number of latches in

which an error may occur (which determines the cost of making the circuit

robust to errors). For the design-level heuristic, this means that when we

define the partition between paths that are allowed have errors (P−) and

paths that are error-free (P+), we must consider the error rate contribution of

each path, which adds to the dynamic recovery overhead of Razor. We must

also account for the cost of using a Razor FF at the endpoint of any path that

may potentially cause a timing error, and of buffering for any short paths

terminating at that endpoint. If downsizing a path during ReducePower

requires that we must replace a regular FF with a Razor FF, then we should

ensure that the energy benefit (in terms of power reduction for additional cell

downsizing) outweighs the additional cost of the Razor FF and any short-

path hold buffering. Since Razor assumes a maximum delay constraint on

all paths [51], in addition to checking P+ paths for negative slack (line 16

of ReducePower) we must also ensure that all P− paths respect the delay

constraint after a downsizing move.

Case Study: Application Noise Tolerance. Error-tolerant applica-
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tions [44] represent an opportunity to save power and increase performance

by allowing errors to propagate to the application level rather than expend-

ing power to detect and correct them at the hardware level. For several such

applications, data errors simply result in reduced output quality, instead of

program failure.

Designing a recovery-driven processor for error-tolerant applications re-

quires several considerations. First, the set of processor modules is parti-

tioned into two subsets – one containing modules that produce errors that

the applications can tolerate and another containing modules that should

not allow errors to propagate to the application level. For the class of error-

tolerant applications that we consider in this chapter, errors in the arithmetic

units (i.e., ALU, FPU) can be tolerated. For this class of applications (which

relies heavily on numerical computation), the arithmetic units account for

approximately 35% of the dynamic power consumption of the processor.

In addition to the list of modules to optimize, the OptimizeProcessor

procedure requires a target error rate. The error rate is chosen such that all

applications in the class have acceptable quality for the target error rate.

For the modules that produce errors that the application cannot toler-

ate, one of two approaches can be followed. One option is to operate those

modules on the same voltage rail as the modules in which faults are allowed

(single-rail design). In this case, we feed these modules to the optimization

heuristic targeting some hardware recovery mechanism that guarantees cor-

rectness, such as Razor. The two groups must agree on a common voltage

that minimizes power consumption for the entire processor, and the optimal

voltage reported by the optimization heuristic can be used as a constraint

for the second optimization. Alternatively, the two groups can operate in

separate voltage domains (dual-rail design), in which case each optimization

can select a different optimal voltage.

Soft processor design can also be used to adapt the reliability of the pro-

cessor for reliability-diverse workloads, with more power savings available as

the error rate target decreases. To create a soft processor design, the gradual

slack module-level heuristic is used, and the optimal voltage and error rate

targets of the modules are chosen based on the range of error rate targets

that the processor should support.
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4.4 Methodology

Our methodology for demonstrating the benefits of recovery-driven design

has two parts – a design-level methodology to characterize the power and

reliability of circuit modules optimized for different voltage and error rate

targets, and an architecture-level methodology to estimate processor power

and performance when the proposed design-level techniques are applied at

the processor-level.

4.4.1 Design-Level Methodology

We use the OpenSPARC T1 processor [52] to test our optimization frame-

work. Table 4.1 describes the selected modules and provides characterization

in terms of cell count and area. Module designs are implemented in TSMC

65GP technology using a standard flow of synthesis with Synopsys Design

Compiler vY-2006.06-SP5 [37] and place-and-route with Cadence SoC En-

counter v8.1 [38]. Runtime is reduced by adopting a restricted library of 66

commonly-used cells2 (62 combinational and 4 sequential). Conventionally

constrained designs are synthesized for the target operating frequency (0.8

GHz), and tightly constrained designs are synthesized for a 40% smaller clock

period to increase timing slack.

Figure 4.8 illustrates our recovery-driven design flow. We perform gate-

level simulation to produce a VCD file3 using Cadence NC-Verilog v6.1 [47].

To find timing slack and power values at specific voltages, we prepare Syn-

opsys Liberty (.lib) files for each voltage from 1.00 V to 0.50 V in 0.01 V

increments, using Cadence Library Characterizer v9.1 [39]. Complete char-

acterization for 51 voltage points takes a couple of days, but this is a one-time

cost.

Timing information is continually available from Synopsys PrimeTime

c2009.06 [53] static timing tool through the Tcl socket interface, during the

optimization process. After our optimization, all netlist changes are realized

2Heuristic efficiency depends on the number of available logically equivalent cells. Since
we use all available cell sizes for different drive strengths, our heuristic will also be effective
with a full set of library cells.

3Gate-level simulation is performed for one million cycles, and the size of the VCD file
is about 500 MB for our test cases. To implement larger designs, a compressed VCD file
could be used – e.g., Synopsys VCD Plus format.
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Table 4.1: Target modules for experiments.

Module Stage Description Cell # Area (µm2)

lsu dctl MEM L1 Dcache Control 4537 13850
lsu qctl1 MEM LDST Queue Control 2485 7964

lsu stb ctl MEM ST Buffer Control 854 2453
sparc exu ecl EX Execution Unit Control 2302 7089
sparc ifu dec FD Instruction Decode 802 1737

sparc ifu errdp FD Error Datapath 4184 12972
sparc ifu fcl FD L1 Icache and PC Control 2431 6457

spu ctl SPU Stream Processing Control 3341 9853
tlu mmu ctl MEM MMU Control 1701 5113

Figure 4.8: CAD flow incorporating the power optimization heuristic to
minimize the power of a design for a given error tolerance technique.
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Table 4.2: Benchmarks.

Benchmarks for design optimization (training set)
ART Image Recognition using Neural Nets
BZIP2 Compression
MCF Combinatorial Optimization
MESA 3D Graphics Library

Benchmarks for design evaluation (test set)
EQUAKE Seismic Wave Propagation
GZIP Compression
TWOLF Place and Route Simulator
SORT Sorting

Additional benchmarks for processor-level evaluation
AMMP, APPLU, MGRID, PARSER, SWIM, CRAFTY, EON, WUPWISE
VPR, VORTEX-2, FACEDETECT†, CG†, LSQ† († error-tolerant application)

using Cadence SoC Encounter in ECO mode.

Gate-level simulation is performed using test vectors obtained from full-

system RTL simulation of a benchmark suite consisting of integer and floating

point SPEC benchmarks. These benchmarks are each fast-forwarded to their

early SimPoints using the OpenSPARC T1 system simulator, Simics [54]

Niagara. After fast-forwarding in Simics, the architectural state is transferred

to the OpenSPARC RTL using CMU Transplant [52].

Our recovery-driven design techniques optimize for average activity. To

ensure that the activity profiles used during optimization (training) are rep-

resentative and adequate, we use mutually exclusive training and test work-

loads. We optimize based on the average activity of half of our benchmarks

and test using the other half. Training and test sets are chosen randomly

and contain half integer and half floating point benchmarks. Table 4.2 shows

the benchmarks in the training and test sets.

When characterizing Razor-based designs, we use worst-case timing li-

braries to determine any path that might have negative slack under worst-

case PVT variations. We assign a Razor FF to the endpoint of any such

path, add a maximum delay constraint of 1.5 cycles to the path, and add a

minimum delay constraint of 0.5 cycle to all paths ending at that FF. We

add buffers to any path that does not meet the minimum delay constraint.
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Figure 4.9: Energy and area overheads for Razor-based design.

Razor FFs have higher power, delay, and area than normal FFs [19]. An

error triggers a recovery period during which the pipeline recovers to a cor-

rect state. During this time, we assume that no progress is made, but we do

account for the power and time consumed during recovery when reporting

processor throughput and energy. We assume a counterflow pipeline-based

Razor implementation [19] with a recovery penalty proportional to the depth

of the pipeline (nine cycles for our 9-stage pipeline). We use the error rate,

in conjunction with the rates of power consumption during normal operation

and error recovery, as well as the recovery time overhead of Razor to calculate

the energy overhead of error recovery [19]. Figure 4.9 compares the energy

and area overheads of Razor for each design style that we evaluate.

4.4.2 Architecture-Level Methodology

We use SMTSIM [55] integrated with Wattch [56] to simulate processors

whose single-core parameters are in Table 4.3. The simulator reports perfor-

mance and power numbers at different voltages. Our evaluations are done

using benchmarks in Table 4.2. These benchmarks were chosen to maximize

diversity in terms of performance and reliability requirements. We base our

out-of-order processor microarchitecture model on the MIPS R10000 [57].

To get a processor-wide error rate at a given frequency and voltage, we

first sum the error rates from all the sampled OpenSPARC modules and
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Table 4.3: Processor specifications.

Property Value Property Value
L1 cache 16 kB, 4-way, 1 cyc RegFile 72 (int), 72 (FP)
L2 cache 2 MB, 8-way, 8 cyc Branch Predict gshare (8k entries)
Execution 2-way OO Mem Access 315 cyc

then scale up the sum based on area, such that it includes all modules that

we target for optimization. The error rate of a module that has not been

characterized is assumed to be proportional to area. We target only logic

modules with our recovery-driven design methodology. On-chip memories

are assumed to operate on a separate voltage rail [58] at the lowest error-free

voltage for a given operating frequency. At 45 nm and below, such “split

rail” designs are common. While we provision for error-free SRAMs, logic

interfacing with SRAM structures, such as register read and writeback logic,

may still produce errors. For designs that rely on error-tolerant applications,

we scale the error rates of each module group separately, according to an error

rate characterization of sampled modules in the group. Once the processor

core-wide error rate is calculated, we can use performance and power numbers

reported by our simulators to estimate the throughput and power impact of

errors for a given error recovery overhead.

We use a similar methodology to get processor-wide power numbers. To get

a dynamic power estimate, we scale the dynamic power numbers reported by

Wattch for the optimizable components by the ratio of total module power for

an optimization technique over total module power for the baseline design, as

reported by Synopsys PrimeTime. For designs that exploit application-based

error resilience, we scale the power of the module groups independently, as we

did for error rate. For the non-optimizable components, the Wattch numbers

are scaled based on the minimum voltage that these components can run at

without producing timing errors. For static power estimation, we use the

ratio of dynamic and static module power for an optimization technique, as

reported by PrimeTime, to calculate static power for a dynamic power value

reported using the above methodology.

When a processor designed for application-level reliability runs an applica-

tion that requires correctness, we scale down the frequency of the processor
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so that no timing violations occur. The safe clock frequency of the design

is determined by the worst-case negative slack timing path in the processor

plus a safety margin. All of our application simulations are executed for 1

billion cycles after fast-forwarding to the early SimPoints [59].

4.5 Experimental Results

We now evaluate our recovery-driven design implementations, which redis-

tribute timing slack to reduce the error rate at a given voltage, allowing a

reduction in voltage and energy for a given target error rate and operating

frequency.

4.5.1 Evaluation of Heuristic Design Choices

Figure 4.10 shows power and runtime of the various heuristic design alterna-

tives that we evaluated, as described in Section 4.2.5. For path ordering

during optimization, considering the slack in the prioritization function

results in higher power than the case where only toggle rate is used. Runtime

is somewhat smaller, but since our optimization iterates over a path multiple

times until no slack increase is observed, both results perform similarly. For

the same reason, path traversal order has little effect on the optimization

result. We choose the toggle rate priority function for its simplicity and lower

power.

The results for optimization radius show that swapping cells in the

fanin and fanout networks not only increases power at some error rates, but

also greatly increases runtime due to the large amount of swaps that are

performed. Thus, we choose to swap cells only on the optimized path. In

the experiments on accuracy of path selection and error rate budget

utilization, we observe no difference in power. Both updating the error

rate contribution continuously during path selection and ensuring full uti-

lization of the error rate budget increase runtime significantly without pro-

viding power benefits, and these techniques are not used in the final heuristic

implementation.

The choices of starting netlist and voltage step size have a signifi-

cant effect on power. Our recovery-driven design heuristic employs two main
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Figure 4.10: Evaluation of different heuristic design choices. The choices
are evaluated in terms of power of the resulting design as well as runtime.
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procedures – OptimizePaths (cell upsizing to reduce the error rate) and Re-

ducePower (cell downsizing to reduce area and power). When starting the

optimization flow from a loosely constrained design, path optimization pro-

vides the most substantial contribution to power reduction by reducing the

error rate and extending voltage scaling. However, when starting from a

tightly constrained design, much optimization has already been performed,

and the power reduction stage of our heuristic is essential for power mini-

mization. Although runtime increases due to evaluation of more downsizing

moves, a tightly constrained netlist provides a better starting point, since it

permits more voltage scaling. Voltage scaling has a stronger effect on power

reduction and scales the power of all cells, while area reduction only affects

the downsized cells. Also, starting from a tightly constrained design reduces

the dependence on ECO, which improves the optimization efficiency. Using

a coarser-granularity voltage step reduces runtime significantly, but comes at

the cost of power, since the heuristic cannot home in on the optimal voltage

as easily. For higher error rates, a large step size can provide a near-optimal

power result and a large reduction in runtime. Thus, error rate-aware adap-

tive step sizing can be beneficial.

In terms of iterative optimization, we observe that our heuristic is able

to achieve the same result independent of the starting netlist. Thus, we

choose the option that minimizes runtime.

4.5.2 Comparison Against Alternative Flows

To demonstrate the benefits of our recovery-driven design flow, we compare

five alternative design flows – traditional placement and routing (P&R) im-

plementations with conventional and tight timing constraints, a BlueShift-

like path constraint tuning (PCT) approach, gradual slack design [33] [32],

and our heuristic for error rate-optimized recovery-driven design. Figure 4.11

compares the power consumptions of the various design techniques at several

target error rates.

Recovery-driven designs reduce power by enabling extended voltage scal-

ing and keeping area overhead low with respect to other optimization tech-

niques. Compared to a conventionally optimized design, a recovery-driven

design operates at a much lower voltage for a given target error rate, due
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Figure 4.11: Power consumption of each design technique at various target
error rates for target modules in Table 4.1.

to the functionally-aware optimization approach that optimizes the paths

that cause the most errors. Compared against a highly optimized design

that uses tightly constrained P&R, a recovery-driven design reduces power

by minimizing the amount of area spent on path optimization. Traditional

tightly constrained designs are functionally agnostic and optimize all paths

heavily, incurring a large area overhead. Recovery-driven designs, on the

other hand, use functional information to target only the paths that cause

the most errors, thereby minimizing the area cost of additional voltage scal-

ing. In scenarios where the cost of area is high, such as for technologies with

higher leakage like those forecast in future technology generations, the cost of

functionally-agnostic optimizations will increase, and the benefits of recovery-

driven design will increase. Table 4.4 shows power savings for recovery-driven

design for each module with respect to traditional P&R at different target

error rates.

In our power minimization heuristic, after deciding how to allocate the er-

ror rate budget, the ReducePower stage performs aggressive cell downsizing

to reduce circuit area and power. Table 4.5 compares recovery-driven design

against other design flows in terms of area overhead with respect to the base-

line design. Design for a target error rate has similar area overhead to PCT

but still produces a design with lower power. The reason is that designing

for a target error rate allows more aggressive voltage scaling before the tar-

get error rate is exceeded. At lower voltages, there are more negative slack

paths to be optimized during OptimizePaths, which increases area overhead.
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Table 4.4: Power savings (%) for error rate-optimized recovery-driven
designs compared to traditional P&R.

Target Error Rate (ERtarget)
MODULE 0.125% 0.25% 0.5% 1.0% 2.0% 4.0% 8.0%
lsu dctl 29.1 16.8 16.8 16.8 16.8 16.8 21.6
lsu qctl1 8.8 6.7 5.8 8.1 11.0 9.0 8.6

lsu stb ctl 17.9 17.9 18.1 15.4 9.6 19.2 2.9
sparc exu ecl 6.0 6.0 18.3 18.3 22.7 23.3 17.4
sparc ifu dec 13.7 10.1 8.6 14.3 15.9 18.5 15.1

sparc ifu errdp 2.2 2.8 5.7 5.7 5.7 9.3 9.3
sparc ifu fcl 14.5 15.4 16.5 19.2 19.2 19.2 19.2

spu ctl 13.1 13.1 13.1 13.2 8.8 1.6 8.9
tlu mmu ctl 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Table 4.5: Average area overhead with respect to the baseline.

Tight P&R PCT SlackOpt PwrOpt 0.125% PwrOpt 0.25%

19.1% 5.0% 11.9% 3.9% 4.3%

PwrOpt 0.5% PwrOpt 1% PwrOpt 2% PwrOpt 4% PwrOpt 8%

4.8% 5.4% 5.8% 6.0% 5.3%

However, aggressive downsizing keeps area overhead low; and since the paths

targeted by PowerOptimizer cause the most errors in the design, the area

is well spent, and the additional voltage scaling contributes to a net benefit

in terms of power savings. PCT, on the other hand, adds tighter timing

constraints to the registers where the most errors are captured and optimizes

all paths with endpoints at those registers. Since our heuristic targets paths

individually, we can target the error-causing paths more efficiently, reduce

overhead, and increase voltage scaling and power savings.

Compared to tightly constrained P&R and gradual slack design, design for

a target error rate incurs significantly less area overhead and reduces power.

On one hand, tightly constrained P&R is functionally agnostic and fails to

identify the set of paths that maximizes voltage overscaling per unit area

overhead. Gradual slack design, on the other hand, optimizes the design to

make tradeoffs between power, throughput, and reliability over a range of

error rates. Thus, a gradual slack design is over-optimized for any single
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Figure 4.12: Recovery-driven design for a target error rate (PowerOpt)
minimizes power at the target error rate. Gradual slack design (SlackOpt)
optimizes a design for a range of error rates to provide adaptability and
smooth performance-power tradeoffs.

target error rate.

Figure 4.12 compares recovery-driven design for a target error rate against

gradual slack design. The results show that designing for a target error rate

minimizes power at the target error rate. However, since a recovery-driven

design can have a non-zero error rate even under nominal conditions, power

efficiency at error rates lower than the target may drop off steeply. Likewise,

since design for a target error rate creates a slack wall at the error-optimal

voltage, additional benefits for error rates higher than the target are limited.

A gradual slack design, on the other hand, is optimized for a range of error

rates. Although this means that it is less efficient than an error rate-optimal

design for any single error rate, it also means that performance or output

quality can be efficiently traded for power savings over the entire range of

error rates. Thus, whenever more errors can be tolerated, a gradual slack

design can reduce power consumption. This may not be possible for an error

rate-optimal design, since it forgoes scalability to achieve additional power

savings at the target error rate.

Recovery-driven design optimizes for errors in the average operating be-

havior of a design. If the frequently exercised paths during operation are sig-

nificantly different than those targeted during optimization, then too many

errors may be produced, and voltage scaling may be limited for a target

error rate. To evaluate the robustness of recovery-driven design when the
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Figure 4.13: Total power reduction over tightly constrained design for the
training (optimization) and test benchmark sets. Power reductions for the
training set are slightly higher, since the design has been optimized
specifically for the activity profile of this set.

workload changes, we compared the power reduction achieved when running

the training (optimization) benchmarks against power reduction for the test

benchmarks. Figure 4.13 shows that power reduction is slightly higher for

the benchmark set that the processor was optimized for, but the difference

is only about 1% on average.

4.5.3 Variation-aware Analysis

Recovery-driven design increases energy efficiency by reshaping the slack dis-

tribution of a design, such that error rate is reduced at a particular voltage.

Figure 4.14 shows activity-weighted slack distributions (sum of path tog-

gle rate vs. timing slack) from before and after optimization, confirming

that the optimization increases slack for frequently exercised paths, which

enables extended voltage scaling for a target error rate. However, due to

random variations introduced in the physical circuit by sources of static and

dynamic non-determinism, the actual slack distribution may be somewhat

different than the designed distribution.

To test the benefits of recovery-driven design in the presence of variations,

we have implemented a model for inter-die and spatially correlated within-die

variations based on the models in [60, 61]. We use an exponential model for
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Figure 4.14: Recovery-driven design reshapes the slack distribution by
adding slack to frequently exercised paths and removing slack from
infrequently exercised paths. The activity-weighted slack distribution
(bottom) shows the sum of toggle rates for all paths with a particular slack
value, confirming that frequently exercised paths have more slack in the
optimized netlist.
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correlation between different die locations, in which the correlation function

decays exponentially as a function of distance, with parameters supplied by

the authors of [60]. We extract standard deviations (σ) of cell delay at each

operating voltage from SPICE simulations, and use our variation model to

assign a random delay variation to each die and each gate within the die,

based on its location. We then repeat error rate and power estimation with

one hundred different random variation maps. From the Monte Carlo simula-

tions, we report total power consumption of the target modules at each error

rate in Table 4.6. Table 4.6 shows that even when variations are accounted

for, recovery-driven design still achieves significant power savings over a con-

ventional design. Furthermore, the average benefits do not noticeably change

when variations are accounted for. (Power reduction in Table 4.6 is some-

what lower for error rates below 1% because the test design was optimized

for a target error rate of 1%.) Random variations cause perturbations within

a design but do not shift the average case behavior. Since recovery-driven

designs are optimized for and operate at the average case operating point,

they are naturally robust to random variations.

Since conventional designs do not afford special optimization to frequently

exercised paths, they are more likely to be critical paths in a conventional

design than in a recovery-driven design. Thus, the operating voltage for

a non-zero error rate is primarily determined by accrual of errors on the

frequently exercised paths. Also, since the frequently exercised paths are

more likely to be timing critical in a conventionally optimized design, there is

a higher chance that variations impact the operating voltage of the processor

by impacting the delay of frequently exercised paths. Note that even if

variations reduce delay on some frequently exercised paths, relatively few

frequently exercised paths with increased delay can force the design to a

higher operating voltage.

Recovery-driven design, on the other hand, affords additional slack to fre-

quently exercised paths, so that the operating voltage for a target error rate

is primarily determined by a slow accrual of errors on the infrequently exer-

cised paths. Since there are typically many more infrequently exercised paths

than frequently exercised paths, random variations mostly have an averaging

effect, such that recovery-driven designs are fairly robust to variations. Thus,

variation analysis reveals that recovery-driven designs are actually more ro-

bust to variations than conventionally optimized designs, since it is common
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Table 4.6: Variation-aware analysis.

Target error rate (ERtarget)
0.125% 0.25% 0.5% 1.0% 2.0% 4.0% 8.0%

Power consumption (W) in baseline design
Min. 0.0126 0.0126 0.0122 0.0113 0.0108 0.0106 0.0095
Max. 0.0202 0.0201 0.0199 0.0196 0.0191 0.0186 0.0167
Avg. 0.0162 0.0160 0.0156 0.0153 0.0149 0.0141 0.0127

Power consumption (W) in recovery-driven design
Min. 0.0111 0.0106 0.0105 0.0096 0.0092 0.0088 0.0080
Max. 0.0187 0.0183 0.0175 0.0172 0.0165 0.0161 0.0151
Avg. 0.0148 0.0144 0.0141 0.0134 0.0128 0.0123 0.0113

Power reduction (%)
Avg. 8.28 9.71 9.43 12.61 13.80 13.03 11.18

for variations to increase the power (operating voltage) of a conventional de-

sign, but uncommon for variations to increase the power (operating voltage)

of a recovery-driven design.

4.5.4 Recovery-driven Processors

In this section, we demonstrate the benefit of designing processors for spe-

cific hardware and software error resilience mechanisms, as described in Sec-

tion 4.3.

Circuit-Level Timing Speculation. Figure 4.15 compares the energy

consumption of a recovery-driven processor that has been designed and op-

timized for Razor against the power consumption of processors designed for

other objectives, such as gradual slack or PCT, and against processors that

have been designed for correctness but use the traditional Razor methodology

to save energy. We assume a recovery overhead of nine cycles, proportional

to the pipeline depth of the processor.

Figure 4.15 demonstrates that the minimum energy is indeed achieved by

a processor that is designed to produce errors that can be gainfully tolerated

by Razor. Designing the processor for the error rate target at which Razor

operates most efficiently allowed us to extend the range of voltage scaling

from 0.84 V for the best “designed for correct operation” processor to 0.71 V
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Figure 4.15: The benefit of designing a processor to produce errors then
correcting them with an error tolerance mechanism over designing for
correctness and then relaxing the correctness guarantee can be significant.
Results are shown for processors that employ Razor.

for the processor designed for an error rate of 1%, affording an additional

19% energy reduction.

Error recovery with a circuit-level approach like Razor imposes a through-

put penalty, since error recovery requires feeding correct values back into the

pipeline. Figure 4.16 shows the throughput reduction caused by error recov-

ery for a correction overhead of 5 cycles. As can be seen, a recovery-driven

processor even minimizes the recovery overhead at the target operating volt-

age.

Application Noise Tolerance. To demonstrate the benefits of recovery-

driven design targeted at application-level noise tolerance, we use a face

detection algorithm [44] as the example application. Face detection is natu-

rally robust to errors in several processor modules and does not require strict

computational correctness. Rather than causing program failure, errors may

result in reduced output quality (false positive or negative detections) [62].

Face detection, as well as the other error-tolerant applications we consider,

tolerates errors in the arithmetic units of the processor. For this class of

applications (which relies heavily on numerical computation), the arithmetic

units account for approximately 35% of the dynamic power consumption of

the processor.

Figures 4.17 and 4.18 compare the power consumption of processors de-
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Figure 4.16: Throughput reduction at different voltages for an error
recovery overhead of 5 cycles. This recovery overhead is appropriate for a
simple pipeline or lightweight recovery technique.

signed for application-level error tolerance of arithmetic errors using single-

and dual-voltage rail designs, as described in Section 4.3. In these figures, all

processors achieve the same output quality at a given error rate, but proces-

sors designed to allow errors consume less power, and power is minimized for

these designs at their respective error rate targets. For example, at an error

rate of 1%, where output quality is still maximized for the face detection

application, the processor designed for an error rate target of 1% consumes

19% less power for dual-rail design and 15% less power for single-rail design

than the baseline correctness-optimized processor. Benefits are even higher

for larger error rates if some application output degradation is permissible.

Note that we can always perform error-free computation on a core designed

for application-level noise tolerance by scaling down the frequency to the

point where all paths have non-negative slack. However, this may represent

a performance penalty when compared to relaxed-correctness operation.

Also note that trends in processor-level results may differ somewhat from

trends in averaged module-level results. Whereas the power reduction of

a recovery-driven design is limited by a module’s critical paths, the power

reduction of a recovery-driven processor is biased by the critical modules that

begin causing errors first when voltage is scaled down. As we will show in the

next section, results can be improved by utilizing multiple voltage domains.
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Figure 4.17: This figure demonstrates the power benefit of a processor that
is designed to allow errors in the arithmetic units over a processor that is
designed for correctness. All modules in the processor operate at the same
voltage. Razor is used to correct errors in non-arithmetic units.

Figure 4.18: This figure demonstrates the power benefit of a processor that
is designed to allow errors in the arithmetic units over a processor that is
designed for correctness. The processor uses a dual voltage rail design with
the arithmetic units on a separate rail.
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4.5.5 Supporting Multiple Voltage Domains

Given a target error rate, the module-level power minimization heuristic

in [48] selects an optimal operating voltage for a processor module. However,

the proposed processor core-level methodology (Algorithm 1, DOMAINS =

1) selects a common voltage for all modules of a processor core. Table 4.7

shows that different modules vary (sometimes substantially) in their optimal

voltage operating points due to a number of factors, including module area

(number of paths and cells), slack distribution (fraction of paths that are

critical), and activity factor (how often paths toggle). In addition, the table

shows that the range of optimal module voltages increases when designing

for a non-zero error rate target.

Because of the above module-level variations, there can be a substantial

difference in terms of power consumption between the locally and globally

optimized module implementations. Figure 4.19 quantifies the difference be-

tween single and multiple voltage domain designs for processor cores toler-

ating different error rates. We compare designs with different numbers of

voltage domains, targeting different processor error rates in terms of their

power consumption relative to a processor optimized for a common operat-

ing voltage. The results show that the power efficiency of recovery-driven

processors will improve significantly with the number of voltage domains

that are supported. In practice, the number of voltage domains should be

chosen by carefully balancing the voltage overscaling benefits with the area

and complexity overheads of supporting multiple power rails. The results of

Figure 4.19 do not consider the overhead of level shifter circuitry.

4.5.6 Robustness to Application Diversity

Different workloads exercise the timing paths of a processor core differently.

Thus, the sets of frequently exercised and infrequently exercised paths may

change, depending on the workload. Since recovery-driven designs are opti-

mized according to an average case activity profile, it is important to ensure

that power efficiency is not degraded significantly when the activity profile

of a workload is not the same as the activity profile for which the processor

was optimized.

To gauge the robustness of recovery-driven design to workload diversity,
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Table 4.7: Optimal module voltages at different target error rates.

Target error rate (ERtarget)
MODULE 0.0% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%
lsu dctl 0.75 0.72 0.71 0.75 0.74 0.73 0.72
lsu qctl1 0.88 0.87 0.86 0.85 0.84 0.83 0.80

lsu stb ctl 0.77 0.76 0.75 0.75 0.70 0.68 0.66
sparc exu ecl 0.75 0.74 0.73 0.70 0.70 0.69 0.70
sparc ifu dec 0.68 0.67 0.66 0.63 0.70 0.58 0.57

sparc ifu errdp 0.77 0.58 0.57 0.56 0.55 0.54 0.53
sparc ifu fcl 0.79 0.77 0.76 0.75 0.74 0.73 0.72

spu ctl 0.78 0.65 0.64 0.63 0.62 0.63 0.58
tlu mmu ctl 0.85 0.52 0.51 0.51 0.51 0.51 0.51

RANGE 0.20 0.35 0.35 0.34 0.33 0.32 0.29

Figure 4.19: The benefit of a multiple voltage domain design over a single
voltage domain design can be significant when designing for an error rate
target. Substantial power savings can be achieved when each module is
optimized for a locally optimal voltage rather than the globally optimal
voltage of the module group. The stacked bars show the additional power
savings afforded as the number of voltage domains increases.
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Figure 4.20: Recovery-driven design is robust to application diversity. On
average, processor modules that have been optimized for the average case
only consume 1% more power than modules that have been customized
specifically for the activity profile of the test workload.

we create several recovery-driven designs, optimized for the activity profiles

of each benchmark in the test set – equake, gzip, sort, and twolf. Then, we

compare the power consumption of each benchmark in the test set, running

on the design that was optimized for the average case, against the design that

was optimized specifically for that benchmark. Figure 4.20 compares the

power consumption of average case design against workload-specific designs

for different target error rates.

On average, the difference is small – only 1.5% difference in power at an

error rate of 0.125% and 0.9% difference at 0.25% – demonstrating the ro-

bustness of recovery-driven design to application diversity. The difference will

decrease as the target error rate increases. The reason for this robustness is

that since some paths are allowed to cause errors, there is some “forgiveness”

when the priority of path optimization deviates somewhat from the optimal.

Our recovery-driven design heuristic bins paths into P− paths that are al-

lowed to cause errors and P+ paths that should remain error-free. As long as

the difference in activity for a path is not so much as to make the path switch

bins, the path dichotomy is preserved and power efficiency is not degraded.

In the worst case, we only observe 3% degradation in power efficiency.
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4.6 Related Work

Design-level Optimization.

The design-level optimizations proposed in this chapter target the most

frequently exercised paths in a stochastic design for special optimizations,

since highly exercised paths have the potential to cause the most errors.

EVAL [63] is a design-level optimization that aims to increase the amount

that frequency can be overscaled in a timing speculative design. EVAL at-

tempts to increase the efficiency of frequency overscaling by optimizing the

most frequently exercised paths in a design at the expense of the majority

of the static paths. Consequently, errors are prevented on the highly ac-

tive paths (that would cause many errors) and allowed on the infrequently

exercised paths (that cause relatively few errors).

EVAL trades error rate for frequency by shifting, tilting, or reshaping the

path slack distributions of the various functional units in a design.

BlueShift [64] is an application of EVAL that also optimizes a circuit for

frequency overscaled operation. BlueShift uses EVAL techniques in an itera-

tive optimization in an attempt to reduce the error rate of a circuit module.

In each iteration, some optimizations are performed, and the error rate is

checked. If the error rate is less than the target rate, the module optimiza-

tion finishes. Otherwise, optimization iterations continue.

Each optimization step involves adding timing slack to the paths that

cause the most timing errors and performing a gate-level simulation to check

whether the path adjustments have brought the error rate below the target.

BlueShift uses two methods to add slack to frequently exercised circuit paths:

(1) forward body biasing of selected gates and (2) path constraint tuning that

applies tighter timing constraints for selected paths.

Our work differs from BlueShift in objective, approach, and scope of opti-

mization. Our objective is to minimize power, while BlueShift’s objective is

to improve performance. Consequently, we use sensitivity functions that are

voltage-aware. Also, BlueShift requires iterative gate-level simulation and

re-layout, making the approach time-consuming and impractical for large

modern SOC designs, where the number of post-sizing layout, extraction,

and simulation steps is often limited by runtime constraints. Furthermore,

while BlueShift optimizes only the post-synthesis circuit over many layout it-

erations, our recovery-driven design techniques perform both activity-guided
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post-synthesis and post-layout optimizations in a single pass to enhance en-

ergy efficiency.

Dynatune [65] is another stochastic optimization technique, similar to pre-

viously mentioned techniques, that improves performance by enhancing the

efficiency of frequency overscaling-based timing speculation. Rather than

treating all gates in a design as equals, Dynatune focuses optimization ef-

forts on the most dynamically critical cells. The most dynamically critical

cells are those with the highest switching activity. Dynatune starts with a

circuit design that is implemented with high Vt cells (which have high delay

and low leakage), and replaces some of the most dynamically critical cells

with low Vt cells, thereby reducing their delay but increasing their leakage

power consumption. Dynatune replaces as many cells as possible while stay-

ing below a specified threshold for leakage power. Since some paths that

remain with many high Vt cells may not meet timing after optimization is

finished, the design is timing speculative and must incorporate an error re-

covery mechanism to cover the case when timing speculation results in errors.

Therefore, the goal of Dynatune is to assign low Vt cells, based on dynamic

criticality, to maximize the peak frequency of a timing speculative design

while staying within a given leakage power budget.

Like other stochastic optimizations discussed in this section, work on better-

than-worst-case (BTWC) logic synthesis [66] has also proposed to use activity

information to reduce the error rate of an overscaled design. Whereas tradi-

tional synthesis tools attempt to minimize delay for a logic block, a BTWC

synthesis tool also considers switching probabilities when implementing a de-

sign. Reducing switching activity can result in fewer errors for an overscaled

design.

BTWC logic synthesis uses functional information to reduce the probability

of error for scenarios in which multiple possible logic decompositions for a

block have equal cost. In such cases, ties between the original cost function

(delay) are broken by a new cost function that takes switching probability

into account. The tiebreaker cost function is a sum of delay, weighted by

switching probability. Thus, the logically equivalent decomposition with the

least switching activity (i.e., the most biased signal probabilities) is selected

in the event of a tie.

Some limitations of BTWC synthesis in relation to other stochastic op-

timizations are the inability to target a specific error rate and potentially
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limited impact, since only logic with multiple candidate implementations

that have the same delay and functionality are optimized.

Sensitivity-Based Cell Sizing. Our methodology relies on cell sizing

for slack distribution. Sensitivity-based downsizing approaches have been

proposed in previous literature[45, 46, 67, 68, 69, 70]. TILOS [67] proposes a

heuristic that sizes transistors iteratively, according to the sensitivity of the

critical path delay to the transistor sizes, in order to find an optimum (with

maximum delay reduction per transistor width increase). Equation (4.4)

shows the sensitivity function of TILOS. ∆L and ∆D represent the change

in leakage and delay for a resized transistor. The techniques proposed in [69]

use the same sensitivity function as TILOS.

Sensitivity = ∆L/∆D (4.4)

For the cell sizing in [70], all cells are sorted in decreasing order of ∆L× S ,

where ∆L is the improvement in leakage after a cell is replaced with its less

leaky variant, and S is its timing slack after the replacement has been made.

The techniques proposed in [45, 46] use sensitivity-based downsizing (i.e.,

begin with all nominal cell variants and replace cells on non-critical paths

with long channel-length variants) heuristics for leakage optimization. The

heuristics defined the sensitivity associated with a cell instance as follows.

Sensitivity = ∆L/∆S (4.5)

In Equation (4.5), ∆S represents the slack change of a given cell instance after

downsizing. ∆L indicates the leakage change of cell instance after downsizing.

The sensitivities are computed for all cell instances. The heuristics of [45,

46] select a cell with the largest sensitivity and perform downsizing with a

logically equivalent cell. If there is no timing violation in incremental STA,

this move is accepted and saved.

Our work uses cell sizing in a novel context – as a mechanism to optimize

hardware for non-zero error rates.
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4.7 Summary

In this chapter, we propose recovery-driven design, a design-level approach

that optimizes a processor module for a target timing error rate instead

of correct operation. We present a detailed evaluation and analysis of a

recovery-driven design methodology that minimizes power for a target error

rate. We extend our recovery-driven design flow to design recovery-driven

processors – processors that are designed and optimized for a target error

rate. We also present an extension of our recovery-driven design flow that

creates a gradual slack design that is optimized for a range of error rates

rather than a single target. The gradual slack technique is used to design

soft processors that can trade throughput or output quality for energy savings

over a range of reliability targets. While we have chosen to focus on improving

the energy efficiency of error-resilient designs, recovery-driven design can also

be used to optimize other design characteristics, such as yield.
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CHAPTER 5

ARCHITECTURE-LEVEL OPTIMIZATION

OF PROGRAMMABLE STOCHASTIC

PROCESSORS

Previous chapters have described circuit or design-level optimizations that

manipulate the error rate behavior of a design to increase the energy effi-

ciency of operating at a nen-zero error rate. In this chapter, we investigate

whether architectural optimizations can also manipulate error rate behavior

to significantly improve the energy efficiency of operating at a non-zero error

rate. To this end, we demonstrate how error rate behavior indeed depends

on processor architecture, and that architectural optimizations can be used

to manipulate the error rate behavior of a processor. Using architecture-

level optimizations for programmable stochastic processors, we demonstrate

enhanced overscaling and up to 29% additional energy savings for processors

that employ Razor-based timing speculation.

5.1 Introduction

Traditionally, processors have been architected to operate correctly under

worst-case operating conditions. Ensuring timing correctness under all pos-

sible circumstances requires that conservative guardbands be imposed on

operating frequency and voltage, limiting the performance and energy effi-

ciency of modern processor designs, especially as device feature sizes con-

tinue to shrink and the impact of process and dynamic variations escalates.

The growing costs of providing the illusion of perfect hardware on top of

increasingly stochastic and unreliable devices have become prohibitive. To

counter the rising costs of variability more efficiently, several timing specula-

tive error-resilient design techniques have been proposed [19, 20, 21, 71, 22].

These techniques relax correctness guards to gain efficiency in the average

case at the expense of some errors. Errors are corrected or tolerated by hard-

ware or software error resilience mechanisms to maintain the level of output
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quality expected by the user.

The magnitude of efficiency benefits available from timing speculation de-

pends on two factors – where and how often the processor produces errors

when operating at an overscaled voltage or frequency. If the frequency

of errors can be reduced for a timing speculative design, the range of over-

scaling can be extended, affording additional energy or performance gains.

Previous works have demonstrated the potential to increase the energy ef-

ficiency [32, 33, 48] or performance [63, 64] benefits of timing speculation

by modifying the error distribution of a timing error-resilient design. How-

ever, these works focused only on circuit-level techniques. It remains to be

shown whether architecture-level optimizations can similarly affect the error

distribution of a timing speculative design to generate energy or performance

gains.

In this work, we demonstrate that the error distribution indeed depends

on architecture. We show that the error distribution of a design that has

been architected for error-free operation may limit scalability and energy ef-

ficiency for better-than-worst-case operation. Thus, optimizing architecture

for correctness can result in significant inefficiency when the actual intent

is to perform timing speculation. In other words, one would make different,

sometimes counterintuitive, architectural design choices to optimize the error

distribution of a processor to exploit timing error resilience. Thus, we make a

case for timing error resilience-aware architectures and propose architectural

optimizations that improve the efficiency of timing speculation.

This work on timing error resilience-aware architecture makes the following

contributions.

• We show that the error distribution of a timing speculative processor

strongly depends on its architecture. As such, we demonstrate that

architectural optimizations can be used to significantly improve the

efficiency of timing speculation.

• We confirm, with experimental results for different implementations of

a 4-tap FIR filter, as well as Alpha, MIPS [72], FabScalar [73], and

OpenSPARC [52] processor cores, that timing error resilience-aware

architectural design decisions can indeed significantly increase the effi-

ciency of a timing speculative architecture.
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Note that we have used voltage overscaling as the proxy for all variation-

induced errors in this chapter. Our analysis and conclusions should apply

for other sources of timing variation as well.

The rest of the chapter is organized as follows. Section 5.2 describes the

architectures that we evaluate and provides examples of how architectural

decisions can influence the slack and activity distributions of a design. Sec-

tion 5.3 describes our experimental methodology. Section 5.4 presents results

and analysis showing that optimizing an architecture for timing speculation

can significantly improve energy efficiency. Section 5.5 discusses related work.

Section 5.6 summarizes the chapter.

5.2 Understanding and Manipulating the Error

Distribution of Timing Speculative Architectures

As explained in Section 4.1.1, the timing error rate of a processor depends

on its slack and activity distributions. In this section, we argue that both

the slack and activity distributions of processors are strongly dependent on

processor architecture. This dependence implies that architectural features

can be chosen to optimize the slack and activity distributions and, by ex-

tension, the error distribution and energy efficiency of a timing speculative

processor. First, we demonstrate how slack and activity distributions depend

on processor architecture. Then, we show how architectural optimizations

can change the slack and activity distributions.

5.2.1 Architectural Dependence of Slack and Activity

Distributions

In this section, we show that slack and activity distributions indeed depend

on architecture. First, we present four functionally equivalent architectural

variants of a 4-tap FIR filter We describe how the architectural characteristics

of each filter determine the properties of its slack and activity distributions.

The baseline FIR filter, shown in Figure 5.1(a), is the simplest and most

well-known arrangement of the FIR filter architecture, containing four MAC

units. A pipelined version of the filter (Figure 5.1(b)) was created by creating

a cutset across the outputs of the multipliers and adding a latch to each arc.
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We also created a folded version of the filter (Figure 5.1(c)), in which multiple

operations are mapped to a single hardware unit. Folding by a factor of two

multiplexes the filter hardware so that half of the filter coefficients are active

in even cycles, the other half are active in odd cycles, and an output sample

is computed every two cycles. The blocked architecture of Figure 5.1(d) was

created by replicating the internal filter structure to compute two samples in

parallel.

Figure 5.2 compares the path slack distributions of the different filter im-

plementations, confirming our intuition that the slack distributions of the

filter designs depend strongly on the architecture. Table 5.1 presents more

detailed information on how slack and activity change for different architec-

tures. The mean and standard deviation of the slack distribution (µslack and

σslack, respectively) tell how much initial slack exists, on average, and how

regular the slack distribution is, i.e., how spread out the values of path delay

are. Designs with more regular (less spread) slack distributions allow less

overscaling past the critical point because a large number of paths fail at the

same time, potentially causing a steep increase in error rate. The average

path activity (αpath) shows how frequently paths toggle. Higher path activity

can mean that error rate increases more steeply, since negative slack paths

generate more errors when they toggle more frequently.

Table 5.1 and Figure 5.2 reveal that pipelined and folded architectures have

more regular slack distributions. These architectures have shorter paths that

have less capacitance, less delay sensitivity to voltage scaling, and less vari-

ation in absolute path delay. This creates extra slack compared to other

architectures, but limits scaling past the critical point. The folded architec-

ture has high path activity, since the internal filter elements must operate at

twice the frequency of the baseline design to achieve the same sample rate.

Likewise, the blocked architecture has reduced path activity, since the same

sample rate can be achieved at half the operating frequency. Although it

has reduced activity, the blocked architecture has increased complexity and

longer paths than the baseline. This results in more spread in the slack dis-

tribution, allowing more overscaling when errors can be tolerated, although

errors may start at a higher voltage. Figure 5.3 shows how the power and

error rate of each filter architecture vary with voltage, confirming the ex-

pected effects of the slack and activity distributions on the error rate of each

architecture.
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Figure 5.1: 4-tap FIR filter designs: (a) baseline, (b) pipelined, (c) folded,
(d) blocked.
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Figure 5.3: Power and error rate vs. voltage for the FIR filter architectures.

Table 5.1: Mean and standard deviation of path slack, relative to the
sampling period, and average path activity normalized against the baseline.

Baseline Pipelined Folded Blocked
µslack 0.183 0.496 0.449 0.154
σslack 0.185 0.159 0.145 0.124

Avg(αpath) 1.0 1.9 3.4 0.5
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Our simple DSP filter examples show that the architecture of a design

shapes the properties of its slack and activity distributions. We now show

that the same is true for general purpose processors. As demonstrated in

Section 4.1.1, error rate is a function of the slack and activity distributions,

and our primary goal is to use architectural optimizations to manipulate the

error rate behavior of a design. Thus, we use error rate as a proxy for slack

and activity. We begin by synthesizing four variants of the FabScalar [73]

processor with different microarchitectural characteristics.

Figure 5.4 shows that the four different FabScalar microarchitectures have

significantly different error rate behavior, demonstrating that slack, activity,

and error rate indeed depend on microarchitecture. Differences in the error

rate behavior of different cores are due to several factors. First, changing

the sizes of microarchitectural units like queues and register files changes

logic depth and delay regularity, which in turn affects the slack of many tim-

ing paths. Secondly, varying some architectural parameters such as super-

scalar width has a significant effect on complexity [74]. Changing complexity,

fanout, and capacitance change path delay sensitivity to voltage scaling and

cause the shape of the slack distribution to change. Finally, changing the

architecture alters the activity distribution of the processor, since some units

are stressed more heavily, depending on how the pipeline is balanced. High

activity in units with many critical paths can cause error rate to increase

more steeply. Likewise, an activity pattern that frequently exercises longer

paths in the architecture limits overscaling. For example, long dependence

chains lengthen the dynamically exercised critical paths of structures such as

the issue queue and load-store queue, which perform dependence checking.

As these queues become full, they begin to generate errors at higher voltages.

5.2.2 Architectural Optimizations that Manipulate Slack and
Activity Distributions

Now that we understand the relationships between slack, activity, error rate,

and architecture, we consider what must be done to optimize processor archi-

tecture for improved timing speculation efficiency. In this section, we propose

specific architectural optimizations for general purpose processors that ma-

nipulate their slack and activity distributions. In Section 5.4, we show how
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Figure 5.5: Typically, slack distributions of processors are dominated by
regular structures. Caches and register files account for a large fraction of
the critical paths of a processor [75].

these changes to the slack and activity distributions translate into significant

energy savings for timing speculative architectures.

Regular Structures Typical energy-efficient processors devote a large

fraction of die area to structures with very regular slack distributions, such

as caches and register files. These structures typically have high returns

in terms of energy efficiency (performance/watt) during correct operation.

For example, 75–80% of the critical paths in the Alpha EV7 reside in the L1

caches and register files (Figure 5.5) [75].

While regular structures are architecturally attractive in terms of processor

efficiency for correct operation, such structures have slack distributions that

allow little room for overscaling, because all paths in a regular structure
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Table 5.2: Mean and standard deviation of path slack, relative to the clock
period, for the Alpha processor with different register file sizes.

16reg 32reg 64reg
µslack 46% 41% 34%
σslack 10% 9% 6%

are similar in length, and when one path has negative slack, many other

paths also have negative slack. For example, consider a cache. Any cache

access includes the delay of accessing a cache line, all of which have nearly

the same delay. So, no matter which cache line is accessed, the delay of

the access path will be nearly the same. Compare this to performing an

ALU operation, where the delay can depend on several factors including the

input operands and the operation being performed. When exploiting timing

speculation-based error resilience for energy reduction, the energy-optimal

error rate is found by balancing the marginal benefit of reducing the voltage

with the marginal cost of recovering from errors [19]. When many paths fail

together, error rate and recovery overhead increase steeply upon overscaling,

limiting the benefits of timing speculation. Reducing the number or delay

of paths in a regular structure can reshape the slack distribution, enabling

more overscaling and better timing speculation efficiency.

For the Alpha core, the register file is the most regular critical structure.

Figure 5.6 shows slack distributions for the Alpha core with different register

file sizes. As the size of the register file increases, the regularity of the

slack distribution also increases, as does the average path delay. Figure 5.6

confirms that the spread of the slack distribution decreases with a larger

register file. Additionally, path slack values shift toward zero (critical) slack

due to the many critical paths in the register file. Table 5.2 shows standard

deviation and mean values for the slack distributions of the processors with

different register file sizes. The table confirms that regularity (represented by

the standard deviation of slack) increases, and average slack decreases with

the size of the register file. (Note that smaller σslack means a more regular

slack distribution.) We confirmed similar behavior when the cache size was

changed. For example, σslack reduced by 25% for the Alpha core and 23% for

the MIPS core when the cache size was increased from 2 kB to 4 kB.

Architectural design decisions that reshape the slack distribution by devot-

ing less area to regular structures or moving regular structures off the critical
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Figure 5.6: Reducing the size of the register file (a regular structure)
increases the spread of the slack distribution, resulting in fewer paths
bunched around the point of critical slack.

path can enable more overscaling and increase energy efficiency for timing

speculative processors. In other words, additional power scaling enabled by

architectures with smaller regular structures can outweigh the energy ben-

efits of regularity when designing a timing speculative architecture. Since

regularity-based decisions may also impact power density, yield, and perfor-

mance, the final architectural decision should consider these constraints in

addition to the optimization metric. Section 5.4 presents examples showing

that reducing the regularity of the slack distribution can provide significant

energy benefits when employing Razor-based timing speculation.

Note that [76] also advocates several choices that may affect the delay

regularity of an architecture. However, unlike [76], our goal is not necessarily

to increase slack but rather to reshape the slack and activity distributions

of a processor. Decisions advocated in [76] increase slack but also make the

slack distribution more regular. For example, when choosing the architecture

for an arithmetic unit, we might advocate selection of a ripple-carry adder

for its irregular slack distribution and lower average case delay [51], despite

its higher critical path delay. [76], on the other hand, would choose a Kogge-

Stone adder to decrease critical path delay, also making the slack distribution
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more regular.

Logic Complexity Typically, processors are architected for energy effi-

ciency during error-free operation at a single power and performance point

and are not expected to scale to other points. However, timing specula-

tive architectures achieve benefits by scaling beyond the typical operating

point to eliminate conservative design margins. The change in the shape of

the slack distribution as voltage changes depends on the delay scalability of

the paths. Therefore, unlike conventional architectures, architectures opti-

mized for timing speculation should consider the delay scalability of different

microarchitectural structures.

There are several architectural characteristics that affect delay scalability

that conventional processors ignore to varying degrees. One factor that af-

fects delay sensitivity to voltage scaling is logic complexity. In a conventional

processor, microarchitectural components are optimized largely oblivious to

complexity, as long as the optimization improves processor efficiency at the

nominal design point. However, more complex structures with more internal

connections, higher fanouts, deeper logic depth, and larger capacitance are

more sensitive to voltage scaling, potentially limiting overscaling for a timing

speculative processor.

Figure 5.7 demonstrates how the critical path delay of the ALU of the

OpenSPARC T1 [52] processor changes with voltage scaling. Path P1 is the

critical path at nominal voltage. However, the delay of P2 is more sensitive to

voltage scaling due to increased fanout. The slack distribution of a processor

with many complex logic structures becomes more critical more quickly as

voltage is scaled, limiting overscaling.

To maximize the energy efficiency benefits of timing speculation, architec-

tural decisions should be scalability-aware. For example, complex architec-

tural structures with high degree of fanout should be optimized to reduce

complexity, if possible. Similarly, less complex implementations of architec-

tural units can be chosen when performance is not significantly impacted.

Example optimizations include changing superscalar width and queue sizes –

factors that strongly influence logic complexity. The capacitance of a logic

structure also influences the rate at which delay increases with voltage reduc-

tion. If the impact on processor efficiency is acceptable, less area should be

devoted to complex and centralized structures with high internal capacitance
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Figure 5.7: Some paths are more sensitive to voltage scaling than others.
Complex logic with many high fanout paths like P2 can limit overscaling in
a timing speculative architecture.

(e.g., rename logic, wakeup/select logic, bypass logic, etc.).

Comparing the Alpha and MIPS architectures reveals again how archi-

tectural changes affect the slack distribution. Figure 5.8 compares the slack

distributions of the MIPS and Alpha processors. The MIPS slack distribution

has both higher mean and standard deviation than the distribution for the

Alpha processor, indicating reduced regularity and complexity. These fac-

tors can be attributed to reduced word length, simpler ALU design, smaller

area devoted to the register file, and a simpler, smaller instruction set, which

results in less complex control logic throughout the processor.

Utilization Modern processors consistently employ architectural tech-

niques such as pipelining, superscalar processing, and caching to improve

utilization by reducing the number of control and data hazards and mitigat-

ing long latency memory delays. In general, when designing for correctness,

architectural design choices that increase utilization are desirable, as higher

utilization of a processor core often leads to better performance. However,

architectures with highly utilized critical paths are susceptible to high error

rates, since increased activity on negative slack paths means more frequent

errors. Architectural optimizations that reduce the activity of critical paths

have the potential to reduce the error rate when timing speculation is per-

formed.

The filter architectures described in Section 5.2.1 demonstrate how changes
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Figure 5.8: The reduced regularity and complexity of the MIPS
architecture, compared to the Alpha architecture, results in a slack
distribution with greater average slack and reduced regularity.

to the architecture affect the activity distribution. Table 5.1 shows that

average path activity can be varied over a range of 6.8× by changing the

amount of parallelism used in the filter architecture.

Superscalar Width As noted above, superscalar width has a stong impact

on processor complexity [74]. In addition, changing the superscalar width can

significantly impact the activity distribution of a processor. We evaluate the

effect of changing the superscalar width of the MIPS architecture. We ob-

served that average activity increases by up to 25% for the superscalar version

of the processor, compared to the scalar version. Section 5.4 provides results

that show how architectural changes that affect the activity distribution alter

the energy efficiency of Razor-based timing speculation.

Note that activity reduction has associated costs in terms of performance

during correct operation. We do not advocate reducing activity at all costs,

but rather balancing the error rate reduction and energy efficiency benefits

of activity reduction with the throughput benefits of high utilization. Note

also that a work such as [76] is unconcerned with the activity distribution

of a processor, since the goal is to prevent errors, not to reshape the error

distribution.
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Pipeline Depth The relationship between pipeline depth and energy effi-

ciency is well understood in the context of error-free architectural design [77].

The energy-optimal pipeline depth of an architecture is reached when the

marginal benefit of adding a pipeline stage equals the marginal cost, accord-

ing to the performance/power relationship defined by the energy metric. The

benefit of increased pipeline depth is additional timing slack, which trans-

lates into increased frequency (performance) or reduced voltage (power). The

cost of increased pipeline depth is increased latch area and power, as well as

reduced throughput (IPC).

While increasing the pipeline depth can result in increased energy efficiency

for the zero error rate case, increasing the pipeline depth may also increase

the cost of error recovery, because the cost of error recovery is proportional

to the depth of the pipeline for many error recovery mechanisms [19]. Conse-

quently, the optimal pipeline depth for an error-resilient architecture is less

than the optimal depth when designing for correctness. Ignoring the over-

head of error recovery for an error-resilient architecture can result in selection

of a suboptimal pipeline depth.

We formulate an expression for the optimal pipeline depth for an error-

resilient architecture by modifying Hartstein and Puzak’s model for optimal

pipeline depth [77]. The model combines expressions for performance and

power to produce an energy efficiency metric (performance/power). Optimal

pipeline depth is found by maximizing the metric. We modify the power

and performance expressions of the original model to account for the ef-

fects of error-resilient design and operation on the pipeline. As such, the

power and delay expressions are modified to incorporate the effects of volt-

age scaling, and the performance equation is modified to include the penalty

of stalling to correct errors, according to the operating voltage and resulting

error rate. Equation 5.1 gives the performance expression for the updated

model, Equation 5.2 gives the power expression, and Equation 5.3 combines

the expressions to form the energy efficiency metric. Table 5.3 explains the

meaning of each model parameter.

T

NI

=
1

fsa
+

γhNhp

fs

+
γeepTo

NI

(5.1)
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Table 5.3: Parameters for the pipeline energy efficiency model.

T Time
NI Number of instructions
fs Frequency (fs = 1/(t0 + tp/p))
t0 Latch delay
tp Logic delay of the pipeline
p Pipeline depth
a Average degree of superscalar processing
γh Hazard recovery time as a fraction of pipeline delay
Nh Number of hazards
γe Error recovery time as a fraction of pipeline delay
e Error rate (error cycles/ total cycles)
PT Total power
fcg Clock gating factor
Pd Dynamic power
Pl Leakage power
NL Number of latches
η Latch growth factor
fv Voltage scaling factor
vo Normalized critical voltage
k Regularity factor (relates path slack to pipeline depth)
w Criticality factor (relates error acceleration to voltage)

PT = (fcgfsPdf
2

v + Plfv)NLpη (5.2)

BIPSm/W = ((T/NI)
mPT )−1 (5.3)

The equation describing the performance of an error-resilient architecture

(Equation 5.1) includes an additional term (γeepTo/NI) to model the rela-

tionship between pipeline depth and error recovery overhead. To model the

impact of voltage overscaling on processor power and reliability, we introduce

a voltage overscaling factor (fv). Dynamic power scales quadratically with

voltage, and leakage power scales linearly with voltage. The voltage scaling

factor also influences the error rate, since path delays increase as voltage

decreases. Equation 5.4 describes how the error rate increases as voltage

is scaled down. The error acceleration parameter (w) describes the rate at
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Figure 5.9: Pipelining alters the slack distribution. The highlighted
segments denote path slack. When pipeline depth increases, the lengths of
the timing paths and the amount of timing slack per stage are reduced.

which error rate increases after scaling past the critical voltage (vo).

e = min(1, ((1− fv)/(1− vo))
w) (5.4)

The critical voltage (vo) depends on pipeline depth as well. This is because

adding pipeline stages reduces not only the delay of each stage but also the

timing slack of each stage. Figure 5.9 illustrates this effect. Equation 5.5

models the dependence of vo on the length of the pipeline. In the equation,

vob denotes the normalized critical voltage for the baseline pipeline, with

depth pb. (We assume a traditional 5-stage pipeline as the baseline.) The

regularity factor (k) controls how quickly the number of negative slack paths
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(and thus error rate) grows with the number of pipeline stages. As the

pipeline depth grows larger than the baseline pipeline depth, the amount

of available timing slack decreases proportionally. Note that the equation

assumes that pipelining divides all timing paths equally. All previous works

on optimal pipeline depth make the same assumption.

vo = 1− (1− vob) ∗ (pb/p)k (5.5)

The model described above was used to evaluate the energy efficiency of

a processor architecture at different error rates and pipeline depths, in order

to find the dependence of optimal pipeline depth on an error resilience mech-

anism. Each error resilience mechanism has a different optimal error rate.

This implies that each error resilience mechanism may also have a different

optimal pipeline depth. Figure 5.10 shows how energy efficiency varies with

pipeline depth for architectures operating at different error rates. Each error

rate represents a different magnitude of power savings and a different error

recovery overhead. Notice that the optimal pipeline depth and energy effi-

ciency vary significantly depending on the error rate, demonstrating that it is

essential to take the error resilience mechanism into account when selecting

the pipeline depth of an error-resilient architecture. In practice, the actual

number of pipeline stages should be chosen not only based on the above con-

siderations, but also based on the desired performance and power targets for

nominal, error-free operation.

Different error resilience mechanisms have different error recovery over-

heads. Figure 5.11 shows the energy efficiency (normalized to the error-free

baseline), as well as the optimal pipeline depth and error rate for different

values of error recovery overhead (γe). As the recovery overhead increases,

the optimal error rate decreases. Thus, the optimal pipeline depth increases.

The data demonstrate that the optimal pipeline depth depends on the error

recovery overhead for a given error recovery mechanism, stressing the impor-

tance of taking the error recovery mechanism into account when selecting

the pipeline depth of an error-resilient architecture.
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Figure 5.11: The energy-optimal pipeline depth and error rate for an
architecture depend on the error recovery overhead (γe).

5.3 Methodology

We have developed a design flow that takes an RTL design through synthesis,

placement, routing, power estimation, timing analysis, area estimation, gate-

level simulation, and error rate measurement. Designs are implemented with

the TSMC 65GP library (65 nm), using Synopsys Design Compiler [37] for

synthesis and Cadence SoC Encounter [38] for layout. In order to evaluate

the power and performance of designs at different voltages and to provide Vth

sizing options for synthesis, Cadence Library Characterizer [78] was used to

generate low, nominal, and high Vth libraries at each voltage (Vdd) between

1.0 V and 0.5 V at 0.01 V intervals. Power, area, and timing analyses are

performed in Synopsys PrimeTime [53].

Gate-level simulation is performed with Cadence NC-Verilog [47] to gather

activity information for the design, which is subsequently used for dynamic

power estimation and error rate measurement. Please refer to Section 4.2.4

for a detailed description of error rate measurement.

In addition to inducing timing errors by increasing logic delays, voltage
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scaling may prompt reliability concerns for SRAM structures, such as insuf-

ficient static noise margin (SNM). Fortunately, the minimum energy voltage

for our processors is around 750 mV, while production-grade SRAMs have

been reported to operate reliably at voltages as low as 700 mV [79]. Re-

search prototypes have been reported to work for even lower voltages. In

any case, modern processors typically employ a “split rail” design approach,

with SRAMs operating at the lowest safe voltage for a given frequency [58].

In our evaluation of general purpose processor architectures, we run in-

struction traces from a set of eight SPEC benchmarks (ammp, art, equake,

mcf, parser, swim, twolf, wupwise) on the processors. The traces are captured

after fast-forwarding the benchmarks to their early Simpoints [59].

We model Razor-based error resilience in our evaluations (though our de-

sign principles are generally applicable to any timing speculative architec-

ture). Table 5.4 summarizes the average processor-wide static and dynamic

overheads incurred by our designs that use Razor for error detection and cor-

rection. In our design flow, we measure the percentage of die area devoted to

sequential elements as well as the timing slack (with respect to the shadow

latch clock skew of 1/2 cycle) of any short paths that need hold buffering.

When evaluating energy at the architecture level, we account for the in-

creased area and power of Razor flip-flops, hold buffering on short paths,

and implementation of the recovery mechanism. Most of the static overhead

is due to Razor FFs. Buffering overhead is small, and the availability of cells

with high and low Vth provides more control over path delay, eliminating

the need for buffering on most paths. We also add energy and throughput

overheads proportional to the error rate to account for the dynamic cost of

correcting errors over multiple cycles. We model a counterflow pipeline Razor

implementation [19] with correction overhead proportional to the number of

processor pipeline stages (P ). We conservatively replace all sequential cells

with Razor FFs. This conservative accounting measure means we can also

claim greater immunity to aging-induced errors, e.g., due to NBTI, which

can cause paths to become critical over time.

To evaluate the effects of architectural optimizations on the energy ef-

ficiency of timing speculation, we perform an exploration of the processor

design space defined by the parameters found in Table 5.5. All other param-

eters were chosen to be identical to the OpenSPARC core. Because it would

be unreasonable to write, synthesize, layout, and test custom RTL for each
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Table 5.4: Average processor-wide Razor overheads for error-tolerant
architectures.

Hold buffering Razor FF Counterflow Error Recovery
2% energy 23% energy <1% energy P cycles

Table 5.5: Design parameters and their possible values.

I/D$ kB ALU/FPU INT Q-FP Q INT/FP Regs Ld/St Q
4,8,16,32 1,2,4 32-16,64-32 64,128 32,64

of the hundreds of OpenSPARC processor configurations that we study, we

instead evaluate the power, performance, and error rate of the architectures

using a combination of gate and microarchitecture-level simulation.

To estimate the performance and power of different architectures, we use

SMTSIM [55] with Wattch [56]. We also use Wattch to report the activ-

ity factor for each microarchitectural structure in each configuration, for

each benchmark. We approximate the error rate of an architecture as the

weighted sum of error rates from each of the microarchitectural components

that we vary in our exploration. To obtain the component error rates, we

used RTL from the OpenSPARC T1 processor [52]. We modified the exist-

ing OpenSPARC module descriptions to create an RTL description for each

component configuration in Table 5.5 and used our detailed design flow, as

described above, to measure error rate and power at different voltages. Error

rate at the architecture level is given by the sum of the component error

rates, where each component error rate is weighted by the activity factor

captured during architecture-level simulation. While this error rate estima-

tion technique is not as accurate as our design-level technique, it provides

suitable accuracy to study the error behavior of many architectures without

requiring full gate-level evaluations of many complex architectures.

5.4 Experimental Results

In Section 4.1.1, we showed how the slack and activity distributions deter-

mine the error rate. In Section 5.2, we showed how architecture influences

the slack and activity distributions. In this section, we demonstrate that

architectural optimizations can significantly improve the energy efficiency of
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timing speculation, first for simple DSP filter architectures, and then for

general purpose processor cores (Alpha, MIPS, and OpenSPARC).

5.4.1 DSP Filter Architectures

First, we compare the filters with respect to different energy efficiency metrics

over a range of error rates to observe how the optimal architecture changes

for error-free and error-resilient operation. Figure 5.12 compares the filter

architectures in terms of power-delay product. The low capacitance, shorter

paths, and highly regular slack distribution of the pipelined architecture al-

low it to achieve better energy efficiency for error-free operation. However,

the clustering of path delays in the pipelined design causes the error rate

to increase rapidly once errors begin to occur. Thus, power savings quickly

level off for the pipelined architecture. Consequently, the blocked architec-

ture becomes more energy efficient at moderate error rates. While higher

complexity and deeper logic depth limit the amount of voltage scaling for

correct operation with the blocked architecture, low activity allows the er-

ror rate of the filter to stay lower longer as voltage is reduced, enabling an

extended range of power savings for the blocked design. The baseline and

folded architectures do not minimize energy over any range of error rates,

due to the high activity and regularity of the folded architecture and the

increased sensitivity to voltage scaling of the baseline (without the benefit of

reduced activity that the blocked architecture has).

The choice of the efficiency metric (which expresses the relative importance

of power and performance to the architect) influences which architecture is

most efficient at different error rates. Figure 5.13 compares the filters in

terms of power efficiency. Both the pipelined and folded architectures are

approximately the same in terms of sensitivity to voltage scaling and regu-

larity. The pipelined filter has the best power efficiency for low error rates,

due to extra slack afforded by the increased regularity of the slack distri-

bution. This extra slack enables more scalability before the onset of errors.

However, regularity results in a steep increase in the error rate, allowing the

folded architecture to gain the power efficiency edge for mid-range error rates.

The folded architecture has reduced complexity, fewer paths, and less fanout,

resulting in the best scalability of any architecture. It also has low power
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Figure 5.12: Energy efficiency comparison showing crossovers between filter
architectures for different voltage overscaling-induced error rates.
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Figure 5.13: Power efficiency comparison showing crossovers between filter
architectures for different voltage overscaling-induced error rates.
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consumption due to simple logic and low area (Figure 5.3). Nevertheless,

though it has better scalability and low power, once it starts making errors,

its error rate increases dramatically, due to increased activity. This behavior

allows the block filter, with reduced activity, to take the lead at high error

rates.

Figure 5.14 compares the energy consumption of Razor implementations of

the filter architectures. While the pipelined architecture has the best energy

efficiency for error-free operation, the blocked architecture consumes the least

energy for Razor-based timing speculation (29% less energy than the error-

free pipelined filter). The reduced activity of the blocked filter allows more

voltage scaling before the energy-optimal error rate for Razor is reached.

Furthermore, the blocked filter, having fewer flip-flops and pipeline stages,

has reduced implementation and recovery overheads for Razor, making it

a more efficient choice for exploiting error resilience. Note that other filter

architectures, including the optimal architecture for correct operation, do not

achieve energy reduction with Razor, either due to static overheads (Razor

flip-flops and buffering of short paths) or dynamic overheads (power and

energy costs of error recovery). This result demonstrates the importance of

timing speculation-aware architectural optimization techniques.

To summarize, our experiments with different DSP filter architectures val-

idate our claim that the optimal architecture for correctness may not be

efficient for exploiting timing error resilience. The results also confirm that

architectural optimizations that alter the slack and activity distributions have

the potential to increase the energy efficiency of timing speculation.

5.4.2 General Purpose Processor Architectures

In this section, we evaluate how changes to Alpha, MIPS, and FabScalar

architectures that affect their slack and activity distributions (as described

in Section 5.2.2) influence their energy efficiency for timing speculation. Fig-

ure 5.15 compares the energy efficiency of the Alpha processor for varying

register file sizes. The design with a larger register file has higher throughput

and better energy efficiency when both processors operate error-free. How-

ever, the higher average path delay and path delay regularity associated with

the larger register file hinder voltage scaling and energy efficiency at non-zero
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4-tap FIR Filter with Razor

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

0.50.60.70.80.91
Voltage (V)

E
n

er
g

y 
(J

)  
.

Baseline Pipelined Folded Block

Error Free M in Energy

Error Resilient M in Energy

Figure 5.14: Minimum energy for correct operation (denoted by the dotted
line) is achieved with the pipelined architecture. When Razor is used to
enable timing speculation, the blocked architecture minimizes energy,
demonstrating that the architecture that minimizes energy by exploiting
error resilience is different than the optimal architecture for error-free
operation.
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Alpha Core Varying Register File Size
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Figure 5.15: A larger register file increases performance, but also results in
increased regularity and activity, hindering voltage scaling and energy
efficiency at larger error rates.

error rates. Furthermore, high performance corresponds to higher activity,

which causes error rate to increase more quickly for the processor with the

larger register file.

Because of the higher throughput of the 32-register design, there is a small

range of error rates over which the 32-register design regains the efficiency

advantage when the many regular paths in the 16-entry register file begin to

have negative slack, and error rate begins to increase more rapidly. However,

the design with fewer registers is able to scale to a much lower voltage for

higher error rates because of its lower activity, increased average slack, and

more gradually increasing error rate resulting from reduced regularity of the

slack distribution.

Figure 5.16 shows energy consumption for the Alpha core with Razor-

based timing speculation, confirming that the architecture with a smaller

register file exploits timing error resilience more efficiently. The 16-register

architecture reduces energy by 21% with respect to the optimal architec-

ture for correctness, while the optimal error-free architecture barely procures

any energy savings (2%) when using Razor. Again, we observe significantly

improved benefits from optimizing the architecture to exploit timing error

resilience while the optimal error-free architecture sees only a small energy

reduction with timing speculation.
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Figure 5.16: The 16-register design, having reduced regularity and activity,
achieves significant energy savings with Razor, while the 32-register design,
which was optimal for correct operation, achieves almost no benefit.

We evaluated the energy efficiency of the MIPS processor at different er-

ror rates when the superscalar width (and number of ALUs) was increased.

The main effect on the error rate from increasing the superscalar width of

the processor is due to increased activity. Not only does this architectural

change increase the throughput (and thus the activity factor) of the proces-

sor, increasing the superscalar width also increases the number of paths that

are active when the processor is able to exploit ILP on multiple ALUs.

Figure 5.17 compares a single-ALU version of the MIPS architecture against

one with two ALUs. The multiple-ALU architecture has better energy effi-

ciency for correct operation due to increased throughput (up to 21% through-

put reduction for the scalar case, 13% on average). However, when operating

at non-zero error rates, the increased activity and complexity of the multiple-

ALU architecture causes the error rate to increase more rapidly, limiting volt-

age scaling for higher error rates. More instructions per cycle means more

errors per cycle, and more active ALUs means more paths causing errors

when voltage is scaled down. The higher activity of the multiple-ALU ar-

chitecture makes the single-ALU architecture more energy-efficient for most

non-zero error rates.

Figure 5.18 confirms that the scalar design exploits timing error resilience
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Figure 5.17: Increased throughput for the multiple-ALU architecture
results in better energy efficiency for error-free operation, but increased
activity results in worse efficiency at most non-zero error rates.

more efficiently. Whereas the superscalar pipeline achieves better energy ef-

ficiency for correct operation, increased complexity and activity, along with

increased implementation and recovery overheads for Razor, prevent the

multiple-ALU architecture from achieving energy benefits with Razor. The

single-ALU architecture has a more gradually increasing error rate, allowing

extended voltage scalability and an 18% energy reduction with respect to the

energy-optimal architecture for correctness.

To evaluate the potential benefits of manipulating the pipeline depth of

an error-resilient processor, we would like to explore optimal pipelining for

an entire processor core. However, writing RTL for an entire processor for

different pipeline depths is a challenging and time-consuming task. As far as

we know, no open source processor RTL exists in which the pipeline depth

can be scaled arbitrarily. The closest approximation we found is FabScalar,

in which certain pipeline stages can be subdivided into multiple stages. We

evaluate the effects of manipulating the pipeline depth in an error-resilient

FabScalar processor by comparing versions of the pipeline with issue depths

1 and 2. The issue stage has by far the most critical paths in the FabScalar

processor.

Figure 5.19 compares the energy efficiency of the pipelines with issue depth

(ID) 1 and 2 at different error rates. For correct operation, the ID 2 pipeline
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Figure 5.18: The more complex superscalar architecture has throughput
and energy benefits for error-free operation but fails to achieve any energy
savings with Razor-based timing speculation. The simpler, scalar design
achieves substantial energy savings with Razor.

has 9% better energy efficiency, because increasing the pipeline depth of

the issue stage allows the pipeline to be optimized for a higher frequency

(or lower voltage), and achieve higher throughput (or lower power). As

voltage is scaled down, however, the error rate of the ID 2 pipeline increases

more quickly. This is because dividing a path with a pipeline latch not only

partitions its logic between two stages, it also partitions the path’s timing

slack between two stages. Thus, pipelining reduces the average amount of

timing slack in the pipelined stages, so that more paths fail sooner when

voltage is scaled down. Due to the steeper increase of error rate in the ID 2

pipeline, the ID 1 pipeline has better energy efficiency at higher error rates.

Figure 5.20 compares the energy of the ID 1 and ID 2 pipelines with

Razor. The ID 1 pipeline consumes 13% less energy with Razor than the ID

2 pipeline. This is due to two factors. First, as discussed above, the error

rate of the ID 2 pipeline increases faster as voltage is scaled down, resulting

in less voltage overscaling when Razor is used. Second, the ID 2 pipeline

has a higher average error recovery cost, due to the increased average cost of

pipeline flushing during error correction. These results confirm that ignoring

the error resilience mechanism when selecting the pipeline depth of an error-
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Figure 5.19: Increased pipeline depth enables the ID 2 pipeline to achieve
higher energy efficiency for correct operation. However, increased pipeline
depth causes the error rate to increase more quickly, and the ID 1 pipeline
has better energy efficiency for higher error rates.

resilient processor can lead to energy inefficiency. An error-resilient processor

should use a shallower pipeline depth than a processor that does not exploit

error resilience. We expect the potential benefits of optimizing the pipeline

depth to increase with more flexibility in the available pipeline depth.

To summarize, our experimental results with Alpha, MIPS, and FabScalar

cores further confirm the benefits of architecting to exploit timing error re-

silience and demonstrate that architectures that have been optimized for

energy-efficient error-free operation see little or no energy benefits when ex-

ploiting timing speculation. These results re-confirm that changing the slack

and activity distributions with architectural optimizations can improve the

energy efficiency of timing speculation.

5.4.3 Design Space Exploration for OpenSPARC

In the previous section, we performed analyses of various architectural op-

timizations to validate our insights on resilience-optimized architectures. In

this section, we present an exploration of the design space for resilience-

optimized general purpose processor architectures to further confirm that

the benefits of exploiting error resilience can be significantly enhanced by

optimizing the architecture for timing speculation.

In our exploration, we evaluated nearly 400 architectural configurations by
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Figure 5.20: The shallower pipeline (ID 1) achieves better energy efficiency
with Razor, due to lower error recovery overhead and more gradual error
rate increase, afforded by increased slack.

varying instruction and data cache sizes (ic, dc), the number of integer and

floating point functional units (alu), instruction queue size (q), the number

of physical registers (reg), and the size of the load-store queue (lsq). A tuple

(ic, dc, alu, q, reg, lsq) denotes the parameters of a particular architecture of

interest. For each architecture, we estimated power, performance, and error

rate as described in Section 5.3 and used these data to characterize energy

consumption of the architectures at different error rates.

Figure 5.21 compares the energy efficiency of three architectures that

emerged as the optimal design points for different ranges of error rates. The

optimal architecture for error-free operation (ic8, dc16, alu1, q32, reg128, lsq64)

has a moderate instruction cache size, larger data cache, and maximum sizes

for queues and register files. For error-free operation, this configuration

achieves good performance and has low power, making it the energy-optimal

architecture. However, the large cache and register file sizes result in a highly

regular slack distribution, so that many paths fail in groups as voltage is

scaled. The increased complexity and deeper logic of large instruction and

load-store queues, while increasing performance, also makes the architecture

fail sooner with overscaling.

For low to mid-range error rates, a different energy-optimal architecture

(ic8, dc8, alu1, q32, reg128, lsq32) emerges. This architecture has a smaller

data cache and load-store queue, resulting in reduced regularity and com-

plexity. The immediate effect of increased spread and average slack in the
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slack distribution is that voltage can be scaled further before the error rate

begins to increase dramatically, resulting in more power savings for timing

speculation before reaching an energy-optimal error rate. When operating

at low to mid-range error rates, the resilience-optimized architecture has 6%

energy (W/IPC) benefits over the optimal error-free architecture. Energy

reduction is mainly due to enhanced power scaling (15% power reduction,

on average), since throughput is reduced by 7% with respect to the optimal

error-free architecture. Thus, energy benefits will increase for a metric that

weights power more heavily.

Note that compared to the optimal error-free architecture, the optimal for

low to mid-range error rates decreases the size of the load-store queue (LSQ),

but not the instruction queue. This is primarily because the LSQ becomes

full more often than the IQ, resulting in a longer dynamic critical path that

limits voltage scaling. To a second degree, the size of the instruction queue

also has a more pronounced effect on performance.

For higher error rates (around 6% and up), an architecture with minimum-

sized data cache and register file (ic8, dc4, alu1, q16, reg64, lsq32) consumes

the least energy. In addition to the significantly reduced regularity of the

slack distribution (reduced area devoted to regular structures and reduced

criticality of regular structures), this architecture also has small queue sizes

with decreased complexity and better scalability. The throughput of this

architecture is an additional 27% lower than the correctness-optimized base-

line; however, the corresponding reduced activity actually has some benefit

in terms of energy, since it results in a more gradually increasing error rate

as voltage is reduced. The optimal architecture for higher error rates has the

most gradually increasing error rate, enabling significant voltage scaling and

an average of 38% energy reduction at higher error rates with respect to the

optimal error-free architecture.

Graceful failure in the presence of overscaling translates into a lower dy-

namic energy overhead when exploiting Razor-based timing speculation. Fig-

ure 5.22 echoes the results of our previous experiments, showing that the

optimal architecture for correctness achieves only minor (5%) energy bene-

fits with Razor, while the resilience-optimized architecture reduces energy by

25% with respect to the error-free minimum energy.

Since resilience-optimized architectures typically reduce the sizes of regular

structures like caches and use simpler architectural features that may throttle
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Figure 5.21: The energy-optimal architecture is different for different ranges
of voltage overscaling-induced error rates.
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Figure 5.22: The resilience-optimized architecture achieves significant
energy savings with Razor, while the optimal error-free architecture sees
only minor benefits.
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Table 5.6: Throughput reduction for resilience-aware optimizations.

REG (32→ 16) ALU (2→ 1) OpenSPARC
6% 21% 27%

ILP, they may sacrifice some throughput in order to reduce energy. Table 5.6

shows throughput reduction for the resilience-aware optimizations we evalu-

ated in this section. Since we employed voltage overscaling, we demonstrate

power and energy savings at the expense of some throughput. Note, however,

that we could also demonstrate performance gains by overscaling frequency

rather than voltage.

5.5 Related Work

The slack and activity distributions of a processor influence the error rate and

the efficiency of timing speculation. Furthermore, architectural optimizations

have the potential to alter the slack and activity distributions to increase the

energy efficiency of timing speculation.

Some related work [80] proposes using different arithmetic architectures for

stochastic computing, enabled by changing the representation of data. Build-

ing upon von Neumann’s formulation of stochastic computing (discussed in

Section 2.1) that uses stochastic bitstrings to represent numbers, [80] ob-

serves that operations like multiplication and addition can be performed

approximately with much simpler binary logic when variables are encoded

as probabilities. However, such formulations simply perform approximate

computing on deterministic logic and miss one of the fundamental drivers

for our vision of stochastic computing – the fact that hardware is inherently

non-deterministic and faking determinism is expensive.

A related body of work, discussed in Chapter 4, exists at the level of de-

sign techniques that optimize circuit modules for a target error rate [48] or to

fail gracefully in response to voltage overscaling [32, 33] through cell-based

optimizations. Whereas these design-level techniques reshape the slack dis-

tribution or reliability of a circuit module, the architecture-level techniques

presented in this chapter target both the slack and activity distributions of

a processor. Also, architecture-level optimizations can have a greater impact

on the slack distribution of a processor, since for a design-level technique,
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the microarchitecture and synthesized netlist are fixed, and the ability of cell

sizing to reshape path slack may be limited. A promising direction of work

is to investigate co-optimization at the architecture and design levels to re-

shape the slack and activity distributions and maximize the energy efficiency

benefits provided at each level.

Another relevant related work [76] explores microarchitectural parameter

selection to optimize processor performance in the presence of process varia-

tions. The authors aim to reduce performance loss due to process variations

by adding slack to the critical paths of a processor where possible. However,

unlike our work, [76] attempts to prevent the onset of errors; they are not

concerned with the activity distribution of the processor or scalability after

the point where errors begin to occur. Our work, on the other hand, focuses

on the error rate distribution. Since the authors of [76] are only concerned

with correct operation, they have no reason to consider the activity distri-

bution of a processor or the shape of the slack distribution. We consider

all these factors in our approach to architecture, since they determine the

energy benefits achievable through the exploitation of timing speculation

While this chapter focuses primarily on how to optimize microarchitec-

ture to improve energy efficiency at a non-zero error rate, other works have

presented system architecture frameworks for exploiting application-level er-

ror resilience, which might enable a processor to operate at a non-zero error

rate. ERSA [30] is an asymmetric multi-core architecture that contains cores

with varying degrees of reliability. Each core belongs to one of two classes

– super or strict-reliability cores (SRC) or relaxed-reliability cores (RRC).

Typically, a single SRC is responsible for maintaining acceptable behavior

for the processor. The SRC executes control-intensive code that is not tol-

erant to errors, schedules tasks on the RRCs, and checks for errors resulting

from illegal memory accesses and timeouts of the RRCs

The RRCs are designed for reduced reliability targets, perhaps employing

some of the techniques discussed in the previous section. These cores are the

main source of throughput for an ERSA multi-core. Because of their relaxed

correctness constraints, RRCs may be significantly less demanding of system

or design resources than their counterpart SRCs. To enhance the feasibility

of computing primarily on RRCs, software designed for ERSA should be built

around error-resilient algorithms.

Work has been proposed to address the problem of task scheduling and
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mapping on heterogeneous multi-core processors [81]. Such work is relevant

to stochastic computing in that one axis of heterogeneity between cores may

be reliability. The authors of [81] seek to achieve performance and energy

efficiency by assessing the differences between tasks and between cores and

finding the task-to-core mapping that optimizes a given efficiency metric.

Using a graph-based program representation called system-level instruction

set architecture (SISA), [81] proposes to facilitate the task of mapping tasks

to heterogeneous cores that typically have different ISAs. SISA represents

programs as graphs with application characteristics such as data commu-

nication, length of computational tasks, reliability requirements, and task

dependency. This representation allows for pre-running of tasks to identify

the most efficient core on which to execute and dynamic task management

to improve scheduling efficiency. SISA performs static scheduling based on

integer linear programming.

5.6 Summary

The energy inefficiencies of traditional, conservative design approaches have

led to the introduction of error-resilient design techniques that relax correct-

ness in order to save power and energy. Until now, these design techniques

have been applied to architectures that have been optimized for correctness.

This dissertation demonstrates that the energy-optimal error-free architec-

ture may not be the optimal architecture for exploiting timing error resilience.

In other words, one would make different, sometimes counterintuitive, archi-

tectural design choices when optimizing a processor to exploit timing specu-

lation than when optimizing for correct operation. Consequently, the desired

error rate and the error resilience mechanism should be taken into account

when choosing the architecture for a timing speculative design. In addi-

tion to characterizing the effects of architectural optimizations on the slack

and activity distributions, we have demonstrated that the optimizations can

change the error rate behavior. Furthermore, we have demonstrated with

experimental results for several DSP filter and general purpose architectures

that optimizing architecture to exploit timing error resilience can signifi-

cantly increase the energy efficiency of timing speculation. Energy efficiency

benefits of up to 29% are achieved for Razor-based timing speculation.
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CHAPTER 6

BINARY OPTIMIZATION FOR

PROGRAMMABLE STOCHASTIC

PROCESSORS

In this chapter, we advocate that binaries for timing speculative proces-

sors should be optimized differently than those for conventional processors

to maximize the energy benefits of timing speculation. Since the program

binary determines the utilization pattern of the processor, which in turn in-

fluences the error rate of the processor and the energy efficiency of timing

speculation, binary optimizations for timing speculative processors should

attempt to manipulate the utilization of different microarchitectural units

based on their likelihood of causing errors. An exploration of targeted and

standard compiler optimizations demonstrates that significant energy bene-

fits are possible from timing speculation-aware binary optimization.

6.1 Introduction

Previous evaluations of the energy efficiency benefits of timing speculation

have been based either on code compiled for a traditional target [19] – a

processor that produces no errors – or code that relies on instruction set

extensions and additional hardware support [82]. For example, [82] advo-

cates the use of instruction set extensions whose circuit implementations

have shorter critical paths. Unfortunately, physical design tools render most

pipeline stages critical in power-optimized processors [27, 32], reducing the

effectiveness of such approaches. Also, instruction set extensions may not be

feasible in many settings.

In this chapter, we make a case for compiling differently for timing specu-

lative processors in a way that increases energy efficiency without additional

hardware support or instruction set extensions. To motivate our approach,

we first reiterate the nature of benefits afforded by timing speculation (TS).

The magnitude of energy efficiency benefits available from exploiting TS de-
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pends on two factors – (a) where and (b) how often the processor produces

errors when operating at an overscaled voltage or frequency. (For more de-

tails, see Section 4.1.1.) The path slack distribution of a timing speculative

processor determines which paths do not meet timing constraints (negative

slack paths) and thus cause errors when they are toggled. Likewise, the ac-

tivity distribution of the processor describes how often paths are toggled,

and thus determines the frequency of errors caused by a path when it has

negative slack. Together, the slack and activity distributions dictate the er-

ror distribution of a processor, i.e., the locations and frequencies of errors

produced in an overscaled processor.

Previous chapters have demonstrated that modifying the slack distribu-

tion (where errors are produced) can increase the energy efficiency of a timing

speculative design [33, 48, 63, 64, 83]. We make a case for timing speculation-

aware binary optimization by showing that even when the processor design

and architecture are fixed (even if they are already optimized for a non-zero

error rate), compiler optimizations can be used to modify the activity distri-

bution (how often errors are produced) of a processor to enable more energy

reduction for a non-zero error rate. Since the program binary, in conjunction

with the processor architecture, determines a processor’s activity distribu-

tion (which paths will be exercised and how often they will be exercised),

optimizing a program binary can change the error rate behavior of the pro-

cessor to improve the energy reduction afforded by timing speculation. For

example, binary optimizations can be used to change the set of frequently ex-

ercised paths in a processor to avoid activating the longest paths. Since these

paths are the first to have negative slack when the processor is overscaled,

throttling their activity reduces early onset timing violations, enabling more

overscaling and, consequently, lower energy for a given error rate. Similarly,

binary optimizations can be used to reduce error rate by throttling activity

in structures of the processor that cause the most errors. Other possibilities

include optimizations to overlap errors in a single cycle to reduce the effective

errors per cycle and optimizations to redistribute errors in the processors to

reduce the effective error recovery overhead. For the case of voltage over-

scaling, all these optimizations have the effect of reducing the error rate for

a given voltage, enabling the processor to operate at a lower voltage for a

given error rate.

This chapter on timing speculation-aware binary optimization makes the
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following contributions.

• We show that the activity distribution of a processor, and, by extension,

the error distribution, can be altered through binary optimizations.

• We demonstrate that the energy efficiency of timing speculative pro-

cessors can be improved by altering their activity distributions through

binary optimizations without any additional hardware support.

• Through careful analysis of the main factors that influence processor er-

ror rate, we show that several optimizations that are already supported

by existing compilers can improve the energy efficiency of TS.

• We quantify the energy savings from targeted and standard binary

optimizations for a family of timing speculative processor architectures.

We observe up to 39% additional energy savings from TS-aware binary

optimization for a Razor-based processor.

The rest of this chapter is organized as follows. Section 6.2 describes

the family of processor architectures that we use for developing specific com-

piler optimizations. Section 6.3 describes our experimental methodology.

Section 6.4 discusses specific compiler optimizations and quantifies energy

benefits provided by TS-aware compilation. Section 6.5 discusses related

work. Section 6.6 summarizes the chapter.

6.2 Baseline Architecture

Which optimizations are most effective for a processor depend on which pro-

cessor modules cause the most errors. In this section, we describe the family

of processor architectures we study to develop binary optimization strate-

gies and identify their error-critical modules. We also discuss how the error

criticality of modules may depend on program characteristics.

6.2.1 FabScalar Architecture

We use the FabScalar [73] framework for our architectural evaluations. Fab-

Scalar is a parameterizable, synthesizable processor specification that allows
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Figure 6.1: The FabScalar Pipeline. [73]

for the generation and simulation of RTL descriptions for arbitrarily config-

ured scalar and superscalar processor architectures. FabScalar allows for the

configuration of many microarchitectural parameters, including superscalar

width (ss), fetch width and depth (fw, fd), numbers and types of functional

units, issue width and depth (iw, id), issue queue size (iq), select logic depth

(sel), register file depth (rrd), re-order buffer entries (rob), physical regis-

ters (reg), and load and store queue sizes (lsq). In this chapter, we study a

family of superscalar processors by selecting interesting candidates from the

available configurations space of FabScalar. Figure 6.1 shows the FabScalar

pipeline.

6.2.2 Error Criticality Analysis

Different pipeline stages cause errors at different rates, depending on their

slack and activity distributions. Figure 6.2 shows the static slack distribu-

tions for the pipeline stages that cause the most errors. While our highly

optimized design flow removes excess slack in all stages, two stages in partic-

ular – the issue queue (IQ) and the load-store unit (LSU) – have the highest

number of critical paths. Based on Figure 6.2, one might expect that the

IQ, having many more critical paths than all other modules combined, would

produce the most errors in the processor. However, the static slack distri-

bution only shows the potential for paths to cause errors. Not all stages

exercise their critical paths often. Stages with frequently exercised critical

paths cause the most errors. In Figure 6.3, we create activity-weighted, dy-

namic slack distributions by showing the sum of toggle rates for all the paths

at each value of timing slack (activity from SPEC benchmarks). The more

timing critical activity a module has, the more errors it is likely to cause.

From Figure 6.3, it is clear that the LSU dominates the error distribution of

the processor.
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Figure 6.2: The static slack distributions for the pipeline stages show how
many critical paths they have but do not provide information about how
often the paths toggle, which is essential in characterizing error rate.
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Figure 6.3: The activity-weighted (dynamic) slack distributions for different
pipeline stages indicate how much timing critical activity they exhibit and,
by extension, how frequently they will produce errors for a given level of
overscaling – i.e., a given (voltage, frequency) pair.
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Figure 6.4: Memory disambiguation is on the critical path of the LSU [73].
The path delay is longest when store-to-load forwarding is required, since
this necessitates an access to the SQ data RAM, in addition to the other
disambiguation operations.

6.2.3 Program Dependence of Error Criticality

As demonstrated in the previous section, the LSU and, secondarily, the IQ

are the primary sources of timing violations for the family of processor ar-

chitectures that we studied. Below, we describe the implementation of the

LSU and the IQ in the FabScalar processor to understand the dependence of

error rate on program characteristics.

The LSU (Figure 6.4) performs memory disambiguation for the processor.

This involves checking for dependencies between loads and stores. After

address resolution, a store must search the address CAM of the LQ and

process all entries with matching addresses to determine if any load issued

out of order and broke a RAW dependence. Load disambiguation is more

complicated because it may include store-to-load forwarding. In addition to

a search through the SQ address CAM, a load must generate a mask vector

indicating all preceding stores in program order. Matching entries from the

CAM search are filtered by the mask vector, and the latest resulting entry,

if any, forwards data from the SQ data RAM to the load.

LSU delay depends on program characteristics for several reasons. The

primary reason is that the store-to-load forwarding path is on the static

critical path of the LSU. Since many RAW dependencies in a code lead to

more forwarding, the timing error rate will be higher for code with a relatively

large number of RAW dependencies. Program characteristics also determine

the utilization of the LQ and the SQ, which, in turn, dictates access delays

for the structures. For example, when the LQ or SQ are nearly full, as may be

common for memory-centric codes, more entries must be accessed in a single
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Figure 6.5: Since forwarding paths are critical in the LSU, eliminating
dependencies and the need for store-to-load forwarding reduces activity on
the critical paths of the LSU.

cycle to generate mask vectors, increasing the length of the propagation

path and, consequently, increasing delay. Additionally, when there are many

dependencies between memory operations, address CAM searches generate

many hits, increasing load capacitance and delay for the CAM access. Finally,

propagation delay increases when many hits are signaled in parallel (due to

many potential dependencies), since the average length of the propagation

path from the CAM entries to the port increases. Hence, the average delay

is higher for memory-centric codes with a large number of dependencies.

We confirmed that the forwarding paths are timing critical in the LSU, and

that more dependencies result in activation of longer paths, by observing the

activity-weighted (dynamic) slack distribution of the LSU for two different

instruction streams (Figure 6.5). The first contains a stream of memory

operations that access the same address. Each load depends on the previous

store and activates the forwarding paths in the LSU. In the second stream,

the dependencies are removed. Figure 6.5 demonstrates that activity on

the critical paths of the LSU is greatly reduced when the dependencies are

removed and forwarding is not required.

The wakeup-select logic used in the IQ is similar in nature to the memory

disambiguation logic in the LSU. For example, wakeup consists of finding all

instructions that depend on the destination register of another instruction.

This CAM-based dependence check in the IQ is performed in much the same

way as the dependence checks in the LSQ. Likewise, select logic, which selects
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a ready, waiting instruction to execute is somewhat akin to the masking

logic that identifies valid, conflicting stores for forwarding. Because of their

similarities, the LSU and IQ have similar timing considerations.

6.3 Methodology

To understand the impact of different binary optimizations on the error be-

havior and energy efficiency of different processor architectures, we used a

detailed methodology that carefully models the relationships between execu-

tion behavior, power, performance, and reliability. Designs are implemented

with the TSMC 65GP library (65 nm), using Synopsys Design Compiler for

synthesis and Cadence SoC Encounter for layout. In order to evaluate the

power and performance of designs at different voltages and to provide Vth

sizing options for synthesis, Cadence Library Characterizer was used to gen-

erate low, nominal, and high Vth libraries at each voltage (Vdd) between 1.0 V

and 0.5 V at 0.01 V intervals. Designs are implemented at 500 MHz. Power,

area, and timing analyses are performed in Synopsys PrimeTime. Gate-level

simulation is performed with Cadence NC-Verilog to gather activity informa-

tion for the design, which is subsequently used for dynamic power estimation

and error rate measurement. Please refer to Section 4.2.4 for a detailed

description of error rate measurement.

In addition to inducing timing errors by increasing logic delays, voltage

scaling may prompt reliability concerns for SRAM structures, such as insuf-

ficient static noise margin (SNM). Fortunately, the minimum energy voltage

for our processors is around 750 mV, while production-grade SRAMs have

been reported to operate reliably at voltages as low as 700 mV [79]. Re-

search prototypes have been reported to work for even lower voltages. In

any case, modern processors typically employ a “split rail” design approach,

with SRAMs operating at the lowest safe voltage for a given frequency [58].

In our evaluations, we compile and run several microbenchmarks to demon-

strate architecture-specific TS-aware optimizations. We also run instruction

traces from the SPEC benchmark suite (bzip, gap, mcf, parser, vortex), after

fast-forwarding the benchmarks to their Simpoints [59]. All benchmarks are

compiled with gcc-2.7.2.3 (SPEC benchmarks and gcc version correspond to

those supported by FabScalar).
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Table 6.1: Average processor-wide Razor overheads.

Hold buffering Razor FF Counterflow Error recovery
2% energy 23% energy <1% energy P cycles

We model Razor-based error resilience [19] in this chapter (though our

proposed techniques are generally applicable to any timing error-resilient

processor). Table 6.1 summarizes the processor-wide static and dynamic

overheads of Razor-based error detection and correction. In our design flow,

we measure the percentage of die area devoted to sequential elements, as

well as the timing slack (with respect to the shadow latch clock skew of

1/2 cycle) of any short paths that need hold buffering. When evaluating

energy at the processor level, we account for the increased area and power

of Razor flip-flops, hold buffering on short paths, and implementation of

the recovery mechanism. Most of the static overhead is due to Razor FFs.

Buffering overhead is small, and the availability of cells with high and low

Vth provides more control over path delay, eliminating the need for buffering

on most paths. We also add energy and throughput overheads proportional

to the error rate to account for the dynamic cost of correcting errors over

multiple cycles. We use a counterflow pipeline Razor implementation [19]

with correction overhead proportional to the number of processor pipeline

stages (P ). We conservatively replace all sequential cells with Razor FFs.

6.4 Experimental Results

We now discuss different architecture-specific binary optimizations that may

increase the efficiency of timing speculative processors. The proposed opti-

mizations are primarily geared toward error avoidance in the LSU and IQ.

We first discuss targeted loop-based optimizations and quantify their bene-

fits through the use of microbenchmarks. Then, we evaluate the benefits of

combining standard gcc optimizations using O levels for SPEC benchmarks.

6.4.1 Targeted Optimizations for TS Processors

Loop Unrolling : As described above (Section 6.2), activity on the static

critical paths of the LSU can be reduced by avoiding dependent memory
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operations and scenarios that cause the LSQ to fill up. This can enable

significantly deeper voltage overscaling, since the LSU is often the source of

many timing violations.

Loop unrolling is a classic compiler optimization that can eliminate and

spread out loop carried dependencies, and thus has the potential to reduce

LSU delay. Normally, unrolling would only be used when spin up and spin

down costs are overcome by reducing the number of executed instructions.

However, TS-aware compilation provides a new use for unrolling – avoid-

ing errors to increase the efficiency of TS by grouping often independent

instructions (like vector math) and eliminating often dependent instructions

(like branches and loop index updates). Unrolling also allows optimization

of register allocation over multiple loop iterations that can eliminate load

and store disambiguation, thus reducing pressure on the LSU. Unrolling can

also reduce pressure on the branch resolution unit and arithmetic unit, since

the number and frequency of branch instructions and loop index updates are

reduced. Thus, in addition to fostering critical path avoidance by reducing

dependencies, loop unrolling can also be an agent for activity throttling.

Unrolling can cause binary size to increase, which may reduce instruc-

tion cache efficiency and may be undesirable in some embedded processors.

Unrolling may also cause an increase in dynamic power. When exploiting

TS-aware binary optimization, it is important to consider the impact on

performance and power, as well as energy efficiency.

Figure 6.6 shows an example of loop unrolling by a factor of four. Fig-

ure 6.7 shows the error rate of the processor when executing the two code

sequences of Figure 6.6. Unrolling significantly reduces the error rate by

reducing activity on the forwarding paths in the LSU. This error rate re-

duction enables additional overscaling and results in a substantial energy

reduction for a Razor-based TS processor, as shown in Table 6.2. Microar-

chitectural parameters not specified in Table 6.2 are iq=16, rob=64, reg=64,

lsq=8+8=16.

In the error-free case, the same unrolled loop causes dynamic power to

increase significantly, even as it increases throughput. Thus, unrolling has

the potential to reduce error rate but may also increase power for a conven-

tional processor where TS is not allowed. So, most energy-efficient binary

optimization depends on whether the target uses TS. This demonstrates the

need for TS-aware compiler analysis and optimization.
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for(i=0; i<N; i++)

sum += A[i];

for(i=0; i<N; i+=4){

sum1 += A[i];

sum2 += A[i+1];

sum3 += A[i+2];

sum4 += A[i+3];

}

sum=sum1+sum2+sum3+sum4;

Figure 6.6: Original loop (left) and unrolled loop (right).
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Figure 6.7: Loop unrolling reduces activity on LSU forwarding paths,
resulting in a significant error rate reduction.

Table 6.2: Razor-based TS and error-free energy savings (%) for loop
unrolling. (ss = superscalar width)

CORE original unrolled unrolled error-free
ss1 11.8 43.1 1.6
ss2 6.4 20.8 2.0
ss4 4.0 42.9 3.2
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Balancing Instruction-Level Parallelism : In an out-of-order proces-

sor, instructions are dispatched to the processor backend as long as there is

available space in the appropriate backend structures, namely, the reorder

buffer (ROB), IQ, and LSQ. However, when there are not enough execution

units to handle ready, waiting instructions, backend structures fill up and

remain full. As discussed above, this leads to longer propagation delays for

these structures – especially for queues.

Thus, we observe that when hardware parallelism is limited, optimizing the

binary to promote software parallelism can actually increase energy in a tim-

ing speculative processor by increasing logic delay and limiting overscaling.

Consequently, when hardware parallelism is limited, a TS-aware compiler

should actually throttle parallelism to prevent instructions from reaching

the backend. This kind of compiler optimization is contrary to conventional

wisdom, which promotes ILP whenever possible for potential performance

gains.

On the other hand, when hardware parallelism is available, the scenario

is reversed. Dependencies that hinder ILP keep queues full and increase the

delay of dependence-checking logic. Thus, when adequate hardware resources

are available, enhancing parallelism can eliminate dependencies and lead to

better TS efficiency.

To illustrate the above points, we have run the codes in Figure 6.8 on

TS processors with different superscalar widths. Figure 6.9 compares the

error rates of the code sequences for the ss1 case. In this case, hardware

parallelism is not available, and exposing more instructions to the processor

backend causes queue structures to fill, increasing propagation delays. Thus,

the error rate increases as more parallelism is exposed (e.g., ILP4).

For a processor with more hardware parallelism (e.g., ss2), the backend can

handle increased software parallelism without putting excessive fill pressure

on queue structures. In this case, the reduced dependencies of the more

parallel code reduce activity in the timing critical disambiguation logic and

enable more overscaling. Figure 6.10 compares error rates for the codes on a

ss2 processor. The error rate for the code without exposed parallelism (ILP1)

increases abruptly and surpasses the error rates for the more parallel codes.

Table 6.3 shows energy results for Razor-based TS, demonstrating that TS

efficiency increases when hardware and software parallelism are balanced. The

table also demonstrates that enhancing parallelism does not provide any
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for(i=0; i<N; i++)

sum += A[i];

for(i=0,j=N/2;i<N/2;i++,j++){

sum1 += A[i];

sum2 += A[j];

}

sum = sum1+sum2;

Figure 6.8: Original code (left – ILP 1) and code with more ILP exposed
(right – ILP 2).
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Figure 6.9: When hardware parallelism is not available (ss1), exposing
parallelism floods backend queue structures and increases the error rate.

significant energy savings in the error-free case, motivating the need for TS-

specific compiler analysis and optimization.

Loop Splitting : Loop splitting or peeling can also be used to break de-

pendencies in code by peeling dependent instructions out of the loop body.

The original code in Figure 6.11 contains two dependencies – a loop carried

dependence for the accumulator variable (sum), and a dependence between

the array indices (i, j). By peeling one of the iterations from the loop, we

can eliminate one of the dependencies. This reduces the load on the CAM

structure that performs dependence checking, and eliminates occurrences of

forwarding. Figure 6.12 shows how peeling a dependence from the loop re-

Table 6.3: Razor-based TS and error-free energy savings (%) for balancing
parallelism.

CORE ILP 1 ILP 2 ILP 4 ILP 2 error-free
ss1 13.1 5.5 0.0 1.4
ss2 5.4 9.8 9.7 0.8

113



0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0.900.910.920.930.940.950.960.970.980.991.00
Voltage (V)

E
rr

o
r 

R
at

e 
  .

ILP 1
ILP 2
ILP 4

Figure 6.10: When hardware parallelism is available (ss2), exposing
parallelism eliminates dependencies and reduces error rate.

j = N-1;

for(i=0; i<N; i++){

sum += A[i] + A[j];

j = i;

}

sum = A[0] + A[N-1];

for(i = 1; i < N; i++){

sum += A[i] + A[i-1];

}

Figure 6.11: Original code (left) and code with a dependence peeled from
the loop (right).

duces the error rate for ss1, ss2, and ss4 processors. Table 6.4 compares the

energy savings achieved by Razor-based TS and error-free operation before

and after loop splitting is performed. In all cases, the additional overscaling

enabled by loop splitting results in energy savings for Razor-based TS. For

error-free operation, loop splitting actually increases energy slightly, because

it causes a small reduction in performance (IPC). This divergence between

the best decision for TS and error-free cases motivates the need for TS-specific

compiler analysis and optimization.

Loop Fusion : Another technique for manipulating dependence patterns in

Table 6.4: Razor-based TS and error-free energy savings (%) for loop
splitting.

CORE original split split error-free
ss1 5.8 13.8 -0.2
ss2 0.0 9.0 -0.4
ss4 3.6 13.4 -0.1
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Figure 6.12: By removing a dependence from the loop, loop splitting
reduces the error rates of the ss1 (top), ss2 (middle), and ss4 (bottom)
processors.
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for(i=0; i<N; i++)

sum1 += A[i];

for(i=0; i<N; i++)

sum2 += B[i];

for(i=0; i<N; i++)

sum3 += C[i];

for(i=0; i<N; i++)

sum4 += D[i];

for(i = 0; i < N; i++){

sum1 += A[i];

sum2 += B[i];

sum3 += C[i];

sum4 += D[i];

}

Figure 6.13: Original code (left) and code with fused loops (right).

code is loop fusion. Loop fusion merges independent instructions in separate

loops into the same loop. Grouping independent instructions can help to

break up long chains of dependent instructions by spreading them farther

apart in the binary. This can reduce the need for forwarding, since conflicting

instructions are able to clear the LSQ before their dependent instructions

are dispatched to the processor backend. As a side effect, loop fusion may

decrease locality of access, which can degrade cache performance. In general,

it is important to consider the potential performance impacts of TS-aware

binary optimization along with the energy savings it enables.

Figure 6.13 compares code sequences with (right) and without (left) loop

fusion. Note that loop fusion and loop splitting are inverse operations; that

is, the original code can be produced by performing loop splitting on the

fused code. In the ss1 case (Figure 6.14), grouping independent instructions

does not provide benefits, since there are not adequate hardware resources

to handle the exposed ILP. In this case, the unfused (split) code has a lower

error rate, because the activity of the LSU (the module that causes the most

errors) is throttled by the interleaving of branches and loop index updates

with the loads and stores. This activity throttling leads to increased TS

energy efficiency, as shown in Table 6.5.

In the ss4 case (Figure 6.15). the clustering of independent instructions

in the fused code spaces out dependent instructions in the pipeline, thus

eliminating many occurrences of forwarding and reducing activity on timing

critical paths in the LSU. This critical path avoidance reduces error rate and

enhances TS efficiency, as shown in Table 6.5. Again, energy savings from

loop fusion in the error-free case are only meager (<1%), motivating the need

for TS-aware compiler analysis and optimization.
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Figure 6.14: When hardware parallelism is limited (ss1), the unfused (split)
code has a lower error rate, since LSU activity is throttled.
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Figure 6.15: When hardware parallelism is available (ss4), the fused code
spaces out dependent instructions, reducing forwarding and, consequently,
error rate.

Table 6.5: Razor-based TS and error-free energy savings (%) for loop fusion.

CORE original fused fused error-free
ss1 12.2 5.9 0.2
ss4 4.2 12.3 0.5
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Several other TS-aware binary optimizations are possible. The goal of this

chapter is to demonstrate that significant energy benefits may be possible

from TS-aware binary optimization. An exhaustive exploration of all possible

binary optimizations is beyond the scope of this work.

6.4.2 Standard gcc Optimizations for Timing Speculative
Processors

Fortunately, many standard gcc optimizations have goals similar to the tar-

geted optimizations discussed above. For example, optimizing for a higher

O level has the potential to reduce dependencies and bolster ILP. Similarly,

optimizing for a lower O level may effectively restrict ILP. Below, we evaluate

the TS efficiency of SPEC binaries that have been optimized at different O

levels.

For architectures without available hardware parallelism (e.g., ss1), highly

optimizing compute-limited applications can cause pipeline backend struc-

tures to fill, resulting in longer delays and higher error rates. On the other

hand, for memory-bound applications with many indirect memory references,

critical LSU paths are not frequently exercised. Instead, IQ contributes most

substantially to the error rate, so optimizing at a higher O level, which re-

duces average IQ entries and, consequently, IQ delay, reduces the error rate.

Thus, when hardware parallelism is limited, compute-limited applications

should be optimized for a lower O level (O0), while memory-bound, pointer-

chasing codes can be optimized for a higher O level.

For architectures with available hardware parallelism (e.g., ss2), highly op-

timizing compute-limited applications can reduce dependencies, activity on

critical LSU paths, and error rate. Optimizations do not have much effect on

memory-bound, pointer-chasing codes, since available hardware parallelism

allows average IQ entries to remain low, and critical LSU paths are not fre-

quently exercised. Below, we test these intuitions for SPEC benchmarks with

standard gcc O levels.

Figure 6.16 shows the error rates of SPEC benchmarks we evaluated at

available O levels, running on the ss1 core. Although higher optimizations

(e.g., O2) generally improve performance (IPC), they increase error rate and

degrade TS energy efficiency for compute-limited codes (Table 6.6). This is
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because optimizing at the higher O level enhances software parallelism, but

there is not sufficient hardware parallelism to handle the dispatched instruc-

tions. Thus, backend structures (LSQ and IQ) fill and propagation delay

increases, limiting overscaling. Consequently, performing no optimizations

(O0) is preferable for compute-limited applications on the ss1 core when TS

is used. Note that this is an interesting result, as the choice of O level would

be different when compiling for the error-free case, since increasing the O

level improves performance.

For pointer-chasing codes like vortex, which performs object-oriented da-

tabase lookups, and thus contains many indirect memory references, critical

LSU forwarding paths are not frequently exercised. Rather than the LSU,

the IQ dominates the processor error rate for the O0 binary on this core.

Optimizing for a higher O level results in fewer average IQ entries, reducing

delay and error rate, and significantly increasing energy savings (Table 6.6).

For the ss2 core, the backend queue structures are not overly stressed. Op-

timizing at a higher O level reduces dependencies for compute-limited codes

and, by extension, activity on the critical paths of the LSU. This reduction in

critical path activity reduces error rate (Figure 6.17) and allows more over-

scaling and reduced energy (Table 6.7). Thus, higher optimization (O) levels

are beneficial, in general, for Razor-based TS when hardware parallelism is

not restricted. Choosing the correct optimization level that balances hard-

ware and software parallelism maximizes energy savings. Note that results

in this section demonstrate that the best optimization level is different for

TS and non-TS cases. For example, O1 achieves the most energy benefits for

TS on the ss2 core, even though O2 has higher performance in the error-free

case.

As expected, memory-bound, pointer-chasing codes see little impact from

optimizations on the ss2 core. The many indirect memory references in

vortex cannot be optimized at compile time, and thus, optimizations do not

significantly impact LSU activity. Also, since HW parallelism is available to

relieve IQ fill pressure, optimizations do not significantly reduce the IQ error

rate either.

In the error-free case, optimizing at a higher level (O2) can increase per-

formance, but this performance comes with a significant increase in power

consumption. Thus, energy is not significantly improved with O2 in the

error-free case (Tables 6.6, 6.7). Distinctions between the best strategy in
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Table 6.6: Razor-based TS and error-free energy savings (%E), performance
(IPC), and binary size (MB) for SPEC benchmarks at different O levels
(ss1).

ss1 bzip mcf vortex
OPT %E IPC MB %E IPC MB %E IPC MB
O0 11.8 0.45 0.32 14.7 0.56 0.31 0.0 0.55 1.70
O1 7.5 0.79 0.29 9.2 0.67 0.29 14.0 0.49 1.48
O2 0.0 0.77 0.29 9.0 0.54 0.29 14.0 0.51 1.47
O3 7.2 0.75 0.31 9.2 0.59 0.30 14.0 0.51 1.49

O2 no-error 1.2 0.77 0.29 0.1 0.56 0.29 0.0 0.55 1.47

Table 6.7: Razor-based TS and error-free energy savings (%E), performance
(IPC), and binary size (MB) for SPEC benchmarks at different O levels
(ss2).

ss2 bzip mcf vortex
OPT %E IPC MB %E IPC MB %E IPC MB
O0 0.0 0.65 0.32 0.0 0.69 0.31 10.4 0.61 1.70
O1 7.7 1.39 0.29 13.4 1.45 0.29 10.0 0.74 1.48
O2 5.7 1.32 0.29 9.1 1.37 0.29 10.2 0.75 1.47
O3 7.5 1.34 0.31 8.5 1.26 0.30 10.4 0.76 1.49

O2 no-error 1.2 1.5 0.29 1.0 1.49 0.29 0.4 0.78 1.48

TS and non-TS cases further demonstrates the need for TS-aware compiler

analysis and optimization.

6.5 Related Work

Work on TS-aware design discussed in previous chapters has focused on op-

timizing hardware to improve the efficiency of TS. Work has been done pri-

marily at the design level [32, 33, 48, 63, 64] and the architecture level [83]

to reshape the slack distribution of a processor to enhance the energy ef-

ficiency benefits of TS. These optimizations primarily focus on making the

static slack distribution of a processor more amenable to overscaling.

This work, however, focuses on optimizations at the software level that

influence the activity and dynamic slack distributions of a processor (see

Section 6.2). Since the error rate of a timing speculative processor depends

on both slack and activity (see Section 4.1.1), TS-aware compilation has just
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Figure 6.16: For the ss1 core, highly optimizing compute-bound code (e.g.,
bzip) can increase the error rate, because fill pressure increases the delays
of highly utilized pipeline backend structures and limits overscaling.
Optimizing memory-bound code (e.g., vortex) can reduce error rate,
because critical LSU paths are not exercised, and optimizations reduce IQ
fill pressure.
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Figure 6.17: Optimizing compute-bound code (e.g., bzip) can reduce
dependencies and activity on the critical paths of the LSU for the ss2 core.
Choosing the right optimization level that balances HW and SW
parallelism can be an important factor in reducing processor error rate.
The effect of optimizations is limited for memory-bound code (e.g., vortex).
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as much potential to optimize processor error rate as do hardware-based tech-

niques. A promising direction of work involves co-optimization of software

and hardware to reshape the dynamic slack distribution and maximize the

energy efficiency benefits of exploiting TS.

The closest related work [82] focuses on extending the instruction set to

include instructions for which the circuit implementation has a shorter critical

path. Replacing instructions with these new instructions increases timing

slack and enables more overscaling. The instruction set extensions proposed

by [82] primarily focus on reduced-complexity arithmetic operations. We

optimize program binaries to improve energy efficiency for TS processors

without requiring hardware support.

In a typical ASIC design flow, all paths with excess timing slack are op-

timized to remove the timing slack, thus reducing power consumption and

area. This design style produces a design with a critical slack wall [27], so

that the vast majority of timing paths have near-critical slack. Since all cir-

cuit modules in our designs have many critical paths, as we would expect

in a processor implemented by a typical CAD flow, we are unable to utilize

optimizations that redirect instructions to units with more timing slack [82].

Instead, our optimizations focus on avoiding activation of the critical paths

in a hardware unit and throttling the activity of units that cause the most

errors. Additionally, we focus on binary optimizations that do not require in-

struction set extensions and, thus, may be more generally applicable. Finally,

since the architectures that we evaluate are different than the architecture

studied in [82], the modules that cause the most errors are different. There-

fore, our architecture-specific optimizations focus on different regions of the

processor.

6.6 Summary

Previous work on improving energy efficiency of timing speculative proces-

sors relied on code targeting conventional processors or assumed additional

hardware support and instruction set extensions. In this chapter, we have

demonstrated that careful binary optimization can increase the energy ef-

ficiency of error-resilient processors without additional hardware support.

Since the program binary determines the utilization pattern of the proces-
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sor, which in turn influences the error rate of the processor and the energy

efficiency of timing speculation, optimizing a binary specifically for timing

speculative processors can manipulate the utilization of different microarchi-

tectural units based on their timing slack distribution to deliver energy effi-

ciency benefits. We have demonstrated up to 39% additional energy savings

with timing speculation-aware binary optimization for Razor-based proces-

sors. We expect the energy benefits to grow as more sophisticated compiler

techniques are developed.
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CHAPTER 7

A PROGRAMMABLE STOCHASTIC

PROCESSOR PROTOTYPE

While the previous chapters demonstrate significant benefits and potential

for programmable stochastic processors, going forward, more work is needed

to enhance the generality of stochastic computing techniques. In Chapter 3

we presented a first example of a programmable stochastic processor that im-

proves energy efficiency by selecting between multiple functional units based

on the desired operational error rate. In this chapter, we present a more

elaborate evaluation of a programmable stochastic processor prototype that

demonstrates energy (performance, runtime reduction) benefits for applica-

tions running on a commodity processor. Performance benefits are gleaned

from careful relaxation of correctness that eliminates inefficiency and ex-

poses errors in error-tolerant applications. We perform evaluations for data

intensive applications that run on general purpose graphics processing units

(GPGPUs). In order to improve performance for our target applications, we

identify inefficiencies in the applications (control and memory divergence)

and present techniques that eliminate these inefficiencies by carefully relax-

ing correctness for a subset of control and data operations that can safely

and gainfully tolerate errors.

Control and memory divergence between threads within the same exe-

cution bundle, or warp, have been shown to cause significant performance

bottlenecks for GPU applications. In this chapter, we exploit the observa-

tion that many GPU applications exhibit error tolerance to propose energy-

reliability tradeoffs through branch and data herding. Branch herding elim-

inates control divergence by forcing all threads in a warp to take the same

control path. Data herding eliminates memory divergence by forcing each

thread in a warp to load from the same memory block. To safely and

efficiently support branch and data herding, we propose a static analysis

and compiler framework to prevent exceptions when control and data errors

are introduced, a profiling framework that aims to maximize performance
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while maintaining acceptable output quality, and hardware optimizations

to improve the performance benefits of exploiting error tolerance through

branch and data herding. Our software implementation of branch herding

on NVIDIA GeForce GTX 480 improves performance by up to 34% (13%, on

average) for a suite of NVIDIA CUDA SDK and Parboil [84] benchmarks.

Our hardware implementation of branch herding improves performance by

up to 55% (30%, on average). Data herding improves performance by up

to 32% (25%, on average). Observed output quality degradation is mini-

mal for several applications that exhibit error tolerance, especially for visual

computing applications.

7.1 Introduction

This chapter presents an evaluation of benefits achievable by a programmable

stochastic processor when errors are exposed in the applications running on

the processor. The evaluation is performed in the context of data intensive

applications that execute on GPGPUs. Many of these applications tend to

exhibit error tolerance, and the approaches presented in this chapter demon-

strate how error tolerance can be exploited safely and in a way that maximizes

the benefits of relaxing correctness. First, we provide background on GPUs,

as well as an overview of the technique we employ to improve efficiency by

relaxing correctness.

GPUs and similar SIMD architectures are becoming increasingly popular

in the high-performance desktop, server, and scientific computing domains,

especially as single-thread performance languishes. With the emergence of

high-level programming models such as NVIDIA CUDA [85], ATI Stream,

OpenCL [86], and Microsoft DirectCompute [87], and the corresponding gen-

eral purpose GPUs (GPGPUs), focus has shifted from exclusively graphics

processing applications to also supporting myriad data-parallel applications.

Single instruction multiple data (SIMD) architectures are area and energy ef-

ficient for data-parallel applications, as instruction sequencing logic is shared

by multiple execution units, leaving more area and power for the execution

units themselves. However, the performance delivered by these architectures

continues to lag the performance demands of emerging applications, as per-

formance is often limited by the number of execution units that can fit within
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the area and power budget of the chip. As such, performance optimizations

for GPUs and other SIMD architectures are an active area of research.

The nature of SIMD execution requires that groups of parallel threads

that execute together (warps) must execute the same instruction in lock-

step. While the SIMD nature of execution allows the processor design to

be relatively simple, application performance may suffer significantly when-

ever threads in the same warp behave differently due to control or memory

divergence [85, 88]. Control divergence results in serialized execution of di-

vergent control paths, leaving execution resources idle and throttling paral-

lelism. Similarly, memory divergence causes a warp to stall until the longest

memory request for a vector load completes before executing any dependent

instructions. Recent work has shown that control and memory divergence

between threads within a warp cause significant performance bottlenecks for

many GPU applications [89, 90].

In this chapter, we propose techniques that attempt to reduce the amount

of control and memory divergence in GPU applications to improve their per-

formance. We draw on the observation that many GPU applications produce

acceptable outputs even if a small number of threads in a SIMD execution

unit are forced to go down the wrong control path or are forced to load from

an incorrect (albeit spatially local) address. This is not surprising, consider-

ing that many GPU applications are data-intensive – different threads in a

warp are often operating on similar, often spatially correlated, data. Simi-

larly, the fraction of branches that diverge tends to be small (even though the

corresponding performance degradation is large). We exploit these observa-

tions to propose two novel optimizations – branch herding and data herding.

Branch herding eliminates control divergence by forcing all threads in a warp

to take the same control path. This prevents serialization of branch paths

that causes execution resources to remain idle for threads on the inactive con-

trol path. Data herding eliminates memory divergence by forcing each thread

in a warp to load from the same memory block. This reduces the number

of memory stalls and also reduces bandwidth pressure, as fewer blocks need

to be loaded from memory. With the aid of static and profiling-based anal-

yses, branch and data herding are applied discriminately to safely increase

performance while maintaining acceptable output quality.

This chapter makes the following contributions:
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• We demonstrate the potential for significant performance benefits with-

out a significant degradation in output quality from carefully reducing

control and memory divergence for several GPU applications that ex-

hibit error tolerance. We confirm that an indiscriminate elimination of

divergence can cause significant degradation in output quality. Simi-

larly, a näıve implementation of divergence reduction can actually de-

grade performance in some scenarios.

• We propose two optimizations – branch herding and data herding – that

eliminate control and memory divergence, respectively. Our software

implementation of branch herding involves using CUDA intrinsics to

force diverging threads to take the same direction at a branch as the

majority of the threads. A hardware implementation of branch herding

uses majority logic to identify the branch direction all threads should

take. Data herding is implemented in hardware by identifying the most

popular memory block (that the majority of loads map to) and mapping

all loads from different threads in the warp to that block.

• While it is known that several data-parallel application can tolerate

errors [91, 92, 93], what is really needed is a way to exploit available

error tolerance safely and efficiently. To support our branch and data

herding implementations, we also propose a static analysis and compiler

framework that guarantees that control and memory errors introduced

by herding will not cause exceptions, a profiling framework that aims

to improve performance while maintaining acceptable output quality,

and hardware optimizations to improve the performance benefits of

herding.

• We quantify the potential performance benefits from different imple-

mentations of branch and data herding. Our software implementation

of branch herding on NVIDIA GeForce GTX 480 improves performance

by up to 34% (13%, on average) for a suite of NVIDIA CUDA SDK

and Parboil [84] benchmarks. Our hardware implementation of branch

herding improves performance by up to 55% (30%, on average). Data

herding improves performance by up to 32% (25%, on average).

• We also evaluate output quality degradation for different GPU kernels

and full applications utilizing our implementations of branch and data
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herding. We provide quantitative evaluations for all applications and

visual evaluations when available. Our framework aims to maintain

acceptable output quality degradation for applications that can tolerate

errors.

Note that our evaluations in this chapter assume a GPU architecture that

matches current-generation NVIDIA CUDA devices [94, 85, 88], though we

expect the ideas to be applicable to other GPU and SIMD architectures as

well.

The rest of the chapter is organized as follows. Section 7.2 provides back-

ground on control and memory divergence and motivates data and branch

herding. Section 7.3 describes branch herding and its various implementa-

tions. Section 7.4 describes data herding and its implementation. Section 7.5

describes a safety, performance, and output quality assurance framework for

branch and data herding. Section 7.6 discusses the methodology of our study.

Section 7.7 presents results and analysis. Section 7.8 discusses related work.

Section 7.9 summarizes and concludes.

7.2 Background and Motivation

Below we describe the control and the memory divergence problem and dis-

cuss how carefully eliminating divergence may lead to significant performance

benefits.

7.2.1 Control Divergence

SIMD architectures bolster throughput by sacrificing per-thread control flow

logic in order to increase the number of execution units on a chip. Since mul-

tiple threads (a warp) execute the same instruction in lockstep on a SIMD

multiprocessor (SM), only one block of instruction fetch, decode, and issue

logic is needed per SM, allowing a greater fraction of the GPU’s power and

area budget to be spent on execution units. While such an architectural or-

ganization is beneficial for most data-parallel applications, the requirement

that all threads in a warp must execute in lockstep can lead to inefficien-

cies when different threads take different control paths at a branch (control

divergence).
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while (--i && (xx + yy < T(4.0))) {

y = x * y * T(2.0) + yC;

x = xx - yy + xC;

yy = y * y;

xx = x * x;

} return i;

Figure 7.1: The main computation loop for Mandelbrot. The loop is
unrolled 20 times in the actual application kernel.

Because instruction sequencing logic is shared by all execution lanes in a

SM, the common mechanism for resolving control divergence in a GPU is

to execute instructions from one control path for a subset of threads until

reaching a point where control reconverges, then beginning execution on the

other control path for the remaining threads until revisiting the reconver-

gence point [85, 90, 95, 96]. Since divergent branches necessarily throttle the

parallelism and throughput of a SM, they can cause significant performance

degradation for GPU applications [89, 90]. For a warp size of 32 (common

in NVIDIA CUDA GPUs [85]), execution could be slowed down by a factor

of 32 if all threads take divergent control paths through a section of code.

To understand this better, consider Mandelbrot [97] – an application from

the NVIDIA CUDA SDK that exhibits control divergence. Mandelbrot gen-

erates the Mandelbrot and Julia sets – complex fractal patterns that are

characterized by simple equations. Figure 7.1 shows the main loop of the

kernel used to compute the Mandelbrot and Julia sets. In the actual kernel

code, the loop is unrolled 20 times. Each thread in the program computes

whether a particular point in the complex plane is in the Mandelbrot (or

Julia) set. The program outputs images depicting the Mandelbrot and Julia

sets (Figure 7.2). The color of a pixel corresponds to the number of main

loop iterations (i) a thread executes to determine whether the point is in the

Mandelbrot (or Julia) set.

Control divergence arises in Mandelbrot because the number of iterations

required to determine whether a point is in the Mandelbrot (or Julia) set

varies based on the point’s location, especially in image regions near the set

boundary, where some threads execute many iterations while others finish

quickly. Divergence results in reduced parallelism, as some lanes in the SMs

go unused while threads that have finished their computations wait until all
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Figure 7.2: Original Mandelbrot (left) and Julia (right) images. The color
of each pixel corresponds to the number of main loop iterations executed by
a thread to determine whether the point is in the Mandelbrot (or Julia) set.

threads in the same warp reach a reconvergence point.

The effect of control divergence on performance can be significant. Fig-

ure 7.3 shows the potential performance increase (runtime reduction) if con-

trol divergence can be eliminated for a fraction of the static branches in

Mandelbrot (from 0% to 100% of branches). The branches are chosen uni-

formly randomly when the fraction is less than 100%. Control divergence

is preempted by changing the source code to vote within a warp on the

condition of a branch and forcing all threads in the warp to take the same

(majority) direction at the branch (details in Section 7.3). Experiments were

run natively on a NVIDIA GeForce GTX 480 GPU (details in Section 7.6).

While only 10% of dynamic instructions in Mandelbrot are branches, and

less than 1% of branches diverge, performance can potentially be increased by

31% by eliminating control divergence. As the no software overhead perfor-

mance series in Figure 7.3 demonstrates, performance increases for Mandel-

brot as control divergence is eliminated for more branches. Figure 7.4 shows

that the quality of the Mandelbrot output set degrades by less than 2%, even

when divergence has been eliminated for all static branches. This shows that

for certain error-tolerant applications, it may be possible to get significant

performance benefits from eliminating control divergence for minimal out-

put quality degradation. A quick look at the Julia output set, however, also

suggests that an indiscriminate selection of branches for herding may result

in significant output quality degradation for several applications. Therefore,

any implementation of branch herding should carefully select the branches to

target. Figure 7.5 shows visual representations of the Mandelbrot and Julia

output sets as the percentage of forced uniform branches increases from 20%

to 100% in increments of 40%.
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Figure 7.3: The performance of Mandelbrot can be increased by forcing
uniformity for more branches. However, if software overhead is added to
ensure branch uniformity, increasing the number of affected branches
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0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

% forced uniform branches

%
 m

is
m

at
ch

ed
 o

u
tp

u
t b

yt
es

   
   

   
 .

Mandelbrot Output Quality Degradation

Julia Output Quality Degradation

Figure 7.4: While eliminating control divergence can increase performance,
blindly forcing branch uniformity can result in degraded output quality.

132



Figure 7.5: Progression of Mandelbrot (top) and Julia (bottom) images
from 20% to 100% forced branch uniformity in 40% intervals.

The software overhead performance series of Figure 7.3 demonstrates an-

other important consideration for any technique that eliminates control di-

vergence. Since the fraction of divergent branches in a program may be

small (in this case, less than 1%), an indiscriminate application of a tech-

nique to all branches may result in significant overhead that diminishes or

even eliminates performance gains that result from reduced divergence. This

result reinforces the conclusion that care should be exercised in selecting the

branches to target for elimination of control divergence. Also, a low-overhead

mechanism for eliminating control divergence may enable significantly more

benefits. The result also confirms that näıve implementations of techniques

to eliminate control divergence may actually decrease performance in some

scenarios.

7.2.2 Memory Divergence

Like control divergence, memory divergence occurs when threads in the same

warp exhibit different behavior. In the GPU, a load operation for a warp is

implemented as a collection of scalar loads, where each thread potentially

loads from a different address. When a load is issued, the SM sets up desti-

nation registers and corresponding scoreboard entries for each thread in the

warp. The load then exits the pipeline, potentially before any of the individ-
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ual thread loads have finished. When all the memory requests corresponding

to the warp load have finished, the destination vector register is marked as

ready. Instructions that depend on the load must stall if any lanes of the

destination vector register are not ready.

Memory divergence occurs when the memory requests for some threads

finish before those of other threads in the same warp [89]. Individual threads

that delay in finishing their loads prevent the SM from issuing any dependent

instructions from that warp, even though other threads are ready to execute.

Memory divergence may occur for two reasons. (1) The time to complete

each memory request depends on several factors, including which DRAM

bank the target memory resides in, contention in the interconnect network,

and availability of resources (such as MSHRs) in the memory controller. (2)

Since the target data for a collection of memory requests made by a warp

may reside in different levels of the memory hierarchy, the individual memory

operations may complete in different lengths of time.

Most GPU architectures do not implement out-of-order execution due to

its relative complexity and hardware cost. Rather, GPUs cover long latency

stalls by multithreading instructions from a pool of ready warps. Providing

each SM with plenty of ready warps ensures that long latency stalls will not

be exposed. Memory divergence delays the time when a warp may execute

the next dependent instruction, cutting into the pool of ready warps and

potentially exposing stalls that throttle performance. Divergent memory

accesses may also throttle performance by consuming additional resources,

such as MSHRs and memory bandwidth. Therefore, eliminating memory

divergence can potentially increase performance, especially for data-intensive

GPU applications.

Another rarely discussed impact of memory divergence is on memory uti-

lization. If different loads fetch from different memory blocks, more memory

blocks need to be brought into the chip. (A memory block is the unit of

memory pulled in from the memory system by a memory request.) More

requests increase the bandwidth pressure on the GPU, which is often already

bandwidth-limited. So, if memory divergence is eliminated (for example,

when all loads fetch from the same memory block), bandwidth pressure re-

duces.

To gauge the potential benefit of eliminating memory divergence, we look

at the SobelFilter application from the NVIDIA CUDA SDK. SobelFilter
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applies an edge detection filter kernel to an input image and produces an

output image. Each thread in SobelFilter loads a block of pixels from the

input image and processes them in different arrangements with the edge

detection kernel. We eliminate load divergence for the three kernels of So-

belFilter by modifying the application so that for each load, all threads in

a warp load data from the same address (that of the first active thread in

the warp). Thus, the individual thread loads can be coalesced into a single

memory request, making divergence impossible.

While the actual loads for individual threads in a warp may indeed diverge,

the threads all load data from a localized region of the input image. Since

the image data exhibits spatial correlation, eliminating divergence by loading

from an address that corresponds to a neighboring pixel may often return a

similar or even identical value. Figure 7.6 shows the impact on performance

and output quality of increasing the fraction of warp loads that are forced

to load from the same address. The figure reveals that eliminating memory

divergence (forcing load uniformity) increases performance by up to 15%.

However, output quality is also degraded, resulting in up to 40% mismatch-

ing bytes in the output image. Thus, some intelligence may be required to

determine how and for which loads to eliminate memory divergence such that

acceptable output quality is maintained. Figure 7.7 shows the Lena input

image along with the pristine filter output (0% forces load uniformity), while

Figure 7.8 shows a progression of output images produced by filtering the

Lena input image with an increasing fraction of forced uniform loads (from

20% to 100% load uniformity).

7.3 Branch Herding

The previous section demonstrated that for an application with divergent

branches, eliminating control divergence has the potential to increase per-

formance, possibly at the expense of output quality. Due to the unique

handling of divergent control flow instructions in GPUs and the forgiving na-

ture of many data-intensive GPU applications, we propose a SIMD-specific

technique for eliminating control divergence. We call our technique branch

herding. Branch herding eliminates control divergence by herding all the

threads in a warp onto the control path taken by the majority of threads.
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Figure 7.6: Eliminating memory divergence (forcing more uniform loads)
increases performance but also degrades output quality.

Figure 7.7: Original Lena image and pristine Sobel filter output.

Figure 7.8: Lena images processed by the Sobel edge detection kernel –
progression from 20% to 100% forced load uniformity in 40% intervals.
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Thus, when the threads in a warp each evaluate the boolean condition for a

branch, the majority outcome is decided and all threads follow the majority

decision, precluding the possibility of control divergence. Because control

divergence is eliminated, branch herding has the potential to increase perfor-

mance for applications with divergent branches. Also, for GPU applications

that can tolerate errors, acceptable output quality can be maintained when

branch herding is used (see Sections 7.5 and 7.7), even though some minority

of threads are allowed to perform inexact computations.

The implementation of branching in GPUs leads to benefits for branch

herding in addition to the elimination of branch path serialization. The

normal implementation of branching in the GPU uses a reconvergence stack

and a special reconvergence instruction that is inserted before a potentially

divergent branch [90, 95, 96]. The reconvergence instruction passes to the

hardware the location (PC) of the reconvergence point of the branch (the

next instruction that will be executed by threads on both control paths).

The instruction at the reconvergence point is also flagged using a special field

in the instruction encoding [95, 96]. Whenever a branch is reached, a 32-bit

thread mask is computed for the warp, indicating which active threads take

the branch. If the branch diverges, the mask is pushed onto the reconvergence

stack, along with the PC indicating the alternate branch target and the

reconvergence PC. A subset of the threads (indicated by the mask) execute

the taken branch path [95, 96], while the other lanes in the SM are idle.

When execution reaches the reconvergence point, the stack is popped, and

the remaining threads (indicated by the mask) begin executing from the

stored PC. The next time the reconvergence point is reached, all threads

that originally reached the branch begin executing together again. Note that

this mechanism can also handle nested divergence.

Since branch herding eliminates control divergence, the reconvergence stack

is not needed for herded branches. In addition, by ensuring that all branches

will be uniform branches [88], branch herding obviates the need for the special

reconvergence instruction. Thus, the compiler does not insert the reconver-

gence instruction when the branch herding compiler flag is set or when a

kernel call or particular branch instruction is marked for branch herding. It

may also be possible to eliminate the reconvergence instruction by identifying

the reconvergence point using a field of the branch instruction.
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__device__ inline bool BRH(int condition){

return (__popc(__ballot(condition)) > BRH_THRESH);

}

if( BRH(condition) )

while( BRH(condition) )

for(initial; BRH(condition); update)

Figure 7.9: Software branch herding implementation and example uses.

7.3.1 Software Branch Herding

Branch herding can be implemented relatively efficiently in software, using

the CUDA intrinsics ballot ( ballot) and population count ( popc) [85]. The

ballot intrinsic is a warp vote function that combines predicates computed

by each thread in a warp and sets the N th bit in a 32-bit integer if the

predicate evaluates to non-zero for the N th thread in the warp. In the context

of branch herding, the result is a 32-bit integer that specifies the branch

condition outcome for each thread in a warp. The ballot result is broadcast

to a destination register for each thread in the warp. We use the population

count intrinsic to count the number of set bits in the ballot result. In context,

this means that each thread knows how many threads in the warp should take

the branch. The branch herding function compares the population count to

16 (half warp size) and returns true if the majority of threads take the branch

and false otherwise. Figure 7.9 shows the software implementation of branch

herding, and provides examples of how software branch herding can be used

in programs, simply by passing the condition of a control statement (e.g., if,

while, for) to the branch herding procedure.

7.3.2 Hardware Branch Herding

Though our implementation of software branch herding only adds three ex-

tra instructions per branch, even this overhead may be intolerable in several

scenarios, especially in tight loops or for programs that have a large frac-

tion of branches that diverge only infrequently. Profiling information for

benchmarks from the NVIDIA CUDA SDK and Parboil [84] suites that ex-

hibit control divergence (Figure 7.10) reveals that the fraction of dynamic
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Figure 7.10: Branch statistics for applications that exhibit control
divergence.

branches that diverge is indeed often very low. This is primarily because

GPU programmers usually take pains to reduce potential control divergence.

Nevertheless, as demonstrated in Section 7.2, even a small fraction of diver-

gent branches can significantly reduce performance. Ideally, branch herding

should be implemented as a lightweight hardware mechanism to maximize

potential benefits.

For the normal implementation of branching in the SM, each active thread

evaluates the branch condition to identify whether it should fetch the next

instruction from the branch target or fall through. After the branch condition

has been evaluated for each thread, the SM combines the condition bits from

the threads to form the 32-bit branch mask and then checks for uniformity

of the mask (all 0s or all 1s). If the branch is not uniform, the SM updates

the reconvergence stack, as explained above.

Hardware branch herding works the same way as the normal branching

implementation, but instead of evaluating the uniformity of the mask and

potentially updating the reconvergence stack, the SM evaluates the majority

value for the mask. The majority condition determines the next instruction

for all threads in the warp. Evaluation of the majority logic can take place

in the timing slack apportioned for the uniformity logic and updating the

reconvergence stack (since divergence is impossible with branch herding).

Thus, hardware branch herding should not affect cycle time and should not

incur additional cycles of overhead. Overhead will be in terms of area, since

one block of majority logic is needed per SM. However, the area of one

majority block for a 32-bit word is insignificant compared with the area

of the SM. Branch herding logic can be activated at a coarse granularity by
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setting an enable bit in the hardware when the GPU is initialized for a kernel

call or at a fine granularity by using a special field in the branch instruction

to denote that the branch should be herded. The branch instruction contains

an optional field (.uni) to identify a uniform branch (i.e., a branch for which

it is possible to statically determine that the branch will not diverge). For

branch herding, we override the field with a different code (.hrd) to indicate

that the branch should be herded.

7.4 Data Herding

As discussed in Section 7.2.2, memory divergence can occur when a load in-

struction for a warp generates multiple memory requests that access different

regions of memory or different levels of the memory hierarchy. The number of

memory requests generated by a load instruction is determined by coalescing

hardware in the SM [85]. Memory coalescing is performed to determine the

minimum number of unique memory requests that can satisfy the individual

scalar loads that make up a vector load instruction. Each scalar load address

maps to a block of memory (32, 64, or 128 bytes depending on the data type),

and each memory request fetches one block from memory. If multiple scalar

loads map to the same block of memory, they are coalesced into a single

memory request. The GPU hardware is designed such that if all scalar loads

in the same warp access consecutive addresses, they can be coalesced into a

single request. Besides generating memory divergence, non-coalesced loads

are inefficient because they generate multiple memory requests and fetch

data that is not used, wasting precious memory bandwidth and consuming

additional memory controller resources such as MSHRs.

We propose a data herding implementation based on a modified coalescing

policy. The modified coalescing hardware generates only one memory request

for a collection of scalar loads. Rather than forming a queue of unique

memory requests required to satisfy the scalar loads, the modified hardware

identifies the most popular memory block (that the majority of loads map to)

and maps all loads to that block – some naturally and some forcefully. This

is done by comparing the number of loads that coalesce into each potential

memory request and discarding requests for all but the most popular block.

The upper N − log2(line size) bits of an N-bit address identify the memory
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block that an address maps to. For any address that does not already map to

the most popular memory block, the most significant N− log2(line size) bits

of the address are overwritten with the bits that identify the most popular

block. We propose data herding only for loads to ensure that all expected

locations are initialized in the case of a store and to avoid conflicts that might

result if stores were forcefully mapped to the same memory block.

Since our implementation of data herding ensures a single memory request

for each load, and a single request is satisfied at only one level of the mem-

ory hierarchy, we prevent both types of memory divergence and also reduce

memory traffic. Thus, bandwidth-limited applications may benefit substan-

tially from data herding. Also, it is interesting to note that data herding,

in itself, will never generate a memory exception, due to the nature of GPU

memory design and allocation properties. In short, the threads involved all

belong to the same process, and the entire memory block they will map to

also belongs to the same process. An exception could, however, be generated,

depending on how herded data are used later in the program. We address

safety concerns associated with herding in Section 7.5.

7.5 Safety, Performance, and Output Quality

Assurance for Branch and Data Herding

It is well-known that several data-parallel applications exhibit error toler-

ance [91, 92, 93]. To efficiently exploit this error tolerance through branch or

data herding, the challenges lie in (1) guaranteeing that loading the wrong

data or taking the wrong branch path will not cause an exception, and (2)

maximizing performance improvement while maintaining acceptable output

quality. In this section, we describe a static analysis and compiler framework

that guarantees exception-free computation by identifying branches and data

that are safe for herding, and a profiling framework that identifies the sub-

set of safe branches and data for which herding increases performance while

maintaining acceptable output quality.

The first step in identifying safe branches and data for herding is to identify

vulnerable operations that, if affected by an error, might cause exceptions.

These are pointer dereference and array reference (vulnerable to Segfault),

integer division (vulnerable to INT divide by zero), and branch condition
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check (vulnerable to stack overflow if an error causes infinite looping or re-

cursion). We have written a clang [98] plugin that performs safety analysis

by first parsing a program into its abstract syntax tree (AST) and searching

through the AST to identify vulnerable operations.

After identifying vulnerable operations, the tool generates the control and

data dependence graphs from the AST and traces through them to identify

the branches and data that the vulnerable operations depend on. Then,

to guarantee freedom from exceptions, the tool does not allow the compiler

to insert herding directives for the branches and data identified as unsafe

during static analysis. Preventing herding of “unsafe” branches and data

ensures that errors induced by herding will only impact output quality. While

applied here in the context of branch and data herding, the static analysis

and compiler framework described in this section is generally applicable for

guaranteeing safety from exceptions against any faults that affect control

operations and data. Fundamentally, the framework identifies the control

operations and data that should be protected from faults (and those in which

faults can be allowed) in order to guarantee safety from exceptions.

After identifying which branches and data can be safely herded, the next

step is to identify which can be profitably herded. As noted in Section 7.2,

one challenge of branch and data herding is determining which branches and

data to herd so as to improve performance while maintaining acceptable

output quality. While this can be done by the programmer, often with little

effort (the programmer is often aware of which branches may diverge and

whether or not it would be acceptable for some threads to perform inexact

computations based on the associated branches or data), we also present an

automated profiling-based framework for determining which safe branches

and data may be most profitable for herding.

We use the CUDA Compute Profiler [85] to determine which safe branches

and which loads to safe data exhibit divergence. These branches/loads are

candidates for branch/data herding. Our profiling framework starts with no

herded branches/loads, progressively marks a larger fraction of the candidate

branches/loads for herding, and at each step profiles the program for a set

of test inputs to characterize the space of output quality degradation and

performance vs. number of herded branches/loads. From this sampling we

can determine an approximate upper bound on output quality degradation

corresponding to a given amount of herding by selecting the worst-case degra-

142



// Static Safety Analysis

Generate Abstract Syntax Tree AST (A) for Application A
Search AST (A) to identify Vulnerable Operations V O
foreach(Vulnerable Operation v ∈ V O)

Trace Control and Data Dependencies of v
to classify Safe/Unsafe Branches/Data

// Quality and Performance-targeted Profiling

Profile A and identify Divergent, Safe Branches/Loads

as Herding Candidates C
Herded Branches/Loads H = ∅
Baseline Output Quality Degradation,Performance = Q(∅), P (∅)
foreach(Candidate c ∈ C)

foreach(Test Input t)
Profile Output Quality Degradation Q(H + c, t)
and Performance P (H + c, t)

if(∃ t such that P (H + c, t) > P (H, t))
Approximate Quality Degradation Bound

B(H + c) = max[Q(H + c, t)|t
H + = c

// Runtime Quality Monitoring

User specifies desired maximum Output Quality Degradation Qmax

Use Profiling Data to find maximum Herding Threshold Th

such that B(Th) ≤ Qmax

Count Herding Instances Ih and disable herding when Ih == Th

Figure 7.11: Pseudocode describing safety, performance, and output quality
assurance framework for branch and data herding.

dation observed for a given amount of herded branches/loads. During run-

time, performance counters [85] track the number of herded branches/loads

and disable branch/data herding before the specified approximate threshold

has been exceeded. To enable profiling and quality monitoring, the program-

mer should mark the variable in the code that represents output quality

and specify the desired approximate bound on output quality degradation.

Figure 7.11 presents pseudocode describing the control flow of our safety,

performance, and output quality assurance framework for branch and data

herding.

It should be noted that our profiling framework can only provide output

quality guarantees for profiled inputs (or inputs similar to the profiled in-

puts). For all other inputs, we only provide an approximate upper bound
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on output quality degradation. However, we observed that the approximate

bound is often effective in practice. The challenge of understanding the map-

ping between faults and errors also complicates the task of output quality

assurance, since the same amount of output quality degradation (in terms of

a given metric) may result in noticeably different output error distributions.

More precise quality metrics can help the profiler, and in conjunction with

effective profiling routines, may also lead to better understanding of how

faults map to errors. Creating more rigorous techniques for performance and

output quality assurance is a subject of ongoing work.

Note that while hardware-based herding implementations can improve the

performance benefit of herding (Section 7.7), software-based herding can be

implemented for off-the-shelf GPUs and applications, and thus has the po-

tential to demonstrate real, immediate benefits of exposing control and data

errors in applications. In fact, our software herding results (Section 7.7) show

speedups for applications running natively on NVIDIA GeForce GTX 480.

Typically, we use data herding for all loads to the largest data structure of the

application identified as safe for herding. Section 7.7 provides information

on which branches and data were identified as safe and profitable for herding

by our framework. Where possible, we aim for conservative results by using

input data not characterized during profiling when capturing performance

and output quality results.

7.6 Methodology

We perform experiments using two different execution environments. We

run branch herding experiments natively on a CUDA system comprised of

a NVIDIA GeForce GTX 480 GPU and a 2.27 GHz Intel Xeon E5520 CPU

with 24 GB of memory. The NVIDIA CUDA v3.2 Toolkit and SDK are

installed on the system.

Software branch herding performance and output quality are measured di-

rectly at runtime. Thus, reported benefits are for native execution on a state-

of-art GPU architecture. To measure the number of cycles taken to execute a

kernel that uses hardware branch herding (total cyclesHW branch herding kernel),

we start with the number of cycles taken to execute the same kernel when

software branch herding is used (total cyclesSW branch herding kernel) and use
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CUDA Compute Profiler [85] performance counters to measure the number

of instructions added by software branch herding function calls

(instruction countSW branch herding). We scale these instruction counts by the

CPI for the corresponding kernels (CPISW branch herding kernel) and discount

the total cycle count by this amount:

total cyclesHW branch herding kernel = total cyclesSW branch herding kernel

− instruction countSW branch herding

∗ CPISW branch herding kernel

Since evaluating data herding requires changing the behavior of coalescing

hardware and cannot be easily emulated in software, we use the GPGPU-

Sim [99] simulator for our experiments. The simulator models the behavior

of a NVIDIA Quadro FX 5800 GPU and can run natively-compiled CUDA

v2.1 binaries.

Potentially error-tolerant benchmarks are selected from the NVIDIA CUDA

SDK and Parboil [84] benchmark suites. For evaluation of branch herding,

we use all benchmarks for which more than 0.5% of the dynamic branches

diverge. For data herding, we select benchmarks only from the NVIDIA

CUDA SDK (v2.1) that are compatible with GPGPU-Sim v2.x, which is de-

signed around CUDA v2.1. In addition to computation kernels, we evaluate

full, end-to-end benchmarks (e.g., volumeRender, particles, oceanFFT, lbm,

etc.) that contain multiple kernel calls, as a partial means of demonstrating

that outputs from kernels that use herding are still acceptable in the con-

text of the greater application. Table 7.1 provides short descriptions of the

benchmarks used in our evaluations.

Although we do not expect any performance overhead for hardware branch

herding (Section 7.3), we collect results assuming different cycle overheads to

provide both conservative and expected performance results. While we also

expect that data herding based on modified coalescing can be performed in

the same timing slack used for normal coalescing, we assume a cycle overhead

for a more conservative estimate of the performance benefits.
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Table 7.1: Benchmarks

Benchmark Description (†CUDA SDK, ‡ Parboil)
Mandelbrot Compute Mandelbrot and Julia sets†
histogram 64- and 256-bin Histograms†

volumeRender Volume Rendering of 3D Textures†
particles Particle Interaction Simulation†

SobelFilter Sobel Edge Detection Filter†
oceanFFT Ocean Heightfield Simulation†

binomialOptions Binomial Option Pricing†
nbody Gravitational n-body Simulation†
dxtc DirectX Texture Compression†

recursiveGaussian Recursive Gaussian Blur Filter†
lbm Lattice-Boltzmann Method Fluid Dynamics‡
sad Sum of Absolute Differences‡

7.7 Experimental Results

7.7.1 Branch Herding

Branch herding increases the performance of GPU applications that nor-

mally exhibit control divergence by preventing the serialization of branch

paths and eliminating overheads associated with divergent branch handling.

Figure 7.12 shows potential performance gains for branch herding for ap-

plications that normally exhibit control divergence. Hardware branch herd-

ing increases performance by 30% on average and up to 55% for individual

applications. While we do not expect any performance overhead for hard-

ware branch herding (see Section 7.3), we also show conservative results that

assume a one-cycle overhead for hardware branch herding. Our software

branch herding implementation, which runs natively on commercial GPU

products, achieves 13% performance benefits, on average. Recall that the

software branch herding implementation targets only safe branches that ex-

hibit divergence and show benefits from software branch herding. Therefore,

performance improvements are significantly higher than any näıve software

branch herding implementation that targets all static branches (Figure 7.3).

Since branch herding exploits error tolerance to eliminate divergence, it

may result in output quality degradation. Table 7.2 compares output quality

degradation for the benchmarks with and without branch herding. Quantify-

ing output quality degradation is difficult, because it is the consumer of the
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Figure 7.12: Potential performance improvement for software and hardware
branch herding. Although we do not expect any additional performance
overhead for our implementation of hardware branch herding, we also show
a conservative performance measurement assuming a one-cycle overhead.
Overhead is at most one cycle, since the additional logic (majority) is
simpler than population count logic, which evaluates within a single cycle.

Table 7.2: Output quality degradation (%) for branch herding compared to
original

% Mismatch Mandelbrot histogram volumeRender particles
Original 0.03 0.00 6.72 18.24

Branch Herding 1.87 5.82 7.61 18.24

% Mismatch SobelFilter oceanFFT sad lbm
Original 0.00 0.03 0.00 6.7E-7

Branch Herding 6.00 0.03 0.42 5.6E-5

data who really determines whether or not it is acceptable, and acceptability

is often application-dependent. We provide output quality measurements in

terms of the quality metrics incorporated by the original benchmark writers,

however, our framework is modular and can easily use any other metrics (e.g.,

SNR) of interest to the programmer or end user. Output quality degrada-

tion is reported in terms of the fraction of mismatching bytes in the program

output, except where otherwise noted. Overall, branch herding does not re-

sult in much additional output quality degradation (and degradation can be

approximately bounded by our framework). Branch and data herding may

be especially applicable for visual computing applications (e.g., video ren-

dering or gaming), where performance and energy efficiency may be more

critical than perfect output quality. We provide image outputs for several vi-

sual computing applications to demonstrate that post-herding output quality

may often be acceptable for such applications.
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Mandelbrot : In Mandelbrot, which is described in detail in Section 7.2,

typically only a small fraction of dynamic branches diverge, but divergence

is spread over all of the static branches in the program. Analysis identifies

all branches as safe for herding. While herding more divergent branches

improves performance, the amount of branch herding that can be allowed

depends on the desired output quality and the region of interest in the image,

since the amount of divergence depends on the region of the Mandelbrot

set being viewed. Regions with intricate detail can result in substantial

divergence, while monochrome regions generate no divergence. Although the

overall fraction of divergent branches is often small, they can significantly

impact performance. Hardware branch herding achieves about 3.5× better

performance improvement than the software version, since software branch

herding adds overhead to many non-divergent branches in a relatively tight

loop.

Output images resemble those in Section 7.2. Note that because branch

herding may estimate whether a point is in the Mandelbrot set before com-

pletely finishing the calculation for that point, even though some output

pixels are not colored correctly by the application, the determination of the

Mandelbrot set may be correct for those points. Thus, whether or not branch

herding produces acceptable results may depend on whether the output data

will be used, e.g., for a visualization or as a mathematical set.

SobelFilter : Divergence is targeted in the SobelFilter kernel (described in

Section 7.2) in corner cases where the computed output pixel value for one or

more threads in a warp does not lie in the valid output range. Ignoring these

cases with branch herding causes the affected pixel values to roll over on the

opposite side of the output range, adding some noise to the output image,

which can be seen in Figure 7.13. Our framework confirms the safety of

herding in this case, as it only affects pixel values. Herding is not profitable

for all branches, since herding branches in tight loops that rarely diverge

does not improve performance. Despite noise added by herding, edges are

still detected.

histogram : Histogram has the highest fraction of divergent branches of all

the applications we tested and sees considerable speedups for both software

and hardware branch herding. All the divergence is caused by one static

branch in a frequently-called function that adds data to the sub-histogram

generated by a warp. (Sub-histograms are later merged together to create
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Figure 7.13: Lena image processed by Sobel edge detection kernel with
branch herding. Compare to original result in Figure 7.7.
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Figure 7.14: Comparison of histogram output with and without branch
herding.

the final output.) This branch is safe for herding, as herding only affects

histogram data. Branch herding may cause a few values not to be added

to the bins, resulting in slightly undercounting the bin values. On average,

bin values are undercounted by 6%, as seen in Figure 7.14. Output quality

is reported as the average absolute difference between the bin values in the

computed and reference outputs. It should be noted that quality degradation,

and thus acceptability, depends on the characteristics of the input data.

volumeRender : VolumeRender renders a 3D texture. Although we can

safely use branch herding for all the branches, most divergence is due to

two static branches that cause threads to finish their computations when

the object at that pixel is either opaque or too far away to be seen. Branch

herding can result in some threads exiting early when the majority of threads

in the same warp have finished their computations. Eliminating divergence
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Figure 7.15: Output comparison: original volume rendering (left) and
branch herding result (right).

improves performance significantly, and only increases output quality degra-

dation by 1%. Figure 7.15 compares the original image produced by vol-

umeRender to the image produced with branch herding.

particles : The particles application performs a simulation of physical in-

teractions between a system of particles in an enclosed volume. The output

describes the positions and velocities of the particles after a certain number

of time steps. Herding branches identified by the framework only impacts

these positions and velocities. A large fraction of the instructions in particles

are branches that are part of collision checks between particles and with the

surface of the enclosure. Even though the fraction of divergent branches is

less than 1%, the number of divergent branches and the effect of divergence

on performance is significant. Eliminating divergence with branch herding

does not affect the output much because even if a collision is missed in one

time step, it will likely be observed in a subsequent time step. The result-

ing collision will be slightly different, but the net effect will be similar or

identical. Both software and hardware branch herding improve performance

significantly without producing any noticeable degradation in the output.

Whether or not results are acceptable may depend on whether the simula-

tion is for a visualization or a scientific experiment. For example, degraded

output quality may be more acceptable in a physics simulation performed

for a video game.

oceanFFT : The oceanFFT benchmark computes a heightfield for a region

of ocean using spectral methods. Divergence in oceanFFT arises due to

boundary checks at the edge of the simulated region. Ignoring divergence

with branch herding results in some slight deviations in the output around
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the edges of the simulated region, but does not cause the reported output

quality to change by a noticeable amount. In cases where the application

would be used for a graphic visualization of the ocean, the deviations caused

by branch herding would most likely be unnoticeable to the human eye.

sad : The sad benchmark performs sum of absolute differences-based motion

estimation as part of the H.264 video encoder. Previous works have observed

error tolerance for SAD-based motion estimation [92] due to the approximate

nature of the block matching that it performs. We use branch herding for all

safe branches in the sad kernel, which results in less than 0.5% output quality

degradation. For most branches identified as unsafe, disallowing herding does

not hurt much, since the alternate branch path is empty. In most cases,

inexactness imposed by branch herding does not impact sad values enough

to hinder block matching in the greater application. Thus, herding is often

acceptable.

lbm : The lbm benchmark performs a lid-driven cavity fluid dynamics simu-

lation involving a fluid that interacts with obstacles in a simulated volume.

We use branch herding to eliminate divergence in the condition that tests for

collisions between the fluid and an obstacle in a particular cell of the volume.

Since the branch paths following the collision-detection branch contain many

instructions, throughput can be affected substantially if the branch diverges.

Though most cells in the volume remain error-free, branch herding causes

some perturbations in the fluid simulation results. Thus, if the goal of the

simulation is to simulate the fluid dynamics as accurately as possible (which

may very well be the case in a scientific simulation), branch herding may be

inappropriate for lbm.

7.7.2 Data Herding

Figure 7.16 shows potential for performance improvements for various bench-

marks with data herding. Benefits can be substantial or nonexistent, depend-

ing on the benchmark. For the three benchmarks that do not see benefits

for data herding, less than 0.2% of dynamic instructions are loads. Out-

put quality degradation associated with data herding is compared against

original output quality degradation in Table 7.3.

Data herding achieves performance benefits for two reasons. First, all
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Figure 7.16: Data herding improves performance for error-tolerant
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Figure 7.17: Data herding improves performance by reducing memory stalls
and bandwidth usage due to divergent memory requests.

non-coalesced loads to the herded data will be coalesced into a single memory

request. This reduces memory bandwidth usage and contention for resources.

Reduced bandwidth and contention can also reduce the latency of memory

requests. Second, since only one memory request is made for a load, memory

divergence is eliminated, and warps do not spend cycles waiting for additional

requests to finish after the first request returns. Figure 7.17 shows results

for data herding, quantifying the reduction in bandwidth usage and in cycles

that ready warps spend stalled and waiting for outstanding memory requests.

Below we explain results for individual benchmarks.

histogram : In histogram, we target loads to the initial data set to be binned

in the histogram, as well as the data in the sub-histograms computed by the

warps. Static analysis identifies these data as safe for herding. The bench-

mark consists of two kernels – one that adds values to sub-histograms and

one that merges sub-histograms. Most of the speedup from data herding

comes from the kernel that performs merging, since it can generate many
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Table 7.3: Output quality degradation (%) for data herding compared to
original

% Mismatch Mandelbrot histogram nbody binomialOptions
Original 0.02 0.00 0.00 3.8E-5

Data Herding 0.99 0.6 0.95 3.8E-5

% Mismatch SobelFilter dxtc recursiveGaussian –
Original 0.00 0.019 0.00 –

Data Herding 1.81 0.019 0.00 –

non-coalesced loads. While we observed that data herding often has only a

small effect on output quality, output quality degradation depends on the

characteristics of the input data. For example, uniformly distributed ran-

dom data can be herded without affecting output quality substantially. On

the other hand, if individual sub-histograms contain very distinct bin counts,

data herding may be inappropriate for this benchmark. This brings up an

important point to remember about profiling-directed herding. Output qual-

ity could potentially change undesirably for a pathological input data set.

Thus, while our results do not guarantee acceptable output quality for the

benchmarks over all possible data sets, they do demonstrate the potential for

benefits for error-tolerant applications, especially if the target data set can

be accurately characterized.

nbody : Nbody performs an all-pairs N-body simulation for a collection of

bodies. The application is considerably bandwidth-limited, especially as the

number of bodies increases, since the data requirement scales approximately

as O(N2), stemming from the O(N2) forces that exist between N bodies. The

output of the N-body simulation describes the positions of all the bodies after

a specified number of timesteps. We use data herding for the body data

and observe less than 1% output quality degradation, measured in terms

of the average absolute difference in body positions between the computed

output and a reference data set. While the deviations in the output set

are visually imperceptible, they do exist. Thus, herding may be appropriate

for a visualization, but may be inappropriate for a high-precision scientific

simulation.

SobelFilter : As in Section 7.2, we herd image data for SobelFilter. While

the performance results are similar to the maximum benefits achieved in the

motivational experiment, the output quality degradation is significantly less,

since loads that map to the most popular memory block receive their actual
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Figure 7.18: Output comparison: original gaussian blur filtering (left) and
data herding result (right).

data with our proposed implementation of data herding (Section 7.4). Out-

put quality is also better than in the branch herding case, since data herding

takes advantage of spatial correlation in the image data, which contributes

to the error resilience of SobelFilter. Since the output image after herding is

visually indistinguishable from the original filtered image, we omit the image

here to save space and refer the reader to the images in Section 7.2.

recursiveGaussian : RecursiveGaussian performs Gaussian blur filtering

on an input image. As in the case of SobelFilter, we herd the input image

data. Error tolerance stems from the spatially correlated image data and

the nature of the Gaussian filtering operation. Since the output value for

a pixel is a weighted sum of the neighboring pixels, based on a Gaussian

function, mixing in a few incorrect values is usually imperceptible, especially

if the incorrect pixel values are close to the intended values due to spatial

correlation. Because of the shape of the Gaussian function, the farther a

neighboring pixel is from the pixel being computed, the less it affects the

output. Thus, ignoring memory divergence due to non-contiguous data that

cannot be coalesced usually has little effect on the output, since the data tend

to be further apart in the image. We often did not observe any difference in

output quality when data herding was used. Of course, output quality degra-

dation may be greater for highly uncorrelated inputs. Figure 7.18 compares

the original filter result to the result produced with data herding for one of

the input images.

Mandelbrot, binomialOptions, and dxtc: For these three applications

that do not see benefits from data herding, loads make up only 0.2% of the

instruction mix. Thus, there is almost no potential for benefits with these
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applications to begin with.

7.8 Related Work

7.8.1 Dynamic Warp Subdivision

The basic unit of SIMD execution is the warp. However, all threads in a warp

must be ready in order to issue the next instruction. When SIMD restrictions

stall execution, some threads in the warp may be ready while others are

stalled. Normally, GPUs use warp-level multi-threading to hide latency, but

this strategy requires a large, costly register file. Instead of deep warp-level

multi-threading, dynamic warp subdivision [89] advocates using intra-warp

latency hiding to increase throughput by allowing a divergent warp to occupy

multiple scheduler slots without increasing its register usage. This scheduling

approach allows threads on divergent branch paths to subdivide their warp

and execute independently. Similar to a previous work advocating “diverge

on miss” [100], dynamic warp subdivision also allows a subset of threads in

a warp to continue execution when the remaining threads are still waiting

on memory. The main drawback to dynamic warp subdivision is that it at

least doubles the complexity and hardware cost of scheduling logic for each

SM [89].

7.8.2 Dynamic Warp Formation

The goal of dynamic warp formation [90] is to increase hardware utilization by

dynamically combining threads from multiple divergent warps. When multi-

ple warps diverge, threads that take the same branch direction in one warp

can be grouped with threads that take the same branch direction in other

warps. Thus, fuller warps are formed dynamically, increasing throughput and

partially mitigating the inefficiency caused by control divergence. The sched-

uler forms new warps out of ready threads by grouping threads that have the

same next PC. Thread block compaction [101] applies dynamic warp forma-

tion whenever a divergent branch is encountered by synchronizing warps and

compacting them into new warps, in which all threads take the same control

path. A large warp microarchitecture [102] performs a similar optimization
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by exposing a larger warp of threads to the scheduler, which is able to select

SIMD width-sized sub-warps that have the same control behavior.

While dynamic warp formation has the potential to increase throughput for

some applications, it is not always possible to find enough divergent threads

that take the same branch direction to fill a warp within the scheduling

window of available warps. Thread block compaction may help in this regard,

but in some cases, warps must remain partially empty anyway, even with the

additional hardware overhead required for dynamic warp formation. Nested

divergence complicates the problem, making it harder to find a full warp of

threads with the same next PC.

Dynamic warp formation also adds complexity in the register file, which

is typically heavily banked, such that each lane of a SM can access one bank

of the register file. Dynamically grouping multiple threads from the same

home lane into the same warp requires adding a crossbar network so that

each thread can access its registers when mapped to a different lane than

its home lane. Dynamic warp formation also results in bank conflicts when

multiple threads from the same home lane are grouped into the same warp,

such that register file accesses are serialized over multiple cycles. One possible

solution to this problem involves passing along the home lane that a thread

belongs to and using lane information during dynamic warp formation so

that threads are only grouped together if they belong to different home lanes.

This method reduces bank conflicts, but it adds complexity to the dynamic

warp formation hardware and also makes it somewhat harder to find threads

that can be grouped into efficient, full warps, potentially diminishing the

effectiveness of dynamic warp formation. Furthermore, for some divergence

patterns, it is impossible to group threads in this manner [90].

7.8.3 Divergence Avoidance Through Software
Transformation

Besides hardware-based techniques such as those discussed above, software-

based techniques for avoiding divergence have also been proposed [103, 104].

These techniques aim to avoid divergence by re-mapping memory or trans-

forming memory references to reorganize the layout of data, improve memory

coalescing, and reduce control and memory divergence. Like software-based
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herding, these software-based techniques have the benefit of being immedi-

ately deployable on real GPUs.

7.8.4 Energy-Reliability Tradeoffs for Error-Tolerant

Applications

Related works on best-effort computing for a GPU version of semantic doc-

ument search [91] and parallel implementations of recognition and mining

applications [105] also recognize and exploit the forgiving nature of certain

parallel algorithms to increase performance by relaxing correctness. The au-

thors observe acceptable results for target applications after relaxing data

dependencies and dropping computations. They relax data dependencies be-

tween iterations of a function call to give the parallel processor or GPU more

work to do in parallel. They also monitor the usefulness of iteratively com-

puted data during runtime and drop computations between iterations when

the observed usefulness of the computed data falls below a threshold. The

idea of exploiting the forgiving nature of parallel applications to improve per-

formance is common to this dissertation. We, however, propose a different

set of optimizations that target GPU- and SIMD-specific inefficiencies.

A similar work demonstrates that reliability can be traded for increased ef-

ficiency in certain data-parallel workloads [93]. The authors argue that data-

parallel physics animations require perceptibility, rather than strict numerical

correctness. Accordingly, they propose reducing floating point precision to

improve energy efficiency. Exploiting error tolerance enables higher perfor-

mance for the same cost, as they can afford to put more, reduced-precision

FPUs on a chip, as opposed to fewer, high-precision FPUs.

Scalable effort hardware design [106] exploits algorithmic error tolerance

in order to improve the energy efficiency of hardware. Since some algorithms

are naturally tolerant to errors, scalable effort hardware design proposes to

relax the traditional requirement for exact equivalence between the hardware

specification and the hardware implementation. A hardware design that

approximately adheres to the design specifications may provide acceptable

output quality when running a robust application. The focus of scalable

effort hardware design is to identify mechanisms at the circuit, architecture,

and algorithm levels that influence the exactness or correctness of the final
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result, and expose these mechanisms as knobs during design optimization.

In this way, output quality can be traded for energy efficiency.

The authors of [106] stress the importance of cross-layer optimizations,

claiming that simultaneous consideration of optimizations at all design lay-

ers results in a more efficient design than when optimizations in each layer

are considered separately. This claim should easily hold true, since simul-

taneous consideration of more axes of optimization should prevent locally

optimal, globally sub-optimal decisions. Nevertheless, in order to maintain

truly “scalable” effort in the hardware design, one should take care not to

overly increase the complexity of making design decisions. Whenever one

considers many layers of design optimization simultaneously, the optimiza-

tion space that must be evaluated to make a single decision explodes, and

the complexity of making each decision grows.

Code perforation [107] also takes advantage of noise tolerance in appli-

cations to reduce energy. Proponents of code perforation argue that while

some applications already trade accuracy for performance, the tradeoffs are

typically application-specific, as they require algorithmic changes. Instead,

code perforation focuses on program modifications that can be made auto-

matically by a compiler to trade accuracy for performance. The idea relies on

the assumption that some programs can achieve acceptable output quality

even if some of the operations in the program are forgone. As such, code

perforation proposes to skip non-essential lines of code in order to increase

performance. By monitoring the effect of code perforation, distortion is kept

within user-defined bounds. Since both output quality and performance are

monitored, the code perforation compiler can either maximize performance

for a given output quality or maximize output quality for a given performance

target. For many applications where code perforation can be applied, perfo-

rating code would be similar to changing the size of the sample population

in a statistical sampling-based problem.

7.8.5 Outcome Tolerant Branches

A work on Y-branches [108] showed that taking the wrong direction for some

branches may still bring the processor to a correct architectural state. By

toggling the outcome of random branches in a program, the authors observed
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that for 40% of dynamic branches, taking either branch direction leads to

a valid architectural state. They observed that the percentage was higher

(around 50%) when allowing a mispredicted branch to continue executing on

the wrong path. The authors note that outcome tolerance (the property of

a branch indicating that the program output does not depend on the chosen

branch direction) is a result of redundancies inserted by the programmer or

compiler, as well as partially dead code.

Branch herding may benefit from outcome-tolerance in branches, but does

not require it. In general, herding relies on the error-resilient nature of appli-

cations to tolerate inexactness in some thread computations. In this chapter,

we also evaluate the effect on program outputs of allowing some branches to

take incorrect control paths, observing acceptable outputs for many applica-

tions. In our experiments, we never observed a program crash as a result of

herding branches onto the same branch path.

7.8.6 Application and Programming Language Support for
Stochastic Computing

Stochastic processors enable reliability to be traded for increased energy effi-

ciency when some form of error resilience is available. While some classes of

applications often exhibit natural error tolerance (e.g., data-intensive appli-

cations), other classes of applications (or parts of applications) may not be

naturally amenable to making energy-reliability tradeoffs. The static analysis

framework presented in this chapter provides a means of determining where

it is safe to allow errors in applications. Some related works [109, 110, 111]

present application and programing language techniques that aim to manage

the impact of errors on a program or make applications more suitable for

execution on stochastic processors that can allow errors to propagate from

hardware to software.

EnerJ [109] is a programming language extension that gives programmers

more control over how programs execute on stochastic processors. EnerJ

specifies how a stochastic processor is allowed to make energy-reliability

tradeoffs for a given piece of code by allowing the programmer to specify

which variables in the program are allowed to be approximate and which

should be precise. Variables that are marked as approximate can take advan-
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tage of energy-reliability tradeoffs, for example, by using unreliable memories

and approximate or error-prone arithmetic units.

To maintain the dichotomy between approximate and precise program

state, EnerJ performs type checking that prevents an approximate variable

from affecting the assignment of a precise variable. If approximate variables

need to be used in combination with precise variables, EnerJ allows an ap-

proximate variable to be “endorsed” so that it may be used in future precise

computations.

Relax [110] is a framework for managing stochasticity in hardware by spec-

ifying how errors should be allowed to affect software. The potential benefits

of Relax come from relaxing correctness guards imposed on hardware and

allowing errors to propagate to software. The Relax framework uses an ISA

extension, along with a try-catch-like software construct, that allows a pro-

grammer to specify regions of code in which correctness can be relaxed and

errors can be allowed to propagate to software.

Relax relies on hardware error detection but does not support hardware

error recovery, because of the relatively high cost of correcting errors in hard-

ware. Instead, Relax performs error recovery in software. The Relax frame-

work allows the programmer to specify an error rate for a given block of

code. Relax treats all errors as equals, using a single user-specified recovery

strategy such as retry or ignore when an error is detected. In the current for-

mulation of Relax, faulty results are always discarded. Software frameworks

like Relax may be useful for managing stochasticity in programs that run on

programmable stochastic processors.

Some applications (such as the data intensive applications discussed in this

chapter) naturally tolerate errors and can readily be executed on stochastic

processors. Still, many applications cannot naturally tolerate errors. Appli-

cation robustification [111] aims to transform an application into a version

that is more robust to errors, to enable execution of a larger fraction of the

application on a stochastic processor. In order to ensure acceptable output

quality on hardware that may make errors, application robustification pro-

poses to transform applications into numerical optimization problems that

can be solved with stochastic optimization techniques. Since these optimiza-

tion techniques converge to the correct result, even when computations are

noisy, the robustified applications are naturally error-tolerant. Although the

robust, stochastic optimization version of a program may take many itera-
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tions to converge to an acceptable result, each iteration of the program has a

low energy cost. In this way, it is possible to save energy over a deterministic

program execution. Furthermore, as variations become more common, ap-

plication robustification may become useful simply as a means of achieving

acceptable results on hardware that is necessarily stochastic [111, 112].

While some applications require application robustification techniques to

achieve acceptable results on stochastic hardware, other applications exhibit

natural error tolerance. Algorithmic approximate correction [113] relies on

the inherent error tolerance exhibited by many applications and applies ap-

proximate error correction to improve output quality, resulting in a higher

quality, though potentially noisy output. The goal is to ensure that even

in the presence of errors, output quality is not degraded by more than an

acceptable threshold. Algorithmic approximate correction can be used in

different scenarios to provide performance or output quality guarantees for

an application running on a stochastic processor.

7.9 Summary

In this chapter, we demonstrate that significant potential performance ben-

efits are possible for a programmable stochastic processor from safely and

efficiently relaxing correctness and exposing errors in GPU applications. We

propose two optimizations – branch herding and data herding – that relax

correctness and improve performance by eliminating control and memory

divergence. To ensure safety when introducing control and memory errors

in applications, while targeting performance benefits and acceptable output

quality, we propose a static analysis and compiler framework, a profiling

framework, and hardware support for branch and data herding. Our soft-

ware implementation of branch herding uses CUDA intrinsics and forces di-

verging threads to take the same direction at a branch as the majority of

the threads. Our hardware implementation of branch herding uses majority

logic to identify the branch direction all threads should take. Data herding is

implemented in coalescing hardware by identifying the most popular mem-

ory block (that the majority of loads map to) and mapping all loads from

different threads in the warp to that block. Our software implementation of

branch herding on NVIDIA GeForce GTX 480 improves performance by up
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to 34% (13%, on average) for a suite of NVIDIA CUDA SDK and Parboil [84]

benchmarks. Our hardware implementation of branch herding improves per-

formance by up to 55% (30%, on average). Data herding improves perfor-

mance by up to 32% (25%, on average). For this level of performance benefits,

observed output quality degradation is minimal for several applications that

exhibit error tolerance, demonstrating that a programmable stochastic pro-

cessor can achieve significant benefits while maintaining acceptable output

quality for a large class of applications.
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CHAPTER 8

SUMMARY AND FUTURE DIRECTIONS

Shrinking device sizes and growing static and dynamic non-determinism

challenge the reliable manufacturing and operation of circuits. Faking de-

terminism on inherently noisy hardware imposes significant and growing

performance and power overheads. The rigid correctness contract between

hardware and software leaves potential performance and energy benefits un-

tapped, especially for applications that do not require perfect correctness

and can tolerate some errors. Rather than hiding variations under expensive

guardbands, stochastic processors relax traditional correctness constraints

and deliberately expose hardware variability to higher levels of the compute

stack, thus tapping into potentially significant performance and energy ben-

efits, but also opening the potential for errors.

This dissertation proposes techniques for designing and architecting pro-

grammable stochastic processors and applications. Programmable stochastic

processors embrace the inherent non-determinism in hardware and exploit

available error tolerance in software to improve energy efficiency. Specifically,

this dissertation describes design, architecture, compiler, and application op-

timization techniques for programmable stochastic processors and demon-

strates significant benefits through detailed evaluations, including evalua-

tions for a real processor prototype. However, going forward, there are still

several issues to tackle.

Some of the main challenges lie in making stochastic computing gener-

alizable for a wider range of applications, and doing this in a way that is

automated and easy to work with. For example, Chapter 7 presents tech-

niques for improving energy efficiency by exposing errors in applications that

are naturally error-tolerant. One of the directions where more work is needed

involves taking applications that are not naturally error-tolerant and trans-

forming them into versions that are robust to errors. Section 7.8.6 discusses

one promising technique for application robustification, but the technique
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is limited in that it can only be applied to a limited class of applications

and converting an application into its robust form is done manually. Going

forward, programmable stochastic processors can benefit substantially from

automated application robustification techniques that are suitable for a wider

range of applications.

Current synthesis flows do not take as input user-level metrics. However,

as this dissertation demonstrates, one of the primary drivers for stochastic

computing is the fact that many applications can tolerate some errors. Thus,

there is potential to improve the energy efficiency of synthesized designs

through approximate synthesis that synthesizes a design to meet a given set

of user-level constraints, including reliability. The challenge of approximate

synthesis is to take an exact design specification and its reliability require-

ments as input and synthesize an inexact design implementation that is more

efficient than an exact implementation and that meets the specified reliabil-

ity requirements. One approach currently in development involves creating

approximate DesignWare [114] libraries and an approximate synthesis tool

that synthesizes an optimized design for a given set of user-level constraints.

At the architecture level, stochastic architecture frameworks can improve

efficiency by ceasing to treat all errors as equals and considering instead the

software-level criticality of errors. Compiler-level work can take advantage

of dynamic compilation techniques to route instructions around errors, and

static compilation techniques like those described in Chapter 7 that guarantee

safety when errors are introduced into applications. In testing, yield and

profit could be increased with low-overhead, fine-grained binning strategies

that deem more chips useful for specific purposes. As static and dynamic non-

determinism continue to increase, and more opportunities for application-

level error tolerance are discovered and created, the benefits of programmable

stochastic processors will continue to grow as well.
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