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ABSTRACT 

 

 Cognitive distractions while driving often reduce the variability of lane position. 

However, data do not make clear whether smaller lane variability should be 

interpreted as a performance loss, indicating rigidified or unresponsive steering 

response to external stimuli, or a performance improvement in lane-keeping, 

indicating better lateral control. Four hypotheses, rigidified steering, visual 

enhancement, lateral prioritization, and automatic steering, debated on the 

performance implications and mechanisms of smaller lane variability under cognitive 

distractions. This dissertation project compares these hypotheses, and explores two 

important questions: first, whether the smaller lane variability under cognitive 

distraction indicates a performance loss or a performance gain in lane-keeping; 

second, what is the underlying cognitive mechanisms of lane variability reduction. 

Three studies have been carried out to assess drivers’ responsiveness to heavy lateral 

winds under varying levels of cognitive load. Data showed that cognitive load 

reduced the variability of lane position but increased the variability of vehicle speed, 

engendering more frequent steering activity but less frequent speed manipulation. 

Cognitive load also increased the coherence, or coupling between steering wheel 

position and lateral wind strength. More interestingly, distracted drivers produced 

quicker steering response time to the sudden onset of lateral wind. Results thus 

suggest that smaller lane variability under cognitive distractions is an indicator of 

better lane-keeping performance, and distracted drivers achieved better lane-keeping 

performance by actively prioritizing lateral control. Findings carry practical 

applications for mitigating driving risks and theoretical implications on the 

relationship between attention allocation and driving performance.  
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INTRODUCTION 

 

 Driver distraction, “a diversion of attention away from activities critical for safe 

driving toward a competing activity” (Regan, Lee, &Young, 2008, page 38), is a 

major factor causing driving safety problems; data from the 100-Car Naturalistic 

Driving Study estimated that driver distraction contributed to up to 23 percent of 

crashes (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006) and that more than 78 

percent of crashes and near crashes involved driver inattention (Dingus, et al., 2006).   

 The U.S. National Highways and Transport Safety Administration has identified 

four types of driver distraction: visual, auditory, physical (manual dexterity), and 

cognitive distraction (Ranney, Garrott, & Goodman, 2001). Reimer (2009) offered a 

similar taxonomy, distinguishing between visual, biomechanical, auditory, and 

cognitive distraction. It is important to distinguish sources of distraction, because 

studies have shown that visual, physical and cognitive distraction have different 

effects on driving performance, especially in eye scanning patterns and lane-keeping 

performance. Cognitive distractions cause brief off-road glances, usually no greater 

than 1.6s (Sodhi, Reimer, Llamazares, 2002; Wierwille, 1993), while visual 

distractions can often cause drivers to glance away from the road as much as several 

seconds (Reimer, 2009). Liang and Lee (2010) compared the relative impact of visual 

and cognitive distraction and found that visual distraction caused greater performance 

decrements than cognitive distraction. Visual and physical distraction, such as dialing 

a telephone number, are generally believed to decrease lane-keeping performance by 

causing larger lane variability. For example, more than 10% of drivers in one study 

made dangerous lateral path deviations while dialing long telephone numbers 
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(Zwahlen, et al., 1988). In contrast, cognitive distractions often reduce lane variability 

(Becic et al., 2010; Briem & Hedman, 1995; Horrey & Simons, 2007; Liang & Lee, 

2010; however, see Horrey, Lesch, Garabet (2009), Salvucci (2005) and Salvucci & 

Beltowska (2008) for findings of larger lane variability under cognitive distractions.).  

 

Cognitive distraction is critical 

 

 Cognitive distraction is a significant source of driver distractions. A large number 

of laboratory and real-world studies indicate that cognitive distraction tasks, including 

language production (Brown et al., 1969; Haigney & Westerman, 2001; Horswill & 

McKenna, 1999;Kubose, Bock, Dell, Garnsey, Kramer, & Mayhugh, 2006), 

conversation (McKnight & McKnight, 1993; Strayer & Drews, 2004; Strayer & 

Johnston, 2001), and memory rehearsal (Salvucci & Beltowska, 2008), can impair on-

road or simulated driving performance.   

 Comparison studies of hand-held and hands-free cell phones have shown that 

both types of phones produce similar levels of performance decrements, which 

suggests that it is the comprehension and production of conversation, rather than the 

manual demands of holding a phone, that cause the driving impairments (Patten, 

Kircher, Östlund, & Nilsson, 2004; Redelmeier & Tibshirani, 1997; Strayer & 

Johnston , 2001). Some researchers thus suggest that the impairments caused by cell 

phone conversation are largely attributable to the diversion of attention from the 

processing of information important for safe driving (Strayer et al., 2003; Strayer & 

Johnston, 2001; Strayer, Drews, Crouch, 2006). 

 

 



3 

 

 

 

Effects of cognitive distraction on lateral vehicle control 

  

Single-vehicle road departure has long been recognized as the most common crash 

type, causing more fatalities than any other forms of crash. Wang and Knipling 

reported that single-vehicle road departure crashes accounted for almost 1.3 millions 

crashes, about 37.4% of all fatal vehicle crashes, based on 1991 General Estimate 

System and Fatal Accident Recording System data (Wang & Knipling, 1994). Single-

vehicle road departure crashes remained the top crash type in recent surveys, 

accounting for approximately 40% of all crashes, according to Traffic Safety Facts in 

2005 (Barickman, Smith, & Jones, 2007). According to the statistics of Iowa in 2006, 

60% of all crashes involved a lane departure (Iowa Comprehensive Highway Safety 

Plan, 2006).  

 While cognitive distraction is a major contributing factor for driving risks, and 

lateral crashes are common, the effect of cognitive distraction on lateral lane-keeping 

performance is still unclear, as the strength and direction of the distraction effect have 

been inconsistent in the reported studies. Some studies indicate that cognitive 

distraction tasks increase lane variability (Horrey, Lesch, & Garabet, 2009; Just, 

Keller, & Cynkar, 2008; Strayer & Johnston, 2001; Salvucci & Beltowska, 2008). For 

example, a sentence comprehension task was found to increase the root mean squared 

(RMS) deviation from an ideal lane position and increase the frequency of road-

maintenance errors in a study by Just, Keller, and Cynkar (2008), and a memory 

rehearsal task caused drivers to deviate more from the lane center in a study by 

Salvucci and Beltowska (2008).  
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 However, many other studies have shown the opposite effect (Becic et al., 2010; 

Brookhuis, de Vries, & de Waard, 1991; Kubose, et al., 2006; Liang & Lee, 2010). 

For example, Brookhuis, de Vries, and de Waard (1991) showed that cell phone 

communication had a seemingly positive effect on lane-keeping, decreasing the 

frequency of lane deviations.  

 Many other studies have also produced null effects of cognitive distraction on 

lateral maintenance (Alm & Nilsson, 1995; Lamble et al., 1999; Rakauskas, Gugerty, 

& Ward, 2004). For example, although mobile telephone task was expected to affect 

drivers’ ability to follow the road, Alm & Nilsson (1995) failed to find any effect of 

mobile telephone task on the mean and variation of lane position. Moreover, 

naturalistic cell phone conversation did not significantly influence steering variability 

or mean lateral speed in a driving simulator study, by Rakauskas, Gugerty, and Ward 

(2004). Horrey and Wickens (2006), in a meta-analytic review, concluded that the 

effect of distraction on tracking performance decrement was small, and not 

significantly different from null effect. They explained the small effect size of lane 

keeping performance by that lane keeping was a relatively automatic skill, supported 

by ambient vision, and required limited resources. 

 In light of these inconsistent findings, the current project is devoted to exploring 

the mechanisms by which cognitive distraction might influence lane-keeping 

performance. This dissertation is organized in this way. Chapter One reviews existing 

theories and models of dual-task performance and interference, including the Working 

Memory Model, the Central Bottleneck Theory, and the Resources theory, Threaded 

cognition theory, Inattentional blindness view, and Cross-talk theory. Chapter Two 

reviews how cognitive distraction changes driving behaviors and performance in 

various aspects, e.g., lane-keeping, longitudinal vehicle control, event detection and 
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hazard response time, mental workload, eye scanning patterns and attentional 

processing. Chapter Three introduces and compares existing hypotheses on how 

cognitive distraction changes lane-keeping performance. Chapters Four to six present 

three experimental studies investigating the behaviors of cognitively distracted drivers 

and the mechanisms of how cognitive distraction influences lane-keeping 

performance.  
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CHAPTER 1 : THEORIES OF DUAL TASK PERFORMANCE 

 

 A driver can be conceptualized as an information processing system with limited 

capacity for both peripheral (visual, manual, auditory etc.) and central (executive 

control, tactical planning etc.) processing (Kahneman, 1973; Navon & Gopher, 1979). 

Because of this limited capacity, engaging in multiple tasks concurrently often diverts 

attention away from the primary driving task, causing driving performance 

decrements. But despite of the general agreement that secondary tasks can impair 

primary task performance, existing theories have different explanations about the role 

of cognitive processing capacity and the locus of task interference. This chapter 

reviews existing theories about dual task performance to provide a theoretic 

background for this dissertation. The major differences between these models are the 

divisibility of information processing capacity (Navon & Miller, 2002) and the locus 

of interference (Hazeltine, Ruthruff, & Remington, 2006).   

 

Working memory model 

  

 Baddeley’s working memory model proposes three major components of working 

memory, including a central executive (responsible for the integration of information) 

and two slave systems for information storage (Baddeley ,1986; Baddeley, 1996). The 

two slave systems are a phonological loop for storing linguistic information, and a 

visuospatial sketch pad for storing visual and spatial information. The model provides 

a theoretical framework for explaining dual-task performance. Baddeley et al. (1986) 

investigated the performance of a primary tracking task combined with various 
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secondary tasks, including an articulatory suppression task, a tone detection task, and 

a digit span task. Results showed that secondary tasks impaired tracking performance, 

which was interpreted as overloading of the central executive component of working 

memory.  

 Baddeley’s model predicts that a secondary task that requires cognitive 

processing similar to the primary task will cause greater dual-task interference than 

one which requires different resources (Baddeley, 2003). Driving is largely a visual-

spatial-manual task, loading on the central executive and the visuospatial sketch pad 

of working memory. Cognitive distraction tasks that might be performed while 

driving are diversified, and include daydreaming, decision making, planning, and 

listening to music, etc. Many of these tasks load the central executive component, and 

sometimes on the phonological loop or visuospatial sketch pad. Because both driving 

and cognitive distraction tasks require the limited central executive resources, 

concurrently carrying out driving and a cognitive distraction task can cause 

performance interference in either or both tasks. This argument is confirmed by many 

empirical studies. 

 First, it is well-established that cognitive distraction tasks interfere with driving 

performance. Cognitive distraction can reduce the quality of attentional processing 

within an area of interest (Strayer et al., 2003) and increase reaction time to traffic 

hazards (Caird et al., 2008). Cognitive distraction also reduces visual scanning of 

peripheral information, such as side and rear-view mirror and the speedometer, and 

caused more glances to road center (e.g., He, Becic, Lee, & McCarley, 2011; Recarte 

& Nunes, 2000, 2003). Moreover, cognitive distraction tasks that require processing 

of spatial information, such as a spatial reasoning task, cause more driving decrement 

than distraction tasks that do not require spatial information processing, for example, 
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a word generation task (Lamble, Kauranen, Laasko, & Summala, 1999; Recarte & 

Nunes, 2000). 

 Second, driving also interferes with cognitive task performance. This is evident in 

a recent study by Becic et al. (2010) ,in which participants were asked to drive in a 

driving simulator while engaging in a story-retelling task with a conversation partner. 

The accuracy of story-telling and memory for stories both declined when participants 

were driving. In another study, participants performed a working memory task while 

driving in easy or difficult conditions (Radeborg, Briem & Hedman, 1999). Results 

showed that driving impaired memory recall and sentence meaningfulness judgment.  

 Besides the working memory model, many theories have been proposed to 

explain dual task performance and interference. Three of the most influential 

explanations of dual-task interference are capacity sharing, bottleneck (task 

switching), and cross talk (Pashler, 1994). Examples of capacity sharing models 

include the unitary resources model (Kahneman, 1973) and multiple resources model 

(Navon & Gopher, 1979; Wickens, 1984, 2002). The most influential bottleneck 

model is the central bottleneck model (Pashler, 1994).  

 The major debates of these models concern the divisibility of information 

processing capacity (Navon & Miller, 2002) and the locus of interference. The central 

bottleneck model assumes that processing ability is indivisible, and entails queuing 

for processing. In contrast, resources theory assumes resources are divisible, and can 

be shared among parallel tasks (Navon & Miller, 2002).  
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Central bottleneck model 

  

 According to the central bottleneck model, dual-task costs occur because central 

processing for one task must wait when the central processing channel is occupied by 

another task (Levy, Pashler, & Boer, 2006; Pashler, 1994;Welford, 1952 ). The 

central bottleneck occurs after perceptual processing but before response execution, 

and is reponsible for processes including response selection, decision making and 

memory retrieval (Pashler, 1994; Pashler & Johnston, 1998). Central processing is 

serial: when central processing is under way for one task, the other task must wait 

until the central processing is available, causing postponement of the second task. 

Other mental processes, such as perceptual analysis and response execution, can be 

processed in parallel.  

 The central bottleneck model predicts that reaction time to a secondary task 

stimulus will increase as the stimulus-onset asynchrony (SOA) decreases, a 

phenomenon known as the psychological refractory period (PRP) effect. The central 

bottleneck is a generic limitation, which persists regardless of the pairing of stimuli 

and response modalities. A PRP effect is observed, for example, with response 

combinations of manual and eye movement responses (Pashler, Carrier, & Hoffman, 

1993), manual and vocal responses (Pashler, 1990), manual and pedal responses 

(Osman & Moore, 1993). 

 Several driving studies support the central bottleneck model. Levy et al. (2006) 

asked participants to perform a choice task and a braking task with varied SOA. Brake 

response time increased as SOA reduced, showing a standard PRP effect (Pashler, 

1994). The effect of SOA on gas-off time was approximately the same as the effect of 

SOA on brake RT, indicating that SOA had no effect on movement time. Therefore, 
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the delay in brake performance was in response planning, not motor control (Levy et 

al., 2006). Stimulus and response modality had either little or no effect on brake RT, 

supporting the central bottleneck interpretation that dual-task interference primarily 

arises from central processing (Levy et al., 2006). Another study found that both cell-

phone conversation and music listening resulted in longer brake response time. 

However, drivers showed quicker movement time from the gas pedal to brake pedal, 

in apparent anticipation of longer response times when distracted (Bellinger, Budde, 

Machida, Richardson, & Berg, 2009). This finding suggests that dual-task 

interference occurs before response execution. A couple of other studies also support 

the idea that it is the response selection process of secondary tasks that interfere with 

driving performance.  

 However, some findings cannot be accommodated by the central bottleneck 

model. For example, subjects can perform a visual-vocal and an auditory-manual task 

concurrently with minimal interference after moderate practice, suggesting that the 

central bottleneck does not always limit dual-task performance (Hazeltine et al., 

2006).  

 

Resource theory 

 

 Capacity-sharing theorists assume one or more common limited mental resources 

among tasks (Kahneman, 1973; Navon & Gopher, 1979; Navon & Miller, 2002; 

Wickens, 1980, 2002). If multiple tasks are performed concurrently and demand 

shared resources, performance for either or all tasks will be impaired (Pashler, 1994). 

Multiple resources theory (MRT) categorizes attentional resources along four 

dimensions: processing stage (perception or response), processing code (verbal vs. 
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spatial), perceptual modalities (visual or auditory), and visual channel (focal or 

ambient vision) (Norman & Bobrow, 1975; Wickens, 1984, 2002). The model 

predicts that the strength of interference between dual tasks depends on the overlap of 

resource requirements. Two tasks without any overlapping resource demands can be 

processed simultaneously with little interference, whereas two tasks that compete for 

similar resources and have inconsistent stimulus-response requirements show the 

greatest dual-task interferences (Kramer, Larish, & Strayer, 1995; Wickens, 2002).  

 The strict central capacity interference model assumes that processing resources 

are scarce, elastic, controllable, and divisible (Navon & Gopher, 1979). The model 

predicts that the performance of an easy primary task will show little, if any, 

performance decrement, because the resource demands required by the primary and 

secondary tasks together will not exceed the amount of available capacity. In contrast, 

the central bottleneck model assumes that processing is indivisible and can work on 

only one task at a time no matter how easy or difficult that task is. Therefore, the 

central bottleneck model predicts that two tasks that demand central processing at the 

same time will cause performance interference regardless of the difficulty of each 

task. 

 Driving depends on largely visual, cognitive, and manual resources, and 

sometimes on auditory perception. Tasks loading on visual or manual channels, such 

as a cell phone dialing task or a radio tuning task, which overlap with the driving task, 

are most likely to be detrimental to driving performance. Tasks loading on auditory 

channels, such as a language shadowing task (merely repeat the sound that is played) 

and a language production task, are less likely to impair driving performance.  

 According to the resources model, dual-task interference can arise from any 

stages of mental process, including not only response selection, but also perceptual 
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disruption and manual dexterity. The resource model suggests that driving 

interference can be caused by visual, physical, and cognitive distraction. Studies in 

driving have provided support for this argument of resource model. Recarte and 

Nunes (2003) found that mental tasks during driving increased perception time but 

did not change decision time for detection of a flashed signal. They concluded that 

visual detection impairment was due to late detection and poor identification rather 

than a response selection delay, further supporting the argument of multiple resources 

model and arguing against the central bottleneck model. Physical distraction can 

cause significant driving performance decrement too. For example, physical 

distraction increased lane variability and lane excursions (Caird et al., 208). Reed and 

Green (1999) also found that dialing a phone number manually impaired the 

maintenance of lane position. 

 Resource models also predict that interference is specific to the stimulus and 

response modality and code of cognitive processing. This is supported by many 

empirical findings. For example, one study found that a mental task requiring spatial-

imagery operation produced more pronounced and different changes in visual 

scanning behaviors than a verbal task, including longer fixation duration and 

remarkable reduction of visual inspection window (Recarte & Nunes, 2000). Liang 

and Lee (2010) compared the relative impact of visual distraction and cognitive 

distraction, and found that visual distraction caused more driving performance 

decrements than cognitive distraction. Further supports for the resource model come 

from the finding that dual-task interference was content-specific, depending on the 

input/output modality pairing (Hazeltine, et al., 2006). Subjects practiced doing two 

tasks concurrently. In one condition, a visual–manual task was coupled with an 

auditory–vocal task; in the other condition, the input–output pairing was reversed, 
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combining a visual–vocal task with an auditory–manual task. Throughout practices, 

dual-task interference for the pairing of visual–vocal/auditory–manual tasks was more 

than twice as large as the opposite modality pairing. 

 There are some studies that cannot be accounted by the resource model too. For 

example, the resource model predicts that practice in either or both of cell phone 

conversation and driving can free up processing resources, resulting in better dual-

task performance (Norman & Bobrow, 1975). However, several studies have 

suggested that practice does not alleviate dual-task interference (Brookhuis et al., 

1991; Cooper & Strayer, 2008). Brookhuis et al. (1991) asked subjects to practice 

driving while doing a concurrent Paced Auditory Serial Addition Task (PASAT) for 

15 days. They did not find any evidence that practice reduced dual-task interference. 

Real-world experience of cell phone use, as measured by the frequency of cell phone 

use, also does not seem to have any beneficial effect on alleviating or reducing 

driving performance decrement during cell phone conversations (McKnight & 

McKnight, 1993; Strayer, Drews, & Johnston, 2003).  

 

Threaded cognition theory 

 

 The threaded cognition theory, built on the ACT-R cognitive architecture, posits 

a resource-bounded cognitive processor. Peripheral sensory processing, such as 

perception and motor movement, can operate in parallel to subserve multiple tasks, 

while central procedural resource can only operate serially, resulting a central 

cognitive bottleneck (Salvucci & Tatgen, 2008).  

 The threaded cognition theory is similar to the central bottleneck model in that 

both models emphasize a central cognitive bottleneck. The major difference is, 
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threaded cognition theory proposes that multitask interferences are because two tasks 

both heavily and continuously utilize a common resource of declarative memory, not 

because an executive process can attend to only one task at a time, an argument 

claimed by the central bottleneck model (Pashler, 1994; Salvucci & Tatgen, 2008). 

 

 

 

Inattentional blindness view 

 

 The inattentional blindness view (Most et al., 2005; Strayer et al., 2001, 2003, 

2007) suggests that dual-task interference results from superficial encoding and 

cognitive processing of visual information. The “looked but failed to see” error, a 

common cause of traffic accident in which the drivers gaze in the correct direction of 

road hazard but fail to perceive it, can be regarded as a form of inattentional blindness 

(Langham, Hole, Edwards, & O’Neill, 2002). Even if drivers have fixated on an area 

of interest, it does not guarantee that objects in that area have been processed enough 

for recognition (Mack & Rock, 1998; Most et al., 2001; Simons & Chabris, 1999). 

This attentional lapse can be engendered by purely cognitive load.  

 Recarte & Nunes (2003) found that distraction produced target omissions and 

errors in a visual discrimination task, consistent with the inattentional blindness view. 

In a series of driving studies, Strayer et al. (2001, 2003, 2007) found that cell phone 

conversation resulted in poor recognition memory of stimuli presented within driving 

scenarios, even if drivers had fixated on the stimuli directly. Conversation also 

reduced the amplitude of the P300 wave of the ERP component generated in response 

to onset of a lead vehicle’s brake lights (Strayer et al., 2007). Because cell phone 
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conversation does not share overlapping resources with driving, Strayer et al. (2001, 

2003, 2007) argued against the resource models of dual-task interference and favored 

the inattentional blindness view.  

 

Cross-talk view 

  

 The cross-talk view suggests that dual tasks interfere with each other when each 

task produces outputs and side effects harmful to the processing of the other task 

(Hazeltine et al., 2006; Navon & Miller, 1987; Pashler, 1994). It is more difficult to 

perform two tasks concurrently when the tasks involve similar information input. In 

the cross-talk view, dual-task interference does not result from resources competition, 

but reflects unwanted interactions between processing for two tasks. Therefore, 

interference can occur even when resources are available (Hazeltine et al., 2006).  

 An example of cross-talk interference is the difficulty to draw a circle with one 

hand and a square with the other hand simultaneously (e.g., Spijkers, Heuer, Steglich, 

& Kleinsorge, 2000). Hazeltine, et al. (2006) found that input/output modality 

pairings determined persistent dual-task costs after practices. Throughout practices, 

dual-task costs were generally more than twice as large with visual-vocal/ auditory-

manual tasks as with visual-manual/auditory-vocal pairing. Hazeltine, et al. (2006) 

attributed the different interference of input/output pairing to the cross-talk between 

processing of two tasks. 

 The cross-talk interference is also demonstrated in several driving studies. For 

example, Spence and collegues found that cognitive spatial tasks interfered with 

driving performance, if the secondary cognitive task and driving task emphasized 

different spatial locations (Spence & Ho, 2008; Spence & Read, 2003). In another 
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Lane Change Task study, Hurts (2011) demonstrated that a secondary spatial 

reasoning task was more distracting than an acoustic version of an otherwise identical 

secondary task. Hurts (2011) interpretted this finding in the view of cross-talk, that is, 

dual task interference depends on the compatability of spatial cues simutaneously 

used by primary driving task and secondary cognitive task. 
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CHAPTER 2: DRIVING PERFORMANCE UNDER COGNITIVE DISTRACTIONS 

 

When distracted, drivers exhibit performance decrements in many aspects. 

Driving safety researchers have measured performance using an array of metrics, 

including lateral control, longitudinal control, event detection and hazard response 

times, mental workload, eye movement patterns and attentional processing. This 

section describes some of the changes in behavioral, performance, and subjective 

measures seen under cognitive distractions.  

 

Lateral control 

 

Lateral control refers to drivers’ ability to maintain a steady and safe lane 

position. Lateral control performance is usually measured by the average lane 

position, the standard deviation of lane position, and the number of lane excursions. 

Lateral control is thought of as being controlled by ambient vision, which requires 

little attentional resources and therefore is robust against the interference from driver 

distraction (Horrey & Wickens, 2006). In two meta-analyses of the effect of cell 

phone usage on driver performance, Horrey & Wickens (2006) and Caird et. al. 

(2008) found only a modest effect of distraction on lateral control, suggesting that 

cell phone conversation has minimal effect on lane keeping. However, it is important 

to note that the effect is quite variable, and inconsistent.  

A possible reason for these mixed findings is that the effects of distraction on 

lane keeping performance depend on the modality and demand of the secondary 

tasks. Visual, manual and cognitive distraction apparently have different effects on 
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lane keeping performance (Engström et al., 2005; Liang & Lee, 2010). Secondary 

visual or manual tasks, particularly tasks requiring a large amount of visual attention, 

adversely affect drivers’ ability for lane keeping, incurring more variable lane 

position (Jancke, Musial, Vogt, & Kalveram, 1994; Wikman, Nieminen, & 

Summala, 1998). For example, drivers produced larger lane variability and more lane 

excursions while dialing or talking over a hand-held phone (Green, Hoekstra, & 

Williams, 1993; Reed & Green, 1999). Drivers also produced poorer lane keeping 

performance, as indexed by the standard deviation of lane position and the number of 

lane excursions, when they were manually entering information to a route guidance 

system or reading visual navigational instructions (Dingus, McGehee, Hulse, 

Manakkal, Mollenbauer, & Fleischman, 1995 ). 

In contrast, cognitive distraction often leads to more precise lateral control, 

reducing lane variability (e.g. Becic et al., 2010; Briem & Hedman, 1995;Brookhuis 

et al. 1991; Horrey & Simons, 2007; Kubose , et. al., 2006; Liang & Lee, 2010; 

Reimer, 2009). For example, Kubose et al. (2006) found that a language production 

task reduced the variability of lane position as compared to driving-only condition. 

In another driving simulator study, Reimer (2009) found that as the difficulty of a 

secondary N-back counting task increased, lane variability decreased. Ranney and 

colleagues had subjects drive an instrumental vehicle in a closed test track while 

performing a combination of tasks, including car-following, peripheral target 

detection and secondary in-vehicle tasks (Ranney, Harbluk, & Noy, 2005). Steering 

reversal rates were higher for trials involving secondary tasks, compared to the no-

secondary task condition, and extended periods of steering inactivity were less 

frequent. Higher steering reversal rates and less frequent steering inactivity under 
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distraction conditions suggested that drivers were more active in maintaining a 

steady lane position.  

However, several other studies found that cognitive distraction tasks can increase 

lane variability (Horrey, Lesch, & Garabet, 2009; Just, et al., 2008; Salvucci, 

2005;Salvucci & Beltowska, 2008; Strayer & Johnston, 2001). For example, Horrey , 

Lesch, Garabet (2009) found that both a Paced Auditory Serial Addition Task and a 

guessing task increased the standard deviation of lane position. Salvucci and 

Beltowska (2008) found that a memory rehearsal task significantly increased the 

rooted mean square error of lane position. 

The changes of lane variability may be a result of different steering behaviors 

under distractions. Cognitive distraction was found to increase steering wheel 

manipulation (Ranney, et al., 2005; Seppelt, & Wickens, 2003). For example, in an 

on-road driving study, an auditory continuous memory task significantly increased 

the steering wheel reversal rate (with one degree gap threshold), compared to drive-

only conditions (Engström et al., 2005). 

 

Longitudinal control 

 

Longitudinal control is usually measured using the mean and standard deviation 

of speed , headway distance, and headway time.  

Distracted drivers were often found to drive more slowly with more variable 

speed (Alm & Nilsson, 1994; Brown et al., 1969; Green, Hoekstra, & Williams, 

1993; Kubose et al., 2006; Rakauskas, Gugerty, & Ward, 2004; Reed & Green, 

1999). For example, Alm and Nilsson (1994) found that the use of telephone reduced 

the speed when the driving task was easy. Several on-road and simulator studies also 
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found that drivers using a cell phone showed greater variation in speed and less 

throttle control (Green, 2004; Zylstra, Tsimhoni, Green, & Mayer, 2004).  

Drivers may also adopt a longer headway distance when distracted (Greenberg, 

Tijerina, Curry, Artz, Cathey, Grant, Kochlar, Kozak, & Blommer, 2003; Östlund et 

al., 2004). For example, drivers engaging in a cognitively demanding cell phone 

conversation often maintain longer headway distance in a car-following situation as 

compared to when driving without a distraction task (Ranney et al. 2005; Strayer et 

al. 2003; Strayer & Drews 2004). However, this effect is not ubiquitous.   

Drivers engaging cognitive distraction tasks also produced more variable braking 

behaviors. For example, Harbluk et al. (2007) reported that drivers driving in the city 

traffic while doing a difficult digit addition task produced more hard brakes than 

drivers without distractions. In another study, Strayer and colleagues (2006) 

compared the effects of cell phone conversation and alcohol on driving performance. 

Compared to control condition, drivers engaging in a cell phone conversation 

initiated braking response about 9% slower to the leading vehicle braking events, and 

took about 19% longer time to recover their speed before braking. These studies 

suggested that drivers were less involved in manipulating speed when engaging in a 

cognitive distraction task. 

The increase of headway distance (Ranney, Harbluk,Noy, 2005) and reduction of 

speed (Dingus, et al. 1997; Pohlman & Traenkle, 1994; Rizzo, Stierman, Skaar, 

Dawson, Anderson, & Vecera, 2004) are interpreted as a compensatory behavior of 

distracted drivers to adapt to the increase of driving risks. However, this 

compensatory behavior were not consistently observed (Horrey & Simons, 2007; 

Lamble et al., 1999). For example, Horrey & Simons (2007) did not find any 

increase in safety margins during overtaking maneuvers. Lamble et al. (1999) 
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reported that the time-to-collision was shorter under a concurrent cognitive task and 

a phone dialing task, compared to when drivers were not distracted. 

 

Event detection and hazard response time 

 

Two meta-analyses showed that the major effect of cell phone conversations on 

driver performance is to increase response times to hazards and other critical events 

(Caird et al., 2008; Horrey & Wickens, 2006). Slower braking responses under high 

cognitive load conditions have been reported in many empirical studies (Alm & 

Nilsson, 1995; Lamble, et al., 1999; Lee, McGehee, Brown, & Reyes, 2002; Levy, 

Pashler, & Boer, 2006; Strayer, Drews, & Johnston, 2003). Secondary tasks, for 

example, rehearsing a nine-item list, phone dialing, music listening, and 

conversations (Bellinger, Budde, Machida, Richardson, & Berg, 2009; Lamble, et 

al., 1999; Salvucci, & Beltowska, 2008), all resulted in longer response times to 

hazards. According to Brookhuis, de Vries, and de Waard (1991), cell phone 

conversations while driving delayed adaptation to the speed changes of a leading 

vehicle by 600 msec and increased response time to the brake signal of the leading 

vehicle by 130 msec. The delay in brake response could have resulted from the late 

detection of stimuli and events. In another study, drivers talking with the passengers 

or over a cell phone had longer response times to pedestrian incursion events, 

relative to when drivers were not talking at all (Laberge, Scialfa, White, Caird, 

2004). 

 

 

 



22 

 

Mental workload 

 

Mental workload of drivers can be measured using psychophysiological 

measures such as heart rate variability (HRV, Brookhuis & De Waard, 1993, 2001), 

skin conductance (Reimer, Mehler, Coughlin, Godfrey, Tan, 2009), blink rate, and 

fixation duration, or using subjective rating scales (such as NASA-TLX), or by 

comparing secondary task performance.  

Distracted drivers often exhibit or self-report higher mental workload. For 

example, drivers using a cell phone reported higher workload in the Rating Scale of 

Mental Effort (RSME), regardless of the complexity of the cell phone conversations 

(Rakauskas, et. al., 2004). Similarly, drivers reported higher mental workload in the 

NASA-TLX scale when they were using a cell phone (Alm & Nilsson, 1995). 

Brookhuis, de Vries, & de Waard (1991) found that mental workload measured by 

the average and variability of heart rate increased as the task demands increased. 

Drivers rated higher subjective workload and had higher heart rates when they were 

talking while driving (Fairclough et al., 1991; Reimer, Mehler, Coughlin, Godfrey, 

Tan, 2009). Skin conductance also increased dramatically when drivers performed a 

secondary task (Reimer, et. al., 2009).  

 

Eye movement patterns and attentional processing 

 

 Visual scanning window size reflects the allocation of attention while driving. 

Appropriate allocation of attention is important for visual perception and safe driving 

(Recarte & Nunes, 2000).  
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 Cognitive distractions have been consistently found to constrain the breadth of 

visual scanning (Chisholm et al., 2006; Recarte & Nunes, 2000, 2003; Victor, et al. 

2005). For example, Reimer (2009) had drivers do an N-back task while driving in 

an instrumental vehicle. The horizontal gaze dispersion during the most difficult N-

back task was significantly smaller than during the easier versions of the N-back 

task. Interestingly, the vertical eye position increased in high cognitive load 

conditions, which suggested that drivers adapted to the increase of cognitive load by 

increasing their sight distances (Reimer, 2009). Moreover, reduced eye movement 

dispersion is sometimes accompanied by poor steering and driving performance 

(Wilson, Chattington, & Marple-Horvat, 2008). Wilson and colleagues had subjects 

drive under anxiety . Drivers under emotional pressure made smaller distribution of 

eye movements, and reduced the correlation of eye movements with steering. 

Cognitive distraction also reduces the sampling of peripheral information, such 

as the side and rear-view mirrors and the speedometer, and caused more glances to 

road center (He, et al., 2011;Recarte & Nunes, 2000, 2003). Recarte and Nunes 

(2000) studied the effect of verbal and spatial-imagery tasks on the eye scanning 

patterns of drivers. They reported that the spatial-imagery task reduced the 

inspection frequency of mirrors and speedometers, and increased the average fixation 

duration. Harbluk et al. (2007) asked drivers to perform a digit addition task while 

driving in city traffic. Drivers in their study reduced the visual inspection of the 

instruments and mirrors, and some drivers even abandoned visual inspection to these 

areas entirely.  
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CHAPTER 3: EXISTING HYPOTHESES OF LANE VARIABILITY REDUCTION 

 

 Cognitive distractions often reduce the lane variability (e.g. Becic et al., 2010; 

Briem & Hedman, 1995; Brookhuis et al. 1991; Horrey & Simons, 2007; Kubose , et. 

al., 2006; Liang & Lee, 2010; Reimer, 2009; however, see Just, Keller, & Cynkar 

(2008) and Strayer & Johnston (2001) for the findings of higher lane variability under 

cognitive distraction). The reduction of lane variability under cognitive distraction is 

interesting and counter-intuitive. Does this smaller variability indicate a performance 

loss or a performance gain in lane keeping? In one hand, it is natural to speculate that 

the smaller lane variability indicates a performance loss. As reviewed in Chapter 2, 

cognitive distractions cause performance decrements in many aspects of driving, for 

example, longer hazard response time, narrower visual scanning, more variable 

headway time and speed etc. Intuitively, cognitive distractions should cause 

impairment in lane keeping too. On the hand, the smaller lane variability is generally 

interpreted as a a performance gain, as it means lower risks of an unintended lane 

departure or collision with incoming vehicles.  

 Several hypotheses have emerged to explain this counter-intuitive finding of 

smaller lane variability under cognitive distraction, including the rigidified steering 

hypothesis, the attentional enhancement hypothesis, the lateral prioritization 

hypothesis, and the automatic steering hypothesis. This chapter explains and 

compares these hypotheses. 
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Rigidified steering hypothesis 

 

 The rigidified steering hypothesis interprets the smaller lane variability under 

cognitive distractions as a performance loss in lane keeping (Mehler, Reimer, 

Coughlin, Dusek, 2009; Reimer, 2009; Son, Reimer, Mehler, Pohlmeyer, Godfrey, 

Orszulak, Long, Kim, Lee, & Coughlin, 2010).This hypothesis holds that when 

drivers engage in a cognitive distraction task, attention is shifted away from vehicle 

control, which induces intermittent or unresponsive steering behaviors (Cliff, 1973; 

Liang & Lee, 2010). Therefore, a decrease in lane variability represents an 

intermittent, compensatory behavior pattern to allow attention to shift to the cognitive 

distraction task (Reimer, 2009). To my best knowledge, no reports have yet offered a 

direct behavioral measure of rigidified steering. But behavioral study did found that 

distractions caused an intermittent throttle adjustment. In the baseline conditions, 

drivers produced continuing correction of throttle position. In contrast, drivers using a 

navigational system controlled their speed by intermittently adjusting the throttle, 

producing a flat lining of the throttle position. Distracted drivers alternated between 

periods of throttle inactivity and periods of throttle adjustment (Green, 2004; Zylstra, 

Tsimhoni, Green, & Mayer, 2004). Analogously, it is possible that distractions can 

cause intermittent and rigidified steering control too.  

 The rigidified steering hypothesis might be explained by several of the theories 

discussed above. According to the resource models, performance is positively 

correlated with the amount of allocated resources when performance is not 

constrained my available information (data-driven). When drivers engage in a 

cognitive distraction task, attentional resources are shifted from driving to secondary 
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tasks, leaving fewer resources available for the primary driving task (Reimer, 2009). 

Accompanying the shifts of attention, drivers might exhibit rigidified steering, longer 

response time to hazards and poorer situational awareness, all of which indicate poor 

safety margins.  

 According to the central bottleneck model, the central executive operates serially, 

processing one task at a time (Pashler, 1994). If the central executive is already 

engaged in a distracting task, all other cognitive processes, including steering control 

and speed manipulation, are forced to wait till the release of the central executive. 

Therefore, a cognitive distraction task can produce psychological refractory periods 

for steering control, which leads to more periods of steering inactivity, a rigidified 

steering style.  

 The rigidified steering hypothesis explains lane keeping performance as a result 

of a compensatory steering pattern following attention shift to secondary tasks. 

Therefore, it expects reduced cognitive processing of the driving scenes, and fewer 

steering corrections. The reduction of cognitive processing is confirmed in several 

studies. For example, the parietal lobe activation, which is associated with spatial 

processing, decreased by 37% when drivers concurrently did an auditory language 

comprehension task (Just , et al., 2008). The amplitude of the P300 wave, which 

reflects stimulus encoding, was reduced by 50% when drivers were talking on a cell 

phone compared to the drive-only conditions (Strayer & Drews, 2007).  

 However, contrary to the expectation of reduced steering corrections, several 

studies have suggested that cognitive distraction increases steering manipulation. For 

example, an auditory continuous memory task increased the steering reversal rate 

(Engström et al., 2005). In an on-road driving study, Ranney et al. (2005) found that 

distracted drivers had higher steering reversal rate and less steering inactivity, 
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compared to drive-only condition. These data suggest that the shift of attention to a 

distracting task does not necessarily cause rigidified or intermittent steering 

behaviours.  

 

Visual enhancement hypothesis 

 

 The visual enhancement hypothesis regards the reduction of lane variability under 

cognitive distractions as a performance gain resulting from enhanced perception of 

visual information which are important for steering control. Lateral driving 

performance has been found to be closely related to eye scanning patterns. Wann and 

Swapp (2000) suggested that drivers look where they steer and steer in the direction 

where they look. Because of the strong linkage of attention and eye movements, 

changes of eye movements can have an important impact on lateral performance. For 

example, Engström and colleagues found that the reduction of lane variability under 

cognitive distractions was accompanied by increased steering activity and a narrower 

visual inspection window (Engström, et al. , 2005; Östlund, et al. , 2004). They 

argued that a gaze concentration toward the road center improved perceptual 

processing necessary for lateral control, which allows enhanced tracking responses , 

therefore, producing smaller lane variability. Attentional narrowing resulted from 

cognitive distractions (Harbluk, Noy, Trbovich, & Eizenman, 2007; Liang & Lee, 

2010; Recarte & Nunes, 2000, 2003; Victor, et al., 2005), should thus reduce drivers’ 

delectability of events in the visual periphery, but enhance perceptual analysis of 

objects in the central visual field, thereby improving steering response (Engström et 

al., 2005; Östlund et al., 2004). Because the retinal sensitivity reduces in the 

peripheral vision, fixation away from the future path region will deteriorate path 
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control, for example, increasing the standard deviation of lane keeping (Victor et al., 

2005). Studies show that fixations towards the road center increase under cognitive 

distractions. Therefore, lane keeping performance may be improved when cognitive 

distractions narrow the visual inspection window.  

 The visual enhancement hypothesis is analogous to the well-known zoom-lens 

model of attention (Eriksen & St. James, 1986; LaBerge, 1983). The “spotlight” of 

attention can adjust its focus, or processing efficiency for stimuli within the focus, 

according to the requirement of tasks. As the area of the attentional focus decreases, 

the processing efficiency for the stimuli within the focus increases (Eriksen & St. 

James, 1986). The zoom-lens of attention suggests an inverse relationship between the 

size of focus and the visual processing efficiency. Because the attentional resources 

are limited and fixed, the smaller the focus is, the higher the visual processing ability 

will be in the region of the scene, as the fixed attentional resources will be distributed 

over a smaller area. Additionally, studies show that the distribution of focused 

attention in three-dimensional space is an ellipsoidal shape, with higher attentional 

processing ability in the forward view and at the near distance (Anderson, 1990; 

Anderson & Kramer, 1993).Therefore, when cognitive distractions narrow the visual 

scanning, the processing of information in the forward view will be enhanced, which 

allows better steering control to keep a straighter lane position. 

 Although the visual enhancement hypothesis is intuitively reasonable, it 

contradicts the inattentional blindness theory and several empirical findings. 

According to inattentional blindness theory, cognitive distractions often result in 

superficial encoding of visual information. Strayer and colleagues (2001, 2003, 2007) 

reported that drivers engaging in a cell phone conversation had poorer recognition 

memory of stimuli presented in the driving scenes, compared to driving-only 
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conditions. Notably, distracted drivers showed impaired memory for the dashboards 

even if they had fixated on them directly while driving. Distraction tasks also reduced 

the activation of the parietal lobe (Just, et al., 2008; Strayer & Drews, 2007), 

suggesting less cognitive processing of visual and spatial information, which is 

critical for safe driving. Moreover, in contrast to the argument of perceptual 

improvement, a sentence judgement task was found to impair the gap perception 

(Brown, Tickner, Simmonds, 1969). In a peripheral detection task of LED onsets, 

Ranney reported that a voice-activated secondary in-vehicle task reduced the 

percentage of detected targets, and increased the target-detection response time, 

compared to drive-only condition (Ranney et al., 2005). These studies suggest that 

even if gazes concentrated more narrowly under cognitive distractions, the visual 

processing of the fixated information was reduced, rather than improved according to 

the expectation of the visual enhancement hypothesis. 

 Additionally, if cognitive distractions did enhance visual perception and it was 

the visual perception enhancement that contributes to straighter lane position , in the 

same logic, better perceptual processing will also improve longitudinal performance, 

for example, reducing hazard response time to the sudden brake of a leading vehicle. 

However, as reviewed above, cognitive distractions delay hazard response time 

consistently in the literature. 

 

Lateral prioritization hypothesis 

 

 A third explanation of the smaller lane variability under cognitive distractions is 

the lateral prioritization hypothesis. This hypothesis posits that the smaller lane 

variability under distractions indicates better lane keeping performance resulting from 
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strategic prioritization of steering control . Drivers may prioritize lateral lane keeping 

performance by any or a combination of three ways. One way is to shift resources 

from longitudinal vehicle control and other aspects of driving to lane keeping. The 

second way is to moderate the secondary task performance to prioritize lane keeping. 

The third way is to increase the overall vigilance level. Driving may be viewed as a 

satisficing process, in which performance on individual task elements is not ideal but 

reaches only the level necessary to produce an overall safe and relatively high 

performing system (Boer, 2000). The lateral prioritization hyothesis argues that 

during normal driving, drivers do not need to invest all available resources in lane 

keeping, as long as they stay in a subjectively chosen ‘safety zone’. When distracted 

by secondary tasks, however, drivers become increasingly concerned with their lateral 

performance and therefore try to protect lane keeping by investing more resources in 

steering control (Beede & Kass, 2006; Engström, et al., 2005).The lateral 

prioritization hypothesis is often explained using the resource model in existing 

literature (Beede & Kass, 2006; Engström, et al., 2005). The underlying assumption is 

that the central executive resources are divisible and sharable. Drivers can try to 

achieve their satisfactory lateral performance by shifting resources between lateral 

and longitudinal aspects of driving, and secondary tasks. For example, if drivers shift 

resources from longitudinal speed manipulation to lateral control, lane keeping 

performance will increase, and longitudinal performance will decrease. Please note 

that this resources-sharing strategy will not necessarily lead to inactivitity in speed 

manipulation (This only happens if no resources are left for longitudinal speed 

manipulation and speed manipulation is data-limited.).  

 The lateral prioritization hypothesis can also be explained using the central 

bottleneck model. Drivers can prioritize lateral performance by time-sharing the 
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limited serial central processor among lateral, longitudinal and other aspects of 

driving, and secondary tasks. If the needs of steering or speed adjustment happen at 

the same time or adjacently, in which no perfect time-sharing is possible, drivers have 

to choose to finish one task first. If drivers choose to prioritize lateral performance, 

speed manipulation has to be delayed until the central processor disengages from 

steering control. Therefore, according to the central bottleneck theory, lateral 

prioritization will lead to more inactivity in speed manipulation. 

 Liang & Lee (2010) hypothesized that two factors contributing to reduced lane 

variability. One factor is that drivers adopt a cautious strategy when perceiving higher 

risks under cognitive distractions. Therefore, distracted drivers prioritize lateral lane 

keeping to maintain a better safety margin. The other factor is that gaze concentration 

improves tracking response thanks to enhanced visual processing in the forward view. 

In their study, Liang & Lee (2010) found that gaze concentration explained only 5 

percent variance of the lane position variation. Therefore, they attributed the observed 

reduction of lane variability primarily to lateral prioritization.  

 The lateral prioritization hypothesis is also supported by several other studies 

(Beede & Kass, 2006; Seppelt & Wickens, 2003; Victor et al., 2005). For examples, 

Beede and Kass (2006) had drivers drive while responding to a signal detection task 

or a simulated cell phone conversation task. Drivers not engaged in either secondary 

tasks had the most frequent lane changes, compared to distraction conditions. When 

drivers concurrently responding to a signal detectiont ask or a conversation task, they 

simplied their driving behaviours by reducing lane changes and speed adjustments. 

Based on these findings, Beede and Kass suggested that distracted drivers protected 

lane keeping performance by shedding peripheral tasks to maintain a straighter lane 

position. Victor et al. (2005) found that drivers engaged in an auditory task looked 
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more concentrated at the road center, reducing glances to the road scene periphery 

(e.g. traffic signs) and inside the vehicle (e.g. the speedometer). They proposed that 

drivers prioritized the visual guidance of path-control task, over event detection and 

planning task.  

 

Automatic steering hypothesis 

  

 The automatic steering hypothesis regards the smaller lane variability under 

cognitive distractions as a performance gain in lane-keeping (Kubose, et al., 2006). 

The automatic steering hypothesis suggests that more attention devoted to automatic 

behaviors is harmful for performance (Beilock & Carr, 2001; Beilock, Carr, 

MacMahon, & Starkes, 2002). Lane-keeping is an automatic behavior for experienced 

drivers. When a cognitive distraction task takes attention away from the automatic 

steering manipulation, the interference from conscious control is reduced, therefore 

producing better lane-keeping performance (Kubose, et al., 2006). 

 

Hypothesis summary 

  

 To summarize, the four hypotheses differ in how cognitive distraction influences 

the allocation of attention and the performance implication of smaller lane variability 

(See Table 1). The rigidified steering hypothesis and the automatic steering 

hypothesis suggest that cognitive distraction reduces attention devoted to lane 

keeping. In contrast, the lateral prioritization hypothesis and the visual enhancement 

hypothesis suggest that cognitive distraction increases attention to lane-keeping. The 

rigidified steering hypothesis regards the smaller lane variability as a performance 
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loss, while all three other hypotheses, the automatic steering hypothesis, the lateral 

prioritization hypothesis, and the visual enhancement hypothesis, regard the smaller 

lane variability as a performance gain in lane-keeping.   

 

Table 1. Comparisons of the predictions of the four hypotheses about the effect of 

cognitive distractions on lane-keeping performance. 

 Lateral performance loss Lateral performance gain 

Decrease 

attention to lane keeping 

Rigidified steering Automatic steering 

Increase  

attention to lane keeping 

 Lateral prioritization & 

Visual enhancement 

 

 Research has yet to explain why lane variability often decreases when drivers are 

distracted cognitively, and whether this effect indicates a performance gain or a 

performance loss in lane keeping, and what’s the underlying mechanisms for lane-

keeping performance change. This dissertation project explores these important 

questions using three experiments.  
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EXPERIMENT 1: LANE KEEPING PERFORMANCE WITH A CRUISE 

CONTROL SYSTEM 

 

 As reviewed in Chapter 3, researchers have yet to agree on the performance 

implications of smaller lane variability under cognitive distraction. To answer the 

question of whether the smaller lane variability under cognitive distractions indicates 

a performance gain or a performance loss in lane keeping, we have to measure lane 

keeping performance in alternative ways.  

 Experiment 1 was inspired by the spectral coherence analysis used in studies of 

car-following performance (for example, Brookhuis et al., 1994; Dastrup, Lees, 

Dawson, Lee, & Rizzo, 2009). Spectral coherence analysis takes the velocities of the 

leading vehicle and subject vehicle as input variables, and generates a coherence 

value measuring the strength of the coupling between the velocities of leading and 

subject vehicles. Higher coherence values indicate that subject drivers follow the 

velocity changes of the leading vehicle more closely, implying better car-following 

performance.  

 Experiment 1 used the spectral coherence analysis to measure lane-keeping 

performance. In analogy to the velocity variations of the leading vehicle in the car-

following paradigm, Experiment 1 implemented lateral wind gusts which changes 

strengths and directions continuously as determined by the sum of three sinsoid 

waves. The spectral coherence analysis accepted the lateral wind strengths and 

steering wheel position as input variables, and generated a coherence value, 

measuring drivers’ ability to adjust steering wheel position in response to lateral wind. 

Higher coherence values in this task indicate better responses to the change of the 
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lateral wind, therefore, better lane-keeping performance. If the smaller lane variability 

under cognitive distractions reflects a performance gain in lane-keeping, it should be 

accompanied by higher coherence values between steering wheel position and lateral 

wind strength; in contrast, if it reflects a performance loss, it should be accompanied 

by smaller coherence values.  

 The rigidified steering hypothesis assumes attention shifts away from lateral 

control during cognitive distraction, and it therefore predicts poorer lane-keeping 

performance, that is, lower coherence between steering wheel position and lateral 

wind strength. The visual enhancement hypothesis proposes that cognitive 

distractions improve perceptual processing in the central forward view, leading to 

better steering control. Therefore, the visual enhancement hypothesis expects higher 

coherence under cognitive distraction. The lateral prioritization hypothesis argues that 

drivers shift more resources to lane-keeping to compensate for the higher driving risks 

under cognitive distraction. With more resources, the lateral prioritization hypothesis 

would expect better lane-keeping, including higher coherence. The automatic steering 

hypothesis assumes that steering performance will be improved when distraction tasks 

take attention away from the automatic steering control. Therefore, this hypothesis 

also predicts higher coherence under distraction.  



36 

 

 

Method 

Subjects 

 Eighteen subjects (12 female and 6 male, mean age = 23.8 years, SD = 4.6 years) 

were recruited from the local university community. All subjects had held a valid 

driver’s license for at least three years (M = 7.64 years, SD = 4.42 years); the mean 

self-reported number of miles driven annually was 7139 miles (SD = 7486 miles). All 

subjects had normal or corrected-to-normal visual acuity, and none of them reported 

any experience of motion sickness. Subjects were paid eight dollars per hour for their 

participation.  

 

Apparatus and Stimuli  

 Data were collected in a fully immersive fixed-base driving simulator, consisting 

of a 1998 Saturn SL positioned in a wrap-around environment with 135° forward and 

rear visual fields. Eight Epson Powerlite 703C projectors (1024 × 768 pixels of 

resolution) projected the driving scenes onto eight separate screens. Road and traffic 

information was visible through the interior and exterior rear view mirrors. 

    The simulator control dynamics were modeled after a typical four-door Saturn 

sedan. Drive Safety’s Vection Simulation Software™ Version 1.6.1 (DriveSafety, 

2004) displayed the virtual driving scenarios. The driving environments and traffic 

scenarios were created using HyperDrive Authoring Suite™ Version 1.6.1. The wind 

turbulence, button and brake press events, and other environmental features were 

coordinated through Tcl scripts. Measures of real-time driving performance, including 

time stamp, velocity, steering wheel position, etc., were sampled at 60 Hz and auto-

recorded during the execution of a simulated drive for later analysis. 
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Driving Scenario  

 The simulated driving environment consisted of a straight highway, which is 

16000 meters long with three lanes of traffic in each direction. Each lane was 3.6 

meters wide. The two directions of the highway were divided by bushes and trees in 

the middle. There was no traffic except the subject’s vehicle.  

 Heavy lateral wind began after the subjects had driven exactly 350 meters from 

the starting point of each trial. Wind velocity followed a pattern created by the sum of 

three sine waves, a manipulation inspired by Andersen and Ni (2005), who 

manipulated the leading vehicle velocity using a combination of three sine waves in a 

car following paradigm. The summation of three sinusoids was used to make the 

change of lateral wind difficult to predict. The amplitudes of the three sinusoids were 

1000, 2000, and 1500 Newtons respectively, and their temporal frequencies were 

0.117, 0.083, and 0.033 Hz. The phases of the first two sinusoids were assigned a 

random value from 0 to 1. The phase of the third sinusoid was set to the value that 

made the initial strength of wind zero. The random phase shift values made the lateral 

wind pattern differ from subject to subject. The directions of wind gusts varied 

between leftward and rightward, as determined by the sign of the summed sinusoids.  

 

Loading Task   

 An auditory loading task was used to manipulate drivers’ level of cognitive 

distraction. Stimuli were audio recordings of the spoken digits one to nine, created 

using the Text-to-Speech web service by AT&T Labs Natural Voices
®
. The duration 

of digits ranged from 0.58 second to 0.91 second, with a mean of 0.68 second. 

Recordings were grouped to create one-hundred sets of four digits. The digits in each 
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set were randomly sampled from one to nine without replacement, and were in 

random order under the constraint that they were not monotonically increasing. Digits 

within each set were played at a time interval of 17ms. The auditory presentation time 

was 2.77 seconds on average, with a range of 2.48 seconds to 3.10 seconds. The time 

interval between sets was randomly sampled from a uniform distribution with a range 

of five to ten seconds.  

 In the drive-only condition, the subjects only need to drive, without any auditory 

stimuli played. In the low-load dual-task condition, subjects performed a shadowing 

task that required them to repeat the four digits they had just heard in the same order 

they had been spoken. In the high load dual-task condition, subjects were required to 

report the four digits back in ascending order. The high load dual-task condition thus 

imposed working memory demands (re-ordering the digits) that the low-load 

condition did not. 

 

Procedure 

 Upon arriving at the lab, subjects completed an informed consent form, a 

screening questionnaire inquiring about their driving experience and propensity for 

simulator sickness, and a demographic questionnaire. Subjects with at least four years 

of driving experience, normal or corrected-to-normal visual acuity, and no history of 

simulator sickness were allowed to participate in this experiment. 

 The subjects’ primary task was to drive while maintaining an appropriate lane 

position. To let subjects focus their attention on lateral vehicle control, a cruise 

control system was implemented to assist velocity maintenance. At the beginning of 

each drive, the subject accelerated the vehicle’s speed to 45MPH. The cruise control 
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system then took over the speed control and kept a constant speed of 45MPH without 

driver’s intervention. Drivers could not change the speed of vehicle thereafter.  

 After receiving a brief description of the experimental task, subjects completed a 

practice drive to get familiar with the simulator and the driving environment. They 

were free to ask questions during the practice drive. The practice drive included all 

three task conditions, in the order of drive-only, drive-shadowing, and drive-ordering, 

each lasting about three minutes. The experimental blocks began after subjects 

reported that they fully understood the tasks and were comfortable driving in the 

simulator. All subjects completed three drives, one in each of the task conditions. The 

order of the three drives was counterbalanced across subjects. Each drive lasted 

approximately ten minutes, and subjects were given a chance to rest between blocks.  

 

Dependent Variables 

Lane-keeping performance was calibrated using the mean and standard 

deviation of lane position, steering reversal rate, and spectral coherence analysis of 

steering wheel position and lateral wind strength.  

Lane position was measured as deviation in meters from the center of the 

subject’s lane. Positive values indicate positions to the right of lane center, and 

negative values indicate positions to the left. The lane variability was measured using 

both the standard deviation of lane position (SDLP) and the root mean square error 

(RMSE) (Regan, Lee, Young, 2008; Marcotte, et al., 2003).  

The steering reversal rate measured drivers’ efforts in adjusting the steering 

wheel’s direction to maintain lane position. A steering reversal was defined as a 

change in steering direction with a velocity of more than 3.0 deg/s (Theeuwes, 

Alferdinck, & Perel, 2002; Groot, Winter, Garcia, Mulder, & Wieringa, 2011).  
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 Spectral coherence analysis examined the relationship between steering wheel 

position and lateral wind velocity. To maintain steady lane position, drivers need to 

steer in the direction opposite that of the lateral wind. Therefore, the steering wheel 

position was reversed for analysis. Both steering wheel position and lateral wind 

strength were standardized before being submitted to the spectral coherence analysis. 

A Tukey-Hanning window was used to smooth the data (Janacek, 2008). Spectral 

coherence analysis generates three measurements: coherence, delay, and gain. 

Coherence measured the extent to which the steering wheel position covaried with the 

strength and direction of the lateral wind. Coherence values can range from zero to 

one, with higher values indicating a better match of steering wheel and lateral wind. 

Delay measured how quickly drivers adjusted the steering wheel in response to lateral 

wind changes. Gain measured the amplification factors of steering wheel adjustment 

relative to lateral wind strength change. A gain value larger than one indicates 

overshoot of steering wheel adjustment, while a gain value smaller than one indicates 

undershoot. 
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Results 

 

 For statistical analysis, dependent measures were submitted to one-way within-

subject analyses of variance with three levels of task condition: single-task driving 

(drive-only), dual-task driving while shadowing spoken digits (drive-shadowing), and 

driving while mentally re-ordering spoken digits (drive-ordering). Subjects’ lateral 

vehicle control performance was measured by the standard deviation of lane position, 

the steering reversal rate, and the spectral measures of the relationship between 

steering wheel position and lateral wind velocity, as described below.  

 

Lane-Keeping   

 The average lane position was 0.12m for drive-ordering conditions, 0.13m for 

drive-shadowing conditions and 0.10m for drive-only condition. The main effect of 

cognitive load on the average lane position was not significant, F (2, 34) = 1.19, p 

= .32.  

 The analyses of SDLP and RMSE yielded similar results. Therefore, only the 

results of the SDLP analysis are reported here. Figure 1 presents mean SDLP as a 

function of task condition. Subjects showed less lane variability when driving under 

high cognitive load, F (2, 34) = 4.21, p = .02. Pair-wise comparisons using Tukey’s 

LSD procedure demonstrated that lane variability in the drive-only conditions (M 

= .51) was marginally larger than in the drive-shadowing conditions (M = .45, t (17) = 

1.95, p = .07) and reliably larger than in the drive-ordering conditions (M = .44, t (17) 

= 2.34, p = .03). 
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Figure 1. The average standard deviation of lane position under different cognitive 

load conditions. Error bars in all figures indicate within-subject standard errors 

(Loftus & Masson, 1994). 

 

Steering Reversal Rate 

An analysis of steering reversal rate assessed drivers’ efforts in adjusting the 

steering wheel in order to maintain lane position. Figure 2 depicts the average 

steering reversal rates. Statistical analysis showed a main effect of cognitive load, F 

(2, 34) = 4.51, p = .02, with pair-wise comparisons indicating that the steering 

reversal rate was higher in the drive-ordering conditions (M = 0.90 Hz) than in the 

drive-only conditions (M = 0.66 Hz) , t (17) = 2.73, p = .01. The steering reversal 

rate was numerically higher in the drive-shadowing conditions (M = 0.86 Hz) than 

drive-only conditions, but this difference was not significant, t (17) = 1.80, p = .09.   
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Figure 2. The average steering reversal rate under different cognitive load conditions. 

 

Spectral Coherence Analysis  

     Coherence, delay and gain values obtained from special coherence analysis 

were submitted to separate two-way ANOVAs with cognitive load and frequencies of 

the three sinusoids which comprised the lateral wind as within-subject factors.  

Figure 3 depicts the average coherence values for all three sinusoidal wind 

components, as a function of experimental condition. Not surprisingly, coherence was 

lower on average for the higher frequency components of the wind than for low-

frequency components, F (2, 34) =1121.43, p < .001. Of more interest, coherence 

increased reliably as cognitive load increased across task conditions, F (2, 34) = 4.78, 

p = .02. The main effects were qualified by a significant interaction, F (4, 68) = 3.05, 
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p = .02. Simple effect tests further explored the influence of load condition separately 

for each level of wind component frequencies. For the 0.033Hz component, the 

simple effect of task condition was not significant, F (2, 34) = 2.26, p = .12. However, 

simple effects for the 0.083Hz and 0.117Hz components were both significant, F (2, 

34) = 3.82, p = .03 and F (2, 34) = 3.89, p = .03, respectively. For the 0.083Hz 

component, coherence was higher in the driving-ordering conditions (M = 0.76) than 

in the drive-only conditions (M = 0.71), t (17) = 2.27, p = .036, but did not differ 

significantly between the drive-only conditions and the drive-shadowing conditions 

(M = 0.76) , t (17) = 1.69, p = .11. For the 0.117Hz component, similarly, the drive-

ordering conditions (M = 0.08) produced higher coherence than the drive-only 

conditions (M = 0.05), t (17) = 2.38, p = .03, while the coherence was statistically 

similar across the drive-shadowing (M = 0.05) and drive-only (M = 0.05) conditions, t 

(17) = .57, p = .57.  

Analysis of delay and gain both showed reliable main effects of wind 

frequency component,  ps < .001, but no reliable main effect of cognitive load and 

no interaction, all ps > .15. 
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Figure 3. The average coherence values of steering wheel position and lateral wind 

strength under different cognitive load condition. (A. Coherence for 0.033 Hz 

component; B. Coherence for 0.083 Hz component; C. Coherence for 0.117 Hz 

component) 
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Discussion 

 

Consistent with the findings of earlier research (Brookhuis, et al., 1991; 

Engström, et. al., 2005; Jamson & Merat, 2005; Östlund, et al., 2004; Rakauskas, et 

al., 2004; Reimer, 2009), Experiment 1 showed that high cognitive load reduced the 

variability of lateral lane positions, an effect that was apparently produced by drivers’ 

more active steering behavior (cf., Östlund, et al., 2004). More tellingly, changes in 

steering behavior manifest themselves as an increase in coherence values between 

wind velocity and steering wheel position. This effect argues against the possibility 

that the reduced variability of lane position was the result of a rigidified steering 

behavior, an hypothesis which predicts a decrease in coherence between wind 

strength and steering wheel position.  

Why should cognitive load have improved drivers’ lateral vehicle control? As 

reviewed in Chapter 3, researchers have offered various hypotheses. One possibility is 

that drivers under high cognitive load prioritize lateral vehicle control over peripheral 

driving tasks in an effort to protect their lane-keeping performance (Beede & Kass, 

2006; Östlund, et al., 2004). This suggestion is consistent with earlier studies 

indicating that task prioritization can indeed modulate lane-keeping performance 

(Horrey, Wickens, & Consalus, 2006). Alternatively, improvements in lateral control 

under cognitive load might be a felicitous result of the gaze concentration that occurs 

under cognitive distractions (e.g., He, et al., 2011; Recarte & Nunes, 2000, 2003). By 

causing visual attention to focus more narrowly in this way, cognitive distractions 

may incidentally allow drivers the ability to better monitor their lane-keeping 

performance and more quickly respond to deviations from the preferred lane position 

(Engström et. al., 2005; Östlund et. al., 2004). Alternatively, as suggested by the 
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automatic steering hypothesis, drivers might achieve better lane-keeping performance 

by reducing attention to lateral control, which allows less interference of the 

automatic steering manipulations from conscious control (Kubose et al., 2006). 

Further research will be necessary to disentangle these possibilities, and explore the 

mechanisms how drivers achieve better lane-keeping performance under cognitive 

distractions. 

Experiment 1 is limited in its use of a cruise control system to assist drivers’ 

speed maintenance. With a cruise control system, drivers do not need to spend as 

much efforts in speed maintenance as they should do normally. With such assistance, 

drivers can put more efforts in lane-keeping, which probably make the prioritization 

of lane-keeping possible. Future studies need to validate the findings in Experiment 1 

in more driving scenarios, for example, by incorporating a speed maintenance task or 

a car-following task.  

Experiment 1 is also limited in that by itself it provided insufficient information 

to distinguish between the three hypotheses that predict better lane-keeping 

performance under cognitive distraction. For example, the visual enhancement 

hypothesis explains smaller lane variability as a by-product of a gaze concentration 

effect. Visual scanning data would therefore offer useful information to test the visual 

enhancement hypothesis. The lateral prioritization hypothesis predicts better lane-

keeping performance will be accompanied by costs to longitudinal speed maintenance. 

Experiment 1, however, did not measure speed maintenance performance. Further 

studies should consider tracking visual scanning patterns while driving using an eye-

tracking system to test the visual enhancement hypothesis. Further studies may also 

consider incorporating a longitudinal task to test the lateral prioritization hypothesis.  
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EXPERIMENT 2: LANE KEEPING AND SPEED MAINTENANCE 

PERFORMANCE  

 

 Experiment 1 compared the lane keeping performance with and without cognitive 

distraction. Results showed that cognitive distraction reduced lane variability, 

increased the coherence of steering wheel position and lateral wind strength, and 

increased the steering reversal rate. Based on these findings, we speculated that the 

reduction of lane variability when drivers are cognitively distracted is not an indicator 

of performance loss, but a performance improvement (He & McCarley, 2011). A 

decisive conclusion requires further evidence, though. In our previous study, drivers 

were assisted with a cruise control system, which helped them maintain a constant 

speed of 45 MPH, allowing drivers to focus on lane keeping and secondary tasks. The 

over-emphasis of lane keeping might have biased our findings. Therefore, it is 

important to validate previous findings without a cruise control system. Moreover, we 

speculated that cognitively distracted drivers might improve their lane keeping 

performance either by enhancing attentional perception in the foveal view or by 

strategically prioritization of lateral lane keeping. However, previous experiment did 

not provide much empirical evidence for the visual enhancement hypothesis and 

lateral prioritization hypothesis.  

 Experiment 2 aimed to replicate and extend the findings in Experiment 1,further 

exploring the mechanisms by which drivers improved their lane-keeping 

performance. Eye movement data were collected to test visual enhancement 

hypothesis. A speed maintenance task was introduced to test the possibility of 

strategically prioritization of lateral performance over longitudinal performance.   
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Method 

Subjects 

Eighteen subjects (10 female and 8 male) were recruited through online 

advertisement and campus posters. The ages of the subjects ranged from 20 to 44 

years, with a mean of 27.6 years and standard deviation of 6.2 years. The average 

self-reported annual mileage of the subjects was 8589 miles. All subjects had held a 

driver’s license for at least four years; mean time since licensure was 10.3 years. All 

subjects had normal or corrected-to-normal visual acuity. Subjects were each paid $8 

per hour for a one-hour experiment.  

 

Apparatus and Stimuli 

 Data were collected using the same driving simulator as what was used in 

Experiment 1.  

   Eye and head movements were collected with a Smart Eye Pro 5.5 system 

(SmartEye AB, 2004). This system consisted of three Sony XC HR50 monochrome 

cameras which were mounted on the dashboard of the car and two IR-illuminators 

attached to the two side cameras. The cameras fed information into software which 

located predefined characteristic points on the subject’s face, and in this way 

determined where the subject’s foveas were pointing. Data were analyzed with 

customized software written in Python and Matlab.  

 

Driving Scenario 

 The simulated driving environment comprised a straight highway 16000 meters 

long with three lanes of traffic in each direction. Each lane was 3.6 meters wide. The 

two directions of the highway were divided by bushes and trees in the middle. There 



50 

 

was no traffic except the subject’s vehicle. Thirteen speed limit signs of 45 MPH were 

posted alongthe right side of the road. The distance between adjacent speed limit 

signs was randomly sampled from a uniform distribution with a range from 500 to 

1000 meters.  

 Heavy lateral wind began after the subjects had driven exactly 350 meters from 

the starting point of each trial. Wind velocity followed a pattern created from the sum 

of three sine waves, a manipulation inspired by Andersen & Ni (2005), who 

manipulated lead vehicle velocity using a combination of three sine waves in a car 

following task. The summation of three sinusoids was used to make the change of 

lateral wind difficult to predict. The amplitudes of the three sinusoids were 1000, 

2000, and 1500 Newtons respectively, and their temporal frequencies were 0.117, 

0.083, and 0.033 Hz. The phases of the first two sinusoids were assigned a random 

value from 0 to 1. The phase of the third sinusoid was set to the value that made the 

initial strength of wind zero. The random phase shift values made the lateral wind 

pattern differ from subject to subject. The directions of wind gusts varied between 

leftward and rightward, as determined by the sign of the summed sinusoids.  

 

Loading Task 

 An auditory task manipulated drivers’ level of cognitive load. The auditory 

materials were the same as that used in Experiment 1. Because Experiment 1 did not 

show much differences for the effects of a digit-ordering task and a digit-shadowing 

task, the digit-shadowing task was not used again in Experiment 2. In the low load 

condition, no auditory stimuli were played, and drivers performed only the driving 

task. In the high load condition, subjects were required to report back the four digits 
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in each set in ascending order. The high load condition thus imposed working 

memory demands (re-ordering the digits) that the low load condition did not. 

 

Procedure 

 Upon arriving at the lab, subjects completed an informed consent form, a 

screening questionnaire inquiring about their driving experience and propensity for 

simulator sickness, and a demographic questionnaire. Subjects with at least four years 

of driving experience, normal or corrected-to-normal visual acuity, and no history of 

simulator sickness were allowed to participate in the experiment. 

 The subjects’ primary task was to drive while maintaining an appropriate lane 

position and speed. Subjects were instructed to keep a steady lane position in the 

center lane and to drive at a speed of 45 MPH. After receiving a brief description of 

the experimental task, subjects completed a practice drive to familiarize themselves 

with the simulator and the driving scenario. They were free to ask questions during 

the practice drive. In the practice drive, subjects first drove in the low load (drive-

only) condition then in the high load (dual-task) condition, with each condition lasting 

about three minutes. The experimental blocks began after subjects reported that they 

fully understood the task and were comfortable driving in the simulator. All subjects 

completed four drives, two in each task condition. The order of the four drives was 

counter-balanced across subjects in an ABAB design. Each drive lasted 

approximately ten minutes, and subjects were given a chance to rest between blocks.  

 

Dependent Variables 

 Lane-keeping performance was calibrated using the average and standard 

deviation of lane position, steering reversal rate, steering holds (inactivity), and the 
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coherence value of steer wheel position and lateral wind strength. Lane position was 

measured as deviation in meters from the center of the subject’s lane. Steering 

reversal rate measured drivers’ efforts in adjusting the steering wheel’s direction in 

order to maintain lane position. A steering reversal was defined as a change in 

steering direction with a velocity of more than 3.0 deg/s (Theeuwes, et al., 2002; 

Groot, et al., 2011). Steering holds were defined as periods of no steering activities, 

i.e., no change of steering wheel position, longer than 400 ms consecutively (Ranney, 

et al., 2005). The coherence value of steer wheel position and lateral wind strength 

measures the coupling of steer position and wind strength, with larger value indicating 

better steering adjustment in response to lateral wind. The coherence value was 

computed in the same way as Experiment 1. 

 Speed maintenance performance was assessed using the standard deviation of 

speed, speed manipulation frequency, and speed manipulation holds. Speed 

manipulation frequency and speed manipulation holds was defined in analogous to the 

steering reversal rate and steering holds frequency used for analysis of lateral control 

behavior (Ranney et al., 2005). The speed manipulation input was defined as the 

normalized accelerator input (0-1) value minus the normalized brake input value (0-

1). The speed manipulation input ranged from -1 to 1, where -1 meant that the brake 

pedal was at its maximum depression, 0 meant that neither the accelerator nor the 

brake was depressed, and 1 meant that the accelerator pedal was at its maximum 

depression. The speed manipulation input was comparable to steering position in 

lateral lane-keeping. In analogy to the definition of steering reveral and steering holds, 

two variables were calculated based on the speed manipulation input. If the speed 

manipulation input changed value greater than three standard deviations in 83ms (or 5 

consecutive data samples), this was treated as a speed manipulation. If the speed 
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manipulation input did not change for more than 400ms consecutively, it was treated 

as a speed manipulation hold (cf., Ranney et al., 2005).  

 Eye movement patterns were calibrated using the dispersion of fixations, which 

was defined as the standard deviation of horizontal and vertical fixation location.  

 

Hypotheses 

 The rigidified steering hypothesis regards smaller lane variability under cognitive 

distractions as a performance loss. It predicts less frequent steering reversals and 

lower coherence between steering wheel position and lateral wind strength in the high 

load condition.  

 The visual enhancement hypothesis proposes that a concentration of gazes in the 

forward view improves the perceptual processing necessary for lateral control, 

therefore allowing enhanced tracking responses , producing smaller lane variability 

(Engström, et al., 2005; Östlund, et al., 2004). It predicts a narrowing of horizontal 

fixation dispersion under cognitive distraction, smaller lane variability, larger 

coherence between steering wheel position and lateral wind strength, and more 

frequent steering reversal rate. Enhanced visual processing in the forward view may 

also lead to better longitudinal performance.  

 The lateral prioritization hypothesis proposes that drivers shift attentional 

resources to lateral control in order to protect their lane-keeping performance (Beede 

& Kass, 2006; Engström et al., 2005) when under cognitive distraction. It predicts that 

cognitive load will reduce lane variability, increase the coherence between steering 

wheel position and lateral wind strength, increase the steering reversal rate, and 

compromise longitudinal performance.  
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 The automatic steering hypothesis proposes that attention is shifted away from 

the automatic behaviors of steering under cognitive distractions, which allows less 

conscious interference of steering control (Kubose et al., 2006). Therefore, the 

automatic steering hypothesis expects that cognitive load will produce smaller lane 

variability, increase the coherence between steering wheel position and lateral wind 

strength, increase the steering reversal rate.  

 

Results 

 

Lane-Keeping  

Cognitive load did not produce any significant changes in the average lane 

position, t (17) = .43, p = .67 (M = 0.04m, SE = 0.02 under dual-task conditions, and 

M = 0.05m, SE = 0.02 under drive-only conditions). 

Lane variability can be measured using either the standard deviation of lane 

position (SDLP) or the root mean square error (RMSE) of lane position. Analysis of 

the SDLP and RMSE produced similar results. Therefore, only the data of the SDLP 

was reported here. The SDLP under dual-task conditions (M = 0.44m, SE = 0.03) was 

significantly smaller than that under drive-only conditions (M = 0.47m, SE = 0.04), t 

(17) = 2.74, p = .01.  

 

Steering Control 

 Steering control behavior was further analyzed to explain the changes in lane-

keeping performance. The steering reversal rate was significantly higher under dual-

task conditions (M = 1.31 Hz, SE = 0.08) than drive-only conditions (M =1.17 Hz, SE 

= 0.06), t (17) = 4.80, p <.001. The frequency of steering holds was smaller under 
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dual-task conditions (M = 0.283 Hz, SE = 0.02) , compared to drive-only conditions ( 

M = 0.317Hz, SE = 0.02), t (17) = 4.733, p <.001. 

 Further analysis of the distribution of the steering reversal time interval was used 

to compare the four hypotheses. The rigidified steering hypothesis claims that drivers 

only steer intermittently when they were cognitively distracted. This intermittent 

steering behaviors would produce significant time gaps between steering reversals, 

which would reflect in larger numbers of long steering reversal intervals. The lateral 

prioritization hypothesis posits more effort in lane-keeping and higher steering 

reversal rate, and therefore, predicts that the mean steering reversal interval would be 

reduced.  

 

Figure 4. Distribution of steering reversal intervals under dual-task and drive-only 

conditions. 
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Figure 5. Comparisons of the steering reversal interval each ten time bins under dual-

task and drive-only conditions ( A star symbol indicates significant difference) 

 

 Figure 4 shows the distribution of steering reversal intervals under dual-task and 

drive-only conditions. Most the steering reversal intervals were below 4 seconds. 

Therefore, for statistical analysis, the steering reversal intervals were categorized into 

four bins of one second each. Figure 5 shows the frequency of steering reversal 

intervals in each time bins. The frequency of steering reversal intervals in each bin 

was treated as the dependent variable, and submitted to an ANOVA with time bin and 

cognitive load as within-subject factors. The main effects of both cognitive load and 

time bin were significantly, F (1,17) = 22.71, p < 0.001 and F (3,51) = 101.416, p < 
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0.001, respectively. Analysis also showed a significant interaction, F (3,51) = 18.86, p 

< 0.001. 

 Simple main effect analysis show that the frequency of steering reversal intervals 

was higher in the dual-task conditions (M = 0.96 Hz) than the drive-only conditions 

(M = 0.80 Hz), for the one second bin, t (17) = 4.48, p < 0.001 . For the two second 

bin, the frequency of steering reversal intervals was numerically larger in the dual-

task conditions ( M = 0.29 Hz) than the drive-only conditions ( M = 0.28 Hz), but not 

significant, t (17) = 1.17, p = 0.26. For the three second bin, the frequency of steering 

reversal intervals was smaller in dual-task conditions ( M = 0.05 Hz)  compared to 

the drive-only conditions ( M = 0.07 Hz), t (17) = 16.48, p < 0.001 . For the four 

second bin, the frequency of steering reversal intervals was smaller in dual-task 

conditions ( M = 0.0099 Hz) compared to the drive-only conditions ( M = 0.0142 Hz), 

t (17) = 3.58, p = 0.002 . Data thus show that the frequency of steering reversal 

intervals below two seconds was increased by cognitive distraction while the 

frequency of intervals longer than two seconds was reduced. There were no signs of a 

distraction-induced increase in long periods of steering reversal intervals of the kind 

predicted by the rigidified steering hypothesis. Data instead support the lateral 

prioritization hypothesis, which predicts a decrease of the steering reversal intervals 

in the dual-task conditions.   

 

Spectral Coherence Analysis  

 Spectral coherence analysis was used to measure drivers’ steering response to 

lateral wind change. The coherence, delay and gain values were submitted to three 

separate two-way ANOVAs, with level of cognitive load (low vs. high) and the 
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frequencies of the three sinusoidal components of the lateral wind (0.117 vs. 0.083 vs. 

0.033 Hz) as within-subject factors.  

Figure 6 depicts the average coherence values for all three sinusoidal wind 

components as a function of cognitive load condition. Coherence was lower on 

average for the higher frequency components of the wind than for the lower frequency 

components, F (2, 34) = 810.02, p < .001. Of more interest, coherence increased 

reliably under dual-task conditions, F (1, 17) = 5.96, p = .03. Because these main 

effects were qualified by a significant interaction effect, F (2, 34) = 4.06, p = .03, 

simple effect tests explored the influence of cognitive load separately for each wind 

frequency component. For the 0.033Hz component, the simple effect of cognitive 

load was non-significant, t (17) = 0.72, p = .48. For the 0.083Hz component, 

coherence was significantly higher in the dual-task conditions (M =0.71, SE =0.03) 

than in the drive-only conditions (M = 0.68, SE = 0.03), t (17) = 2.57, p = .02. For the 

0.117Hz component, the simple effect of load condition was not significant, t (17) = 

0.82, p = .43. The null effects for the .033 and .117 Hz components were perhaps 

because these coherence values were near ceiling and floor, respectively.  

 Analysis of delay and gain both showed reliable main effects of wind frequency 

component, ps < .001, but no reliable main effects of cognitive loads and no 

interaction effects, all ps > .15. 
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Figure 6. The average coherence of steering wheel position and lateral wind strength 

under different cognitive load condition. (A. Coherence for 0.033 Hz component; B. 

Coherence for 0.083 Hz component; C. Coherence for 0.117 Hz component. Please 

note the ranges of the Y-axis are different for the three graphs. ) 

 

Longitudinal Speed-Maintenance 

The mean and standard deviation of speed were used to measure longitudinal 

performance. Mean speed was 45.96 MPH (SE = 0.34) under the dual-task conditions 

and 45.93 MPH (SE = 0.39) under the drive-only conditions, suggesting that drivers 

followed the experimental instructions to drive at the speed of 45MPH. Data showed 

no reliable differences in average speed between dual-task conditions and drive-only 

conditions, t (17) = 0.31, p = .76. However, the standard deviation of speed reliably 
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increased under the dual-task conditions (M = 2.34 MPH, SE = 0.16), compared to the 

drive-only conditions (M = 2.06 MPH, SE = 0.15), t(17) = 2.32, p = .03.  

A pair of variables, analogous to the steering reversal rate and steering holds 

frequency used for analysis of lateral control behavior (Ranney, et. al., 2005), was 

calculated to analyze speed manipulation. The frequency of speed manipulation was 

reliably lower under the dual-task conditions (M = 0.01 Hz, SE = 0.002), relative to 

the drive-only conditions (M = 0.02 Hz, SE =0.003), t (17) = 4.463, p < .001. The 

frequency of speed manipulation holds was marginally higher under the dual-task 

conditions (M = 0.02 Hz, SE = 0.005), than the drive-only conditions (M = 0.01 Hz, 

SE = 0.004), t (17) = 2.055, p = .056. Both results suggest that drivers were less active 

in manipulating speed when distracted, an effect opposite that seen in the lateral 

control data. 

 

Fixation Dispersions 

The visual enhancement hypothesis posits that perceptual processing in the 

forward view improves as a side effect of attentional narrowing under cognitive 

distractions. To test the possibility that attentional narrowing might have improved 

lateral control in the current experiment, we analyzed the dispersion of subjects’ 

oculomotor fixations using standard deviation of horizontal and vertical fixation 

location. Paired-sample t-tests revealed no difference in the dispersion of fixation 

location between the dual-task conditions and the drive-only conditions, either 

horizontally (M = 0.046m, SE = 0.004 for the dual-task conditions, M = 0.045m, SE = 

0.006 for the drive-only conditions), t(17) = 0.317, p = .755, or vertically (M = 

0.042m, SE = 0.003 for the dual-task conditions, M = 0.038m, SE = 0.003 for the 
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drive-only conditions), t (17) = 1.302, p = .210. These effects give no evidence to 

support the visual enhancement hypothesis. 

 

Discussion 

 

This study replicated the findings of smaller lane variability under cognitive 

distractions in Experiment 1and confirmed that the effect was apparently produced by 

drivers’ more active steering behavior (cf., Östlund, et al., 2004) and lower frequency 

of steering holds (Ranney, et al., 2005). More novelly, changes in steering behaviors 

entailed a larger coherence between lateral wind strength and steering wheel position, 

an effect suggesting that distraction-induced reductions in the variability of lane 

position reflected a true performance gain in lane-keeping, rather than a performance 

loss. Notably, the increasingly active manipulation of steering wheel under the dual-

task conditions was accompanied by an increase in the variability of velocity and a 

decrease in the frequency of speed manipulation.  

Cognitive distraction has been shown to impair many aspects of driving, 

reducing the breadth of visual scanning (Recarte & Nunes, 2000, 2003), impairing the 

quality of attentional processing within an area of interest (Strayer et al., 2003), and 

increasing response time to hazards (Caird et al., 2008; Strayer & Johnston, 2001). 

The reduction of lane variability under cognitive distraction seems to be an outlier to 

the widespread impairment of driver performance under distraction. The rigidified 

steering hypothesis proposes that the reduction of lane variability is in fact a 

performance loss, resulting from neglect of the lateral control task (Mehler, et al., 

2009; Reimer, 2009; Son, et al., 2010). However, contrary to the predictions of the 
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rigidified steering hypothesis, this study and other previous work have found that 

drivers steer more actively during distraction (Engström, et al., 2005; Östlund, et al., 

2004; Ranney, et al., 2005). The current data extend earlier findings furthermore, by 

showing that distraction can improve the coherence between steering wheel position 

and lateral wind strength, again contrary to the predictions of the rigidified steering 

hypothesis. Experiment 2 also provided a unique measurement of the distribution of 

the steering reversal time intervals. Cognitive distraction reduced the intervals 

between steering reversal, which is opposite to the prediction of intermittent steering 

response pattern by the rigidified hypothesis.  

How did drivers produce better lane-keeping performance under the dual-task 

conditions? According to existing literature, drivers might improve lane-keeping 

performance either through better visual processing (the visual enhancement 

hypothesis), less interferences of conscious control on the automatic steering 

behaviors (the automatic steering hypothesis), or actively prioritizing lateral lane-

keeping (the lateral prioritization hypothesis) (Engström et al., 2005; Kubose et al., 

2006; Liang & Lee, 2010). 

The visual enhancement hypothesis explains the reduction of lane variability 

under cognitive distractions as a result of attentional narrowing in the central forward 

view (Recarte & Nunes, 2000, 2003; Harbluk, et al., 2007; He, et al., 2011; Liang & 

Lee, 2010; Victor, et al., 2005).Though superficially reasonable, however, the visual 

enhancement hypothesis contradicts with evidence suggesting that cognitive 

distraction compromises attentional processing even for information that is directly 

fixated (Strayer et al., 2001, 2003, 2007). Moreover, past work has found only a weak 

relationship between gaze concentration and lane variability (Liang & Lee, 2010). 
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Consistent with those findings, the current study revealed that lane variability and 

steering control improved with no concomitant changes in fixation dispersion, 

providing further evidence that better lane-keeping under cognitive distraction is not a 

by-product of attentional narrowing.   

The automatic steering hypothesis regards smaller lane variability as a 

performance gain in lane-keeping resulting from less conscious control in the dual-

task conditions. Lateral control for experienced drivers is an automatic process. This 

hypothesis argues that more resources for automatic behaviors may actually harm 

performance (Beilock & Carr, 2001; Beilock, et al., 2002). When a secondary task 

takes attention away, it allows less conscious interference on the automatic steering 

control, thereby producing straighter lane position. As an automatic process, the 

automatic steering hypothesis claims that drivers can automatically adjust the steering 

reversal rate according to the strength of lateral wind. This claim makes it hard to 

validate the automatic steering hypothesis with either lane variability or the steering 

reversal rate. However, the automatic steering hypothesis does not predict a trade-off 

of steering control and speed manipulation. Experiment 2 found that cognitive 

distraction increased the steering reversal rate and decreased speed manipulation 

frequency at the same time. Moreover, the automatic steering hypothesis assumes 

attention is shifted away from steering control. The resources originally allocated for 

steering control can be reallocated to the secondary task or other aspects of driving. If 

these resources are reallocated to speed maintenance, speed manipulation frequency 

may be increased and result in better speed maintenance performance. Thus, the 

automatic steering hypothesis will not expect a more inactivity of speed manipulation 

in the dual-task conditions.  
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The lateral prioritization hypothesis best explains the findings of Experiment 2 

and of earlier work on lateral control under distraction. Here, when drivers engaged in 

an auditory digit ordering task, they became more active in steering control, as 

indicated by larger steering reversal rate, and smaller steering holds frequency, and 

reduction of steering reversal time intervals. At the same time, speed manipulation 

was reduced, as drivers made fewer speed control inputs and produced more periods 

of speed manipulation inactivity. These steering and speed manipulation behaviors 

together suggested that distracted drivers may have shifted resources from speed 

manipulation to lateral lane-keeping, and achieved smaller lateral variability by 

sacrificing longitudinal control. The lateral prioritization hypothesis is also supported 

by the findings of several earlier studies. For example, drivers doing a language 

production task concurrently produced smaller lane variability, and more variable 

speed and headway time when driving following a leading vehicle (Kubose et al., 

2006). Beede and Kass (2006) also suggested that distracted drivers protected lane 

keeping performance by shedding peripheral tasks to maintain a straighter course.  

Data in Experiment 2 are in favor the lateral prioritization hypothesis. 

However, findings so far cannot provide enough information to test the validity of the 

automatic steering hypothesis. We are still not confident about the underlying 

mechanisms how distracted drivers achieved a better lane-keeping performance.   
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EXPERIMENT 3: RESPONSE TIME TO LATERAL WIND AND LEADING 

VEHICLE BRAKE HAZARDS 

 

 Subjects in Experiment 1 and 2 drove under continuously varying lateral winds 

produced from a combination of three sinusoids. The wind manipulation provided 

data amenable to coherence analysis, but did not allow a direct measurement of 

response times to discrete lateral wind change. Studies of longitudinal vehicle control, 

conversely, often measure responses to sudden braking events by a lead vehicle (Alm 

& Nilsson, 1995; Lee, Vaven, Haake, & Bron, 2001; Strayer et al., 2003; Strayeret al., 

2006). Such methodological differences complicate comparisons of lane-keeping and 

speed maintenance. Experiment 3 seeks to compare longitudinal and lateral 

performance, with and without distraction, in as direct a manner possible. Here, in 

place of the continuously varying lateral winds like those that have often been used in 

studies of lateral control (Kubose et al., 2006), we used a step-wise lateral wind, as 

shown in Figure 7. Lateral winds blew at random intervals and varying strengths. A 

steering manipulation opposite to the direction of lateral wind can be treated as a 

response to lateral event, producing measurement like RT and accuracy in traditional 

car following task. Besides the lateral wind events, drivers also need to drive 

following a leading vehicle, which brakes intermittently. The combination of lateral 

wind and brake events makes it possible to compare task prioritization in a common 

unit of RT and accuracy.  



66 

 

 

Figure 7. A sample of lateral wind used in the experiment. The (Note: the strength and 

direction of lateral wind and the time interval between adjacent wind gust are all 

randomized. The blue line shows the wind gust force curve. The red line shows a 

driver’s steering response to lateral wind) 
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Figure 8. A sample of leading vehicle speed change and a driver’s speed control. 

(Note: the blue line shows the leading vehicle speed; the red line shows a driver’s 

brake response to leading vehicle brake events) 

 

 

Method 

Subjects 

 Twenty-two subjects (9 female and 13 male) were recruited through online 

advertisements and campus posters. The ages of the subjects ranged from 18 to 25 

years, with a mean of 20.7 years and standard deviation of 1.5 years. The average 

self-reported annual mileage of the subjects was 6564 miles, with a standard deviation 

of 7151 miles. All subjects had held a driver’s license for at least three years. The 

average time since licensure was 4.6 years. All subjects had normal or corrected-to-
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normal visual acuity. Subjects were reimbursed either with cash at the rate of $8 per 

hour for a one-hour experiment or in exchange of course credits.  

 

Apparatus and Stimuli 

 Data were collected using the same driving simulator as what was used in 

Experiment 1 and 2.  

Eye and head movements were collected with a Smart Eye Pro 5.8 system (SmartEye 

AB, 2004). This system consisted of five Sony XC HR50 monochrome cameras, 

which were equipped with two IR-illuminators and mounted on the dashboard of the 

car. The cameras fed information into software that located predefined characteristic 

points on the participant’s face, and in this way determined where the participant’s 

foveas were pointing. Data were analyzed with customized software. 

 

Driving Scenario 

 The simulated driving environment consisted of a straight rural highway, three-

lanes in each direction, with no intersections or turns. The route was 11600 meters 

long. Each lane was 3.6 meters wide. The speed limit of the road was 55MPH. 

Thirteen speed limit signs of 55MPH were posted on the right side of the road, with 

the distance between adjacent signs selected randomly from a uniform distribution 

ranging from 500 to 1000 meters. Parked vehicles along the roadside and pedestrians 

on the sidewalks also appeared occasionally. 

 The subject vehicle was initially positioned facing straight ahead in the center of 

the lane. Driving hazards, either heavy lateral wind gusts or leading vehicle brake 

events, began after the subjects had driven exactly 350 meters from the starting point 

of the trial. An event scheduler determined the occurrence of lateral wind gusts and 
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longitudinal brake events, with equal probability for both types of hazards. The 

duration of the hazard events and the time intervals between events follow 

independent delayed exponential distributions. The delayed exponential distribution 

has the advantage of being memoryless following the initial delay (Ahmad & 

Alwasel, 1999), making it difficult for subjects to predict the occurrence of next event 

or the duration of an ongoing event. The event duration was determined using 

equation (1), with an intercept of 1 second and an asymptotic value of 4 seconds. The 

time interval between adjacent events ranged from 2.5 seconds to 75 seconds, as 

determined by equation (2).  

 ……………………….(1) 

…… ……… (2) 

…(3) 

 

For the lateral wind events, the strength of wind also followed a delayed 

exponential distribution, ranging from 1000 to 2000 Newtons, as determined by 

equation (3). The wind was strong enough to require active steering manipulations to 

maintain a steady and safe lane position. The direction of wind varied randomly 

between leftward and rightward, with equal probability. Figure 7 illustrates the 

duration and time interval of lateral wind gusts and a driver’s steer response to lateral 

wind in a sample trial.  

For the longitudinal event, drivers drove after a large commercial vehicle in 

the central lane of the highway. The leading vehicle drove at a target velocity of 45 

MPH. During a braking event, the leading vehicle decelerated at a rate of 3.0 m/s until 

reaching the lower speed bound of 35 MPH, and resumed the speed of 45 MPH 
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afterwards. The duration of the brake events was determined using a delayed 

exponential distribution. The brake lights of the leading vehicle illuminated during a 

braking event. Figure 8 illustrates the duration and time interval of leading vehicle 

brake events and a driver’s brake response behavior in a sample trial.  

 

Loading Task 

 The cognitive load was manipulated by a digit-ordering task, which was exactly 

the same as that used in Experiment 2.  

 

Procedure 

 Upon arriving at the lab, subjects completed an informed consent form, a 

screening questionnaire inquiring about their driving experience and propensity for 

simulator sickness, and a demographic questionnaire. Subjects with at least three 

years of driving experience, normal or corrected-to-normal visual acuity, and no 

history of simulator sickness were allowed to participate. The subjects’ primary 

task was to drive while maintaining appropriate lane position and headway distance 

from the leading vehicle. Subjects were instructed to keep a steady lane position in the 

center lane and follow the lead vehicle with about 2s headway time. 

 After receiving a brief description of the experimental task, subjects completed 

two practice drives to familiarize themselves with the simulator and the driving 

environment. They were allowed to ask questions during the practice drives. The first 

practice drive lasted about 5 minutes, and was the same as the experimental blocks, 

except with additional auditory feedback about headway time.  When headway time 

was shorter than 1.5 seconds, drivers would be told that “too close, please slow 

down”; when headway time was over 2.5 seconds, drivers would be told “too far, 
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please speed up”. When drivers drove between 1.5 and 2.5 seconds, there would be no 

auditory feedback. The second practice drive lasted about 10 minutes, and let subjects 

drive in the same condition as the experimental blocks. Subjects first drove in the 

drive-only condition, then drove with the digit ordering task, with each condition 

lasting about five minutes. There was no auditory feedback about headway time in the 

second practice drive.  

    The experimental blocks began after subjects reported that they fully understood 

the task and were comfortable to drive in the simulator. All subjects completed four 

drives, two drives each for the drive-only and dual-task conditions. The order of the 

four drives was counterbalanced across subjects using an ABAB design. Each drive 

lasted approximately ten minutes. Subjects were given a chance to rest between 

blocks. There was no auditory feedback of headway time in experimental blocks. 

 

Dependent Variables 

Lateral performance was measured by the average and standard deviation of 

lane position, the steering reversal rate, the steering reversal time interval, and the 

steering response time to lateral wind. Lane position was measured as deviation in 

meters from the center of the subject’s lane. Positive values indicate positions to the 

right of lane center, and negative values indicate positions to the left. The steering 

reversal rate gauged drivers’ efforts in adjusting the steering wheel’s to maintain lane 

position (MacDonald & Hoffmann, 1980). A steering reversal was defined as a 

change in steering direction with a velocity of more than 3.0 deg/s (Theeuwes, et al., 

2002; Groot, et al., 2011). The steering reversal time interval is the time interval 

inbween two adjacent steering reversals. The steering response time to lateral wind 
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was calculated as the time from the onset of a lateral wind gust until the time of the 

largest spike in the steering velocity curve within 2s time window.  

Longitudinal performance was measured by the standard deviation of speed, 

the standard deviation of headway time, the brake response time and the brake 

response rate. Headway time was defined as the time in seconds from the subject 

vehicle to the lead vehicle. In the same way as the definition of the steering response 

time, the brake response time was calculated as the time from the onset of the leading 

vehicle's brake lights until the maximum depression of the brake pedaloccurring 

within 2 seconds of the onset of the leading vehicle's brake. A brake response was 

operationally defined as a minimum of 1% depression of the brake pedal (Strayer et 

al., 2006). An absence of a braking depression within 2 seconds was classified as a 

failure to response. The percentage of braking response over the total number of 

leading vehicle brake events is defined as the brake response rate. 

 Eye movement patterns were assessed using the dispersion of fixation position, 

which was defined as the standard deviation of horizontal and vertical fixation 

location.  

 

Hypotheses 

 The rigidified steering hypothesis posits that cognitive distraction shifts attention 

away from vehicle control, inducing inactive, intermittent, or unresponsive steering 

behaviors (Cliff, 1973; Coughlin & Dusek, 2009; Liang & Lee, 2010; Mehler, et al., 

2009; Son, et al., 2010). Phrased differently, "a decrease in lateral position variability 

may represent a rigidified, compensatory behavior pattern to allow attention to shift to 

the secondary task" (Reimer, 2009). By this hypothesis, apparent distraction-induced 

improvements lane-keeping variability masks a performance loss. The steering 
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response time to lateral wind should therefore increase as cognitive distraction shifts 

resources away from steering control. The brake response time may also become 

poorer as a result of general distraction effects.  

 The lateral prioritization hypothesis explains the reduction in lane variability 

under distraction as a result of attentional resources being shifted from other subtasks 

to lateral control in an effort to protect lane keeping performance. Lateral control thus 

improves at a cost to other elements of performance, for example, car following. 

Therefore, the lateral prioritization hypothesis expects quicker steering response time 

to lateral wind, and longer brake response time.  

 The visual enhancement hypothesis proposes that lane keeping improves under 

cognitive distractions as a result of a narrower attentional focus on the roadway ahead 

(Engström, et al., 2005; Östlund, et al., 2004). Cognitive distractions reduce the 

breadth of the driver’s oculomotor scanning (e.g., Harbluk, et al., 2007; He, et al., 

2011; Liang & Lee, 2010; Recarte & Nunes, 2000, 2003; Victor, et al., 2005). A 

concentrated gaze pattern enhances perceptual response in the forward view, 

therefore, improving steering response (Engström et al., 2005; Östlund et al., 2004). 

Likewise, perception of brake hazards should be improved too as a result of gaze 

concentration. Therefore, the visual enhancement hypothesis expects quicker steering 

and brake response time.  

 The automatic steering hypothesis assumes that cognitive distraction tasks take 

attention away from the automatic skills of steering control, therefore, allowing less 

interference from conscious control (Kubose et al., 2006). Steering control can be 

treated as an automatic process during eventless conditions, in which less attention 

can process better lane-keeping performance according to the automatic steering 

hypothesis. But during hazards, steering control is no longer an automatic process, but 
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controlled process, which requires attention efforts to perceive the change of lane 

position and cognitive processing to adjust the lane positions (Sanfey & Chang, 2008). 

Therefore, during hazards, with less attention allocated for lane-keeping, the 

automatic steering hypothesis predicts longer steering response times to unpredictable 

lateral wind hazards.   

 Figure 9 summarizes the theoretical predictions of steering response time to 

lateral wind gusts and brake response time to leading vehicle brake hazards under 

distraction condition.  

 

Figure 9. Theoretical predictions of lateral and longitudinal performance to hazards 

under distraction condition. (1T is for drive-only condition; 2T is the predicted 

performance under dual-task condition (driving paired with a digit ordering task). 

Four hypotheses, rigidified steering, lateral prioritization, visual enhancement, and 

automatic steering, expect quite different results.) 
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Results 

 

Lane-Keeping 

The average lane position did not differ significantly between the dual-task (M 

= 0.003m, SE = 0.04) and drive-only (M = 0.014m, SE = 0.04) conditions, t (21) = 

0.83, p = .42. The average of the standard deviation of lane position was significantly 

smaller under dual-task conditions (M = 0.33m, SE = 0.02) than under drive-only 

conditions (M = 0.35m, SE = 0.02), t (21) = 2.27, p = .03.  

 

Steering Control 

The steering reversal rate was higher under dual-task conditions (M = 0.57 Hz, 

SE = 0.03) than drive-only conditions (M = 0.40 Hz, SE = 0.03), t (21) = 4.09, p 

<.001.  

A further analysis asked whether changes in steering reversal rate during dual-

task blocks were time-locked to performance of the loading task. For this, the steering 

reversal rates before and after the onset of the secondary auditory digits for all the 

dual-task condition trials were compared. The two measurements were calculated 

over the four second and a seven second time windows before and after the auditory 

stimulus onset. The auditory presentation time was 2.77 seconds on average, with a 

range of 2.48 seconds to 3.10 seconds. The four second time window after the 

auditory onset should have included time in which the four auditory digits were being 

presented. The seven second time window should be long enough to included the time 

necessary for the auditory digits to be played and much of the time necessary for 

subjects to finish ordering the digits. The rigidified steering hypothesis predicts that 
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the steering reversal rate before the auditory onset would have been higher than that 

after the auditory onset. In contrast, the lateral prioritization hypothesis predicts that 

the steering reversal rate before the auditory onset would have been smaller than that 

after auditory onset.  

When a four second time window was used, the average steering reversal rate 

before auditory onset (M = 0.545Hz, SE = 0.03) was numerically smaller than that 

after auditory onset (M = 0.559Hz, SE = 0.03), though the difference was not 

statistically significant, t (21) = 1.34, p = .20. When a seven second time window was 

used, the steering reversal rate was significantly higher after the auditory onset (M = 

0.570Hz, SE = 0.03) than that before (M = 0.580Hz, SE = 0.03), t (21) = 2.82, p = .01. 

Results thus showed that steering reversal rate was actually maintained or even 

increased when drivers were listening and ordering auditory digits.  

The rigidified steering hypothesis and lateral prioritization hypothesis also 

have different predictions on the distribution of the time interval between adjacent 

steering reversal. The rigidified steering expects long period of steering inactivity 

during secondary task, which is reflected in more frequency of long steering reversal 

interval. In contrast, the lateral prioritization hypothesis proposes more efforts in 

steering control when drivers are cognitively distracted, which should manifest as a 

higher steering reversal rate and smaller average steering reversal interval. 

 



77 

 

 

Figure 10. Distribution of steering reversal interval under dual-task and drive-only 

conditions. 
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Figure 11. Comparisons of the steering reversal interval each ten time bins under 

dual-task and drive-only conditions (Asterisks indicate significant differences.) 

   

 As shown in Figure 10, most of the steering reversal intervals are below ten 

seconds (99.2% for the drive-only conditions and 99.5% for the dual-task conditions). 

Thus, the steering reversal intervals were categorized into ten time bins, each lasting 

one second. Figure 11 shows the frequency of steering reversal intervals in each time 

bins. The frequency of steering reversal intervals was submitted to repeated-measure 

analysis of variance, with cognitive load and time interval bins as within-subject 

factors. The main effects of both cognitive load and time bins were significantly, F 

(1,21) = 17.04, p < 0.001 and F (9,189) = 91.54, p < 0.001, respectively. Analysis 

also showed a significant interaction, F (9,189) = 11.85, p < 0.001. 
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 Simple effects analyses showed that the frequency of steering reversal intervals 

was higher in the dual-task conditions than the drive-only conditions for the one, two, 

and three-second bin, all ps < 0.01 . The frequency of steering reversal intervals was 

smaller in the dual-task conditions than the drive-only conditions for the longer time 

intervals, including interval bins of six, seven, eight, and nine-seconds, all ps < 0.05. 

The simple main effect of cognitive load for the time bins of four, five, and ten-

seconds was not significant, all ps > 0.10. Data show that cognitive load resulted in 

more short steering reversal intervals (intervals smaller than three seconds) and fewer 

long steering reversal intervals (intervals longer than six seconds). Data, thus, support 

the lateral prioritization hypothesis, which expects a decrease of the steering reversal 

intervals in the dual-task conditions; data also argue against the rigidified steering 

hypothesis which expects more frequent long steering reversal intervals.  

 

Longitudinal Control 

Drivers tended to adopt a longer headway time under dual-task conditions (M 

= 2.06s, SE = 0.12) than under drive-only conditions (M = 1.97s, SE = 0.10), though 

the effect reached only marginal significance, t (21) = 1.85, p = 0.08. The average of 

the standard deviation of headway time was higher under dual-task conditions (M = 

0.56s, SE = 0.03), than under drive-only conditions (M = 0.51s, SE = 0.03), t (21) = 

2.53, p =0.02. The same pattern of effects was seen in analysis of headway distance. 

Data thus showed that high cognitive load tended to increase headway time and 

resulted in more variable headway time.  

 Drivers drove at similar average speeds under both dual-task (M = 43.72mph, SE 

= 0.04) and drive-only conditions (M = 43.74 mph, SE = 0.05), t (21) = 0.46, p = 0.65. 

There was no significant difference for the average standard deviation of speed 
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between dual-task conditions (M = 4.44mph, SE = 0.13) and drive-only conditions (M 

= 4.35 mph, SE = 0.14), t (21) = 0.85, p = 0.41. The lack of a load effect on speed 

likely obtained because the subject vehicle speed was largely determined by the speed 

of the leading vehicle.  

The more variable headway times and distances in dual-task conditions 

suggests that longitudinal performance was impaired when drivers performed a 

cognitive auditory task while driving.  

 

Response Time to Hazards 

This section compares the steering response time and response rate to lateral 

wind gusts with the braking response time and response rate to the leading vehicle 

brake hazards. The steering response time and response rate are analogous to the 

braking response time and response rate measures in the traditional car-following 

task. The only difference is the hazardous events: in one case, the hazards are lateral 

wind gusts; in the other, the hazards are the sudden braking or slowdown of the 

leading vehicle. This gives a direct comparison of lateral lane-keeping and 

longitudinal car-following performance in common units. 

In order to better understand the steering and braking response behaviors, a 

steering position and a speed profile were created by extracting a 10-s time window 

time locked to the onset of each leading vehicle brake and lateral wind events. This 

was inspired by the analysis of Strayer , Drews, and Crouch (2006). For this, the 

driving data from the 600 samples (i.e., 60 samples per second for ten seconds) 

following the onset of a hazard were entered into a matrix X[j,1] , X[j,2] , X[j,3] , ..., 

X[j,600] , in which j was the index of the occurrence of leading vehicle brake events or 

lateral wind onset events. Each driving profile was created by averaging across j for 
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each of the 600 time points. 

 

Figure 12. The steering velocity profile averaged across subjects 

 

A steering response was defined as a steering manipulation with a minimum 

steering velocity of 3.0 deg/s (Theeuwes, Alferdinck, & Perel, 2002; Groot, Winter, 

Garcia, Mulder, Wieringa, 2011), and in the opposite direction which the wind was 

blowing. Figure 12 shows the steering velocity profiles under dual-task and drive-

only conditions, combined over all the subjects and lateral wind hazard events. This 

figure suggests that the steering responses occurred in the time range of 0.5s to about 

2.5s. Analyses using values of 2s, 2.5s, and 3s as the upper limit of steering response 

time produced similar patterns of results. Data based on an upper limit of 2s are 

reported here. After the preprocessing of steering velocity thresholding, the steering 

response time was defined as the length of time from the onset of lateral wind until 

the largest spike in the steering velocity curve within a 2s time window. A failure to 

generate a steering manipulation against the wind with steering velocity larger than 
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3.0 deg/s occurred within 2s time window following a wind gust was treated as non-

response. The number of correct steering responses over the total number of lateral 

wind events was the steering response rate.  

The steering response time was smaller in the dual-task conditions (M =0.85s, 

SE = 0.01) than in the drive-only conditions (M = 0.88s, SE = 0.02), t (21) = 2.58, p 

=0.02. The steering response rate was similar for the dual-task (M =0.79, SE = 0.02) 

and drive-only (M = 0.79, SE = 0.02) conditions, t (21) = 0.15, p =0.88. These data 

suggest that high cognitive load improved steering response to lateral wind gusts.  

 

Figure 13. The brake profile averaged across subjects 

 

Figure 13 shows the brake profiles under dual-task and drive-only conditions, 

combined over all the subjects and leading vehicle brake events. The brake response 

time was numerically longer in dual-task conditions (M = 1.85s, SE = 0.02) than in 

drive-only conditions (M = 1.80s, SE = 0.03), with a marginally significant main 

effect of cognitive load, t (20) = 0.1.90, p = 0.07. The brake response rate was 
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numerically but non-significantly smaller in dual-task conditions (M = 0.61, SE = 

0.06) compared to drive-only conditions (M = 0.63, SE = 0.06), t (20) = 0.61, p = 

0.55. Data thus gave no evidence of an improvement in longitudinal hazard responses 

under high cognitive load. 

 

Fixation Dispersions 

The visual enhancement hypothesis posits that perceptual processing in 

forward view improves as a side effect of attentional narrowing under cognitive 

distractions. To test the possibility that attentional narrowing might have improved 

lateral control in the current experiment, we analyzed the dispersion of subjects’ 

oculomotor fixations using standard deviation of horizontal and vertical fixation 

location. Within-subject t-tests revealed no difference in the dispersion of fixation 

location between cognitive load conditions, either horizontally (M = 0.29, SE = 0.03 

for dual-task conditions, M = 0.28, SE = 0.03 for drive-only conditions), t (21) = 0.96, 

p = .35, or vertically (M = 0.28, SE = 0.03 for dual-task conditions, M = 0.26, SE = 

0.03 for drive-only conditions), t (21) = 1.85, p = .08.  

 

Discussion 

 

 In Experiment 3, drivers drove along a straight lane while responding to sudden 

onset of lateral wind gusts or leading vehicle brake events. An auditory digit-ordering 

task was used to manipulate the cognitive load. Drivers produced smaller standard 

deviation of lane position when concurrently doing a digit-ordering task, an effect that 

was apparently achieved through more active steering manipulation. In contrast, 

longitudinal performance became poorer in dual-task conditions, with more variable 
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headway time and headway distance. More importantly, drivers responded quicker to 

lateral wind gusts when doing a digit-ordering task, but showed no improvements in 

their brake response times to sudden braking of the lead vehicle. These measurements 

together suggested that cognitive distraction improved lane-keeping performance and 

impaired car-following performance.  

 Similar as Experiment 1 and 2 in this dissertation and existing literature, drivers 

produced less variations in their lane position when performing a cognitive distraction 

task while driving (see also Becic et al., 2010; Brookhuis, et al., 1991; Kubose et al., 

2006).  

 Since there is no common agreement about whether smaller lane variability 

indicates a performance gain or a performance loss in lane-keeping, we need to find 

support from other convergent measures. Experiment 3 implemented lateral wind 

hazards and car-following hazards, and uses the steering response time to the sudden 

onset of lateral wind as an alternative measure of lane-keeping performance. 

Experiment 3 found an increase in the steering reversal rate in dual-task conditions, 

which suggested that drivers invested more efforts in adjusting lane positions. Data in 

Experiment 3 further showed that drivers responded quicker to lateral wind gusts. 

These data indicate that drivers had better response to lateral hazards under high 

cognitive load. Therefore, the smaller lane variation appears to be a true performance 

gain, as drivers put more efforts in lane-keeping and responded quicker to lateral wind 

hazards.  

 The present data sit poorly with the rigidified steering hypothesis, which treats 

smaller lane variability under distraction as an performance loss, reflecting an 

intermittent unresponsive steering pattern. If drivers only steer intermittently in high 

cognitive load, the steering reversal rate should be smaller, and the time interval 
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between steering reversal should be longer, than that under drive-only conditions. 

However, Experiment 3 found higher steering reversal rates and smaller steering 

reversal time intervals in dual-task conditions. Experiment 3 also compared the 

steering reversal rate before and after the onset of auditory task. There was no 

decrease, but a trend toward an increase in steering reversal rate after the onset of 

auditory task, compared to the time before the onset of auditory task. Higher steering 

reversal rates under high cognitive load have been also reported in several other 

studies (cf., Engström et al., 2005; Östlund, et al., 2004; Ranney, et al., 2005). 

Moreover, if cognitive distraction leads to unresponsive and intermittent steering 

behaviors, with less attention devoted to lane-keeping, longer response time to lateral 

hazards should result. However, Experiment 3 found that drivers responded quicker to 

lateral wind gusts in the dual-task conditions.  

 The visual enhancement hypothesis, which explains the smaller lane variation 

under cognitive load as a result of better visual processing when attention narrows in 

the central forward view, is not supported either. A smaller horizontal fixation 

dispersion in dual-task conditions, described as attentional narrowing, is found in 

many laboratory and on-road driving experiment (Harbluk, et al., 2007; He, et al., 

2011; Liang & Lee, 2010; Recarte & Nunes, 2000, 2003; Victor, et al., 2005). The 

visual enhancement hypothesis proposes that more attention is devoted to process 

information in the central forward view when attention narrows in this area; therefore, 

improve attentional processing for information necessary for lane-keeping, such as 

lane markers. Though this hypothesis seems reasonable superficially, it contradicts 

with many existing studies which suggest that cognitive distraction impairs attentional 

processing of information, even if drivers had fixated directly on these objects 

(Strayer et al., 2001, 2003, 2007). Moreover, Liang and Lee (2010) only found a weak 
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relationship between gaze concentration and lane variability. Therefore, better lane-

keeping performance under cognitive load does not seem to be explained by 

attentional enhancement hypothesis. Even if attentional enhancement hypothesis were 

a possible explanation, it could not explain the smaller lane variation found in 

Experiment 3 since no attentional concentration effects were found.  

 The automatic steering hypothesis, which regards steering as an automatized 

process which requires little attention, is not supported either. According to the 

automatic steering hypothesis, increasing the attention devoted to steering will 

degrade lane-keeping performance. By drawing attention away from the automatic 

skills of steering, a cognitive distracting task therefore improves automatic responses 

(Beilock & Carr, 2001; Beilock, Carr, MacMahon, & Starkes, 2002; Kubose et al., 

2006). Steering response in an eventless period may be an automatic process, but 

steering response to sudden onset of lateral wind gusts is a controlled process, 

requiring attention resources (Sanfey & Chang, 2008). With less attention allocated 

for steering, the automatic steering hypothesis would expect longer steering response 

time to lateral wind hazards. However, drivers had quicker steering response time to 

lateral wind gusts, which indicated lane-keeping performance was actually improved 

in dual-task conditions, contrary to the prediction of automatic steering hypothesis.  

 The lateral prioritization hypothesis is most congruent with current findings of an 

increase in lateral lane-keeping performance with a decrease in longitudinal car-

following performance (see also Kubose et al., 2006). This hypothesis suggests that 

drivers invest more efforts in lane-keeping when they are distracted to achieve a safer 

zone within the lane (Engström et al., 2005). Data in Experiment 3 showed that 

distracted drivers had quicker steering response time to the sudden onset of lateral 

wind, which suggests better lane-keeping performance. Higher steering reversal rate 
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in dual-task condition suggests that drivers indeed invested more efforts in lane-

keeping when they were distracted, as claimed by the lateral prioritization hypothesis. 

Analysis of car-following performance further confirmed that prioritization of lane-

keeping comes with a cost of longitudinal performance. Headway time to leading 

vehicle became more variable under dual-task conditions.  
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GENERAL DISCUSSION 

 

 This dissertation project explored the lane-keeping performance changes that 

result when drivers are distracted by cognitive tasks and probed their underlying 

mechanisms. The two major research questions were: First, does smaller lane 

variability under cognitive distractions indicates a performance loss or a performance 

gain in lane-keeping? Second, what is the mechanism by which cognitige distraction 

induces less lanevariability? Four hypotheses,rigidified steering, visual enhancement, 

lateral prioritization, and automatic steering,were compared using three simulated-

driving studies.  

 

Finding Summary 

 

 Table 2 summarizes the finding of the three experiments. For all the three 

experiments, a digit-ordering task was used to manipulate the cognitive load.  
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Table 2. Summary of the findnigs in three experiments 

 Experiment 1 Experiment 2 Experiment 3 

Distraction 

task 

Digit ordering task Digit ordering task Digit ordering task 

Lane-keeping 

task 

Keep steady lane 

position under 

unpredictable heavy 

lateral wind (sum of 

three sine waves) 

Keep steady lane 

position under 

unpredictable heavy 

lateral wind (sum of 

three sine waves) 

Keep steady lane 

position under 

unpredictable heavy 

lateral wind 

Longitudinal 

task 

None (speed is 

maintained by a cruise 

control system) 

Maintain a speed of 

45mph 

Maintain a speed of 

45mph, respond to 

leading vehicle brake 

events 

Lane-keeping 

performance 

- Smaller lane 

variability 

- Higher coherence of 

steering and wind 

- Smaller lane 

variability 

- Higher coherence of 

steering and wind 

- Smaller lane 

variability 

 

Steering 

behaviors 

- Higher steering 

reversal rate 

- Higher steering 

reversal rate 

- Shorter steering 

response time 

- Higher steering 

reversal rate 

Longitudinal 

performance 

- None - More variable speed - More variable 

headway time 

Eye scanning  - No gaze 

concentration 

- No gaze 

concentration 

- No gaze concentration 
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 Experiment 1 asked drivers to drive under heavy lateral wind (the sum of three 

sinusoid waves) with the assistance of a cruise control system. Distracted drivers 

produced smaller lane variability and a higher steering reversal rate. Spectral analysis 

showed that the coherence value of lateral wind and steering wheel position was 

higher under dual-task conditions than under drive-only conditions. Thus, Experiment 

1 suggested that the smaller lane variability under cognitive distraction indicates a 

performance gain in lane-keeping.  

 Experiment 2 extended the findings of Experiment 1 by introducing a speed 

maintenance task, and explored the possible mechanisms of lane-keeping 

performance change. Drivers in Experiment 2 were asked to keep a steady lane 

position under heavy lateral wind while maintaining a speed of 45 MPH. Experiment 

2 replicated the finding of Experiment 1: drivers produced smaller lane variability and 

higher coherence between lateral wind and steering wheel position. Additionally, 

Experiment 2 found that the cognitive distraction task impaired speed maintenance, as 

shown in more variable speed in dual-task conditions. Experiment 2 also introduced 

two sets of variables to compare drivers’ efforts in adjusting steeringand speed. 

Drivers were more active in adjusting steering wheel position and less active in 

adjusting speed when they were in dual-task conditions. Drivers’ increasing efforts in 

steering adjustment and decrease in speed manipulation suggested that drivers under 

distractions may achieve better lane-keeping performance by prioritizing lane-keeping 

performance.  

 Experiment 3 was devoted to exploring the underlying mechanisms of lane-

keeping performance change. Inspired by the car-following paradigm, Experiment 3 

implemented leading vehicle brake hazards and heavy lateral wind onset hazards. 
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Brake response time to leading vehicle brake hazards and steering response time to 

lateral wind onset provided a direct comparison of the car-following and lane-keeping 

performance. Experiment 3 found smaller lane variability under dual-task conditions. 

More importantly, the steering response time to lateral wind onset was reduced and 

steering reversal rate was increased under dual-task condition. Longitudinal 

performance was impaired, as evident in more variable headway time. Data thus 

supported the lateral prioritization hypothesis, which suggests that drivers put more 

efforts in steering adjustment when they engaged in a cognitive distraction task.  

 

Discussion 

 

 In the three experiments in this dissertation project, and many other studies 

(Becic, Dell, Bock, Garnsey, Kubose, Kramer, 2010; Brookhuis, et al., 1991; Horrey 

& Simons,2007; Horrey & Wickens,2004;Kubose et al., 2006;Liang & Lee, 2010; ), 

have found that cognitive distraction tasks reduce lane variability (However, see 

Horrey , Lesch, Garabet (2009), Just, Keller, Cynkar (2008), and Salvucci & 

Beltowska (2008) for findings of larger lane variability under cognitive distractions).  

 The finding of smaller lane variability under cognitive distraction is 

counterintuitive. On one hand, smaller lane variability should reduce the risks of lane 

excursions or collisions with vehicles in the neighboring lanes. Therefore, smaller 

lane variability should be taken as a performance gain. On the other hand, cognitive 

distraction tasks are known to cause performance losses in many other aspects of 

driving, for example, narrowing of visual scanning (Recarte & Nunes, 2000; Hammel 

et al. 2002), slower response to traffic events and emergency (Hancock et al., 2003; 

Patten et al. 2004; Strayer et al., 2003; Strayer and Johnston, 2001), more variable 
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speed control (Horrey & Wickens, 2004), and poor attentional processing of driving 

related information in the scene (Simons & Chabis, 1999; Strayer & Johnston, 2001; 

Strayer et al., 200; Strayer et al., 2007). Intuitively, cognitive distraction tasks should 

impair lane-keeping too.  

 Then, does the smaller lane variability under cognitive distractions indicate a 

performance gain or a performance loss in lane-keeping? Because researchers have 

debated the performance implication of smaller lane variability, this dissertation 

project sought several alternative ways to measure lane-keeping performance. In 

Experiment 1 and 2, a spectral coherence analysis of steering wheel and lateral wind 

was used to measure lane-keeping performance. The lateral wind in Experiment 1 and 

2 was made of a combination of three sinusoid waves. The spectral coherence 

analysis had lateral wind strength and reversed steering wheel position as inputs, and 

generates a coherence value, which measured the coupling of steering wheel and 

lateral wind, with higher coherence value indicated better performance steering 

response to lateral wind. In both Experiment 1 and 2, coherence values were higher in 

dual-task conditions, compared to drive-only conditions. The spectral coherence 

analysis suggested that distracted drivers had better steering response to lateral wind. 

Experiment 3 measured lane-keeping performance using the steering response time to 

the onset of lateral wind hazard. The steering response time was smaller in the dual-

task conditions, relative to drive-only conditions. Moreover, in all three experiments, 

the steering reversal rate was higher in dual-task conditions, which suggested that 

distracted drivers invest more efforts in steering adjustment. The higher coherence of 

steering and lateral wind, quicker steering response time to lateral wind, and higher 

steering reversal rate all suggest that smaller lane variability under cognitive 

distractions indicates a performance gain of lane-keeping.  
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 The rigidified steering hypothesis, which interprets smaller lane variability as an 

indicator of performance loss, was not supported. The rigidified steering hypothesis 

predicts smaller steering reversal rate under dual-task conditions. However, in all 

three experiments, the steering reversal rate was higher in dual-task conditions. 

Higher steering reversal rates under cognitive distraction have also been reported in 

several other studies (Engström, et al. , 2005; Östlund, et al. , 2004; Ranney et al., 

2005). The rigidified steering hypothesis also proposes that attention resources are 

shifted away from steering control. With less resources invested in steering, steering 

responses to lateral wind should be delayed. In fact, data showed better steering 

responses to lateral wind in all three experiments. In Experiment 1 and 2, the 

coherence of steering wheel position and lateral wind strength was higher in dual-task 

conditions, which suggests better coupling of steering and lateral wind under 

cognitive load. In Experiment 3, distracted drivers produced quicker steering response 

time to the sudden onset of lateral wind. Therefore, smaller lane variability should not 

be an indicator of performance loss in lane-keeping, contrary to the claim of the 

rigidified steering hypothesis.  

 Then, how do distracted drivers achieve a better lane-keeping performance? 

According to the literature, drivers may achieve this by three possible mechanisms, 

that is, the visual enhancement hypothesis, automatic steering hypothesis, and lateral 

prioritization hypothesis.  

 First, according to the visual enhancement hypothesis, distracted drivers may 

improve lane-keeping by narrowing visual scanning window, thereby, improving 

perceptual processing of scenes in the forward views (Engström, et al. , 2005; 

Östlund, et al. , 2004). Narrowing of visual scanning window under cognitive load 

conditions has been reported in several studies (Recarte & Nunes, 2000,2003). The 
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distribution of focused attention in three-dimensional space is ellipsoidal, with higher 

attentional processing ability in the forward view and at closer distance (Anderson, 

1990; Anderson & Kramer, 1993).Therefore, narrower visual scanning might improve 

the processing of information in the forward view, allowing better steering 

adjustments to keep a more stable lane position.  

 Although plausible, the visual enhancement hypothesis is not supported by 

experiments in this dissertation or several previous studies. The visual enhancement 

hypothesis interprets smaller lane variability as a by-product of an attentional 

narrowing effect. However, in Experiments 2 and 3, lane variability was reduced 

under dual-task conditions without an attention narrowing effect (Experiment 1 did 

not collect eye scanning patterns). The standard deviation of horizontal fixation 

position was unchanged for dual-task conditions and drive-only conditions. Therefore, 

the smaller lane variability in Experiment 2 and 3 could not have resulted from visual 

enhancement caused by gaze concentration. Furthermore, supposing visual 

enhancement did play a role in the smaller lane variability in Experiment 2 and 3, it 

should have had positive effects on both steering response and speed manipulation. 

Experiment 2 and 3 actually showed that a digit-ordering task improved steering 

responses to lateral wind while compromising longitudinal performance.  

 Moreover, the visual enhancement hypothesis also sits poorly with existing 

findings , i.e., inattentional blindness and neural activations. The visual enhancement 

hypothesis posits better processing of visual information under cognitive load. 

However, cognitive distraction actually causes poor recognition memory of driving 

scenes. Strayer et al. (2001, 2003, 2007) reported that drivers engaging in a cell phone 

conversation often failed to recognize objects in the driving scenes, even if they had 

fixated on these objects directly, potentially suggesting a form of inattentional 
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blindness. Neuroscience studies further showed that the amplitude of P300 of ERP 

waves, which reflects high-level cognitive processing of visual information, was 

reduced by half when drivers were engaging in a cell phone conversation as compared 

to drive-only conditions (Strayer et al., 2007). A study using functional magnetic 

resonance imaging showed that the parietal lobe activation, which is involved in the 

processing of spatial information, was decreased by 37% when participants were 

concurrently listening to sentences in response to a simulated driving task relative to 

single-task driving conditions (Just et al., 2008). The reduced cortical activation in 

response to driving information argues against the visual enhancement hypothesis, 

which predicts better attentional processing under dual-task condition. Even if visual 

enhancement does contribute to the improvement of lane-keeping performance, 

finally, its influence is evidently small. Liang and Lee (2010) reported that gaze 

concentration, measured using the product of standard deviation of the horizontal and 

vertical fixation location, could only explain only 10% variance of steering error and 

5% of the variance in lane position.  

 Second, according to the automatic steering hypothesis, distracted drivers may 

improve lane-keeping by shifting attentional resources away from steering, which 

allows less interference from conscious control (Kubose et al., 2006). Studies showed 

that more attention may be detrimental for highly practiced and automatic 

sensorimotor skills (Beilock et al., 2001; Beilocket al., 2002). For example, 

experienced golfers produced better putting performance in dual-task conditions, 

compared to skill-focused conditions. Experienced soccer players also performed 

better in the dual-task conditions when using their dominant right foot (Beilock, Carr, 

MacMahon, Starkes, 2002). Similarly for driving, steering control might be treated as 

an automatic skill. According to the logics of the automatic steering hypothesis, 
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steering control will be better in the dual-task conditions, in which the cognitive task 

takes attention away from steering. This hypothesis regards smaller lane variability as 

a performance gain, resulting from better automatic steering. One elementary 

assumption of the automatic steering hypothesis is that attention is shifted away from 

steering in dual-task condition. With less attention allocated to steering, the automatic 

skill of steering is improved.  

 The automatic steering hypothesis can claim that drivers can automatically adjust 

steering reversal rate according to the needs of lane-keeping. Thus, it is hard to test 

the automatic steering hypothesis with either lane variability or steering reversal rate. 

Nevertheless, the steering response time to lateral wind onset in Experiment 3 

provides a good way to test the automatic steering hypothesis. Steering control under 

eventless period may be treated as an automatic process, but steering response to 

sudden unexpected events, for example, lateral wind gusts, is a controlled process, 

requiring attention resources (Sanfey & Chang, 2008). The automatic steering 

hypothesis assumes less attention devoted to steering under dual-task conditions. 

Therefore, this hypothesis expects longer steering response time to sudden onset of 

lateral wind. However, Experiment 3 shows that steering response time to lateral wind 

was actually reduced in dual-task conditions. Data thus argue against the automatic 

steering hypothesis.  

 Third, according to the lateral prioritization hypothesis, distracted drivers 

improve lane-keeping by actively prioritizing lateral control (Engström, et al. , 2005; 

Kubose et al., 2006). Driving may be treated as a satisficing process, and drivers have 

a subjective safety margin (Boer, 2000). The lateral prioritization hypothesis is most 

congruent with the three experiments in this dissertation project, and with existing 

studies. With the shifts of attentional resources from other subtasks of driving to lane-



97 

 

keeping, the lateral prioritization hypothesis predicts an improvement in lane-keeping 

performance and a loss of performance in other aspects of driving, for example, speed 

maintenance and car-following. These predictions are confirmed in the three studies. 

First, lane-keeping performance was improved in dual-task conditions, with higher 

coherence values of steering position and lateral wind in Experiments 1 and 2, and 

quicker steering response time to sudden onset of lateral wind in Experiment 3. 

Second, distracted drivers consistently invested more efforts in lane-keeping, 

producing higher steering reversal rates in dual-task conditions in all three 

experiments. Moreover, the performance improvement of lane-keeping comes with a 

loss of longitudinal performance. Drivers in dual-task conditions produced more 

variable speed in Experiment 2, and larger standard deviation of headway time in 

Experiment 3. The more active steering control seen in dual-task conditions was 

accompanied with a decrease in speed manipulation frequency in Experiment 2. An 

increase in lane-keeping performance and a decrease in longitudinal performance 

suggest a prioritization strategy of drivers engaging in a cognitive distraction ask.The 

lateral prioritization hypothesis also finds support in many existing studies (Alm & 

Nilsson, 1994; Becic, et al., 2010; Beede & Kass, 2006; Engström, et al., 2005; 

Kubose et al., 2006; Liang & Lee, 2010; Östlund et al., 2004; Seppelt & Wickens, 

2003; Victor, et al., 2005 ). Several studies have shown that improvements in lane 

keeping in dual-task conditions often accompany an impairment of longitudinal 

driving performance. For example, Kubose et al. (2006) found that a language 

production task reduced the lane variability, and increased the standard deviation of 

velocity and headway time in the high load conditions. Other research has suggested 

that as driving risks increase, drivers may prioritize driving performance. For 

example, Becic et al. (2010) found that driver’s storytelling performance decreased as 
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the difficulty of driving increased. They suggested that drivers prioritized the driving 

tasks even when talking. Drivers are likely to prioritize the visual guidance of lane-

keeping over recognition of peripheral objects, planning tasks, and speed maintenance 

(Seppelt & Wickens, 2003; Victor, et al., 2005). More interestingly, task priority 

indeed influences variability in lane keeping. Horrey, Wickens and Consalus (2006) 

reported that variability in lane keeping was the lowest when drivers were prioritizing 

the driving task, compared to equal prioritization of driving and in-vehicle distraction 

task, and prioritization of an in-vehicle distraction task.  

 Thus, data from the current three experiments and existing studies suggest that 

drivers achieve better lane-keeping performance by actively prioritizing lateral 

control. Then, how do drivers prioritize lane-keeping? Drivers may prioritize lane-

keeping in either or a combination of two ways. 

 First, drivers can prioritize lane-keeping by increasing their overall arousal level. 

Under easy driving conditions, drivers may not use all available resources in driving, 

as long as they stay in their comfortable safety zone (Boer, 2000). When driving 

demand increases or when a cognitive distraction task raises driving risk, drivers can 

protect their driving performance by increasing the overall arousal level, investing 

more efforts in driving. Increases of arousal level have been confirmed in many 

studies, which have shown that drivers report higher workload in dual-task conditions 

(Alm & Nilsson, 1995; Brookhuis, de Vries, & de Waard, 1991; Rakauskas, et. al., 

2004; Reimer, et. al., 2009). For example, drivers reported higher workload when 

talking with a passenger or over the cellular phone, compared to drive-only conditions 

(Laberge, Scialfa, White, Caird, 2004).  

 Second, drivers can prioritize lane-keeping by compromising other aspects of 

driving, such as , visual scanning and speed control. Drivers engaging in a cognitive 
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distraction task may be more concerned about their lane position, therefore, shift 

resources from other subtasks of driving to lane-keeping. This compensatory strategy 

of lane-keeping can allow drivers to keep a straighter lane position, but at the cost of 

further performance decrement in other aspects of driving. For example, in 

Experiment 2 and 3, drivers engaging in a digit-ordering task invested more efforts in 

lane-keeping with higher steering reversal rate, in the meanwhile, they reduced speed 

manipulation frequency.  

  

 

Future Research 

 

 This dissertation tries to compare four hypotheses about smaller lane variability 

under cognitive distractions. Though I have accumulated some solid evidence in favor 

of the lateral prioritization hypothesis, it is not enough to draw a decisive conclusion 

on all alternative explanations. For example, the smaller lane variability in three 

experiments was found independent of a gaze concentration effect, therefore, cannot 

be explained by a visual enhancement hypothesis. However, the visual enhancement 

hypothesis may still play a role in the improvement of lane-keeping performance 

when gaze concentration effect actually does happen, although its contribution may 

be small (Liang & Lee, 2010) and it appears to be at odds with the inattentional 

blindness phenomenon in driving (Strayer, et al., 2001, 2003, 2007). Future studies 

should examine the possibility of visual enhancement hypothesis and automatic 

steering hypothesis more closely, for example, by using an object recognition or 

detection task to examine whether cognitive distraction tasks improve visual 

processing in the forward view, as claimed by the visual enhancement hypothesis.  
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 Future studies should also measure secondary task performance and workload. 

This research shows that drivers prioritize lane-keeping by sacrificing other aspects of 

driving, for example, speed maintenance. Previous studies suggest that drivers may 

also prioritize lane-keeping performance by reducing secondary task performance, or 

increasing overall workload. Future studies can compare secondary task performance 

when it is carried out alone with when drivers do secondary task and driving 

concurrently to test whether drivers moderate secondary task performance to 

prioritize lane-keeping. Measurement of workload in the future studies can show 

whether drivers increase overall arousal level to protect lane-keeping performance.  

 Future studies may also consider using cognitive modeling, for example, the 

Threaded Cognition model based on ACT-R or Queuing Network model, to validate 

behavioral findings. Salvucci and colleagues successfully modeled an increase of lane 

variability by a memory rehearsal task using the ACT-R framework (Salvucci & 

Beltowska, 2008; Salvucci & Taatgen, 2008). They proposed independent threads for 

a secondary task, steering and speed manipulation. If by adjusting the priority of 

threads scheduling, the Threaded Cognition model can fit both an increase and a 

decrease of lane variability under different task priority instructions, for example, the 

data reported by Horrey et al. (2006). This will provide a theoretical test of the lateral 

prioritization hypothesis from a cognitive modeling approach.  
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