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Abstract

Given f(x) ∈ Q[x], graphing the doubly infinite sequence f
∣∣
Z mod 1 can often produce inter-

esting and even surprising results. In this paper, we will give some examples of such sequences,

introduce some techniques for their analysis and construction, and will provide an easy method

for distinguishing them from other sequences taking values in Q ∩ [0, 1).
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Chapter 1

Introduction

Watch a video of a propellor (or a spoked wheel, a fan, etc.) Pausing the video on any frame, we

see two somewhat blurry propellors. Playing the video at normal speed however, we usually see

four or six propellors at once, at times seeming to move clockwise and at other times counter-

clockwise. This illusion is called the “wagon wheel effect”, or temporal aliasing. Of course, the

simple explanation of the effect is that our eyes can only perceive so much visual information in

a given period of time, and our brains percieve even less. Thus, successive frames of the video

blend together. But why do we see four or six evenly spaced propellors most of the time instead

of an unpredictable maelstrom of blades, and what happens in the transitions between these

“states”? Let us work out an example to see why. Consider a propellor blade being accelerated

at 2 rev/sec2. Then the angle the blade makes with its starting position after t seconds is 2πt2.

Thus, the position of the end of the blade (on the unit circle) can be given by the equation

f(t) = e2πit2 . If we film the spoke at 400 fps for 5 seconds and plot the positions recorded, we

will get a pretty accurate representation of the actual continuous path of the blade, as shown in

Figure 1.1.

Figure 1.1: {(t, f(t/400)) : t ∈ {0, ..., 2000}}

If however, we film the blade for 20 seconds and plot these positions, the blade begins to

appear to take several positions at once, moving forwards then backwards in even, parabolic
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paths along the circle.

Figure 1.2:
{(
t, e2πi(t/400)2

)
: t ∈ {0, ..., 8000}

}

In the remainder of this paper we shall, for ease of representation, identify the circle with the

unit interval [0, 1) with addition mod 1. In this framework, the motion of the propellor blade

in the above example would be given by t 7→ t2 mod 1, and the graph in Figure 1.2 would look

like this.

Figure 1.3:
{(
t, (t/400)2 mod 1

)
: t ∈ {0, ..., 20}

}
This paper will be focused on the set of functions from Z → [0, 1) (that is, [0, 1)-valued

doubly infinite sequences) of the form x 7→ f(x) mod 1, where f is a polynomial function.

Figures 1.4- 1.11 illustrate the diversity of images inscribed by the graphs of these sequeces.

Figure 1.4:
{(
x, 241

1083x
2 + 13

16 mod 1
)

: x ∈ {−8000, ..., 8000}
}

We will show more such maps, but first, let us return for a moment to the propellor example.

Recall that the position of the propellor was defined by f(x) ≡
(
x

400

)2
= x2

160000 . Here and in the
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Figure 1.5:
{(
x, 1

43589145600x
3 + 447887

551162x
2 + 7

8 mod 1
)

: x ∈ {−4000, ..., 4000}
}

Figure 1.6:
{(
x, x3

65383718400 + 140489x2

388797 + 7
8 mod 1

)
: x ∈ {−10000, ..., 10000}

}

sequel, ≡ will denote equivalence mod 1, unless otherwise noted. Figure 1.12 shows a plot of f

from 0 to 20000 (50 seconds). The highlighted region ([15600, 16400]×[0, 1)) contains what seems

to be 5 parabolas centered at 16000. To see why, let ϕk(x) = 16000 + k + 5x for k ∈ {−2, ..., 2},

x ∈ Z. Then

f(ϕk(x)) ≡ 1600 + x+
k

5
+

k2

160000
+

kx

16000
+

x2

6400

≡ x2

6400
+
k

5
+

k2

160000
+

kx

16000

= f(5x) +
k

5
+

k2

160000
+

kx

16000
.

But then for x ∈ {−80, ..., 80} (so that (x, f(x)) is in the highlighted region), we have that∣∣ k2

160000 + kx
16000

∣∣ ≤ 401/40000, so

f(ϕk(x)) = f(5x) +
k

5
+ ε(x, k)

where |ε(x, k)| ≤ 401/40000 for all x, k in their prescribed domains. Thus, within the highlighted

region, each point on the graph is on one of 5 parabolas, indexed by k, and to a high degree of

approximation these parabolas are all similar and evenly spaced. Figure 1.13 shows a graph of
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Figure 1.7:
{(
x, 111111111

2000000000x
3 + 6

11x
2 + 23

121x+ 866
1331 mod 1

)
: x ∈ {−4238, ..., 4238}

}

Figure 1.8:
{(
x, 1

2000000000x
3 + 6

11x
2 + 23

121x+ 866
1331 mod 1

)
: x ∈ {−4238, ..., 4238}

}
f ◦ ϕ2 embedded in a graph of f .

Now to conclude this introduction, we will show a few more examples of sequences like the one

in the previous example (that is, sequences of the form x 7→ αx2 for α ∈ Q).
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Figure 1.9:
{(
x,
(
x− 250

601

)3
mod 1

)
: x ∈ {−5570, ..., 5570}

}

Figure 1.10:
{(
x,
(
x− 9445

1651

)3
mod 1

)
: x ∈ {−4571, ..., 4571}

}

Figure 1.11:
{(
x, 16000001

2000000000x
3 + 3

125x
2 + 3

125x+ 1
125 mod 1

)
: x ∈ {−4571, ..., 4571}

}

Figure 1.12: {(x, f(x)) : x ∈ {0, ..., 20000}}

Figure 1.13: {(x, f(x)) : x ∈ {12000, ..., 20000}}
{(ϕ2(x), f(ϕ2(x))) |x ∈ {−80, ..., 80}}
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Chapter 2

Background & Definitions

To begin with, we will get a few notations and conventions out of the way. For a, b ∈ N, we write

• For x ∈ R,m > 0 ∈ Q, [x]m shall denote the residue of q mod m, that is the unique

non-negative rational number x̃ < m such that x̃ ≡ x mod m.

• If m ∈ N and x is invertible mod m, we will let [x−1]m denote the unique non-negative

rational number x̃ < m such that xx̃ ≡ 1 mod m.

• a ∩ b = gcd(a, b),

• a ∪ b = lcm(a, b),

• a\b = a
a∩b .

• We will make sparing use of the Peano notation � for “such that”.

• As mentioned in the introduction, ≡ shall denote equivalence mod 1 unless otherwise noted.

• For a function f , we define f(•) = f . For instance if f(x) = x + 3, we may write • + 3

instead of f .

• We will write I for the identity function when the set it acts on is clear

Now we will define some subsets relevant to the sequence residues we will be discussing in this

paper.

Definition We define

• Q = QZ

• P =

{
f ∈ Q

∣∣∣∣∃d ∈ Z0, a1, ..., ad ∈ Q : f(x) =
∑d
k=0 akx

k (∀x ∈ Z)

}
9



• Z = ZZ

• N = P ∩ Z

and for n > 0 ∈ Q, we define

• Qn = Q ∩ [0, n) (this is contrary to the notation Qp for the p-adic field)

• Zn = Z ∩ [0, n) (though we will write N0 and not Z∞ for N ∪ {0})

• Qn = (Qn)Z

• Zn = (Zn)Z

Clearly, Q is a commutative ring with pointwise addition and multiplication, and P and N are

subrings of Q. The ring structure of P is identical to that of Q[X], the ring of polynomials in

some indefinate variableX. In particular, each polynomial function has an associated polynomial.

For n ∈ N, Qn does not have a ring structure as Q does (though Zn does), but it is still

an abelian group with addition mod n, and this is all we need it to be. There is a natural

projection µn from Q to Qn, which sends each sequence into its residue mod n.

Definition Let n > 0 ∈ Q. We define µn : Q → Qn by

µn(f)(x) = [f(x)]n

By the above definition, Qn = µn(Q), and Zn = µn(Z). Accordingly, we define

• Pn = µn(P)

• Nn = µn(N )

We shall refer to elements of P as (Rational) Polynomial Sequences (PSs), and accordingly,

we shall refer to elements of Pn as Polynomial Sequence Residues mod n, or PSRns. In the

introduction, we mentioned that we would henceforth identify the circle with the unit interval

[0, 1) with addition modulo 1, so we can represent all polynomial sequences on the circle as

PSR1s, but as we shall see in Lemma 2.0.5.i, Q1 ' Qn and P1 ' Pn for all n ∈ N, so we could
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have said this paper was about PSR47s, or whatever. That being said, we will be working enough

in Q1 that it is worthwhile to assign symbols to some of its important subsets.

Definition Let n ∈ N. We define

• Φ = Q1

• Φn = {f ∈ Φ
∣∣n(f(x)− f(0)) ∈ Z ∀x ∈ Z}

• Φn∞ =

∞⋃
k=0

Φnk

• Π = P1

• Πn = Π ∩ Φn

• Πn∞ = Π ∩ Φn∞

We also define In = µ(I/n) ∈ Φ. That is,

In(x) ≡ x/n ∀x ∈ Z

Now, since the objects we are dealing with are functions of Z, the the forward difference operator

∆ will come in handy. ∆ is to these functions essentially what the derivative is to differentiable

functions of R.

Definition We define ∆ : Q → Q by

∆[f ](x) = f(x+ 1)− f(x).

We also let

• ∆0[f ](x) = f(x)

• ∆n[f ](x) = ∆[∆n−1f ](x)

for n ∈ N.

Summing the recursive definition of ∆n yields the following expression.
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Lemma 2.0.1 For n ∈ N0, x ∈ Z, f ∈ Q,

∆n[f ](x) =

n∑
k=0

(−1)k
(
n

k

)
f(x+ n− k)

=

∞∑
k=−∞

(−1)k
(
n

k

)
f(x+ n− k)

For n ∈ Z, reader probably recognises the binomial coefficient
(
n
k

)
as the Xk coefficient of the

expression (1 + X)n, or as the number of ways we can pull k rabbits out of a hat consisting of

n rabbits. Since these numbers are integers, the function
(•
k

)
∈ Z. A more general definition of(

x
k

)
for all x ∈ C is

(
x

k

)
=

1

k!

k−1∏
j=0

(x− j)

where we adopt the convention that

−1∏
j=0

(x− j) = 1.

Since the RHS is a polynomial,
(•
k

)
∈ N . Substituting 0 for x and x for n in Lemma 2.0.1,

we get the following corollary, which asserts that for n ∈ N, f ∈ Q, if we are given the values

f(0), ..., f(n− 1), the value of f(n) is uniquely determined by ∆n[f ](0).

Corollary 2.0.2 For x ∈ N0, f ∈ Q,

f(x) = ∆x[f ](0) +

x∑
k=1

(−1)k−1

(
x

k

)
f(x− k).

Applying Corollary 2.0.2 recursively yields the fact that for n ∈ N, f ∈ Q, the value of f(n)

is uniquely determined by the differences ∆k[f ](0) for 0 ≤ k ≤ n. In particular, this implies

that if f is a periodic sequence with period n, the differences ∆k[f ](0) for 0 ≤ k ≤ n uniquely

determines f . This is important because as we shall see shortly (Lemma 2.0.5.ii), every PSR1 is

periodic. Periodic sequences will be important enough to our considerations that it is worthwhile

to make the following definitions.

Definition For any S ⊂ Q, we define

• Sm =
{
f ∈ Q

∣∣f(x+m) = f(x) ∀x ∈ Z
}
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• Sm∞ =
⋃∞
k=0 S

mk

So for instance, (Φ5)7 = Φ7
5 is the set of doubly infinite sequences taking values in {0, 1/5, 2/5, 3/5, 4/5}

which repeat every 7 terms. We will refer to the sets Πm as periodic domains. If f ∈ Π, then

there is a d ∈ N and f̃(x) ∈ Z[x] such that f ≡ f̃
d . It is not hard to see that for any such d,

f ∈ Πd The relationship between the non-negative values of f and its differences at 0 can be

made explicit via the following formula due to Isaac Newton.

f(x) =

∞∑
k=0

∆k[f ](0)

(
x

k

)

=

x∑
k=0

∆k[f ](0)

(
x

k

)

for all f ∈ Q, x ∈ Z, the second equality being due to the fact that
(
x
k

)
= 0 for k > x. In slightly

more generality, the formula goes as follows.

Theorem 2.0.3 (Newton’s forward difference formula) Let f ∈ Q. Then for all x ≥ a ∈

Z

f(x) =

∞∑
k=0

∆k[f ](a)

(
x− a
k

)

The following corollary is an easy consequence of Theorem 2.0.3.

Corollary 2.0.4 Let f ∈ Q. Then

• f ∈ P iff ∃!νk ∈ Q such that

f(x) =

d∑
k=0

νk

(
x

k

)
∀x ∈ Z (2.1)

where d is the smallest non-negative integer such that ∆kf(0) = 0 for all k > d.

• f ∈ N iff ∃!νk ∈ Z satisfying Equation 2.1

• f ∈ Pn iff f ∈ Qn and ∃!νk ∈ Qn such that

f(x) ≡
d∑
k=0

νk

(
x

k

)
mod n ∀x ∈ Z
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where d is the smallest non-negative integer such that ∆k[f ](0) ≡ 0 mod n for all k > d.

For f ∈ P, the number d from the previous corollary is clearly equal to the degree of its corre-

sponding polynomial, which suggests the following definition

Definition For f ∈ Q, we define

• deg f to be the smallest non-negative integer d such that ∆k[f ](0) = 0 for all k > d.

• degn f to be the smallest non-negative integer d such that ∆k[f ](0) ≡ 0 mod n for all

k > d.

Accordingly, we definec for S ⊂ Q

• S[d] = {f ∈ S
∣∣deg(f) < d}

• S[d, n] = {f ∈ S
∣∣degn(f) < d}

We note that for f ∈ Pn,

degn f = min
f̄∈P

{
deg f̄ |f̄ ≡ f mod n

}
We will now state a few easy but important facts about some of the subgroups we have

defined.

Lemma 2.0.5 Let m,n ∈ N, p prime. Then

i. The mapping f → f/n is an isomorphism of abelian groups from Qn to Φ(= Q1), Pn

to Π, and an injective homomorphism from Zn to Φn, and Nn to Πn, both with kernel

Φ1 = Π1 ' Q1.

ii. Π =
⋃∞
n=1 Πn =

⋃∞
n=1 Πn

iii. Πp∞ = Πp∞ + Π1

iv. Πm = {f ∈ Π
∣∣f ◦ µm = f}

Now, it is clear from lemma 2.0.5.iii that

Πpn ⊂ Φp
n

p∞ .
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In chapter 4, we will show that the opposite inclusion is also true, so that we have the following

theorem.

Theorem 2.0.6 Let p be a prime, and let n ∈ N ∪ {∞}. Then

Πpn = Φp
n

p∞ ,

Thus, we will completely classify the set of PSR1’s with prime power period. In chapter 5, we

will show (among other things) that this suffices to classify all of Π. In particular, we will prove

the following.

Theorem 2.0.7 Let m,n coprime in N and fm ∈ Πm, fn ∈ Πn with fm(0) = fn(0). Then there

is a unique function f ∈ Πmn such that

f(qx) = fr(x),

f(rx) = fq(x)

∀x ∈ Z.

This property not only provides a decomposition of Π into factors of Πp∞ = Φp
∞

p∞ , but is also

useful for constructing PSR1s with interesting graphs.
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Chapter 3

Embeddings

Recall the example in the introduction in which we let f(x) ≡ x2

160000 and ϕk(x) = 16000+k+5x

for k ∈ {−2, ..., 2}. We showed that the graph of f embeds the five parabolas
{
ϕk(x), f ◦ ϕk(x)

∣∣x ∈ Z
}

and that these parabolas are approximately similar and evenly spaced for x ≈ 16000. The action

Figure 3.1: {(x, f(x)) : x ∈ {12000, ..., 20000}}
{(ϕ2(x), f(ϕ2(x))) |x ∈ [−101, 101]}

f 7→ f ◦ ϕ will be important enough to give it its own operation symbol, ?

Definition We define ? : Z → EndAb (Q) by

?(ϕ) = ϕ?

where ϕ? : Q → Q is defined by

ϕ?(f) = f ◦ ϕ

for all f ∈ Q. We will call such a ϕ? an embedding. If for f, g ∈ Q, ∃ϕ ∈ Z such that ϕ?(f) = g,

we say that f embeds g.

The following lemma contains some easy but useful facts about embeddings.

Lemma 3.0.8 For ϕ ∈ N , n ∈ N

i. ϕ? ◦ µn = µn ◦ ϕ?
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ii. ϕ? (P) ⊂ P

iii. ϕ? (Pn) = Pn

iv. ϕ? (Πn) = Πn

v. ∀n ∈ N ∃r ∈ N � ϕ? (Πn) = Πnr

We will be particularly interested in the action of ? on N , owing to to the following easy lemma.

Lemma 3.0.9 Let ϕ ∈ Z. TFAE

i ϕ ∈ N

ii ϕ?(I) ∈ P

iii ϕ?(P) ⊂ P

Proof i⇐⇒ ii. ϕ?(I) = ϕ ∈ Z and N = Z ∩ P, so clearly, ϕ ∈ N iff ϕ?(I) ∈ P.

iii⇐⇒ ii. Obvious.

i ⇐⇒ iii. If ϕ ∈ N , f ∈ P, then ϕ?f = f ◦ ϕ which is obviously a polynomial sequence

since f and ϕ are.

� We have an analogous lemma concerning the action of ? on Nn for n ∈ N.

Lemma 3.0.10 Let ϕ ∈ Zn. TFAE

i ϕ ∈ Nn

ii ϕ?(In) ∈ Π

iii ϕ?(Π) ⊂ Π

We can see that ? is an injection of N by noticing that the function, ?−1 : EndAb (Q) → Q,

given by

?−1(ψ) = ψ(I)

17



is the inverse of ? on its range N ? since

?−1(ϕ?) = ϕ?(I)

= I ◦ ϕ

= ϕ.

In fact, we have the following lemma

Lemma 3.0.11 ? is an anti-isomorphism of the composition semigroups N and N ?

Proof ϕ is a homomorphism since

(ϕ? ◦ ψ?) f(x) = ϕ? (ψ?f) (x)

= (ψ?f) (ϕ(x))

= f (ψ(ϕ(x))

= f ((ψ ◦ ϕ)(x))

= (ψ ◦ ϕ)?f (x) ,

and since we already know that ? is a bijection between N and N ?, ϕ is an isomorphism.

�

As a second example of embeddings, let f ∈ P1 be defined by

f(x) ≡ (x+ 2/5)3

and for k ∈ Z, x ∈ R, let

ϕk(x) =
5x2

2
+
x

2
+ 5k − 1.

Since ϕk(Z) ⊂ Z, ϕ ∈ N , so ϕ?f ∈ P1. The sets {(ϕk(x), ϕ?kf(x)) |x ∈ Z} cover the graph of f

18



{(x, f(x)) |x ∈ {−700, ..., 700}}{(
ϕ−26(x), 1

25x+ 48
125

)
|x ∈ {−9, ..., 15}

}
with horizontal parabolas. It is not difficult to see why. First note that for x ∈ Z,

(x+ 2/5)3 = x3 +
6

5
x2 +

12

25
x+

8

125

≡ 1

5
x2 +

12

25
x+

8

125
,

so

ϕ?kf(x) ≡ 1

5
ϕk(x)2 +

12

25
ϕk(x) +

8

125

≡ 5

4
x4 +

1

2
x3 +

(
5k

1

4

)
x2 +

(
k +

1

25

)
x+ 5k2 +

2

5
k − 27

125

= 30

(
x

4

)
+ 48

(
x

3

)
+ (21 + 10k)

(
x

2

)
+

(
51

25
+ 6k

)
x+ 5k2 +

50k − 27

125

≡ 1

25
x+

50k − 27

125
.

Thus,

{
(ϕk(x), ϕ?kf(x))

∣∣x ∈ Z
}
≡
{(

5

2
x2 +

1

2
x+ 5k − 1,

1

25
x+

50k − 27

125

) ∣∣∣∣x ∈ Z
}
.

So, since these sets are quadratic in the first variable and affine in the second, they are horizontal

parabolas, and the parameter k appears only in the constant term of both variables, so the

parabolas are all similar. Finally, since 5
2x

2 + 1
2x takes every value mod 5,

{
ϕk(x)

∣∣x, k ∈ Z
}

= Z

so the sets
{

(ϕk(x), ϕ?kf(x))
∣∣x ∈ Z

}
cover the graph of f .
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Affine Embeddings

If ϕ ∈ N is an affine/linear function, we call ϕ? an affine/linear embedding. If ϕ is linear with

ϕ(x) = αx, we will sometimes write α? instead of ϕ?. Unlike general embeddings, affine embed-

dings all commute with each other, and are easier to work with. The set of affine embeddings is

an abelian (composition) subgroup of N ?, and in turn, the set of linear embeddings is a subgroup

of the set of affine embeddings. The embeddings ϕ?k are affine in the first example and not in

the second, As another example of affine embeddings, let f ∈ P1 with

f(x) ≡ 241x2

1734

and consider the embeddings ϕ?+, ϕ?− and ψ?k where

ϕ±(x) = 17x± 3

ψk(x) = 3x+ k

Then

ϕ?±f(x) ≡ x2

6
± 3x

17
+

145

578
(3.1)

This is illustrated in the following graph. The sets
(
ϕ±(x), ϕ?±f(x)

)
(in red and blue above)

Figure 3.2:
{

(x, f(x)) |x ∈ Z5202
−5202

}{(
ϕ+(x), ϕ?+f((x))

)
|x ∈ Z306

−306

}{(
ϕ−(x), ϕ?−f((x))

)
|x ∈ Z306

−306

}
embed a lattice pattern into the graph of f , but the functions ϕ?±f are not affine (mod 1).
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However, they do embed such functions. Indeed,

ψ?k
(
ϕ?±f

)
(x) ≡ (3x+ k)2

6
± 3(3x+ k)

17
+

145

578

≡ 9x2

6
± 9x

17
+
k2

6
± 3k

17
+

145

578

≡ x2

2
± 9x

17
+ ϕ?±f(k)

≡
(

1

2
± 9

17

)
x+ ϕ?±f(k)

So, the embedded sets ψ?k
(
ϕ?±f

)
(x) = (ϕ± ◦ ψk)

?
f(x) are all self-collinear (mod 1). Furthermore

the sets
(
ϕ±(x), ϕ?±f(x)

)
are covered by the sets

2⋃
k=0

(ϕ± ◦ ψk)
?
f(x). This is illustrated below. In

Figure 3.3:
{(
ϕ±(x), ϕ?±f(x)

)
|x ∈ Z306

−306,± ∈ {+,−}
}{(

(ϕ± ◦ ψ0) (x), (ϕ± ◦ ψ0)
?
f(x)

)
|x ∈ Z102

−102,± ∈ {+,−}
}{(

(ϕ± ◦ ψ±1) (x), (ϕ± ◦ ψ±1)
?
f(x)

)
|x ∈ Z102

−102,± ∈ {+,−}
}{(

(ϕ± ◦ ψ±2) (x), (ϕ± ◦ ψ±2)
?
f(x)

)
|x ∈ Z102

−102,± ∈ {+,−}
}

the foregoing example, we saw that applying any of the embeddings ψ?k to either of the functions

ϕ?±f yields an affine function mod 1. This is because

(3x+ k)2

6
=

9x2 + 6kx+ k2

6

≡ x2

2
+
k2

6

≡ x

2
+
k2

6

21



for all x, k ∈ Z. More generally, for any integer α and odd integer β,

(α+ βx)2

2β
≡ x

2
+
α2

6
(3.2)

Thus, functions of the form x 7→ µ
(
x2

2β + bx+ c
)

should all embed lines at intervals of β. This is

a good example of how we can choose coefficients to find PSR1s with certain graphical features.

Equation 3.2 is a special case of the following theorem.

Theorem 3.0.12 Let f ∈ P, let d be the degree of f , and let α ∈ Z. Then for all β ∈ Z such

that β?f ∈ N ,

f(α+ βx) ≡
d−1∑
k=0

∆k [β?f ] (α/β)

(
x

k

)
.

Proof Since β?f ∈ N (so that f ∈ ker(β?) + f(0)), f must be of the form

f(x) ≡
d∑

n=0

νn

(
x/β

n

)

where ν0 ≡ f(0) and νn ∈ Z for n ∈ N . Thus,

f(α+ βx) ≡
d∑

n=0

νn

(
x+ α/β

n

)
.

But by the Chu-Vandermonde Identity,

(
x+ α/β

n

)
=

n∑
k=0

(
α/β

n− k

)(
x

k

)

=

∞∑
k=0

(
α/β

n− k

)(
x

k

)
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and

(
α/β

n− k

)
=

(
•

n− k

)
(α/β)

= ∆k

[(
•
n

)]
(α/β)

≡ ∆k

[
β?
(
•/β
n

)]
(α/β)

so

f(α+ βx) ≡
d∑

n=0

νn

∞∑
k=0

∆k

[
β?
(
•/β
n

)]
(α/β)

(
x

k

)

≡
∞∑
k=0

∆k

[
β?

(
d∑

n=0

νn

(
•/β
n

))]
(α/β)

(
x

k

)

≡
∞∑
k=0

∆k [β?f ] (α/β)

(
x

k

)

Now, clearly ∆k [β?f ] (α/β)
(
x
k

)
= 0 for all k, x ∈ Z with k > d, since f has degree d. On the

other hand, when k = d, we have that for all t ∈ Q,

∆k [β?f ] (t) = ∆d

[
β?

d∑
n=0

νn

(
•/β
n

)]
(t)

= ∆d

[
β?νd

(
•/β
d

)]
(t)

= νd∆
d

[(
•
d

)]
(t)

= νd

(
•
0

)
(t)

= νd

(
t

0

)
= νd

= 0
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Thus, letting t = α/β, we see that ∆n [β?f ] (α/β)
(
x
n

)
≡ 0 for all x ∈ Z, and thus that

f(α+ βx) ≡
d−1∑
k=0

∆k [β?f ] (α/β)

(
x

k

)
.

�

Fibers under Embeddings

Let f, f̃ ∈ P and ϕ non-constant in N, and suppose ϕ?
(
f̃
)

= f . Then f̃ is unique among PSs

in this respect, for suppose g ∈ P1 with ϕ?(g) = f . Then

0 = ϕ?(g)(x)− ϕ?
(
f̃
)

(x)

= ϕ?(g − f̃)(x)

=
(
g − f̃

)
(ϕ(x))

So g − f̃ has infinitely many roots and therefore must be identically 0.
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Figure 3.4:
{
ν
(
x/20

2

)
|x, ν ∈ {0, 400}

}

This uniqueness does not hold for f, f̃ ∈ P1. Indeed, we will show that the set of functions

g ∈ P1 such that ϕ?g = f is typically infinite. The above mentioned set, denoted (ϕ?)−1{f}, is

called the fiber of f under ϕ. This next easy lemma will be helpful in finding fibers.

Lemma 3.0.13 Let f, f̃ ∈ P1 and ϕ ∈ N. Then

(ϕ?)−1{f} ≡ f̃ + kerϕ?
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This reduces the problem of finding (ϕ?)−1{f} to finding one of its elements along with the set

kerϕ? = {g ∈ P1

∣∣ϕ?g = f}. Both these tasks are easy if ϕ is an affine function. For example,

consider the embedding 20?. The linear elements of ker 20? are of the form x 7→ νx/20. Not

very exciting. The quadratic elements are these plus a term of the form ν
(
x/20

2

)
= νx(x−20)

800 .

Figure 3.4 shows a color plot, the rows of which are these terms for x = 0 to 400, indexed by ν.

Notice the white vertical stripes. These are where x is a multiple of 20.

The following corollary is an easy consequence of Proposition 3.0.14.

Proposition 3.0.14 Let ϕ(x) = αx + β. Then ∀f ∈ kerϕ? ∃!d ∈ N0, ν1, ..., νd ∈ Z with

0 ≤ νk < αkk! such that

f(x) ≡
d∑
k=1

νk
αkk!

k−1∏
j=0

x− jα− β

for all x ∈ Z.

Thus, for f ∈ P1 with f ≡ f̄ ∈ P, we have that for all g ∈ (ϕ?)−1{f} ∃!d ∈ N0, ν1, ..., νd ∈ Z

with 0 ≤ νk < αkk! such that

g(x) ≡ f̄
(
x− β
α

)
+

d∑
k=1

νk
αkk!

k−1∏
j=0

x− jα− β

Corollary 3.0.15 Let f ∈ P1, and ϕ(x) = αx+ β with α ∈ N, β ∈ Z. Then (ϕ?)−1{f} has pre-

cisely α
d2+d

2 d$ elements of order d or less, where d$ is (not a Latex error but) the superfactorial

of d, defined by d$ =
∏d
k=1 k!.

In particular, (ϕ?)−1{f} has infinitely many elements if a > 1, and only one element if a = 1.

For example, let f ∈ P1 with f(x) ≡ x2

15000 , and let ϕ(x) = 41x. Now, suppose g ∈ (ϕ?)−1{f}.

Then according to Proposition 3.0.14, ∃d ∈ N, ν1, ..., νd ∈ Z such that

g(x) ≡ x2

25215000
+

d∑
k=1

νk
41kk!

k−1∏
j=0

(x− 41j)
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Figure 3.5:
{(
x, x2

15000 mod 1
)

: x ∈ {−170, 170}
}

for all x ∈ Z.

Now, according to Corollary 3.0.15, there are 137842 such functions of order 2 or less. These

functions are of the form

g(x) ≡ x2

25215000
+
ν1

41
x+

ν2

3362
x(x− 41)

=
1 + 7500ν2

25215000
x2 +

2ν1 − ν2

82
x

Here are plots of some such functions for various values of ν1 and ν2 on the domain x ∈

{−6965, 6965}.

Figure 3.6: ν1 = 0, ν2 = 0
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Figure 3.7: ν1 = 0, ν2 = 10

Figure 3.8: ν1 = 1, ν2 = 2

Figure 3.9: ν1 = 5, ν2 = 7

Figure 3.10: ν1 = 5, ν2 = 20

Figure 3.11: ν1 = 26, ν2 = 52

28



Figure 3.12: ν1 = 12, ν2 = 24

Figure 3.13: ν1 = 140, ν2 = 280

Figure 3.14: ν1 = 7, ν2 = 16

Figure 3.15: ν1 = 882, ν2 = 1764
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Chapter 4

The Category of Periodic
Domains

For any ϕ ∈ N , the embedding ϕ? acts as an endomorphism of the group Π. To better understand

this action, we can look at the action of ϕ? on the various periodic domains Πn. In fact, it will

behoove us to consider the subcategory PD of AB whose set of objects is {Πn|n ∈ N}, and

whose morphisms are polynomial embeddings. More precisely, we define HomPD(Πm,Πn) to be

the embeddings in N ? modulo equivalence on Πm. In other words, for ψ ∈ HomAB(Πm,Πn) we

will say that ψ ∈ HomPD(Πm,Πn) iff there exists some ϕ ∈ N such that

ψ(f) = ϕ?(f) ∀f ∈ Πm. (4.1)

Under this equivalence, we may make the identification HomPD(Πm,Πn) = (Nn
m)? since by

part ii of the following lemma, we have for each ψ ∈ HomPD(Πm,Πn) a ϕ ∈ Nn
m satisfying

Equation 4.1. In particular, if ϕ ∈ N satisfies the equation, then µm(ϕ) ∈ Nn
m.

Lemma 4.0.16 Let ϕ? ∈ HomPD(Πm,Πn). Then

i. µm(ϕ) is the unique ψ ∈ Nn
m satisfying equation 4.1.

ii. HomPD(Πm,Πn) ' (Nn
m)?

iii. l ⊂ n =⇒ l ⊂ m ∀l ∈ N

iv. n ⊂ m =⇒ ∃ϕ̃ ∈ N � ϕ = (m/n)ϕ̃

The simplest and most important elements of these Hom classes are the linear embeddings the

form a? for a ∈ Z. There are at most m such elements (up to equivalence) in HomPD(Πm,Πn)

since (a+m)? ≡ a? ∈ HomPD(Πm,Πn). If a∩m = 1, then a? is a period preserving automorphism

of Πm, whereas if a ∩m = m, a? = 0? on Πm. In general, a? maps Πm surjectively to Πm\a.
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Linear embeddings will be useful in several of the forthcoming proofs, including that of the

following lemma, with which we shall conclude this chapter.

Lemma 4.0.17 Let m,n ∈ N. Then

Πm∩n = Πm ∩Πn

Πm∪n = Πm + Πn

Proof The first equation is easy, so we will prove the second. Stated another way, it asserts that

for l,m, n ∈ N all pairwise coprime, Πlmn = Πlm + Πln, and by induction, it suffices to prove

this when l = 1. Now clearly, Πm + Πn ⊂ Πmn, so we must prove the opposite inclusion. So,

suppose f ∈ Πmn. Then f ≡ f̃
lmrns , for some l, r, s ∈ N with l ∩m = l ∩ n = 1 and f̃(x) ∈ Z[x].

Now, there exist a, b, c ∈ N such that and

1

d
=

a

mr
+

b

ns
+
c

l
,

so that

f ≡ af̃

mr
+
bf̃

ns
+
cf̃

l
.

Now n?f ∈ Πm, so n? must send the second two terms to constants mod 1, since ns and l are

both coprime to m, but n is also coprime to l, so n? preserves its period (of 1), so it is constant

to begin with. Thus

f ≡ af̃

mr
+
bf̃

ns
+ C,

and

n?f ≡ n? af̃
mr

+B + C,

but n? preserves the period of the first term just as it does the third. Therefore, the first term

mod 1 is in Πm, and by a similar argument, the second term mod 1 is in Πn. Thus, the inclusion

is proved. �
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Chapter 5

Prime Power Periodic Domains

The main thrust of this chapter will be to prove Theorem 2.0.6, but we will attain some results

along the way about the residues of binomial coefficients modulo prime powers, which are well-

researched in their own right (see [1], [2])

We shall soon have need of Kummer’s theorem, which can be found (e.g.) in [3]

Theorem 5.0.18 [Kummer’s Theorem] Let p be a prime, r < n ∈ N, and s = n − r. Also for

j ∈ N0, let nj be defined such that n =

∞∑
j=0

njp
j, and let rj, sj be defined similarly. Let q be the

smallest number such that nj, rj, and sj are all 0 for j > q. Then

1

p− 1

q∑
j=0

(rj + sj − nj) = max

{
m ∈ N

∣∣∣∣pm ⊂ (nr
)}

the LHS being the number of ‘carries’ involved in subtracting r from n in base p.

We shall also make use of the following fact which can be found in [2].

Lemma 5.0.19 If n and k are positive integers and p is a prime, then

(
pn

pk

)
≡
(
n

k

)
mod pr

for any r ∈ N such that pr ⊂ pnk(n− k).

Lemma 5.0.20 For p prime, k ∈ Z, l,m, q ∈ N0 with l < pm ≤ pq,

(
pq

kpm + l

)
≡
(
pq−m

k

)(
0

l

)
mod pq−m+1 (5.1)

32



Proof We begin by noting that if k < 0 or k ≥ pq−m, Equation 5.1 is trivially true, so we may

assume that 0 ≤ k < pq−m. Now, suppose l > 0.
(

0
l

)
= 0 for all integers l 6= 0, so for 0 < l < pm,

Equation 5.1 turns into (
pq

kpm + l

)
≡ 0 mod pq−m+1.

To prove this equivalence, we will use Kummer’s theorem (Theorem 5.0.18). Let n = pq, and let

r = kpm+l. Note that because of our assumptions on k, r < n. Accordingly, define s = n−r and

let nj , rj , and sj be as in the theorem. With these numbers so defined, q matches the definition

of q in the theorem as well. Now, let ξ be the least positive integer j such that rj 6= 0, so that

r =

q−1∑
j=ξ

rjp
j . Then

s− 1 = (n− 1)− r

=

q−1∑
j=0

(p− 1)pj −
q−1∑
j=ξ

rjp
j

=

ξ−1∑
j=0

(p− 1)pj +

q−1∑
j=ξ

(p− 1− rj)pj

But then

s = pξ +

q−1∑
j=ξ

(p− 1− rj)pj

= (p− rξ)pξ +

q−1∑
j=ξ+1

(p− 1− rj)pj
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Thus, the number of times p divides
(

pq

kpm+l

)
is

1

p− 1

q∑
j=0

(rj + sj − nj) =
1

p− 1

q−1∑
j=0

(rj + sj)− nq


=

1

p− 1

ξ−1∑
j=0

(rj + sj) + (rξ + sξ) +

q−1∑
j=ξ+1

(rj + sj)− 1


=

1

p− 1

0 + p+

q−1∑
j=ξ+1

(p− 1)− 1


= q − ξ.

But because r− kpm = l < pm, we must have that kpm =

q−1∑
j=m

rj , and therefore that l =

m−1∑
j=ξ

rj .

But then, since we are assuming that l > 0, we must have that ξ ≤ m − 1. Thus, pq−m+1 ⊂

pq−ξ ⊂
(

pq

kpm+l

)
so that (

pq

kpm + l

)
≡ 0 mod pq−m+1,

as desired.

On the other hand, if l = 0 then
(

0
l

)
= 1, so Equation 5.1 becomes.

(
pq

kpm

)
≡
(
pq−m

k

)
mod pq−m+1

To prove this equality, we will show by induction that for j ∈ {0, ...,m},

(
pq−m+j

kpj

)
≡
(
pq−m

k

)
mod pq−m+1

Indeed, the base case (j = 0) is tautologically true, so suppose that for some j ∈ {0, ...,m− 1},

we have that (
pq−m+j

kpj

)
≡
(
pq−m

k

)
mod pq−m+1.

34



Then by Lemma 5.0.19, we have that

(
pq−m+j+1

kpj+1

)
≡
(
p(pq−m+j)

p(kpj)

)
≡
(
pq−m+j

kpj

)
mod pr.

for any r ∈ N such that

pr ⊂ p(pq−m+j)(kpj)(pq−m+j − kpj)

= k(pq−m+2j+1)(pq−m+j − kpj)

In particular, we can choose r = q −m+ 1, and so by our induction hypothesis,

(
pq−m+j+1

kpj+1

)
≡
(
pq−m+j

kpj

)
≡
(
pq−m

k

)
mod pq−m+1,

which completes the proof.

Theorem 5.0.21 For p prime, l,m, q, n ∈ N0 with l ≤ pm ≤ pq ≤ n,

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l

)
≡ 0 mod pq−m+1 (5.2)

Proof We will first show by induction on n that it suffices to prove the theorem for n = pq.

Indeed, suppose the theorem holds for some n ≥ pq. Then by Pascal’s Rule,

∞∑
k=−∞

(−1)kp
m+l

(
n+ 1

kpm + l

)
=

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l − 1

)
+

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l

)

≡
∞∑

k=−∞

(−1)kp
m+l

(
n

kpm + l − 1

)
mod pq−m+1

since the second summand on the RHS of the first equality is equivalent to 0 mod pq−m+1 by
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the induction hypothesis. Now, in the case that l = 0,

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l − 1

)
=

∞∑
k=−∞

(−1)kp
m

(
n

(k − 1)pm + (pm − 1)

)

= −
∞∑

k=−∞

(−1)(k−1)pm+(pm−1)

(
n

(k − 1)pm + (pm − 1)

)
≡ 0,

by the induction hypothesis. On the other hand, if l 6= 0,

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l − 1

)
=

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + (l − 1)

)

= −
∞∑

k=−∞

(−1)kp
m+(l−1)

(
n

kpm + (l − 1)

)
≡ 0,

again by the induction hypothesis. Thus it suffices to prove that for p, l,m, q as above,

∞∑
k=−∞

(−1)kp
m+l

(
pq

kpm + l

)
≡ 0 mod pq−m+1.

Furthermore, we may assume in this case that l = 0, since if l > 0, Lemma 5.0.20 guarantees

that (
pq

kpm + l

)
≡ 0 mod pq−m+1.

for all k ∈ Z. So it suffices to prove that for p,m, q as above,

∞∑
k=−∞

(−1)kp
m

(
pq

kpm

)
≡ 0 mod pq−m+1.
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For this, we will first assume that p=2 and m=0. Then

∞∑
k=−∞

(−1)kp
m

(
pq−m

k

)
=

∞∑
k=−∞

(−1)k
(

2q−m

k

)

=

2q−m∑
k=0

(−1)k
(

2q

k

)
x2q−m−k

∣∣∣∣
x=1

= (x− 1)2q−m

∣∣∣∣
x=1

= 0.

If, on the other hand, p = 2 but m > 0,

∞∑
k=−∞

(−1)kp
m

(
pq−m

k

)
=

∞∑
k=−∞

(
2q−m

k

)

=

2q−m∑
k=0

(
2q−m

k

)
x2q−m−k

∣∣∣∣
x=1

= (x+ 1)2q−m

∣∣∣∣
x=1

= pp
q−m

≡ 0 mod pq−m+1.

Now suppose p > 2. We will show that in this case, it suffices to prove the theorem for m = 0,

for assume we have indeed proven this. Then for all p > 2, q ∈ N0,

∞∑
k=−∞

(−1)k
(
pq

k

)
≡ 0 mod pq+1.

But then

∞∑
k=−∞

(−1)kp
m

(
pq

kpm

)
≡

∞∑
k=−∞

(−1)k
(
pq−m

k

)
≡ 0 mod p(q−m)+1

where the first equivalence is due to Lemma 5.0.20 and the second follows from our assumption.
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Thus, we have only left to prove that for all p > 2, q ∈ N0,

∞∑
k=−∞

(−1)k
(
pq

k

)
≡ 0 mod pq+1.

But indeed,

∞∑
k=−∞

(−1)k
(
pq

k

)
=

pq∑
k=0

(−1)k
(
pq

k

)

=

pq−1
2∑

k=0

(−1)k
(
pq

k

)
+

pq−1
2∑

k=0

(−1)p
q−k
(

pq

pq − k

)

=

pq−1
2∑

k=0

(−1)k
(
pq

k

)
+

pq−1
2∑

k=0

(−1)−k
(
pq

k

)
= 0

as desired.

�

Theorem 5.0.22 For m ∈ N0, r ∈ N, and p prime,

Zp
m

pr = N pm

pr [pr+m−1, pr].

Proof N pm

pr [pr+m−1, pr] ⊂ Zp
m

pr by definition, so we only need to prove the opposite inclusion.
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So, suppose f ∈ Zp
m

pr . Then by Lemma 2.0.1, we have that for arbitrary n ∈ N0,

∆n[f ](0) =

∞∑
j=−∞

(−1)j
(
n

j

)
f(n− j)

=

pm−1∑
l=0

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l

)
f (n− (kpm + l))

≡
pm−1∑
l=0

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l

)
f (n− l)

≡
pm−1∑
l=0

f (n− l)

( ∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l

))
mod pr.

But if n ≥ pr+m−1, then by substituting q = r +m− 1 into Theorem 5.0.21, we get that

∞∑
k=−∞

(−1)kp
m+l

(
n

kpm + l

)
≡ 0 mod pr

so that

∆n[f ](0) ≡
pm−1∑
l=0

f (n− l) (0)

≡ 0 mod pr.

�

By Theorem 5.0.22 and Lemma 2.0.5.i, we have the next theorem, whence immediately follows

the assertion of Theorem 2.0.6.

Theorem 5.0.23 For m, r ∈ N, and p prime,

Φp
m

pr = Πpm

pr [pr+m−1, 1] = Πpm

pr .

The following corollary is immediate.

Corollary 5.0.24 For m ∈ N and p prime,

Πpm = Φp
m

p∞ .
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We can cheaply derive another result from the above which seems somewhat surprising at first

glance.

Theorem 5.0.25 Every rational-valued sequence with a prime power period is the residue of a

polynomial modulo some rational number.

Proof Let f ∈ Qpm . First, we will deal with the case when f ∈ Zpm . In this case, f ∈ Zp
m

pr =

N pm

pr , where r is the least positive integer such that f(x) < pr ∀x ∈ Z. Now, for general f ∈ Qpm ,

let d be the smallest positive integer such that df ∈ Z, and let r be the least positive integer

such that df(x) < pr ∀x ∈ Z. Then df ∈ N pm

pr so f ∈ N pm

pr/d. �
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Chapter 6

Entwining Products & General
Periodic Domains

Theorem 6.0.26 Let m ∩ n = 1, and let fm ∈ Πm, and fn ∈ Πn have equal values at 0. Then

there is a unique sequence f = fm ⊕m n fn ∈ Πmn such that

m?(f) = fn (6.1)

n?(f) = fm (6.2)

Proof First, we will prove the case when fm(0) = 0 = fn(0). In this case, define

fm ⊕m n fn = [n−1]?mfm + [m−1]?nfn. (6.3)

Then

n?(fm ⊕m n fn)(x) = fm([n−1]mnx) + fn([m−1]nnx)

= fm((1 + km)x) + fn(0)

= fm(x).

So fm ⊕m n fn satisfies Equation 6.2, and satisfies Equation 6.1 by a similar calculation. Thus,

we have proved existance. To prove uniqueness, suppose g ∈ Πmn satisfies the equations. By

Lemma 4.0.17, g = gm + gn for some gm ∈ Πm, gn ∈ Πn. Thus, by our assumption,

fm = n?g

= n?gm + n?gn

= n?gm.
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But then since m ∩ n = 1, we have that [n−1]?mfm = gm. Similarly, [m−1]?nfn = gn, so g =

fm ⊕m n fn. Thus, we have proved the theorem in the case where fm(0) = fn(0) = 0. To prove

the general theorem, suppose fm(0) = fn(0) = c ∈ Q1. Then we define

fm ⊕m n fn = (fm − c) ⊕m n (fn − c) + c. (6.4)

This function clearly satisfies the desired Equations 6.1 and 6.2 and is unique by the above

arguments.

The partial functions ⊕m n : Πm×Πn → Πmn, which we shall call entwining products, have a

few interesting applications, the first of which is that they provide a tool to construct new PSR1s

which embed any given pair of old ones with coprime periods. It is easy to see by induction that

given any finite set of PSR1s with pairwise coprime periods, we may entwine them into a PSR1

which embeds them all.

Corollary 6.0.27 Let m1, ...,mr ∈ N be pairwise coprime, let m =
∏r
k=1mk, and fk ∈ Πmk for

k ∈ {1, ..., r}. Then there is a unique sequence f1 ⊕m1 m2
... ⊕mr−1 mr

fr ∈ Π such that

(m/mk)?(f1 ⊕m1 m2
... ⊕mr−1 mr

fr) = fk (6.5)

Not only may we use entwinement to construct PSR1s of period mn from those with periods

m and n whenever m ∩ n = 1, but all such PSR1s may be constructed this way, since by

theorem 6.0.26, we have that for any f ∈ Πmn, f = n?f ⊕m nm
?f . In other words, for f1, f2 ∈ fmn

(with m ∩ n = 1), f1 = f2 iff m?f1 = m?f2 and n?f1 = n?f2 We may use this fact, along with

Corollary 5.0.24, to classify all periodic domains. Now we will give an example of some “entwined”

PSR1s. Let f, g, h, j ∈ Π with f(x) ≡ 2x2

359 , g(x) ≡ x2

361 , h(x) ≡ x2

2 , and j(x) ≡ x2

3 . f, g, j, and

h all map 0 to itself, and their periods are the same as their denominators, and are therefore

pairwise coprime, so we may entwine any combination of them into a new function using i from

the definition. Four such entwinements are plotted in figures 6.1-6.4. Notice that with the given

domains, the second and third graphs above cover the first, and are in turn covered by the fourth.
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Figure 6.1: {(x, f ⊕359 361 g(x) mod 1) : x ∈ x ∈ {−2500, ..., 2500}}

Figure 6.2: {(x, f ⊕359 361 g ⊕361 2 h(x) mod 1) : x ∈ x ∈ {−5000, ..., 5000}}

Figure 6.3: {(x, f ⊕359 361 g ⊕361 3 j(x) mod 1) : x ∈ {−7500, ..., 7500}}

Figure 6.4: {(x, f ⊕359 361 g ⊕361 2 h ⊕2 3 j(x) mod 1) : x ∈ {−15000, ..., 15000}}
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The following theorem will show precisely how periodic domains relate to their sub-objects.

Figure 6.5

Theorem 6.0.28 Let l,m, n ∈ N be pairwise coprime. Then

Πlmn (along with the morphisms m? : Πlm → Πl and n? :

Πln → Πl) is a fiber product (pullback) of the abelian groups

Πln and Πlm over Πl.

Proof First, we will prove the theorem in the case that l = 1.

To do this, we must show that for any abelian group X and

any two homomorphisms ψn : X → Πn and ψm : X → Πm,

there exists a unique homomorphism ψ : X → Πmn such that

the diagram in Figure 6.5 commutes. It is easy to see that the

bottom square commutes regardless of ψ, so we need only that

for any ξ ∈ X, ψ satisfies the system

n?ψ(ξ) = ψm(ξ)

m?ψ(ξ) = ψn(ξ).

So by Theorem 6.0.26,

ψ(ξ) = ψm(ξ) ⊕m n ψn(ξ).

Thus, we have a unique function ψ : X → Πmn such that the diagram commutes, so we need

only to prove that ψ is a homomorphism of abelian groups. So let ξ, η ∈ X. Then

ψ(ξ + η)(mx) = (ψm(ξ + η) ⊕m n ψn(ξ + η))(mx)

= ψn(ξ + η)(x)

= ψn(ξ)(x) + ψn(η)(x)

= ψ(ξ)(mx) + ψ(η)(mx),

so m?ψ(ξ+ η) = m?(ψ(ξ) +ψ(η)) and similarly n?ψ(ξ+ η) = n?(ψ(ξ) +ψ(η)). Thus, ψ(ξ+ η) =

ψ(ξ) + ψ(η) so ψ is indeed a homomorphism.
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Figure 6.6

Now that we have proven the theorem for l = 1, proving the general theorem is only a matter of

chasing the diagram in Figure 6.6. The blue and red diamonds within the diagram commute by

what we have already proven. Thus, there exists a unique ψ : X → Πlmn making both diamonds

commute. But then the same ψ makes the diamond in the foreground commute, as the lower

square in the foreground clearly commutes just as the lower square in Figure 6.5 does. Thus, the

theorem is true in general. �

By the above theorem, along with the usual construction of fiber products of general abelian

groups (see e.g. p. 81 of [4]) and the fact that all fiber products of a given pair of objects and

morphisms are isomorphic, we have the following corollary.

Corollary 6.0.29 Let l,m, n ∈ N be pairwise coprime. Then

Πlmn ' {(flm, fln) ∈ Πlm ×Πln|m?flm = n?fln}.
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The following theorem defines entwining products for suitable sequences in Nr just as Theo-

rem 6.0.26 did for those in Π. The proof is analogous.

Theorem 6.0.30 ϕm ∈ Nm
r and ϕn ∈ Nn

r . Then there exists a unique sequence

ϕ = ϕm ⊕m n ϕn ∈ Nmn
r such that

m?(ϕ) = ϕn

n?(ϕ) = ϕm

This version of the entwining product will help us show that the fiber product from Theo-

rem 6.0.28 is not only a fiber product AB, but in PD as well. To see this, we must verify that

if we replace the general abelian group X in Figure 6.5 by a periodic domain Πr, and the homo-

morphisms ψm and ψn by morphisms ϕ?m ∈ HomPD(Πr,Πm) and ϕ?n ∈ HomPD(Πr,Πn), then

the mediating morphism ψ : f 7→ ϕ?m(f) ⊕m nϕ
?
n(f) is equivalent to some ϕ? ∈ HomPD(Πr,Πmn)

Lemma 6.0.31 Let m,n, r ∈ N with m ∩ n = 1 and let ϕ?m ∈ HomPD(Πr,Πn) and ϕ?n ∈

HomPD(Πr,Πm). Then for all f ∈ Πr,

(ϕm ⊕m n ϕn)?(f) = ϕ?m(f) ⊕m n ϕ
?
n(f).

Proof

m?(ϕm ⊕m n ϕn)?(f))(x) = ϕm ⊕m n ϕn)?(f)(mx)

= (ϕm ⊕m n ϕn)?(f)(mx)

= f((ϕm ⊕m n ϕn)(mx))

= f(ϕn(x))

= ϕ?nf(x)

= (ϕ?m(f) ⊕m n ϕ
?
n(f))(mx)

= m?(ϕ?m(f) ⊕m n ϕ
?
n(f))(x),
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and similarly, n?(ϕm ⊕m n ϕn)?(f)) = n?(ϕ?m(f) ⊕m n ϕ
?
n(f)). Thus, since the sequences agree

on multiples of m and n and m ∩ n = 1, the sequences are equal. �

Thus, our fiber product is universal with respect to periodic domains as well as abelian groups.
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