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ABSTRACT 

Arthropod herbivory fundamentally alters ecosystem function and challenges agricultural 

productivity because herbivores alter photosynthesis. Feeding removes tissues and resources for 

growth but often introduces unseen physiological costs mediated by a reallocation in resources 

from growth to defense or by alterations to primary and secondary metabolism. The type of 

feeding damage depends on the mouthparts of the herbivore and, in part, determines the 

magnitude and mechanism by which photosynthesis is altered. However, there is a lack of 

understanding of these effects across model systems to evaluate conserved mechanisms of plant 

responses to herbivory. Documenting these responses from the observed and manipulated eco-

physiological level down to the level of the gene can provide mechanistic understanding of how 

photosynthesis changes under herbivory and, ultimately, what initiates the reallocation of 

resources from primary to secondary metabolism (i.e., plant defense). Understanding the 

connections between genotype and phenotype can enhance our knowledge of ecosystem function 

amidst a rapidly changing climate by elucidating resource-driven trade-offs, and, as a result, 

forms the basis for this dissertation. 

 Plant responses to herbivory depend on the plant under attack and the attacking agent, but 

variability in the methods by which the interaction is observed makes it difficult to distinguish 

trends. As such, I synthesized the available literature in a review that elucidated four mechanisms 

for the alteration of photosynthesis at the leaf level. Arthropods sever vasculature, alter 

sink/source relationships, release autotoxic chemicals, or initiate a trade-off of resources from 

photosynthesis to defense in remaining leaf tissue. This review is presented in Chapter 2 and 

establishes the framework for the following chapters in which I investigate these mechanisms. 
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Because Earth is experiencing rapid environmental change, I surveyed leaf-level response 

of model forest species to multiple damage types when grown under predicted climate change 

conditions in Chapter 3. Elevated CO2 attenuated damage for all damage types. As a result, the 

changing climate will, in part, attenuate the negative effects of herbivory on leaf-level 

photosynthesis. A common theme in this study and others is that damage to remaining leaf tissue 

from defoliation declines with time across species; however, contrary examples exist where 

inducible processes interact more with photosynthesis. Therefore I examined how inducible 

defense signaling and metabolite production altered photosynthesis in Chapter 4. I found that 

wound signaling immediately impaired electron transport, and defense synthesis correlated with 

sustained reductions in photosynthesis. Taken together, these data indicate a conserved 

mechanism underlying defense signaling modulates the trade-off from using resources for 

growth to defense. 

 As the preceding chapters suggest, hidden physiological costs can reduce photosynthesis 

relative to the damage type. Insect parasites of plants may influence leaf and canopy-level 

processes through the manipulation of sink/source dynamics by an unknown mechanism. In 

Chapter 5 I reexamined the grape-phylloxera system to reveal that the gall-forming insect 

parasite phylloxera induces functional stomata and globally reconfigures plant metabolism at the 

genomic level to enhance insect fitness. Although insect-induced stomata are rare in nature, the 

transcriptional pattern of gall formation is likely conserved among insect parasites and facilitates 

the galling habit by increasing competitive sink strength of the insect.   

The following chapters provide a framework for assessing how arthropod herbivores alter 

leaf function across damage type and plant species. By characterizing mechanisms within model 
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systems, I believe I have uncovered some of the physiological costs of herbivory that modulate 

resource-driven trade-offs in nature. 
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  CHAPTER 1 

INTRODUCTION 

BACKGROUND 

Herbivory fundamentally alters ecosystem function and challenges agricultural 

productivity. Globally, herbivores may consume 18% of primary production in terrestrial 

ecosystems (Cyre and Pace 1993) but, in the absence of crop protection, reduce agricultural yield 

>60% (Oerke and Dehne 1997, Oerke 2006). Herbivore damage is typically assessed through 

visual survey; however, this approach assumes that the remaining leaf tissue functions normally. 

Recent assessments of this remaining tissue using non-invasive techniques reveal a range of 

nonvisible effects of herbivory that may double photosynthetic reductions to the individual plant 

and thereby contribute to substantial underestimates of losses in productivity (Zangerl et al. 

2002, Aldea et al. 2006b, Patankar et al 2011, Pinkard et al. 2011). 

The manner in which herbivores feed largely determines the magnitude of reductions in 

productivity (Zvereva et al. 2010, Patankar et al. 2011) and can be linked to damage-specific 

alterations of photosynthetic capacity (Welter 1989). Tissue consumption by defoliators removes 

photosynthetic leaf area whereas photosynthate extraction by piercing-sucking insects alters 

uptake and movement of carbon within the plant (see Welter 1989). The direct impact of 

herbivory on photosynthesis is well characterized, but remaining tissues also respond to the type 

of damage with varying degrees of photosynthetic reduction; minimal defoliation reduces 

photosynthesis four-fold in remaining leaf tissue in some species (Zangerl et al. 2002), whereas 

similar damage reduces photosynthesis in remaining tissues equal to the area removed in other 

species (Aldea et al. 2006b). Understanding these effects on photosynthesis among damage types 

and within model systems where genomic information is readily accessible may help link the 
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observed global genomic down-regulation of photosynthetic genes (Bilgin et al. 2010) to 

reductions in growth. Moreover, this damage-specific alteration of photosynthesis links 

herbivore-specific elicitors to the magnitude and type of plant response (Halitschke et al. 2011, 

Heil et al. 2012) in determining the damage to remaining leaf tissue, including the ultimate 

fitness cost. 

Selection is greatest for plants to optimize resource use when attacked by herbivores to 

avoid greater costs to fitness (e.g., Rhoades 1979, Herms and Mattson 1992) but the mechanisms 

that regulate these trade-offs are less well understood. The direct loss of tissues reduces potential 

growth and tissues adjacent to feeding damage also may reduce photosynthesis and thereby 

contribute to reductions in productivity (Aldea et al. 2006b, Chapters 2-4). But beyond this 

damage, feeding elicits interactive hormone signaling that induces defenses and initiates the 

trade-off between using resources for growth or defense. The defense response is often specific 

to the herbivore-plant interaction (Walling 2000), but the generic response to chewing herbivores 

is the elicitation of the wound-signaling pathway. This pathway initiates defenses that vary in 

their resource requirements for synthesis and fitness costs (Kessler et al. 2004). Gene expression 

and proteomic surveys of herbivory have implicated candidate mechanisms regulating the switch 

from growth to defense (Heidal and Baldwin 2004, Giri et al. 2006, Maserti et al. 2010, Chen et 

al. 2011), but the functional physiology linking how defense synthesis alters resource supply 

(i.e., photosynthesis) is only beginning to be understood (Zangerl et al. 1997, Zangerl et al. 2002, 

Tang et al. 2009, Halitschke et al. 2011).  

Among damage types galling endoparasites are unique in that their feeding behavior 

induces variable morphologies that interact with photosynthesis across scales. For example, gall 

damage may reduce canopy photosynthesis up to 60% in mature trees and thereby reduce 
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ecosystem productivity (Patankar et al. 2011). At finer scales, galls reduce photosynthesis in gall 

tissues (e.g., Welter 1989) but can increase and decrease photosynthesis of remaining tissues 

(Retuerto et al. 2004, Dorchin et al. 2006). This variability in response may reflect the complex 

nature of the galling habit, a lack of understanding how it is mechanistically regulated, or the 

competitive nature of sinks within plants. Galls directly compete for mobilized nutrients with 

meristems or developing reproductive structures that function as natural plant sinks, but also 

compete with intra- or interspecific induced sinks. This competitive environment drives gall 

evolution (Inbar et al. 2004) and favors the strongest sink (Larson and Whitham 1997, Compson 

et al. 2011). There appears to be a genetic basis for manipulating sink-source relationships and 

thereby altering photosynthesis in remaining leaf tissue (Compson et al. 2011) but there is a lack 

of understanding underlying how insect parasites initiate and maintain control over 

photosynthesis. 

Human activities are rapidly changing the chemistry of the atmosphere and the associated 

increase in carbon dioxide (~2 μl l-1 yr-1; www.esrl.noaa.gov/gmd/ccgg/trends/) generally 

enhances photosynthesis of forest ecosystems (Saxe et al. 1998; Leakey et al. 2009; Lindroth 

2010). Despite this enhancement, indirect modifications of the herbivore community and 

changes in host plant chemistry (Hillstrom 2010, Lindroth 2010) increase damage rates by 

herbivores in forests elevated CO2 levels (Couture et al. 2011). Because increased CO2 stimulates 

photosynthesis and may reduce transpiratory loss by appressing stomatal aperture, the predicted 

increases in atmospheric CO2 may modulate the effect of herbivory on photosynthesis; however, 

this scenario remains to be tested.  

Non-invasive imaging technologies are powerful tools for making high-resolution, 

spatially resolved measurements of component processes of photosynthesis in damaged leaf 
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tissues (Oxborough 2004, Aldea et al. 2006a). Chlorophyll fluorescence is highly correlated with 

the rate of CO2 uptake in intact leaves (Genty et al. 1989, Baker and Oxborough 2005, Tang et 

al. 2006) and relates directly to carbon assimilation, an ecologically important trait. 

Thermography allows for mapping changes in temperature associated with variation in heat flux 

across leaf surfaces (Jones 1999, Omasa and Takayama 2003) and can be calibrated to visualize 

changes in stomatal conductance (Jones 2004, Bajons et al. 2005, Grant et al. 2006). The 

application of these techniques is advancing our understanding of how herbivory alters 

remaining tissues by revealing hidden costs associated with herbivory. Of the few systems 

examined with these technologies (Pastinaca sativa L., Glycine max L., Arabidopsis thaliana L. 

Heynh., various hardwood trees), new insight into the mechanisms regulating herbivore impact 

on leaves and ultimately ecosystems has been revealed; however, the vast number of plant-insect 

interactions warrant further study to identify conserved plant responses that link trade-offs 

between photosynthesis and fitness.  

 

OVERVIEW 

How do we assess the effects of herbivory on leaf-level processes to investigate hidden 

physiological costs to photosynthesis? 

To assess how different damage types alter photosynthesis, I conducted a literature 

review (Chapter 2) that examined novel and emerging technologies applied to the study of 

plants. These processes aim to elucidate dynamic, in-vivo, and previously undocumented 

alterations of leaf-level photosynthesis. Four mechanisms emerged to account for how 

arthropods alter photosynthesis in remaining undamaged tissue, henceforth termed propagated 

damage: 1) Severing vasculature alters leaf hydraulics, and, subsequently, water and nutrient 
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transport in the xylem. 2) Insect feeding can be subtle enough to avoid outright cell rupture and, 

by extracting photosynthate, alters sink/source relationships within and among leaves. 3) 

Defense-induced autotoxicity occurs when the rupture of cells releases generically biocidal 

compounds that disrupt homeostatic mechanisms vital for plant function. 4) Defense-induced 

down-regulation of photosynthesis occurs when insect attack, or even the perception of attack, 

induces a myriad of defense-related secondary metabolites while concomitantly reducing the 

expression of photosynthesis-related genes. These themes were subsequently investigated across 

several model species and within environmental context to increase understanding of the 

mechanisms regulating the observed responses. 

 

How will a rapidly changing climate alter these leaf-level effects in the future? 

Human activities are rapidly altering atmospheric chemistry, including the concentration 

of CO2, which directly impacts leaf-level photosynthesis and water use efficiency. Therefore, in 

Chapter 3 I examined how the effect of elevated CO2 alters leaf function across damage types 

using a model hardwood tree species at the aspen Free Air Concentration Enrichment (FACE) 

site in Rhinelander, Wisconsin. Chlorophyll fluorescence decreased for all damage types in 

damaged tissue and in adjacent undamaged tissues whereas the thermal signature of tissues 

depended on the herbivore’s mode of feeding. Elevated CO2 attenuated the magnitude of damage 

for all damage types at the leaf level. 

 

How will plant defense response modulate the effects of herbivory on photosynthesis?  

Herbivores reduce plant fitness by inducing defenses that reprogram plant metabolism 

through a reallocation of resources to defense. This fitness cost cannot be explained by the 
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synthesis of metabolites alone and suggests hidden costs to photosynthesis (Chapter 2). To 

elucidate the photosynthetic mechanisms by which defense induction reduces photosynthesis, I 

investigated the physiological and molecular crosstalk occurring with herbivore-elicited 

jasmonic acid (JA) defenses in Chapter 4. Using plants with impaired JA-signaling (and 

therefore reduced plant defenses), I determined that the act of JA signaling impairs 

photosynthetic electron transport and ultimately prolongs the suppression of photosynthesis. As a 

result, JA signaling involves a complex network where electron donors facilitate reductions in 

downstream carbon assimilation upon induction of JA dependent defenses.  

 

How does gall formation alter leaf development and reduce photosynthesis? 

Feeding by some insects increases cell proliferation and differentiation into protective 

enclosures i.e., galls, with specialized morphologies and biochemistries hypothesized to serve the 

developing parasite (Stone and Schonrogge 2003). To test this extended phenotype hypothesis 

and characterize the mechanisms underlying arthropod manipulation of sink/source association 

within a leaf (Chapter 2) I examined leaf gall formation by phylloxera in its coevolved, 

economically and culturally valued grape host. I determined that phylloxera globally controls 

leaf carbon metabolism by inducing functional stomata where none typically occur, and by 

transforming the transcriptional pattern of the leaf into a carbon sink. This physiological and 

genomic control over carbon uptake and metabolism provides the most extensive evidence in 

support of the extended phenotype to date.   
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CHAPTER 2 

INDIRECT SUPPRESSION OF PHOTOSYNTHESIS ON INDIVIDUAL LEAVES BY 

ARTHROPOD HERBIVORY1 

 

ABSTRACT 

Herbivory reduces leaf area, disrupts the function of leaves, and ultimately alters yield 

and productivity. Herbivore damage to foliage typically is assessed in the field by measuring the 

amount of leaf tissue removed and disrupted. This approach assumes the remaining tissues are 

unaltered, and plant photosynthesis and water balance function normally. However, recent 

application of thermal and fluorescent imaging technologies revealed that alterations to 

photosynthesis and transpiration propagate into remaining undamaged leaf tissue. This review 

briefly examines the indirect effects of herbivory on photosynthesis, measured by gas exchange 

or chlorophyll fluorescence, and identifies four mechanisms contributing to the indirect 

suppression of photosynthesis in remaining leaf tissues: severed vasculature, altered sink 

demand, defense-induced autotoxicity, and defense-induced down-regulation of photosynthesis. 

We review the chlorophyll fluorescence and thermal imaging techniques used to gather layers of 

spatial data and discuss methods for compiling these layers to achieve greater insight into 

mechanisms contributing to the indirect suppression of photosynthesis. We also elaborate on a 

few herbivore-induced gene-regulating mechanisms that modulate photosynthesis and discuss 

the difficult nature of measuring spatial heterogeneity when combining fluorescence imaging and 

gas exchange technology. Although few studies have characterized herbivore-induced indirect 

effects on photosynthesis at the leaf level, an emerging literature suggests that the loss of 

                                                
1 Reprinted with permission from Nabity PD, Zavala JA, and DeLucia EH. 2009. Indirect suppression of 
photosynthesis on individual leaves by arthropod herbivory. Annals of Botany. 103:655-663. 
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photosynthetic capacity following herbivory may be greater than direct loss of photosynthetic 

tissues. Depending on the damage guild, ignoring the indirect suppression of photosynthesis by 

arthropods and other organisms may lead to an underestimate of their physiological and 

ecological impacts. 

 

INTRODUCTION 

Insects consume vast quantities of plant biomass each year, but simply considering the 

amount of tissue removed may underestimate their impact on yield and ecosystem production. 

On average, herbivores remove approx. 15% of primary production in terrestrial ecosystems, but 

complete removal is not uncommon in out-break years (Cyre and Pace 1993). Similarly, insects 

consume approx. 14% of total global agricultural output (Oerke and Dehne 1997). This value is 

relatively low because of the widespread application of pesticides. In the absence of pesticides, 

losses would exceed 50% for all major crops (Oerke and Dehne 1997). Herbivore damage is 

assessed in agricultural fields by surveying the amount of tissue removed from foliage. This 

approach, however, assumes that the remaining leaf tissue functions normally. Many types of 

insect damage affect photosynthesis in undamaged tissues, and these ‘indirect’ effects on 

photosynthesis may be considerably greater than the direct removal of leaf area (Welter 1989, 

Zangerl et al. 2002).  

Insect herbivory, whether defoliation or by feeding on specific tissues (e.g. phloem or 

xylem), triggers a complex and interacting array of molecular and physiological responses in 

plants. These responses potentially reduce the photosynthetic capacity in remaining leaf tissues 

to a greater extent than the direct removal of photosynthetic surface area. For example, the 

removal of only 5% of the area of an individual Pastinaca sativa L. leaf by caterpillars reduced 
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photosynthesis by 20% in the remaining foliage (Zangerl et al. 2002), and the decline in 

photosynthesis in the remaining leaf tissue of a Quercus alba L. sapling was equal to the 

decrease in photosynthesis associated with the actual removal of leaf tissue (Aldea et al. 2006b). 

The mechanisms reducing photosynthesis in remaining leaf tissues are multifaceted, ranging 

from disruptions in fluid or nutrient transport to self-inflicted reductions in metabolic processes. 

However, the magnitude of these effects on photosynthesis and the underlying mechanisms are 

highly variable, depending in large part on the type of feeding damage and the mode of defense 

deployed by the plant under attack.  

In this review, we build upon previous evaluations of the effects of insect herbivory on 

photosynthesis (Welter 1989, Peterson and Higley 2001) by examining feeding-induced spatial 

heterogeneity in photosynthesis across individual leaves. The application of fluorescence 

imaging techniques (Rolfe and Scholes 1995, Baker et al. 2001) is providing new insight into 

how different damage guilds, including pathogens and insects, affect the component processes of 

photosynthesis. When combined with other imaging methods such as thermography, the use of 

reporter genes to follow transcription, and fluorescent dyes that track signaling compounds (e.g. 

Ca2+ ions, H2O2), the mechanisms responsible for altering photosynthesis in remaining tissues are 

being elucidated. The use of geographic image analysis as a tool for making quantitative 

comparisons of images representing different biological processes is discussed, as this method 

provides the capability to compile many layers of covariate information to reveal new 

mechanistic insights.  

Indirect versus direct effects of herbivory on photosynthesis  

Plant responses to arthropod herbivory traditionally have been assessed from the guild 

perspective, where different insect guilds are defined by their feeding mechanisms (Welter 1989, 
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Peterson and Higley 2001). These guilds (e.g. chewing damage, piercing damage, etc.) were 

established in an effort to recognize ‘homogeneity in physiological response’ between different 

attacking agents (arthropods) that alter plant physiological processes in a similar manner (Higley 

et al. 1993). Using this guild approach, Welter (1989) examined an extensive body of literature 

across multiple guilds and found over 50% of all plant–insect interactions resulted in a loss of 

photosynthetic capacity. Defoliation generally increases photosynthesis, whereas specialized 

cell-content feeding decreases photosynthesis. Since then, several studies have examined plant 

responses to different insect feeding guilds and even to different insects within guilds in an effort 

to develop models for predicting plant response to different feeding mechanisms (see Peterson 

and Higley 2001).  

A review of the recent literature is not entirely consistent with the conclusions stated by 

Welter (1989). Feeding on specialized tissues typically reduces photosynthesis, regardless of 

whether the attacked component is the phloem or xylem (Haile et al. 1999, Macedo et al. 2003a, 

b, Heng-Moss et al. 2006), the stem (Macedo et al. 2005, 2007) or general leaf fluids (Haile and 

Higley 2003). There is some evidence indicating that increased photosynthesis occurs in the 

presence of phloem feeding, particularly when the annual photosynthesis rate is estimated 

(Dungan et al. 2007). In contrast, defoliation injury often does not alter photosynthetic capacity, 

within plant families (e.g. legumes) or between hardwoods and crops (Peterson et al. 1992, 1996, 

2004); however, there are examples where defoliation reduced (Delaney and Higley 2006) or 

increased photosynthesis (Turnbull et al. 2007).  

The removal of leaf tissue by herbivores represents a ‘direct’ reduction of photosynthetic 

capacity. The suppression of photosynthesis in remaining leaf tissue is defined by any one of a 

number of processes, including damage to the vasculature supplying that tissue, as an ‘indirect’ 
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effect of herbivory. Arthropods damage xylem or phloem (Welter 1989), which may alter water 

transport, stomatal aperture, and sucrose transport and loading, thereby reducing photosynthesis 

in remaining leaf tissue. Severing tissue vasculature alters leaf hydraulics, and, subsequently, 

nutrient or osmotica transport (Sack and Holbrook 2006). If insect feeding is subtle enough to 

avoid outright cell rupture, modulation of nutrients sequestered by feeding will alter plant 

osmotica or sink/source relationships (Girousse et al. 2005, Dorchin et al. 2006). These effects 

also may be mediated by the plant’s response. Insect attack, or even the perception of attack, can 

induce a myriad of defense-related responses while concomitantly reducing the expression of 

photosynthesis-related genes (Kessler and Baldwin 2002). In instances where plant defenses are 

constitutively expressed, the release of biocidal compounds against attackers may damage 

photosynthetic or homeostatic mechanisms vital for plant function (e.g. Zangerl et al. 2002). 

Indirect effects of herbivory were assigned to four classes: severed vasculature, altered sink 

demand, defense-related autotoxicity, and defense-induced down-regulation of photosynthesis 

(Figure 2.1).  

Severed vasculature alters photosynthesis and water balance  

Damage to leaf venation alters leaf hydraulic conductance thereby reducing stomatal 

conductance and photosynthesis. In the absence of alternative pathways for water transport, the 

consequences of damage to venation can persist for weeks after the initial injury and lead to leaf 

desiccation (Sack and Holbrook 2006). Defoliation injury that severs venation indiscriminately 

or feeding on specific tissues may physically obstruct fluid flow with insect mouthparts (stylets) 

or cell fragments and alter photosynthesis and water balance in remaining leaf tissue (Reddall et 

al. 2004; Delaney and Higley 2006). In Glycine max L. (soybean) a form of defoliation 

(skeletonization) that removes patches of tissue reduced photosynthesis in remaining tissue on 
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damaged leaves and on adjacent undamaged leaflets (Peterson et al. 1998). Interestingly, 

soybean increased carbon uptake rates and transpiration in remaining leaf tissue when one or two 

leaflets were completely lost (Suwignyo et al. 1995), but when leaf area removal (no patches) 

occurred to only part of a leaflet, CO2 uptake did not decrease in the remaining leaflet tissue 

(Peterson et al. 2004).  

Aldea et al. (2005) confirmed that skeletonizing of soybean leaves by Japanese beetles 

substantially increased water loss from the cut edges. Damaging the inter-veinal tissue increased 

transpiration by 150 % for up to 4 d post-injury. While this uncontrolled water loss had no 

detectable effect on CO2 exchange, severed vasculature induced a short-lived (2 d) increase in 

photosynthetic efficiency (ФPSII) in undamaged tissue of damaged leaves. The increase in 

ФPSII without a corresponding increase in CO2 uptake suggests that insect damage transiently 

decoupled photosynthetic electron transport from carbon assimilation (Aldea et al. 2005). 

Severing veins and inter-veinal tissue alters the hydraulic construction of leaves by reducing 

resistance exponentially with increasing damage (Nardini and Salleo 2005).  

The effects of defoliation on photosynthesis seem to be less predictable than damage 

caused by other feeding guilds. In hardwoods, leaf gall and fungal damage consistently reduced 

ФPSII at distances >1 cm from the point of direct damage, whereas defoliation resulted in only 

highly local reductions (<1 mm) in ФPSII (Aldea et al. 2006b). With one exception, defoliation 

of soybean and Arabidopsis thaliana L. Heynh. leaves caused only a minimal reduction in 

ФPSII. When compared with the mild effect of feeding by larger 4th instar Trichoplusia ni 

(Hubner) larvae, damage by smaller 1st instars severely depressed ФPSII, maximum 

photosynthetic efficiency, and nonphotochemical quenching (NPQ) in Arabidopsis (Tang et al. 

2006). The greater perimeter-to-area ratio of the numerous small holes produced by 1st instars 
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compared with 4th instars may have promoted greater rates of water loss from the cut edges and a 

corresponding reduction in ФPSII. That the reduction in ФPSII could be reversed by exposing 

the leaf to higher concentrations of CO2 suggests that profligate water loss near cut edges 

reduced ФPSII and increased NPQ by causing localized stomatal closure in the remaining 

undamaged leaf tissue.  

Herbivory alters sink demand  

In instances where plants respond to herbivory with increased CO2 uptake, the 

mechanism typically is linked to compensation or an increase in the sink demand within the leaf. 

An extensive literature exists on photosynthetic compensation for arthropod herbivory (see 

Trumble et al. 1993); yet recent examples have highlighted previously uncharacterized 

compensatory responses. For some gall-forming insects, gall tissue itself increases 

photosynthesis relative to uninjured tissue. In Ilex aquifolium L. (holly), increased ФPSII and 

electron transport rate enhanced photosynthesis (Retuerto et al. 2004) whereas a reduction in 

respiration in Acacia pycnantha Benth. galls contributed to an increase in net photosynthesis 

(Dorchin et al. 2006). While phloem feeding increased whole-canopy photosynthesis in beech 

trees, perhaps through a reduction in photosynthate build-up, the mechanism remains unclear and 

may be as simple as herbivore preference for hosts with higher rates of photosynthesis (Dungan 

et al. 2007).  

In other galls of hardwoods, feeding damage reduced photosynthesis and altered water 

balance. Gall formation in red maple, pignut hickory, and black oak reduced ФPSII, but 

increased NPQ, indicating a down-regulation of the PSII reaction centers in the area around galls 

(Aldea et al. 2006b). A sharp reduction in leaf temperature near galls suggests that transpiration 

was greater and fluid and nutrient transport increased near the point of damage (Macfall et al. 
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1994). In contrast to gall-forming insects, a leaf-mining moth that lives enclosed within leaf 

tissue of Malus communis Lamk (apple) trees, reduced carbon assimilation rates by decreasing 

transpiration (Pincebourd et al. 2006); however, the effects of this guild on plant physiology have 

yet to be evaluated using fluorescence and thermal imaging.  

Defoliation also may increase photosynthesis by altering sink demand, but concerns over 

what and how remaining tissues were measured have been noted (Welter 1989). By enclosing 

severed edges within gas exchange cuvettes or measuring treatment effects on leaves where 

adjacent leaves were removed (within-plant controls), the data may not accurately describe plant 

responses specific to the herbivory treatment. Despite these potential limitations, data suggest 

that defoliation, as well as removal of reproductive and other vegetative sinks, may improve 

photosynthesis in remaining leaf tissue by increasing carboxylation efficiency and the rate of 

RuBP regeneration (Layne and Flore 1992, Holman and Oosterhuis 1999, Thomson et al. 2003, 

Ozaki et al. 2004, Turnbull et al. 2007).  

Plant responses induce autotoxicity  

Plants invest in defenses differently depending upon taxa, habitat, and resource 

availability (Fine et al. 2006), and many chemical defenses are known for both model plant 

systems and across less-studied taxa (Coley and Barone 1996, Berenbaum and Zangerl 2008). 

Plants run the risk of autotoxicity because of the biocidal properties of many secondary com- 

pounds. Although in vivo studies of autotoxicity are limited, photosynthesis may be severely 

reduced for some species. For example, wild parsnip (Pastinaca sativa) contains an arsenal of 

defense compounds including furanocoumarins, which are photoactivated and biocidal against a 

variety of organisms (Arnason et al. 1991). Furanocoumarins are contained in oil tubes under 

positive pressure and bleed profusely from the wounding site (Gog et al. 2005). When herbivores 
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sever these tubes, the release of furanocoumarins reduces ФPSII and gas exchange at 

considerable distances from the actual point of insect damage (Zangerl et al. 2002, Gog et al. 

2005).  

The autotoxic effect of defensive compounds on photosynthesis is highly species specific. 

Essential oils derived from parsley (Petroselinum crispum Mill), wild parsnip, and rough lemon 

(Citrus jambhiri Lush.) reduce ФPSII when applied to leaves of conspecifics; however, oils from 

parsley affected a 2-fold greater area than the other species (Gog et al. 2005). Baldwin and 

Callahan (1993) fed nicotine to two species of tobacco (Nicotiana sylvestris Speg. & Comes, N. 

glauca Graham) that naturally synthesized this alkaloid as a defense (Kessler and Baldwin 2002), 

and to two other solanaceous species lacking nicotine (Datura stramonium L., Solanum 

lycopersicum L.). Photosynthetic rates declined in both species that synthesize nicotine but only 

in one that did not (S. lycopersicum). Priming plants with nicotine (simulated damage) prior to 

being fed reduced photosynthetic rates more than in damaged-unfed plants, linking nicotine 

toxicity to the reduction in photosynthesis. Reduced photosynthesis, in part, reduced total growth 

and fitness. Subsequently, plants producing nicotine constitutively or upon the induction of 

defense are likely to endure autotoxicity and reductions in fitness.  

Defense-induced down-regulation of photosynthesis-related genes  

Jasmonates play a central role in regulating plant defense responses to herbivores. The 

mechanism by which herbivore-induced jasmonate synthesis promotes global reprogramming of 

defense gene expression and the regulation of this response have been reviewed recently (Howe 

and Jander 2008). While jasmonates induce defenses, they also inhibit growth and 

photosynthesis (Giri et al., 2006, Zavala and Baldwin 2006, Yan et al. 2007).  
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Transcriptional analysis of plant–herbivore interactions revealed that photosynthesis-

related genes are down-regulated after attack (e.g. Hui et al. 2003, Reymond et al. 2004); 

however, few studies have demonstrated the effects of herbivore attack on photosynthesis at the 

proteome and physiological levels. Attack by herbivores or pathogens reduces transcription of 

the primary enzyme responsible for carbon fixation, ribulose-1,5-bisphosphate carboxylase/ 

oxygenase (RuBisCO; Hermsmeier et al. 2001, Hahlbrock et al. 2003, Hui et al. 2003). Using 

two-dimensional electrophoresis, Giri et al. (2006) observed that herbivory reduced the 

abundance of RuBisCO activase (RCA) in N. attenuata Torr. ex S. Watson. RCA modulates the 

activity of RuBisCO (Portis 1995), a key regulatory enzyme of photosynthetic carbon 

assimilation, by facilitating the removal of sugar phosphates (ribulose bisphosphate) that prevent 

substrate binding and carbamylation of the protein’s active site.  

The regulation of RCA content may optimize plant performance during attack. Reducing 

RCA protein and transcript levels by gene silencing, similar to elicited plants, decreases both net 

photosynthetic rates and nitrate assimilation in N. attenuata; these reductions in photosynthesis 

and nitrogen assimilation, in turn, reduced the rate of biomass accumulation (Giri et al. 2006). 

Since nitrogen and carbon metabolism are linked, crosstalk between signaling pathways that 

regulate nitrogen assimilation and carbon metabolism is expected (Schachtman and Shin 2007). 

Either genetic or environmental manipulations that decrease photosynthesis also inhibit nitrate 

assimilation (Matt et al. 2002). These studies suggest that herbivore-induced reductions in RCA 

protein explain, at least in part, the decrease in photosynthetic rates in attacked leaves.  

Partial defoliation of individual leaves by herbivores largely increases evapotranspiration 

via enhanced water loss from cut edges and produces leaf dehydration (Aldea et al. 2005), which 

not only reduces photosynthesis by causing stomata to close, but also by initiating senescence 
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signaling (Lim et al. 2007). A number of genes are induced by endogenous abscisic acid (ABA) 

in response to dehydration through the synthesis of the regulating transcription factors MYC and 

MYB (Yamaguchi-Shinozaki and Shinozaki 2006). Both MYC and MYB function as cis-acting 

elements that regulate transcription of dehydration-related genes (Abe et al. 1997). Transgenic 

plants overproducing MYC and MYB had higher osmotic stress tolerance, and microarray 

analysis indicated the presence of ABA- and jasmonic acid (JA)-inducible genes (Abe et al. 

2003). In addition, AtMYC2 is a transcription factor that in Arabidopsis functions in JA and JA – 

ethylene-regulated defense responses (Anderson et al. 2004, Boter et al. 2004, Lorenzo et al. 

2004). It has been suggested that crosstalk occurs on AtMYC2 between ABA- and JA-responsive 

gene expression at the MYC recognition sites in the promoters, and that AtMYC2 is a common 

transcription factor of ABA and JA pathways in Arabidopsis (Yamaguchi-Shinozaki and 

Shinozaki 2006).  

The lipoxygenase pathway is differentially induced depending on the attacking agent 

(Heidel and Baldwin 2004, De Vos et al. 2005, Kempema et al. 2007), and the initiation of 

jasmonate signaling reduces photosynthesis and vegetative growth. Plants treated with methyl 

jasmonate develop shorter petioles than control plants (Cipollini 2005), and Arabidopsis mutants 

that accumulate higher JA concentrations have shorter petioles than wild-type (Bonaventure et 

al. 2007); these effects of JA on plant growth are modulated by the gene JASMONATE-

ASSOCIATED1 (JAS1) (Yan et al. 2007). Moreover, herbivore-induced JA signaling suppresses 

regrowth and contributes to apical dominance (Zavala and Baldwin 2006). It has been suggested 

that the slower growth and down-regulation of photosynthetic-related genes by herbivore 

elicitation may be required to free-up resources for defense-related processes (Baldwin 2001). 

Herbivore attack produced rapid changes in sink–source relations and increased the allocation of 
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sugars to roots in N. attenuata plants; this process is regulated by the b-subunit of SnRK1 

(SNF1-related kinase) protein kinase, but is independent of jasmonate signaling (Schwachtje et 

al. 2006). It is not clear whether the change in carbon allocation affects photosynthetic rate, per 

se, but growth reduction would affect leaf expansion and total plant photosynthesis.  

Imaging methods applied to damaged leaves  

Chlorophyll fluorescence provides a non-invasive probe that quantifies the component 

processes related to photosynthetic electron transport and correlates with photosynthetic capacity 

measured by gas exchange. There are several comprehensive discussions of the theory behind 

calculating fluorescence parameters and how imaging has been applied to leaf-level physiology 

(Lenk et al. 2007), aided in crop production practices (Baker and Rosenqvist 2004), or has been 

used to screen for stressors and circadian rhythms (Chaerle et al. 2007). High-resolution spatial 

maps of primary photosynthetic processes, including estimates of the rate of electron transport 

through PSII, energization of the thylakoid membrane, and the quantum efficiency of PSII, not 

only provide direct estimates of the magnitude of damage but also provide insight into 

underlying mechanisms (Baker et al. 2001, Oxborough 2004, 2005).  

The mechanisms governing the spatial patterns of photosynthesis following herbivory can 

be explored further by examining the spatial correspondence of other processes. The ability to 

collect spatially resolved data for a wide range of molecular, physiological and biophysical 

processes is increasing dramatically (Chaerle and Van Der Straeten 2000; Table 2.1). The 

damage to water-conducting xylem by chewing insects may generate localized water limitations 

(Tang et al. 2006). Insofar as these water limitations or other localized changes in leaf chemistry 

affect stomatal conductance, thermal imaging offers a powerful tool for mapping changes in 

temperature associated with variation in latent heat flux across leaf surfaces (Jones 1999, Omasa 
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and Takayama 2003). With proper calibration, thermal maps can be converted directly into maps 

of stomata conductance (Jones 2004, Bajons et al. 2005, Grant et al. 2006). However, because of 

intrinsic properties of thermal cameras as well as lateral heat transfer within leaves (Jones 2004), 

the resolution of thermal images typically is lower than fluorescence images.  

The spatial pattern of other components of the photosynthetic machinery, including 

chlorophyll content and engagement of the xanthophyll cycle (Lichtenthaler et al. 1996, Gamon 

et al. 1997, Gitelson et al. 2005) are readily mapped with hyperspectral imaging (Chaerle and 

Van Der Straeten 2000, Schuerger et al. 2003), though this has not yet been applied to variation 

within single leaves. The construction of transgenic plants with the promoter region of a gene of 

interest connected to a ‘reporter gene’ permits monitoring of the spatial distribution of 

transcription, and markers for various organelles, subcellular structures, protein motility and the 

cellular environment (e.g. pH; Dixit et al. 2006). Genes for firefly luciferase or β-glucuronidase 

(de Ruijter et al. 2003) have been useful in this regard (Jefferson et al. 1987, Greer et al. 2002); 

intrinsically fluorescent proteins, such as green, blue and yellow fluorescent proteins, may be 

more useful partners for in vivo imaging studies because of their high quantum yield (Dixit et al. 

2006).  

In addition to the use of various tracers and dyes for mapping the movement of water, 

labeling defense compounds (reactive oxygen species) and following transmembrane signals 

(Ca+2), measurement of beta emissions from carbon isotopes by autoradiography provides a 

powerful technique for tracking the movement of carbohydrates and emitted from the former are 

short lived and more powerful, thus reducing the logistical problems of handling radioactive 

waste and providing the capability of penetrating thick plant tissues (Minchin and Thorpe 2003).  
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A wealth of information about how herbivory affects photosynthesis and other aspects of 

leaf physiology could be obtained by applying complementary imaging methods and, if they are 

applied to the same leaf in one experiment, could provide deeper insight into the mechanisms by 

which herbivory reduces photosynthesis in the remaining leaf tissue. Combining different images 

with different resolution is, however, challenging. One approach is to construct simple 

regressions between the values in aggregate pixels in one image with aggregate pixels in another 

image. West et al. (2005) applied this approach to an examination of the effect of stomatal 

patchiness (thermal image) on photosynthesis (fluorescence image). Deeper insight can be 

gained by applying methods of geographical image analysis to physiological data (Omasa and 

Takayama 2003, Leinonen and Jones 2004, Aldea et al. 2006a). By registering and re-sampling 

images taken with different instruments, multiple images can be aligned precisely and expressed 

at a common resolution. Once aligned, new maps are generated that represent the composite 

information derived from the original separate images (Aldea et al. 2006a). The ‘image map’ of 

A. thaliana damaged by T. ni larvae (Figure 2.2) revealed that immediately near holes, ФPSII 

was greatly reduced and the gene coding for cinnamate-4-hydroxylase (C4H) was strongly 

induced (red areas). C4H is the first cytochrome P450 monooxygenase in the phenylpropanoid 

pathway and its induction near damaged areas suggests that a reorientation of metabolism toward 

defense may have contributed to the loss of photosynthetic efficiency near the cut edges. At 

greater distances from the edge, other factors contribute to the reduction in quantum efficiency as 

values of dark-adapted Fv/Fm and C4H expression are low.  

Limitations to measuring gas exchange simultaneously with imaging  

One of the major limitations to estimating herbivore-induced effects on photosynthesis is 

correctly characterizing CO2 diffusion and uptake within the leaf. Gas exchange measurements 
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typically are used to generate a relationship between photosynthetic assimilation and internal 

[CO2] – the A/Ci response curve. This relationship assumes leaves have homogenous distribution 

of chloroplasts (for light absorption) and of stomata (for gas exchange; von Caemmerer 2000). 

Heterogeneity across remaining leaf tissues caused by herbivory may compromise the utility of 

the A/Ci response curve. In addition, gas exchange chambers enclosing leaves reduce internal 

CO2 where gaskets overlay leaf area through shading-induced stomatal closure (Pieruschka et al. 

2006). Diffusion of CO2 may also occur laterally, with respect to morphology, and may diffuse 2 

mm in homobaric and up to 1 mm in heterobaric (compartmentalized) leaves (Pieruschka et al. 

2006, Morison et al. 2007). Heterogeneity in photosynthesis caused by non-uniform CO2 uptake, 

in addition to lateral diffusion of CO2 within leaves, will interact with heterogeneity induced by 

feeding damage when scales are similar. For example, defoliation damage may reduce ФPSII 

within a distance of 1–2 mm (Aldea et al. 2005, 2006b); however, CO2 diffusion through cut 

edges into damaged tissues and adjacent undamaged tissues, may increase Ci and alleviate the 

suppression or even enhance photosynthesis.  

CONCLUSIONS  

In many cases, arthropod damage reduces photosynthesis to a greater extent than would 

be predicted by the direct loss of leaf tissue. With the use of new imaging technologies we are 

beginning to understand how photosynthesis and water balance are modulated in undamaged 

tissue following herbivory. Connecting these alterations in physiology to changes in gene 

transcription and hormonal signaling will increase our ability to estimate whole-plant responses 

to herbivory and will improve our estimates of the impact of herbivory on higher levels of 

biological organization, such as yield loss and assessments of overall ecosystem productivity.  
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Indirect alterations of photosynthesis have been identified across multiple plant systems and 

can be categorized by plant responses. Severed vasculature increases transpiration, reduces 

ФPSII, and reduces NPQ, whereas sink demands of galls enhance transpiration. Photosynthesis is 

greatly reduced through the release of toxic secondary compounds or defenses elicited by 

herbivore attack. Even the initiation of these defenses triggers down-regulation of photosynthetic 

component processes or proteins. Despite these characterized indirect effects, investigations are 

lacking for some damage types (e.g. specialized cell content feeders) and their subsequent 

interactions with primary and secondary metabolite pools.  

While we are closer to elucidating the mechanisms responsible for herbivore-induced 

alterations in photosynthesis and related processes in undamaged tissues, a complete 

understanding of how the indirect suppression of photosynthesis propagates away from the point 

of damage remains unknown. Genomic analyses of plants challenged by arthropods have 

revealed a trend for down-regulation of photosynthesis-related genes, but a closer look at 

transcriptional changes between and within feeding guilds has identified differential regulation 

of defense genes and overlap among damage guilds. A universal response to herbivory is the 

induction of the lipoxygenase pathway, but attacking agents differentially induce this pathway 

and corresponding jasmonate concentrations (Heidel and Baldwin 2004, De Vos et al. 2005, 

Kempema et al. 2007). Differences in concentrations of defense signaling molecules may lead to 

differential down-regulation of photosynthesis genes. Already, the overlap in the magnitude of 

down-regulation has been noted between caterpillars and general cell content feeders compared 

with aphids (Voelckel et al. 2004), leading to species-specific regulation of different metabolic 

pathways (e.g. nitrogen metabolism by aphids). Subsequently, within plant mechanisms 
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underlying the indirect effect, and not the direct effect, may drive physiological responses in 

future plant–insect interactions.  
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TABLES 
Table 2.1. Representative physiological and molecular processes readily visualized in vivo using various imaging methods.  Where 

appropriate, the excitation and measurements wavelengths are noted (Wavelength: excitation/measurement).  Modified from 
Aldea et al. (2006a). 

 
 
Parameter   Process Wavelength Reference    

Photosynthesis Fv/Fm Maximum quantum efficiency of PSII 470/700 Genty et al. 1989; Rolfe and Scholes 1995;  

 NPQ Non-photochemical energy dissipation  Oxborough 2004 

 FPSII Quantum yield of electron transport      

Water & energy status Thermal Transpiration, conductance None/ >1200 Jones 1999; Omasa and Takayama 2003 

 MRI Water transport X-rays/microwaves Gussoni et al. 2001, Clearwater and Clark 2003  

 Tracers  Depends on tracer Gaff & O-Ogoloa 1971; Canny 1990  

Leaf pigments NDVI Chlorophyll content <700/750,704 Gamon and Surfus 1999 

 Red/Green  Anthocyanin content <700/600-699, 500-599  

 PRI Xanthophyll cycle <700/531, 570  

Molecular interactions  GFP Gene expression, protein motility,  485/509 Buschmann et al. 2000; Dixit et al. 2006 

and cell environment RFP organelle location, cellular pH 490, 520, 563/583  

 BFP  UV/440   

Defense compounds Dyes Reactive oxygen species, Ca+2  400 - 700 Fryer et al. 2002; Maffei et al. 2004 

Metabolites Beta emission Carbohydrate/metabolite transport autoradiography Minchin and Thorpe 2003; Thorpe et al. 2007 
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FIGURES 
Figure 2.1. Conceptual model of the direct effect of herbivory (removal of leaf area) and the 
indirect effects of herbivore damage to foliage on photosynthesis in the remaining leaf tissues. 
The concept underlying this figure was developed by Dr. Arthur Zangerl. 
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Figure 2.2. False color images of the location of damage classes surrounding holes in an 
Arabidopsis thaliana leaf exposed to herbivory by Trichoplusia ni larvae. Transgenic plants 
carried a cinnamate-4-hydroxylase (C4H) promoter and β-glucuronidase (GUS) reporter gene 
fusion. In A. thaliana, enzymes in the phenylpropanoid pathway may contribute to defense 
against pathogens; C4H is constitutively expressed in the veins of undamaged leaves and 
induced by wounding near the site of damage. The image was constructed by combining 
independent images of the same leaf of chlorophyll fluorescence (ΦPSII) and GUS staining for 
C4H activity using geographic image analysis software. The false-color scale bars indicate the 
mean value of ΦPSII for each damage class. The veins shown in blue and purple were classes 
that were excluded from analysis because their high level of GUS staining was not related to 
herbivory. Data were generously provided by Dr. Jennie Tang. 
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CHAPTER 32 

ELEVATED CO2 INTERACTS WITH HERBIVORY TO ALTER CHLOROPHYLL 

FLUORESCENCE AND LEAF TEMPERATURE IN BETULA PAPYRIFERA AND 

POPULUS TREMULOIDES 

 

ABSTRACT 

Herbivory may influence ecosystem properties including productivity and diversity, but 

recent evidence suggests that damage by herbivores modulates potential productivity specific to 

damage type. Because productivity is linked to photosynthesis at the leaf-level, which in turn is 

influenced by atmospheric CO2 concentrations, we investigated how different herbivore damage 

types alter component processes of photosynthesis under ambient and elevated atmospheric CO2. 

We examined spatial patterns in chlorophyll fluorescence and temperature of leaves damaged by 

leaf-chewing, gall-forming, and leaf-folding insects in aspen trees and by leaf-chewing insects in 

birch trees under ambient and elevated CO2 at the Aspen Free-Air CO2 Enrichment (FACE) site 

in Wisconsin. Both defoliation and gall damage suppressed the operating efficiency of 

photosystem II (ФPSII) in remaining leaf tissue yet the distance that damage propagated was 

marginally attenuated under elevated CO2. Elevated CO2 also increased leaf temperatures, which 

reduced the cooling effect of gall formation and freshly chewed leaf tissue. These results provide 

mechanistic insight into how different damage types influence the remaining, visibly undamaged 

leaf tissue and suggest that elevated CO2, coupled with warming climate may reduce the effects 

of herbivory on electron transport controlling photosynthesis. 

 
                                                

2 Reprinted with permission from Nabity PD, Hillstrom ML, Lindroth RL, DeLucia EH. In press. Elevated CO2 
interacts with temperature to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus 
tremuloides. Oecologia. DOI: 10.1007/s00442-012-2261-8. 
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INTRODUCTION 

Arthropod herbivory alters ecosystem productivity, especially in outbreak years (Cyr and 

Pace 1993), and recent evidence suggests that the manner of feeding (e.g., chewing, phloem 

feeding) may alter how herbivory affects productivity (Zvereva et al. 2010, Patankar et al. 2011). 

Reductions in productivity result, in part, from damage-specific alterations of photosynthetic 

capacity. Direct tissue consumption (loss of photosynthetic area) by defoliators and direct 

cellular disruption or altered osmotic potential (extracted photosynthate) by piercing-sucking 

insects differentially affect photosynthesis (see Welter 1989). Insect feeding also selectively 

impairs remaining leaf tissue through direct and indirect alterations of leaf physiology (Nabity et 

al. 2009). Within the few systems (P. sativa, G. max, A. thaliana, various hardwood trees) 

evaluated thus far, the general response is a suppression of leaf photosynthesis beyond the area 

of arthropod feeding. 

 As arthropod herbivores feed, tissue damage may suppress photosynthesis in remaining  

tissues by severing vasculature (Aldea et al. 2006; Tang et al. 2006), altering sink/source 

relationships (Dorchin et al. 2006 ), autotoxicity (Gog et al. 2005), and defense-induced down-

regulation of photosynthetic genes (Bilgin et al. 2010). Remaining tissues also may respond to 

the type of damage with varying degrees of physiological impairment; a 5% reduction in leaf 

area by a chewing herbivore resulted in a 20% reduction in photosynthetic capacity of remaining 

parsnip leaf tissue (Zangerl et al. 2002), whereas damage to understory hardwood trees reduced 

photosynthesis in remaining tissues equal to the area removed (Aldea et al. 2006). Understanding 

these effects on physiology among damage types and within model systems where genomic 

information is readily accessible may help link the observed global genomic down-regulation of 
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photosynthetic genes (Bilgin et al. 2010) to physiological impairment in visibly unaltered 

remaining leaf tissues. 

Atmospheric carbon dioxide is rising steadily (~2 μl l-1 yr-1; 

www.esrl.noaa.gov/gmd/ccgg/trends/) and generally enhances photosynthesis of forest 

ecosystems (Saxe et al. 1998; Leakey et al. 2009; Lindroth 2010). Despite this enhancement, 

elevated CO2 levels also increase damage rates by herbivores in aspen and birch (Couture et al. 

2011). This increase in damage typically coincides with increased abundance of phloem-feeding 

herbivores and decreased chewing and galling herbivore abundance in field sites fumigated with 

CO2 (Hillstrom and Lindroth 2008; Hillstrom 2010). Because increased CO2 stimulates 

photosynthesis and reduces stomatal conductance thereby improving leaf water status, the 

predicted increases in atmospheric CO2 may modulate the effect of herbivory on photosynthesis. 

The propagation of fungal damage beyond visible lesions into remaining, visibly undamaged 

tissues is reduced under elevated CO2 (McElrone et al. 2010); however, there are no 

examinations of how herbivores may alter photosynthesis of trees grown under future CO2 

concentrations. 

Chlorophyll fluorescence imaging is a powerful tool for making high-resolution, 

spatially-resolved measurements of component processes of photosynthesis in damaged leaf 

tissues (Oxborough 2004, Aldea et al. 2006). Measurement of the quantum efficiency of 

photosystem II (ФPSII) is particularly useful in this regard because it is highly correlated with 

the rate of CO2 uptake in intact leaves (Genty et al. 1989, Baker and Oxborough 2005, Tang et 

al. 2006) and relates directly to carbon assimilation, an ecologically important trait. Using this 

approach, Aldea et al. (2006) identified spatial patterns in fluorescence and thermal images with 

some degree of host specificity; defoliation typically reduces ФPSII in remaining leaf tissue 
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along cut edges whereas some gall formers reduce ФPSII well beyond visible feeding damage. 

However, no studies have investigated how arthropod herbivory affects remaining leaf tissue 

under elevated CO2 or among herbivore damage types within one plant species to minimize the 

variabilty introduced by species. The objective of this research was to determine if elevated CO2 

modulates the effect of herbivory on the spatial pattern of photosynthesis as indicated by 

variation in ФPSII in two tree species growing under otherwise natural environmental conditions. 

Because elevated CO2 may enhance photosynthesis, water use efficiency, and alter the 

production of secondary chemicals, we hypothesized that elevated CO2 will attenuate the effects 

of herbivore damage. We tested this hypothesis at the Aspen Free Air CO2 Enrichment (FACE) 

site in northern Wisconsin. We utilized aspen trees of a single clone to minimize genetic 

variability and examined multiple insect herbivores inflicting three different damage types. 

 

MATERIALS AND METHODS 

Experimental Design 

Research was conducted during the summers of 2008-2009 at the Aspen Free-Air CO2 

Enrichment (Aspen FACE) site in north-central Wisconsin, USA (W 89.5º, N 45.7º). This 32-ha 

site contained 12, 30-m diameter plots of the following treatment combinations: ambient, 

elevated CO2 (ambient + 200 μl l-1), elevated O3 (1.5 x ambient), and elevated CO2 plus elevated 

O3.  Three plots were designated for each fumigation treatment and blocked from north to south 

across the site. Only ambient and elevated CO2 plots were used for this experiment. 

Each plot contained five aspen (Populus tremuloides Michx.) genotypes in addition to 

birch (Betula papyrifera Marsh.) and sugar maple (Acer saccharum Marsh.); however, we 

examined only one aspen genotype and birch. We selected aspen genotype 216 for our study 
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because it responds strongly to CO2 enrichment (Noormets et al. 2001). Aspen genotype 216 and 

birch were used during 2008 and only aspen was examined again in 2009. For both aspen and 

birch, defoliation damage of unknown age and herbivore source was examined in 2008. In 

addition, two other insect damage types were evaluated on aspen: skeletonizing damage by larval 

sawflies (Phyllocolpa sp.) where feeding occurs within the folded edges of leaves and leaves 

galled by midge flies (Harmandia sp; see Figure 3.1). To control for time after chewing damage 

occurred we conducted a 24h feeding trial of gypsy moth (Lymantria dyspar L.) on aspen. In 

each plot, three branches with full sun exposure on three different trees were enclosed in fine 

mesh bags; each bag contained 20-30 undamaged leaves on determinant shoots. Ten fifth instar 

larvae were placed in each bag and allowed to feed overnight. Measurements of chlorophyll 

fluorescence and leaf temperature were made the following day.  

 To assess how elevated CO2 alters the effects of herbivore damage, we identified leaves 

from each tree species within each plot for each damage type and randomly selected four leaves 

for each species/damage type combination. All leaves were on determinant shoots. The spatial 

patterns of temperature and photosynthetic electron transport were measured by thermography 

and chlorophyll fluorescence, respectively. Data from these cohorts represented subsamples for 

each plot and were subsequently pooled by plot (n=3). 

Thermography 

To quantify the effects of herbivory on the spatial pattern of water loss, thermal images of 

each damage type were taken using an infrared camera (ThermaCAM Infrared Camera, FLIR 

Systems, Portland, OR, USA). Branchlets were excised and rapidly transported back to a nearby 

field laboratory. Individual leaves were then excised from branchlets under degassed water, their 

petioles were placed in a water-filled 2-ml tube, and allowed to equilibrate to steady state, light-
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adapted conditions (150 µmol m-2 s-1 PFD at 25ºC). Excised leaves were imaged at constant light 

and temperature (150 µmol m-2 s-1 PFD at 25ºC) and at ambient CO2. 

Chlorophyll Fluorescence 

To quantify the effect of different damage types on the efficiency of primary 

photochemistry, the spatial pattern of the operating efficiency of photosystem II (ФPSII) was 

measured with an imaging chlorophyll fluorometer (Walz Imaging PAM, Walz GmbH, 

Effeltrich, Germany). Branchlets and leaves were collected and maintained in a field laboratory 

under the conditions described above. Leaves were allowed to equilibrate to environmental 

conditions within the field laboratory until a steady state was reached. This occurred when the 

fluorescent yield (continuously monitored by the camera) no longer fluctuated in false-color 

pixel intensity thereby indicating stability in electron transport across the leaf surface. Once 

steady state was reached, fluorescense was recorded for a 2x3 cm area of leaf surface centered on 

the herbivore damage. ФPSII was calculated from an initial image of minimum fluorescence in a 

light adapted state (F’) and an image of fluorescence following a 1-s saturating pulse (ca. 2500 

µmol m-2s-1; F’m) using the formula: ФPSII= (F’m – F’)/F’m. Although the leaves selected in this 

experiment were from the sunlight canopy and typically were exposed to higher ambient light 

conditions, the assessment of pulse amplitude modulated (PAM) fluorescence was made under 

low irradiance to optimize the imaging device at its highest resolution and to enhance the 

correlation between fluorescence and photosynthetic rate (Longstaff et al. 2002). Light-adapted 

fluorescence was used over dark-adapted fluorescence because the former provides a more 

accurate quantification of quantum yield, and therefore a stronger proxy for photosynthesis 

(Baker 2009). 
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The entire process of collecting tissue from the canopy, allowing leaves to reach steady 

state temperature and fluorescence yield, and imaging both thermal and ФPSII spatial patterns 

spanned < 30min per leaf. 

Image Analysis 

 True-color reflected-light images were taken with a digital camera (PowerShot SD1000, 

Canon, Lake Success, New York) for each leaf using a camera mounted a fixed distance from the 

leaf and with a standard within each image to accurately calculate leaf area. The total leaf area in 

pixels was calculated for each false-color fluorescence and thermal image using the appropriate 

software (ImagingWin v2.32, Heinz Walz GmbH, Effeltrich, Germany; ThermaCam Quick 

Report, FLIR Systems, Portland, OR, USA). This area in pixels was then compared to the 

calculated leaf area to quantify the number of false-color pixels occurring in visibly damaged 

tissue (the galled region, the leaf fold, or the approximate leaf area defoliated), regions of 

undamaged tissue (of equivalent thermal of fluorescent signature as undamaged control leaves), 

and regions in-between where visible damage ceased but altered fluorescence or thermal 

signatures occurred (hereafter “propagated damage”). This process allowed accurate calculation 

of the true dimensions covered by each false-color pixel. False-color pixels were then counted 

for each region and converted to distances/areas. Propagated damage was quantified as any pixel 

intensity deviating >5% from undamaged tissue within the same leaf. Because chewing 

herbivores remove tissue, there is minimal visible damage (a cut edge); therefore, we calculated 

propagated damage as the distance of pixels from the cut edge that deviated > 5% from 

undamaged tissue within the same leaf. 
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Reflectance Measurement 

To further explore possible mechanisms for how physiological damage may propagate 

from developing galls spectral reflectance was measured on galls, visibly undamaged tissue on 

the same leaf, and adjacent undamaged leaves. Galls were selected because of the greater 

alteration in thermal spatial patterns than other damage types and because the damaged tissue 

remained on the leaf over time (24h defoliation damage resulted in a great alteration of thermal 

spatial patterns but this effect was not sustained in older tissue). Leaf reflectance was measured 

in June 2009 on undamaged and galled leaves excised from equivalent nodes on determinate 

shoots in both elevated CO2 and ambient plots. Four leaves for each damage type were removed 

from branchlets from different trees and combined for a single average of each damage type for 

each plot (n=3). Leaves were irradiated by an internal tungsten halogen light source in a field 

laboratory as previously described and upwelling irradiance (300 to 1100 nm) was recorded 

using a portable spectroradiometer (UniSpec Spectral Analysis System, PP Systems, Haverhill, 

MA, USA). The spectroradiometer was equipped with a visible/near infrared detector of <10 nm 

Raleigh resolution and 3.3nm bin size (<0.3 nm accuracy). Measurements were taken in a field 

laboratory with the fiber optic probe pointed downward to measure upwelling irradiance under 

ambient conditions. Prior to each measurement, a reference scan was performed by pointing the 

probe downward on a white reference standard (PP Systems, Haverhill, MA, USA).  

Reflectance data (R) were used to calculate the photochemical reflectance index, water 

index, and normalized difference vegetation index. The photochemical reflectance index (PRI) 

was calculated as (R531-R570) / (R531+R570); this index responds to the composition of xanthophyll 

pigments and correlates with ФPSII and net CO2 assimilation (Gamon et al. 1997). The water 

index (WI) measures tissue water content and was calculated as R900/R970 (Penuelas et al., 1997). 
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The normalized difference vegetation index NDVI750 assesses foliar chlorophyll content and was 

calculated as (R750-R705) / (R750+R705) (Sims and Gamon 2002). 

Data Analysis 

This study employed a split plot design with blocking where whole plot treatments 

consisted of CO2 level (ambient and elevated) and subplot consisted of damage type (defoliation, 

gall, leaf fold, undamaged). We analyzed aspen separately from birch because damage to the two 

tree species was produced by different insects, and thus treatments of herbivore type were 

asymmetrically applied.  The model for each analysis used was: Yijkl = µ + Bi + Cj + eij + Dk + 

CDjk + eijk; where fixed effects included CO2 level (Cj), damage type (Dk), and their interaction 

term (CDjk). Block (Bi), whole plot error (eij), and subplot error (eijk) were random effects. Only 

aspen was examined again in 2009. Analysis of variance (ANOVA; PROC MIXED, SAS v.9.2, 

SAS Institute, Cary, NC) was used for all comparisons. Because low replication (n=3) increases 

the probability for type II errors but increasing a increases the probability for type I errors (Filion 

et al. 2000), we reported P-values 0.05 ≤ 0.10 as marginally significant and ≤ 0.05 as significant. 

 

RESULTS 

Arthropod damage altered ФPSII and leaf surface temperature in visibly damaged tissue 

and reduced ФPSII of remaining tissues adjacent to feeding damage; however, the extent that 

damage propagated into remaining leaf tissue depended on the type of injury (Figure 3.1, Tables 

3.1 and 3.2). Defoliation and gall formation increased the spatial heterogeneity of leaf 

temperature and ФPSII, but skeletonizing damage by larval sawflies did not. Defoliation reduced 

ФPSII ~5-7% for ~1mm from chewed edges and increased temperature of the chewed edge in 

both aspen and birch (Figures 3.2 and 3.3). Aspen leaves with 24h larval gypsy moth defoliation 
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damage responded with larger reductions in ФPSII efficiency (~14%) and enhanced evaporative 

cooling along the chewed edge; propagated damage reduced temperature ~0.5ºC up to 4mm 

away from damage (Table 3.1). At its maximum, gall damage reduced ФPSII >10% relative to 

undamaged tissues, but the distance that damage (defined as pixels deviating >5% from 

undamaged tissue on the same leaf) propagated into remaining leaf tissue was small 

(0.3±0.1mm). Gall damage enhanced evaporative cooling and reduced temperature by 1.2±0.2ºC; 

this cooling effect propagated 2.5±0.2mm into adjacent non-galled tissues. Gall damage reduced 

the spectral reflectance for all wavelengths between 400 and 700 nm with the exception of a peak 

near 550 (i.e. xanthophylls). Gall damage also reduced PRI and increased water content (WI; 

Table 3.3).  

Elevated CO2 reduced the distance that defoliation damage in birch and 24h defoliation 

damage in aspen altered ФPSII in adjacent tissues. (Table 3.2, Figure 3.2). Elevated CO2 also 

reduced the cooling effect of gall formation on remaining leaf tissue (Figure 3.3). Although birch 

responded to ambient and elevated CO2 with similar leaf temperatures and damage propagation 

distances quantitatively comparable to those of aspen, these effects were not statistically 

resolved.  Elevated CO2 also marginally reduced potential chlorophyll content of undamaged 

leaves (NDVI; Table 3.3). 

 

DISCUSSION 

Arthropod herbivory increased the spatial heterogeneity of photosynthesis and water use 

in remaining leaf tissue across tree species, but it did so in a damage-specific manner. Although 

background levels of herbivory typically are low (<16%) with the exception of outbreak years, 

even low levels may alter biomass (Wolf et al. 2008, Patankar et al. 2011). Our data indicated 
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that fresh defoliation damage immediately impaired ФPSII in remaining aspen tissues and that 

this reduction in ФPSII attenuated with time (Table 3.2, Figure 3.2). Older damage also reduced 

ФPSII and transpiration in remaining tissues suggesting that the leaf never completely recovered 

from the original herbivore attack (Tables 3.1 and 3.2, Figure 3.2). Another common damage 

type, gall formation, reduced ФPSII but this reduction was localized and did not propagate from 

the gall into the surrounding leaf tissue. In contrast to ФPSII, lower leaf temperatures indicated 

that transpiration was enhanced in undamaged leaf tissue surrounding galls (Figure 3.2). Because 

as little as a 0.5ºC change in leaf surface temperature can indicate a 10% shift in stomatal 

conductance (Jones 1999) and ФPSII correlates strongly with photochemistry (Genty and Meyer 

1994), these subtle alterations in remaining leaf tissue may alter carbon gain at larger scales. 

When summed at the leaf-level, the area of apparently healthy tissue but with lower ФPSII can 

be equal to the area with visible herbivore damage (Aldea et al. 2006, Zangerl et al. 2002). Thus, 

relying on visible damage may underestimate the effect of herbivory on photosynthesis and plant 

productivity. 

Elevated CO2 increased leaf temperature in aspen which, in turn, interacted with damage 

type to reduce the cooling effect of immediate defoliation damage and gall formation. Although 

the values of birch leaf temperature under ambient and elevated CO2 were similar to aspen, the 

effect of CO2 was not statistically resolvable at the low replication common among FACE sites 

(Filion et al. 2000). Elevated CO2 reduced the distance that damage to ФPSII propagated into 

remaining tissue in birch and 24h defoliation in aspen. These results support the hypothesis that 

elevated CO2 can mitigate the effect of herbivory on photosynthesis.  

The mechanisms underlying suppressed ФPSII and altered transpiration vary with the 

type of herbivore damage. Defoliation damage may sever vasculature and initiate a cooling effect 
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through evaporative water loss from cut tissues; however, defoliation damage may also initiate 

water movement from the vascular tissue into the apoplast where it evaporates at the equilibrium 

point between water vapor and liquid often at a distance from the cut edge (Aldea et al. 2005). In 

instances where no reduction in ФPSII occurred concomitantly with an enhanced cooling effect, 

as with 24h defoliation damage >1mm from cut edges in aspen, apoplastic water transfer may 

have triggered reductions in leaf temperature without altering photosynthesis. Given that 

apoplastic water movement is driven by the equilibrium point between vapor and liquid, we 

would expect ambient temperatures and not CO2 concentrations to influence the equilibrium 

point. Our results agree with this notion as 24h defoliation damage in both ambient and elevated 

CO2 propagated equal distances into remaining leaf tissue. However, elevated CO2 reduced the 

distance of propagated damage to ФPSII efficiency. Spectral reflectance suggested that aspen 

leaves grown under elevated CO2 had lower chlorophyll content, reduced ФPSII, but elevated 

water content (Table 3.3). Thus, it is possible that the increases in leaf mass per unit area (i.e. 

increased thickness) in aspen species grown under elevated CO2 (Liberloo et al. 2007) and the 

observed increase in water content under elevated CO2 enhanced leaf tolerance to desiccation 

induced by defoliation damage. This tolerance, in turn, may have reduced the suppression of 

ФPSII at cut edges. 

Gall formation transforms host morphology and physiology at some cost to the host to 

enhance fitness of the attacking parasite (Stone and Schonrogge 2003). Leaf galls may enhance 

net photosynthesis by reducing respiration (Dorchin et al. 2006) yet structural and chemical 

changes often yield tissues deficient in photosynthetic proteins and pigments (e.g., Yang et al. 

2007). Gall formation in aspen generated tissues with reduced ФPSII and enhanced transpiration 

relative to undamaged tissues. Whereas other hardwood species show damage to ФPSII 
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propagated away from the gall into remaining non-galled leaf tissues (e.g., Carya glabra; Aldea 

et al. 2006), aspen galls reduced ФPSII only minimally outside of the galled structure. Higher 

spectral reflectance between 400 and 700 nm with the exception of a peak near 550 (i.e. 

xanthophylls) suggests reduced absorbance for all photosynthetically active pigments. This 

finding, in addition to the observed lower N content in gall tissue compared to non-galled leaf 

tissue of galled leaves (unpublished data) suggests a lack of photosynthetic pigment protein 

complexes contribute to reduced ФPSII but that this reduction was limited to actual area 

occupied by the gall. 

Aspen galls enhanced transpiration in gall tissues thereby reducing leaf temperatures in 

adjacent tissues. Because no tissues had been cut, as with defoliation damage, the movement of 

water to the developing gall was likely driven by evapotranspiration through stomata, the only 

other openings in the leaf surface. We observed increased leaf temperatures across all tissue 

types under elevated CO2 in June. This result agrees with other studies on tree response to 

elevated CO2 (see Wittig et al. 2007 for a synthesis) and suggests elevated CO2 reduced stomatal 

aperture thereby reducing transpiration and increasing leaf temperature. Thus, it is likely that 

reduced stomatal aperture on galls and the surrounding leaf area attenuated the cooling effect of 

gall formation.  Gall formation by Harmandia species in aspen typically occurs adjacent to major 

veins (pers. observation) and distorts xylem elements in other aspen species (Hyde 1922) 

possibly to facilitate transport to a developing sink. While the degree to which this alters the 

nutrient flux to the developing parasite is unknown, the increased temperature relative to ambient 

conditions suggests insect development may occur faster under future predicted shifts in climate. 

Arthropod herbivory can reduce plant productivity by removing photosynthetic leaf area. 

In addition, results from this study and others (Aldea et al. 2005, 2006, Patankar et al. 2011, 
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Zangerl et al. 2002) indicate that in some cases damage to leaf surfaces causes a reduction in the 

quantum efficiency of photosystem II fluorescence (ФPSII) which is highly correlated with the 

rate of carbon assimilation. These reductions of photosynthesis in remaining leaf tissue following 

herbivory vary with the plant species under attack as well as the herbivore (Nabity et al. 2009). 

The mechanisms governing this reduction in photosynthesis are not well understood but in some 

cases relate to disruptions in carbon and water transport. Insofar as growth under elevated CO2 

increases the rate of carbon uptake and reduces water loss by reducing stomatal conductance, it is 

expected that this element of global change would modulate the effect of herbivory on 

photosynthesis. Though measurement variation was high, growth under elevated CO2 reduced 

the distance that herbivore-induced reductions in photosynthesis propagated away from the point 

of damage in aspen and birch, suggesting that at least for these species, elevated CO2 may reduce 

the impact of herbivory on photosynthesis. Arthropod herbivory directly alters productivity and 

will interact with changing climate albeit with a high degree of uncertainty in hardwood forest 

ecosystems (Lindroth 2010).  
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TABLES 
Table 3.1. Mean (±SE) leaf temperature for damaged and undamaged tissues grown under ambient and elevated CO2, and the distance 
that the change in temperature propagated into adjacent tissue (part-table A). A summary of P values for the main effects of CO2 
fumigation, different damage types, and their interaction is also included (part-table B) 

Species Damage type Undamaged temp (°C) Damaged temp (°C) Propagation (mm) 

A  Ambient Elevated Ambient Elevated Ambient Elevated 

Aspen Leaf fold 22.0±0.3 23.7±0.2 21.8±0.2 23.5±0.2 ND ND 

 Defoliation 22.0±0.3 23.9±0.2 22.3±0.3 23.9±0.3 0.5±0.03 0.3±0.05 

 Gall 21.8±0.3 23.7±0.2 20.2±0.3 22.8±0.3 2.2±0.40 2.7±0.20  

Birch Defoliation 22.4±0.4 23.5±0.3 22.6±0.4 23.9±0.2 0.5±0.07 0.3±0.06  

Aspen 24h Defoliation 25.3±0.2 25.0±0.2 24.6±0.2 24.4±0.2 3.9±0.30 4.4±0.40  

B Main effect Temperature Propagation   

Aspen CO2   0.04   0.50 

 Damage <0.01 <0.01 

 CO2 x Damage   0.03   0.14  

Birch CO2   0.16   0.20 

 Damage   0.20   NA 

 CO2 x Damage   0.66   NA  
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Table 3.1. (continued) 

Species Main effect Temperature Propagation  

Aspen CO2   0.49   0.33 

(24h feeding exp) Damage <0.01   NA 

 CO2 x Damage   0.78   NA 

Damage by leaf folding did not alter the spatial pattern of temperature within a leaf. 
ND propagated distance was not detectable 
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Table 3.2. Mean (±SE) ФPSII for damaged and undamaged tissues grown under ambient and elevated CO2, and the distance that the 
change in temperature propagated into adjacent tissue (part-table A). A summary of P values for the main effects of CO2 fumigation, 
different damage types, and their interaction is also included (part-table B). 

 
Species Damage type Undamaged ФPSII Damaged ФPSII Propagation (mm) 

A  Ambient Elevated Ambient Elevated Ambient Elevated 

Aspen Leaf fold 0.616±0.004 0.626±0.004 0.605±0.008 0.619±0.004 ND ND 

 Defoliation 0.615±0.003 0.611±0.006 0.568±0.005 0.569±0.005 0.81±0.05 0.73±0.05 

 Gall 0.619±0.004 0.616±0.005 0.551±0.016 0.542±0.018 0.14±0.08 0.43±0.20 

Birch Defoliation 0.601±0.012 0.602±0.013 0.569±0.008 0.571±0.008 0.80±0.04 0.59±0.05 

Aspen 24h Defoliation 0.609±0.008 0.619±0.006 0.525±0.007 0.523±0.008 0.94±0.03 0.86±0.02 

B Main effects ФPSII Propagation (mm) 

Aspen CO2   0.66   0.65 

 Damage <0.01   0.07 

 CO2 x Damage   0.69   0.44 

Birch CO2   0.44 <0.01 

 Damage   0.04   NA 

 CO2 x Damage   0.32   NA 
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Table 3.2. (continued) 

Species Main effects ФPSII Propagation (mm) 

Aspen CO2   0.88   0.03 

(24h feeding exp) Damage <0.01   NA 

 CO2 x Damage   0.98   NA 

 
Damage by leaf folding did not alter the spatial pattern of ФPSII within a leaf. 
ND propagated distance was not detectable 
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Table 3.3. Reflectance indices (unitless) were calculated from the spectral reflectances of gall damage and nearby undamaged leaves 
grown under ambient and elevated CO2. There was no significant difference in the indices measured near the gall on a damaged leaf 
and on an undamaged leaf, so only data for nearby undamaged leaves are shown. A summary of P values for the main effects of CO2 
fumigation, and damage as well as their interaction is included.  

  
 Index Ambient CO2  Elevated CO2   P value 

 Aspen Leaf Aspen Gall  Aspen Leaf Aspen Gall  CO2 Damage CO2 x Damage 

PRI 0.09±0.01 -0.05±0.01 0.06±0.01 -0.04±0.01 0.89 <0.01 0.08 

WI 1.03±0.00 1.10±0.01 1.03±0.00 1.10±0.02 0.98 <0.01 0.76 

NDVI 0.32±0.01 0.07±0.01 0.29±0.00 0.07±0.01  0.07 <0.01 0.13 
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FIGURES 
Figure 3.1. Representative true-color reflected light images (a), false-color thermal images (b), 
and false-color images of fluorescence (ФPSII efficiency; c) for damage from leaf folds 
(Phyllocolpa larvae; top row), defoliation (unknown age and herbivore; second row), 24h 
defoliation (Lymantria dispar; third row), and gall (Harmandia sp.; bottom row) on aspen (P. 
tremuloides). All images are represented to scale with the exception that 24h defoliation damage 
(*) is on the same false-color scale from 20 to 26ºC. 
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Figure 3.2. Mean (±SE) distance that damage to ФPSII propagated into remaining tissues 
adjacent defoliated edges and galls (n=3 per damage type). Values for ФPSII reduced by > 5% 
relative to remaining tissues were designated as damaged. Significant deviation between 
fumigation treatments is indicated by ‘a’ for P<0.05 or ‘b’ for P<0.01. Only aspen leaf fold 
damage did not propagate into remaining tissue i.e. was not detectable (ND) and therefore was 
not included; however, all other damage types did propagate into remaining tissues (P<0.01). 
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Figure 3.3 Mean (±SE) difference in leaf temperature (ΔT) between visibly damaged (d) and 
remaining (c) tissue within the same leaf (n=3 per damage type). Significant deviation between 
fumigation treatments for each damage type is indicated by ‘a’ for P<0.05 or ‘b’ for P<0.01. 
*Only aspen leaf fold damage did not differ in temperature from remaining tissue (i.e. ΔT did 
not differ from 0); however, all other damage types did (P<0.01).  
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CHAPTER 4 

HERBIVORE INDUCTION OF JASMONIC ACID AND CHEMICAL DEFENSES 

REDUCES PHOTOSYNTHESIS IN NICOTIANA ATTENUATA 

 

ABSTRACT 

Herbivores elicit damage-specific effects in leaf tissues that signal a shift in metabolism 

from growth to defense. This trade-off may account for reductions in fitness; however, the 

defense-induced changes in carbon assimilation that precede this reallocation in resources remain 

largely undetermined. Therefore, we characterized the response of photosynthesis to herbivore 

induction of jasmonic acid (JA)-related defenses in the model plant species Nicotiana attenuata 

to increase understanding of these mechanisms. We hypothesized that JA-induced defenses will 

reduce fitness by decreasing leaf photosynthesis upon attack and predicted that wild-type plants 

will suffer greater reductions in photosynthesis than plants lacking JA-induced defenses. We 

characterized gas exchange coupled to chlorophyll fluorescence imaging and measured 

production of defense-related metabolites immediately after attack and through recovery. 

Herbivore damage immediately reduced electron transport and gas exchange in wild-type plants 

but suppressed gas exchange for several days after attack. The sustained reductions occurred 

concurrently with increased defense metabolites in wild-type plants whereas lipoxygenase 

suppressed plants suffered minimal suppression in photosynthetic parameters and no increase in 

defense metabolite production. Here we identified that lipoxygenase signaling and its resulting 

JA-related metabolites reduce component processes of photosynthesis and contribute to reduced 

fitness when herbivores attack.   
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INTRODUCTION 

Plants optimize resource use when attacked by herbivores to minimize reductions in 

fitness (e.g., McKey 1974) but the mechanisms that regulate these physiological trade-offs are 

not well understood. Feeding by arthropod herbivores reduces growth in part through the loss of 

photosynthetic tissue (e.g., Welter 1989), yet tissues adjacent to feeding damage also may reduce 

photosynthesis and thereby contribute to reductions in productivity (Aldea et al. 2006;, Nabity, et 

al. 2009, 2012,). Feeding also elicits the production of a complex network of hormone signaling 

that induces defenses and initiates the trade-off between using resources for growth or defense. 

The manifestation of these defenses can be specific to the herbivore-plant interaction (Walling 

2000), but the generic response for chewing herbivores is the elicitation of the jasmonic acid 

(JA) signaling pathway. This pathway regulates both indirect and direct defenses that vary in 

their resource requirements and fitness costs (Kessler et al. 2004). Gene expression and 

proteomic surveys of JA elicitation implicate candidate mechanisms regulating the switch from 

growth to defense (Heidel and Baldwin 2004, Giri et al. 2006, Maserti et al. 2010, Chen et al. 

2011), but the functional physiology linking how defense production alters photosynthesis is 

only beginning to be understood (Zangerl et al. 1997, 2002, Tang et al. 2009, Halitschke et al. 

2011). 

The elicitation of JA-related defenses reduces fitness across many species (Cipollini 

2007, Kim et al. 2009, Kessleret al. 2011); however, in Nicotiana attenuata Torr. ex Watson, the 

type of metabolite may determine the reduction in growth and fitness. Genetic suppression of 

trypsin protease inhibitors (TPI) increases growth and fitness (Zavala et al. 2004) but plants 

silenced in nicotine production do not differ in other metabolites or measures of growth relative 

to wild-type plants (Steppuhn et al. 2004). As such, TPI may incur greater resource costs than 
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nicotine. Interestingly, the reallocation of resources to produce TPI, nicotine, or other defense 

compounds does not fully account for the ultimate fitness cost as plants lacking those defenses 

still decrease in growth and fitness when attacked by chewing herbivores (van Dam and Baldwin 

2001, Zavala et al. 2004, Zavala and Baldwin 2004). This persistent reduction in fitness cannot 

be explained by the synthesis or lack of individual defense products and suggests that other 

aspects of physical damage or JA signaling reduce photosynthesis and growth-related processes.  

 Herbivore-altered photosynthesis in remaining tissues may yield a significant and often 

unaccounted for reduction in growth or fitness. When caterpillar feeding removed 5% of the leaf 

area of wild parsnip Pastinaca sativa L. leaf photosynthesis declined by 20% in the remaining 

foliage for at least three days as a result of ruptured oil tubes containing autotoxic terpenes 

(Zangerl et al. 2002, Gog et al. 2005). Defoliation in many other species that lack autotoxic 

defenses also reduces photosynthesis in remaining leaf tissue, but this damage can be minimal 

and attenuate as ruptured tissues lignify (Aldea et al. 2005, 2006, Nabity et al. 2012). In some 

cases, damage in remaining tissues can equal the amount of tissue consumed (Aldea et al. 2006) 

and effectively double fitness costs for each bite consumed. Defoliation by the tobacco 

hornworm Manduca sexta L. in N. attenuata reduces the operating efficiency of photosystem II 

(Fq’/Fm’) in remaining tissue, and this indicates that electron transport may limit carbon 

assimilation after short term feeding (Halitschke et al. 2011). However, feeding damage by 

piercing sucking insects does not reduce photosynthesis, nor do these insects increase JA or 

nicotine levels (Heidel and Baldwin 2004, Halitschke et al. 2011, unpublished data). As such, 

herbivore-specific elicitors may determine the photosynthetic suppression in remaining leaf 

tissue and ultimate reductions in fitness (Halitschke et al. 2011). But because different defense 

signaling networks are induced relative to the type of herbivore attack (i.e., phloem-feeding 
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aphid vs. chewing larva), additional data on the how defense induction alters photosynthesis may 

reveal mechanisms underlying the herbivore-modulated reprogramming of plant metabolism.  

The objective of this study was to characterize how induction of JA defenses by 

herbivore attack suppresses component processes of photosynthesis. We characterized 

photosynthesis immediately after attack, and through time with production of defense 

compounds to increase understanding of the physiological mechanisms by which growth and 

fitness decline with herbivory. We hypothesized that an inducible JA-related defense signaling 

network reduces growth and fitness by suppressing leaf photosynthesis upon attack and predict 

wild-type plants will suffer greater reductions in photosynthesis than plants lacking JA-related 

defense production.  

 

MATERIALS AND METHODS 

Plants and insects 

To test how defense signaling and synthesis alter component processes of photosynthesis, 

we examined the physiological response of plants with and without genetically suppressed JA-

defense signaling in combination with herbivory. Wild-type Nicotiana attenuata plants were 

compared to a genetically altered strain, antisense LOX3 (asLOX), in which the primary 

lipoxygenase initiating the JA-signaling cascade is suppressed (Halitschke and Baldwin 2003). 

This genetic modification results in > 25 % decrease in nicotine, up to 50 % decrease in TPI, and 

45-65 % decrease in JA burst upon herbivore attack. Seeds obtained from the Max Planck 

Institute for Chemical Ecology (Jena, Germany) were prepared and germinated on agar in an 

environmental growth chamber (25 °C 16:8 L:D) following Krugel et al. (2002) and then 

transplanted to 2 liter pots containing soilless media (Sunshine LC1, SunGro Horticulture, 
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Bellevue, WA). All transplants were grown in a glasshouse with supplemental lighting (28:22 ± 

2 °C, 16:8 L:D), watered when necessary, and infested >2 weeks after transplanting. Eggs of M. 

sexta were obtained from an in-house colony and, upon hatching, neonate (< 1 day old) larvae 

were caged on +1 source leaves as determined by Giri et al. (2006) and allowed to feed for either 

1 or 3 days. These source leaves are the first fully expanded leaf of the developing rosette and 

were used in place of stalk leaves to test how early herbivory events contribute to lasting 

reductions in growth and fitness. Plants lacking herbivores were fitted with the same fine mesh 

cages on +1 source leaves but without insects. Larvae grew as they fed, and, after three days, 

were 1st instars.  

Gas exchange and chlorophyll fluorescence imaging 

To capture rapid responses reflecting the direct effect of leaf damage on photosynthesis, 

gas exchange and chlorophyll fluorescence were measured on plants following one day of 

herbivory. In a subsequent experiment plants were exposed to three day of herbivory to capture 

potential effects related to synthesis and translocation of the major direct defenses (approx. three 

day for TPI; Van Dam et al. 2001, approx. five day for nicotine; Shi et al. 2006). Two cohorts of 

plants were used in the three-day feeding experiment to provide tissue for analysis of plant 

metabolites. The first cohort was assessed for photosynthesis prior to harvesting at two time 

points: immediately after feeding and after two-day recovery time (no insect feeding). The 

second cohort of plants was assessed for photosynthesis immediately after feeding damage, after 

three-day recovery, and after seven-day recovery time following a random design blocked by 

time of measurement within each day. For all experiments, each genotype (n = 5) was assessed at 

each herbivore treatment (+ or –herbivore) under the conditions described. Immediately after 

measurements leaves were clipped, frozen in liquid N2, and stored at -80 °C. Leaves examined 
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through time were collected at the last time point. All frozen leaf samples were ground using 

mortar and pestle under liquid N2, divided into aliquots of known mass (~150 mg), and stored at 

-80 °C until hormone and metabolite analysis. 

Gas exchange was measured with an infrared gas analysis system (LI-6400, Licor, 

Lincoln, NE) with a modified cuvette to allow for simultaneous chlorophyll fluorescence 

imaging with a CFImager (Technologica, UK). Leaves were dark-adapted (> 30 minutes), 

imaged after an 800 ms saturating pulse (> 6000 PAR), light adapted (at 350 PAR) for 20 

minutes until gas exchange parameters stabilized, and then imaged after another saturating pulse. 

This allowed for images of maximal (Fm), minimal (Fo), and variable (Fv = Fm- Fo) fluorescence 

and the calculation of the maximal efficiency of photosystem II (Fv/Fm) as defined by Baker 

(2008). Once light-adapted steady state was achieved, gas exchange values were recorded, and 

images for the operating efficiency of photosystem II (Fq’/Fm’) were taken.  

To characterize herbivore induced spatial heterogeneity in leaf fluorescence we counted 

the number of pixels within each leaf that were reduced in value > 5 % for Fv/Fm and  > 10 % for 

Fq’/Fm’ images relative to the average value of undamaged leaf tissue in the same leaf. This value 

of undamaged tissue did not differ from average values of separate, undamaged leaves assessed 

concurrently with damaged leaves. We expressed the damaged area as a percentage of remaining 

tissue for each image type. Images were made under low irradiance to maximize electron transfer 

efficiency (Baker et al. 2007). This procedure optimizes the assessment of pulse amplitude 

modulated (PAM) fluorescence and strengthens the correlation between fluorescence and 

photosynthetic rate (Longstaff et al. 2002).  
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Plant hormones 

To quantify how defense-related plant hormones interact with alterations in 

photosynthesis we characterized jasmonic acid (JA) and salicylic acid (SA) for individual leaves. 

Hormones were analyzed by high performance liquid chromatography coupled to a mass 

spectrometer (HPLC/MS: 2010 EV HPLC/MS, Shimadzu, Columbia, MD, USA) using a 

protocol modified from Wang et al. (2007). Aliquots of frozen leaf tissue were extracted with 1 

mL ethyl acetate spiked with isotopically labeled internal standards for JA (200 ng ml-1; 5JA) and 

SA (50 ng ml-1; 4SA). Samples were vortexed for 5 minutes and centrifuged at 13000 rpm for 20 

minutes at 4 °C, and then the supernatants were transferred to new tubes.  Each sample was re-

extracted with 0.5 ml of unlabeled ethyl acetate, shaken, and centrifuged under the same 

conditions. The supernatants were combined and evaporated until dryness at 30 °C under a 

vacuum concentrator.  The dried residue was re-suspended in 0.5 mL 70 % (v/v) methanol, 

vortexed > 5 minutes, and centrifuged at 13000 rpm for 10 minutes, and 0.4 mL was transferred 

to vials for analysis by HPLC/MS 

The HPLC/MS was operated in negative electro-spray ionization mode with a mobile 

phase of 0.05 % formic acid (solvent A) and 0.05 % formic acid in methanol (solvent B) used in 

gradient mode for the separation following Wang et al. (2007). Samples (10 μL) were injected at 

a flow rate of 200 μL min-1 onto a Luna C18 column (250 x 2 mm, 5 μ ID, Phenomenex, 

Torrance, CA, USA) with selected reaction monitoring of compound-specific parent ions JA = 

209; 5JA = 214; SA = 137; 4SA = 141. 

Direct defense traits 

To quantify how defenses interact with alterations in photosynthesis we assayed 

individual leaves for trypsin protease inhibitors (TPI) and nicotine. TPI activity was determined 
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by radial diffusion assay (van Dam et al. 2001). Activity was normalized to protein content 

determined from an aliquot of ground leaf tissue extracted under 0.5 mL of 100 mM Hepes 

(titrated to pH 7.5 with NaOH) and assayed with the Pierce BCA protein kit (ThermoFisher 

Scientific, Rockford, IL). Nicotine content was analyzed by HPLC following a protocol modified 

from Keinanen et al. (2001). Aliquots of ground leaf samples were extracted with 1 mL 40 % 

methanol with 0.5 % acetic acid in H2O, combined with 0.3 g of 1mm Zircon/Silica beads 

(Biospec Products Inc, Bartlesville, OK), and shaken in a Mini Beadbeater (Biospec Products 

Inc) for 45 seconds. Ground tissues were then vortexed for 2 hours, centrifuged at 13000 g for 10 

minutes, and 0.3 mL pipetted to HPLC vials for analysis.  

The same HPLC/MS was used to measure direct defense traits although a mobile phase 

made up of 0.25% phosphoric acid in H2O (solvent A) and 100% acetonitrile (solvent B) was 

used for separation. Samples (10 μL) were injected at a flow rate of 200 μL min-1 onto a column 

(4.6 x 150 mm, 3 μ ID, Inertsil ODS3, GL Sciences Inc, Torrance, CA) and elution times and 

monitoring wavelengths were as in Keinanen et al. (2001). 

Data analysis 

Data for plant hormones and direct defense traits were analyzed with a mixed model 

analysis of variance (ANOVA, Proc Mixed 9.2, SAS Institute, Cary, NC) with genotype (wild-

type or asLOX) and herbivore (+ or -) as fixed effects. When the initial ANOVA yielded a 

significant difference, post-hoc comparisons were made between least squares means (LS 

means). Gas exchange and chlorophyll fluorescence imaging parameters were analyzed by 

ANOVA when measurements corresponded with destructively harvested leaves. Gas exchange 

measured through time was analyzed by repeated measures ANOVA with post-hoc comparisons 

as described. Data describing the percentage of tissue where fluorescence was reduced relative to 
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undamaged leaves were log transformed prior to analysis by ANOVA. Defense metabolites were 

regressed against photosynthesis parameters using Proc Corr 9.2 (SAS Institute, Cary, NC). All 

comparisons were made at P ≤ 0.05 unless otherwise specified. 

 

RESULTS 

Herbivory rapidly altered photosynthesis, defense signaling, and metabolites synthesis in 

N. attenuata though effects were mild (Table 4.1). A brief herbivore attack – one day – caused a 

significant reduction in carbon assimilation and stomatal conductance (gs) (F = 5.36; df = 1,12; P 

= 0.04, F = 4.65; df = 1,12; P = 0.05, respectively) but no differences were detected between 

genotypes. Defense-modified asLOX plants maintained lower respiration rates than wild-type 

plants (F = 5.06, df = 1,12, P = 0.04) but no interaction with herbivory was detected. JA and TPI 

levels increased in wild-type plants compared to asLOX plants (F = 13.03 df = 1,12 P = 0.004, F 

= 111.2 df = 1,12 P < 0.001, respectively), whereas nicotine content did not increase with one-

day herbivory but was lower overall in asLOX plants (Table 4.1). Carbon assimilation did not 

correlate with any defense compounds but did correlate with propagated damage to dark-adapted 

electron transport (r = -0.46, P = 0.04). This propagated damage also strongly correlated with JA 

and TPI but not nicotine levels (JA; r = 0.65; P = 0.002, TPI; r = 0.58; P = 0.007, nicotine; r = 

0.03; P = 0.9). 

Longer feeding resulted in lasting reductions in photosynthesis and elicited a strong, 

sustained defense response. After three days of feeding insects consumed 7% of total leaf area 

(160 mm2) and reduced maximal (Fv/Fm) and operating (Fq’/Fm’) efficiency in electron transport 

in remaining tissue adjacent to feeding sites. Greater propagated damage occurred in wild-type 

plants than in asLOX plants (Figure 4.1). This damage in wild-type plants decreased to the levels 
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observed in asLOX plants after two-day recovery time (Fv/Fm; WT = 3.7 ± 0.2 %, asLOX = 3.7 ± 

1.1 %, Fq’/Fm’; WT = 4.1 ± 0.3 %, asLOX = 2.5 ± 0.5 %,). No main effects for herbivore or 

genotype occurred when assessed across the entire leaf. Insects consumed equivalent amounts of 

leaf tissue across three-day feeding experiments for both genotypes indicating that the difference 

in percentage damage to remaining tissue was not related to the amount of leaf consumed. 

Herbivory reduced leaf photosynthesis in both genotypes (F = 6.92; df = 1,12; P = 0.03) 

but interacted with genotype through time (F = 4.73; df = 1,12; P = 0.05). Thus, photosynthesis 

declined in wild-type plants immediately following chewing damage and for up to three days 

after removal of insects, whereas photosynthesis recovered immediately after insect removal in 

asLOX plants (Figure 4.2). Both gs and Ci decreased after three days of feeding in damaged wild 

type plants but only gs remained lower up to three days into recovery. Wild-type plants also 

maintained higher respiration rates through time (F = 5.06; df = 1,12; P = 0.04) with an 

immediate decrease in respiration in infested wild-type plants after feeding that attenuated with 

recovery. Gas exchange parameters for plants destructively harvested for metabolite assessment 

were similar to those recorded in the infestation and recovery experiment. 

The effect of herbivory on plant signaling hormones and defensive chemicals was similar 

to the response of photosynthesis. JA levels increased immediately after three-day feeding and 

remained elevated after two-day recovery time in wild-type plants whereas asLOX plants 

maintained lower JA levels at each sample date until seven-day recovery (Figure 4.3). TPI and 

nicotine levels also increased after feeding; however, the level of leaf TPI remained elevated 

after seven-day recovery. asLOX plants did not increase in defense metabolites with herbivory. 

SA levels did not differ among treatments throughout the experiment (data not shown).  
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To determine how the defense response related to the suppression in photosynthesis we 

examined the correlations between gas exchange and defense response variables (Table 4.2). The 

amount of area consumed did not correlate with the propagated damage to Fv/Fm or Fq’/Fm’, 

thereby reducing the likelihood that physical damage determined the suppression in electron 

transport. There was a lack in consistency with how CO2 assimilation correlated with defense 

metabolites through time, but defense metabolites were strongly correlated with propagated 

damage to electron transport (Table 4.2). Carbon assimilation did not correlate with percentage 

reductions in electron transport suggesting that reductions in gas exchange were not largely 

determined by limitations in electron transport. Stomatal conductance was negatively correlated 

with nicotine (r = -0.31; P = 0.02) across all time points but this relationship did not occur 

between nicotine and other gas exchange parameters. 

 

DISCUSSION 

Chewing damage to N. attenuata induced JA-dependent defenses and this defense 

response immediately interrupted electron transport and reduced gas exchange for days 

following the initial herbivore attack. These data provide new insight into the proposed 

physiological link (Halitschke et al. 2011) between the herbivore-elicited down-regulation of 

photosynthetic gene expression and the resulting reductions in fitness (Voelckel and Baldwin 

2004). Herbivore attack reduced growth and fitness through suppression in the component 

processes of photosynthesis that included 1) the removal of photosynthetic leaf area, 2) 

physically damaging remaining leaf tissue, and 3), down-regulating photosynthesis in remaining 

leaf tissue by signaling for defense. Down-regulation of photosynthesis occurs in other plant 

species that synthesize/release biocidal compounds with herbivory (e.g., terpenes, Zangerl et al. 
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2002, Gog et al. 2005); however, if JA-defense signaling reduces components of photosynthesis, 

then herbivore-mediated down-regulation of photosynthesis may be conserved and directly 

linked to the type of defense response. 

Because wound signaling is transduced by the oxidation of free α-linolenic acid within 

the chloroplast via electron-carrying lipoxygenases (LOX3; Halitschke and Baldwin 2003) but 

results in downstream synthesis of JA (Gfeller et al. 2010), it is difficult to assess what 

components of the signaling pathway interact directly with photosynthesis. We assessed how 

suppressing the entire pathway altered photosynthesis and observed reductions in electron 

transport that were strongly correlated with JA levels and subsequently with the production of 

defense metabolites, albeit to a lesser degree. Prior evidence indicates wild-type N. attenuata has 

lower gene expression of light-harvesting complex (LHC) and PSII oxygen-evolving-complex 

polypeptides compared to asLOX plants when attacked by herbivores whereas gene expression 

of Rubisco small subunit and two peptides of PSII decreases more in asLOX than in wild-type 

plants (Halitschke and Baldwin 2003). These expression patterns suggest LOX3-signaling 

suppresses gene expression of transcripts related to electron transport proteins whereas gene 

expression for Calvin cycle and other electron transport proteins are uncoupled from LOX3-

dependent signaling. In comparison with inverted repeat JASMONATE RESISTANT (JAR4/6) 

plants that maintain functional LOX activity but reduce amino acid conjugation of JA, asLOX 

plants transcriptionally up regulate components of photosystem I (StPSI-I; photosystem 1 

reaction center subunit) and Rubisco (Wang et al. 2008). As a result, LOX3 signaling may 

interact with photosynthesis more directly than JA synthesis and the suppression of LOX3 

reduces a potential physiological cost associated with defense signaling. Plants with reduced 

function of PsbS, a light harvesting protein that facilitates the quenching of excess energy into 
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dissipated heat, showed strong up-regulation of the lipoxygenase-signaling pathway (Frenkel et 

al. 2009); this result reinforces the link between light reaction-associated electron transport and 

lipoxygenase signaling. Finally, we observed reduced electron transport only under larval attack 

and not between undamaged genotypes thereby indicating that an interaction with larval 

secretions may determine the degree of photosynthetic suppression upon signaling for defense. 

Larval saliva dephosphorylates constitutively phosphorylated lipoxygenase in Arabidopsis and 

reduces JA synthesis/signaling (Thivierge et al. 2010); thus, the lipoxygenase-dependent 

reduction in photosynthesis is likely herbivore mediated. Given the oxidation that occurs upon 

herbivory, it will be interesting to investigate how JA-induced reactive oxygen species (ROS) 

modulate LHCs of photochemistry and interrupt electron transfer. 

Herbivory down-regulates genes related to primary photochemistry and the Calvin cycle 

across many herbivore-plant interactions (Bilgin et al. 2010). However, the translation into 

altered protein levels is less clear. Calvin cycle enzymes increase (Maserti et al. 2010) or 

decrease (Chen et al. 2011) but LHC proteins generally increase. Larval attack in N. attenuata 

generates similar trends in gene expression and protein modification (Halitschke and Baldwin 

2003, Giri et al. 2006). Our data indicate reduced functioning capacity in the light harvesting 

reactions of photochemistry, specifically when defense signaling is intact. Given this effect 

occurred immediately after attack and was not sustained, it is possible that reduced synthesis of 

key photosynthetic proteins occurs simultaneously with attenuation of degradation pathways in 

an effort to optimize resource allocation toward defense without sacrificing vital components of 

photosynthesis. 

Insect herbivory reduces photosynthesis in remaining tissue (Zangerl et al. 2002, Nabity 

et al. 2009). We observed reduced electron transport efficiency in more remaining leaf tissue of 
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wild type than asLOX plants but small reductions around chewed leaf edges in asLOX plants 

immediately after insect attack. This result is consistent with previous data for N. attenuata 

(Halitschke et al. 2011) and surveys of chewing herbivore damage in other species (Aldea et al. 

2006, Nabity et al. 2012). Given that damage propagated in both genotypes, feeding interrupted 

electron transport by physically disrupting tissues leading to desiccation, or introducing electron 

scavengers through insect oral secretions or lysed cells (e.g., glucose oxidase, ROS). Previously, 

30% leaf area consumption was observed to reduce Fq’/Fm’ averaged across the remaining leaf 

area (Halitschke et al. 2011). We did not resolve this suppression at the leaf level when 7% leaf 

area was consumed and saw minimal suppression in chlorophyll fluorescence restricted to cut 

edges when plants were allowed to recover. Our data suggest the greater reductions in Fv/Fm or 

Fq’/Fm’ were linked to defense, but the act of wounding produces transient effects that 

immediately and minimally contribute to downstream reductions in CO2 assimilation. 

Defoliation damage propagates further into remaining tissue immediately after feeding in other 

systems, but when the damaged leaf is given time to recovery, the effects of herbivory diminish 

(Aldea et al. 2005, Nabity et al. 2012).  

The manner of feeding largely determines the degree of propagated damage; younger 

larvae produce more cut edges per bite relative to older larvae, significantly compromising the 

function of remaining tissue (Tang et al. 2006). After one day of exposure to plants neonates fed 

minimally (1.4% leaf area) yet doubled propagated damage (2.9%) in wild-type plants relative to 

three-day attack (by continuously growing neonates that developed into 1st instars) where leaf 

area was reduced 6.3% but only suppressed 8.1% of remaining tissue. Taken together, these 

results suggest that timeliness and manner of the feeding damage interact to determine the degree 
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of propagated damage in N. attenuata, and may only partly explain the proposed physiological 

link that reductions in Fq’/Fm’ drive reductions in fitness (Halitschke et al. 2011). 

Gas exchange declined immediately after feeding in wild-type plants but not in asLOX 

plants. While this finding agrees, in part, with Halitschke et al. (2011), we also observed stomatal 

limitations to CO2 assimilation and continued suppression in wild-type plants for days after the 

initial attack. With the onset of herbivory, both stomatal conductance and Ci decreased thereby 

indicating that stomata limit CO2 assimilation. Defoliation damage reduces stomatal conductance 

in many other species, often through tissue desiccation and loss in turgor associated with severed 

vasculature (Sack and Holbrook 2006). We also observed electron transport decreased minimally 

in asLOX and transiently in both genotypes suggesting the contribution of reduced electron 

transport to prolonged reductions in gas exchange was minimal. To this end, the sustained 

suppression in photosynthesis did not occur with altered Ci suggesting neither electron transport 

nor stomatal limitations drove the long-term reduction in CO2 assimilation. Halitschke et al. 

(2011) also documented no decrease in stomatal conductance or change in Ci that, assuming 

transient reductions in Fq’/Fm’, indicates other defense-related components alter photosynthesis.  

Our one-day study suggested a combination of reduced electron transport and stomatal 

closure transiently reduced photosynthesis, but given three-day feeding and full defense 

metabolite synthesis, photosynthetic suppression was sustained through time. We observed 

increased levels of JA, TPI, and nicotine concurrent with reductions in gas exchange after three 

days of feeding. Although all defense compounds were positively correlated with the degree of 

propagated damage only nicotine showed consistent negative correlations with gas exchange 

(Table 4.2). Exogenous nicotine application suppresses photosynthesis in solanaceous plants that 

both do and do not synthesize nicotine (Baldwin and Callahan 1993), so it is possible that 
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autotoxicity interfered with carbon uptake by closing stomata, a mechanism that warrants further 

attention. TPI synthesis also exacts fitness costs (Zavala et al. 2004) and these may be modulated 

through photosynthesis; however, reported reductions in Rubisco or other Calvin cycle enzymes 

may be stronger drivers for decreased CO2 assimilation (Giri et al. 2006).   
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TABLES 
Table 4.1. Chlorophyll fluorescence, gas exchange, and defense parameters in Nicotiana 
attenuata immediately after one day herbivory by Manduca sexta on wild-type and JA-defense 
suppressed (as-LOX) plants. Different letters denotes differences among treatments at P ≤ 0.05 
level of significance. 

 

 Wild type  asLOX 

 - herbivore + herbivore - herbivore + herbivore  

Chlorophyll fluorescence 

Propagated damage to Fv/Fm  

% of remaining leaf --- 2.9 ± 0.2a ---  2.3 ± 0.3b* 

total area (mm2) --- 66 ± 5a ---  52 ± 7b* 

Propagated damage to Fq’/Fm’  

% of remaining leaf  --- 9.0 ± 1.9a ---  4.8 ± 0.7b* 

total area (mm2) --- 206 ± 44a ---  109 ± 16b* 

 

Gas exchange 

CO2 assimilation (μmol m-2s-1)     8.4 ± 0.1a     8.0 ± 0.2b*     8.4 ± 0.1Aa     8.1 ± 0.3b* 

Stomatal conductance (mmol m-2s-1) 0.233 ± 0.007a 0.222 ± 0.016a 0.214 ± 0.015a 0.181 ± 0.012b* 

Intercellular CO2 (Ci)    295 ± 2a    298 ± 3a     292 ± 4ab    281 ± 3b 

Respiration -0.63 ± 0.06a -0.66 ± 0.09a -0.47 ± 0.05b* -0.55 ± 0.05ab 

 

Defense metabolites 

JA (nmol mg FW-1)    51 ± 6a  107 ± 15b      49 ± 4a     58 ± 5a 

TPI (nmol mg protein-1)   1.3 ± 0.1a   4.4 ± 0.4b    0.4 ± 0.1c     0.4 ± 0.1c 

Nicotine (mg g FW-1)  0.58 ± 0.04a  0.61 ± 0.03a    0.43 ± 0.02b   0.38 ± 0.03b 

 

* indicates significance at P ≤ 0.1 
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Table 4.2. Correlation coefficients (r) for the relationship of CO2 assimilation (PS) or maximal 
electron transport efficiency (Fv/Fm) compared to defense metabolites jasmonic acid (JA), trypsin 
protease inhibitor (TPI), and nicotine for each time point assessed following three day feeding. 

 

 3d 5d 7d Summary 

 PS Fv/Fm PS Fv/Fm PS Fv/Fm PS Fv/Fm 

JA -0.40$ 0.67; ** -0.54** 0.54** -0.13 NA 0.01 0.63*** 

TPI 0.58** 0.58; ** -0.50$ 0.60* 0.17 NA 0.09 0.52** 

Nicotine 0.44$ 0.52; * -0.53** 0.38$ -0.60** NA -0.10 0.42** 

         

Correlations significant at the P ≤ 0.001, P ≤ 0.01,P ≤ 0.05, P ≤ 0.1 are depicted by ***, **, * and $, respectively. 
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FIGURES 
Figure 4.1. Representative chlorophyll fluorescence images for maximal efficiency of 
photosystem II (Fv/Fm) and operating efficiency of photosystem II (Fq’/Fm’) for wild-type and JA-
defense modified (asLOX) Nicotiana attenuata leaves challenged by Manduca sexta herbivory 
for three days. The difference between genotypes in the percent of remaining leaf tissue that was 
reduced > 5% for Fv/Fm and > 10 % for Fq’/Fm’ is denoted by * at P ≤ 0.05 level of significance.  
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Figure 4.2. CO2 assimilation of wild-type (top) and JA-defense modified asLOX (bottom) Nicotiana attenuata leaves challenged by 
Manduca sexta herbivory for three days. The corresponding intercellular [CO2] and stomatal conductance are also shown (right). * 
denotes treatment difference within a genotype at P ≤ 0.05 level of significance unless otherwise indicated. 
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Figure 4.3. Jasmonic acid, TPI, and nicotine content of wild-type and JA-defense modified 
asLOX Nicotiana attenuata leaves challenged by Manduca sexta herbivory. Insects were 
removed after three days feeding and tissues were harvested 3, 5, and 10 days after feeding 
began, i.e., 0, 2, and 7-day recovery time. Different letters denotes differences among treatments 
at P ≤ 0.05 level of significance. 
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CHAPTER 5 

PHYSIOLOGICAL AND GENOMIC BASIS FOR ENDOPARASITE CONTROL 

OVER PLANT METABOLISM 

 

ABSTRACT 

Endoparasitism by gall forming insects dramatically alters plant phenotype by generating 

morphological and histological structures such that the insect benefits from induced changes 

within the host. Because these changes are often linked to insect fitness, they are hypothesized to 

serve as an extension of the parasite phenotype. To date, no morphologies benefit host 

physiology; however, we identified that the gall forming insect parasite, Daktulosphaira 

vitifoliae, induces adaxial leaf-side stomata formation where no stomata typically occur on wild 

and cultivated-grape leaves. We tested the extended phenotype hypothesis by characterizing the 

function of the phylloxera-induced stomata and tracing transport of assimilated carbon. Because 

inducible stomata suggest a significant manipulation of primary metabolism, we also 

characterized the gall transcriptome to identify the level of global reconfiguration to primary 

metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera 

feeding induced stomata in proximity to the insect and the sink strength of the gall drove 

importation of the assimilated carbon. Gene expression related to photosynthesis decreased 

whereas gene expression for transport, glycolysis, and fermentation increased in leaf-gall tissues. 

This shift from an autotrophic to heterotrophic profile occurred concurrently with decreased gene 

expression for non-mevalonate and terpenoid synthesis and increased gene expression in 

shikimate and phenylpropanoid biosynthesis, secondary systems that alter defense status in 

grapes. These data report the first occurrence of functional, insect-induced stomata in nature, 
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provide physiological and genomic support that phylloxera globally reprogram grape leaf 

development and function to serve as an extended phenotype, and link genomic manipulation of 

metabolism to defense signaling in gall forming insects. 

 

INTRODUCTION 

Plant parasitism by virus, bacteria, or insects results in abnormal tissue growth and 

altered external morphologies often through tumor-like gall formation. Species-specific feeding 

behaviors of insects determine the type of induced morphologies and result in a range of 

structures on stems or leaves that includes extra-floral nectaries, spines, trichomes, and 

excretions; the functions of which are associated with enhanced parasite fitness (Price 1987, 

Waring and Price 1989, Stone et al. 2002, Wool 2004, Raman et al. 2005). As such, these 

attributes have led to the hypothesis that gall induction is controlled by and functions as an 

extension of the parasite phenotype (Stone and Schonrogge 2003). The mechanisms for host 

transformation are known for few bacterial species (Deeken et al. 2006, Stes et al. 2011); 

however, there is a lack of understanding for how insect parasites initiate and maintain control 

over plant development.  

Gall forming insects are sedentary and as a result directly compete for mobilized 

nutrients with meristems or developing reproductive structures that function as plant sinks. This 

competitive environment drives the evolution of the galling habit from leaf edge to midvein 

(Inbar et al. 2004) and, among parasites, favors the individual closest to source tissue (Larson 

and Whitham 1997, Compson et al. 2011). The sink competition model emphasizes a selective 

pressure for the parasite to become a stronger sink or to manipulate photosynthesis and enhance 

source strength. Stimulated plant growth through gall-tissue formation and differentiation 
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succeeds as a manner to enhance the sink demand of the parasite whereas enhanced source 

strength is less documented (but see Fay et al. 1993, Dorchin et al. 2006).  

The fluid-feeding aphid phylloxera, Daktulosphaira vitifoliae Fitch, is a globally 

distributed endoparasite of grapes (Vitis spp) that induces nutrient-enriched galls on leaves or 

roots, the latter which increases susceptibility to secondary pests that ultimately kill the vine 

(Granett et al. 2001). When introduced to naïve V. vinifera in Europe in the 1860s, phylloxera 

nearly caused the collapse of global grape production, and again threatened viticulture in 

California in the 1980s after overcoming resistant hybrid rootstocks (AxR#1; see Granett et al. 

2001). Phylloxera attack on susceptible, cultivated V. vinifera may produce hundreds of 

competing sinks within the same leaf; however, native Vitis incur variable levels of leaf-galling 

depending on the Vitis species attacked and climate (Downie et al. 2000). Gall tissues are 

enriched in starch (Witiak 2006) and amino acids relative to un-attacked leaf tissue (Warick and 

Hildebrandt 1966). Unlike other phloem-feeding Aphidoidea that rely on N-fixing bacteria for 

nutrients, grape phylloxera house no described endosymbionts and feed from the parenchyma 

(Vorwerk et al. 2007). As such, they likely attain carbon from starch degradation and nitrogen 

from amino acids; however, the current understanding of the regulation of these processes is 

largely anecdotal.  

In this study I investigated the manipulation of source/sink dynamics in the extensively 

characterized grape-phylloxera system and, in the context of the extended phenotype hypothesis, 

describe a new functional morphology of benefit to host physiology that is induced by gall 

forming insects. I also sequenced the gall transcriptome to test if large-scale reprogramming of 

gene expression drives the manifestation of the extended phenotype by altering sink/source 
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identity. These data represent the first examination of insect-induced stomata in nature and the 

first transcriptomic assessment of insect gall transformation in plants. 

 

MATERIALS AND METHODS 

Plant and Insect Material 

Vitis vinifera cv. Frontenac vines were established in perpetual colony within a 

glasshouse to characterize the stomata with greater control over environment, and grown under 

field conditions for a single season experiment to assess function under typical vineyard 

conditions. Glasshouse vines were cloned from field cuttings from a single vine growing at the 

University of Illinois Fruit Research Farms and grown in 10 liter pots filled with soilless media 

(LC1 Sunshine, SunGro Horticulture, Bellevue, WA). Vines were maintained with monthly 

applications of 10 % NPK (w/v) and watered when necessary. Local D. vitifoliae were colonized 

on vines, and both plants and insects were maintained within a glasshouse with supplemental 

lighting (28:22 ± 2 °C, 16:8 L:D). Field plots of V. vinifera cv. Frontenac vines (1x vines; 

Double A Vineyards, NY) were planted prior to spring bud break, watered with 200 ppm N 

amendment for 1 month to encourage vegetative growth, and thereafter watered when needed. 

Local D. vitifoliae were collected from infested vineyards and allowed to colonize vines (in 

May).  

Histology and Imaging 

 Phylloxera infested vines were surveyed to determine the occurrence and structure of 

leaves with induced-adaxial stomata. Epidermal peels (Figure 5.1) were prepared by painting 

cellulose acetate (nail varnish) on to leaf surfaces and then plating the imprint for microscopy. 

To assess stomatal number, impressions of the galled and non-galled surfaces of galled and non-
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galled leaves (n = 5) were made using dental resin (President Plus, Coltene/Whaledent Inc, 

Cuyahoga Falls, OH, USA). Digital renderings of the impression surface were profiled using an 

optical profilometer (Nanofocus usurf explorer, Nanofocus, Glen Allen, VA, USA). Cell number 

was counted using the Motif Operator (usoft Analysis Premium software, Nanofocus) Intact leaf 

and gall tissues were harvested from vines and immediately submerged in 10 % neutral buffered 

formalin for > 1 day, serially dehydrated in ethanol, and embedded in paraffin. Tissue cross 

sections (Figure 5.2) were made by microtome (Leica RM2255, Leica Microsystems Inc, Buffalo 

Grove, IL) and then stained following standard protocols at the Core Facilities Histology 

laboratory in the Institute for Genomic Biology, University of Illinois at Urbana-Champaign. 

Gas exchange 

To characterize how the galling habit alters leaf photosynthesis, gas exchange was 

measured on second-generation galls of similar size but from separate field-grown vines using a 

portable infrared gas analyzer (LI6400 IRGA, Licor, Lincoln, NE). Leaves (n = 10) were 

identified with a single gall and surveyed for both daytime carbon uptake and nighttime 

respiration on both gall and adjacent non-galled leaf area. Dual-sided leaf measurements were 

measured at saturating light after the leaf reached a steady state within the 6cm2 cuvette (25 ± 2 

°C, ~50 % RH). Adaxial leaf carbon fluxes were then measured by taping over the sample 

manifold chamber (Licor, Lincoln, NE), inverting the leaf, and sampling over time (one 

measurement recorded every 10 seconds for 2 minutes) to enhance the signal-to-noise-ratio. All 

respiration measures were sampled over time and average values were used for comparisons. 

These field surveys were completed within one day and repeated the following day on a different 

cohort of leaves (in June). 

 



 

 
 

95 

CO2 labeling  

To assess the contribution of adaxial CO2 influx into galls, greenhouse-grown vines were 

used to pulse adaxial and abaxial leaf sides with 13C-enriched CO2. Enriched CO2 was applied to 

separate leaves using a modified gas exchange system. The system was modified for one-sided 

leaf gas exchange as described, and the sample and reference gas lines were redirected to include 

airflow through an adjacent 50 mL vial. Leaves (n=4) were dark-adapted (>20 minutes) to 

determine abaxial (plant) or adaxial (plant+insect) respiration and then light-adapted to reach 

steady state (PAR = 1500, 29 ± 1 °C, RH ~ 60 %). Once leaves were light adapted 1 mL of 5 % 

acetic acid in water was injected into the 50 mL vial containing 20 mg of 13C sodium carbonate 

(IconIsotopes, Summit, NJ). This released a pulse of approximately 800 ppm labeled CO2 that 

lasted in the gas exchange system for approximately four minutes. Subsequent pulses of 

decreasing concentrations were applied with additional 1 mL injections after the previous pulse 

disappeared and conditions returned to steady state. Each leaf side was labeled with four pulses 

over 10 minutes. We harvested labeled leaves after six hours because preliminary labeling 

experiments indicated 13CO2 was present in all tissues. After one and two days after labeling, leaf 

and gall tissue declined in δ13C values whereas insect values remained similar suggesting the 

labeled was respired out of leaf tissue. Insect, gall, and leaf tissues from labeled and adjacent 

unlabeled areas on the same leaf were separated by tissue type. Leaves were divided further into 

two tissue types: tissue within a 4 mm diameter circle centered on the gall where the stomata 

occur and remaining leaf tissue lacking adaxial stomata.  

Tissues exposed to 13CO2 were separated by type, insects and eggs were counted, and all 

tissues were oven-dried at 70° C. Tissues were weighed for final dry mass, ground to powder, 

and analyzed using an Elemental Combustion System (model 4010, Costech Analytical 
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Technologies, Valencia, CA) coupled to a Delta V isotope ratio mass spectrometer 

(ThermoFisher Scientific, Waltham, MA). 

RNA extraction and sequencing 

To assess the transcriptome of mature sinks, galls containing nymphs of reproductive age 

and undamaged leaves of similar age were harvested from separate leaves of separate vines and 

pooled (n=10) for each biological replicate (n=3). Tissues were flash-frozen in liquid N2 and 

stored at -80°C for further processing. Insects were removed from gall tissues prior to RNA 

extraction. 

Total RNA was isolated from frozen tissues using Spectrum Plant Total RNA kit (Sigma-

Aldrich Co). RNA quality and quantity were determined by spectrophotometry (Nanodrop 1000, 

ThermoFisher Scientific, Waltham, MA) and a denaturing agarose gel with ethidium bromide 

staining. Construction of RNAseq libraries and sequencing on the Illumina HiSeq2000 

instrument were carried out at the W.M.Keck Center for Comparative and Functional Genomics, 

University of Illinois at Urbana-Champaign. One μg of DNAse treated total RNA per sample 

was used to prepare individually barcoded RNAseq libraires with the TruSeq RNA Sample Prep 

kit (Illumina, San Diego, CA). Libraries were pooled in equimolar concentration and each pool 

was sequenced on one lane on a HiSeq2000 for 100 cycles using version 2 chemistry according 

to the manufacturer's protocols (Illumina, San Diego, CA). Reads were demultiplexed using 

Casava 1.7.  

Bioinformatics 

Reads were aligned to the V. vinifera transcriptome (version 12x; Phytozome v.7, JGI) 

following a conservative RNAseq read assessment (C. Yendrek pers. comm). Briefly, raw reads 

were aligned to the reference transcriptome using two mapping programs: CLC Genomic 
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Workbench (CLCBio) or Novoalign. A minimum total read count for each tissue was 

implemented (min = 50) and then differential expression was analyzed for each mapping using 

two discrete probability distribution-based methods DESeq (Anders and Huber 2010) and edgeR 

(Robinson et al. 2009).  Differentially expressed genes (P<0.05) were combined from each 

analysis and then combined from each mapping to generate a single gene list. These 

differentially expressed genes were then merged with Arabidopsis thaliana TAIR v9 identifiers. 

Fold changes from unique V. vinifera transcripts that mapped onto duplicate A. thaliana genes 

were averaged, and the remaining genes were placed into functional categories based on the 

Mapman visualization toolkit (Thimm et al. 2004). Modified pathways (Figures 5.6 - 5.8) were 

redrawn from the resulting data. This process was repeated by varying minimum total read 

counts (5 and 25) and this resulted in similar overall expression patterns; however, I only report 

gene expression that had a minimum count of 50. Our combined gene list produced 4038 DE 

genes of which 337 did not map to Arabidopsis gene IDs and 951 were duplicates. The V. 

vinifera transcript IDs (12x; Phytozome v.7) and their corresponding Arabidopsis IDs (TAIR 

v.9) are listed in Table 5.1S. 

Data Analysis 

Gas exchange parameters and δ13C values of tissues within the same leaf were blocked by 

machine (LI-6400) for field measurements and analyzed by repeated measures ANOVA (Proc 

Mixed 9.1, SAS Institute, Cary, NC). Elemental content was log transformed prior to analysis to 

correct for non-normality. Regression analyses were conducted by linear regression (Proc Reg, 

SAS Institute). A Fisher’s exact test (Proc Freq, SAS Institute) was used to assess if functional 

categories assigned by Mapman for transcripts were significantly different relative to the overall 

gall expression patterns. 
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RESULTS  

 Vitis species are hypostomal where stomata occur only on abaxial leaf sides (Rosen 1916, 

Sterling 1952, Pratt 1974, Witiak 2006); however, I observed gall formation by grape phylloxera 

created adaxial leaf-side stomata (Figure 5.1). These adaxial stomata occurred in a gradient of 

increasing density with proximity to the developing gall and parasite for both cultivated and wild 

grape (Table 5.1, Figure 5.1). Cross-sections of leaf and gall tissue indicated that these stomata 

open to intercellular air spaces within the palisade layer whereas abaxial stomata open to diffuse 

mesophyll typical of photosynthetic organisms (Figure 5.2).  

Assessments of gas exchange on field- and greenhouse-grown vines confirmed induced 

stomata actively assimilated CO2 but the degree of photosynthetic enhancement to the leaf 

depended on the background CO2 flux (i.e. signal:leaf area and number of insects respiring gall-1) 

and the degree of gall-induced leaf distortion. In field-grown plants net CO2 uptake per unit of 

leaf area declined with a single gall whereas respiration of the galled area increased relative to 

adjacent undamaged tissue (uptake: F = 6.89 df = 1,7 P = 0.03; respiration: F = 20.53 df = 1,6 P 

= 0.004 ; Figure 5.3). However, this includes non-photosynthetically active leaf material (approx. 

0.1cm2 as determined from the side of estimated cylindrical gall surface area) that, if accounted 

for, increased CO2 uptake of galled areas so they did not differ from non-galled tissue (F = 4.58 

df = 1,7 P = 0.07). Similarly, respiration per unit dry mass did not differ between galled and non-

galled leaf tissue (t = 0 df = 12, P = 0.9). Stomatal conductance (gs) and transpiration (E) of 

adaxial leaf-sides of galls relative to adjacent non-galled tissues were greater during the day (gs: 

F = 35.56 df = 1 P < 0.001; E: F = 41.28 df = 1,7 P < 0.001) but did not differ at night (gs: F = 
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3.75 df = 1,6 P = 0.1; E: F = 3.84 df = 1 P = 0.1) indicating the flux of water through adaxial 

stomata functions diurnally as in abaxial stomata. 

The number of insects within each gall did not relate to gall size (R2 = 0.15, F = 2.19, P = 

0.16) nor did gall size relate to the nightly adaxial CO2 flux (R2 = 0.04, F = 0.5, P = 0.5). 

However, the number of insects within each gall did relate to adaxial CO2 output (Figure 5.4). 

While the apparent efflux is minimal and within the error of the machine (± 0.3ppm), this 

relationship allowed me to estimate how much adaxial CO2 resulted from plant material (Figure 

5.5). 

The photosynthetic capacity of the leaf determined the ultimate uptake of 13CO2 (Figure 

5.5A) whereas respiration demands of gall tissue determined the translocation of fixed carbon 

(Figure 5.5B). Six hours after 13CO2 pulses were applied to the abaxial epidermis the δ13C value 

of leaf and gall increased but the δ13C value of insect did not increase relative to unlabeled 

tissues within the same leaf. Similarly adaxial application increased δ13C values in leaf where 

induced adaxial stomata occurred and in the gall but did not alter δ13C values in leaf tissue with 

no adaxial stomata (data not shown) or insect (Figure 5.5C). Labeling did not alter elemental 

content of the leaf but tissue types contained different levels of % C (F = 259, df = 3,9, P < 

0.001; leaf = 45.0 ± 0.4, gall = 43.7 ± 0.2 insect = 57.1 ± 0.4) and % N (F= 121, df = 3,9, P < 

0.001; leaf = 3.6 ± 0.2, gall = 2.4 ± 0.2 insect = 7.1 ± 0.1). 

The transcriptomic survey of gall function identified 2750 DE genes that were 

significantly represented in 15 functional categories including photosynthesis, fermentation, and 

secondary metabolism (Table 5.2). Light harvesting and carbon assimilation genes strongly 

decreased whereas sucrose mobilization, glycolysis, and fermentation transcripts generally 

increased in abundance in gall tissue (Figure 5.6). Transcripts encoding amino acid, oligopeptide, 
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and water transporters also increased (Table 5.3). Secondary metabolism transcripts generally 

increased for shikimate and phenylpropanoid biosynthetic pathways but generally decreased for 

non-mevalonate and terpenoid biosynthetic pathways with few exceptions: two terpenoid 

biosynthesis genes, geranyllinalool synthase and myrcene synthase, increased (Figure 5.7, Table 

5.4). Biotic stress related transcripts for jasmonic acid and ethylene signaling increased in galls 

as well as an overall gene expression pattern favoring SA degradation (Figure 5.8; Table 5.5). 

 

DISCUSSION 

Feeding by the insect-parasite phylloxera on grape induced adaxial stomata that 

assimilated carbon and facilitated photosynthate transport to local sinks. Isotopically labeled CO2 

entered leaf stomata relative to photosynthetic capacity and the respiratory output or sink 

demand of the gall drove transport of labeled assimilate to the nearest sink. This pathway links 

adaxial stomata to attenuation of sink strength of developing leaf-gall tissue and thereby 

enhanced parasite fitness. As a result, these stomata serve as an extended phenotype of 

phylloxera and provide the first evidence of functional insect-induced stomata in nature. Stomata 

display varying levels of phenotypic plasticity because they optimize the direct cost of enhancing 

fitness (i.e. carbon assimilation) while maintaining plant water status (i.e. transpiration); yet, 

abiotic factors largely drive stomatal patterning and development across plants (Woodward 1987, 

Casson and Hetherington 2010). Parasite-induced stomata link biotic and abiotic control over 

this morphology and indicate the galling habit may also regulate adaptive loci that genetically 

control stomata (Hancock et al. 2011).  

Gall formation distorts photosynthetic leaf tissues through aberrant cell growth and 

reduced photosynthesis at the leaf level in V. vinifera during previous examinations (Riling and 
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Steffan 1978, McCleod 1990). Although these studies did not specify how many galls were 

included in the gas cuvette, I also observed a reduction in CO2 uptake per unit leaf area when a 

single gall was examined. However, if the leaf area is corrected for the non-photosynthetic area 

where the gall encloses the insect, or if respiration from insects inhabiting the gall is negated 

from the CO2 flux, then a single gall does not reduce photosynthesis at the leaf level. This 

relationship might be expected as phylloxera coevolved with native grape species. To this end, 

leaves of native Vitis species show considerable intra and interspecific variability in the degree of 

gall distortion (Downie et al. 2000), making it likely that 1) grape phylloxera gall formation 

achieves densities that do not reduce the fecundity of native grapes, and 2) native grapes are not 

severely damaged by leaf galling. Like previous studies, this current one examined the leaf 

response of cultivated (non-native) V. vinifera, yet preliminary assessments of V. riparia show 

leaf galls do not reduce the operating efficiency of photosystem II under low or high light but 

tend to reduce non-photochemical quenching under high light (unpublished data). This might be 

expected given that formation of adaxial stomata can enhance cooling through transpiration and 

thereby facilitate heat dissipation in and around tissues that are deficient in many photosynthetic 

pigments (Blanchfield et al. 2006). Future photosynthetic surveys of galled native species may 

elucidate the degree of photosynthetic alteration grape phylloxera imposes. 

The transcriptome of mature grape gall tissue lends further support for parasite 

manipulation of host genes because of the large-scale reconfiguration of metabolism from an 

autotrophic to heterotrophic profile. We observed an overall reduction in gene expression related 

to photosynthesis, but increases in gene expression for sugar mobilization, glycolysis, and 

fermentation. Transcripts unique to heterotrophy strongly increased. For example, 

phosphoglycerate mutase that converts 3-phosphoglycerate to 2-phosphoglycerate and enolase 
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that converts 2phosphoglycerate to phosphoenolpyruvate both increased in expression relative to 

leaf tissue. The enhanced C transport to gall tissue is supported by an increase in the C:N ratio 

despite decreased C and N content in leaf gall tissue. Previous work found N content tended to 

be lower in gall tissue but depended on growth status; faster-growing cells contained higher N 

(Warick and Hildebrandt 1966). Because we sampled mature gall tissue, the growth cycle may 

be in the senescent stages. Regardless, we observed general up regulation of amino acid (AA) 

and oligopeptide transporters that is associated with amino acid-enrichment in leaf gall tissue 

(Warick and Hildebrandt 1966) and in roots (Kellow et al. 2004). This enrichment is expected in 

sink tissue where it is facilitated by AA-enriched phloem unloading. This finding is also 

consistent with the lower N content of leaf gall tissue because some amino acids decrease (e.g., 

glutamine, leucine) whereas other substantially increase in leaf gall tissue (e.g., alanine, 

methionine; Warick and Hildebrandt 1966).  

Interestingly we observed a strong up regulation of ethylene signaling and synthesis that 

may feedback to reduce N content. Aberrant cell growth yields clustered cells with little air space 

(Figure 5.2) that may lead to hypoxia, stimulate ethylene synthesis, and feedback to inhibit 

nitrate reductase.  Similar shifts in solutes and transcripts occur in Agrobacterium tumefaciens 

galls (Deeken et al. 2006), and indicate that N is not synthesized in the gall but imported via 

oligopeptide transporters (Cao et al. 2011), the transport of which is likely mediated by 

glycolysis- and PEP dephosphorylation-generated ATP. 

The shift in primary metabolism toward heterotrophic energy production is consistent 

well with the up regulation of transcripts for cell wall synthesis, and the pathway-specific 

regulation of secondary metabolism. Transcripts for enzymes that are involved in the 

biosynthesis of both sugars and phenolics such as laccases or those involved in lignin/lignan 
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biosynthesis increased and provide transcriptional support to development of the gall structure. 

Transcripts encoding shikimate and phenylpropanoid biosynthesis increased whereas non-

mevalonate and its downstream pathways decreased (Figure 5.7). This pattern may be expected 

if low oxygen environments within galls favor PEP production over the oxygen-dependent TCA 

cycle. Excess mobile sugars may also feed forward to affect synthesis pathways and increase 

metabolites such as anthocyanin (Belhadj et al. 2006). I also observed universal suppression in 

genes encoding photosynthetic pigments such as carotenoids and chlorophylls, which decrease 

under phylloxera attack (Blanchfield et al. 2006). Of the terpenes, geranyllinalool (GLL) 

synthase was strongly up regulated. This enzyme synthesizes GLL that composes up to 95% of 

terpenes found in other sink tissue such as flower and berry (Martin et al. 2009). 

The physiological and transcriptomic data suggest phylloxera is uniquely adapted to the 

gall lifestyle. Feeding from the parenchyma reduces the need for N-producing symbionts but 

requires C and N mobilization from the plant, which our transcriptional evidence and observed 

physiology indicate the leaf supplies. Beyond regulating nutritional status, however, phylloxera 

must also avoid eliciting defenses. Root feeding phylloxera may induce phenolic accumulation in 

damaged cells (Kellow et al. 2004) but often elicit the hypersensitive response (HR) on resistant 

tissues (Blank et al. 2009). Root galls also emit a range of volatiles including hexanal and hex-2-

enal – both LOX-derived volatiles – methyl salicylate, and several volatiles originating from 

phenylpropanoid and mevalonate biosynthesis (Lawo et al. 2011). Although we examined leaf 

galls, our data transcriptionally support the synthesis of these metabolites and suggest phylloxera 

regulate gene expression within the leaf well beyond carbon metabolism. 

Insect feeding elicits defenses specific to the feeding mechanism (piercing-sucking vs 

chewing) and plant host. Among the few galling insects investigated flies and moths do not 
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induce JA in monocots (Tooker and DeMoraes 2008). However, we observed a strong increase 

in gene expression for JA (LOX)-defense signaling and a similar up regulation in SA-carboxyl-

methytransferases that degrade SA into methylated SA, a mobile signal. Our data support an 

active JA defense signaling is active but to an unknown degree given the up regulation of several 

JAZ domain genes that encode for repressors of JA-regulated transcription (Santner 2007). JA up 

regulation also occurred concurrent with up regulation for the degradation of salicylic acid that, 

as the general defense response by Aphidoidea attack (Thaler et al 2010), suggests SA defenses 

are being suppressed. Necrotrophic pathogens (e.g., mildews) induce JA signaling (e.g., 

Hamiduzzaman et al. 2005, Trouvelot et al. 2008,) so it is possible that phylloxera are inducing 

defense signaling for protection, although foliar JA application decreased fecundity of root 

feeding forms (Omer et al. 2000). Methylated JA also induces stilbenes, anthocyanins, and 

piceids (Belhadj et al. 2006, Faurie et al. 2009) and increases SA in grape (Repka et al. 2004). 

The interactions of these hormones make it difficult to extend the parasite phenotype to include 

manipulation of defense signaling and metabolism, at least until additional data on the metabolite 

pools are known. Given that methylated SA compromises parasitoid seeking behavior (Snoeren 

et al. 2010) but enhances predatory mite detection ability (De Boer and Dicke 2004), the role SA 

in phylloxera-grape interactions is unknown. It is important to note that preliminary sequencing 

of the phylloxera transcriptome identified expression patterns for 35 total detoxification enzymes 

(unpublished data). This value represents the lowest number of detoxification genes across insect 

genomes to date (Schuler 2011) and suggests it is highly likely the insect’s defensive phenotype 

includes the leaf gall.  

To the best of our knowledge we described the first occurrence of functional, insect 

induced stomata in nature and linked their physiological and genomic regulation to enhancing 
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parasite fitness. Transcriptional data are not without limitations; however, our conservative 

approach to define and visualize DE genes in combination with extensive physiological and prior 

anecdotal evidence suggests this global reconfiguration is real. Previous studies indicate that 

photosynthesis declines when phylloxera parasitize grape leaves (Rilling and Steffan 1978, 

McLeod 1990), yet this may depend on the susceptibility of the leaf to gall formation and the 

density of attack. Our data suggest that a single gall did not reduce photosynthesis when we 

accounted for the area of non-photosynthetic tissue. To avoid selection pressure that favors 

enhancing defenses, we would expect photosynthetic suppression within a host to be minimized 

as occurs when plants tolerate herbivores (Agrawal 2000). The formation of stomata as an 

extended phenotype attenuated sink strength and thereby may reduce interspecific competition 

that occurs with natural sinks (Larson and Whitham 1997) or intraspecific competition that 

results from insects colonizing the same leaf (Compson et al. 2011). Because stomata constitute a 

morphology that is physiologically important to the host, this attenuation of phylloxera feeding 

optimizes the parasitic lifestyle as a unique example of coevolved compatibility.   
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TABLES 
Table 5.1. Stomatal index (SI; ratio of stomata to epidermal cells) for V. riparia and V. vinifera 
in proximity to gall and in non-galled leaf tissue of galled leaves. Stomatal density (SD; number 
of stomata mm-2) for non-galled areas of galled leaves was 115 ± 8 and 270 ± 56 for V. riparia 
and V. vinifera, respectively. 

 
 Distance from gall on adaxial side Non-galled portion of galled leaf 

 Species n 0-300 um 300-600 um 600-900 um Adaxial Abaxial 

V. riparia 5 3.3 ± 0.7 1.1 ± 0.5 0.4 ± 0.2 0 ± 0 11.0 ± 0.5  

V. vinifera 5 1.5 ± 0.3 0.4 ± 0.1 0.1 ± 0.1 0 ± 0 10.2 ± 0.7  
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Table 5.2. Total number of genes, number of differentially expressed (DE) genes, and the percent 
coverage for each functional category adopted from Mapman for categories that were 
significantly represented relative to the overall expression patterns.  

 
Categories Total genes DE genes % coverage 

Fermentation 12 6 50 

Secondary metabolism 210 99 47 

PS 136 63 46 

Cell wall 219 90 41 

Stress 410 151 37 

Miscellaneous 660 233 35 

Metal handling 44 15 34 

Hormone metabolism 272 91 33 

Transport 578 177 31 

Signaling 707 205 29 

Not assigned 4062 640 16 

RNA 1554 235 15 

Protein 1832 261 14 

DNA 320 38 12 

Mitochondrial electron 89 5 6 

transport / ATP synthesis  
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Table 5.3. Arabidopsis (TAIR v.9) identifier, % change in gall tissue relative to leaf, and 
annotation for transcripts with corresponding function in carbon metabolism (graphically 
depicted in Figure 5.6). 
 

TAIR v. 9 % change Annotation 

FIGURE 5.6A 

Light Reactions 

atcg00070 -67 PSII K protein  

atcg00680 -72 encodes for CP47, subunit of the photosystem II reaction center.  

atcg00280 -68 chloroplast gene encoding a CP43 subunit of the photosystem II reaction center.  

at1g76450 -55 oxygen-evolving complex-related  

at1g77090 -76 thylakoid lumenal 29.8 kDa protein  

at5g02120 -58 OHP (ONE HELIX PROTEIN)  

atcg00020 -77 Encodes chlorophyll binding protein D1  

at2g06520 -64 PSBX (photosystem II subunit X)  

at1g14150 -60 oxygen evolving enhancer 3 (PsbQ) family protein  

at2g30570 -54 PSBW (PHOTOSYSTEM II REACTION CENTER W)  

at4g28660 -61 PSB28 (PHOTOSYSTEM II REACTION CENTER PSB28 PROTEIN)  

at1g03600 -52 photosystem II family protein  

at3g01440 -65 oxygen evolving enhancer 3 (PsbQ) family protein  

atcg00270 -69 PSII D2 protein  

at5g51545 -63 LPA2 (low psii accumulation2)  

at5g54270 -55 LHCB3 (LIGHT-HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3)  

at2g34430 -70 LHB1B1 

at3g27690 -50 LHCB2.3 

at1g15820 -59 LHCB6 (LIGHT HARVESTING COMPLEX PSII SUBUNIT 6) 

atcg00590 -69 hypothetical protein  

atcg00540 -61 Encodes cytochrome f apoprotein 

atcg00480 -81 chloroplast-encoded gene for beta subunit of ATP synthase  
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Table 5.3. (continued) 

TAIR v. 9 % change Annotation 

atcg00140 -66 ATPase III subunit  

at4g09650 -66 ATPD (ATP SYNTHASE DELTA-SUBUNIT GENE) 

atcg00340 -67 Encodes the D1 subunit of photosystem I and II reaction centers.  

atcg00350 -70 Encodes psaA protein comprising the reaction center for photosystem I  

at2g46820 -66 PSI-P (PHOTOSYSTEM I P SUBUNIT) 

at1g03130 -67 PSAD-2 (photosystem I subunit D-2)  

at1g19150 -67 LHCA6 

at1g34000 -58 OHP2 (ONE-HELIX PROTEIN 2)  

at1g02180 677 ferredoxin-related  

at3g17670 -56 binding  

at1g20020 -61 FNR2 (FERREDOXIN-NADP(+)-OXIDOREDUCTASE 2) 

Calvin Cycle 

atcg00490 -83 large subunit of RUBISCO.  

at2g39730 -71 RCA (RUBISCO ACTIVASE) 

at1g14030 -63 ribulose-1,5 bisphosphate carboxylase oxygenase large subunit  

at1g73110 -54 ribulose bisphosphate carboxylase/oxygenase activase, putative  

at1g56190 -65 phosphoglycerate kinase, putative  

at1g16300 1246 GAPCP-2 

at3g26650 -78 GAPA (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE A  

at1g12900 -71  GAPA-2 (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE A  

at2g21330 -79 fructose-bisphosphate aldolase, putative  

at2g01140 136 fructose-bisphosphate aldolase, putative  

at4g26530 -56 fructose-bisphosphate aldolase, putative  

at3g54050 -67 fructose-1,6-bisphosphatase, putative  

at2g45290 362 transketolase, putative  

at3g55800 -70  SBPASE (sedoheptulose-bisphosphatase) 
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Table 5.3. (continued) 
 

TAIR v. 9 % change Annotation 

at3g04790 -63 ribose 5-phosphate isomerase-related  

Starch 

at5g19220 -75 APL1 (ADP GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT 1) 

at1g11720 -57 ATSS3 (starch synthase 3) 

at4g18240 -65 ATSS4 

at1g32900 -80 starch synthase, putative  

at4g17090 -70 CT-BMY (CHLOROPLAST BETA-AMYLASE) 

at4g00490 -58 BAM2 (BETA-AMYLASE 2) 

at4g15210 -55 BAM5 (BETA-AMYLASE 5) 

at1g69830 -68 AMY3 (ALPHA-AMYLASE-LIKE 3) 

at5g64860 123 DPE1 (DISPROPORTIONATING ENZYME) 

Transport 

at5g05820 221 phosphate translocator-related  

at5g46110 187 APE2 (ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT 2) 

at3g14410 -58 transporter-related  

at1g61800 305 GPT2 

FIGURE 5.6B 

Electron transport 

at4g05020 310 NDB2 (NAD(P)H dehydrogenase B2) 

at4g21490 148 NDB3 

at5g08740 -74 NDC1 (NAD(P)H dehydrogenase C1) 

at2g29990 2400 NDA2 (ALTERNATIVE NAD(P)H DEHYDROGENASE 2) 

at3g22370 1293 AOX1A (ALTERNATIVE OXIDASE 1A) 

TCA 

at5g58330 -59 malate dehydrogenase (NADP), chloroplast, putative  
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Table 5.3. (continued) 
 

TAIR v. 9 % change Annotation 

at2g05710 736 aconitate hydratase, cytoplasmic, putative  

at4g13430 98 IIL1 (ISOPROPYL MALATE ISOMERASE LARGE SUBUNIT 1);  

Mitochondrial transport 

at4g39460 335 SAMC1 (S-ADENOSYLMETHIONINE CARRIER 1) 

at4g28390 35547 AAC3 (ADP/ATP CARRIER 3) 

at5g12860 -83 DiT1 (dicarboxylate transporter 1) 

at5g24030 573 SLAH3 (SLAC1 HOMOLOGUE 3) 

at2g17270 -68 mitochondrial substrate carrier family protein  

Sugar transport 

at4g00370 -75 ANTR2; inorganic phosphate transmembrane transporter/  

at5g59250 -69 sugar transporter family protein  

at4g16480 -55 INT4 (INOSITOL TRANSPORTER 4);  

at4g35300 153 TMT2 (TONOPLAST MONOSACCHARIDE TRANSPORTER2);  

at1g71890 337 SUC5; carbohydrate transmembrane transporter 

at1g77210 376 sugar transporter, putative  

at4g36670 521 mannitol transporter, putative  

at5g18840 523 sugar transporter, putative  

Water transport 

at2g37170 240 PIP2B (PLASMA MEMBRANE INTRINSIC PROTEIN 2); water channel  

at2g45960 367 PIP1B (NAMED PLASMA MEMBRANE INTRINSIC PROTEIN 1B);  

at4g00430 155 PIP1;4 (PLASMA MEMBRANE INTRINSIC PROTEIN 1;4); water channel  

at3g54820 1025 PIP2;5 (PLASMA MEMBRANE INTRINSIC PROTEIN 2;5); water channel  

at4g01470 398 TIP1;3 (TONOPLAST INTRINSIC PROTEIN 1;3); urea transporter  

at3g16240 295 DELTA-TIP; ammonia transporter/ methylammonium transporter  

at2g25810 467 TIP4;1 (tonoplast intrinsic protein 4;1); water channel  
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Table 5.3. (continued) 
 

TAIR v. 9 % change Annotation 

at2g36830 340 GAMMA-TIP (GAMMA TONOPLAST INTRINSIC PROTEIN);  

at4g10380 126 NIP5;1; arsenite transmembrane transporter/ boron transporter/ water channel  

at1g80760 1242 NIP6;1 (NOD26-LIKE INTRINSIC PROTEIN 6;1);  

at4g18910 985 NIP1;2 (NOD26-LIKE INTRINSIC PROTEIN 1;2); arsenite transporter 

Hexose pool 

at3g59480 1049 pfkB-type carbohydrate kinase family protein  

at5g51830 139 pfkB-type carbohydrate kinase family protein  

at5g11110 -81 ATSPS2F (SUCROSE PHOSPHATE SYNTHASE 2F);  

at1g04920 -78 ATSPS3F (sucrose phosphate synthase 3F)  

at2g35840 285 sucrose-phosphatase 1 (SPP1)  

at1g73370 509 SUS6 (SUCROSE SYNTHASE 6); UDP-glycosyltransferase/ sucrose synthase  

at3g43190 1380 SUS4; UDP-glycosyltransferase/ sucrose synthase/ transferase,  

at4g34860 188 beta-fructofuranosidase, putative / invertase, saccharase, beta-fructosidase,  

at1g56560 -58 beta-fructofuranosidase, putative / invertase, saccharase, beta-fructosidase,  

at1g12240 1214 ATBETAFRUCT4; beta-fructofuranosidase/ hydrolase,  

at1g62660 2389 beta-fructosidase (BFRUCT3) / beta-fructofuranosidase / invertase, vacuolar  

at1g47840 201 HXK3 (HEXOKINASE 3); ATP binding / fructokinase/ glucokinase 

Glycolysis 

at3g04120 -50 GAPC1 (GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE) 

at2g24270 -65 ALDH11A3; 3-chloroallyl aldehyde dehydrogenase/ G3P dehydrogenase  

at2g36460 259 fructose-bisphosphate aldolase, putative  

at1g74030 631 enolase, putative  

at5g08570 253 pyruvate kinase, putative  

at3g52990 296 pyruvate kinase, putative  

at3g14940 -56 ATPPC3 (PHOSPHOENOLPYRUVATE CARBOXYLASE 3);  
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Table 5.3. (continued) 
 

TAIR v. 9 % change Annotation 

at1g22170 623 phosphoglycerate/bisphosphoglycerate mutase family protein  

at5g56350 264 pyruvate kinase, putative  

at3g22960 129 PKP-ALPHA; pyruvate kinase  

at5g61580 -54 PFK4 (PHOSPHOFRUCTOKINASE 4); 6-phosphofructokinase  

at5g22620 -63 phosphoglycerate/bisphosphoglycerate mutase family protein  

at4g37870 125 PCK1 (PHOSPHOENOLPYRUVATE CARBOXYKINASE 1); ATP binding  

Fermentation 

at4g17260 245 L-lactate dehydrogenase, putative  

at5g54960 -89 PDC2 (pyruvate decarboxylase-2); carboxy-lyase/  

at1g77120 399 ADH1 (ALCOHOL DEHYDROGENASE 1); alcohol dehydrogenase  

at3g48000 201 ALDH2B4 (ALDEHYDE DEHYDROGENASE 2B4);  

at1g23800 192 ALDH2B7; 3-chloroallyl aldehyde dehydrogenase  

at4g34240 -59 ALDH3I1 (ALDEHYDE DEHYDROGENASE 3 

Cell wall synthesis 

at1g12780 653 UGE1 (UDP-D-glucose/UDP-D-galactose 4-epimerase 1);  

at4g10960 398 UGE5 (UDP-D-glucose/UDP-D-galactose 4-epimerase 5);  

at3g29360 257 UDP-glucose 6-dehydrogenase, putative  

at5g15490 242 UDP-glucose 6-dehydrogenase, putative  

at1g02000 1597 GAE2 (UDP-D-GLUCURONATE 4-EPIMERASE 2);  

at1g08200 120 AXS2 (UDP-D-APIOSE/UDP-D-XYLOSE SYNTHASE 2);  

at3g53520 117 UXS1 (UDP-GLUCURONIC ACID DECARBOXYLASE 1);  

at4g26260 3780 MIOX4; inositol oxygenase  

at1g14520 155 MIOX1 (MYO-INISITOL OXYGENASE); inositol oxygenase/ oxidoreductase  

Raffinose synthesis 

at5g20250 111 DIN10 (DARK INDUCIBLE 10); hydrolase,  
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Table 5.3. (continued) 
 

TAIR v. 9 % change Annotation 

at3g57520 -88 AtSIP2 (Arabidopsis thaliana seed imbibition 2); hydrolase,  

at1g55740 1567 AtSIP1 (Arabidopsis thaliana seed imbibition 1); hydrolase,  

at4g01970 29154 AtSTS (Arabidopsis thaliana stachyose synthase); galactinol-raffinose  

at1g56600 204 AtGolS2 (Arabidopsis thaliana galactinol synthase 2); transferase,  

at2g47180 352 AtGolS1 (Arabidopsis thaliana galactinol synthase 1); transferase,  

at1g60470 -75 AtGolS4 (Arabidopsis thaliana galactinol synthase 4); transferase,  

Not graphically depicted 

Oligopeptide transport 

at5g19640 -94 proton-dependent oligopeptide transport (POT) family protein  

at1g68570 -74 proton-dependent oligopeptide transport (POT) family protein  

at1g69870 -73 proton-dependent oligopeptide transport (POT) family protein  

at4g16370 -67 ATOPT3 (OLIGOPEPTIDE TRANSPORTER); oligopeptide transporter  

at4g26590 -61 OPT5 (OLIGOPEPTIDE TRANSPORTER 5); oligopeptide transporter  

at3g54140 -53 PTR1 (PEPTIDE TRANSPORTER 1); dipeptide transporter 

at5g62680 -53 proton-dependent oligopeptide transport (POT) family protein  

at5g46050 172 PTR3 (PEPTIDE TRANSPORTER 3); dipeptide transporter  

at1g52190 184 proton-dependent oligopeptide transport (POT) family protein  

at1g72125 186 transporter  

at1g59740 192 proton-dependent oligopeptide transport (POT) family protein  

at3g45650 225 NAXT1 (NITRATE EXCRETION TRANSPORTER1);  

at5g14940 289 proton-dependent oligopeptide transport (POT) family protein  

at1g65730 410 YSL7 (YELLOW STRIPE LIKE 7); oligopeptide transporter  

at4g10770 483 OPT7 (OLIGOPEPTIDE TRANSPORTER 7); oligopeptide transporter  

at3g53960 952 proton-dependent oligopeptide transport (POT) family protein  

at1g22540 999 proton-dependent oligopeptide transport (POT) family protein  
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Table 5.3. (continued) 
 

TAIR v. 9 % change Annotation 

Amino acid transport 

at1g31830 -89 amino acid permease family protein  

at2g41190 -71 amino acid transporter family protein  

at5g40780 -61 LHT1; amino acid transmembrane transporter  

at1g08230 18 amino acid transporter family protein  

at5g41800 158 amino acid transporter family protein  

at2g42005 171 amino acid transporter family protein  

at3g28960 236 amino acid transporter family protein  

at5g09220 271 AAP2 (AMINO ACID PERMEASE 2); amino acid transmembrane transporter  

at5g23810 295 AAP7; amino acid transmembrane transporter  

at3g56200 340 amino acid transporter family protein  

at2g21050 402 amino acid permease, putative  

at1g47670 402 amino acid transporter family protein  

at2g39130 716 amino acid transporter family protein    
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Table 5.4. Arabidopsis (TAIR v.9) identifier, % change in gall tissue relative to leaf, and 
annotation for transcripts with corresponding function in secondary metabolism (graphically 
depicted in Figure 5.7). 
 

TAIR v. 9 % change Annotation 

FIGURE 5.7 

Mevalonate biosynthesis 

at5g47720 -93 acetyl-CoA C-acyltransferase, putative / 3-ketoacyl-CoA thiolase, putative  

at4g11820 128  MVA1; acetyl-CoA C-acetyltransferase/ hydroxymethylglutaryl-CoA synthase  

at1g76490 305  HMG1 (HYDROXY METHYLGLUTARYL COA REDUCTASE 1);  

Non-mevalonate biosynthesis 

at1g74470 -67 geranylgeranyl reductase  

at4g15560 -96  CLA1 (CLOROPLASTOS ALTERADOS 1); 1-deoxy-D-xylulose-5-P synthase  

at1g63970 -55  ISPF; 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase  

at4g34350 -63  HDR (4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE reductase   

at4g36810 -58  GGPS1 (GERANYLGERANYL PYROPHOSPHATE SYNTHASE 1);  

Terpenoid biosynthesis 

at5g23960 -74  TPS21 (TERPENE SYNTHASE 21); (-)-E-beta-caryophyllene synthase  

at1g61120 636  TPS04 (TERPENE SYNTHASE 04); (E,E)-geranyllinalool synthase  

at1g78950 -57 beta-amyrin synthase, putative  

at4g16740 0  ATTPS03; (E)-beta-ocimene synthase/ myrcene synthase  

at1g78510 -73  SPS1 (solanesyl diphosphate synthase 1); trans-octaprenyltranstransferase  

at3g25820 -50  ATTPS-CIN (terpene synthase-like sequence-1,8-cineole);  

Carotenoid biosynthesis 

at4g25700 -33  BETA-OHASE 1 (BETA-HYDROXYLASE 1); carotene beta-ring hydroxylase  

at1g57770 -62 amine oxidase family  

at5g49555 -73 amine oxidase-related  

at5g17230 -79 phytoene synthase (PSY) geranylgeranyl-diphosphate geranylgeranyl transferase  

at3g04870 -57  ZDS (ZETA-CAROTENE DESATURASE); carotene 7,8-desaturase  
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Table 5.4. (continued) 
 

TAIR v. 9 % change Annotation 

at3g10230 -61  LYC (LYCOPENE CYCLASE); lycopene beta cyclase  

at3g63520 -70  CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1);  

at2g21860 -57 violaxanthin de-epoxidase-related  

at1g08550 -62  NPQ1 (NON-PHOTOCHEMICAL QUENCHING 1); violaxanthin de-epoxidase  

Tocopherol biosynthesis 

at5g36160 115 aminotransferase-related  

at3g63410 -60  APG1 (ALBINO OR PALE GREEN MUTANT 1); methyltransferase  

at4g32770 -61  VTE1 (VITAMIN E DEFICIENT 1); tocopherol cyclase  

at1g64970 -69  G-TMT (GAMMA-TOCOPHEROL METHYLTRANSFERASE);  

Chlorophyll biosynthesis 

at1g58290 -69  HEMA1; glutamyl-tRNA reductase  

at1g69740 -53  HEMB1; catalytic/ metal ion binding / porphobilinogen synthase  

at5g08280 -54  HEMC (HYDROXYMETHYLBILANE SYNTHASE);  

at2g26540 -67  HEMD; uroporphyrinogen-III synthase  

at2g30390 -55  FC2 (FERROCHELATASE 2); ferrochelatase  

at5g45930 -57  CHLI2 (MAGNESIUM CHELATASE I2); ATPase/ magnesium chelatase  

at5g13630 -81  GUN5 (GENOMES UNCOUPLED 5); magnesium chelatase  

at3g56940 -69  CRD1 (COPPER RESPONSE DEFECT 1); DNA binding /  

at5g18660 -59  PCB2 (PALE-GREEN AND CHLOROPHYLL B REDUCED 2);  

at1g44446 -72  CH1 (CHLORINA 1); chlorophyllide a oxygenase  

at3g14110 -56  FLU (FLUORESCENT IN BLUE LIGHT); binding  

at3g59400 -60  GUN4; enzyme binding / tetrapyrrole binding  

Shikimate biosynthesis 

at5g34930 151 arogenate dehydrogenase  

at1g11790 822  ADT1 (arogenate dehydratase 1); arogenate dehydratase/ prephenate dehydratase  
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Table 5.4. (continued) 
 

TAIR v. 9 % change Annotation 

at5g22630 655  ADT5 (arogenate dehydratase 5); arogenate dehydratase/ prephenate dehydratase  

at1g22410 213 2-dehydro-3-deoxyphosphoheptonate aldolase,  

at2g21940 434 shikimate kinase, putative  

at2g16790 142 shikimate kinase family protein  

at2g35500 -54 shikimate kinase-related  

at3g06350 802  MEE32 (MATERNAL EFFECT EMBRYO ARREST 32); NADP, NADPH binding  

Phenylpropanoid biosynthesis 

at5g42830 143 transferase family protein  

at1g32100 667  PRR1 (PINORESINOL REDUCTASE 1); pinoresinol reductase  

at4g35160 -94 O-methyltransferase family 2 protein  

at2g33590 1114 cinnamoyl-CoA reductase family  

at5g01210 1184 transferase family protein  

at1g20510 321  OPCL1 (OPC-8:0 COA LIGASE1); 4-coumarate-CoA ligase  

at2g23910 852 cinnamoyl-CoA reductase-related  

Simple phenol biosynthesis 

at5g05390 248  LAC12 (laccase 12); laccase  

at5g48100 154  TT10 (TRANSPARENT TESTA 10); copper ion binding / laccase  

at2g46570 226  LAC6 (laccase 6); laccase  

at5g09360 587  LAC14 (laccase 14); laccase  

at5g60020 585  LAC17 (laccase 17); laccase  

at5g03260 1446  LAC11 (laccase 11); laccase  

at2g38080 456  IRX12 (IRREGULAR XYLEM 12); laccase  

Lignin and lignin biosynthesis 

at2g37040 810  pal1 (Phe ammonia lyase 1); phenylalanine ammonia-lyase  

at3g53260 562  PAL2; phenylalanine ammonia-lyase  
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Table 5.4. (continued) 
 

TAIR v. 9 % change Annotation 

at3g10340 441  PAL4 (Phenylalanine ammonia-lyase 4); ammonia ligase/ ammonia-lyase/ catalytic  

at2g30490 975  C4H (CINNAMATE-4-HYDROXYLASE); trans-cinnamate 4-monooxygenase  

at3g21240 313  4CL2 (4-COUMARATE:COA LIGASE 2); 4-coumarate-CoA ligase  

at1g51680 10807  4CL1 (4-COUMARATE:COA LIGASE 1); 4-coumarate-CoA ligase  

at3g62000 -57 O-methyltransferase family 3 protein  

at4g34050 174 caffeoyl-CoA 3-O-methyltransferase, putative  

at4g26220 240 caffeoyl-CoA 3-O-methyltransferase, putative  

at1g15950 154  CCR1 (CINNAMOYL COA REDUCTASE 1); cinnamoyl-CoA reductase  

at4g36220 399  FAH1 (FERULIC ACID 5-HYDROXYLASE 1); monooxygenase  

at5g54160 -4  ATOMT1 (O-METHYLTRANSFERASE 1);  

at4g37990 -66  ELI3-2 (ELICITOR-ACTIVATED GENE 3-2);  

at4g39330 -38  CAD9 (CINNAMYL ALCOHOL DEHYDROGENASE 9);  

at3g19450 1411  ATCAD4; cinnamyl-alcohol dehydrogenase  

at4g37970 5009  CAD6 (CINNAMYL ALCOHOL DEHYDROGENASE 6); binding /  

Chalcone biosynthesis 

at1g53520 -62 chalcone-flavanone isomerase-related  

at1g59960 -73 aldo/keto reductase, putative  

at5g05270 508 chalcone-flavanone isomerase family protein  

at5g13930 2352  TT4 (TRANSPARENT TESTA 4); naringenin-chalcone synthase  

at3g55120 354  TT5 (TRANSPARENT TESTA 5); chalcone isomerase  

Isoflavonoid biosynthesis 

at1g75290 3925 oxidoreductase, acting on NADH or NADPH  

at4g39230 347 isoflavone reductase, putative  

at1g75280 -98 isoflavone reductase, putative  

Flavonol biosynthesis 
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Table 5.4. (continued) 
 

TAIR v. 9 % change Annotation 

at1g49390 347 oxidoreductase, 2OG-Fe(II) oxygenase family protein  

at1g17020 -56  SRG1 (SENESCENCE-RELATED GENE 1); oxidoreductase,  

at4g25300 -92 oxidoreductase, 2OG-Fe(II) oxygenase family protein  

at3g21420 350 oxidoreductase, 2OG-Fe(II) oxygenase family protein  

at2g45400 -97  BEN1; binding / catalytic/ coenzyme binding / oxidoreductase,  

Anthocyanin biosynthesis 

at5g05600 455 oxidoreductase, 2OG-Fe(II) oxygenase family protein  

at2g22590 224 transferase, transferring glycosyl groups  

at4g22880 1978  LDOX (LEUCOANTHOCYANIDIN DIOXYGENASE); leucocyanidin oxygenase  

at5g49690 -80 UDP-glucoronosyl/UDP-glucosyl transferase family protein  

at1g03495 625 transferase/ transferase, transferring acyl groups other than amino-acyl groups  

Dihydroflavonol biosynthesis 

at5g24530 141  DMR6 (DOWNY MILDEW RESISTANT 6); oxidoreductase  

at4g01070 695  GT72B1; UDP-glucosyltransferase/ UDP-glycosyltransferase  

at5g54010 3311 glycosyltransferase family protein  

at4g12300 189  CYP706A4; electron carrier/ heme binding / iron ion binding /  

at5g53990 23002 glycosyltransferase family protein  

at5g42800 -99  DFR (DIHYDROFLAVONOL 4-REDUCTASE); dihydrokaempferol 4-reductase  

at1g61720 2414  BAN (BANYULS); oxidoreductase  

at4g35420 272 dihydroflavonol 4-reductase family / dihydrokaempferol 4-reductase family  

at3g51240 -54  F3H (FLAVANONE 3-HYDROXYLASE); naringenin 3-dioxygenase  

at5g07990 -42  TT7 (TRANSPARENT TESTA 7); flavonoid 3'-monooxygenase/ oxygen binding   
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Table 5.5. Arabidopsis (TAIR v.9) identifier, % change in gall tissue relative to leaf, and 
annotation for transcripts with corresponding function in biotic defense signaling (graphically 
depicted in Figure 5.8). 
 

TAIR v. 9 % change Annotation 

FIGURE 5.8 

Salicylic acid signaling 

at4g36470 218 S-adenosyl-L-methionine:carboxyl methyltransferase family protein  

at1g68040 -98 S-adenosyl-L-methionine:carboxyl methyltransferase family protein  

at3g11480 449  BSMT1 

at5g66430 507 S-adenosyl-L-methionine:carboxyl methyltransferase family protein  

at5g04370 299  NAMT1 

Jasmonic acid signaling 

at3g22400 -63  LOX5 

at3g45140 -72  LOX2 (LIPOXYGENASE 2) 

at1g67560 175 lipoxygenase family protein  

at3g25780 334  AOC3 (ALLENE OXIDE CYCLASE 3) 

at1g76690 225  OPR2  

at1g76680 727  OPR1 

not assigned 359 GSVIVT01015472001 3-ketoacyl-CoA synthase 11 

at1g19640 345  JMT (JASMONIC ACID CARBOXYL METHYLTRANSFERASE) 

not assigned 1962 GSVIVT01000967001 jasmonate-zim-domain protein 10 

not assigned 1131 GSVIVT01021514001 jasmonate-zim-domain protein 8 

not assigned 1988 GSVIVT01021516001 jasmonate-zim-domain protein 8 

not assigned 1848 GSVIVT01021518001 jasmonate-zim-domain protein 8 

Ethylene signaling 

at3g61510 1694  ACS1 (ACC SYNTHASE 1); 1-aminocyclopropane-1-carboxylate synthase  

at4g11280 353  ACS6 (ACC SYNTHASE 6) 

at2g19590 2111  ACO1 (ACC OXIDASE 1); 1-aminocyclopropane-1-carboxylate oxidase  
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Table 5.5. (continued) 
 

TAIR v. 9 % change Annotation 

at3g23150 221  ETR2 (ethylene response 2); ethylene binding / glycogen synthase kinase  

at3g23240 349  ERF1 (ETHYLENE RESPONSE FACTOR 1); DNA binding  

at4g17500 452  ATERF-1 (ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1  

at5g44210 574  ERF9 (ERF DOMAIN PROTEIN 9); DNA binding / transcription repressor  

at3g15210 143  ERF4 (ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 4);  

at5g25190 146 ethylene-responsive element-binding protein, putative  

at5g51190 866 AP2 domain-containing transcription factor, putative  

at4g31980 -96 unknown protein  

at4g20880 133 ethylene-responsive nuclear protein / ethylene-regulated protein (ERT2)  

at2g31730 3641 ethylene-responsive protein, putative  

at1g04380 2786 2-oxoglutarate-dependent dioxygenase, putative  

at1g04350 1215 2-oxoglutarate-dependent dioxygenase, putative   
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FIGURES 
Figure 5.1. Vitis leaves are hypostomatal having no stomata on the adaxial side (A) but gall 
formation generates stomata in increasing density at closer proximity to the gall (arrow; B). 
Abaxial tissue without or adjacent to galls have similar stomata patterning (Table 5.1). 
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Figure 5.2. Tissue cross-sections for V. vinifera ‘Frontenac’ tissue that is undamaged (A) and 
with developed gall tissue (B). Stomata (s) typically form on the abaxial leaf-side (A) but gall 
formation generates adaxial stomata. Bar = 50 µm. 
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Figure 5.3. Net CO2 uptake during the day (positive) and night (negative) of field-grown galled 
and non-galled adjacent leaf tissue. Fluxes include insect respiration. * denotes significant 
differences between tissue types at each time assessed. 
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Figure 5.4. Nighttime adaxial CO2 efflux related to the number of insects and eggs within the 
gall.   
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Figure 5.5. Post labeling δ13C values of leaf tissue related to abaxial or adaxial CO2 uptake (A), gall tissue related to abaxial or adaxial 
CO2 efflux (B), and all tissue from the corresponding leaf, gall, and insect (C). Dashed lines denotes the δ13C of unlabeled grape 
leaves (-24.7±0.8o/oo). CO2 flux from adaxial side was adjusted to remove insect respiration (see text). Graphical depiction of leaf sides 
and where label was applied (D).  
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Figure 5.6. Graphical representation of the transcriptional shift from autotrophic to heterotrophic 
metabolism within a gall cell (A) and for inter- and intracellular metabolic processes (glycolysis, 
fermentation, respiration; B). Each orange or blue box represents a unique differentially 
expressed transcript encoding a protein/enzyme.  Green boxes represent metabolites, yellow 
boxes represent metabolites involved in cell wall synthesis, and pink boxes represent processes. 
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Figure 5.7. Graphical representation of the transcriptional shift in secondary metabolism. Each 
orange or blue box represents a unique differentially expressed transcript encoding a 
protein/enzyme. Pink boxes represent major biosynthesis pathways/processes.  
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Figure 5.8. Graphical representation of the transcriptional shift in biotic defense signaling. Each 
orange or blue box represents a unique differentially expressed transcript encoding a 
protein/enzyme. Green boxes represent metabolites and enzymes whereas pink boxes represent 
processes.  
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Table 5.1S. Arabidopsis (TAIR v.9) identifier and its corresponding Vitis vinifera transcript ID 
from release 12x (Phytozome v.7). 
 

TAIR v. 9 Transcript ID TAIR v. 9 Transcript ID 

at1g02000 GSVIVT01031680001 

at1g02000 GSVIVT01018554001 

at1g02180 GSVIVT01018345001 

at1g03130 GSVIVT01017944001 

at1g03130 GSVIVT01001159001 

at1g03600 GSVIVT01030552001 

at1g04920 GSVIVT01020928001 

at1g08200 GSVIVT01036152001 

at1g08200 GSVIVT01015684001 

at1g08200 GSVIVT01031418001 

at1g08200 GSVIVT01038790001 

at1g11720 GSVIVT01012723001 

at1g11720 GSVIVT01004632001 

at1g12240 GSVIVT01006154001 

at1g12240 GSVIVT01001272001 

at1g12780 GSVIVT01019833001 

at1g12900 GSVIVT01032942001 

at1g14030 GSVIVT01003217001 

at1g14150 GSVIVT01019955001 

at1g14520 GSVIVT01016929001 

at1g14520 GSVIVT01016931001 

at1g15820 GSVIVT01029789001 

at1g16300 GSVIVT01036751001 

at1g19150 GSVIVT01015045001 

at1g20020 GSVIVT01018772001 

at1g20020 GSVIVT01009925001 

at1g22170 GSVIVT01008997001 

at1g23800 GSVIVT01020227001 

at1g23800 GSVIVT01032500001 

at1g23800 GSVIVT01000602001 

at1g32900 GSVIVT01027437001 

at1g32900 GSVIVT01018618001 

at1g32900 GSVIVT01019680001 

at1g32900 GSVIVT01028521001 

at1g34000 GSVIVT01034578001 

at1g47840 GSVIVT01009899001 

at1g55740 GSVIVT01014778001 

at1g56190 GSVIVT01036773001 

at1g56560 GSVIVT01031267001 

at1g56600 GSVIVT01031278001 

at1g56600 GSVIVT01031280001 

at1g56600 GSVIVT01034938001 

at1g56600 GSVIVT01031285001 

at1g56600 GSVIVT01017634001 

at1g56600 GSVIVT01031282001 

at1g60470 GSVIVT01013763001 

at1g61800 GSVIVT01012648001 

at1g61800 GSVIVT01001996001 

at1g62660 GSVIVT01018625001 

at1g69830 GSVIVT01032922001 
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Table 5.1S. (continued) 

TAIR v. 9 Transcript ID TAIR v. 9 Transcript ID

at1g69830 GSVIVT01020069001 

at1g71890 GSVIVT01034886001 

at1g73110 GSVIVT01016062001 

at1g73370 GSVIVT01035210001 

at1g73370 GSVIVT01029388001 

at1g74030 GSVIVT01008197001 

at1g76450 GSVIVT01013427001 

at1g77090 GSVIVT01010018001 

at1g77120 GSVIVT01026505001 

at1g77120 GSVIVT01026507001 

at1g77120 GSVIVT01010024001 

at1g77120 GSVIVT01026510001 

at1g77120 GSVIVT01026508001 

at1g77120 GSVIVT01010027001 

at1g77210 GSVIVT01015332001 

at1g80760 GSVIVT01034224001 

at2g01140 GSVIVT01011810001 

at2g05710 GSVIVT01030588001 

at2g05710 GSVIVT01037657001 

at2g06520 GSVIVT01035449001 

at2g17270 GSVIVT01022311001 

at2g17270 GSVIVT01023867001 

at2g21330 GSVIVT01018820001 

at2g24270 GSVIVT01023590001 

at2g24270 GSVIVT01035891001 

at2g25810 GSVIVT01035640001 

at2g29990 GSVIVT01005840001 

at2g30570 GSVIVT01000743001 

at2g30570 GSVIVT01036277001 

at2g34430 GSVIVT01028204001 

at2g34430 GSVIVT01021406001 

at2g34430 GSVIVT01021405001 

at2g35840 GSVIVT01029753001 

at2g35840 GSVIVT01022530001 

at2g36460 GSVIVT01033791001 

at2g36830 GSVIVT01025038001 

at2g36830 GSVIVT01033677001 

at2g37170 GSVIVT01016276001 

at2g37170 GSVIVT01025188001 

at2g39730 GSVIVT01024910001 

at2g39730 GSVIVT01016501001 

at2g39730 GSVIVT01034123001 

at2g45290 GSVIVT01027667001 

at2g45290 GSVIVT01018555001 

at2g45960 GSVIVT01023078001 

at2g45960 GSVIVT01024113001 

at2g46820 GSVIVT01027447001 

at2g47180 GSVIVT01028174001 

at2g47180 GSVIVT01028176001 

at2g47180 GSVIVT01031274001 

at2g47180 GSVIVT01031284001 

at3g01440 GSVIVT01014586001
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Table 5.1S. (continued) 

TAIR v. 9 Transcript ID TAIR v. 9 Transcript ID

at3g04120 GSVIVT01037165001 

at3g04120 GSVIVT01037176001 

at3g04120 GSVIVT01010328001 

at3g04120 GSVIVT01037170001 

at3g04790 GSVIVT01021828001 

at3g14410 GSVIVT01027148001 

at3g14940 GSVIVT01020705001 

at3g14940 GSVIVT01014206001 

at3g16240 GSVIVT01017042001 

at3g17670 GSVIVT01029370001 

at3g22370 GSVIVT01022814001 

at3g22960 GSVIVT01037043001 

at3g22960 GSVIVT01018079001 

at3g22960 GSVIVT01003140001 

at3g26650 GSVIVT01001128001 

at3g27690 GSVIVT01014074001 

at3g27690 GSVIVT01030053001 

at3g29360 GSVIVT01011507001 

at3g43190 GSVIVT01015018001 

at3g48000 GSVIVT01007784001 

at3g48000 GSVIVT01020224001 

at3g52990 GSVIVT01033605001 

at3g52990 GSVIVT01033599001 

at3g52990 GSVIVT01033747001 

at3g52990 GSVIVT01034684001 

at3g53520 GSVIVT01025597001 

at3g53520 GSVIVT01025596001 

at3g54050 GSVIVT01034034001 

at3g54050 GSVIVT01034037001 

at3g54820 GSVIVT01025681001 

at3g55800 GSVIVT01016373001 

at3g57520 GSVIVT01002784001 

at3g57520 GSVIVT01033305001 

at3g57520 GSVIVT01004662001 

at3g57520 GSVIVT01005620001 

at3g57520 GSVIVT01007597001 

at3g59480 GSVIVT01010790001 

at4g00370 GSVIVT01026946001 

at4g00430 GSVIVT01026944001 

at4g00430 GSVIVT01021012001 

at4g00430 GSVIVT01032861001 

at4g00430 GSVIVT01026942001 

at4g00490 GSVIVT01026922001 

at4g01470 GSVIVT01016615001 

at4g01970 GSVIVT01034980001 

at4g01970 GSVIVT01028143001 

at4g05020 GSVIVT01006114001 

at4g09650 GSVIVT01001595001 

at4g10380 GSVIVT01019729001 

at4g10960 GSVIVT01019547001 

at4g10960 GSVIVT01019545001 

at4g13430 GSVIVT01027922001 
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Table 5.1S. (continued) 

TAIR v. 9 Transcript ID TAIR v. 9 Transcript ID

at4g13430 GSVIVT01029978001 

at4g15210 GSVIVT01030642001 

at4g16480 GSVIVT01006723001 

at4g17090 GSVIVT01013272001 

at4g17260 GSVIVT01001303001 

at4g17260 GSVIVT01027640001 

at4g18240 GSVIVT01021404001 

at4g18240 GSVIVT01032233001 

at4g18910 GSVIVT01035178001 

at4g18910 GSVIVT01021274001 

at4g21490 GSVIVT01006508001 

at4g21490 GSVIVT01030007001 

at4g26260 GSVIVT01015266001 

at4g26530 GSVIVT01014837001 

at4g28390 GSVIVT01005827001 

at4g28390 GSVIVT01004268001 

at4g28390 GSVIVT01020575001 

at4g28660 GSVIVT01028434001 

at4g34240 GSVIVT01022356001 

at4g34860 GSVIVT01009904001 

at4g34860 GSVIVT01024105001 

at4g35300 GSVIVT01022309001 

at4g35300 GSVIVT01023868001 

at4g35300 GSVIVT01013414001 

at4g36670 GSVIVT01018988001 

at4g37870 GSVIVT01006166001 

at4g37870 GSVIVT01003710001 

at4g37870 GSVIVT01005596001 

at4g39460 GSVIVT01022254001 

at4g39460 GSVIVT01001423001 

at5g02120 GSVIVT01034129001 

at5g05820 GSVIVT01024817001 

at5g08570 GSVIVT01034344001 

at5g08740 GSVIVT01022367001 

at5g11110 GSVIVT01035882001 

at5g12860 GSVIVT01025268001 

at5g15490 GSVIVT01007910001 

at5g15490 GSVIVT01012198001 

at5g18840 GSVIVT01022027001 

at5g18840 GSVIVT01017845001 

at5g18840 GSVIVT01017836001 

at5g18840 GSVIVT01017844001 

at5g19220 GSVIVT01017911001 

at5g20250 GSVIVT01015589001 

at5g22620 GSVIVT01005201001 

at5g22620 GSVIVT01031393001 

at5g24030 GSVIVT01028789001 

at5g46110 GSVIVT01012209001 

at5g46110 GSVIVT01021114001 

at5g46110 GSVIVT01012210001 

at5g51545 GSVIVT01018558001 

at5g51830 GSVIVT01018449001 
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Table 5.1S. (continued) 

TAIR v. 9 Transcript ID TAIR v. 9 Transcript ID 

at5g51830 GSVIVT01027578001 

at5g54270 GSVIVT01003201001 

at5g54270 GSVIVT01014439001 

at5g54270 GSVIVT01003204001 

at5g54960 GSVIVT01021184001 

at5g54960 GSVIVT01004503001 

at5g54960 GSVIVT01005052001 

at5g54960 GSVIVT01003940001 

at5g56350 GSVIVT01033379001 

at5g56350 GSVIVT01025504001 

at5g58330 GSVIVT01016172001 

at5g59250 GSVIVT01024909001 

at5g61580 GSVIVT01013938001 

at5g64860 GSVIVT01022223001 

atcg00020 GSVIVT01016441001 

atcg00070 GSVIVT01037458001 

atcg00140 GSVIVT01021581001 

atcg00270 GSVIVT01010924001 

atcg00270 GSVIVT01029661001 

atcg00280 GSVIVT01003327001 

atcg00280 GSVIVT01027074001 

atcg00280 GSVIVT01006662001 

atcg00340 GSVIVT01009295001 

atcg00340 GSVIVT01017483001 

atcg00350 GSVIVT01017484001 

atcg00350 GSVIVT01023733001 

atcg00350 GSVIVT01014968001 

atcg00480 GSVIVT01029711001 

atcg00480 GSVIVT01006210001 

atcg00480 GSVIVT01033373001 

atcg00490 GSVIVT01013856001 

atcg00490 GSVIVT01022403001 

atcg00540 GSVIVT01013928001 

atcg00540 GSVIVT01015185001 

atcg00590 GSVIVT01006217001 

atcg00680 GSVIVT01028641001 

atcg00680 GSVIVT01006503001
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CHAPTER 6 

SUMMARY 

 The research presented in this dissertation examined the leaf-level alterations in 

photosynthesis resulting from insect herbivory. I established a conceptual framework that 

identified four mechanisms for how photosynthesis in the remaining leaf tissue changes after 

(and during) an herbivore attack. Feeding damage reduces photosynthesis in remaining tissues by 

severing vasculature (Aldea et al. 2006, Tang et al. 2006), altering sink/source relationships 

(Dorchin et al. 2006, Patankar et al. 2011), releasing autotoxic metabolites (Zangerl et al. 2002, 

Gog et al. 2005), and suppressing photosynthetic gene expression and function upon the 

induction of defenses (Bilgin et al. 2010). These mechanisms are not mutually exclusive, 

however, and likely interact in ways where the ultimate cost to fitness is yet to be determined. As 

a first step toward elucidating significant components of these interactions, I examined leaf-level 

responses under conditions of climate change we expect to see in the year 2050. Then I 

examined two mechanisms in-depth by coupling ecophysiology with genetics. My goal in this 

dissertation was to visualize the manipulation of photosynthesis by herbivores that reduces plant 

function, and ultimately impacts fitness and ecosystem productivity. 

 Leaf architecture determines the magnitude and duration of photosynthetic suppression in 

remaining tissue and, as a result, may predict the response of these tissues to herbivore attack. 

Palmate leaves with multiple first-order veins decrease stomatal conductance minimally, if at all, 

whereas pinnate leaves of single first-order veins decrease conductance greatly when first order 

veins are severed (Sack et al. 2008). When leaves are compared among the few studies that use 

imaging technologies (Aldea et al. 2006, Chapter 3) using a meta-analysis, leaf type tends to 

interact with herbivore damage type (Figure 6.1). Galling herbivory reduces Fq’/Fm’ in remaining 
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tisues more in palmate leaves (n = 3) than similar tissues in pinnate leaves (n = 8). Chewing 

herbivory damages Fq’/Fm’ in pinnate (n = 13) more than palmate leaves (n = 1), although more 

data points are necessary to resolve statistical effects. These data convey the importance of 

vascular redundancy to defoliation tolerance (Sack et al. 2008) and suppression of 

photosynthesis in remaining visibly unaltered tissues but indicate the need for additional data 

within and beyond temperate ecosystems. 

Recent surveys of different damage types indicate that gall formation alters leaf function 

with a great degree of species specificity. In eastern hardwood trees, Fq’/Fm’ decreases a great 

distance from the insect (Aldea et al. 2006) yet in aspen trees the propagated damage was 

minimal (Chapter 3). However, gall formation repeatedly reduced leaf temperature in adjacent 

tissues in these surveys, and again when I examined a local galling interaction in the phylloxera-

grape system (Figure 6.2). Accordingly then, how does the energy balance of a leaf change under 

gall attack and what does this mean for the plant-insect interaction? Few investigations have 

attempted to answer this question but the data indicate a strong link between insect fitness and 

the microclimate of the leaf (see Pincebourde et al. 2006). Given that stomatal aperture will 

decrease under increasing atmospheric [CO2] and reduce transpiration-driven nutrient flux to 

developing sinks, warmer leaf temperatures will interact with sink demand to alter the selective 

environment for galling insects, largely by altering competition among sinks.  

The interdependence of the four mechanisms discussed in Chapter 1 increases the 

difficulty in parsing out which mechanisms are driving alterations in remaining leaf tissue. One 

way I addressed this complexity was by coupling spatial assessments of whole leaf-level 

physiology with plants genetically suppressed in defense-signaling pathways. This simple design 

allowed me to capture the herbivore-induced photosynthetic suppression associated with defense 
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signaling that has been suggested by transcriptomic evidence (see Bilgin et al. 2010) yet not 

physiologically realized. To this end, my research identified that a ubiquitous defense response 

in plants suppresses electron transport in remaining leaf tissue. While sequential synthesis and 

mobilization of defense metabolites maintained the suppression in photosynthesis, the initial 

wound signal (JA) correlated strongest with suppressed electron transport. This suggests JA and 

the upstream lipoxygenase-mediated signaling components regulate light harvesting at the 

transcriptional and physiological level, and then degrees of autotoxicity (with nicotine) and 

resource trade-offs (to TPIs) accounted for the remaining costs to photosynthesis. Current 

research links circadian-regulation pathways to JA signaling (Goodspeed et al. 2012) and 

increasing [CO2] to suppression of JA-signaling (Zavala et al. 2008), and reinforces the link 

between photosynthesis and jasmonic acid signaling in plants. Future studies will sort out the 

exact mechanisms that couple the trade-offs between photosynthesis and defense signaling, 

which are likely highly conserved and ubiquitously interactive (e.g., map kinases). 

 Phloem feeding and galling insects induce sinks by unloading phloem either to their 

midguts or to induced tissue growth The genetic basis for insect manipulation of sink identity 

was largely anecdotal until we assesed the gall transcriptome in Chapter 5. Given the extensive 

literature on the phylloxera-grape system (see Granett et al. 2001), especially on chemical 

profiles within gall tissue (e.g., Kellow et al. 2004, Lawo et al. 2011), the transcriptomic data 

provide strong support for 150 years of descriptive biology. Phylloxerids, thus far, appear unique 

in their ability to induce stomata (see Owen 1891), and may use this morphology to enhance 

transpiratory efflux and ultimately nutrient transport. This level of insect control is largely 

confirmed in the transcriptomic profile of gal tissue where an insect-induced tissue has enhanced 

expression patterns of  plant nutrient transporters. The development of stomata evolved either 
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through the act of galling coopting a network that shares components of asymmetric cell division 

or altering the hormonal mileu and thereby stimulating the stomatal lineage by yet unidentified 

mechanisms. Given the data presented in Chapter 5, phylloxera likely induce gall formation 

through a complex mix of hormones similar to Rhodoccocus fascians (Stes et al. 2011) and may 

secrete a cysteine enriched signaling peptide to augment stomata development (Marshall et al. 

2011), although additional stage-specific data are necessary to elucidate these pathways. It will 

be interesting to pursue this interaction across Vitis species especially in the context of inter- and 

intraspecific competition within a leaf given the apparent manipulation by phylloxera of both 

sink and source dynamics.  
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FIGURES 
Figure 6.1. Box plots showing smallest and largest value, upper and lower quartile, and median 
percent change (when calculatable) in operating efficiency of photosystem II (Fq’/Fm’) in 
remaining leaf tissue attacked by chewing or galling insects when compared using a 
metaanalysis of species categorized as having either pinnate or palmate venation. Data are from 
Aldea et al. 2006 and Chapter 3. 
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Figure 6.2. Phylloxera parasitism of grape reduced leaf temperature a minimal distance (< 1 
mm); however the gall temperature was 0.5 ± 0.2 °C cooler than adjacent tissues (one sided 
paired t test, df = 5, P = 0.04). 
 




