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ABSTRACT 

 
Predation is a major ecological force affecting the abundance and species composition of 

natural communities. Predation from piscivorous fish is a strong driver of these patterns in 

freshwater aquatic communities. My research is directed at testing whether the introduction and 

augmentation of piscivore populations, as well as the alteration of littoral habitats, in Illinois 

lakes affects the consequences of predation for other ecologically and recreationally important 

species in these ecosystems. Some studies in lentic ecosystems have found large effects of 

introducing piscivores to systems that previously lacked them, as well as, to the artificial 

enhancement of piscivore populations.  While the evidence for such “trophic cascades” is 

plentiful, a large body of subsequent research has suggested that certain properties of lakes found 

in lower latitude systems in the central and southern United States may buffer these systems 

from cascading effects of piscivore manipulations. Therefore, there is a need to test the 

generality of cascading trophic interactions in these lower latitude lentic ecosystems.  Thus, in 

chapter 1 I tested for the effects of supplemental piscivore enhancements on the food webs of 

several Illinois lakes in a series of whole-lake experiments incorporating unmanipulated control 

systems.  I found that piscivore enhancements in Illinois lakes did not cause the predicted pelagic 

food web changes predicted by the traditional trophic cascade theory; however, there was a 

significant effect upon littoral macroinvertebrates.  This effect was driven by a reduction in the 

abundance of small bodied littoral fishes (primarily juvenile bluegills) after the initiation of 

supplemental largemouth bass stocking. My results highlight the importance of system-specific 

characteristics in determining the effects of piscivore enhancement measures. In addition to 

piscivore enhancement, there is a need to better understand the effects of introducing new 

piscivore species. Previous studies suggest that the introduction of new species can drive a nearly 
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limitless array of food web consequences, with the most common including direct and indirect 

interactions between top predators and changes in prey mortality rates.  In a controlled 

experimental design, I tested for changes in population characteristics including size structure, 

condition, and relative abundance of several ecologically and recreational important resident fish 

species in response to muskellunge introduction across several Illinois lakes.  I found that 

contrary to popular concerns, the dominant resident piscivore largemouth bass generally 

increased in relative abundance in response to muskellunge introduction. I also found few effects 

of introduced muskellunge on common prey species, with the exception of Pomoxis spp., which 

exhibited increases in size structure and/or decreases in relative abundance.  My results indicate 

that the current trend of muskellunge introduction in lower Midwestern lakes does not appear to 

be significantly harming resident populations; however, much future work remains in this area. 

Physical habitat can be an important determinant of the strength of piscivory on freshwater fish 

populations. Thus, I conducted a manipulative laboratory experiment to test for the effects of 

coarse woody habitat complexity on the piscivore-prey interaction between four species with 

contrasting predatory and anti-predatory behavioral traits.  I found that woody habitat in the form 

of deadfall conifer branches did not reduce total prey fish mortality rates inflicted by piscivores 

in experimental arenas. I did find an increase in mortality rate with increasing coarse woody 

habitat complexity for an obligate shoaling prey fish.  Furthermore, there were significant effects 

of coarse woody habitat complexity on foraging efficiency of piscivores, which may influence 

metabolic costs and therefore piscivore energy balance (as net energy for reproduction and 

growth is equal to energy consumption minus losses due to excretion, egestion and metabolism).  

Collectively, my results suggest that coarse woody habitat may influence piscivore-prey 
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interactions principally through behavioral mechanisms and subsequent effects of behavior on 

piscivore energy balance as defined above. 
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CHAPTER 1: INTRODUCTION 

 

 Biologists have long been interested in the suite of morphological and behavioral 

adaptations that have arisen in the balance between predators and prey over evolutionary time. It 

has been recognized that these adaptations (eg. crypsis, mechanical defenses) provide indirect 

evidence for the importance of predation as a major ecological force structuring animal 

communities (Morin 1999).  In addition to the indirect evidence, a large body of empirical 

research has shown strong effects of predation in a variety of ecosystems (reviewed by Sih et al. 

1985).  Predators influence prey communities principally by direct mortality of individuals, 

which can be a strong driver of prey population abundance and dynamics (see Brooks and 

Dodson 1965, Paine et al. 1974, Krebs et al. 1995, Gilg et al. 2006).  In addition to direct 

mortality, predation can have strong indirect effects on communities through changes in prey 

behavior and trophic interactions (Carpenter and Kitchell 1985, Lima 1998).  The effects of 

predation can have large consequences, such as determining community structure and 

influencing important ecosystem processes (Sih et al. 1985, Carpenter and Kitchell 1992).  

 Among the greatest effects of predation pressure on community structure are cascading 

trophic interactions or the “three trophic level effect” (Carpenter and Kitchell 1985, Hairston and 

Hairston 1993).  In a trophic cascade, the abundance of a consumer species or multiple species 

has effects on the abundance or biomass of organisms across more than one trophic level (often 

due to predation) and can eventually influence primary production (Hodgson 2005).  Examples 

of such cascading effects have been found in numerous ecosystems from freshwater lakes and 

streams to individual pitcher plants, the open ocean, and tropical forests (see Pace et al. 1999 and 

references therein).  While the occurrences of such cascading effects of predation have been 
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shown over a broad range of ecosystems, it does not imply that such interactions are common 

within those ecosystems (Polis and Strong 1996, Persson 1999).  Recent work on the prevalence 

of cascading interactions has shown that a number of food web and ecosystem properties can 

dampen the ability of predation pressure to cascade beyond the immediately impacted prey 

population (Polis et al. 2000).  

Properties of food webs thought to dampen cascading interactions include food web 

complexity, the development of predator resistant prey populations and predation refuges (Polis 

and Strong 1996, Pace et al. 1999).  The ability of predation to cause cascading changes in the 

biomass of lower trophic levels depends on the degree to which food webs are trophically 

stratified and the relative strength of these interactions (Paine 1980, Polis and Strong 1996, Polis 

et al. 2000).  As prey species diversity within a trophic level increases, the effects of predators 

produce more diffuse (and therefore weaker) effects on population abundances (Duffy et al. 

2007).  In addition, more diverse prey assemblages increase the probability that a less vulnerable 

prey species will become dominant and fill the void left by the more vulnerable prey (Elser et al. 

1991, Persson 1999).  These compensatory responses can occur when species possess chemical 

and physical defenses (toxins, large body sizes, spines) or flexible antipredatory behaviors such 

as use of structural refuges (Sih 1987).   

Structural refuges can have strong effects on predator prey dynamics and are generally 

considered a stabilizing force moderating the ability of predators to control prey populations 

(Krivan 1998, Arthur et al. 2005).  While a considerable body of empirical research on predator-

prey interactions has supported this generalization (see Savino and Stein 1982, Sanders et al. 

2008, Grabowski et al. 2008), there are several recent exceptions (Andruskiw et al. 2008, Mattila 

et al. 2008, Horinouchi et al. 2009, Kon et al. 2009).  Habitat structure typically affects predator 
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prey relationships by decreasing foraging efficiency of predators or altering prey distribution 

(Crowder and Cooper 1982, MacRae and Jackson 2001, Sass 2006b).  The ability of habitat 

structure to function as a predation refuge is however dependent on the behavioral flexibility of 

the species in question, which can be limited by phylogenetic and physiological constraints (Sih 

et al. 1987, Sih 1992).  Such behavioral constraints can cause differential responses to the 

presence of structural refuges and predation risk between species (see Ryer et al. 2004, Scharf et 

al. 2006, and Michel and Adams 2009) and may ultimately determine the strength of predation 

pressure on that species.    

In this thesis, I present three experiments investigating the ecology of piscivore-prey 

interactions in Illinois lake ecosystems. Predation has particularly strong effects in aquatic 

communities (Tonn and Magnuson 1982, Hairston and Hairston 1993, Macrae and Jackson 

2001) and is thought to be one of the primary factors shaping the structure of freshwater fish 

assemblages (Jackson et al. 2001, He and Kitchell 1990).  The traits that make predation a strong 

characteristic of aquatic communities also contributes to the strong trophic cascades found in 

some lake ecosystems (Carpenter et al. 1985, Polis and Strong 1996).  Illinois lakes however are 

significantly more trophically complex and nutrient rich than the northern lakes where strong 

trophic cascades have been documented. In addition, these lakes contain fish species with strong 

antipredatory behavior and the ability to escape piscivory through use of structural refuges or 

attainment of large body sizes (Hambright 1994, Stein et al. 1995).  In chapters one and two, I 

test for community and fishery effects of stocking two popular piscivorous sportfish into various 

Illinois lakes.  These experiments represent an opportunity to test the prevalence of piscivory 

related effects (including cascading effects) in lower latitude, eutrophic waters using replicated 

whole-lake manipulations.  Full-scale assessments of the influence of piscivores on communities 
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are relatively scarce in these types of systems (McQueen 1989). Combined with laboratory 

investigations of piscivore and prey behavior (chapter three), these experiments will add to my 

understanding of the strength and effects of piscivory in Illinois lakes.  

In chapter three, I present a laboratory experiment testing for species-specific behavioral 

responses of piscivores and prey to habitat complexity.  In lake ecosystems, complex littoral 

habitats in the form of aquatic macrophytes and coarse woody debris serve as important 

predation refuges for small bodied freshwater fish (Savino and Stein 1982, Werner and Hall 

1988, Hosn and Downing 1994).  Recent research has found that lake shoreline development 

results in loss of this habitat (Christensen et al. 1996, Scheuerell and Schindler 2004) and 

changes in lake littoral habitat complexity have been shown to have important consequences for 

piscivore-prey interactions in several studies (Schindler et al. 2000, Sass et al. 2006a, 

Ahrenstorff et al. 2009). While the existing studies have largely corroborated the theoretical 

predictions of refuges‟ influence on piscivore-prey dynamics, the survivorship of individual prey 

species in response to habitat change can vary due to the differing tactics used by piscivore 

species (Eklov and Diehl 1994) or the specific anti-predator behaviors of prey (Christensen and 

Persson 1993, Flynn and Ritz 1999, Ryer et al. 2004, Scharf et al. 2006).  In this study, I 

incorporate species with contrasting predatory tactics and antipredatory behaviors common to 

Illinois lakes, thus adding to my understanding of the influence of species-specific behavior in 

determining responses of piscivore-prey dynamics to habitat change.  Results of such laboratory 

experiments can provide hypotheses for larger field studies and/or provide potential mechanistic 

explanations for field patterns (Huston 1999).   
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CHAPTER 2: EXPLORING RESPONSES OF EUTROPHIC LAKES TO 

SUPPLEMENTAL LARGEMOUTH BASS INTRODUCTIONS: A FIELD 

TEST OF TROPHIC CASCADE THEORY 

 

ABSTRACT 

 I conducted a replicated whole lake experiment designed to test for the effects of 

supplemental piscivore introduction on the food webs of lakes dominated by one of two 

common, deep-bodied, planktivore species, either bluegill Lepomis macrochirus or gizzard shad 

Dorosoma cepedianum.  Thirteen Illinois lakes were monitored for a number of food web 

parameters for two years before (1998-1999) and 6 years after (2000-2005) initiation of annual 

largemouth bass introductions using a multiple before-after control-impact (MBACI) design. 

Lakes were classified into those with and without gizzard shad. A significant decrease in the 

relative abundance of juvenile planktivorous fish and an increase in total benthic 

macroinvertebrate density were observed in lakes without gizzard shad. However, no changes in 

adult planktivore populations, planktonic invertebrates, or water quality were detected in these 

same lakes. In contrast, lakes with gizzard shad exhibited no significant responses to piscivore 

manipulations. My results are consistent with the findings of previous experiments conducted 

over shorter time periods and smaller spatial scales, and suggest that food webs in lakes 

dominated by deep-bodied prey species respond weakly to piscivore enhancement measures.  In 

addition, my findings support the hypothesis that gizzard shad may weaken cascading food web 

responses in lake ecosystems. 
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INTRODUCTION 

Empirical research in freshwater environments has demonstrated that consumer control of 

resources is a common phenomenon in a number of habitats and over several major trophic 

linkages (Brooks and Dodson 1965; Benndorf et al. 1984; Hrbáček et al. 1986; Power 1990).  

Strong consumer control has the potential to alter the biomass of trophic levels across more than 

one link in a food chain (Hairston et al. 1960; Hrbáček et al. 1961).  In some cases, this 

phenomenon (known as a trophic cascade; Carpenter et al. 1985) can reach from apex predators 

down to primary producers and ultimately affect system-wide primary productivity (Carpenter et 

al. 1985; Power 1990).  Although the existence of community wide trophic cascades in some 

lakes is not disputed (Pace et al. 1999), trophic cascade models have been criticized by a number 

of researchers as an oversimplification of complex lake food web dynamics (Polis and Strong 

1996, Persson 1999, Wetzel 2001).  Trophic cascade and lake food web research has suggested 

that the effects of apex predators may weaken across trophic levels in some systems with 

consumer control being stronger at the top of the food web (McQueen et al. 1986; Leibold et al. 

1989; De Melo et al. 1992; Elser and Goldman 1991; Hambright 1994; Shurin et al. 2002).  

Owing to the conflicting outcomes of many published studies, identification of the specific lake 

ecosystems where trophic cascades are found has been identified as an important ecological 

question (Polis and Strong 1996).  Adding to the interest in trophic cascades has been the idea of 

using these processes as a tool in water quality management (reviewed by Reynolds 1994, 

Hanson et al. 1998; Drenner and Hambright 2002, and Sierp et al. 2009). 

Manipulation of fish communities as a tool in water quality management (called 

biomanipulation; Shapiro et al. 1975) is based on the theory that decreasing the abundance of 

planktivorous fish in lake ecosystems will lead to increases in the size and abundance of 
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herbivorous zooplankton (because fish are size selective predators on the zooplankton; Brooks 

and Dodson 1965), and cause decreases in algal biomass (because larger zooplankton are more 

efficient grazers) through a trophic cascade (Shapiro et al. 1975, Carpenter and Kitchell 1988, 

Carpenter et al. 1995).  Several authors have suggested using piscivorous fish introductions as a 

tool to decrease planktivore abundance (Shapiro et al. 1975; Carpenter et al. 1995) and the 

approach is often implicit in discussions of biomanipulation as a restoration technique (Drenner 

and Hambright 2002).  Biomanipulation theory has converged with basic trophic cascade ideas 

and lead to debate concerning the structure and dynamics of aquatic food webs (De Melo et al. 

1992 vs. Carpenter et al. 1992; Mazumder 1994; Polis et al. 2000; Jeppesen et al. 2003).  The 

merging of these two parallel lines of inquiry has resulted in a large body of research focused on 

the specific conditions that may limit the strength of consumer control and cascading interactions 

in lakes (Benndorf et al. 2002; Jeppesen et al. 2003).  

Productivity and planktivore assemblages have been found to affect the strength of 

consumer control and trophic cascades in lake ecosystems. For example, comparative studies in 

systems of differing nutrient status have found that more productive systems display a 

weakening of consumer control at the zooplankton-phytoplankton linkage due to the 

development of grazing resistant blue-green algae (Elser and Goldman 1991; Kazprzak et al. 

1999 but see Carpenter et al. 1995) or eutrophication induced changes in the zooplankton 

community structure (Haberman et al. 2007). In addition to the effects of productivity, a number 

of studies have found that cascading effects are reduced when systems contain planktivorous fish 

species able to outgrow piscivore gape sizes (Hambright et al. 1991; Hambright 1994; Nowlin et 

al. 2006).  A recent meta-analysis of piscivore manipulation studies indicated that top-down 

control of phytoplankton appeared to be related to body sizes of planktivores (Drenner and 
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Hambright 2002).  A comparative study across 66 eutrophic European lakes containing 

piscivores and deep-bodied prey species found no evidence for consumer control of prey fish 

density by piscivores (Mehner 2010).  Collectively, these studies suggest that lakes with 

increased nutrient loads and dominance of deep-bodied prey species should show weaker 

cascading interactions and therefore may be less responsive to biomanipulation measures.   

The presence of species able to regulate community structure through unique adaptations 

is another potential mechanism affecting the strength of consumer control and cascading 

interactions in lakes because such species can drive community wide patterns regardless of their 

position in the food web (Pimm 1988; Hunter and Price 1992).  In lower latitude lentic systems 

of North America, the gizzard shad (Dorosoma cepedianum) has been identified as such a 

“community regulator” (Stein et al. 1995).  Several aspects of gizzard shad biology allow them 

to dominate the food webs of eutrophic lakes and reservoirs.  For example, while gizzard shad 

have been shown to feed on and reduce zooplankton abundance when available (Dettmers and 

Stein 1996; Drenner et al. 1996; Schaus et al. 2002), their ability to meet their caloric needs by 

consuming detritus buffers them from the effects of low zooplankton abundance and allows them 

to maintain a high biomass in situations where other planktivore populations would become 

resource limited (Schaus et al. 2002; Vanni et al. 2005; Smoot and Findlay 2010). This reliance 

on detrital carbon may also decouple gizzard shad populations from zooplankton as it has been 

shown that populations of gizzard shad in some impoundments derive over 80% of their carbon 

from detrital sources (Higgins et al. 2006).  Furthermore gizzard shad presence reduces piscivore 

abundance through several mechanisms.  Gizzard shad can reduce piscivore abundance through 

increased competition for zooplankton during early life stages (Garvey and Stein 1998) and 

because detrital feeding transports nutrients to the water column increasing algal turbidity and 
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reducing piscivore foraging ability (Vanni et al. 2005).  Gizzard shad also indirectly reduce 

piscivore recruitment by reducing young of year abundance of other planktivores through 

competition and simultaneously quickly outgrowing piscivore gape limitation (Garvey and Stein 

1998). In this way gizzard shad reduce the availability of critical fish prey which reduces 

piscivore recruitment and combined with their own rapid growth and fecundity allows their 

populations to escape consumer control by piscivores (Stein 1995; Garvey and Stein 1998b). 

Collectively these aspects of gizzard shad biology may limit the strength of trophic cascades in 

systems where gizzard shad are present and limit the utility of biomanipulation measures in these 

systems (Stein 1995; Dettmers and Stein 1996).   

In North America, a latitudinal gradient in productivity of lentic systems exists with 

relatively nutrient poor natural lakes in the north and nutrient rich impoundments in the south 

(Thornton 1990). Lower latitude lakes often contain fewer small-bodied planktivore species than 

northern lakes, as well as, increased abundance of less vulnerable, large bodied prey species 

capable of outgrowing the gape limitation of piscivores (O‟Brien 1990).  In addition, gizzard 

shad often dominate fish assemblages in lakes in the midwestern and southeastern United States 

(Johnson et al. 1988).  Therefore, lower latitude lentic systems in North America contain at least 

two of the major ecosystem properties thought to limit cascading trophic interactions and 

biomanipulation effectiveness. These systems are also prime candidates for restoration due to 

issues with eutrophication brought on by agricultural land use and relatively large watershed – 

lake area ratios (Thornton 1990).  Therefore, there exists a need for experiments to test for the 

relative sensitivity of lower latitude lentic ecosystems dominated by deep-bodied planktivorous 

fishes to piscivore manipulations.   
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Although some studies have attempted to investigate the cascading effects of piscivores 

in lower latitude systems, these studies have been based on correlational evidence, conducted at 

small spatial scales (ponds, mesocosms), over short time periods (< 2 years), or in unreplicated 

studies of single lakes (e.g. Drenner et al. 2002).  These issues of scale and duration are 

problematic and several researchers have argued that true tests of food web theory can only be 

accomplished via whole-lake manipulations covering significant time periods (Carpenter et al. 

1995, Ramcharan et al. 1995; Schindler et al. 1998). In this study, I present such an experiment 

carried out through the use of long-term (6 year) introductions of largemouth bass Micropterus 

salmoides.  My objectives were to test for the potential of piscivore manipulations to affect the 

food webs of eutrophic lakes common in the lower Midwestern United States and to compare the 

responses of lakes dominated by two common, deep-bodied, prey species, bluegill Lepomis 

machrochirus and gizzard shad Dorosoma cepedianum.  I hypothesized that due to the 

differences in food web characteristics of Illinois lakes relative to systems where strong trophic 

cascades have been found, piscivore enhancements in Illinois lakes would not induce a classic 

trophic cascade from piscivores to phytoplankton as predicted by the trophic cascade hypothesis.  

Furthermore, I hypothesized that if any changes in food web characteristics were found due to 

piscivore enhancement, these effects would be strongest in systems lacking gizzard shad due to 

the unique effects of this species on food web dynamics. 

 

MATERIALS AND METHODS 

Study Sites and experimental design 

 To test for the effects of supplemental largemouth bass introductions, I sampled 13 

Illinois lakes over an 8-year period from 1998 – 2005 (Figure 1.1). Lakes were grouped into 
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those with (n = 7) and without (n = 6) gizzard shad and a subset of these were then selected to 

serve as reference systems (Table 1.1).  Lakes were monitored for a number of parameters  

including relative abundance (number collected per hour of electrofishing) of piscivore and prey 

fish, zooplankton and invertebrate predator concentrations, benthic macroinvertebrate densities, 

total phosphorous concentration, secchi disk depth and water column chlorophyll a 

concentrations for two years before (1998-1999) and 6 years after (2000-2005) initiation of 

annual largemouth bass introductions. Data were collected to test a number of a priori 

predictions of trophic cascade and biomanipulation theory and included all major trophic levels.  

With the exception of gizzard shad and smallmouth bass (Table 1.2), the fish communities of 

these impoundments were similar with largemouth bass and bluegill being the most abundant 

species. Other potential piscivorous, zooplanktivorous, or benthivorous fishes were present at 

low densities (less than 6% of total electrofishing catch; Table 1.2). Lakes were less than 12 m 

deep and ranged in surface area from 16-218 ha. All study lakes were eutrophic to 

hypereutrophic, with average summer total phosphorous concentrations ranging from 45-463 

ug/L (Table 1.1).   

 

Largemouth bass introductions and evaluation 

Beginning in the late summer (August) of 1999 and each year thereafter, treatment lakes 

received introductions of juvenile largemouth bass at a target size of 100 mm (mean ± SE = 102  

± 1 mm TL) and target density of 60 fish per hectare (59 ± 2 fish/ha).  Fish were given pelvic fin 

clips (left pelvic, right pelvic, or both pelvic fins, alternating by year) to allow for future 

identification and to assist in aging. Each spring (April-May) following stocking (2000-2005), 

the relative contribution of stocked fish to each year class (age-1 and age-2 spring) was 
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determined in each lake via three-phase AC boat mounted electrofishing conducted on 2-3 dates 

per lake.  Three fixed one-half hour transects were sampled in each lake on each date. All 

largemouth bass were netted and measured for total length. Scales were collected from all fin 

clipped individuals to assist in assigning age classes to stocked fish.  To assign ages to wild fish, 

largemouth bass length frequencies were analyzed using RMIX an “R”-based version of the 

“MIX” software (MacDonald and Pitcher 1979; MacDonald and Green 1988). Data from each 

spring sample were analyzed separately with initial inputs of cohort mean lengths estimated from 

length frequency plots.  Distributions were fit by allowing the standard deviation of the oldest 

cohort to vary to accommodate the larger variation in this group (Du 2002). This method of 

length frequency analysis has been found to effectively assign ages to early largemouth bass 

cohorts (ages 0-2) in Illinois lakes relative to ages based on scale samples (Riedel and Bailey 

1999).  From this data, I calculated the proportional contribution of stocked fish to each age-1 

and age-2 cohort for each lake and year (2000-2005).  I chose age-1 and age-2 spring proportions 

as my measure of stocked fish contribution as previous studies have found that largemouth bass 

year class strength is established by this point (Kramer and Smith 1962; Parkos and Wahl 2011) 

and to avoid issues with fin regeneration in older fish which would make estimates unreliable.   

 

Data collection 

 

 I monitored fish community responses through standardized sampling in all study lakes 

each fall (September – October) from 1998-2005.  Adult fish populations were assessed using 

three-phase AC boat mounted electrofishing, whereas juvenile fish were sampled using a 9.2 m 

bag seine pulled along the shoreline at six fixed transects. Electrofishing samples consisted of 

sampling three one-half hour fixed shoreline transects in each lake on each of 2-3 dates to ensure 



18 

 

standardized sampling effort among lakes and within lakes over time. All fish collected were 

identified to species, counted, and a subsample of each species (up to 50 individuals) was 

measured for total length.  I then calculated electrofishing catch per unit effort (CPUE; number 

per hour) of adult and density (number per square meter in seine samples) of juvenile 

planktivorous and benthivorous fishes for each lake and year.  

 Zooplankton and water quality samples were collected once per month from June-August 

of each year.  Zooplankton was sampled at four fixed offshore and four fixed inshore sites while 

water quality variables including secchi disk depth, chlorophyll a, and total phosphorous were 

measured from a single fixed site at the deepest point in each lake. This zooplankton and water 

quality sampling regime was similar in both spatial coverage and sampling frequency to many 

previous studies examining the effects of fish manipulations on zooplankton populations in lakes 

(Shapiro and Wright 1984; Mittelbach et al. 1995; Drenner et al. 2000; Lathrop et al. 2002; 

Findlay et al. 2005; Potthoff et al. 2008). Zooplankton samples were collected using vertical 

tows of a 0.5-m-diameter, 64-µm-mesh zooplankton net taken from the thermocline (or lake 

bottom if not stratified) to the surface, preserved in a 4% Lugol‟s solution and taken back to the 

laboratory for processing.  Samples were processed by adjusting to a constant volume (100 ml) 

and subsampled by 1 ml (0.01) aliquot. Whole subsamples were counted until reaching 200 

animals from the major taxonomic groups or until 10% of the total sample was counted (Welker 

et al. 1994).  A subset of each zooplankton taxa (n = 30) was measured for total length (not 

including spines or appendages) with the aid of a digitizing pad.  Water samples for chlorophyll-

a and total phosphorous analysis were collected using an integrated water sampler lowered to 

twice the Secchi depth (to sample the entire photic zone).  Chlorophyll-a was measured in a 

flourometer with an acetone extraction technique (Welshmeyer 1994).  Total phosphorous was 
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analyzed according to Wetzel and Likens (1991) and was quantified using a spectrophotometer.  

Each water quality parameter was summarized for analysis by calculating a mean value for each 

lake and year for the summer period (June-August).  I summarized zooplankton data by pooling 

samples from all sites within each lake to calculate lake-wide average concentrations of 

invertebrate predators (Chaoboridae), as well as, Daphnia species and average cladoceran length 

over the summer period (June-August) each year.  This approach of summarizing data as 

monthly values for each lake and comparing seasonal averages is consistent with several 

previous biomanipulation studies (Drenner et al. 2002; Findlay et a. 2005; Potthoff et al. 2008).  

 Benthic invertebrates were sampled in June and August in each lake and year at six fixed 

littoral sites with a modified stovepipe sampler (Merritt and Cummins 1996; 20 cm diameter). 

Samples were passed through a 250-µm-sieve bucket and preserved in a 70% ethanol and rose 

bengal solution.  Samples were returned to the laboratory where all organisms were identified to 

family and enumerated. I calculated average total macroinvertebrate density, as well as, the 

density of the two most common invertebrate families (Chironomidae and Ceratopogonidae) for 

each lake and year.   

   

Statistical analyses 

 Comparisons before and after largemouth bass introductions were made between 

treatment and reference lakes using a replicated before-after control-impact (MBACI) design 

suited to a repeated measures analysis of variance  (Underwood 1994, Kough and Mapstone 

1995). The MBACI design was chosen because it is among the most scientifically defensible for 

detecting disturbances in natural systems (Downes et al. 2002).  Separate analyses were 

performed for lakes that contained gizzard shad and those that did not. These analyses were 
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conducted by fitting a linear mixed model with main factors of treatment (Trt; with introductions 

or without), and before-after (Period), with lakes (L) nested in Trt and years (Y) nested in Period.  

The full ANOVA model contained the terms Trt, Period, Trt x Period, L(Trt), L(Trt) x Period, 

Y(Period), Y(Period) x Trt, and  L(Trt) x Y(Period). The three terms containing lake (L) were 

considered random (because lakes were a random effect in the model) and the remaining terms 

were considered fixed. The Y(BA) term was considered the repeated factor and L(Trt) was the 

subject.  The Trt*Period interaction measures any change associated with the onset of the 

largemouth bass introductions (Kough and Mapstone 1995). All errors were tested for normality 

(Shapiro-Wilk test) and were natural log transformed where necessary to meet the assumptions 

of ANOVA.  Serial correlation among years (nonzero covariance) due to repeated measurements 

was accounted for by fitting various covariance structures to the data (SAS
®
; PROC MIXED) 

and choosing the structure that generated the best model based on the corrected Akaike‟s 

information criterion (AICC; Littell et al. 2000).  All analyses were conducted using the SAS
®

 

system (Statistical Analysis System Version 9.0; SAS Institute, Cary, North Carolina).  The 

MBACI model tests two null hypotheses specific to either changes in mean values or changes in 

temporal trends coincident with piscivore introductions (Kough and Mapstone 1995).  The first 

null hypothesis was that there was no change in the average value of the parameter of interest in 

lakes receiving piscivore introductions that was not also present in control systems given the 

background patterns of variation among the systems.  This hypothesis was tested with the 

Trt*Period interaction from the statistical model and indicates a longer term or cumulative effect 

of piscivore introduction.  The second null hypothesis was that there were no changes in the 

temporal trends in the parameter of interest between lakes receiving piscivore introductions and 

control systems relative to the background patterns of variation among the systems. This 
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hypothesis was tested with the Y(Period) x Trt term from the statistical model and is sensitive to 

more immediate changes in the time profiles (Kough and Mapstone 1995). In cases of significant 

Y(Period) x Trt interactions we used linear contrasts between control and treatment systems to 

aid in interpreting the temporal differences between groups of lakes. Significance was declared at 

an alphaequal to or less than 0.05.  

 

RESULTS 

Largemouth bass introductions 

 In lakes with and without gizzard shad, largemouth bass stocking did not greatly 

contribute to the age 1 and 2 year classes.  In lakes that did not contain gizzard shad, the average 

annual proportional contribution of introduced largemouth bass ranged from 7-34% of age-1 fish 

and 4-17% of age-2 fish (Figure 2.2A).  Across years, stocked fish made up an average of 

19(±5)% of age-1, and 10(±4)% of age-2 largemouth bass collected in spring surveys from these 

lakes.  

 In lakes containing gizzard shad, the average annual proportional contribution of 

introduced largemouth bass ranged from 13-40% of age-1 fish and 8-33% of age-2 fish (Figure 

2.2B).  Across years, stocked fish comprised an average of 31(±5)% of age-1 and 23(±5)% of 

age-2 largemouth bass collected in spring surveys from these lakes.   

 

Fish populations 

There was a significant decrease in the average fall density of juvenile littoral prey fish in 

lakes receiving piscivore introductions for lakes that did not contain gizzard shad (R-ANOVA, 

Trt x Period; F1, 4 = 8.5; P = 0.04; Figure 2.3A).  Examination of the time series (Figure 2.3B) 
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revealed that the decline in littoral fish density in fall seine samples was not due to any abrupt 

change in temporal patterns (Y(Period) x Trt; F6,24 = 1.20; P =0.35).  In contrast to juvenile prey, 

there was no significant change in the relative abundance of adult prey fish collected via fall 

electrofishing in response to largemouth bass introductions (Trt x Period; F1,4 = 0.01; P = 0.93; 

Figure 2.3C).  This lack of change was also evident in the time series (Y(Period) x Trt; F6,24 = 

0.56; P = 0.53; Figure 2.3D).   

There was no significant change in average juvenile littoral prey fish density in lakes 

containing gizzard shad (Trt x Period; F1,5 = 0.11; P = 0.75; Figure 2.4A).  The lack of change in 

lakes containing shad was also evident in the time series (Y(Period) x Trt; F6,30 = 1.17; P = 

0.35). Figure 2.4B).  Similarly, there was no effect of largemouth bass introduction on the 

average relative abundance of adult prey fish collected via fall electrofishing in lakes containing 

gizzard shad (F1,4= 1.07; P = 0.36; Figure 2.4C) and the lack of a change was also apparent in 

the time series (Y(Period) x Trt; F6,30 = 0.72; P = 0.64; Figure 2.4D).  

 

Zooplankton  

 In lakes where gizzard shad were absent, there was no significant change in the average 

concentration of Daphnia over the summer period in response to largemouth bass introduction 

(Trt x Period; F1,4 = 2.12; P = 0.22; Figure 2.5A).  Examination of the time series indicated an 

abrupt increase in Daphnia concentration following initial introduction that was not present in 

the control lakes (Y(Period) x Trt; F6,24 = 2.53 P =0.05).  Daphnia concentration in treatment 

systems increased in the second year (2001) after initiation of largemouth bass introductions 

relative to controls (linear contrast; F1,24 = 7.8; P = 0.01); however, densities returned to their 

previous levels in the later years of the study (linear contrasts for all other years before and after 
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introduction; P > 0.05; Figure 2.5B).  Similarly, there was no significant change in the average 

size of cladoceran zooplankton in response to largemouth bass introduction in lakes which did 

not contain gizzard shad (Trt x Period; F1,4= 3.95; P = 0.12; Figure 2.5C).  The time series 

indicated no change in this metric in treatment lakes over the duration of the study in these 

gizzard shad free lakes (Y(Period) x Trt; F6,24 = 0.52; 0.78; Figure 2.5D).  There was also no 

significant change in the average (Trt x Period; F1,4 = 0.64; P = 0.47;) or temporal trend 

(Y(Period) x Trt; F6,24 = 1.67; P = 0.17) in the concentration of invertebrate predators of the 

family Chaoboridae after initiation of largemouth bass introductions (Figure 2.5E-F).   

 In gizzard shad lakes, I found no significant change in average Daphnia concentration 

after initiation of largemouth bass introduction (Trt x Period; F1,5 = 0.16; P = 0.71; Figure 2.6A). 

There was a significant change in the temporal trends in Daphnia concentration after initiation of 

piscivore introduction (Y(Period) x Trt, F6,30  = 2.94; P = 0.02), however this change was 

unlikely to be a result of piscivore introduction as it was due to changes in both control and 

treatment lakes (Figure 2.6B).  Daphnia concentration was greater in treatment lakes in 2001 

(linear contrast; F6,30  = 7.29; P = 0.02) and was greater in control lakes in 2005 (linear contrast; 

F6,30  = 4.19; P = 0.05). There was no significant change in average cladoceran length in response 

to piscivore introduction (Trt x Period; F1,5 = 0.75; P = 0.43; Figure 2.6C).  Similarly, there were 

no significant changes in temporal patterns in cladoceran length (Y(Period) x Trt; F6,30  = 0.73; P 

= 0.63; Figure 2.6D).   Both the average (Trt x Period; F1,5 = 0.61; P = 0.47) and temporal trends 

(Y(Period) x Trt; F6,30  = 1.28; P = 0.30) in concentration of invertebrate predators of the family 

Chaoboridae also were unchanged after the initiation of largemouth bass introductions (Figure 

2.6E-F).    
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Benthic invertebrates  

 A significant increase in average total macroinvertebrate density was observed in 

response to largemouth bass introduction in lakes without gizzard shad (Trt x Period; F1,4 = 

11.47; P = 0.03; Figure 2.7A).  The time series indicated an increase in total macroinvertebrate 

density in treatment lakes in two of the five years after beginning piscivore introductions 

(Y(Period) x Trt; F6,24 = 2.68; P = 0.03). Total macroinvertebrate density was significantly 

greater in lakes receiving largemouth bass introductions than control lakes in 2000 (linear 

contrast; F1,24 = 4.26; P = 0.05) and 2005 (linear contrast; F1,24 = 5.18; P = 0.03).  Similar to the 

results for Daphnia concentration, total macroinvertebrate densities appeared to return to pre-

manipulation levels in the later years of the study (linear contrasts all other years before and after 

piscivore introduction; all P > 0.05; Figure 2.7B).  Individual macroinvertebrate groups were 

variable and there were no significant changes for average densities (Trt x Period; F1,4 = 5.35; P 

= 0.08) or temporal trends (Y(Period) x Trt; F6,24 = 0.81; P = 0.57) for choronomidae (Figure 

2.7C-D) or ceratopogonidae (Trt x Period; F1,4 = 2.89; P = 0.16; Y(Period) x Trt; F6,24 = 1.54; P 

= 0.21; Figure 2.7E-F).   

 Lakes containing gizzard shad exhibited no change in average total benthic invertebrate 

density after initiation of supplemental largemouth bass introduction (Trt x Period; F1,5 = 3.33; P 

= 0.13; Figure 2.8A) and this lack of response was reflected in the time series (Y(Period) x Trt; 

F6,30  = 1.83; P = 0.13; Figure 2.8B).  Individual groups showed a significant effect on average 

density (Trt x Period; F1,5 = 8.08; P = 0.04) and temporal patterns (Y(Period) x Trt; F6,30  = 2.81; 

P = 0.03) in Chironomidae (Figure 2.8C-D); however, these effects were due to an increase in 

the control lakes that did not occur in the treatment lakes (Figure 2.8D).  Chironomid density was 

significantly greater in treatment lakes (linear contrast; F1,30 = 11.13, P < 0.01) one year (1999) 
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prior to initiation of largemouth bass introductions whereas chironomid density increased in the 

following year (2000) in control systems being significantly higher than in treatment lakes 

(linear contrast; F1,30 = 9.04; P = <0.01). Chironomid densities were not significantly different 

between treatment and control lakes in any other year of the study (linear contrasts; all P > 0.05).  

As with total invertebrate density, there was no significant change in the average density (Trt x 

Period; F = 0.36; P = 0.56) or temporal trends (Y(Period) x Trt; F6,30  = 1.10; P = 0.39) of 

Ceratopogonidae in response to largemouth bass introduction in lakes containing gizzard shad 

(Figures 2.8E-F).   

 

Nutrients and water quality 

 In lakes without gizzard shad there were no changes in summer means (Table 2.3) or 

annual trends for chlorophyll-a (Y(Period) x Trt; F6,24 = 1.04; P = 0.42), Secchi disk transparency 

(Y(Period) x Trt; F6,24 = 0.22; P = 0.97 ), or total phosphorous concentration (Y(Period) x Trt; 

F6,24 = 1.36 ; P = 0.28) in response to largemouth bass introduction.  No change was mirrored in 

lakes containing gizzard shad where there was also no significant difference in summer means 

(Table 2.3) or annual trends for chlorophyll-a (Y(Period) x Trt; F6,30  = 0.98; P = 0.46), Secchi 

disk transparency (Y(Period) x Trt; F6,30  = 1.79; P = 0.14),  and total phosphorous concentration 

(Y(Period) x Trt; F6,30  = 0.77; P = 0.60), in response to largemouth bass introduction.  

  

DISCUSSION 

 Biomanipulation studies focused on lower latitude lakes in the Midwestern and Southern 

United States have been relatively few and my study represents a rare example of incorporating 

lake-scale replication. In addition, my study represents a unique account of a piscivore 
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enhancement experiment as the majority of previous biomanipulation studies involving piscivore 

enhancements have been confounded by concurrent planktivorous fish removal efforts or other 

simultaneous management actions (29 of 33 published studies; reviewed by Drenner and 

Hambright 2002).  Although these features of my study create a novel approach, they likewise 

create difficulties in relating my results to other studies.  A specific problem is placing my rate of 

piscivore introduction and consequent level of piscivore enhancement in the context of previous 

efforts as few studies have examined the community wide effects of piscivore enhancements in 

unconfounded studies (see Drenner and Hambright 2002, Lathrop et al. 2002). In addition, there 

is no current consensus on the level of piscivore enhancement required to trigger cascading 

trophic effects outside of a general statement that efforts should be “strong” (McQueen et al. 

1990; Carpenter and Kitchell 1992; Seda 2000) and previous efforts toward determining 

empirical relationships have been unsuccessful (De Melo et al. 1992).  In one of the only North 

American piscivore enhancement studies conducted to date (and one of the few non-confounded 

biomanipulation by piscivore enhancement studies), 270,000 walleye (~50 mm) and 170,000 

northern pike fingerlings (~250 mm) were introduced into Lake Mendota, Wisconsin (3985 ha) 

over a period of 12 years at densities ranging from 120-162 fish/ha during the first 3 years and at 

much lower densities thereafter. Although the stocking rate was greater than in my study during 

the initial years, the average annual density of fish introduced over the duration of the study was 

very similar to my study averaging roughly 65 fish/ha (Lathrop et al. 2002).  Published 

largemouth bass population density estimates in central Illinois impoundments average around 

100 fish per hectare (Diana and Wahl 2009) and therefore my stocking density represents a 

number approximating 60% of the density of the standing population of a typical lake in this 

region. Despite this rate of stocking my estimates of contributions of introduced largemouth bass 
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to year class strength were not extremely large which could have influenced the degree to which 

the food webs of recipient lakes were affected. I believe my study is an appropriate first step in 

evaluating whole-system responses of lower latitude lakes to piscivore enhancements, but 

acknowledge that higher stocking rates or increased survival of introduced piscivores may show 

stronger effects and encourage consideration of such effects when making future decisions for 

research and management. It should be noted however that my rate of piscivore introduction was 

on par with one of the most intensive North American efforts to date and that densities in excess 

of these likely may be beyond the capacities of most lake managers.  Furthermore, I assumed in 

my evaluation of piscivore enhancement that the proportional contribution of stocked fish was 

additive.  While this assumption appears to be consistent with numerous previous studies of 

piscivore introductions (Brabrand and Faafeng 1993; Benndorf 1995; Berg et al. 1997; Lathrop 

et al. 2002) it should be noted that any compensatory increases in mortality rates of native fish 

would weaken the effects of such introductions and future studies should account for such 

possibilities.  

 In lakes without gizzard shad, I found that increased piscivory significantly reduced 

small bodied and juvenile fish density, but had little effect on adult populations of prey fish that 

were comprised mostly of bluegill.  In experimental ponds, the presence of largemouth bass 

increased the size distribution of bluegill but caused only a slight (15%) decrease in bluegill 

biomass compared to piscivore free ponds (Hambright et al. 1986).  Response of bluegill to 

largemouth bass predation is consistent with other studies focused on the effects of gape-limited 

piscivores foraging on deep-bodied prey species (Tonn et al. 1992; Hambright et al. 1994; 

Findlay et al. 2000).  Combined, these results suggest that adult bluegill populations are resistant 

to consumer control by largemouth bass.  Bluegills are known to outgrow the gape limitation of 
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largemouth bass (Lawrence 1957; Werner et al. 1988) and are commonly abundant in systems 

containing largemouth bass throughout the midwestern and southern United States. Due to their 

ability to outgrow the gape limitation of piscivores and associated behavioral and physical 

antipredator adaptations (Howick and O‟Brien 1983), bluegills may limit the effectiveness of 

biomanipulation via piscivore enhancement.  I cannot however rule out the possibility that higher 

densities or increased survival of introduced piscivores may have greater effects on bluegill 

populations.  

 The lack of fish community responses to piscivore enhancement in lakes dominated by 

gizzard shad is not surprising given the known effects of this species on reservoir food webs. 

Stein et al. (1995) argued that gizzard shad populations are not subject to consumer control by 

piscivores due to their high fecundity (Parrish and Vondracek 1989) and their ability to quickly 

outgrow the gape of piscivores (Hambright et al. 1991). These hypotheses have been supported 

by several studies using bioenergetics-based assessments of gizzard shad consumption by 

resident and introduced piscivore populations (Carline et al. 1984; Johnson et al. 1988; Dettmers 

et al. 1998). Additionally, a lack of cascading effects in gizzard shad dominated systems may be 

due to a lack of planktivory by juvenile and adult gizzard shad.  While larval gizzard shad are 

obligate planktivores, juveniles and adults feed on zooplankton, detritus and phytoplankton and 

may facultatively switch between these resources depending on their relative abundance and 

nutritional value (Vanni and Headworth 2004; Higgins et al. 2006).  Therefore one may not 

expect zooplankton to respond to changes in gizzard shad density if the bulk of the juvenile and 

adult populations are not feeding on zooplankton as has been found in some systems (Higgins et 

al. 2006).  Future studies examining effects of piscivore enhancements on gizzard shad 
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dominated systems should include a detailed analysis of gizzard shad diets which may aid in 

determining mechanism for the presence or absence of effects on the pelagic food web.  

Increases in littoral benthic invertebrate density and a lack of change in zooplankton 

communities are consistent with previous studies on foraging behavior of bluegill (the dominant 

planktivore/benthivore) in lower latitude lentic ecosystems. In contrast to northern natural lakes 

where adult bluegill inhabit pelagic areas and forage extensively on zooplankton (Werner et al. 

1983; Werner and Hall 1988), several studies of bluegill diet and feeding behavior in reservoirs 

and natural lakes in the lower Midwest and southeastern United States have found that bluegills 

rely primarily on littoral macroinvertebrates independent of size or population density (Schramm 

and Jirka 1989; Dewey et al. 1997; Olson et al. 2003).  These patterns in bluegill foraging may 

explain my observed effects on littoral benthic invertebrates and lack of effects on zooplankton.  

While our study cannot directly address why changes in bluegill density more strongly affected 

macroinvertebrates as compared to zooplankton, bluegills are known to facultatively shift their 

foraging from zooplankton to macroinvertebrates contingent upon spatial variation in predation 

risk as well as the relative profitability of prey items (Werner et al. 1981).  Differences between 

lower latitude waterbodies and northern lakes such as changes in water clarity, littoral habitat 

and/or the relative profitability of zooplankton vs macroinvertebrates with increasing nutrient 

levels may alter these key determinants of foraging decisions and should be investigated further.  

Bluegill are known to structure invertebrate communities through predation (Hambright et al. 

1986) and several previous studies from North America and Europe have documented taxonomic 

increases in benthic invertebrate communities following reductions in the density of bluegill 

(Pierce and Hinrichs 1997) and other benthivorous fish (Svensson et al. 1999; Leppa et al 2003; 

Potthoff et al. 2008).  My results suggest that littoral benthic invertebrate populations in several 
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Illinois lakes are subject to control by mid-level fish consumers and the strength of these effects 

may be influenced by piscivore abundance.   

As recently demonstrated by Vadeboncoeur and Vander Zanden (2002) the focus of lake 

food web research (including the trophic cascade hypothesis) has been largely skewed toward a 

focus on pelagic processes which may limit the understanding of effects of ecosystem scale 

perturbations such as enhanced piscivory.  While top down effects of fish on macroinvertebrates 

and responses in benthic algal biomass in streams has received some attention (Steinman 1996; 

Herbst et al. 2009) the links between these organisms in lakes is not well studied (Lowe 1996). 

Links between littoral benthic invertebrate populations, secondary fish consumers and piscivores 

may have important implications for understanding food web dynamics in Illinois 

impoundments.  For example, my results which suggest that zoobenthos are under consumer 

control by secondary fish consumers in these lakes combined with the knowledge that these 

invertebrates can exhibit consumer control of benthic algae (Steinman 1996) suggests that 

changes in piscivore abundance in these systems may have the potential to influence benthic 

primary productivity.  It is however unclear to what degree altered benthic algal biomass and 

production may influence lake-scale properties such as total primary production. For example, 

both theory and empirical evidence suggests that the relative contribution of benthic primary 

production to total primary production is reduced in more eutrophic lakes such as those found in 

Illinois (Vadeboncoeur et al. 2001; Wetzel 2001).  In contrast, the contribution of benthic 

primary production is greater in smaller and shallower lake ecosystems (Lodge et al. 1998) and 

given that the majority of lakes (including those in the lower latitudes of North America) are 

relatively small and shallow (Wetzel 2001) we might predict a relatively important role of 

benthic primary producers in these systems.  My results reinforce that the current lack of 
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understanding of links between piscivores, fish prey, benthic invertebrates and benthic primary 

production combined with the growing evidence of the importance of benthic energy pathways 

in lake food webs  suggests these areas as an important topic of future study and should be 

considered in future studies of lake food web dynamics.  

In lakes without gizzard shad, I found abrupt increases in benthic macroinvertebrates and 

Daphnia concentrations during early years after piscivore manipulation with densities returning 

to pre-manipulation levels in later years.  Such initial responses have been attributed to 

compensatory mechanisms and have led others to argue for longer periods of observation such as 

ours in attempts to elucidate the role of piscivores in determining aquatic food web structure 

(Benndorf 1990; De Melo 1992; Ramcharan et al. 1995).  Numerous studies have supported the 

role of compensatory mechanisms and time scales in determining outcomes of biomanipulation 

experiments (Benndorf et al. 1988; Drenner et al. 2002).  For example, in one of the classic 

large-scale biomanipulation experiments conducted in North America, a large decline in 

planktivorous fish (cisco;Coregonus artedi) led to short-term increases in large daphnids and 

declines in algal biomass (Vanni et al. 1990).  These effects on algae dissipated over subsequent 

years due to compensatory changes in phytoplankton community structure and later recruitment 

of planktivores (yellow perch; Perca flavescens) despite the development of large piscivore 

populations (Rudstam et al. 1993; Lathrop et al. 2002).  Similar compensatory effects were found 

during a long-term biomanipulation experiment in the Bautzen Reservoir, Germany (Benndorf et 

al. 1988), as well as, in comparative studies in systems with and without piscivores (Power 1990; 

Ramcharan et al. 1995).  Compensatory mechanisms may be an important factor determining the 

long-term success of biomanipulation measures and the influence of piscivores in structuring 

aquatic food webs.   
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 While the lack of response of Illinois lakes to piscivore enhancement is not surprising 

based on many previous studies, it is now clear that longer term studies at greater spatial scales 

revealed no major differences from previous studies.  Additionally, my results reinforce recent 

work that has demonstrated the importance of benthic and littoral energy pathways in lake food 

webs (Vander Zanden and Vadeboncoeur 2002; Vadeboncoeur et al. 2002).  Limitations of my 

study design should be considered in the interpretations of my findings, as ecosystem-scale 

experiments often suffer from a combination of high between system and inter-annual variability 

in dependent variables (Carpenter 1989). These realities may have hampered my ability to detect 

changes in some key parameters. For example, several of my water quality variables (chlorophyll 

a, total phosphorous concentration) were highly variable between lakes resulting in large 

standard errors which approximated the magnitudes of mean values. My findings suggest that 

future such experiments will require larger numbers of replicates and/or more rigorous spatial 

and temporal sampling regimes to increase the power to detect changes in water quality 

parameters.  Future studies should focus on identifying the importance of alternative mechanisms 

which may prevent piscivore effects from cascading  down to the phytoplankton such as 

eutrophication- induced changes in phytoplankton or zooplankton community structure, 

compensatory responses such as increases in invertebrate predation or low survival of introduced 

predators.   
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Table 2.1. Select characteristics of 13 Illinois lakes monitored annually from 1998-2005 to test for the effects of supplemental largemouth bass (Micropterus 

salmoides) introductions (stocked) and controls (reference).  Information for most parameters taken from Douglas et al. (1993) with the exception of Total 

Phosphorous (TP) which represents seasonal means (June-August), from data collected during 1998 sampling. 
 

Max Surface Watershed Residence Conductivity

Waterbody Treatment Depth (m) Area (ha) Area (ha) Time (yrs) (umhos) TP(ug/L)

Gizzard Shad Absent

Sterling Reference 4.37 28.6 72 8.5 625 45

Lincoln Trail Reference 10.67 56.9 850 0.9 225 95

Walnut Point Reference 9.75 21.8 103 0.3 383 147

Murphysboro Stocked 9.75 58.1 697 1.0 192 93

Le-aqua-na Stocked 6.71 17.3 1012 0.3 467 157

Kakusha Stocked 3.66 22.9 550 0.3 426 200

Gizzard Shad Present

Dolan Reference 5.18 70.0 431 0.5 265 463

Paradise Reference 4.88 57.6 4686 0.1 454 181

Lake of the Woods Reference 6.70 10.5 206 0.6 481 105

Wood Stocked 5.79 11.2 465 0.2 420 166

Charleston Stocked 4.88 132.2 560 0.002 362 150

Homer Stocked 7.32 32.7 3755 0.1 N/A 384

Pierce Stocked 10.06 61.2 8150 0.4 462 243
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Table 2.2. Proportional species composition of electrofishing samples from13 Illinois lakes from pre-manipulation sampling during fall of 1998.  Numbers in 

parenthesis represent raw counts for each species.  Species codes are as follows: LMB–largemouth bass (Micropterus salmoides), BLG–bluegill (Lepomis 

macrochirus), GZS–gizzard shad (Dorosoma cepedianum), SMB–smallmouth bass (Micropterus dolomieu), BLC–black crappie (Pomoxis nigromaculatus), 

RSF-redear sunfish (Lepomis microlophus ), GSF–green sunfish (Lepomis cyanellus), WAM–warmouth sunfish (Lepomis gulosus), CAP–common carp 

(Cyprinus carpio). 

LMB BLG GZS SMB BLC RSF GSF WAM CAP

0.42(8) 0.32(6) - 0.26(5) - - - - -

0.31(57) 0.57(106) - - 0.02(4) 0.04(8) - 0.06(11) -

0.12(23) 0.80(150) - - - 0.04(7) 0.04(7) - -

0.27(56) 0.73(153) - - - - - - -

0.12(41) 0.88(310) - - - - - - -

0.24(92) 0.76(293) - - - - - - -

0.09(46) 0.68(340) 0.23(116) - - - - - -

0.03(20) 0.30(240) 0.67(534) - - - - - <0.01(6)

0.01(4) 0.76(233) 0.23(69) - - - - - -

0.16(46) 0.75(221) 0.09(27) - - - - - -

0.07(51) 0.48(354) 0.42(309) - - - - - 0.03(18)

0.20(28) 0.68(97) 0.12(17) - - - - - -

0.12(24) 0.65(130) 0.11(22) 0.12(24) - - - - -

Proportion of Total Catch 

Pierce

Kakusha

Le-aqua-na

Murphysboro

Wood

Charleston

Homer

Paradise

Lake of the Woods

Walnut Point

Lincoln Trail

Dolan

Lake

Sterling
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Table 2.3. Multiple Before-After, Control-Impact (MBACI) analysis to test for changes in water quality variables 

following supplemental introduction of largemouth bass. Mean difference for each parameter between treatment and 

control lakes are shown before and after introduction.  P-values are for the Trt x Period term from the repeated 

measures ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

Parameter Impact - Control Impact - Control

Difference Before Difference After df F P

Gizzard Shad Not Present

Chlorophyll a (ug/L) 9.78(±11.41) 15.56(±9.49) 1,4 0.28 0.63

Secchi Depth (m) -1.12(±0.39) -0.91(±0.33) 1,4 0.84 0.41

Total P (ug/L) 70.09(±132.31) 172.53(±118.67) 1,4 0.36 0.58

Gizzard Shad Present

Chlorophyll a (ug/L) -11.79(±10.62) -6.78(±8.29) 1,5 0.49 0.52

Secchi Depth (m) 0.02(±0.19) 0.04(±0.17) 1,5 0.04 0.84

Total P (ug/L) -41.88(±47.84) -14.26(±37.59) 1,5 0.36 0.57
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Figure 2.1. Locations of 13 Illinois lakes monitored from 1998-2005.  Systems where gizzard shad 

(Dorosoma cepedianum) were absent are represented by squares and systems where this species was present 

are represented by triangles. Lakes where supplemental largemouth bass were introduced are represented by 

solid symbols and controls by open symbols.   
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Figure 2.2. Mean proportion of total collected largemouth bass (Micropterus salmoides) by year and age group 

comprised of introduced fish for impoundments where gizzard shad (Dorosoma cepedianum) were absent (A) and 

present (B).  Fish were collected from standardized fall electrofishing (see methods for description) conducted 

during 2000-2005. Error bars represent ± 1 standard error.  
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Figure 2.3. Mean density of littoral (A) and catch-per-effort of adult (C) planktivorous and benthivorous fish before 

and after initiation of supplemental largemouth bass (Micropterus salmoides) introductions and annual time series 

(littoral density B, catch-per-effort D) for lakes where gizzard shad (Dorosoma cepedianum) were absent (arrows 

represent time of initial supplemental largemouth bass introductions). Error bars represent ± 1 standard error. 
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Figure 2.4. Mean density of littoral (A) and catch-per-effort of adult (C) planktivorous and benthivorous fish before 

and after initiation of supplemental largemouth bass (Micropterus salmoides) introductions and annual time series 

(littoral density B, catch-per-effort D) for lakes where gizzard shad (Dorosoma cepedianum) were present (arrows 

represent time of initial supplemental largemouth bass introductions). Error bars represent ± 1 standard error. 
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Figure 2.5. Mean concentration of Daphnia spp. (top), average length of cladoceran zooplankton (middle) and 

mean concentration of Chaoboridae (bottom) before and after initiation of supplemental largemouth bass 

(Micropterus salmoides) introductions (left panel, A,C,E) and annual time series (right panel, B,D,F) for lakes 

where gizzard shad (Dorosoma cepedianum) were absent (arrows represent time of initial supplemental 

largemouth bass introductions). In cases of significant Year(BA) x Trt interactions significant differences 

between treatments within years are denoted by asterisks and non-significant differences are also noted (ns). 

Error bars represent ± 1 standard error.  
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Figure 2.6. Mean concentration of Daphnia spp.(top), average length of cladoceran zooplankton (middle) and 

mean concentration of Chaoboridae (bottom) before and after initiation of supplemental largemouth bass 

(Micropterus salmoides)  introductions (left panel, A,C,E) and annual time series (right panel, B,D,F) for lakes 

where gizzard shad (Dorosoma cepedianum) were present (arrows represent time of initial supplemental 

largemouth bass introductions).  In cases of significant Year(BA) x Trt interactions, significant differences 

between treatments within years are denoted by asterisks and non-significant differences are also noted (ns). Error 

bars represent ± 1 standard error. 
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Figure 2.7. Mean density of total macroinvertebrates (top), Chironomidae (middle) and Ceratopogonidae (bottom) 

before and after initiation of supplemental largemouth bass (Micropterus salmoides) introductions (left panel, 

A,C,E) and annual time series (right panel, B,D,F) for lakes where gizzard shad (Dorosoma cepedianum) were 

absent (arrows represent time of initial supplemental largemouth bass introductions). In cases of significant 

Year(BA) x Trt interactions significant differences between treatments within years are denoted by asterisks and 

non-significant differences are also noted (ns). Error bars represent ± 1 standard error 
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CHAPTER 3: EFFECTS OF MUSKELLUNGE (ESOX MASQUINONGY) 

INTRODUCTION ON POPULATION CHARACTERISTICS OF 

RESIDENT FISH SPECIES IN ILLINOIS LAKES 

 

ABSTRACT 

 Due to the desire to produce new sport fisheries, the introduction of muskellunge (Esox 

masquinongy) outside its native range has become increasingly common in the U.S.  Despite this 

trend, there is little information on the effects of muskellunge introductions on lake ecosystems 

and existing fisheries. In this study, I analyzed time series data from 16 Illinois lakes to test for 

trends in population characteristics of several ecologically and recreationally important fish 

species in response to the introduction of muskellunge. Standardized electrofishing samples from 

a set of lakes receiving introductions (n = 8) were compared to spatially paired controls (n = 8) 

spanning time periods ranging from 5 – 10 years after initial introduction.  Metrics of relative 

abundance, condition, and size structure for each species were evaluated via paired before-after-

control-impact (BACI) analysis.  These paired analyses were then used to generate measures of 

effect size and a global analysis performed via a “meta-BACI” approach. Individual lake pairs 

were highly variable; however, meta-analysis indicated a significant increases in largemouth bass 

relative abundance (measured as catch-per-hour), increases in black crappie size structure 

(RSDP), and decreases in white crappie relative abundance in response to muskellunge 

introduction.  Results for bluegills, common carp, gizzard shad, and redear sunfish were not 

consistent indicating little influence of muskellunge introduction on these species.  My results 

represent a first step toward an understanding of the effects of muskellunge introduction into 

Illinois lakes.   
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INTRODUCTION 

 Fish species introductions (both intentional and unintentional) have been a consequence 

of human cultural and economic activity for over 2,000 years (Balon 1974).  Despite this long 

history of species introduction, ecologists and fisheries biologists have only recently begun to 

study their effects on recipient aquatic communities.  Interest in ecological effects of fish species 

introductions has been spurred by costly effects of introduced fishes on economically important 

fisheries and the structure of entire aquatic ecosystems (Fuller et al. 1999; Vitule et al. 2009).  

Although species invasions are widely considered among the leading threats to global 

biodiversity (Pelicice et al. 2009; Gozlan et al. 2010), introducing new fish species remains a 

common practice in fisheries management and aquaculture (Rahel 1997; Gozlan 2008).  Fishes 

are commonly introduced to increase aquaculture production, enhance local recreational or 

commercial fisheries, or in efforts to influence water quality; these actions can enhance 

ecosystem services and benefit local economies (Hiram and Moyle 1999). Some species 

introductions can have positive effects on local fisheries; however, there remains a considerable 

amount of scientific uncertainty concerning the effects of introducing many species and the 

ability to predict potential effects in a given ecological context remains elusive (Leprieur et al. 

2009).  Because the unintended consequences of species introductions can be costly (and 

possibly irreversible; Lodge et al. 1998), any species introduction without prior research carries 

considerable risk.  There exists a great need for research to inform management decisions 

regarding species introductions (García-Berthou et al. 2005; Keller et al. 2007). 

 In inland freshwater environments, apex piscivorous species are among the most 

commonly introduced fishes due to demand generated by recreational angling with potential 

positive, negative, or neutral effects on resident fish communities (Eby et al. 2006; Goodenough 
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2010). Among the most obvious potential effects of introduced piscivores on resident fish 

populations are direct effects of predation on resident species and/or competition with native 

piscivores (Goldschmidt et al. 1993; Huckins et al. 2000). In addition to direct effects of 

predation and competition, introduced predators can drive a nearly limitless range of both 

positive and negative indirect effects with predator facilitation or interference, trophic cascades, 

altered food web linkages, changes in nutrient dynamics, changes in habitat coupling, and 

changes in species richness being just a subset of observed effects (Pace 1999; Vander Zanden et 

al. 1999; Koel et al. 2005; Schulze et al. 2006). The intensity of interactions between resident 

populations and introduced predators depends on availability of prey refuges, behavior, diet, 

temporal overlap between introduced and resident species, as well as, the potential for resource 

limitation (Schoener 1974; Eby et al. 2006).  While the myriad of potential effects of predator 

introductions argues for caution in management actions; such actions coupled with adequate 

monitoring can provide useful tests of ecological theory and add to case studies which may aid in 

forecasting effects of future introductions (Lodge 1993).  

In this study, I test for the effects of introduced muskellunge (Esox masquinongy) on 

resident fish populations of eight Illinois lakes.  Responses were evaluated for a piscivore 

(largemouth bass (Micropterus salmoides)), four invertivores (bluegill (Lepomis macrochirus), 

redear sunfish (Lepomis microlophus), black crappie (Pomoxis nigromaculatus), white crappie 

(Pomoxis annularis)) a benthivore (common carp (Cyprinus carpio)) and an omnivorous 

planktivore/detritivore (gizzard shad (Dorosoma cepedianum)). With the exception of the 

invasive common carp, these species are native to the majority of the central, southern, and 

eastern United States (Smith 1997).  The native range of the muskellunge overlaps considerably 

with these species, but is smaller being nested in the northeast and central areas of North 
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America and parts of central and eastern Canada (Crossman 1978). Due to their popularity as a 

sportfish, muskellunge have increasingly been introduced into natural and man-made waters 

outside of their native range.  For example, since their initial introduction in 1979, the number of 

Illinois lakes with muskellunge introductions has risen each year and now includes over 34 water 

bodies. Intentional and unintended introductions have occurred in over 12 U.S states in recent 

decades (Fuller 2011). Although muskellunge introductions have led to the development of 

successful fisheries, it has sparked considerable controversy among angling groups over fears 

that they will compete with and/or prey upon resident species and impact alternative existing 

fisheries.   

Recent published studies on muskellunge introduction have mainly examined food habits 

and modeled potential influences in river systems (Brenden et al 2004, Curry et al 2007).  

Outside of grey literature, only one published study to my knowledge has tested for the effects of 

muskellunge introduction into a lake.  In this study, muskellunge introduction was associated 

with declines in black crappie and white sucker populations in a Michigan lake (Siler and 

Bayerle 1986).  Although these studies provide some understanding of the effects of 

muskellunge introduction, they were either lacking in key experimental elements or were 

conducted on systems very different from those in Illinois. A particular problem in previous 

work has been a lack of controls, which complicates the separation of trends due to natural 

variation and muskellunge introduction (Underwood 1994).  In addition, the previous studies of 

muskellunge introduction have been conducted in northern, native lake systems (Siler and 

Bayerle 1986) that have many ecological and fish community differences from the reservoirs in 

the lower Midwest (Thornton 1990) where many introductions are occurring.   My objective was 

to test for the responses of several ecologically and recreationally important fish species to 
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muskellunge introduction in a set of Illinois lakes, while incorporating adequate control systems 

to allow for the separation of effects on introduction from other natural variation.   

 

MATERIALS AND METHODS 

 
Muskellunge Introductions 

 All muskellunge introductions used fish cultured at the Jake Wolf Memorial Fish 

Hatchery, Illinois Department of Natural Resources (IDNR) and were conducted by personnel of 

the IDNR or Illinois Natural History Survey (INHS).  Fish were produced using wild caught 

gametes from parents netted from North Spring Lake, Illinois during early spring (early-mid 

March).  Immediately after hatching, and for a period of about two weeks, fish were fed an 

artificial diet and held in raceways before being moved to a series of outdoor ponds where they 

were fed fathead minnows (Pimephales promelas) until mid-August. Muskellunge were stocked 

into receiving waters at an average total length of 200-280 mm and densities ranging from 1 – 12 

per hectare (Table 3.1).   

 

Data collection and site selection 

To test for the effects of muskellunge introduction in Illinois lakes, I analyzed time series 

data of various fisheries metrics for 16 Illinois lakes collected as part of standardized sampling 

conducted by the IDNR and the INHS. The set of 16 lakes chosen for analysis (Figure 3.1; Table 

3.2) included lakes with muskellunge introductions (N = 8) and nearby reference waters without 

stockings (N = 8). Data for each lake was acquired and compiled from two sources including the 

Illinois Fisheries Analysis System (FAS; Bayley et al. 1990) and data collected by INHS as part 

of ongoing or previous research projects. Standardized sampling protocol (both IDNR and 

INHS) consisted of daytime three-phase AC boat mounted electrofishing (3,000 W, 230V AC, 
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and 50 Hz; see Bayley and Austin 2002 for a detailed description) conducted on three one-half 

hour fixed shoreline transects sampled on 1-3 dates in the fall of each year (October – 

November).  During each sampling run, all fish were netted, identified to species, counted, and a 

subsample of each species (up to 50 individuals) was measured for total length and weight.   

Lakes were selected for analysis based on data availability and verifiable development of 

adult muskellunge populations. Lakes were selected for analysis if a minimum of four years of 

pre- and post-muskellunge introduction electrofishing data existed.  Evidence that significant 

adult populations of muskellunge had developed was based on electrofishing as well as targeted 

modified fyke-net catches (3.8 cm bar mesh, 1.2 X 1.8 m frames with six 0.75 m hoops; Table 

3.1). Lakes were selected if within the post introduction period (4-7 years), the average catch rate 

of stock length muskellunge exceeded 0.5 or greater fish per net per night (50% of the IDNR 

management goal for muskellunge lakes).   In one instance (Mill Creek Lake), fyke net data were 

not available to verify adult muskellunge populations; however, this lake had electrofishing catch 

rates of stock length and greater muskellunge comparable to other lakes with known established 

adult populations (Table 3.1).  Each selected muskellunge lake was paired with a nearby control 

lake that was not stocked. After identifying qualifying muskellunge lakes, a list of potential 

control lakes was generated based on lakes with concurrent annual electrofishing time series.  

This list was then trimmed to a set of lakes or lake with the closest geographic distance and fish 

community (presence or absence of gizzard shad).  In cases where muskellunge lakes overlapped 

in their prospective controls due to close proximity (Wheel, Johnson and Shovel Lakes) or where 

candidate controls were within 10km of each other, lakes were paired based on size (e.g. Lakes 

Shovel – Lou Yeager and Johnson-Springfield respectively).  
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Although muskellunge populations in lakes selected for analysis were verified by 

modified fyke net sampling, only AC electrofishing data was available from control systems; 

therefore, my analysis of effects of muskellunge introduction was restricted to electrofishing 

data.  Boat electrofishing is a seasonally and compositionally selective gear that is most suited to 

indexing abundance and size structure of nearshore species (Bonar et al. 2010). In order to 

control for season and to ensure adequate indexing of relative abundance, I restricted my analysis 

to fall samples of species known to have high vulnerability to electrofishing gear (Bayley and 

Austen 2002).  These species included largemouth bass, bluegill, redear sunfish (Lepomis 

microlophus), gizzard shad (Dorosoma cepedianum), common carp (Cyprinus carpio), black 

crappie (Pomoxis nigromaculatus) and white crappie (P. annularis).  All species did not occur in 

all lakes, which limited the number of lake pairs included in some cases. My analysis focused on 

comparing the relative changes (before vs after) in several common fisheries management 

metrics including relative abundance (CPUE; number per hour), size structure (proportional size 

distribution; PSD), preferred length relative size distribution (RSD-P), and condition (relative 

weight; Wr) in lakes where muskellunge were introduced relative to control systems for each 

species. 

 

Statistical Analyses 

Individual lakes selected for analysis varied in the timing of initial muskellunge 

introduction from 1996-2005 as well as the years in which they were sampled.  In order to 

minimize the effects of temporal differences in data collection, each stocked and reference lake 

combination was treated as an independent experiment and analyzed using paired before-after 

control-impact analysis (BACIP, Underwood 1994). Paired analysis using waters from the same 
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geographic region is a commonly used approach as a control for regional climate related 

variation in whole lake studies (Carpenter 1989).  Each paired time series was matched by year 

and only years in which both lakes were sampled were used in analysis. Paired time series were 

analyzed using a linear mixed model with fixed effects of before or after muskellunge 

introduction (BA) and control or introduced lakes (CI) and their interaction (BA*CI).  Two 

random terms were included to account for variation within sites across time. One term for year 

nested within before-after periods (Y(BA)) and one term for the interaction of control or 

introduced lakes and year within the before or after period CI*Y(BA) (see Downes et al 2002 for 

a formal description of this model). The final linear mixed model was then as follows:  

 

 Yijk = μ + CIi…+ BA..k. +  Y(BA).jk. + BA*CIi.k. + CI*Y(BA)ijk 

 

 The BA*CI term tests for any changes in average values of the parameter of interest coincident 

with the effect in question (muskellunge introduction) and is tested with the CI*Y(BA) term 

(Downes et al. 2002). Serial correlation among years (nonzero covariance) due to repeated 

measurements was accounted for by fitting various covariance structures to the data (SAS
®
; 

PROC MIXED) and choosing the structure that generated the best model based on the corrected 

Akaike‟s information criterion (AICC; Littell et al. 2000).  I used the null hypothesis of no 

change in the response variable between introduced muskellunge lakes and non-introduced 

muskellunge lakes.  To control for experiment wise type-1 errors I adjusted my alpha from an 

original value of 0.05 to a bonferroni adjusted value of 0.006.  This adjustment was made by 

dividing alpha by 8 which was a maximum number of tests performed across lake pairs for any 

individual variable. 
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 In order to draw more general conclusions concerning the effects of muskellunge 

introduction, I also used a recently described “meta-BACI” approach to conduct a meta-analysis 

of each metric across lake pairs following the general approach described by Gurevitch and 

Hedges (1993) and modified for BACI designs by Conner et al (2007). For each metric of 

interest, meta-analysis was conducted by comparing the change in the least squares means for 

control and reference systems from before and after muskellunge introduction (estimated from 

the above linear mixed model).  The difference in mean values before and after muskellunge 

introduction was used to calculate an effect size (d) using the formula: 

 

di = (Mia – Mib) – (Mca– Mcb)  

and  

SE(di) = √var(Mia) + var(Mib) + var(Mca) + var(Mcb)  

 

Where di = relative effect in lake i, M = least squares mean of parameter of interest with 

subscripts: ia, M of lakes receiving muskellunge after introduction; ib, M of lakes receiving 

muskellunge before introduction; ca, M of control lakes after introduction; cb M of control lakes 

before introduction. In this BACI approach, changes are considered relative because the value of 

the effect size does not necessarily represent a true change in the mean of the lake receiving 

muskellunge. Rather, it is possible that the mean value changed relatively less than its paired 

control and this situation would still be considered a measurable effect (Connor et al. 2007). 

Each of the paired effect sizes was weighted by the reciprocal of its respective variance to 

account for differences in sample sizes and variability and evaluated with a paired t-test 

(Gurevitch and Hedges 1993). I was also interested in the potential importance of muskellunge 
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density in determining effect sizes, therefore I conducted pairwise pearson correlations between 

effect sizes and average catch-per-effort (electrofishing number per hour) muskellunge in the 

post-introduction period for each variable.  These techniques allowed us to test for the generality 

of effects of muskellunge introduction across all lake pairs and to test for potential effects of 

varying muskellunge density. Significance was declared at an alpha less than or equal to P = 

0.05.  

 

RESULTS 

Significant changes in population characteristics were observed for largemouth bass and 

Pomoxis spp. following introduction of muskellunge. On the individual lake scale, largemouth 

bass populations showed significant changes in relative abundance in one lake and a significant 

change in size structure in one lake.  Largemouth bass relative abundance increased relative to 

controls in Wheel Lake after muskellunge introduction while largemouth bass RSDP increased 

relative to controls Shovel Lake (Table 3.3).  Meta-analysis of largemouth bass population 

parameters indicated an overall significant effect size for relative abundance across eight lake 

pairs (Table 3.4). Effect sizes for largemouth bass relative abundance were positive for 7 of 8 

lake pairs resulting in a positive mean effect size of 23.21 (95%CI ± 20.2) largemouth bass per 

hour of electrofishing (Figure 3.2). No significant overall effects were detected across lake pairs 

for size structure or condition (Table 3.4).  There were no significant relationships between 

relative muskellunge density and effect sizes for any of the measured largemouth bass population 

characteristics (Table 3.4).  

 Paired analysis of bluegill population parameters in individual lakes indicated significant 

changes in relative abundance in one lake, significant changes in size structure in three lakes 
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(Table 3.3).  Relative abundance increased relative to the control by 14 bluegills per hour of 

electrofishing in Mill Creek Lake.  Size structure increased in two lakes relative to controls 

(Argyle Lake and Mill Creek Lake) and declined in one (Johnson Lake) after muskellunge 

introduction. Despite changes in some parameters in individual lakes, there was no overall effect 

detected across lake pairs in the meta-analysis for any of the measured bluegill population 

characteristics (all P > 0.05; Table 3.4).  Furthermore, there were no significant relationships 

between relative muskellunge density and effect sizes for any of the measured bluegill 

population characteristics (Table 3.4). 

 Redear sunfish relative abundance and condition (Wr) data were available from three lake 

pairs (Table 3.3) and size structure from one lake pair. There were no statistically significant 

changes in any of the parameters at the individual lake scale (Table 3.3).  Meta-analysis across 

three lake pairs indicated no consistent changes in redear sunfish relative abundance or condition 

after muskellunge introduction relative to controls (all P > 0.05; Table 3.4).  

 There were no significant changes in population characteristics of black crappie when 

analyzed at the scale of individual lake pairs (table 2.2) however meta-analysis of effect sizes 

indicated  a significant average increase in RSD-P relative to controls (Table 3.4).  . All four 

lakes examined showed positive effect sizes relative to controls for RSDP ranging from an 

increase of 2.5 to 19.1 (Figure 3.3).  There were no significant relationships between relative 

muskellunge density and effects sizes for any of the measured black crappie population 

characteristics (Table 3.4).  

 Effects on white crappie populations were assessed in two lake pairs (Argyle Lake and 

Wheel Lake) and included relative abundance, size structure (PSD and RSDP) and condition 

(Wr).  There were no significant changes in population characteristics of white crappie following 
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muskellunge introduction for either lake when analyzed on the basis of individual lake pairs 

(Table 3.3)Effect sizes for relative abundance in both lakes were negative due to increases in 

controls that were not present in lakes receiving muskellunge (Figure 3.4). This difference in 

changes resulted in an overall significant negative effect of muskellunge introduction and a 

negative average effect size relative to controls of 7.3 white crappie per hour of electrofishing 

(Table 3.4).  

Unlike largemouth bass and Pomoxis populations, I observed no effects of muskellunge 

introduction on raw effect sizes for gizzard shad and common carp population characteristics (all 

P>0.05; Table 3.3).   There was also no significant correlation between relative muskellunge 

density and effect sizes for population characteristics for these two species after muskellunge 

introduction (Table 3.4).  

 

DISCUSSION 

 This study represents the first to my knowledge with adequate controls to evaluate the 

effects of muskellunge introduction on resident fish communities.  I found that muskellunge 

introduction had few negative effects and some positive effects on population characteristics of a 

number of resident fish species on a time scale of four to seven years after introduction. The lack 

of negative effects of muskellunge introduction is not likely due to low densities of muskellunge 

as nearly all of these lakes (7 of 8; measured as trap-net catch per effort) met or exceeded the 

IDNR management goal of 1 fish per net per night during the post introduction period.  

Furthermore, the average catch rates in these lakes were similar to or greater than the 75
th

 

percentile (0.8 per net per night) for densities in native muskellunge lakes in Wisconsin averaged 

across 188 lakes sampled from 2000-2008 (Simonson 2010).  Therefore muskellunge densities in 
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these lakes exceeded average densities northern native populations.  These findings should 

however not be construed to mean that there is no relationship between muskellunge density and 

effects on recipient populations.  While I found no significant relationship between muskellunge 

density and effect sizes in receiving lake fish populations this may be due to the small number of 

lakes for some of these tests or to the range of densities examined.  While I cannot make 

inferences to cases where muskellunge may be present in even greater densities I can say that in 

a series of lakes with significant adult populations, where densities often exceeded management 

goals and rivaled or exceeded densities of muskellunge found in their native range, I found no 

strong negative effects on the species examined.  

The positive responses in largemouth bass relative abundance to muskellunge 

introduction were among the strongest of my results with catch-per-hour effect sizes positive for 

seven of the eight cases. I cannot evaluate the mechanisms responsible for the increases in 

largemouth bass catch rates, but recent research provides two plausible causes for these 

observations.  The presence of muskellunge leads to increased growth of largemouth bass in 

ponds when controlling for piscivore densities and biomass (Carey and Wahl 2010).  Laboratory 

observations indicated that this effect was likely due to a facilitative interaction between 

largemouth bass and muskellunge when foraging on shared prey (Carey and Wahl in press).  

Such facilitative interactions have been documented among other piscivores and are known to 

increase population growth rates of the benefiting piscivore (Eklov and VanKooten 2001; 

Schulze et al. 2006).  These behavioral interactions may offer an explanation for the numerical 

response of largemouth bass to muskellunge introduction.  Alternatively, the introduction of new 

predator types often results in shifts in habitat use of resident predators (Werner and Hall 1977) 

that could affect capture rates.  For example, the introduction of pikeperch (Sander lucioperca) 
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to a European lake resulted in increased use of the littoral zone by resident piscivorous perch 

(Perca fluviatilis).  A similar effect might occur for largemouth bass as they reach smaller adult 

sizes than muskellunge and body size is a known determinant of intra-guild competitive 

interactions (Fedriani et al. 2000).  If competition with adult muskellunge caused largemouth I 

bass to increase their use of littoral areas, would expect electrofishing catch rates to increase as 

this gear primarily indexes the littoral zone.  A growing body of research supports a need to 

further explore interactions between piscivorous fishes at the lake scale to test for mechanisms 

by which species such as largemouth bass and muskellunge interact.    

 Although there were some significant effects observed for Lepomis populations at the 

scale of individual lakes, these responses were not consistent and my global analysis across lakes 

indicated a lack of consistent responses.  Several previous studies have shown influences of other 

resident and introduced piscivores on population characteristics of Lepomis species (Belk and 

Hales 1993; Schneider and Lockwood 2002; Tomcko and Pierce 2005). There are several factors 

that may limit the likelihood for muskellunge to influence Lepomis populations.  Laboratory 

studies have shown that esocids have difficulty capturing sunfish relative to other potential prey 

species due to their anti-predatory defenses (Tomcko et al. 1984; Wahl and Stein 1988), which 

may limit their ability to influence Lepomis populations. The presence of alternative prey, 

especially gizzard shad, in a majority of my lakes may also limit the responses of sunfish 

populations to muskellunge introduction.  Although sunfish are a primary prey species for 

piscivores in many lower midwestern lakes, muskellunge select soft-rayed fishes such as gizzard 

shad over sunfishes in systems where they are present (Wahl and Stein 1988).  Gizzard shad 

were present in five of the eight lakes receiving muskellunge introductions and the presence of 

gizzard shad may buffer sunfish populations from predation and reduce effects of muskellunge 
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on these species.  There is a need to evaluate potential effects of muskellunge introduction on 

Lepomis species in systems without gizzard shad and I would caution against extrapolating my 

results to these systems.   

 Along with largemouth bass, the only other species showing consistent responses to 

muskellunge introduction were black and white crappie. These results are consistent with one of 

the few previous studies testing for responses of lake fish communities to muskellunge 

introduction, which implicated effects on crappie populations (Siler and Bayerle 1986).  

Responses of crappie population characteristics including increased size structure and decreased 

relative abundance are consistent with predictions of increased piscivory.  Several previous 

studies have implicated a role of piscivores including largemouth bass, northern pike (Esox 

lucius) and saugeye (Sander vitreus x Sander canadensis) in regulating crappie abundance and 

size structure (Gabelhouse 1984; Willis et al. 1984; Boxrucker 2002; Galinet et al. 2002).   The 

responses of crappie populations to muskellunge introduction are in contrast to those of the other 

sunfishes. Differences in habitat selection and diel movements between crappie and other 

sympatric sunfishes (Keast et al. 1992), may alter the likelihood of interactions with 

muskellunge.  Regardless of the potential causes of differing responses among species, my 

results may be valuable for crappie management of Illinois lakes where the development of high 

density, slow growing populations comprised of smaller individuals is a common problem 

(Mitzner 1984). My results suggest muskellunge may influence abundance and size structure of 

crappie populations.  

 Gizzard shad are known to be a preferred prey of muskellunge in Midwestern lakes 

where they often dominate fish community biomass (Johnson et al. 1988; Wahl and Stein 1991; 

Wahl and Stein 1993).  Despite the preference, I found no evidence that muskellunge 
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introduction affected gizzard shad population characteristics.  These findings are consistent with 

several previous studies with other species on lower latitude lake ecosystems suggesting an 

inability of piscivores to influence gizzard shad population dynamics (Johnson et al. 1988; Stein 

et al. 1995; Dettmers et al. 1998).  Several unique aspects of gizzard shad biology have been 

identified including high fecundity, rapid growth, and omnivorous feeding behavior, which may 

limit the ability of piscivores to control populations of this species (see Stein et al. 1995 and 

references therein).  In addition, gizzard shad populations may be disproportionately subsidized 

relative to other species by watershed derived nutrients and detritus, which may further 

contribute to their high productivity and insensitivity to piscivores in these systems (Bremigan 

2001; Vanni et al. 2005; Pilati et al. 2009).  My results for Illinois lakes suggest that this 

important prey may not be a limiting factor for muskellunge.  

 I also found no evidence for an influence of muskellunge introduction on relative 

abundance, size structure or condition of common carp. Control of common carp populations is 

important due to their negative effects on aquatic ecosystems and sport fisheries in North 

America (Parkos et al. 2003). Only a few studies have suggested that piscivores may influence 

common carp recruitment (Weber and Brown 2009). High common carp recruitment events may 

be linked to winterkill induced release from larval predators (Bajer et al 2010) and predators may 

be responsible for sporadic recruitment and relatively low densities of common carp in 

Nebraska‟s sandhill lakes (Paukert et al.2003; Coulter et al. 2008).  Alternatively, limited 

foraging on introduced common carp by resident predators was found in France (Criveli 1981).  

My results suggest that common carp populations may be resistant to the predatory effects of 

introduced muskellunge.  These results may be due to specific characteristics of my systems 

including availability of alternative prey, predator densities, and habitat characteristics.  
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There are several limitations of the data and approach that I used.  The empirical nature 

of the available data and analysis precludes definitive inferences concerning the specific 

mechanisms by which muskellunge might be affecting fish species in these lakes.  The strength 

of my analyses is highest for the subset of the species examined with more lake pairs (primarily 

largemouth bass and bluegill).  Inferences for other species such as black crappie, white crappie, 

gizzard shad, common carp, and redear sunfish are based on a smaller number of available lake 

pairs, which makes the interpretation of findings for these species less robust. A limitation of a 

study such as ours is that no two lakes or populations are ever identical and thus their treatment 

as true replicates is not without issue.  These problems in evaluating effects of management 

actions in natural systems have been the impetus for the development of the methods such as the 

BACI design and met-analysis approaches used here (Downes et al. 2002).  In an attempt to 

address the inherent variation associated with my lakes, I evaluated effects of muskellunge 

introduction in a spatially paired manner and then used a more global analysis of independent 

effect sizes to make final inferences.  This approach is more powerful and less sensitive to 

inherent variation among individual sites (Connor et al. 2007).  

My results suggest that muskellunge introductions have minimal negative effects on 

several ecologically and recreationally important fish species in Illinois lakes.  I found evidence 

for a strong positive interaction between introduced muskellunge and largemouth bass 

populations when generalizing across eight Illinois lakes. In addition, I found evidence that 

muskellunge may influence the size structure and/or abundance of crappie populations although 

these findings are from a smaller number of lake systems.  With the exception of crappie 

populations, I found little evidence for influences of introduced muskellunge on important prey 

species in these systems including bluegill, redear sunfish and gizzard shad.  Although I feel this 
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study represents a valuable first step in exploring fish community responses to muskellunge 

introduction, I urge that more research will be necessary to validate the generality of these 

findings.  As the introduction of muskellunge into systems outside its native range continues, 

there is a particular need for long-term assessments of the effects of this introduced piscivore and 

a need to evaluate responses of other potentially important fishes not evaluated here.  
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Table 3.1. Treatment and control lakes as well as muskellunge (Esox masquinongy) (MUE) stocking information and characteristics of resulting populations for 

16 Illinois lakes used to evaluate effects of introduction. Muskellunge were sampled by fall AC electrofishing (EF) whereas PSD and number per net-night were 

calculated using fish collected from springtime modified fyke net sampling. Values represent means whereas values in parentheses represent the range of values 

from all post-introduction sampling.  Cases where only one sampling event was available are represented by single values. 

 

Treatment Lake Argyle Lake Johnson  Lake Mill Creek Lake Lake Mingo Ridge Lake  Sauk Trail Lake Shovel Lake Wheel Lake

Control Lake Lake Jacksonville Lake Springfield Lincoln Trail Lake Homer Lake Walnut Point Lake Lake Le-aqua-na Lake Lou Yeager Schuy - Rush Lake

Years Before 1991,1995,1997 1994-1997 1983-1992 1998-2002 1998,1999 1988,1989 1996-1999 1993-1996, 1998

1998, 2000 1999-2001 2001-2005 1991-2000

Years After 2002, 2005-2007 2003-2007 1997,2001 2003-2008 2006-2011 2001-2007 2000,2002 2000,2003

2005,2007 2003,2006 2004,2006

Years Stocked 2000,2002-2003 2001-2003 1999-2003 2002-2008 2005-2011 2000-2002 1999,2000,2001-20031999,2000,2002-2003

2006-2007 2005-2007 2005-2007 2006-2007 2005-2007 2005-2007

MUE Stocking Density 6.15 (2.85-9.20) 4.16 (2.47-9.05) 1.11 (1.11-1.12) 7.20 (2.47-14.06) 12.11 (7.27-14.53) 3.11 (2.47-4.94) 2.50 (2.47-2.69) 2.55 (2.47-3.18)

Mean MUE EF CPUE 1 1.06(0.85-1.4) 1.11(0.35-2) 2.85(2.00-4.00) 1.95(1.28-2.86) 3.03 1.63(0.74-5.2) 1.66(0.71-4.51)

Mean MUE PSD 83 39.55 (9.5-69.6) no data 64.5 (56-77) 100 83.33 (50-100) 57.67 (35-74) 54.43 (0-80)

Mean MUE Per Net Night 1.29 1.11 (0.81-1.38) no data 1.33 (0.75-1.77) 0.78 1.03 (0.25-2.00) 1.77 (0.5-4.25) 1.73 (0.27-4.2)
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Table 3.2. Select characteristics of 16 Illinois lakes monitored to test for the effects of muskellunge (Esox 

masquinongy) introduction on resident fish population characteristics. Data are from Douglas et al. 

(1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum Mean Mean Secchi Mean

Lake Pair Area (Ha) Depth (m) Depth (m) Depth (m) Conductivity

Argyle 32.6 11.27 4.88 1.13 312

Jacksonville 184.2 9.45 3.79 0.71 495

Johnson 272.7 12.1 5.32 1.58 529

Springfield 1582.1 7.92 4.01 0.43 539

Mill Creek 305.4 18.29 6.61 1.87 242

Lincoln Trail 56.9 10.67 4.84 1.38 225

Mingo 71.7 10.06 3.68 1.37 338

Homer 32.7 7.32 2.46 2.6 390

Ridge 5.5 3.30 2.15 1.21 .

Walnut Point 11.2 5.79 3.82 0.62 444

Sauk Trail 21 6.1 2.33 0.53 361

Le-aqua-na 17.3 6.71 3.19 0.54 467

Shovel 90.9 18.00 5.87 1.52 244

Lou-Yeager 540.2 9.45 3.02 0.50 391

Wheel 159.1 16.70 4.31 1.29 404

Schuy-Rush 101.5 11.89 3.77 0.46 298
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Table 3.3. Species, population parameters, differences (after-before), calculated relative effect sizes and results of paired before-after control-impact (BACIP) 

analysis, for each of 8 Illinois lake pairs evaluated for effects of muskellunge (Esox masquinongy) introduction. Results are presented from the BA*CI term of 

the linear mixed model analysis.  See methods section calculation of relative effect sizes and linear mixed model analysis. Significance was determined by a 

bonferroni adjusted alpha of P < 0.006 and are bolded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lake Pair Parameter M M M M Effect Size (d ) SE (d ) F Num DF Den DF P

Johnson - Springfield BLCCPUE 5.07 2.65 7.04 5.03 -0.41 2.10 0.03 1.00 9.00 0.877

Mill Creek - Lincoln Trail BLCCPUE 6.82 9.37 6.72 6.54 2.74 3.42 0.77 1.00 12.00 0.398

Suak Trail - Leaquana BLCCPUE 13.11 17.79 5.54 8.08 2.15 5.78 0.03 1.00 13.00 0.859

Wheel - Schuy Rush BLCCPUE 6.67 3.89 27.20 7.33 17.09 6.08 13.28 1.00 6.00 0.011

Johnson - Springfield BLCPSD 67.25 80.62 78.24 82.71 8.90 17.87 0.62 1.00 9.00 0.450

Mill Creek - Lincoln Trail BLCPSD 50.97 57.24 61.51 40.61 27.16 30.40 0.48 1.00 11.00 0.504

Suak Trail - Leaquana BLCPSD 48.28 55.64 24.80 42.70 -10.54 19.17 0.15 1.00 13.00 0.701

Wheel - Schuy Rush BLCPSD 34.25 83.36 45.49 28.63 65.97 20.33 18.25 1.00 5.00 0.008

Johnson - Springfield BLCRSDP 23.19 44.32 38.30 41.37 18.05 14.67 4.75 1.00 9.00 0.057

Mill Creek - Lincoln Trail BLCRSDP 10.19 24.82 24.69 31.71 7.62 20.43 0.17 1.00 11.00 0.688

Suak Trail - Leaquana BLCRSDP 4.02 9.25 0.00 2.52 2.70 7.52 0.12 1.00 13.00 0.738

Wheel - Schuy Rush BLCRSDP 1.32 3.36 11.15 0.00 13.18 4.56 8.63 1.00 5.00 0.032

Johnson - Springfield BLCWR 92.64 97.47 104.72 107.16 2.39 4.04 0.39 1.00 9.00 0.547

Mill Creek - Lincoln Trail BLCWR 93.70 86.84 99.20 93.42 -1.08 4.71 0.07 1.00 12.00 0.798

Suak Trail - Leaquana BLCWR 92.37 89.13 94.32 95.88 -4.80 5.81 0.98 1.00 13.00 0.341

Wheel - Schuy Rush BLCWR 90.67 90.14 97.64 81.44 15.66 4.96 16.32 1.00 6.00 0.007

Argyle - Jacksonville BLGCPUE 34.23 19.00 13.15 7.48 -9.55 6.65 1.12 1.00 7.00 0.135

Johnson - Springfield BLGCPUE 13.66 10.01 12.69 11.53 -2.49 3.96 1.13 1.00 8.00 0.319

Mill Creek - Lincoln Trail BLGCPUE 29.59 19.03 38.72 13.41 14.75 6.00 16.33 1.00 12.00 0.002

Mingo - Homer BLGCPUE 198.36 63.63 164.65 87.18 -57.27 192.42 0.63 1.00 6.00 0.456

Ridge - Walnut Point BLGCPUE 191.42 110.06 121.44 115.44 -75.36 134.85 0.21 1.00 7.00 0.662

Suak Trail - Leaquana BLGCPUE 68.53 56.45 27.23 34.41 -19.25 13.96 1.73 1.00 14.00 0.209

Shovel - Lou Yeager BLGCPUE 21.00 12.67 18.03 17.55 -7.84 5.02 3.47 1.00 3.00 0.160

Wheel - Schuy Rush BLGCPUE 16.61 14.40 24.36 24.23 -2.07 5.42 0.06 1.00 6.00 0.810

Argyle - Jacksonville BLGPSD 32.75 53.11 14.58 3.54 31.39 8.32 15.08 1.00 7.00 0.006

Johnson - Springfield BLGPSD 16.12 0.21 41.90 52.75 -26.76 6.46 16.14 1.00 8.00 0.004
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Table 3.3 Continued Parameter M M M M Effect Size (d ) SE (d ) F Num DF Den DF P

Mill Creek - Lincoln Trail BLGPSD 20.91 18.68 32.22 6.09 23.90 7.87 13.01 1.00 12.00 0.004

Mingo - Homer BLGPSD 11.52 9.92 24.23 19.60 3.02 14.96 0.07 1.00 6.00 0.800

Ridge - Walnut Point BLGPSD 46.42 23.97 37.20 49.65 -34.91 16.47 3.41 1.00 8.00 0.102

Suak Trail - Leaquana BLGPSD 28.44 24.78 30.20 30.55 -4.01 6.83 0.07 1.00 14.00 0.792

Shovel - Lou Yeager BLGPSD 29.61 32.58 56.92 44.71 15.18 14.73 0.12 1.00 3.00 0.748

Wheel - Schuy Rush BLGPSD 20.20 9.68 20.70 8.96 1.23 9.90 0.02 1.00 5.00 0.890

Argyle - Jacksonville BLGWR 88.98 93.92 87.40 80.76 11.57 2.00 1.04 1.00 7.00 0.854

Johnson - Springfield BLGWR 94.21 78.64 93.90 95.10 -16.77 9.98 1.81 1.00 8.00 0.216

Mill Creek - Lincoln Trail BLGWR 88.32 82.12 93.45 83.95 3.29 5.03 0.29 1.00 12.00 0.600

Mingo - Homer BLGWR 96.69 104.90 90.84 103.81 -4.75 1.72 6.87 1.00 5.00 0.047

Suak Trail - Leaquana BLGWR 99.52 96.05 93.14 98.87 -9.21 7.63 1.42 1.00 14.00 0.253

Shovel - Lou Yeager BLGWR 98.85 91.65 105.60 113.26 -14.85 9.54 2.06 1.00 3.00 0.247

Wheel - Schuy Rush BLGWR 96.79 76.73 94.13 90.65 -16.58 12.99 0.07 1.00 5.00 0.804

Argyle - Jacksonville CAPCPUE 13.51 4.22 8.53 8.92 -9.68 8.96 0.56 1.00 3.00 0.879

Suak Trail - Leaquana CAPCPUE 4.37 5.21 3.40 5.71 -1.46 3.46 0.29 1.00 9.00 0.602

Argyle - Jacksonville CAPPSD 60.67 97.18 77.65 67.73 46.43 24.86 2.95 1.00 3.00 0.790

Suak Trail - Leaquana CAPPSD 71.43 71.43 100.00 100.00 0.00 24.45 0.02 1.00 9.00 0.887

Argyle - Jacksonville CAPRSDP 49.24 77.14 10.40 25.73 12.57 17.89 0.26 1.00 3.00 0.172

Argyle - Jacksonville CAPWR 113.25 103.64 101.16 93.95 -2.40 6.84 0.03 1.00 3.00 0.068

Suak Trail - Leaquana CAPWR 92.90 112.28 97.57 119.09 -2.14 15.98 0.03 1.00 9.00 0.866

Argyle - Jacksonville GZSCPUE 66.25 20.17 21.58 8.40 -32.90 24.19 1.44 1.00 5.00 0.106

Johnson - Springfield GZSCPUE 15.28 6.44 12.74 8.71 -4.82 7.04 1.04 1.00 8.00 0.337

Mingo - Homer GZSCPUE 41.18 56.30 54.46 77.66 -8.07 27.71 0.06 1.00 4.00 0.813

Shovel - Lou Yeager GZSCPUE 9.96 5.40 28.60 29.74 -5.71 8.40 0.40 1.00 2.00 0.592

Wheel - Schuy Rush GZSCPUE 24.39 25.77 23.15 18.82 5.71 10.21 0.84 1.00 4.00 0.412

Argyle - Jacksonville GZSPSD 9.30 8.00 2.58 14.59 -13.31 15.93 0.40 1.00 5.00 0.721

Johnson - Springfield GZSPSD 63.31 41.35 9.04 16.38 -29.31 21.07 1.94 1.00 8.00 0.255

Mingo - Homer GZSPSD 0.00 5.64 16.51 9.53 12.62 23.23 0.53 1.00 4.00 0.507

Shovel - Lou Yeager GZSPSD 49.62 100.00 2.82 17.32 35.88 28.11 0.06 1.00 2.00 0.828

Wheel - Schuy Rush GZSPSD 4.00 6.82 0.74 0.00 3.55 4.38 0.60 1.00 4.00 0.481
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Table 3.3 Continued Parameter M M M M Effect Size (d ) SE (d ) F Num DF Den DF P

Argyle - Jacksonville GZSWR 98.52 97.25 85.89 85.97 -1.35 5.11 0.05 1.00 5.00 0.691

Johnson - Springfield GZSWR 94.92 101.37 87.63 84.13 9.95 7.61 0.99 1.00 8.00 0.348

Mingo - Homer GZSWR 84.80 80.89 89.00 80.93 4.16 7.52 0.54 1.00 5.00 0.495

Shovel - Lou Yeager GZSWR 92.90 88.16 74.45 91.26 -21.55 8.42 2.16 1.00 2.00 0.279

Wheel - Schuy Rush GZSWR 96.53 96.18 95.25 90.12 4.78 8.23 0.78 1.00 4.00 0.427

Argyle - Jacksonville LMBCPUE 61.19 70.51 50.79 48.96 11.16 13.80 0.41 1.00 7.00 0.531

Johnson - Springfield LMBCPUE 36.74 51.66 52.68 45.66 21.94 9.30 6.89 1.00 10.00 0.025

Mill Creek - Lincoln Trail LMBCPUE 43.56 26.33 50.96 21.34 12.40 8.29 3.07 1.00 12.00 0.162

Mingo - Homer LMBCPUE 87.35 65.09 47.74 52.62 -27.14 27.73 1.00 1.00 9.00 0.344

Ridge - Walnut Point LMBCPUE 53.77 194.92 62.26 139.06 64.36 41.54 3.17 1.00 8.00 0.113

Suak Trail - Leaquana LMBCPUE 93.52 140.16 40.46 55.27 31.83 27.82 1.47 1.00 15.00 0.244

Shovel - Lou Yeager LMBCPUE 51.39 67.52 25.94 25.48 16.59 10.90 7.20 1.00 5.00 0.044

Wheel - Schuy Rush LMBCPUE 28.98 65.48 55.17 30.28 61.39 11.11 24.59 1.00 7.00 0.002

Argyle - Jacksonville LMBPSD 56.02 59.55 64.38 66.68 1.24 7.85 0.01 1.00 7.00 0.989

Johnson - Springfield LMBPSD 64.15 73.90 61.78 59.78 11.75 7.48 2.36 1.00 10.00 0.086

Mill Creek - Lincoln Trail LMBPSD 72.14 60.88 50.92 57.82 -18.16 18.17 1.31 1.00 12.00 0.274

Mingo - Homer LMBPSD 36.83 24.49 43.86 53.78 -22.27 10.31 4.66 1.00 9.00 0.059

Ridge - Walnut Point LMBPSD 35.97 46.37 34.98 27.35 18.03 10.60 5.44 1.00 8.00 0.048

Suak Trail - Leaquana LMBPSD 55.47 58.86 63.91 66.00 1.31 9.57 0.06 1.00 15.00 0.814

Shovel - Lou Yeager LMBPSD 51.23 66.21 66.44 66.15 15.27 9.59 5.25 1.00 5.00 0.071

Wheel - Schuy Rush LMBPSD 59.91 58.76 52.17 77.66 -26.64 7.99 7.97 1.00 6.00 0.030

Argyle - Jacksonville LMBRSDP 25.64 22.99 30.62 35.58 -7.61 7.80 0.63 1.00 7.00 0.332

Johnson - Springfield LMBRSDP 26.82 39.99 23.19 26.67 9.70 4.72 6.40 1.00 10.00 0.030

Mill Creek - Lincoln Trail LMBRSDP 28.36 11.87 18.56 3.88 -1.81 8.81 0.06 1.00 12.00 0.814

Mingo - Homer LMBRSDP 22.63 3.92 23.78 17.85 -12.78 7.54 2.87 1.00 9.00 0.124

Ridge - Walnut Point LMBRSDP 7.35 2.11 10.43 8.31 -3.12 7.47 0.18 1.00 8.00 0.680

Suak Trail - Leaquana LMBRSDP 21.60 25.18 30.57 31.08 3.06 9.57 0.06 1.00 15.00 0.806



81 

 

 

Table 3.3 Continued Parameter M M M M Effect Size (d ) SE (d ) F Num DF Den DF P

Shovel - Lou Yeager LMBRSDP 14.17 30.71 33.44 18.38 31.60 5.32 46.52 1.00 5.00 0.001

Wheel - Schuy Rush LMBRSDP 26.69 32.07 25.98 62.21 -30.86 8.00 6.88 1.00 6.00 0.039

Argyle - Jacksonville LMBWR 95.86 96.82 98.66 98.53 1.08 2.88 0.10 1.00 7.00 0.773

Johnson - Springfield LMBWR 95.37 99.11 104.63 105.84 2.54 2.31 0.27 1.00 10.00 0.613

Mill Creek - Lincoln Trail LMBWR 90.17 89.99 85.37 82.61 2.58 2.06 1.69 1.00 12.00 0.218

Mingo - Homer LMBWR 96.67 91.19 95.96 99.75 -9.27 3.73 6.12 1.00 5.00 0.056

Suak Trail - Leaquana LMBWR 101.94 102.07 102.07 105.76 -3.55 2.81 1.10 1.00 15.00 0.311

Shovel - Lou Yeager LMBWR 97.96 95.03 100.73 102.63 -4.83 3.61 2.11 1.00 5.00 0.207

Wheel - Schuy Rush LMBWR 94.08 95.90 99.53 100.55 0.79 2.80 0.16 1.00 7.00 0.702

Argyle - Jacksonville RSFCPUE 13.17 8.83 9.13 7.39 -2.60 4.41 0.29 1.00 7.00 0.401

Johnson - Springfield RSFCPUE 3.47 1.25 0.87 3.01 -4.37 1.10 8.83 1.00 4.00 0.041

Mill Creek - Lincoln Trail RSFCPUE 17.41 13.37 21.84 10.99 6.81 6.18 1.18 1.00 12.00 0.299

Mill Creek - Lincoln Trail RSFPSD 43.51 70.50 29.04 23.66 32.36 10.95 9.96 1.00 12.00 0.008

Argyle - Jacksonville RSFWR 102.37 103.98 87.97 89.34 0.24 8.39 0.04 1.00 7.00 0.840

Johnson - Springfield RSFWR 86.51 103.31 91.17 90.89 17.08 6.83 1.01 1.00 3.00 0.600

Mill Creek - Lincoln Trail RSFWR 91.10 97.06 99.41 100.52 4.85 7.45 0.25 1.00 12.00 0.623

Argyle - Jacksonville WHCCPUE 7.33 5.83 10.16 16.53 -7.86 4.84 1.61 1.00 4.00 0.256

Wheel - Schuy Rush WHCCPUE 4.55 3.04 6.49 11.99 -7.01 2.88 5.22 1.00 3.00 0.107

Argyle - Jacksonville WHCPSD 63.33 88.89 66.11 79.56 12.10 16.30 0.25 1.00 4.00 0.324

Wheel - Schuy Rush WHCPSD 62.22 90.63 85.71 64.63 49.49 30.31 2.70 1.00 3.00 0.199

Argyle - Jacksonville WHCRSDP 5.27 34.35 21.44 35.46 15.06 10.45 1.46 1.00 4.00 0.046

Wheel - Schuy Rush WHCRSDP 5.00 37.08 38.36 30.37 40.07 33.25 1.28 1.00 3.00 0.340

Argyle - Jacksonville WHCWR 93.57 101.98 78.81 84.89 2.33 6.91 0.05 1.00 4.00 0.441

Wheel - Schuy Rush WHCWR 90.29 94.66 95.60 93.20 6.77 6.07 2.57 1.00 3.00 0.207
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Table 3.4. Species population metrics, mean relative effect sizes, standard errors and results of meta-analysis across 

8 Illinois lake pairs evaluated for effects of muskellunge (Esox masquinongy) introduction. Significant comparisons 

(P <0.05) are in bold. Abbreviations as follows: largemouth bass (Micropterus salmoides) (LMB), bluegill (Lepomis 

macrochirus) (BLG), gizzard shad (Dorosoma cepedianum) (GZS), common carp (Cyprinus carpio) (CAP), redear 

sunfish (Lepomis microlophus) (RSF), black crappie (Pomoxis nigromaculatus) (BLC), and white crappie (Pomoxis 

annularis) (WHC). 

Parameter Mean Effect Size (SE) DF Paired t P r P

LMB CPUE 23.21(8.53) 7 2.72 0.03 -0.27 0.58

LMB PSD -1.59(6.20) 7 -0.26 0.81 -0.27 0.51

LMB RSDP 1.02(6.70) 7 0.15 0,88 -0.34 0.41

LMB WR -0.83(1.60) 7 -0.52 0.62 -0.73 0.06

BLG CPUE -3.65(4.33) 7 -0.84 0.43 -0.63 0.10

BLG PSD 1.56(8.15) 7 0.19 0.81 0.01 0.98

BLG WR -1.21(4.01) 6 -0.30 0.77 -0.07 0.87

GZS CPUE -5.63(5.00) 4 -1.13 0.32 -0.17 0.78

GZS PSD 0.97(8.01) 4 0.12 0.59 0.32 0.60

GZS WR -0.54(5.12) 4 -0.11 0.54 0.20 0.75

CAP CPUE -3.75(3.68) 1 -1.02 0.42 No Test .

CAP PSD 23.02(23.22) 1 0.99 0.8 No Test .

CAP WR -6.19(1.53) 1 -3.49 0.16 No Test .

RSF CPUE -2.67(2.57) 2 -1.04 0.41 No Test .

RSF WR 7.95(5.07) 2 1.57 0.26 No Test ,

BLC CPUE 3.42(3.39) 3 1.01 0.39 -0.02 0.98

BLC PSD 21.49(16.78) 3 1.28 0.29 -0.33 0.67

BLC RSDP 10.34(3.15) 3 3.29 0.05 -0.62 0.38

BLC WR 3.24(4.31) 3 0.75 0.51 -0.32 0.68

WHC CPUE -7.33(0.41) 1 -17.69 0.04 No Test .

WHC PSD 25.18(17.83) 1 1.41 0.39 No Test .

WHC RSDP 21.04(10.67) 1 1.97 0.30 No Test .

WHC WR 4.69(2.22) 1 2.12 0.28 No Test .



83 

 

 

 

Lake Mingo 

Mill  

Creek Lake 

Figure 3.1. Locations of 16 spatially paired Illinois lakes used to evaluate effects of muskellunge (Esox 

masquinongy) introduction on population characteristics of resident fishes.  Filled symbols were lakes 

stocked with muskellunge whereas open symbols were controls. Circles connected by dashed lines indicate 

specific lake pairings. 
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Figure 3.2. Change (after – before) in number of largemouth bass (Micropterus salmoides) collected per hour 

during standardized fall electrofishing sampling in Illinois lakes receiving muskellunge (Esox masquinongy) 

introductions (N = 8) and their spatially paired control lakes (N = 8) after muskellunge introduction. 
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Figure 3.3. Change (after – before) in relative size distribution of preferred length black crappie (Pomoxis 

nigromaculatus) collected during standardized fall electrofishing sampling in Illinois lakes receiving 

muskellunge (Esox masquinongy) introductions (N = 4) and their spatially paired control lakes (N = 4) after 

muskellunge introduction.  

Lake Pair

Jo
hn

so
n 

- S
pr

in
gf

ie
ld

M
ill
 C

re
ek

 - 
Li

nc
ol

n 
Tra

il

Sua
k 

Tra
il 
- L

ea
qu

an
a

W
he

el
 - 

Sch
uy

 R
us

h

C
h

a
n

g
e

 i
n

 B
la

c
k
 C

ra
p

p
ie

 
R

S
D

-P
 (

A
ft

e
r 

- 
B

e
fo

re
)

-15

-10

-5

0

5

10

15

20

25

Muskellunge 
Introduced

Control



86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Change (after – before) in number of white crappie (Pomoxis annularis) collected per hour 

during standardized fall electrofishing surveys in Illinois lakes receiving muskellunge (Esox 

masquinongy) introductions (N = 2) and their spatially paired control lakes (N = 2) after muskellunge 

introduction.  
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CHAPTER 4: EFFECTS OF COARSE WOODY HABITAT COMPLEXITY 

AND SPECIES SPECIFIC BEHAVIORS ON PISCIVORE-PREY 

INTERACTIONS OF FOUR FRESHWATER FISH SPECIES 

 

ABSTRACT 

 Prey refuges represent an important mechanism by which habitat structure affects 

ecological communities.  In freshwater fish communities, most research has focused on aquatic 

vegetation and neglected alternative habitats. I tested for the interactions between predator 

foraging modes of two common littoral piscivores (muskellunge Esox masquinongy and 

largemouth bass Micropterus salmoides), and anti-predator behavior of two common prey 

species (golden shiner Notemigonus crysoleucas and bluegill Lepomis macrochirus across a 

gradient of coarse woody habitat complexity in a mesocosm setting.  I hypothesized that 

experiments using a habitat generalist (largemouth bass) and behaviorally flexible prey (bluegill) 

would show the strongest refuging effect of coarse woody habitat.  Piscivore-prey interactions 

were observed in laboratory pools with coniferous deadfalls.  A refuging effect of coarse wood 

was not supported under my experimental conditions. Golden shiner experienced an increase in 

mortality rate with increasing coarse wood complexity when preyed upon by largemouth bass.  

Both prey species reduced activity rates with increasing complexity, but exhibited differing 

patterns for shoal size, number of isolated individuals, and proximity to piscivores that may 

explain differences in vulnerability across the habitat gradient. Increasing CWH complexity was 

associated with changes in largemouth bass behavior including reductions in activity rates and 

reduced capture efficiency at intermediate complexities. Habitat complexity did not strongly 

affect foraging success or behavior of muskellunge.  My results reinforce the importance of 



88 

 

species-specific behavioral traits in determining influences of physical habitat on piscivore-prey 

relationships in freshwater fish communities. 

 

INTRODUCTION 

Refuge habitats are a well-established mechanism known to affect the strength and 

dynamics of predation in natural communities. These habitats are either inaccessible to predators 

or otherwise reduce predation risk relative to surrounding habitats (Sih 1987).  Depending upon 

specific behaviors, refuges can cause both stabilizing and destabilizing effects on predator-prey 

dynamics and therefore are important in understanding population dynamics (Krivan 1998). The 

ability of refuge habitats to alter the ecological dynamics of predator-prey interactions is a major 

mechanism by which habitat structure can influence natural communities. Delineating the 

habitats that serve as refuges and the species that are able to use them is important to understand 

the role of physical habitat in natural populations.  

 In lentic freshwater environments, complex structural habitat in the littoral zone serves 

as an important refuge for many species of small fish and invertebrates (reviewed by 

Smokorowski et al. 2007). These studies have focused mainly on aquatic vegetation that at high 

densities has been shown to reduce predator foraging success (e.g. Savino and Stein 1982; 

Goetceitas and Colgan 1989; Swisher et al. 1998).   Although high-density submerged vegetation 

can serve as a refuge from predation for small freshwater fish, other common littoral habitats 

have received less attention (Mallory et al 2000; Sass et al. 2006a), but comprise a diverse group 

of natural and artificial structures. 

Several properties of coarse woody habitat (CWH) including potentially large size, 

complex branching, temporal stability, and a high potential density make it a likely candidate as 
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an important refuge habitat (Guyette and Cole 1999; Christensen et al. 1996; Mallory et al. 2000; 

Newbrey et al. 2005).  In addition, aquatic vegetation is unable to grow in some lake ecosystems 

due to nutrient or light limitation, inappropriate substrates or steepness of shorelines, which may 

further increase the importance of CWH in some ecosystems. Field patterns have shown that use 

of CWH by several common temperate freshwater piscivore and prey fishes increases with 

branching complexity suggesting increased refuge for prey and subsequent attraction of 

predators (Newbrey et al. 2005; Sass et al. 2011).  Recent work investigating the role of CWH as 

a driver of prey fish population dynamics has however been equivocal.  Coarse wood removal 

from a northern Wisconsin lake was followed by an abrupt decline in prey fish (yellow perch; 

Perca flavescens) abundance due to increased largemouth bass predation and loss of spawning 

habitat directly implicating this habitat as a refuge from predation (Sass et al. 2006a; Helmus and 

Sass 2008). In contrast, a recent study focusing on responses of prey fish (bluegill; Lepomis 

machrochirus) to woody habitat addition found no effects on prey fish population dynamics 

(Sass et al. 2011). Brush addition in small ponds increased the over-winter survival of small age-

0 largemouth bass (Miranda et al 1994).  Although some previous studies suggest a role of CWH 

in affecting prey fish survival, mechanistic understanding has been difficult due to equivocal 

results and the fact that CWH can support higher densities of macroinvertebrates than adjacent 

sediments (Smokorowski et al. 2006) and is positively correlated with fish growth rates 

(Schindler et al. 2000) that may increase fish survival (Houde 1997).   The observed effects of 

increased food availability and potential effects on survival are confounded with potential refuge 

from predation and the interactions between these factors.  Furthermore, it is unclear whether 

equivocal results from wood removal and wood addition experiments represent differences in 

traits of the prey species involved or a poorly understood form of ecological hysteresis. A test of 
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the refuge value in a controlled setting is needed to explicitly assess the ability of CWH to affect 

piscivore success in capturing prey.   

Responses of predators and prey to habitat change are often species specific (Savino and 

Stein 1989a; Christensen and Persson 1993; Eklöv and Diehl 1994; Greenberg et al 1995; Flynn 

and Ritz 1999).  The ability of prey species to use potential refuge habitat is dependent on traits 

of species, which may interact with changes in habitat in complex ways (Michel and Adams 

2009). For example, ambush predators may not be as sensitive to the presence of complex 

structure as more active cruising/lunging predators (Savino and Stein 1989; Eklöv and 

VanKooten 2001). Furthermore, behaviorally inflexible prey that rely on swarming or shoaling 

as a defense may be unaffected or suffer increased mortality in the presence of more complex 

structure (Savino and Stein 1989; Flynn and Ritz 1999; Laurel and Brown 2006). Information on 

how species with differing foraging modes and anti-predator behaviors may interact with refuge 

habitat is needed to gain a more holistic understanding of the influence on predator-prey 

interactions.  

I tested for the interactions of four freshwater fish species (two piscivores and two prey) 

with increasing complexity of CWH to examine the role on piscivore-prey interactions.  Two 

common freshwater piscivores, the largemouth bass (Micropterus salmoides) and the 

muskellunge (Esox masquinongy), and two common prey species, the golden shiner 

(Notemigonus crysoleucas) and bluegill (Lepomis macrochirus), were chosen based on their 

mutual coexistence in many Midwestern and northern lake ecosystems in North America and 

their contrasting predatory and anti-predatory behaviors. Largemouth bass rely predominantly on 

a cruising attack strategy in relatively open habitats and switch to a sit-and wait or ambush 

strategy with high habitat complexity (Savino and Stein 1982, Ahrenstorff et al. 2009).  The 
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body form of the largemouth bass is characteristic of a habitat and feeding generalist (Webb 

1984).  In contrast, muskellunge are obligate ambush piscivores that maintain a sit-and wait 

strategy regardless of habitat context (Eklöv 1992; Savino and Stein 1989a).  Bluegill possess a 

laterally compressed body and long pectoral fins characteristic of adaptation to maneuvering in 

and around objects (Webb 1986). In addition, bluegill display an adaptive shift in behavior with 

changing habitat complexity from forming loose shoals at low habitat complexity to 

concentrating within high complexity habitat when available (Savino and Stein 1989b).  Golden 

shiner are a common lentic prey fish known to inhabit littoral and pelagic areas spending the 

majority of its time shoaling regardless of the surrounding habitat (Faber 1980).  The cyprinid 

body form of golden shiners is more generalized and less adapted to maneuvering in and around 

objects as compared to the bluegill (Webb 1984).   

Given the contrasting morphologies and behaviors among the species, I hypothesized that 

if CWH functions as an effective refuge from predation, then I would expect the combination of 

a generalist piscivore (largemouth bass) and laterally compressed maneuvering prey species 

(bluegill) most likely to show a strong refuge effect.  I further hypothesized that if species-

specific behaviors are important in determining the refuge value of CWH, then combinations of 

both generalist piscivores with swarming/shoaling prey (golden shiner) and ambush piscivores 

(muskellunge) with either prey species would be less likely to result in decreased foraging 

success and increased prey survival with increasing habitat complexity.  My objectives were to 

examine the piscivore-prey interactions of species with contrasting predatory styles and anti-

predatory behavior to test for the contexts under which CWH may be considered a predation 

refuge.  I tested for the effects of CWH complexity on specific predatory and anti-predatory 

behaviors known to influence piscivore foraging success and prey vulnerability.   In this way, I 
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tested for potential mechanistic explanations for any effects of CWH complexity on the 

outcomes of piscivore-prey interactions among these species in my experimental unit.  

 

MATERIALS AND METHODS 

Fish Collection and Care  

Largemouth bass (N = 65; MeanTL ± SE = 122 ± 15 mm) and bluegill sunfish (N = 

2,356; MeanTL ± SE = 45 + 6 mm) were collected from local lake populations via seining and 

electrofishing.  Muskellunge (N = 76; MeanTL ± SE= 170 ± 18 mm) were obtained from the 

Jake Wolfe Memorial Fish Hatchery, Illinois Department of Natural Resources, Manito, Illinois.  

Golden shiners (N = 2,531; MeanTL ± SE= 51 + 7 mm) were obtained from local bait dealers. 

Piscivore species were held separately in two identical fiberglass rectangular tanks (2.13m L X 

0.61m W X 0.56m D; 530 L total volume; Living Stream System; Frigid Units Inc., Toledo, 

OH), while prey species were also held separately, but spread among four identical square 

fiberglass tanks (1.1 m W X 0.67m D; 550 L total volume). All tanks were fitted with plastic 

mesh covers, a self-contained charcoal recirculating filtration system, and continuous aeration.  

Piscivores were maintained by feeding them fathead minnows (Pimephales promelas) obtained 

from local bait dealers, while prey fish were maintained on a diet of commercial fish food 

(Tetrafin flakes
®
).  In order to expose naïve prey to predation, a single muskellunge and 

largemouth bass were held in each prey holding tank before and during the experiment. In this 

way, I sought to minimize any differences in experience with piscivores between prey species. 

Only healthy individuals, with no visible disease or malformations, and observed to have normal 

swimming and feeding behavior were used in the experiment.   
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Habitat Treatments 

 In order to create natural CWH treatments, I selected three naturally fallen red pine 

(Pinus resinosa) logs from the forest floor surrounding the Kaskaskia Biological station. 

Complexity of deadfalls was assessed using an adaptation of the qualitative system of Mallory et 

al. (2000) as modified by Wagner and Wahl (2007).  The scoring system ranked deadfalls from 0 

– 5 with 0 representing the least and 5 the most complex (Table 4.1).  Individual branches were 

sought which represented scores of 0, 3, and 5 hereafter referred to as low, moderate, and high 

complexity.  In addition to choice based on complexity, each log was selected to be roughly 15 

cm in diameter and 1 – 1.5 m in total length in order to standardize as much as possible for these 

additional structural properties (see Table 4.2 for physical habitat dimensions).  Target diameter 

was based on average measurements of CWH from published field surveys, and previous 

experiments evaluating refuge value of CWH (Everett and Ruiz 1993; Mallory et al. 2000; 

Newbrey et al. 2006); however, field estimates of median lengths of CWH were slightly greater 

(range 2.5-4.5m) than the structure used in my study. I were constrained by the dimensions of the 

experimental arena and therefore used the longest pieces of CWH that would fit within the pools. 

Each log was secured to a standard masonry brick (9.5 X 6.4 X 20.3 cm; 1.3 kg) with small 

diameter twine in order to sink the structure and hold it in place.  A brick was also placed in the 

tank center of the no habitat control to control for any effect of the presence of the brick on 

results.   

 

Experimental Setup and Protocol 

Treatments consisting of individual piscivores (largemouth bass or muskellunge) crossed 

with each prey species (ten individual prey of either golden shiners or bluegill) were replicated 

(N = 11) across 3 levels of CWH complexity and a no habitat control (sixteen total treatment 
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combinations) in circular laboratory pools (Figure 4.1). Prey densities (3.9 per meter squared) 

were selected to lie within the range found in littoral zones of natural systems (range 1-12 per 

meter squared; Wahl and Stein 1988). Pools were 1.8 m diameter tanks with a white bottom and 

sides and filled to a depth of 0.67 m with aerated filtered water (1600 L total volume).  Piscivore-

prey interactions were videotaped under controlled indoor conditions in the wet laboratory at the 

Kaskaskia Biological Station, INHS, Sullivan, IL, USA. Water temperature was held between 16 

and 18 C, and photoperiod was set at 12 h light: 12 h dark. 

 All experiments were conducted in one of four identical tanks described previously.  

Prior to beginning trials, a randomization scheme was generated using statistical software 

(PROC PLAN; SAS
®

 Version 8) to ensure that each treatment combination was randomly 

assigned.  Each 16-treatment replicate was divided into groups of 4 for each individual trial. 

Each complete replicate trial was conducted over a one-week period and consisted of four trials 

(four tanks per trial and 16 total experiments per replicate). Woody habitat was reassigned to a 

new tank after each trial.  Preliminary trials with a subset of treatments indicated no effect of trial 

(day) on results so I considered the completion of each set of 4 trials as a single block. Week was 

used as a blocking factor in final analyses to control for any long term temporal variation within 

the experiment.   

Piscivores were acclimated to prey free tanks for 24 hrs prior to the start of a trial to 

reduce the effect of handling stress and to standardize hunger levels.  Prey fish were introduced 

10 minutes prior to the start of a trial and were spatially separated from the piscivores in a clear 

plastic holding chamber that allowed exchange of  both visual and chemosensory piscivore cues 

to reach the prey and prevented any bias due to prey being naïve of piscivore presence.  Trials 

were begun by gently releasing prey from the holding chamber in the area of the tank farthest 
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from the piscivore.  To minimize disturbance and assist with behavioral measurements, a 

suspended opaque curtain surrounded all four tanks and the experimental trials were recorded on 

videocassette by suspending a camera (AUC-75, Atlantis Camera, Englewood, New Jersey, 

USA) 2 m above each tank with a complete view of the tank circumference (see Cooke and Bunt 

2004 for a description).  Piscivore behaviors were recorded for the first hour of the experiment 

(Savino and Stein 1982; Savino and Stein 1989a). After the completion of behavioral recordings, 

each experiment was allowed to run for a total of 24 hours upon which all piscivores were 

removed and all surviving prey fish counted.  

In order to avoid confounding prey size preferences with effects of habitat complexity, I 

scaled prey sizes to published optimal sizes for each piscivore.  Bluegills were 25-32% of 

largemouth total length (TL) and 20-25% of muskellunge TL and (Hoyle and Keast 1987).  

golden shiners were 20-30% of largemouth bass TL and 25-30% of muskellunge (Gillen et al. 

1981; Reid et al. 1999; Winemiller and Taylor 1987).  In this way, I minimized the influence of 

piscivore body size and size selection on comparisons of survival rates between prey species.  

Individuals of prey species were used only once over the course of the study. The large number 

of treatments and replicates required multiple uses of piscivores.  To avoid any bias, piscivores 

with the same level of experience were used in each block of the experiment. After completing a 

trial, previously used fish were segregated to another holding tank (identical to the original) until 

all fish had been used once (blocks 1-9).  Randomly selected subsets of piscivores were then 

reused to complete the last two blocks of the experiment to control for variation due to learning.  

 



96 

 

Behavioral Measurements 

 Quantified behaviors of piscivores included measures of frequency of occurrence and 

duration of several key components of the predation sequence including searching/swimming, 

follows, pursuits, attacks, and captures (Savino and Stein 1982).  An index of piscivore activity 

rates was calculated as the sum of time spent swimming, pursuing, attacking and capturing prey 

over 1hr observations. In addition, I recorded distances of all strikes and captures and calculated 

strike and capture efficiencies as the ratio of strikes to follows and captures to strikes, 

respectively.  Recordings were digitally recorded using a video capture device and associated 

software (Grabbee X 2.0; Videohome Technology Corporation; Taipei, Taiwan) and behaviors 

were quantified using the professional version of the BEAST software package (Windward 

Technology; Kaneohe, Hawaii).  Piscivore strike distances were calculated with ImageJ
®
 

software (Rasband 2011) from still images using the single camera method (Laurel et al. 2005), 

which uses the relative distance between an individual fishes‟ 2-dimensional (x,y) position and 

its shadow on the tank bottom to calculate its height in the water column (z).  

 Behaviors of prey were collected by sampling 18 evenly distributed points (every 200 s) 

throughout each one-hour video segment.  Measures of prey behavior included the number of 

independent shoals, the number of isolated individual prey, the average distance between the 

piscivore and the nearest prey fish, and a measure of prey activity.  A shoal was considered any 

group of 2 or more individuals moving in relative unison around the tank or if stationary 

maintaining a linear distance of less than 3 body lengths from any other individual.  An 

independent school was any group of two or more individuals moving independently from any 

other group and at least 3 body lengths apart. The criterion of three body lengths was chosen 

based on previous research, which showed that nearest neighbor distances between shoaling 
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individuals averages around 0.7 body lengths and that fish outside this distance are not likely to 

be actively shoaling (Pitcher 1983).  Randomly following two prey fish from each point 

sampling time and recording the proportion of a 60 second period each individual spent 

swimming indexed prey activity. If non-shoaling individuals were present, one of the two 

observations included a non-shoaling individual in order to estimate an average activity rate for 

the entire prey assemblage. Distances between piscivores and the nearest prey were calculated 

using the methods outlined previously for piscivore strike distances. Means were calculated from 

all 18 measurements for each variable across each 1-hour segment to produce a single value for 

each replicate.   

 

Statistical analyses 

All analyses were performed using a linear mixed model incorporating fixed effects of 

prey species, CWH complexity, interactions between these factors, and a random blocking factor 

(week). Data for each piscivore species were analyzed separately to avoid confounding piscivore 

energetic requirements with responses to habitat complexity. All errors were tested for 

assumptions of normality using a Shapiro-Wilk‟s test and homogenous variances using Levene‟s 

test. In cases where model residuals did not conform to a normal distribution, a square root 

transformation was used (proportion data).  When significant main effects were found for the 

fixed factor of CWH complexity post hoc comparisons between levels were assessed using 

Tukey tests.  To test for potential CWH by prey species interactions, pre-planned linear contrasts 

were used to make pairwise comparisons within each level of CWH between prey species. When 

prey species by CWH interactions were significant, comparisons between levels of CWH within 

prey species were made using linear contrasts using a Tukey modification to control family-wise 
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error rates.  All analyses were performed using the SAS
®
 system version 8 and all tests were 

considered significant at an alpha of 0.05.   

 

RESULTS 

 

Piscivore Foraging Success and Behavior 

 The number of follows by largemouth bass was significantly affected by an interaction 

between prey species and CWH complexity (df = 3, 79; F = 3.40; P = 0.02).  Bluegills were 

followed more at no (P <0.01) and low (P <0.01) CWH complexity than golden shiners, whereas 

the two species experienced similar numbers of follows at moderate and high levels of CWH (all 

P > 0.05; Figure 4.2A).  The interaction was driven by changes in the frequency with which 

largemouth bass followed bluegills, whereas follows of golden shiners was unchanged across 

CWH complexity (all P > 0.05).  Largemouth bass followed significantly fewer bluegills at 

moderate CWH complexity than at zero or low complexity (all P < 0.05), while high CWH 

complexity was intermediate (Figure 2A).  In contrast, the number of follows performed by 

muskellunge was not significantly affected by any of the measured factors (all P > 0.05; Figure 

4.2B)).     

The number of attacks by largemouth bass mirrored those for the number of captures over 

the same 1-hr period.  The number of attacks was significantly affected by prey species (df = 1, 

79; F = 9.95; P <0.01). Across all levels of CWH, largemouth bass attacked golden shiner prey 

(Mean ± SE = 8.37±1.18) an average of 2.87 times more often than bluegills (Mean ± SE = 

2.99±1.21; Linear contrast; all P<0.05; Figure 4.2C). In contrast, the number of attacks 

performed by muskellunge was not affected by any of the measured factors (all P > 0.20; Figure 

4.2D).  
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The number of prey captured by largemouth bass during 1-hr was significantly affected 

by prey species (df = 1, 79; F = 21.28; P = <0.01).  Averaged across all CWH treatments, 

largemouth bass captured over three times more golden shiners (Mean ± SE = 2.17 ± 0.24) than 

bluegills (Mean ± SE = 0.71 ± 0.25) and this difference was significant at all levels of CWH 

(Linear contrasts; all P<0.05; Figure 4.2E). In contrast, the number of prey captured by 

muskellunge during the 1-hr period was significantly affected by the main effect of CWH 

complexity (df = 3, 79; F = 3.39; P <0.03), but not the interaction with prey species. 

Muskellunge captured a greater number of prey fish at low CWH complexity as compared to the 

other levels or the structure free treatments (Tukey tests; all P < 0.03).  The number of bluegills 

and golden shiners consumed by muskellunge did not differ at any level of CWH (all P>0.12; 

Figure 4.2F). 

The number of prey captured over 24-hr by largemouth bass was similarly affected by 

prey species (df = 1, 79; F = 10.87; P = <0.01); however, over this longer time period there was 

also a significant interaction between prey species and CWH complexity (df = 3, 79; F = 3.10; P 

= 0.03).  The number of golden shiners captured was similar to the number of bluegills captured 

in the zero complexity treatment (Linear Contrast; P = 0.63); however, the number of shiners 

captured was significantly higher at all of the treatments containing CWH (Linear Contrasts; all 

P < 0.05; Figure 4.2G).  The number of golden shiner prey consumed by largemouth bass 

increased with increasing CWH complexity, while the number of bluegills consumed was 

unchanged across the habitat complexity gradient. The number of golden shiners captured was 

significantly greater (approximately 35% higher) at the highest level of CWH complexity than in 

the zero structure treatment (Tukey; P < 0.02); but no significant differences existed between 

CWH levels for bluegill prey (Tukey tests, all P > 0.20).  For muskellunge, the number of prey 
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captured was significantly affected only by the main effect of prey species (df = 1, 79; F = 21.74; 

P <0.01). Muskellunge captured significantly higher numbers of golden shiners (1.8 times more) 

than bluegills across all habitat complexity treatments (all P<0.04; Figure 4.2H) over the 24-hr 

period. 

The proportion of largemouth bass follows resulting in attacks on prey fish (square root 

transformed) was significantly affected by prey species (df = 1, 79; F = 26.15; P <0.01; Figure 

4.3A). Across all levels of CWH, the proportion of largemouth bass follows resulting in an attack 

was more than twice as high for golden shiner prey (Mean ± SE = 0.37±0.03) than for bluegills 

(Mean ± SE = 0.18±0.03) that was significant at all levels of CWH (Linear contrasts; all P <0.04) 

with the exception of the moderate complexity treatment where the two species did not differ (P 

= 0.29; Figure 4.3A). Similarly, the proportion of muskellunge follows that resulted in strikes 

(square root transformed) was affected by prey species (df = 1, 79; F = 4.01; P = 0.05).  For 

muskellunge, the difference between prey species was driven by a significant difference in the 

number of follows resulting in attacks for golden shiners than for bluegills in the no structure 

control (Linear Contrast; P <0.05; Figure 4.3B) with no significant differences between prey 

species in all treatments containing CWH (Linear contrasts all P > 0.20).  

The rate at which largemouth bass strikes resulted in captures (capture efficiency; square 

root transformed) was significantly affected by the main effects of prey species (df = 1, 79; F = 

4.27; P = 0.04) and CWH complexity (df = 3, 79; F = 4.03; P = 0.01).  Across all levels of CWH, 

largemouth bass capture efficiency was 17% greater for golden shiners (untransformed mean ± 

SE = 0.47) than for bluegills (untransformed mean ± SE = 0.30).  The effect of prey species was 

due to the cumulative effects of subtle differences across CWH complexity as there were no 

significant differences between prey species within any level of CWH (all P > 0.09; Figure 
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4.3C). The proportion of largemouth bass strikes resulting in captures was significantly lower at 

moderate CWH complexity than at either zero or high complexity (Tukey tests; all P<0.05) with 

low habitat complexity being intermediate. For muskellunge, the proportion of attacks that 

resulted in captures (square root transformed) was significantly affected by prey species (df = 1, 

79 F = 6.93; P = 0.01), CWH complexity (df = 3, 79; F = 3.00; P = 0.04) and the interaction 

between these two factors (df = 3, 79; F = 2.50; P = 0.05).  The proportion of muskellunge 

follows resulting in attacks was similar in the structure less and the moderate complexity 

treatment (Linear Contrasts; all P > 0.24), whereas a significantly higher proportion of attacks 

resulted in captures for golden shiners than for bluegills at low and high CWH complexity 

(Linear Contrasts; all P < 0.05; Figure 4.3D).    Changes existed in the proportion of 

muskellunge strikes resulting in captures for golden shiners whereas there were no significant 

changes across CWH complexities for bluegills (Tukey tests; all P > 0.09). When preying on 

golden shiners, a greater proportion of muskellunge attacks resulted in more captures at low and 

high CWH complexity than in the structure less environment (all P < 0.08), whereas moderate 

CWH complexity was intermediate (Figure 4.3D).   

Largemouth bass activity rates were significantly affected by the main effects of prey 

species (df = 1, 79; F = 11.29; P < 0.01) and CWH complexity (df = 3, 79; F = 3.13; P = 0.03) as 

well as the interaction between these two factors (df = 3, 79; F = 3.65; P = 0.02).  The number of 

seconds largemouth bass spent active was significantly higher for bluegill than golden shiners at 

zero and low, CWH complexity (Linear Contrasts; all P <0.01) whereas there was no difference 

between prey species at moderate or high CWH complexity (all P > 0.10; Figure 4.4A). There 

were changes in largemouth bass activity levels with bluegills across CWH complexities that 

were not present across golden shiner treatments (Figure 4.4A).  With bluegill prey largemouth 
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bass activity  was significantly lower at moderate and high CWH complexities as compared to 

the zero structure treatment (Tukey tests; all P<0.04) while the low complexity treatment was 

intermediate.  There were however no significant differences in largemouth bass activity levels 

across CWH complexities in treatments with golden shiners (Figure 4.4A). In contrast to 

largemouth bass, muskellunge activity levels were not affected by any of the measured factors 

(all P > 0.47; Figure 4.4B). 

Largemouth bass strike distance was not affected by prey species, CWH complexity, or 

their interaction (all P > 0.14; Table 4.4).  Similarly muskellunge strike distance was not affected 

by any of the measured factors (all P > 0.10; Table 4.4). 

                 

Prey Behavior 

With largemouth bass, the average number of independent prey shoals was significantly 

affected by the main effect of prey species (df = 1, 79; F = 22.39; P <0.01) and the interaction 

between prey species and CWH complexity (df = 3, 79; F = 4.48; P <0.01). Bluegills formed a 

significantly greater number of independent shoals than golden shiners across zero, low, and 

moderate CWH complexities (Linear Contrasts; all P <0.01) while the two species showed no 

significant differences at the highest level (P = 0.44; Table 4.3). The interaction between species 

and CWH complexity was driven by opposing patterns of response in shoaling behavior between 

the two prey species.  The number of independent bluegill shoals decreased with increasing 

CWH complexity with the number of shoals being significantly lower at moderate and high 

CWH complexity than either zero or low complexities (Tukey tests; all P<0.03). In contrast, the 

number of independent golden shiner shoals increased at the highest level of CWH complexity 

being significantly greater than all of the other treatments  (Tukey tests; all P<0.05). In contrast, 
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for muskellunge the number of prey shoals was significantly affected by prey species (df = 1, 79; 

F = 13.79; P <0.01); but not by CWH or their interaction. Across all structural complexity 

treatments bluegills averaged a slightly greater number of independent shoals than golden shiners 

(Table 4.3).  

The number of isolated individual prey with largemouth bass mirrored those for the 

numbers of independent shoals being significantly affected by the main effect of prey species (df 

= 1, 79; F = 8.71; P <0.01) and the interaction between prey species and CWH complexity (df = 

3, 79; F = 4.07; P = 0.01).  There were significantly greater numbers of non-shoaling bluegills 

than golden shiners at zero and low CWH complexity (all P <0.04) whereas the two prey species 

did not differ at moderate and high CWH complexity levels (all P > 0.4; Table 4.3).  There were 

fewer non-shoaling bluegills at moderate and high CWH complexity than at in either zero or low 

CWH complexity (Tukey test;  all P<0.01). Golden shiners exhibited an increase in the number 

of isolated individuals at moderate and high CWH complexity relative to zero or low complexity 

treatments (Tukey test; all P<0.02). The number of isolated individual prey with muskellunge 

was significantly affected by prey species (df =1, 79; F = 16.59; P < 0.01).  Across all CWH 

complexities the number of isolated individual bluegills was greater (7 times) than the number of 

golden shiners (Table 4.3).  The difference between prey species was consistent across habitat 

context with significantly more isolated bluegills than golden shiners in each level (Linear 

contrasts; all P<0.03). 

With largemouth bass prey activity (square root transformed) was significantly affected 

by the main effect of CWH complexity (df = 3, 79; F = 6.75; P = <0.01).  No significant 

differences existed in activity rates between prey specie in any of the levels of CWH complexity.  

Averaged across prey species activity rates decreased at high CWH complexity relative to the 
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zero, low and moderate complexity treatments (Tukey tests; all P <0.03; Table 4.3).  With 

muskellunge there were no significant effects on prey activity (square root transformed; all P > 

0.7; Table 4.3).  

 The average distance between largemouth bass and the nearest prey fish was significantly 

affected by an interaction between prey species and CWH complexity (df = 3, 79; F = 2.76; 

P<0.05).  Bluegills increased their distance from the piscivore with increasing CWH complexity 

while the distance between piscivores and golden shiners decreased.  Golden shiners maintained 

a greater distance from piscivores than bluegills in the zero complexity treatment (Linear 

contrast; P<0.03) while the two species did not differ at low and moderate complexity treatments 

(Linear contrasts; all P>0.26).  Furthermore bluegills maintained a greater distance from 

piscivores than golden shiners in the high CWH complexity treatment (Linear contrast; P<0.04; 

Table 4.4).  The average distance between largemouth bass and the nearest bluegill prey was 

significantly greater in the high CWH complexity treatment than all other levels of habitat 

complexity (Tukey test; P<0.03).  In contrast the average distance between largemouth bass and 

the nearest golden shiner prey was significantly shorter at high CWH complexity than either zero 

or low complexity (Tukey test; P<0.05) while moderate complexity was intermediate. When 

muskellunge were the piscivore there was a significant effect of prey species (df = 1, 79; F = 

9.86; P <0.01) on the mean distance between piscivores and the nearest prey fish.  Golden 

shiners maintained a greater distance from piscivores (1.2 times larger) than bluegills in all 

habitat treatments (Linear contrasts; all P<0.04) with the exception of moderate CWH 

complexity (Linear contrast; P>0.20; Table 4.4).  
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DISCUSSION 

My results did not support a role of coarse woody habitat in the form of single coniferous 

deadfalls as a predation refuge for any of the species examined, thus rejecting the hypothesis that 

largemouth bass combined with bluegill prey would yield a refuging effect with increasing 

habitat complexity. In contrast, I show that golden shiners and bluegills being preyed upon by 

largemouth bass experienced similar rates of daily survival in a structure free environment 

whereas golden shiner survival rates declined with increases in CWH complexity.  Golden 

shiners and bluegills exhibited different shoaling behavior, and proximity to piscivores as CWH 

complexity increased. Shoaling behavior is a known anti-predatory strategy thought to reduce 

predation risk in several ways including predator confusion, increased diligence, lowered 

encounter probability with predators, and lower per capita mortality risk during an attack 

(Milinski and Heller 1978; Turner and Pitcher 1986; Lima 1995).  Many studies with shoaling 

fish have shown that predator success is increased when feeding on smaller shoals or isolated 

individuals (Milinksi 1984; Allan and Pitcher 1986; Landeau and Terborgh 1986). Furthermore 

predator and prey proximity can be expected to be related to predation risk in aquatic predator-

prey interactions as most piscivores attack from short distances (0.25-0.5 m; Savino and Stein 

1989) and rely on visual contact with prey.  Anti-predator behaviors of prey fish often include 

moving quickly out of strike range (Lima and Dill 1990).  Consistent with these findings 

previous studies have documented that attacked prey fish are often significantly closer to 

piscivores than those not attacked (Savino and Stein 1982; Savino and Stein 1989a). Based on 

these previous studies all of these changes in anti-predatory behavior would serve to increase 

vulnerability of golden shiners as CWH complexity increased but decrease vulnerability of 

bluegills. These behaviors may offer a mechanistic explanation for the observed differences 
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between golden shiner and bluegill daily survival when preyed upon by largemouth bass across 

the gradient of CWH complexity in my experimental arenas.  

Previous studies have documented declines in shoal size with increasing habitat 

complexity for other obligate shoaling aquatic species and have speculated that complex 

structure may disrupt the ability of prey to maintain large shoals due to visual or physical barriers 

(Eklöv 1999, Flynn and Ritz 1999).  For example, a study examining the mortality rates of 

mysids (Paramesopodopsis rufa) fed upon by a generalist predator (Australian salmon; Arripis 

trutta) and an ambush predator (big-bellied seahorse; Hippocampus abdominalis) found that 

increased seagrass complexity disrupted the coherence of mysid swarms resulting in an increase 

in the number of independent swarms (Flynn and Ritz 1999).  Decreased coherence and shoal 

size lead to an increase in predation rates by Australian salmon.  Combined with my study these 

results suggest that interactions with habitat complexity in obligate shoaling/swarming aquatic 

prey such as golden shiners and mysids may be a common emergent effect of local scale habitat 

complexity.  

Differential behavioral responses of prey species in my experimental arenas to increasing 

habitat complexity may offer testable hypotheses to explain patterns of field abundances in lakes 

where bluegills and golden shiners coexist.  Previous studies comparing competitive ability 

between bluegills and golden shiners have found similar competitive ability in unstructured 

environments whereas bluegills were favored in structured environments dominated by aquatic 

vegetation (Paszkowski 1986).  Vulnerability to largemouth bass in my experimental arenas was 

equal in an open water habitat whereas golden shiners were significantly more vulnerable in the 

presence of habitat structure. Littoral zone habitat complexity may alter the direction of two 

major ecological forces (predation and competition) in the interaction between golden shiners 



107 

 

and bluegills in largemouth bass dominated lakes.  In addition to competitive ability, differential 

effects of habitat on predation risk between these two species offers a testable hypothesis to 

explain why bluegills dominate in some lakes but coexist with large numbers of golden shiners 

in others (Hall et al. 1979).   

Although I did not find an effect of CWH complexity on the total rate of prey capture by 

piscivores there were significant effects of CWH and prey species on largemouth bass behavior 

including the number of prey follows, efficiency of prey capture as well as activity rates. 

Largemouth bass capture efficiency was greater at high levels of CWH complexity as compared 

to low and moderate complexity levels for both prey species. Capture efficiency was also high in 

my structureless control treatment however piscivore activity and the frequency with which 

piscivores followed prey was also significantly higher in these treatments than treatments 

containing more complex CWH in treatments with bluegill prey.  These increased activity rates 

in low complexity environments were not offset by any changes in the rate of prey capture.  

These results suggest that prey species and CWH complexity may affect piscivore energy 

balance and growth rates through shifts in fish behavior as the rate of energy return would be 

maximized at high levels of CWH either through increases in capture rates of schooling prey or 

through reduced activity rates when preying on more behaviorally flexible prey such as bluegills.  

Consistent with my results a recent tracking study across lakes of varying CWH abundance 

found a reduction in home range size, overall activity levels and increases in largemouth bass 

consumption rates in lakes with abundant CWH relative to those with lower abundances also 

suggesting an effect of CWH on largemouth bass energetics (Ahrenstorff et al. 2009).  These 

findings are also in agreement with several recent field scale studies that documented declines in 

largemouth bass growth with decreasing CWH abundance. A positive relationship has been 
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observed between CWH abundance and size specific growth rates of largemouth bass (Schindler 

2000).  Declines in largemouth bass growth rates in a northern Wisconsin lake have been 

documented in response to a reduction in CWH abundance (Sass et al. 2006a).  Collectively 

these results suggest that largemouth bass growth may be reduced in systems with low CWH 

abundances due to the effects of CWH on piscivore behavior and foraging efficiency and that 

these effects are also influenced by prey species traits.  

My results for muskellunge support the findings of previous studies that have shown a 

lack of an effect of habitat complexity on sit-and-wait predators (Tomcko et al 1984; James and 

Heck 1994; Eklöv and Diehl 1994; Flynn and Ritz 1999; Ostrand et al. 2004; Schultz and 

Kruschel 2010). Lack of sensitivity of muskellunge to habitat complexity is not surprising 

considering that the esocid body form is thought to have been largely selected for foraging in 

such complex habitats (Webb 1984).   Furthermore muskellunge appeared to elicit fewer and 

weaker behavioral responses from prey compared to largemouth bass presumably due to 

differences in foraging mode. There was no effect of CWH on prey activity rates with 

muskellunge whereas prey decreased their activity rates across habitat complexity with 

largemouth bass. Muskellunge foraging efficiency was higher in the presence of CWH than in an 

open environment for golden shiner prey; except at moderate CWH complexities due to an 

increase in attack rate. Based on my findings I would predict that muskellunge may exhibit 

increased growth in the presence of CWH relative to open environments when soft rayed prey 

such as golden shiners are available as previous studies with esocids have found that laboratory 

patterns did scale up to affect growth in the field (Hart and Connellan 1984; Wahl and Stein 

1988). Differences in vulnerability of bluegills and golden shiners to muskellunge have been 

noted between bluegills and golden shiners have been noted previously with higher vulnerability 



109 

 

of golden shiner prey as compared to bluegills (Weithman and Anderson 1977).  Differences 

were mediated by lower capture efficiency for muskellunge when foraging on bluegill prey as 

compared to golden shiners. Collectively these results suggest a beneficial effect of CWH on 

muskellunge energetics however this effect may not be realized when soft rayed prey such as 

golden shiners are not available.  

My finding of a lack of refuge effects of CWH for fish prey is in contrast to two previous 

studies that supported a role of CWH as a predation refuge. A simple log structure increased 

grass shrimp (Palaemonetes pugio) survivorship (Everett and Ruiz 1993). Overwinter survival of 

a smaller cohort (below 126mm) age-0 largemouth bass increased with surface area of brush 

coverage in small ponds suggesting refuge from predation (Miranda and Hubbard 1994).  

Discrepancies between these findings and ours are not readily explainable with the available data 

but may be due to several factors including differences in species specific behavior, water 

temperatures, refuge architecture (artificially assembled brush and simple logs vs deadfall trees). 

Other confounding factors could include interactions between habitat and fish size and prey 

availability. Predation in natural communities is often driven by many concurrent and 

interrelated factors. Future work will be required to identify the importance of species-specific 

behavior, refuge architecture, and interactions with biotic and abiotic variables in explaining 

discrepancies between studies.  

 

Conclusions and Limitations  

Past research of specific mechanisms by which habitat complexity interferes with 

piscivore foraging has identified the size of interstitial spaces (e.g. stem density, branching 

density), the coverage of habitat structure and the relative body sizes of predators (which may 
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amplify the effects of stem/branching density; Bartholomew et al. 2002) as important 

mechanisms affecting predator capture success. My results indicate that complex CWH in the 

form of single coniferous branches does not reduce foraging ability of piscivorous fishes across 

the species and size ranges examined in my experimental arenas.  I cannot rule out the possibility 

that CWH may affect the foraging success of larger piscivores, or other species.  In addition, 

larger CWH or more dense aggregations may affect piscivores foraging success by increasing 

visual barriers and or reducing sizes of interstitial spaces and require further research.  

The woody structure I utilized was chosen to reflect reported dimensions (diameter, 

complexity, and areal density) found within the range of common structures in surveys of natural 

systems (Mallory et al. 2000; Newbrey et al. 2006). These studies suggest that highly complex 

CWH of larger dimensions and higher densities than those employed in my study are relatively 

rare in most natural systems. The majority of CWH in the littoral zone of an Ontario headwater 

lake was highly decayed with around 1% representing freshly deposited highly complex structure 

(Mallory et al. 2000).   Furthermore the distribution of CWH in a northern Wisconsin lake was 

highly skewed toward single, short (2.5m), structurally simple pieces (Newbrey et al. 2006). I 

caution however that if such rare structures do indeed function as significant prey refuges then 

the loss of these larger pieces or denser aggregations of CWH may make many lakes 

exceptionally sensitive to the loss of these structures. Future research should focus on these 

potentially rare habitats to judge their ecological importance.  

Another limitation of my study may be the unique histories of predator and prey source 

populations.  Previous work has demonstrated that the ability of piscivorous predators to capture 

prey fish can be reduced in hatchery origin populations relative to wild fish (Savino et al. 1993).  

While the hatchery origin muskellunge used in our study had experience foraging on fish prey 
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(they were reared extensively in ponds with fathead minnows), they had less experience with 

spiny rayed prey fishes such as bluegills, which may complicate direct comparisons between 

predators and prey vulnerability in my study.  Additionally, the wild bluegills collected for my 

experiment may have had greater experience with predators relative to the golden shiners 

acquired from a bait dealer.  Prior studies suggest that exposing these naïve prey fish to predators 

prior to the experiment should have reduced these differences as it has been shown that prey fish 

rapidly acquire (less than 1 week  or a single exposure) the ability to recognize predators through 

such chemical and visual conditioning (Brown et al. 1997; Mirza and Chivers 2000; Olson et al. 

2012).  For example a previous study examining responses of golden shiners to a single predator 

conditioning event (exposure to excretions from predators fed a diet of golden shiner) found that 

fish acquired from bait dealers displayed strong shelter seeking behavior when exposed to these 

cues (Godard et al. 1998).  These arguments aside, I cannot be absolutely certain that differences 

in source populations are not responsible for some of the patterns reported in my study and future 

studies should attempt to control for this variable as much as possible.  In addition, future studies 

should consider the relative importance of innate vs. learned behaviors in studies focused on 

species level trait variation.   

Examining piscivore-prey interactions in a confined laboratory environment may limit 

the inferences from such experiments and is a topic of ongoing debate (Carpenter 1996; Drenner 

and Mazumder 1999; Spivak et al. 2010).  For example, habitat complexity may interact with 

depth, substrate, light levels as well as numerous additional factors. Furthermore, because 

predators and prey in such a laboratory setting are spatially constrained there may be an increase 

in the intensity of predator prey interactions (Butler 1988) and this must be considered when 

making extrapolations from the laboratory to the field. Studies such as mine may misrepresent 
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the temporal and spatial interactions in natural populations by assuming a mass action or 

“reaction vat” form of predator-prey interactions where piscivores and prey are continuously 

interacting and all segments of the prey population are equally vulnerable.  In contrast, 

interactions between piscivores and prey fish in natural ecosystems may be spatially and 

temporally restricted into distinct “foraging arenas” whereby individual prey fish and different 

segments of prey populations are not continuously available or vulnerable to predators (Walters 

and Juanez 1993; Ahrens et al. 2012).   By focusing solely on the direct interactions between 

predators and prey in a confined laboratory space I may have left out important effects such as 

scale predator and prey movements which may alter the importance of CWH as a refuge.  In 

addition my experiments did not incorporate effects of littoral structure on production of 

invertebrate prey, potential consequences for prey fish production, and effects on local prey 

density that can affect piscivore foraging success (Canion and Heck 2009). My results should be 

tested in future larger scale experiments to better incorporate such factors which may be 

important at the whole-lake level.   

 I found that littoral woody structure did not serve as a predation refuge from two 

piscivores with different foraging modes for two behaviorally different prey fish in a mesocosm 

environment. My results reinforce the findings of previous researchers working with vegetative 

cover that species-specific traits interact with habitat complexity.  For behaviorally inflexible 

prey species that rely on shoaling as a predator defense increasing woody habitat complexity can 

increase vulnerability to predators. Furthermore my results support a role of CWH complexity on 

predator foraging behavior and energetics which combined with recent field studies implies an 

important link between littoral piscivore behavior and habitat. A growing body of literature has 

begun to demonstrate that the circumstances under which aquatic habitats serves as a refuge from 
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predation are more complex than previously assumed.  Much future work remains to explore the 

habitat contexts and species traits that are important in determining the refuge value of specific 

littoral freshwater habitats. An especially pertinent question is whether the results of mesocosm 

studies as presented here are consistent at the whole-lake scale.  In addition, there remains a 

series of gaps in my knowledge of the field scale effects of littoral habitat changes (and 

subsequent changes in the spatial distribution of predation risk) on total prey mortality rates.  

There also remains a notable lack of empirical tests of the many model based predictions of 

refuge habitats on population dynamics and these areas are fruitful ground for future research.   
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Table 4.1. Qualitative rankings for coarse woody habitat complexity used to select individual deadfall red pine 

boughs of low, moderate, and high complexity.  Qualitative rankings and criteria were adapted from Mallory et al. 

2000 and Wagner and Wahl 2007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Classificiation Complexity Score Description

1 Low Bark absent, no primary and no secondary branches, 

few or no stubs of primary branches present.

2 Moderately Low Bark absent, only stubs of primary branches present, 

no secondary branches present.

3 Moderate Bark broken, most primary branches present, most 

secondary branches absent, no fine branching present.

4 Moderately High Bark entirely intact, all primary branches present, 

many secondary branches present with some fine branching.

5 High Bark intact, all primary and secondary branching present 

large amounts of fine branching present, foliage may remain.



120 

 

Table 4.2. Physical characteristics of coarse wood used to examine effects of habitat complexity on piscivore-prey 

interactions of four freshwater fish species.  Complexity and complexity score are as defined in table 1.  Volume 

was determined by displacement whereas mass, diameter and total length were measured directly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CWH Complexity Complexity Score Dry Mass (g) Volume (cubic cm) Bole Diameter (cm) Length (m)

Low 0 420 957.45 12.8 1.31

Moderate 3 880 1436.17 15.4 1.15

High 5 2120 3829.80 16.8 1.48
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Table 4.3. Average numbers of shoals, isolated individuals and prey activity rates across three levels of coarse 

woody habitat complexity and a no habitat control for either bluegills (Lepomis machrochirus) or golden shiners 

(Notemigonus crysoleucas) being preyed upon by either largemouth (Micropterus salmoides) or muskellunge (Esox 

masquinongy). Means represent averages taken over 1-hour observations while standard errors are in parentheses. 

Asterisks indicate significant differences between prey species within each CWH level based on pre-planned linear 

contrasts while non-significant (ns) contrasts are also noted.  Letters indicate significant differences within prey 

species across CWH levels based on Tukey tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predator Prey Zero Low Moderate High

Largemouth Bass Bluegill 1.65(0.10)a 1.72(0.09)a 1.43(0.10)b 1.16(0.10)b

* * * ns

Golden Shiner 1.09(0.10)a 1.09(0.11)a 0.98(0.11)a 1.44(0.11)b

Muskellunge Bluegill 1.30(0.12)a 1.26(0.09)a 1.27(0.09)a 1.13(0.09)a

* * * ns

Golden Shiner 1.04(0.08)a 1.05(0.09)a 1.05(0.08)a 1.05(0.10)a

-----------------------------------------------------------------------------------------------------------------------------------------

Largemouth Bass Bluegill 2.11(0.40)a 2.70(0.36)a 1.42(0.40)b 0.93(0.40)b

* * ns ns

Golden Shiner 0.74(0.40)a 0.47(0.42)a 1.79(0.42)b 1.35(0.34)b

Muskellunge Bluegill 2.69(0.60)a 0.95(0.42)a 1.49(0.40)a 1.26(0.40)a

* * * *

Golden Shiner 0.09(0.40)a 0.11(0.42)a 0.17(0.40)a 0.39(0.49)a

-----------------------------------------------------------------------------------------------------------------------------------------

Largemouth Bass Bluegill 0.51(0.05)a 0.45(0.04)a 0.38(0.06)a 0.31(0.05)b

ns ns ns ns

Golden Shiner 0.54(0.05)a 0.45(0.05)a 0.44(0.04)a 0.35(0.04)b

Muskellunge Bluegill 0.46(0.08)a 0.50(0.06)a 0.40(0.06)a 0.44(0.05)a

ns ns ns ns

Golden Shiner 0.54(0.05)a 0.41(0.06)a 0.39(0.05)a 0.35(0.07)a

CWH Complexity

Number of Shoals

Number Not Shoaled

Prey Activity (Sec/Min)
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Table 4.4. Average strike distance and proximity to nearest prey across three levels of coarse woody habitat 

complexity and a no habitat control for either largemouth bass (Micropterus salmoides) or muskellunge (Esox 

masquinongy) preying upon either bluegills (Lepomis machrochirus) or golden shiners (Notemigonus crysoleucas). 

Means represent averages taken over 1-hour observations while standard errors are in parentheses. Asterisks indicate 

significant differences between prey species within each CWH level based on pre-planned linear contrasts while 

non-significant (ns) contrasts are also noted.  Letters indicate significant differences within prey species across 

CWH levels based on Tukey tests. 

 

Predator Prey Zero Low Moderate High

Largemouth Bass Bluegill 8.62(0.23)a 18.08(0.27)a 17.89(0.27)a 10.41(0.23)a

ns ns ns ns

Golden Shiner 13.36(0.18)a 15.25(0.18)a 15.00(0.21)a 13.96(0.21)a

Muskellunge Bluegill 27.92(5.71)a 17.78(3.74)a 32.96(4.94)a 40.06(4.94)a

ns ns ns ns

Golden Shiner 27.72(3.50)a 17.93(3.74)a 25.29(4.04)a 28.22(5.71)a

---------------------------------------------------------------------------------------------------------------------------------------------------------

Largemouth Bass Bluegill 40.83(7.85)
a

38.17(5.85)
a

45.46(5.45)
ab

52.91(5.45)
b

* ns ns *

Golden Shiner 60.51(5.45)
a

47.98(5.78)
a

36.70(5.78)
ab

40.33(4.54)
b

Muskellunge Bluegill 64.16(7.85)
a

58.94(5.85)
a

60.03(5.55)
a

62.11(5.85)
a

* * ns *

Golden Shiner 79.86(5.85)
a

74.07(6.20)
a

71.54(5.85)
a

73.12(7.16)
a

CWH Complexity

Predator Strike Distance (cm)

Distance to Nearest Prey (cm)
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Figure 4.1. Physical layout of experimental arenas used to assess the effects of woody habitat complexity on 

piscivore-prey interactions of four freshwater fish species as depicted by overhead cameras.  Treatments depicted 

include zero (A), low (B), moderate (C), and high (D) coarse woody habitat complexity.  See methods section for 

dimensions of tanks.  Physical dimensions of woody habitat can be found in Table 2. 

A B 

C D 
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Figure 4.2. Average number of occurrences of piscivore behaviors across three levels of coarse woody habitat 

complexity and a no habitat control. Results are for largemouth bass (Micropterus salmoides) (left panels) and 

muskellunge (Esox masquinongy) (right panels) feeding on golden shiner (Notemigonus crysoleucas) (open 

triangles) and bluegill (Lepomis machrochirus) prey (closed circles). Means represent averages taken over either 1-

hour observations or 24-hours as indicated and are for 11 total trials per treatment. Asterisks indicate significant 

differences between prey species within each CWH level based on pre-planned linear contrasts while non-significant 

(ns) contrasts are also noted.  Error bars represent ± 1 standard error. See results text for main effects comparisons.   
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Figure 4.3. Average ratios of attacks per follow and captures per attack for largemouth bass (Micropterus salmoides) 

(A-C) and muskellunge (Esox masquinongy) (B-D) foraging on either golden shiners (Notemigonus crysoleucas) 

(open triangles) or bluegills (Lepomis machrochirus) (solid circles) across a gradient of coarse woody habitat 

complexity and a no habitat control.  Asterisks indicate significant differences between prey species within each 

CWH level based on pre-planned linear contrasts with non-significant (ns) contrasts also noted.  Error bars represent 

± 1 standard error. See results text for main effects comparisons.   
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Figure 4.4. Average piscivore activity across three levels of coarse woody habitat complexity and a no habitat 

control for largemouth bass (Micropterus salmoides) (left panels) and muskellunge (Esox masquinongy) (right 

panels) predators feeding on golden shiner (Notemigonus crysoleucas) (open triangles) or bluegill prey (Lepomis 

machrochirus) (closed circles). Means represent averages taken over 1-hour observations and are for 11 total trials 

per treatment. Asterisks indicate significant differences between prey species within each CWH level based on pre-

planned linear contrasts while non-significant (ns) contrasts are also noted.  Error bars represent ± 1 standard error. 

See results text for main effects comparisons.   
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CHAPTER 5: CONCLUSION 

 
 Collectively the above studies have several implications for understanding the role of 

predation in lower latitude lake ecosystems in the central and southern U.S. In a series of 

controlled whole lake piscivore manipulations I found that piscivore enhancement caused a 

partial trophic cascade reducing the abundance of juvenile and small-bodied littoral fishes and 

subsequently increasing the total abundance of benthic macroinvertebrates. These results suggest 

that unlike previous studies in northern temperate lakes (where enhanced predation cascaded 

through the pelagic food web) increased predation in these systems may be expected to primarily 

affect the littoral and benthic food web.  These differences between systems are likely due to 

differences in foraging traits between secondary consumers in lower latitude lakes versus 

northern systems that have been studied previously.  Furthermore there is a consistent trend of 

studies which have found that gape limited piscivores foraging on species able to reach large 

body sizes may not strongly suppress populations of these prey.  These findings suggest that 

further refinement and conceptualization of my understanding of food web structure in lower 

latitude lake ecosystems as well as patterns by which predation pressure is propagated through 

these structurally more complex food webs is needed.  Such an understanding can only be 

developed through further study that embraces the unique ecological aspects of these 

ecosystems.  

 The introduction of new piscivore types into lake ecosystems is an ongoing trend that is 

likely to continue as the demand for recreational fishing remains high.  In addition increasing 

urban development is often correlated with unregulated species introductions and will likely 

continue to drive species introductions in the near future. The current trend of muskellunge 

introduction into lower Midwestern lake and reservoir ecosystems does not appear to have any 
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immediate negative consequences for existing fish populations based on the limited timeframe 

and range of species examined in my study.  Furthermore my results build upon recent 

manipulative studies supporting a potentially important interaction between resident largemouth 

bass and introduced muskellunge populations. Combined with previous work these results 

suggest that strong interactions between top predators may be a common outcome of introducing 

new piscivore species into lakes.  Much research remains to fully understand the behavioral and 

mechanistic causes for these interactions and predicting these outcomes prior to a planned 

introduction remains elusive.  Therefore while my results do not implicate a significant threat to 

the resident species examined by the introduction of muskellunge much work remains before 

definitive conclusions about the risk of introducing this species can be made.  Due to the 

unpredictable nature of such introductions managers should be cautious before recommending 

any new species be introduced.  

 While previous studies have suggested a role of coarse woody habitat as a refuge from 

predation my results from a mesocosm setting suggest that the effects of this habitat on piscivore 

populations may be more directly linked to behavioral mechanisms and their effects on organism 

energy balance however further research at the whole-lake scale is needed to test the generality 

of these findings. Furthermore the importance of this habitat in predator-prey interactions is 

linked to species traits and therefore precludes any across species generalization concerning the 

influence of this habitat as a prey refuge.  Future studies will be required to explore the potential 

for larger sizes of coarse woody habitat or more dense aggregations as potential prey refuges as 

my study was focused on single deadfalls and should not be considered to provide inference to 

other habitat types.  More research is needed to understand how the diversity of behavioral traits 

among various freshwater predator and prey species interact with potential habitat refuges before 
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general predictions can be made in real world settings.  Furthermore it remains to be seen 

whether the natural range of behavioral types can be classified into functional groups which may 

make such predictions tractable and this should be considered an important research area.  


