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Abstract 

This thesis focuses on the modeling and identification, control and filter design, simulation and 

animation, and experiments of an electrical-motor drive model-scale quadrotor --- the AR.Drone. 

Equations of Motion of drone’s model were derived from Kinemics and Dynamics of common 

quadrotors. The identification was conducted thoroughly including its low-resolution on-board 

sensors, such as rate gyro and altimeter. Control targets are composed of two stages --- local 

references following and global position tracking. PID algorithm is used by both controllers with 

various filters designs, such as low/high pass filter, Complementary Filter and Kalman Filter. 

Simulation is also divided to two stages with two different simulators ---- MATLAB and C++. The 

first stage MATLAB simulation is intended to only test the controllers with no disturbances or 

noises. The second stage high fidelity C++ simulation contains everything including animation. 

Experiments results are presented and correlated to simulation to evaluate the identification and 

modeling.  

This thesis also includes modeling and identification of a low-resolution camera sensor --- Kinect. 

The model is included in global position tracking simulation. Some experiments videos and 

animation videos are available at http://www.youtube.com/user/sunyue89/videos. 

The author hopes this thesis is helpful to researchers and amateurs who would like to develop 

the AR.Drone or any other small scale quadrotors using low-resolution sensing for autonomous 

control. 
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Chapter 1 Introduction 

Robots have been extensively developed and utilized these days. In various industries, robots are 

widely used to replace humans for dangerous, dirty and boring work. Among these robots, 

unmanned aerial vehicles (UAVs) are one of the most important families, because of the 

capability to conduct many military, transportation and scientific research tasks that are difficult 

or costly for manned aircrafts to accomplish [1].  

 

Structures of UAVs are never unique. Very common ones are single rotor helicopters, fixed-wing 

aircrafts and quadrotors. Even though fixed-wing aircrafts are the most common large-scale UAVs, 

quadrotors have their own advantages such as vertical taking-off and landing, stationary and 

low-speed capability, as well as simple mechanics, good maneuverability and robustness [2]. 

These advantages have made it the best choice for this research, which is part of networked 

communication and control study of several small-scale autonomous vehicles. Section 1 gives the 

description of the configuration and flight control of a quadrotor. 

 

Thanks to the rapid growth of semiconductor and information technology, processors and 

sensors are getting less expensive with more functionalities and accuracy. This has decently 

reduced the cost of embedded system, and has given birth to various model-scale robots. One 

intersection product between these model-scale robots and UAVs is the AR-Drone. It was chosen 

as the experiment tester for its low cost, powerful processor, multiple sensors, common 

operating system, Wi-Fi capability and robustness. The drawback of the AR-drone is the system 

protection and the low-resolution of on board sensors. Section 2 contains brief introduction of 

the product.  

 

To capture and study the motion of AR-Drone, Kinect was used as the camera sensor. It is a recent 

launched motion sensing device by Microsoft for Xboxes and PCs. It is able to track movement of 

objects and individuals in three dimensions in a wide angle of view. Section 3 introduces the basic 

technology and application of the Kinect 

 

Section 4 provides the overview of this paper after introduction. 

 

1.1 Quadrotor 

   

     Figure 1.1 Large-scale and Small Scale Quadrotors 
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Quadrotor is a multi-copter with four propellers and a fixed cross structure. The propellers 

usually have identical pitch blades and are symmetric about the central of the cross. A sample of 

large scaled engine quadrotor and a model-scaled quadrotor is shown in Figure 1.1. 

Quadrotor has six degrees of freedom (DOF), i.e., three translational (X, Y, Z) and three rotational 

(Roll, Pitch, Yaw) components, as shown in Figure 1.2. 

 

Figure 1.2 Degrees of Freedom of Quadrotor 

However, with just four propellers, only a maximum of four desired set-points of DOF can be 

achieved at one time. Thus, four basic movements are necessary for the quadrotor to reach a 

desired position and angle. They are throttle, roll, pitch and yaw. Throttle lifts the quadrotor up 

to a desired Z position, while Roll, Pitch and Yaw control the rotational status of the quadrotor. 

These movements will be discussed in details in 2.4 Basic Movements. They are results of a series 

of mechanisms including engines (electrical motors for small-scale), rotors, gears and propellers, 

which are all the basic components of a typical quadrator. 

 

1.2 AR.Drone 

  

Figure 1.3 AR.Drone Appearance and the Interior Layout 

AR.Drone is a quadrotor helicopter built by French company Parrot as seen in Figure 1.3. It is 

mainly composed of a cross beam, four electrical motors and propellers, two electrical boards, 

two cameras, a base house that protects and connects all the above components, and a top cover 
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that seals the electrical boards. The cross beam is made of plastic and the body (base and cover) 

is mostly made of foam. Each beam is about 40 cm long, and the body is about 30 cm long. 

Important components and their technical specifications are listed below [3].  

 15 W brushless electric motor 

 High-efficiency customized propeller 

 ARM9 468 MHz embedded microcontroller 

 128 MG of RAM 

 Linux Operating System 

 Wi-Fi and USB communication 

 MEMS 3-axis accelerometer 

 2-axis gyro and a 1-axis yaw precision gyro 

 Ultrasonic altimeter with range of 6 m 

 Two fitted wide-angle cameras (93 degrees)  

 

1.3 Kinect 

  
Figure 1.4 Kinect Appearance and Interior Layout 

Kinect is a motion sensing device, with the shape of a horizontal bar connected to a small base by 

a pivot, which provides a tiling angle of around 27d up and down. It is connected to Xbox or PC 

through USB, and user-interface software is available for several applications, such as motion 

caption, video chat and facial recognition.  

 

Infrared laser projector, camera and special microchip are used to track motions, especially the 

depth motion, in a very wide range, approximately 57d horizontally and 43d vertically. Range of 

1.2-3.5 [m] gives the most accuracy.  

 

Kinect outputs video with frame rate of about 30 Hz. The RGB video stream has 8-bit 640x480 

pixels with a Bayer color filter, while the depth sensing video stream is 11-bit. The horizontal 

minimum viewing distance is about 87cm, and the vertical one is about 63cm, resulting in a 

resolution of about 1.3mm per pixel.  
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1.4 Overview 

With basic introduction of quadrotor, this paper starts studying the kinemics and dynamics of 

quadrotor in Chapter 2, such that differential equations of motion (EOM) are set up.  

 

Chapter 3 focuses on techniques and results of identification of the specific quadrotor – 

AR.Drone. Noise level of its onboard sensors and of the Kinect was also measured or estimated. 

With identified data, it discusses ways to simplify EOMs and to build up the dynamical model for 

the AR.Drone. It also suggests models for various sensors. 

 

Chapter 4 explains the control algorithm and filter design. Both controller and filter design is 

composed of two stages. The local controller is designed to follow quadrotor height and angle 

reference commands with swift response by only on-board sensors. The global controller, on the 

other hand, is designed to achieve automatic global position control with the assistance of 

external camera sensor --- the Kinect. Local filter section represents three different ways to 

estimate angle from gyroscope, including a high pass filter, a Complementary Filter and an 

open-source Kalman Filter design. The global filter section discusses a low pass filter, a 

Complementary Filter and a Kalman filter design for more accurate global position and velocity 

estimation based on Kinect data.  

 

Chapter 5 is where transition from theories to practice occurs. It first introduces simulation 

designs that are used to test and tune the controller and filter, along with the quadrotor and 

sensor models, in two different simulators – MATLAB and C++. Chapter 5 then gives detailed 

procedure of the experimental set up and data acquired from experiments with the tuned 

controller and different filters. These data was used to compare the filter design and select the 

best. Then the controllers and filters are re-evaluated in the model for validation by correlating 

simulation and experiments results. 

 

Chapter 6 then introduces the open-source C++ library, Irrilicht Engine, to visualize the simulation. 

This step is to alive the data and to make modeling more fun. It also gives direct visualized 3D 

comparison between simulation and experiments.   

 

Chapter 7 concludes this paper and suggests future work. 
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Chapter 2 Kinemics and Dynamics 

This chapter derives EOMs of a quadrator. It starts with a generic 6 DOF rigid body. Section 2.1 

and section 2.2 introduce the kinemics and dynamics of the rigid body respectively. Section 2.3 

describes the force and torque input such that EOMs are completely introduced. 

 

Several assumptions have been made to simplify the dynamics. The inertia matrix is assumed to 

be time-invariant. It is also diagonal by assuming origin of body frame coincides with center of 

mass, and axes of body frame coincide with principle axes of inertia. The dynamic equations are 

derived by assuming propellers the only force and torque source. The gyroscopic effect produced 

by propeller rotation is also neglected by assuming their contribution much less than thrust and 

drag due to propeller rotation. 

 

2.1 Kinemics 

Kinemics studies the motion of an object or particle without active forces and torques. For a 6 

DOF rigid body, it is common to define two reference frames [4], i.e., the earth frame and 

body-fixed frame, to describe its motion. Kinemics of a 6 DOF rigid body then studies the 

translational and rotational relationship between these frames. We shall set up the reference 

frames as below, so that it is consistent with the AR.Drone. The rotational and translational 

vectors are illustrated in Figure 2.1 below. 

 

 
Figure 2.1 (cont. on next page) 
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Figure 2.1 Rotational and Translational Vectors 

From the figure, the translation and rotation position of the body frame respect to the earth 

frame, could be expressed by the vectors  

        S𝐸 = [𝑥 𝑦 𝑧]𝑇         (2.1) 

         Θ𝐸 = [𝜙 𝜃 𝜓]𝑇        (2.2) 

respectively. The “E” means that they are defined the in the earth frame. In aerial terminology 

𝜙, 𝜃 and 𝜓 are called roll, pitch and yaw angle, respectively. 

In the body frame, however, it is meaningless to define translation and rotation position vectors, 

because the body frame itself is moving. However, it is necessary to define velocity vectors, since 

force and torque are acting directly on the frame. Thus, we define linear and angular velocity 

vectors respect to body frame 

        V𝐵 = [𝑢 𝑣 𝜔]𝑇        (2.3) 

         Ω𝐵 = [𝑝 𝑞 𝑟]𝑇         (2.4) 

respectively. The “B” indicates them being defined in the body frame. Components of V𝐵  and 

Ω𝐵 are defined in the same order as those of S𝐸 and Θ𝐸, i.e., x, y, z, 𝜙, 𝜃 and 𝜓.  

The rotational matrix, 𝑅𝜃, relates translation position S𝐸 in earth frame to linear velocity V𝐵 in 

body frame by  

        Ṡ𝐸 = V𝐸 = 𝑅𝜃V
𝐵        (2.5) 

The expression of the rotational matrix 𝑅𝜃 is given by  

 𝑅𝜃 = [

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙  𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃  𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

]   (2.6) 

Please refer to Appendix A for derivation of Eq2.5 and Eq2.6. 

The relationship between rotational position Θ𝐸 in earth frame and angular velocity Ω𝐵 in 

body frame involves the translational matrix, 𝑇𝜃, by 
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        Θ̇𝐸 = Ω𝐸 = 𝑇𝜃Ω
𝐵       (2.7) 

The expression of the translational matrix 𝑇𝜃 is given by 

      𝑇𝜃 = [

1 sin(𝜙) tan (𝜃) cos (𝜙)tan (𝜃)
0 cos (𝜙) −sin (𝜙)
0 sin (𝜙)sec (𝜃) cos (𝜙)sec (𝜃)

]     (2.8) 

Please refer to Appendix A for derivation of Eq2.7 and Eq2.8. 

 

2.2 Dynamics  

For every vector p defined in body frame, its time derivative as seen in the earth frame is given 

by 

                                                             
𝑑

𝑑𝑡𝐸
𝑝 =

𝑑

𝑑𝑡𝐵
𝑝 + 𝜔𝐵/𝐸 × 𝑝                                                (2.9) 

where 𝜔𝐵/𝐸 is the angular velocity of body frame with respect to the earth frame. This is called 

the Equation of Coriolis and is derived in [5]. 

 

According to Newton’s law, the force acting on the quadrotor is related to the derivative of the 

linear velocity vector VB, as seen in the earth frame, by  

                                                                  𝑓𝐵 = 𝑚
𝑑V𝐵

𝑑𝑡𝐸
                                                                 (2.10) 

where 𝑚 is the mass of quadrotor. Notice that both the force and velocity is defined in body 

frame, only the derivative is respect to earth frame. 

 

Combing the Coriolis equation and Newton’s law, we can obtain the dynamic equation for VB in 

body frame, as 

                                                     𝑓𝐵 = 𝑚(
𝑑V𝐵

𝑑𝑡B
+𝜔𝐵/𝐸 × V

𝐵)                                                 (2.11) 

The same rule applies to torque and angular velocity vector Ω𝐵. The Newton’s law for it is given 

by 

                                                                    𝜏𝐵 = Ι
𝑑Ω𝐵

𝑑𝑡𝐸
                                                                   (2.12) 

where 𝛪 is the moment of Inertia matrix. Combining with equation of Coriolis it becomes  

                                                            𝜏𝐵 = Ι(
𝑑Ω𝐵

𝑑𝑡𝐵
+𝜔𝐵/𝐸 × Ω

𝐵)                                            (2.13) 
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Being aware that 𝜔𝐵/𝐸  is identical to the angular velocity vector Ω𝐵  because 𝜔𝐵/𝐸  is 

measured in body frame. Decompose Eq2.11 and Eq2.13 with 𝑓𝐵 = (𝑓𝑥, 𝑓𝑦 , 𝑓𝑧)
𝑇, 𝜏𝐵 =

(𝜏𝜙, 𝜏𝜃 , 𝜏𝜓)
𝑇,  V𝐵 = [𝑢 𝑣 𝜔]𝑇, Ω𝐵 = [𝑝 𝑞 𝑟]𝑇 ,the dynamic equations of a quadrator are  

      (

𝑓𝑥
𝑓𝑦
𝑓𝑧

) = 𝑚(
�̇�
�̇�
�̇�
) + 𝑚(

𝑝
𝑞
𝑟
) × (

𝑢
𝑣
𝜔
)         (2.14) 

    (

𝜏𝜙
𝜏𝜃
𝜏𝜓
) = (

Ι𝑥𝑥 0 0
0 Ι𝑦𝑦 0

0 0 Ι𝑧𝑧

)(
�̇�
�̇�
�̇�

) + (

Ι𝑥𝑥 0 0
0 Ι𝑦𝑦 0

0 0 Ι𝑧𝑧

) ⋅ (
𝑝
𝑞
𝑟
) × (

𝑝
𝑞
𝑟
)       (2.15) 

 

2.3 Forces and Moments 

As we expect, the force vector 𝑓𝐵 and moment vector 𝜏𝐵 primarily depends the propeller 

speed, the gravity, and the status (roll, pitch and yaw angle) of the quadrator. We shall start from 

the net force and torque due to spinning speed of each propeller defined in Figure 2.2 and Figure 

2.3 below. Figure 2.2 shows the ID of each motor, their rotational directions and distances to the 

center, from the top view. Figure2.3 then defines the forces and torque generated by each motor. 

Note that the reference frame is consistent to the body frame defined for AR.Drone in Figure1.2.   

 
Figure 2.2 Spinning Direction of Motors        Figure2.3 Generated Forces and Torques 

The force and torque generated by each propeller is related to rotational speed by [6]  

         𝐹𝑖 = 𝑏Ω𝑖
2          (2.16) 

𝜏𝑖 = 𝑑Ω𝑖
2          (2.17) 

where 𝑖 denotes motor number from 1 to 4, b [Ns2] is the aerodynamic thrust and d [Nms2] is 

the aerodynamic drag.  

 

Combination of these forces and torques gives net thrust force, roll, pitch and yaw moment by 
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{
  
 

  
 

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝜏𝑟 =
1

√2
𝑙(𝐹1 + 𝐹4 − 𝐹2 − 𝐹3)

𝜏𝑝 =
1

√2
𝑙(𝐹3 + 𝐹4 − 𝐹1 − 𝐹2)

𝜏𝑦 = 𝜏1 + 𝜏3 − 𝜏2 − 𝜏4

                                            (2.18) 

Since the propellers are fixed to the body, all these forces and torques are in body frame. Thus, 

the torque vector 𝜏𝐵 is simply the combination of 𝜏𝑟, 𝜏𝑝 and  𝜏𝑦 above. The force vector 𝑓𝐵, 

however, has to include gravity mapped to body frame by the rotational matrix 𝑅𝜃. 

     𝑓𝐵 = (

𝑓𝑥
𝑓𝑦
𝑓𝑧

) = (
0
0
𝐹
) − 𝑅𝜃 (

0
0
𝑚𝑔

) = (

𝑔𝑠𝑖𝑛𝜃
−𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

−𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 + 𝐹/m
)     (2.19) 

Plug force vector and torque vector into Eq2.14 and Eq2.15, rearrange equations in the state 

space form, we can summarize the dynamic equations in the state space form as 

                                         

{
 
 
 
 
 

 
 
 
 
 
(
�̇�
�̇�
�̇�
) = (

𝑟𝑣 − 𝑞𝜔
𝑝𝜔 − 𝑟𝑢
𝑞𝑢 − 𝑝𝑣

) + (

𝑔𝑠𝑖𝑛𝜃
−𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

−𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 +
𝐹

𝑚

)

(
�̇�
�̇�
�̇�

) =

(

 
 
 
 

Ι𝑦𝑦 − Ι𝑧𝑧

Ι𝑥𝑥
𝑞𝑟

Ι𝑧𝑧 − Ι𝑥𝑥
Ι𝑦𝑦

𝑝𝑟

Ι𝑥𝑥 − Ι𝑦𝑦
Ι𝑧𝑧

𝑝𝑞
)

 
 
 
 

+

(

 
 
 

𝜏𝜙

Ι𝑥𝑥
𝜏𝜃
Ι𝑦𝑦
𝜏𝜓
Ι𝑧𝑧)

 
 
 

                           (2.20) 

It is a good idea to also recall and decompose the kinemics equation here 

{
  
 

  
 (
�̇�
𝑦
�̇�
̇ ) = 𝑅𝜃 (

𝑢
𝑣
𝜔
) = [

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙  𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃  𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

](
𝑢
𝑣
𝜔
)

(
�̇�

𝜃
�̇�

̇ ) = 𝑇𝜃 (
𝑝
𝑞
𝑟
) = [

1 𝑠𝑖𝑛(𝜙) 𝑡𝑎𝑛(𝜃) 𝑐𝑜𝑠(𝜙) 𝑡𝑎𝑛(𝜃)

0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)

0 𝑠𝑖𝑛(𝜙) 𝑠𝑒𝑐(𝜃) 𝑐𝑜𝑠(𝜙) 𝑠𝑒𝑐(𝜃)
](
𝑝
𝑞
𝑟
)

(2.21) 

Equation Set 2.20 and 2.21 give a complete description of motion of a quadrotor. 

 

2.4 Basic Movements 

Recall that in Chapter 1 Section 1 we introduced four basic independent movements of a 

quadrotor. Now we could directly match the propeller speeds to each of the movement, and 

study what force and torque is generated in each scenario, based on Equation 2.16, 2.17 and 2.18. 

The scenarios are categorized to: 
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 Throttle  

 

    Figure 2.4 Throttle Movement 

The net roll and pitch and yaw moment shall be maintained, while the thrust force 

changes. Thus all propeller speeds should be increased by the same amount in order to 

generate a positive throttle force.  

  

 Roll 

 

Figure 2.5 Roll Movement 

The net force, pitch and yaw moment shall be maintained, while roll moment is not. Thus 

speed of propeller 1 and 4 should be increased the same amount as that of propeller 2 

and 3 being decreased, in order to generate a positive roll moment. 

 

 Pitch 

        
       Figure 2.6 Pitch Movement 

The net force, roll and yaw moment shall be maintained, while pitch moment is not. Thus 

speed of propeller 3 and 4 shall be increased the same amount as that of propeller 1 and 
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4 being decreased, in order to generate a positive pitch moment. 

  

 Yaw 

     

Figure 2.7 Yaw Movement 

The net force, roll and pitch moment shall be maintained, while yaw moment is not. 

Thus speed of propeller 1 and 3 shall be increased the same amount as that of propeller 

of 2 and 4 being decreased, in order to generate a positive yaw moment. 

 

The study of four basic movements gives us an intuitive scope of how to control AR-Drone, and 

will be used later again, in discussion of how to translate movement channel’s control signals into 

motor RPMs.  
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Chapter 3 Modeling and ID 

Continuing from the equations derived in Chapter 2, the first section of this chapter gives a 

detailed dynamic model of the drone. To quantize the model it deals with procedures and results 

of identification of AR.Drone’s key parameters in Section 2. To improve the accuracy of model, 

various sensor noises shall be included. Section 3 suggests models for the Kinect, the rate gyro 

and the altimeter. Section 4 then shows the results of identification of these sensors. 

 

3.1 AR.Drone Model 

EOMs of the quadrotor have already been developed in equation set 2.20 and 2.21. However, the 

acceleration vectors 𝑉�̇� and ΩḂ are all in body frame. To better understand the global position 

control it is very important to observe the acceleration vectors in earth fame. Taking derivative of 

the Kinemics equation 2.5, plug in 2.20, neglecting the cross product due to Coriolis, we have 

               �̈�𝐸 = �̇�𝜃𝑉
𝐵+𝑅𝜃𝑉�̇� = 0 + 𝑅𝜃 (

�̇�
�̇�
�̇�
) =

(

 
 
 (𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)

𝐹
𝑚

(−𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)
𝐹
𝑚

−𝑔 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓
𝐹
𝑚 )

 
 
 
           (3.1) 

Define a new state vector, 𝑋 =  (𝑢, 𝑣,𝑤, 𝑝, 𝑞, 𝑟, 𝑥, 𝑥𝑑𝑜𝑡, 𝑦, 𝑦𝑑𝑜𝑡, 𝑧, 𝑧𝑑𝑜𝑡, 𝜙, 𝜃, 𝜓)
𝑇, the dynamical 

equation can be then expressed in the state space form by �̇�  =  𝑓(𝑋, 𝑈), where 𝑈 is the 

combination of force and torque input vector. The equation set is listed below. 

                                           

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

�̇� = 𝑟𝑣 − 𝑞𝜔 + 𝑔𝑠𝑖𝑛𝜃
�̇� = 𝑝𝜔 − 𝑟𝑢 − 𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙

�̇� = 𝑞𝑢 − 𝑝𝑣 − 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 +
𝐹

𝑚

�̇� =
Ι𝑦𝑦 − Ι𝑧𝑧

Ι𝑥𝑥
𝑞𝑟 +

𝜏𝜙

Ι𝑥𝑥

�̇� =
Ι𝑧𝑧 − Ι𝑥𝑥
Ι𝑦𝑦

𝑝𝑟 +
𝜏𝜃
Ι𝑦𝑦

�̇� =
Ι𝑥𝑥 − Ι𝑦𝑦
Ι𝑧𝑧

𝑝𝑞 +
𝜏𝜓

Ι𝑧𝑧
�̇� = 𝑥𝑑𝑜𝑡

�̈� = (𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)
𝐹

𝑚
�̇� = 𝑦𝑑𝑜𝑡

�̈� = (−𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)
𝐹

𝑚
�̇� = 𝑧𝑑𝑜𝑡

�̈� = −𝑔 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓
𝐹

𝑚
�̇� = 𝑝 + sin(𝜙) tan(𝜃) 𝑞 + cos(𝜙) tan(𝜃) 𝑟

�̇� = cos(𝜙)𝑞 − sin(𝜙) 𝑟

�̇� =
𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜃
𝑞 +

𝑐𝑜𝑠𝜙

𝑐𝑜𝑠𝜃
𝑟

                               (3.2) 
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The dynamical equations are nonlinear with all the triangular forms and second order terms (𝑟𝑣, 

for example). Linearization could have been conducted around point  Θ𝐸 = [𝜙 𝜃 𝜓]𝑇  = 0 and 

neglecting the second order terms, assuming their contribution is small. However linearization 

becomes less accurate as Θ𝐸 and accelerations (𝑟, 𝑣, etc) become large. Since I did not intend to 

design a linear controller with optimization, I kept the nonlinear forms in the model. 

 

3.2 AR.Drone ID 

Mass and moments of inertia come naturally as the key parameters of a 6 DOFs rigid body. 

Besides those, we also need to identify the map from propeller speed to aerodynamic force and 

drag for a quadrotor.  

 

3.2.1 Mass ID        

Scale is used to measure the mass of the AR.Drone. By taking average of each five measurements 

of two different drones with hood, the average mass of each is 430.5 [g] and 436.5 [g].  

Table 3.1 Mass measurement of AR.Drone 

 Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 

AR.Drone 1 Mass [g] 430.6 430.5 430.5 430.6 430.5 

AR.Drone 2 Mass [g] 436.5 436.5 436.6 436.4 436.6 

 

3.2.2 Moment of Inertia ID 

Modern CAD software, SolidWorks, is used to estimate the moment of inertia. Since we could 

measure the mass and geometric parameters of the cross beam, the body and the battery, we 

can draw a CAD model in SolidWorks with the same shape and mass. Four motors and propellers 

are then estimated by four cylinders in the specific position with the same mass. Figure 3.1 below 

shows the CAD drawings.   

     

Figure 3.1 Simplified CAD Drawing for Moment of Invertia ID 

The moment of inertia matrix is estimated to be  
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  I = (

Ι𝑥𝑥 0 0
0 Ι𝑦𝑦 0

0 0 Ι𝑧𝑧

) = (
2.04016 0 0

0 1.56771 0
0 0 3.51779

) × 104  g ∗ cm3       (3.3) 

 

3.2.3 Aerodynamic thrust and drag coefficients ID 

It is generally hard to measure aerodynamics force and torque. Fortunately, engineering reverse 

methodology can be used to estimate the coefficients. For example, we could make the AR.Drone 

hover with different masses to estimate the net force generated by propellers. We could also 

provide a known torque to the yaw channel, and make it balance to estimate the net torque from 

propellers. Yes these methods will require good control of the drone first, but we could estimate 

these coefficients with data available from existing experiments, build up a raw model, design 

and tune controller that stabilizes the flying, and then apply engineering reverse to obtain an 

accurate model.   

 

Thanks to Steve Granda and Richard Otap’s work on the software side, the drone's software was 

reconfigured by us to achieve an open architecture environment in which to carry out 

development. The reconfiguration was as low as sending commands to motors and obtaining 

data from onboard sensors. The commands for motors, however, are in the range from 0 to 0x1ff, 

in format of hex. Thus, experiments were conducted to study the relationship between motor 

command and propeller RPM.  

 

Hall Effect sensor, magnet and oscilloscope were used in the experiment. The mini-magnet, with 

diameter 6[mm] and height 2[mm], was fixed onto the bottom of the propeller gear. One side of 

the Hall Effect sensor board is then attached onto the side of motor, while the other side wired 

into the oscilloscope. When the magnet is rotated to the position right above the sensor, a high 

voltage signal will be recorded in the scope. Then measurement of the time difference between 

two neighbor high signals gave the period of one revolution. Then Revolution per Minute (RPM) 

can be easily calculated. The experiment set-up is shown as below: 

 

Figure 3.2 (cont. on next page) 
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Figure 3.2 Experiment setup of propeller speed measurement 

The experiments were conducted four times, with each of the motors and propellers, by sending 

motor command from 56 to 511 (0x38 to 0x1ff in Hex). The final linear fit data with trend line is 

shown below.  

 

Figure 3.3 Linear Fit of Propeller RPM and Motor Command 

Given the gear ratio from motor gear to propeller gear 8:68, we could also estimate the motor’s 

speed. The motor speed was calculated to be in the range of 13527 [RPM] to 40690 [RPM], 

respective to the input range of 56 to 511. The start speed could be found at the intersection 

with propeller RPM axis, which corresponds to motor speed of 10340 [RPM]. The start and 

maximum motor speed are very close to those provided in Parrot’s official site (starts at 10350 

RPM and goes to 41000 RPM) [7], which proves the identification successful.    

  

The importance of this experiment lies on the fact that RPM of propellers are very difficult to 

measure when flying, but not the motor command. By recording four motor commands, RPM of 

the propellers could be estimated by the linear fit trend line. The total mass, then, is supported 

by the sum of square of each motor’s speed, assuming thrust is linear to speed square. The chart 

below shows the map from propeller RPM square to mass  
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Figure 3.4 Linear Fit of Drone Mass and Propeller Speed Square Sum 

The aerodynamics thrust coefficient for the AR.Drone, from propeller speed square to thrust, is 

estimated by the slope of the map to be 9.14 × 10−6 [𝑔/𝑅𝑃𝑀2]. With a gear ratio 8:68, it 

corresponds to 1.27 × 10−7[𝑔/𝑅𝑃𝑀2] from motor speed square to thrust. The experiment set 

up is shown in the following figure.   

  

Figure 3.5 Experiment Setup for ID of aerodynamic thrust and drag coefficient 

The same method is used to estimate the aerodynamics drag coefficient as shown in the figure 

above. Applying a known force that produces a negative yaw torque with a fixed distance to the 

center, the torque generated is then balanced by the torque due to (Ω1
2 + Ω3

2 − Ω2
2 − Ω4

2). The 

char below shows the map from propeller RPM square to torque 

 

Figure 3.6 Linear Fit of Yaw Torque and Net Propeller Speed Square  
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The aerodynamics drag coefficient for the AR.Drone from propeller speed square to torque is 

then estimated to be 2.38 × 10−9 [𝑁 ∙ 𝑚/𝑅𝑃𝑀2]. It corresponds to 3.29 × 10−11 [𝑁 ∙ 𝑚/𝑅𝑃𝑀2] 

from the motors, with a gear ratio of 8:68. 

 

3.3 Sensor Model   

The most common model for sensors is the output of nominal data plus white noise. However 

specific sensors have their own noise source. Kinect model is introduced first, followed by the 

MEMS gyroscope model and ultrasonic altimeter model. They are used to measure position, 

Euler angular speed and height, respectively. Accelerometers are not used, and the reason will be 

explained in 5.2 Local Filter Design. The other on board sensor such as the camera is not used at 

this stage. 

 

3.3.1 The Kinect model 

Kinect, as a regular camera sensor, has a quantized error and measuring noise. It may also have 

offset or scale error to real position. To simplify the model we assume the output is only 

composed of the scaled nominal data with scaled offset and Gaussian white noise. The 

assumption is valid if the noise dominates the quantized error. The model can be described by 

the equation 

         𝑘 = 𝑝 + 𝛼 ∙ 𝑜 + 𝑛       (3.4) 

where 𝑝 is the true position, o is the offset, n is the noise and 𝛼 is the scale factor. 

 

3.3.2 The Gyroscope model 

The gyroscope is used to be integrated to obtain angle, thus needs to be modeled in more details. 

Common model of gyro assumes that the gyro output 𝑔, is result of the true rotational rate 𝜔, 

plus a constant bias 𝑏𝑐, a walking bias 𝑏𝜔, and wide band sensor noise n [8]. 

           𝑔 = 𝜔 + 𝑏𝑐 + 𝑏𝜔 + 𝑛      (3.5) 

The constant bias, 𝑏𝑐, is the average output of the gyro when no rotation has occurred. It can be 

measured by taking long time average of the gyro output. 

 

The walking bias, 𝑏𝜔, is mainly due to flicker noise in the electronics and other components. It 

dominates at low frequencies [9]. The flicker noise can be modeled by a random walk whose 

standard deviation  

                                                                𝜎𝑏[°/𝑠] = 𝐵𝑆[°/𝑠]√𝛿𝑡/𝜏         (3.6) 

where  𝐵𝑆[°/𝑠]  is so called Bias Stability/Bias Instability or Bias Variation, defined by 

manufacturer with the lowest point on Allan Variation analysis. It evaluates the gyro’s walking 

bias instability within the Allan averaging time 𝜏, with a sampling period 𝛿𝑡.  

 

The wide band sensor noise, 𝑛, is due to thermo-mechanical noise which fluctuates at higher 
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frequencies than sampling rate. It thus can be modeled by white noise with zero mean and 

standard deviation 𝜎𝑛[°/𝑠]. Integrated over time, it produces angel random walk noise with 

standard deviation 𝜎𝜃[°/√𝑠] satisfies 

       𝜎𝜃(𝑡)[°/√𝑠] = 𝜎𝑛[°/𝑠]√𝛿𝑡 ⋅ 𝑡[𝑠]      (3.7) 

where 𝛿𝑡 again is the sampling time. Manufacturer usually define Angle Random Walk (ARW) by 

[10] 

       𝐴𝑅𝑊 = 𝜎𝜃(1) = 𝜎𝑛√𝛿𝑡       (3.8) 

Thus we can estimate the standard deviation of the white noise given ARW and sampling period. 

 

3.3.3 Altimeter model 

Altimeter is modeled by a nominal output with offset and noise. The model thus can be 

       𝑎 = ℎ + 𝛼 ∙ 𝑜 + 𝑛        (3.9) 

where 𝑎 is the altimeter output, h is the true height, 𝛼 is the scale factor, 𝑜 is the offset and n 

is the white noise. 

 

3.4 Sensors ID 

Based on the models of each sensor, Identification experiments were conducted. The results of 

gyro are also compared with some low-cost low-resolution consumer gyro sensors on market.   

 

3.4.1 Kinect ID 

Kinect is identified by placing the drone on a thin shelf in front of it, and recording the measured 

data. We started from the point in the middle front of the Kinect, measured the distances from 

the point to the origin (somewhere in our lab’s corner) defined in our global coordinates, and 

calibrated the Kinect with the positions measured. Then the drone was measured in the following 

locations surrounding the center. 

 
Figure 3.7 Test locations of the Kinect 
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The experiment set up was shown below, along with the results.  

  

 

Figure 3.8 Experiments Setup and Result of Kinect ID 

It is obviously shown that Kinect gives a better measurement around the middle than sides, and 

in x-direction than y-direction. The Kinect sometimes focuses on the body edge instead of the 

center of the drone, which can cause the offset as large as 0.25 [m] at some locations, given the 

drone’s hull has a diameter of 0.50[m]. This offset tends to be more obvious at the sides than the 

middle and along the y axis than x. The exact position, position detected by the Kinect and the 

standard deviation is quantized in the table below. 

Table 3.2 Kinect Measurement Data 

 Real X Real Y Kinect X Kinect Y X_Std Y_Std 

Mid 2.799 2.923 2.799 2.923 0.038 0.012 

Left1 2.403 2.923 2.371 2.967 0.029 0.014 

Left2 1.977 2.923 2.025 2.901 0.012 0.028 

Left3 1.641 2.923 1.767 2.878 0.019 0.067 

Right1 3.160 2.923 3.139 2.893 0.013 0.020 

Right2 3.561 2.923 3.487 2.853 0.019 0.051 
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Table 3.2 (cont.) 

Right3 3.936 2.923 3.722 3.017 0.046 0.128 

Back1 2.799 3.228 2.813 3.214 0.029 0.054 

Back2 2.799 3.533 2.822 3.661 0.013 0.025 

Back3 2.799 3.837 2.782 4.117 0.007 0.040 

Front1 2.799 2.618 2.884 2.577 0.002 0.010 

Front2 2.799 2.313 2.861 2.039 0.005 0.006 

Front3 2.799 2.009 2.833 1.531 0.005 0.036 

 

The experiment results also showed that X and Y channels are not independent. For example, the 

farther Y is from the center, the more inaccurate X is along the same line. So is X. Thus the most 

accurate model would be a two-dimensional look-up table. However as a start I assumed the two 

channels are independent. With the assumption the linear fit of the Kinect’s X position and real X 

can be linear fitted with the data from left to right as. 

 

Figure 3.9 Linear Fit of Kinect X Reading and Real X Position 

Apply the same method on Y from back to front, the linear fit curve is    

 

Figure 3.10 Linear Fit of Kinect Y Reading and Real Y Position 

Again assuming the noise is Gaussian independent of X and Y coordinates, then each channel’s 

noise’s standard deviation is estimated by the average of all standard deviations of the 

corresponding channel. The modeling equations for Kinect X and Y position in the collecting 

range are given by  

y = 0.8847x + 0.297 
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{
X = 𝑃𝑥 − 0.1153𝑃𝑥 + 0.297 + 𝑛(𝜎 = 0.025)         (1.641 < 𝑋 < 3.936)

𝑌 = 𝑃𝑦 + 0.3637𝑃𝑦 − 1.1203 + 𝑛(𝜎 = 0.007)      (2.009 < 𝑌 < 3.837)
  (3.10) 

3.4.2 Gyroscope ID 

 

Figure 3.11 Experiment Setup for Gyro ID 

Three axis gyros were identified by setting still and recording their outputs every 0.005 [s] (see 

experiment figure above). The constant bias could be found by taking average of the outputs over 

time, while the Angular Random Walk (ARW) and Bias Stability (BS) are obtained by running Allan 

Variance analysis. The following figures illustrate the output data along with short term average 

or linear fit, and Allan Variance of each gyro. 

  

  

Figure 3.12 (cont. on next page) 
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Figure 3.12 Output Gyro Data and Allan Variation Analysis 

Since most of experiments will only be run in the first three minutes, only short term bias was 

evaluated by taking average of the first three minutes gyro output. The figures showing gyro 

outputs and bias are on the left side. From the figures, while Gyro Roll and Yaw data show the 

trend of a constant bias 𝑏𝑐, Gyro Pitch’s bias is more likely to be linear with time. Thus, a first 

order varying bias model vs. time will be more accurate for pitch gyro.  

 

The Angular Random Walk (ARW) could be found by the Allan deviation value at averaging time 

𝜏 = 1[s]. From the figure it’s clearly seen that white noise with a slop of -0.5 dominates at low 𝜏. 

The standard deviation 𝜎𝑛 of the white noise 𝑛 for each gyro can be found by 

                                                             𝜎𝑛[°/𝑠] =
𝐴𝑅𝑊

√𝛿𝑡
                                                                     (3.11) 

The Bias Stability/Bias Instability (BS) is found by the lowest point of Allan Variance curve. With 

more average time 𝜏, the deviation tends to be caused by the bias instead of noise. With even 

larger average time 𝜏 the deviation shows the trend of increasing because of bias random walk. 

This phenomenon is very obvious in the Allan Variance curve of the pitch gyro, where the Allan 

deviation to the right of lowest has much larger slope than those of roll and yaw gyro, which 

indicates that a constantly increasing bias dominates the random walk, which validates the 

varying bias model. The standard deviation of random walk bias 𝑏𝜔 for each gyro then can be 

found by 

          𝜎𝑏[°/𝑠] = 𝐵𝑆[°/𝑠]√𝛿𝑡/𝜏      (3.12) 

Table below lists the identified constant/varying bias 𝑏𝑐 , ARW, BS, and standard deviation of 

white noise 𝜎𝑛 and of bias random walk 𝜎𝑏 for each gyro at sampling rate 25 Hz. 

Table 3.3 Indentified Parameters of Gyros 

  𝒃𝒄[𝒓𝒂𝒅/𝒔] ARW[𝒓𝒂𝒅/√𝒔] BS[𝒓𝒂𝒅/𝒔] at 𝝉[𝒔] 𝝈𝒏[𝒓𝒂𝒅/𝒔] 𝝈𝒃[𝒓𝒂𝒅/𝒔] 

Gyro Roll 8.83 × 10−4 0.00025 0.00012 at 30 0.00125 9.13 × 10−6 

Gyro Pitch (−4.97–6.22𝑡) × 10−5 0.0003 0.00023 at 3 0.0015 2.66 × 10−5 

Gyro Yaw −5.67 × 10−4 0.00018 0.00013 at 3 0.0009 1.50 × 10−5 
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The following table lists the bias and ARW of several low-cost consumer gyros. ARW are 

calibrated to sampling rate 25 Hz. Prices are listed on official site if provided. Unfortunately BS is 

usually not listed for these gyros, but rather for more precise ones. According to the table, the 

identified parameters of AR.Drone’s gyros are close to those of the low-cost consumer gyros. 

Table 3.4 Specification of Selected Low Cost Gyros  

 Type Bias[𝒓𝒂𝒅/𝒔] ARW[𝒓𝒂𝒅/√𝒔] Price($) Datasheet 

Analog Devices ADXRS610 Yaw N/A 0.0009 30 adxrs610.pdf 

Analog Devices ADXRS450 One-Axis N/A 0.00026 53.23 adxrs450.pdf 

Analog Devices ADIS16250 Yaw 0.00028 0.0002 N/A adis16250.pdf 

InvenSense IDG-500 Dual-Axis N/A 0.00023 N/A IDG500.pdf 

 

To further validate the model of gyros with identified parameters, the outputs are integrated over 

time in a simulation, and the result angles are compared to the integration of gyro in real system. 

Figure Set 3.9 illustrates the comparison of simulated and real angle. The time span is from 0 to 

180 [s] (3 [min]). From the figure it can be seen that the model predicts real system within 10%.  

 

 

 

Figure 3.13 Comparisons of Simulated and Experimental Angles 
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Even though the model predicts the real sensor very well, it’s important to mention that the 

gyros tend to behave quite differently in different runs. For example, we have observed the drift 

to be totally the opposite sign in even two neighbor tests. Thus, the model will not be able to 

present the real system in every situation. However, it gives a very good approach to how “bad” 

the real system can be, and can be utilized to test the robustness of controller and filter.  

 

3.4.3 Altimeter ID 

 

Figure 3.14 Altimeter ID 

Altimeter was identified by placing at specific height and recording the data. The table below 

gives the true height and the average output of altimeter with standard deviation. The red color 

height gives the threshold of the altimeter. 

Table 3.5 Altimeter ID Results 

True Height[m] Altimeter Average Output[m] Standard Deviation[m] 

0 0.2603 0.00045 

0.2 0.2719 0.00019 

0.26(Threshold) 0.2650 0.0002 

0.4 0.4544 0.0032 

0.6 0.7014 0.0014 

0.8 0.9261 0.0007 

1 1.1826 0.0013 

 

Altimeter’s output is around 0.27[m] when the true height is less than or equal to the threshold 

0.26[m]. After the threshold, as the true height goes up the altimeter reading also increases, but 

also with an increasing offset. Figure below shows the linear fit trend line of the altimeter output 

with true height when true height is above 0.26[m]. 
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Figure 3.15 Linear Fit of Altimeter Output and True Height 

Taking the average of noise standard deviation, assuming that the noise is Gaussian and 

independent of height, the modeling equation can be summarized as  

{
𝑎 = 0.27 + 𝑛(𝜎 = 0.0002)                                        (ℎ < 0.26)

𝑎 = ℎ + 0.2256ℎ − 0.0441 + 𝑛(𝜎 = 0.0017)      (ℎ > 0.26)
     (3.13) 
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Chapter 4 Controllers and Filters Design 

Based on dynamical models of the drone and sensors, local and global controller and filters are 

designed. Here “local” refers to the basic movements control accomplished by “on-board” 

sensors, while “global” refers to the position control sensed by the Kinect.  

 

The four basic movement targets, throttle, roll, pitch and yaw, introduced in 2.4 Basic Movements, 

are achieved by four independent “local” PID controllers designed in Section 1. However, angles 

and vertical speed cannot be read directly from sensor, which indicates that filter design is 

necessary. Thus Section 2 introduces three different ways to estimate angle from the rate gyro. 

These include integral of gyro through high pass filter, a complementary filter design combines 

the gyro and accelerometer, and an open-source Kalman filter design to determine angle from 

rate gyro and accelerometer. It also introduces an open-source technique “linear-regression” to 

determine the vertical velocity.  

 

The “global” position controllers are also PID controllers built upon the “local” controllers. Their 

designs are included in Section 3. The Kinect can only sense global positions with noise, but the 

best PID controller performance requires speeds and smooth positions, which again requires a 

filter. The global filter designs, including two first order low pass filters, a complementary filter 

and a Kalman filter design is introduced in section 4.  

 

4.1 Local Controller  

The control targets correspond to throttle, roll, pitch and yaw movements are height, roll angle, 

pitch angle and yaw angle. Since four channels are independent, four separate PID controllers are 

designed for each channel. The following figure shows the block diagram architecture of four 

feedback PID controllers, sensors and filters.  

 

Figure 4.1 Local Closed-loop Feedback  

The controllers’ outputs, i.e., control signals, shall have the same unit of the channels. For 

example, control signal of throttle should be in the unit of N, and that of roll should be in the unit 
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of N.m. However, inputs to the AR.Drone are in the range of 0xff to 0x1ff for each motor, which 

corresponds to some RPM reference value, as determined in the AR.Drone’s identification. Thus, 

we could make the control signals of each channel has the unit of RPM, and let the PID gains 

carry the unit. It efficiently saves the effort of relating force and torque to RPMs.  

 

The control signals for each channel, in the unit of RPM, are calculated as following: 

 

 Throttle 

Given a constant reference height target ℎ𝑟𝑒𝑓, according to the architecture of PID 

controller, the control signal is given by  

𝑢𝑡 = [𝑘𝑃𝑡(ℎ𝑟𝑒𝑓 − ℎ) + 𝑘𝐼𝑡 ∫(ℎ𝑟𝑒𝑓 − ℎ) +𝑘𝐷𝑡(ℎ𝑟𝑒𝑓 − ℎ)
̇ + 𝑅𝑃𝑀ℎ𝑜𝑣] /√(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)   

        = [𝑘𝑃𝑡(ℎ𝑟𝑒𝑓 − ℎ) + 𝑘𝐼𝑡∫(ℎ𝑟𝑒𝑓 − ℎ) +𝑘𝐷𝑡(−ℎ)̇ + 𝑅𝑃𝑀ℎ𝑜𝑣  ] /√(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)     (4.1) 

where 𝑘𝑃𝑡 , 𝑘𝐼𝑡  and 𝑘𝐷𝑡  are the proportional, integral and derivative gain 

correspondingly, 𝑅𝑃𝑀ℎ𝑜𝑣 is the average speed of motors at hovering, h is the feedback 

from ultrasonic altimeter, 𝜃 and 𝜙 are the pitch and roll angle repectively . They are 

included to ensure balance in earth frame Z direction. Estimation of ḣ from h is by 

linear regression and will be discussed in next section.  

 

Extra consideration of a PID design, such as saturation of the error signal and control 

signal is also included. For constant position target tracking with force(RPM) as control 

input, integral term is usually not necessary, or much less compared to the other terms, 

because the transfer function from acceleration to position has a s2 term that cancels the 

denominator s of the Laplace transform of a step reference input, which satisfies the 

internal modal principle. In other words, integration is not necessary to obtain zero 

steady state error. Thus, anti-windup is not a necessary part.  

 

To be used by the drone the controller has to be discrete with specific sampling period. It 

also needs to be written by some programming language, such that it can be built by the 

operating system’s compiler as an executable program. Thus it’s necessary to translate 

the design to some pseudo code. Given the sampling period 𝑇𝑠 the pseudo code could 

be 
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 Roll/Pitch/Yaw 

The controller of roll, pitch and yaw channel follows the same idea and will be discussed 

together. To track a constant reference angle 𝐴𝑛𝑔𝑟𝑒𝑓, again following the architecture of 

PID controller, the control signal is given by  

 𝑢𝐴𝑛𝑔 = 𝑘𝑃_𝐴𝑛𝑔(𝐴𝑛𝑔𝑟𝑒𝑓 − 𝐴𝑛𝑔) + 𝑘𝐼_𝐴𝑛𝑔 ∫(𝐴𝑛𝑔𝑟𝑒𝑓 − 𝐴𝑛𝑔) +𝑘𝐷_𝐴𝑛𝑔(−𝐴𝑛𝑔)̇     (4.2) 

where 𝑘𝑃_𝐴𝑛𝑔 , 𝑘𝐼_𝐴𝑛𝑔  and 𝑘𝐷_𝐴𝑛𝑔  corresponds to the proportional, integral and 

derivative gain on the specific Angle, and 𝐴𝑛𝑔̇  is the feedback from the rate gyro. 

Estimation of roll, yaw and pitch angle will be discussed in the next section. Saturation of 

signals is again included in the design, while anti-windup is not. The pseudo code is 

similar to that of throttle. 

 

Recall that in Chapter 2 Section 4, how four basic movements were effected by each motor speed 

was introduced. Now we are interested in the way to quantize their relationship, i.e., a set of 

equations from control commands of each channel to those of each motor. Since they have the 

same unit of RPMs, one way is simply a geometric match by  

                                    

{
 
 
 
 

 
 
 
 𝑢𝑡 =

1

4
(𝑢1 + 𝑢2 + 𝑢3 + 𝑢4)

𝑢𝑟 =
1

4
(
1

√2
(𝑢1 + 𝑢4) −

1

√2
(𝑢2 + 𝑢3))

𝑢𝑝 =
1

4
(
1

√2
(𝑢3 + 𝑢4) −

1

√2
(𝑢1 + 𝑢2))

𝑢𝑦 =
1

4
(𝑢1 + 𝑢3 − 𝑢2 − 𝑢4)

                                                        (4.3)  

where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are the control commands of each motor, and 𝑢𝑡, 𝑢𝑟, 𝑢𝑝, 𝑢𝑦 are those 

of throttle, roll, pitch and yaw channel correspondingly.  Rearrange the equations to express 

𝑢1, 𝑢2, 𝑢3, 𝑢4  by 𝑢𝑡, 𝑢𝑟, 𝑢𝑝, 𝑢𝑦:  

                                               

{
 
 
 
 

 
 
 
 𝑢1 = 𝑢𝑡 +

1

√2
(𝑢𝑟 − 𝑢𝑝) + 𝑢𝑦

𝑢2 = 𝑢𝑡 +
1

√2
(−𝑢𝑟 − 𝑢𝑝) − 𝑢𝑦

𝑢3 = 𝑢𝑡 +
1

√2
(−𝑢𝑟 + 𝑢𝑝) + 𝑢𝑦

𝑢4 = 𝑢𝑡 +
1

√2
(𝑢𝑟 + 𝑢𝑝) − 𝑢𝑦

                                                         (4.4) 

The controller code for throttle, roll, pitch and yaw channels, along with the control signal 

distribution from channels to motors finish the local controller design. 

 

4.2 Local Filter 

Filters may not be necessary to run a successful model, however, is crucial to experiments 
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because a lot of noise sources might have been underestimated in modeling. Filters give a more 

accurate and more importantly, much smoother results, which is especially important to PID 

control technique. 

 

4.2.1 Linear Regression 

Linear Regression is widely used by fitting dependent and independent variables with a straight 

line by ordinary least square [11]. In our application it is used to determine vertical velocity from 

height and time. This thesis paper will not go through the theories, but rather use the results 

directly and focus on the open-source algorithm. 

 

Linear regression states that given a linear relationship between independent variable x and 

dependent variable y by 

         𝑦 = 𝑘𝑥 + 𝑏        (4.5) 

Then with N number of data acquired, the least square linear fit coefficients are  

                                                         

{
 
 

 
 𝑘 =

𝑁∑𝑥𝑖𝑦𝑖 −∑𝑥𝑖 ∑𝑦𝑖

𝑁∑𝑥𝑖
2 − (∑𝑥𝑖)2

𝑏 =
∑𝑦𝑖 ∑𝑥𝑖

2 − ∑𝑥𝑖 ∑𝑥𝑖𝑦𝑖
𝑁∑𝑥𝑖

2 − (∑𝑥𝑖)
2

                                            (4.6)  

The open source code we used is the “AR.Drone attitude estimation driver” by Hugo Perquin, 

with GNU General Public License published by the Free Software Foundation [12]. The program is 

designed for AR.Drone attitude estimation, including angles and angle rates, height and height 

rate, and accelerations. The main algorithm contains linear regression and the Kalman filter 

design by Tom Pycke. The linear regression pseudo code can be concluded as 
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4.2.2 Integral with High Pass Filter 

The most direct way to obtain angles from onboard sensors is integral of gyros. It is fast and 

accurate in short term. However as we have seen in the identification of the gyros, due to the 

bias the integrated result become very inaccurate at long run. The most straight forward way is 

then to manually subtract the bias from the gyro outputs, however the bias itself vary in different 

runs. Thus, the most robust way is high pass the gyro reading and then integrates. The following 

figure gives the transfer blocks from rate gyro output to angle through a first order high pass filter 

and integrator.   

 

Figure 4.2 Low Pass Filter Structure 

The overall transfer function is then 

                                                                      Θ(s) =
𝜏

𝜏𝑠 + 1
∙ 𝐺(𝑠)                                           (4.7) 

Notice the result transfer function is actually a low pass filter applied on gyro. To write the 

transfer function in digital form, apply bilinear transform with sampling period 𝑇𝑠 [13] 

                                                                         s =
2

𝑇𝑠
∙
𝑧 − 1

𝑧 + 1
                                                   (4.8) 

and rearrange the difference equation, the digital filter can be 

                                                          Θ𝑘 = (
2𝜏 − 𝑇𝑠
2𝜏 + 𝑇𝑠

)Θ𝑘−1 + (
2𝑇𝑠

2𝜏 + 𝑇𝑠
)𝜏𝑔                        (4.9) 

where Θ𝑘−1 is the last step angle, 𝑔 is the current step gyro output, Θ𝑘 is the filtered angle 

and 𝜏 is the pole to be tuned. It should be very carefully chosen such that the bias is effectively 

filtered instead of the fast response of gyro. The less 𝜏 is, the more active the high pass filter is, 

however too small 𝜏 will make the gyro ineffective by filtering out all changes.  

 

4.2.3 Complementary Filter 

 

Figure 4.3 Free Body Diagram of Drone without Acceleration 
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The figure above gives the free body diagram (FDB) of the drone flying in constant speed with a 

positive static pitch angle theta (y axis pointing in). The forces are balanced with the thrust acting 

on positive body z axis, friction acting on the opposite direction of velocity, and gravity acting 

downward. At this stage, the accelerometer will sense the acceleration produced by every force 

except the gravity. However, since the sum of all the other forces is equal to gravity, the resultant 

acceleration on body frame x-axis and z-axis will be 𝑔 ∗ 𝑠𝑖𝑛(𝜃) and −𝑔 ∗ 𝑐𝑜𝑠(𝜃), respectively. 

Thus, the pitch angle can be estimated by accelerometers by  

                                                              𝜃 =  𝑎𝑟𝑐𝑡𝑎𝑛(
−𝑎𝑥

𝑎𝑧⁄ )                                                   (4.10) 

The same idea applies to the roll angle. A static negative roll angle - 𝜙 (x axis pointing out) 

balance produces a positive acceleration 𝑔 ∗ sin(𝜙) on z-axis and – 𝑔 ∗ cos(𝜙) on y-axis. Thus, 

the roll angle can be estimated through accelerometers by 

                                                              𝜙 =  𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑎𝑦

𝑎𝑧⁄ )                                                    (4.11) 

However accelerometers are usually very dangerous to use, because of the complicated 

dynamics during a run. In other words, the accelerometer reading is usually very different from 

expected while rotational and linear acceleration and vibration comes in. However, in the long 

run it gives non-drifting reading that can be used to correct the drift from gyro. The 

complementary filter [14] then combines the two by high pass the integrated angle from gyro, 

and low pass the angle estimated from accelerometers, such that their sum would be a fast and 

accurate angle output [15]. The figures below illustrate the idea of the complementary filter and 

its realization. 

 

 

Figure 4.4 Local Complementary Filter and its Realization 
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The overall transfer function from 𝑔 and 𝐴𝑛𝑔_𝑎𝑐𝑐 to  Θ  is given by  

                                                          Θ(s) =
𝜏

𝜏𝑠 + 1
∙ (𝜏𝐺(𝑠) + 𝐴𝑛𝑔_𝑎𝑐𝑐(𝑠))                             (4.12) 

Again apply bilinear transform and rearrange the difference equation we have 

                                     Θ𝑘 =
2𝑇

2𝜏 + 𝑇
∙ 𝐴𝑛𝑔_𝑎𝑐𝑐 +

2𝜏 − 𝑇

2𝜏 + 𝑇
(Θ𝑘−1 +

𝑇

1 −
𝑇
2𝜏

𝑔)                       (4.13) 

Usually 𝜏 is chosen to be much larger than sampling period 𝑇 to actively high and low pass 

signals. The equation can be simplified as  

Θ𝑘 = 𝛼 ∙ 𝐴𝑛𝑔_𝑎𝑐𝑐 + (1 − 𝛼)(Θ𝑘+1 + 𝑇𝑔)        (4.14) 

where 𝛼 is some value close to but less than 1, and is equal to 

                                                                  𝛼 =
2𝑇

2𝜏 + 𝑇
                                                                     (4.15) 

 

4.2.4 Kalman Filter 

Another way to combine angle estimation from gyro and accelerometer is the Kalman Filter 

design in sensor fusion [16][17][18]. The filter we used is the open source Kalman Filter design by 

Tom Pycke [19]. It sets up the structure with a state vector 𝑥𝑇 = (𝜃, 𝑏), where 𝜃 is the angle and 

b is the gyro bias, an input g which is the gyro reading, and an output z which is the angle 

measured by the accelerometer. Then following the structure of a discrete Kalman filter 

      {
𝑋𝑘 = 𝐹𝑘𝑋𝑘−1 + 𝐵𝑘𝑈𝑘 +𝑊𝑘              𝑊𝑘~𝑁(𝑂,𝑄𝑘)
𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑉𝑘                                  𝑉𝑘~𝑁(𝑂, 𝑅𝑘)  

   (4.16) 

The state space equations are written as  

    {
(
𝜃𝑘
𝑏𝑘
) = (

1 −𝛿𝑡
0 1

)(
𝜃𝑘−1
𝑏𝑘−1

) + (
𝛿𝑡
0
) (𝑔𝑘 0) +𝑊𝑘             𝑊𝑘~𝑁(𝑂,𝑄𝑘)

𝑍𝑘 = (1 0) (
𝜃𝑘
𝑏𝑘
) + 𝑉𝑘                                                          𝑉𝑘~𝑁(𝑂, 𝑅𝑘)

     (4.17) 

Now the problem is to evaluate this Kalman filter design by relating the equations to the sensor 

models, suggesting and measure possible covariance matrices, translating the design to 

executable language and testing its performance through experiments. 

   

In the predict step, for the first component, angle, of the state vector we have 

        𝜃𝑘 = 𝜃𝑘−1 +𝜔 ∙ 𝛿𝑡             (4.18) 

where 𝜔 is the exact angle rate and 𝛿𝑡 is the sampling period. Recall the model of rate gyro  
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       g = ω+ b + 𝑛(𝜎 = 𝜎𝑛)       (4.19) 

where 𝜔 is the exact angle rate, n is the gyro noise with standard deviation 𝜎𝑛 and b is the bias. 

Replace 𝜔 in Equation 4.19, it can be rewritten as 

       𝜃𝑘 = 𝜃𝑘−1 − 𝑏 ∙ 𝛿𝑡 + 𝑔 ∙ 𝛿𝑡 − 𝑛(𝜎 = 𝜎𝑛) ∙ 𝛿𝑡   (4.20) 

The second component, bias, of the state vector, can be estimated by  

        𝑏𝑘 = 𝑏𝑘−1 + 𝑛𝑏(σ = 𝜎𝑏)      (4.21) 

where 𝑛𝑏 is a random walk noise whose standard deviation is equal to𝜎𝑏. Combining 4.20 and 

4.21, the state space equation can be written as  

     (
𝜃𝑘
𝑏𝑘
) = (

1 −𝛿𝑡
0 1

) (
𝜃𝑘−1
𝑏𝑘−1

) + (
𝛿𝑡
0
) (𝑔 0) + (

−𝑛𝛿𝑡
𝑛𝑏

)   (4.22) 

Assuming gyro white noise and bias random walk are independent, the predict covariance matrix, 

Q, can be written as  

     𝑄 = (
𝐶𝑜𝑣(−𝑛𝛿𝑡, −𝑛𝛿𝑡) 𝐶𝑜𝑣(−𝑛𝛿𝑡, 𝑛𝑏)
𝐶𝑜𝑣(𝑛𝑏, −𝑛𝛿𝑡) 𝐶𝑜𝑣(𝑛𝑏, 𝑛𝑏)

) = (
𝜎𝑛
2𝛿2𝑡 0

0 𝜎𝑏
2)    (4.23) 

The update step involves the measured output by    

      𝑍𝑘 = arctan(
𝑎1

𝑎2⁄ ) = (1 0) (
𝜃𝑘
𝑏𝑘
) + 𝑛𝑚     (4.24) 

where 𝑎1 and 𝑎2 are the true accelerations depending on what angle is being measured, and 

𝑛𝑚  is the measurement noise. Even though we could estimate the noise level of each 

accelerometer channel, the noise level of arctan(
𝑎1

𝑎2⁄ ) is still difficult to be estimated. Thus, 

it’s a good idea to tune the standard deviation in experiments. 

 

Following the steps of discrete Kalman Filter the pseudo code could be as following 
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4.3 Global Controllers 

Autonomous position controller is currently designed to be an outer loop upon local controllers.  

The main control targets are earth frame (global) X and Y positions, which could be sensed by the 

Kinect. The control is achieved by fixing height and yaw references, altering pitch and roll 

references according to positions by two independent PID controllers. The whole architecture is 

shown below: 

 

Figure 4.5 Global Closed-loop Feedback 

Note that Kinect is colored red because it is running outside of the AR.Drone’s operating system. 

The filter could also be run outside, but currently not because some of the filter’s design requires 

the local angle inputs. Fortunately the Drone’s CPU is powerful enough to run everything 

together. 

 

The data communication between AR.Drone, Kinect and PC is achieved by 

 

Figure 4.6 Data Communication between Drone and Kinect 

Given a fixed reference input 𝑌𝑟𝑒𝑓, following PID architecture, the control signal 𝜙𝑟𝑒𝑓 generated 

by the global controller roll channel can be 

    𝜙𝑟𝑒𝑓 = 𝑘𝑃1(𝑌𝑟𝑒𝑓 − 𝑌) + 𝑘𝐼1 ∫(𝑌𝑟𝑒𝑓 − 𝑌) + 𝑘𝐷1(𝑌𝑟𝑒𝑓 − 𝑌)
̇    (4.25) 

= 𝑘𝑃1(𝑌𝑟𝑒𝑓 − 𝑌) + 𝑘𝐼1∫(𝑌𝑟𝑒𝑓 − 𝑌) − 𝑘𝐷1�̇�                                                       
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The controller’s pitch channel works the same way, but tracks reference input 𝑋𝑟𝑒𝑓  and 

generates control signal 𝜃𝑟𝑒𝑓 by 

    𝜃𝑟𝑒𝑓 = 𝑘𝑃2(𝑋𝑟𝑒𝑓 − 𝑋) + 𝑘𝐼2 ∫(𝑋𝑟𝑒𝑓 − 𝑋) + 𝑘𝐷2(𝑋𝑟𝑒𝑓 − 𝑋)
̇    (4.26) 

= 𝑘𝑃2(𝑋𝑟𝑒𝑓 − 𝑋) + 𝑘𝐼2∫(𝑋𝑟𝑒𝑓 −𝑋) − 𝑘𝐷2�̇�                                                       

The pseudo code is similar to it of the local controller. 

 

4.4 Global Filter 

To obtain velocity from Kinect positions, and smooth the Kinect position feedbacks, a low pass 

filter, Complementary Filter and Kalman Filter have been designed. Following the idea of the local 

angle filters, low pass filter only utilizes the Kinect position data, while the Complementary Filter 

and Kalman Filter design also need an acceleration input besides the position feedback.  

 

4.4.1 Low Pass Filter 

Position signal can be smoothed by going through a first order transfer function as 

 

Figure 4.7 Low Pass Filter of Position 

where 𝑃 denotes the position feedback from Kinect and 𝐹𝑃 is the filtered position. Apply 

bilinear transform and rewrite the difference equation, we have 

                                                         𝐹𝑃𝑘 =
2𝜏1 − 𝑇

2𝜏1 + 𝑇
𝐹𝑃𝑘−1 +

2𝑇

2𝜏1 + 𝑇
𝑃                                  (4.27) 

where 𝐹𝑃𝑘  denotes the current step filtered position and 𝐹𝑃𝑘−1  is the last step filtered 

position, 𝑇 is the sampling period, and 1/𝜏1 is the pole to be tuned. The more 𝜏1 is, the 

closer the pole is to the origin, which results in a more active low pass filter. However, too large 

𝜏1 will over filter the Kinect position which result in a very slow update of position. It is usually 

more convenient to rewrite the equation as  

𝐹𝑃𝑘 = 𝛼1𝐹𝑃𝑘−1 + (1 − 𝛼1)𝑃          (4.28) 

and tune 𝛼1. The tuning direction of 𝛼1 follows the same way as 𝜏1, except that 𝛼1 has to be 

within range of [0, 1]. 

 

Velocity signal is similarly filtered by putting Kinect measured position through a first order low 

pass filter and a derivative as  
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Figure 4.8 Low Pass Filter of Velocity 

Bilinear transform is applied to replace 𝑠 in the overall transfer function, the result difference 

equation is  

                                               V𝑘 = (
2𝜏2 − 𝑇

2𝜏2 + 𝑇
) ∙ V𝑘−1 + (

2𝑇

2𝜏2 + 𝑇
) ∙
𝑃𝑘 − 𝑃𝑘−1

𝑇
                               (4.29) 

which is really similar to that of position low pass filter. Here ∙ V𝑘−1 is the last step velocity, 

(𝑃𝑘 − 𝑃𝑘−1)/𝑇 gives the updated velocity by dividing the difference of current step and last step 

position over sampling time. 𝜏2 functions the same as 𝜏1 in terms of efficiency of filtering. The 

equation can be simplified as 

                                                V𝑘 = 𝛼2V𝑘−1 + (1 − 𝛼2)
𝑃𝑘 − 𝑃𝑘−1

𝑇
                                                   (4.30) 

which again can be tuned by playing with 𝛼2 in the similar way of 𝛼1. 

 

4.4.2 Complementary Filter 

 

Figure 4.9 Free Body Diagram of Drone with Translational Acceleration 

Advance filter involves another signal to be used to estimate position. We decided to utilize the 

global accelerations, which could be estimated from the flying angles and accelerometer’s 

reading. Again get back to the FBD but during the transient response when forces are not 

balanced, a positive pitch angle theta will result in a positive acceleration in global X direction, 

while the resistance force prevents it by producing an opposite acceleration. Assuming global Z 

axis balancing, the net acceleration could be calculated by  

                                                                      𝑎 = 𝑔𝑡𝑎𝑛(𝜃) −
𝑓

𝑚
                                                             (4.31) 

The acceleration due to resistance force could be estimated from the accelerometer reading. 
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Since the accelerometer only senses forces that compensate the gravity, but the thrust force F 

has no components acting on the body x-axis, neglecting angular acceleration, the accelerometer 

only reads the air resistance force’s component on the body x-axis. In equation 

                                                                       𝑎𝑥 = −
𝑓

𝑚
∙ 𝑐𝑜𝑠 (𝜃)                                                            (4.32) 

When 𝜃 is small 𝑡𝑎𝑛(𝜃) could be estimated by theta and 𝑐𝑜𝑠 (𝜃) is close to 1. Thus the net 

global X acceleration could be estimated by 

    𝑎𝑋 = 𝑔𝜃 + 𝑎𝑥            (4.33) 

Similarly for global Y channel, a negative roll angle produces a positive global acceleration that 

compensated by the resistance force, which produces a negative reading on y-axis accelerometer. 

The net global Y acceleration thus could be estimated by 

      𝑎𝑌 = −𝑔𝜙 + 𝑎𝑦           (4.34) 

The acceleration could be used to estimate global positions through integration, while the 

measured position is available for correction. The double integration would produce huge drifts 

on position estimation, while the measured position is very noisy. This again produces an idea of 

applying a Complementary Filter that high passes the integration and low passes the measured 

position to obtain smooth and accurate position. The same idea works on the velocity, where we 

could high pass the integration of acceleration and low pass the derivative of position. The idea is 

illustrated by the block structures below: 

 

 

Figure 4.10 Complementary Filter on Position and Velocity 
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One way of its realization was introduced in [20] and shown below. It is much easier for 

application. 

 

Figure 4.11 Realization of Global Complementary Filter 

 

4.4.3 Kalman Filter 

Even though the drone has high nonlinear complicated dynamics, the global position control 

itself only involves the global accelerations. Thus, a simplified Kalman Filter could be designed, 

focusing only on how the global accelerations affect the global positions. A linear Kalman Filter 

could be set up with a state vector 𝑥𝑇  =  (𝑃, 𝑉) where 𝑃 denotes position and 𝑉 is the 

velocity, a known input 𝑎 which denotes the acceleration, and a measurable output 𝑍 which 

denotes the position sensed by the Kinect. Then following the discrete Kalman Filter setup 

{
𝑋𝑘 = 𝐹𝑘𝑋𝑘−1 + 𝐵𝑘𝑈𝑘 +𝑊𝑘              𝑊𝑘~𝑁(𝑂, 𝑄𝑘)
𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑉𝑘                                  𝑉𝑘~𝑁(𝑂, 𝑅𝑘)  

    (4.35) 

the discrete state space equations are 

{
[
𝑃𝑘
𝑉𝑘
] = [

1 𝛿𝑡
0 1

] [
𝑃𝑘−1
𝑉𝑘−1

] + [𝛿𝑡
2/2
𝛿𝑡

]𝑎𝑘 +𝑊              𝑊~𝑁(0,𝑄)

𝑍𝑘 = [1 0] [
𝑃𝑘
𝑉𝑘
] + 𝛼 ∙ 𝑜 + 𝑉                                𝑉~𝑁(0, 𝑅)

    (4.36) 

where 𝛼 and 𝑜 are the scale factor and offset of the Kinect, obtained from the identification. If 

they are dependent of 𝑃𝑘 instead of constants, the 𝐻 matrix should be changed accordingly. 

The covariance matrices 𝑄 and 𝑅 could be estimated by  

{
𝑄 = [

𝛿𝑡4/4 𝛿𝑡3/2

𝛿𝑡3/2 𝛿𝑡2
] 𝜎𝑎

2

𝑅 = 𝜎𝑧
2                

        (4.37) 

where 𝜎𝑎 and 𝜎𝑧 is the standard deviation of input acceleration disturbance and measurement 

noise, respectively. While 𝜎𝑧 could be obtained from Kinect’s ID, it is very difficult to measure 

the input disturbance 𝜎𝑎, especially when the way of estimating acceleration is a combination of 

angle and accelerometer. Thus it will be left to be tuned during experiments. The initialize, 

predict and update process is similar to that of the local Kalman Filter.   
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Chapter 5 Simulation and Experiments 

This chapter puts together all previous content.  

 

The first stage of simulation utilized the model designed and conducted by Jan Vervoorst in 

MATLAB Simulink, for his own-built quadrotor and AR.Drone. The model he designed is a very 

thorough one that includes quadrotor dynamics, sensor noise, motor dynamics and his own 

controller. Thanks to his great work and generosity, I was able to save a large amount of time to 

initiate simulation of the AR.Drone model and controller. However, since the first stage was only 

to find a preliminary controller that stabilizes the AR.Drone model with height and angle 

references, and obtain a set of gains for global controller, I have changed the Simulink model 

accordingly, such that it only has the drone dynamics, the local controllers and the global 

controllers, but not any of other dynamics or noise sources. This “perfect” simulation design is 

briefly introduced in Section 1. 

 

Once the preliminary model and controller was validated, C++ was used to achieve more 

“realistic” simulation with all sensor models and filters design. C language is used primarily 

because of its easiness of development and convenience of interface. For instance, it’s able to be 

run in real time by simply including the timing library. The controller code written in C easily 

interfaces with the AR.Drone’s driver code, in the way that they can be compiled and built 

together as an executable program for Arm operating system. It also provides a platform for 

animation discussed in the next chapter. This convenience is prominent during experiments, 

when one has to frequently go between simulation and experiments. 

 

Section 3 includes all experiments on the AR.Drone. It first evaluates the local filters design by 

comparing their estimated angle outputs when drone is at static and roll reference following, 

such that the best filter is selected. Then with the selected filter it tests all local references 

tracking, i.e., specific height, roll, pitch and yaw references, by tuning controller gains obtained 

from simulation. The last part contains the global position tracking from point to point, and a 

specific trajectory tracking, by tuning gains from simulation and comparing the global filters 

design.  

 

Section 4 evaluates the model by comparing the simulation results to experiments. It compares 

the simulated response of local references to experiments, by the same local filter and controller 

obtained from experiments. Notice that the simulation gains have been adjusted accordingly to 

the ones used in experiments. The results are used to evaluate drone and sensor’s identification 

and modeling. Section 4 also contains the comparison between simulated global position tracking 

results and those of experiments. The comparison evaluates the overall modeling, including the 

Kinect model and global controller. 

 

5.1 “Perfect” Simulink Model 

The first stage model is designed to only test the drone’s dynamical model and local controller 

algorithm. None of the sensor’s model and filter’s algorithm is included. The closed loop 
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structure is shown in Figure 5.1 below  

 

Figure 5.1 Simulink Block of Local Closed-loop Feedback 

Following references inputs, the “Local Controller” subsystem contains four discrete PID 

controllers that take in the positions and velocities feedback of each channel (throttle, roll, pitch 

and yaw), and generate channel control signals. It also distributes the channel control signals to 

each motor. The figure below contains the details of the block. 

 

Figure 5.2 Simulink Block of Local Controller 

The “System Dynamics” subsystem contains the map from control signal (motor RPMs) to thrust 

and torque, based on the identified thrust and drag parameters. It also contains the dynamical 

equations written in embedded MATLAB function, where the inputs are the state vector and 

force vector, and the output is the state_dot vector. The state_dot vector is then integrated 
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continuously with an initial value to be returned to the dynamics. Two selectors are used to pick 

up the position (height, roll, pitch, yaw angles) and velocity (vertical speed, roll, pitch, yaw speed) 

vectors to feedback to the control system. 

 

Figure 5.3 Simulink Block of Drone Dynamics 

Please refer to Appendix B for details of PID controller of each channel and “motor mixing” in 

Local Controller subsystem, and details of the “motor RPM to Force Vector” and “Drone 

Dynamics” in System Dynamics subsystem. They are simply the Simulink realization of the 

corresponding equations. 

 

As introduced in Chapter 4 the global controller is built on the local closed loop. The Kinect model 

and global filters are again not considered at this stage. The following figure illustrates the overall 

structure.  

 
Figure 5.4 Simulink Block of Global Closed-loop Feedback 

The “Global Controller” subsystem takes in the global position references, the current global 

position and velocity and executes the PID control algorithm. The output control signals are 

reference roll and pitch angles that go into the local closed loop shown in Figure 5.1 with fixed 

yaw and height references. The detailed blocks are very similar to those of local PID controllers.  
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5.2 “Realistic” C++ Model 

The first step is to translate existing MATLAB Simulink blocks to C. Each main Simulink subsystem 

(Local Controller, System Dynamics and Global Controller) is written as a c file, the sub-blocks 

within the subsystem are translated to sub-functions belong to the c file, and the wire 

connections between sub-blocks are translated to a higher level function that contains all the 

sub-functions.  

 

For example, the “Local Controller” subsystem is translated to “ConDyn.c”, the sub-blocks 

“Throttle, Roll, Pitch and Yaw” and “MotorMixing” are translated to functions “PICon()” and 

“MotorMixing()”, and the connections from inputs to sub-blocks and outputs are translated to 

the higher level function “ConDyn()”. The translation will result in a C file that contains all the 

information of the subsystem “Local Controller”. The following figure illustrates the translational 

process. The ConDyn.c block on the right only gives the pseudo code. Please refer to Appendix C 

for the detailed source code.  

    

Figure 5.5 Translation of Local Controller from Simulink to C 

Following the same way we could also translate the “System Dynamics” subsystem and “Global 

Controller” subsystem by 

     

     

Figure 5.6 Translations of System Dynamics and Global Controller from Simulink to C 
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The next step is to include the sensor models and all kinds of filters. They can be two different C 

files that contain various functions as follows. The detailed model or algorithm for each model 

and filter was introduced in previous chapters, and some of the source code is included in 

Appendix C. 

         

Figure 5.7 C Structure of SenDyn.c and FilDyn.c 

To combine all these subsystems (C-files) and run a simulation, header files that correspond to 

each c-file and functions need to be generated. There should also be a header file that contains 

all the parameters. More importantly, to translate the whole closed loop structure, the “main.c” 

file needs to come in, which combines everything in a loop that runs in specific sampling rate. It 

also shall print interested variables to terminal and files such that they could be observed and 

compared, just as the” scope” and “save to command window” functions in the Simulink. The 

following C pseudo structure of the “main.c” file put everything together: 

 

Figure 5.8 C Structure of main.c  

Even though the C/C++ structure is more complicated and less straight forward than Simulink, it 

moves a big step forward, in the way that the controllers’ and filters’ sources files (ConDyn.c, 

GloConDyn.c, Filter.c) can now be directly interfaced with the AR.Drone’s sensor-board data 
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acquisition code and motor-board driver code. The advantage of easy interfacing is outstanding 

when new designs of filters or controllers are to be tested. Besides, it gives a more realistic 

real-time simulation by including the sensor’s models and animation. The results of this model 

will be compared with experiments data in Section 4. 

 

5.3 Experiments Procedure and Results 

A lot of experiments were conducted to test the controllers and filters design. They can be 

categorized to three sets: local filter selection, local controller testing, global controller and filter 

testing. Filter and controller gains were first obtained from modeling, and have been extensively 

tuned to achieve better performance. The experiments results only illustrate and analyze the best 

tuning results.  

 

5.3.1 Local Filter Angle Estimation  

Direct integral, high pass integral, Complementary Filter and Kalman Filter were first evaluated 

when the drone is at static. The following figure illustrates the pitch angle output of each method. 

Pitch angle was chosen because it drifts more than roll and yaw, such that the comparisons are 

more obvious.  

 

Figure 5.9 Comparisons of Local Filters at Static 

From the figure it’s clearly seen that high-pass rate gyro has successfully reduced the drift, 

however, not as well as the Kalman Filter and Complementary Filter. The accelerometer helps 

corrects the drift so well such that even no drift is seen over time. 

 

To further evaluate each filter’s performance the drone was made to execute balancing for the 

first 4.5 seconds, and follow 15 ̊ roll angle reference afterwards. Roll angle was chosen because it 

has less drift than pitch and yaw, such that the integral gives the best “true angle” estimation in 

short time run, since the true angle is very difficult to be measured during a free run. Figure 

below compares the roll angle estimated by each method. 
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Figure 5.10 Comparison of Local Filters at Roll Reference 15 ̊ following 

The high pass filter, Kalman Filter and Complementary Filter gave very close estimation of angle 

during the free run at the first the four seconds, when the direct gyro integral was also close. 

However, once the drone was subject to transient process, the filters behaved quite differently. 

While the high pass filter still tracked the gyro integral from 4.5 [s] to 5[s], the Kalman Filter and 

Complementary Filter tended to give 5 ̊ to 8  ̊less estimation of the gyro integral, which could no 

way be because of the drift in such a short time with so fast response. However, after 5 [s] three 

filters tended to get close with steady state response while the gyro integral became alone.  

 

During the experiments we did observe a large angle in transient process and an obvious angle 

reduction while the drone had reached steady-state. The reduction was not expected because of 

the active controller, but not nonsense since resistance torque generated by air viscosity could be 

very large at high velocity. Unfortunately there was no other source that we could utilize to 

measure the true angle, however we believe the high pass gyro reading gave the best angle 

estimation from 4.5[s] to 5.5[s] compared to the direct integral and the other two filters. The 

decision was made also by studying the accelerometer data during the period, shown in the 

following figure. 

 

Figure 5.11 (cont. on next page) 
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Figure 5.11 Noisy Accelerometer Output 

As we can see the accelerometer data was very noisy along the way, even though 𝑎𝑦 and 𝑎𝑧 

showed the trend of going up and down, respectively, after 4.5[s]. Besides, during the transient 

process from 4.5[s] to 5 [s], neither of the accelerometers showed significant changes. The angle 

estimated from accelerometer at this period would be very close to 0 ̊ as before, while the true 

angle had a prompt rise from 0 ̊ to 17 ̊. This is the reason why the roll angle estimated by Kalman 

Filter and Complementary Filter had a significant drop from 4.7[s] to 5[s]. However during the 

steady state, the angles output from Kalman Filter and Complementary Filter had the trend of 

going up, which matched the trend of the accelerometers.  

 

Because of the room limit of the lab, roll and pitch angle references will change very frequently 

during global position tracking. Thus, the transient response would dominate steady state, which 

had led us to use the high-pass gyro integration method to estimate angle.  

 

5.3.2 Local Reference Following  

With the high pass filter and linear regression, all four channel’s local references following 

experiments were conducted. The drone was first made to follow several height references. Then 

after reaching a specific height the drone was made to follow roll, pitch and yaw angle references. 

The following figures illustrate the experimental setups and results. 

  
Figure 5.12 (cont. on next page) 
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Figure 5.12 (cont. on next page) 
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Figure Set 5.12 Experiments Setup and Results of Local Reference Following 

These results proved the local controllers and filters to be very successful. The drone followed all 

references very well in the transient process. The pitch and roll references following did have 

some angle deficit (around 3 ̊ to 4 ̊) at steady state which was not compensated by the controller, 

due to large air resistance torque at high speed. However, this is not very critical to global 

position tracking application.  

 

5.3.3 Global Position Tracking 

The first stage of global position tracking was from point to point. It was used to evaluate the 

global controller and compare the designs of global filters. The drone was made to fly to a 

specific height with all zero angle references until steady state. Then it was made to go from one 

point to another point, with the same height reference and zero yaw reference. Some of the 

experimental figures are listed below. 

  

Figure 5.13 Experiment Setup for Point to Point Global Position Tracking 

The experiment was conducted by the global low pass filters, however Complementary Filter and 

Kalman Filter was also running as comparison. The following figure displays the positions 

feedback from Kinect, the low pass filter, the Complementary Filter and Kalman Filter.  
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    Figure 5.14 Point to Point Global Position Tracking Results 

Even though the output positions of Complementary Filter and Kalman Filter were smoother, and 

showed the trend of position following, they did not correctly present the real location of the 

drone. This is not unexpected due to the way of calculating acceleration. Recall the way of 

calculating global X acceleration by  

𝑎𝑋 = 𝑔𝜃 + 𝑎𝑥 

The pitch angle estimated from high pass gyro integration already has some error; the 

combination of it with the noisy accelerometer simply makes the estimation much worse. Take a 

look at the global X and Y acceleration 

 

 

Figure5.15 Noisy Acceleration Estimation 
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They are simply too noisy to show any trends. Integration and double integration of such a noisy 

signal will cause huge drift on velocities and positions, which are not possible for correction in a 

short time. However, if the accelerometer data were not included, the positions predicted by 

Kalman Filter and Complementary Filter had a lot of overshoot that worsen the performance. 

 

Thus, Kalman Filter and Complementary Filter are abandoned in global position control. However, 

if the acceleration signal could be estimated more accurately, or if there are any other accurate 

signals than can be used to estimate position, Kalman Filter and Complementary Filter will 

generated provide a more accurate and robust signals than the low pass filter.  

 

Once the filter was selected, the drone was made to follow a more complicated geometry. The 

following figure shows the reference circle and the drone’s path. The drone started at point 

(3.2,2,5) where the reference circle intersects with Kinect feedback. 

 

Figure 5.16 Circle Tracking Results 

Considering that drone’s hull diameter is 0.50[m], and the Kinect often focuses on different parts 

of the drone, the circle following is precise within 10%. 

 

5.4 Model and Experiments Comparison 

The preliminary controllers and filters in the model were updated with the ones tuned from 

experiments. Then both local and global responses from the simulation were compared to those 

from experiments. 

 

5.4.1 Local References Following 

Figures below illustrate the comparison of simulation and experiments with different local control 

targets references. The simulation results are very close to those of the experiments, especially in 
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transient process. However, since the model does not consider air resistance or other disturbance 

in a real fly, simulation tends to be off experiments at steady state. 

 

 

 

 

Figure Set 5.17 Comparisons of Simulation and Experiment Results at Local Reference Following 
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5.4.2 Global Position Tracking  

Figure below illustrates the comparison between simulated and real positions from point to point. 

The simulation is a good estimation of the real system, however not perfect. The real system 

tends to lag the simulation, which is similar to the local responses where real pitch and roll angles 

deficits the ones from simulation. One of the possible reasons is that in a real run, air resistance 

has prevented the drone going as fast as the model, where aerodynamic forces are not simulated. 

Another possible reason is the Kinect model is oversimplified, such that it doesn’t truly represent 

the Kinect’s reading noise. The real Kinect tends to focus on different parts of the drone’s body, 

while the model only assumes it has a fixed bias with some noise. 

 

Fig 5.18 Comparison of Simulation and Experiments Results at Point to Point 

 

The figure below compares circle tracking between Simulation and Experiments. The simulation 

is again a very good estimation of real system.  

 
Figure 5.19 Comparison of Simulation and Experiments Results at Circle Tracking 
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Chapter 6 Animation 

Animation visualizes movement by rapid displaying a sequence of the motion images. In our 

application it produces an intuitive virtual effect on the drone’s dynamics, by printing the 

AR.Drone’s 3D picture according to the translational and rotational vectors obtained from 

simulation. The animation could be used to compare with the experiment videos directly to 

evaluate the modeling.  

 

6.1 Animation Tool 

Irrlicht Engine is an open source real time 3D engine with high rendering performance written in 

C++. It is selected as the animation tool because it is free, it can interface with our model easily 

since they are both written in C/C++, and it has a lot of example tutorials within its package. 

Besides, it is very widely used with a lot of available examples and supports online. Its good 

rendering effect can be seen at the following figures 

   

     Figure 6.1 Rendering Effect of Irrlicht Engine 

Here lists some of its features that were very helpful while we developed our animation. Please 

refer to its official website [21] for more information. 

 Real-time 3D rendering using Direct3D and OpenGL  

 Runs on Windows, Linux, OSX and others 

 Well documented API with lots of examples and tutorials 

 Direct import of mesh files such as Maya(.obj) 

 Direct import of textures such as Windows Bitmap(.bmp) and JPEG(.jpg) 

 Powerful library with a lot of useful functions   

 

6.2 Animation Procedure 

The nominal steps to create an animation by Irrlicht Engine is to initialize an Irrlicht environment, 

upload the personalized mesh and texture files, and execute a run that moves the mesh pictures. 

To interface with Drone’s modeling, the run of Engine shall be in parallel with run of simulation, 

such that the movement of the mesh pictures is synchronized with simulated results.  

 

6.2.1 Environment Initialization 
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Following the nominal procedures of initialization of Irrlicht Engine, we put everything in a 

function called “IrrInit()” which outputs the initialized Irrlicht device. The pseudo code is 

concluded as below. 

 

 

6.2.2 Personalized mesh and texture files 

The animation gives the best visualization effect with the AR.Drone’s body. The first stage to 

create such a body is to draw the AR.Drone in modern CAD software. Thanks to Weijia Luo, who 

created a very realistic AR.Drone assembly in ProE. Views of the CAD model are shown in the 

figure below. 

  

Figure 6.2 Personalized CAD Drawings of the AR.Drone 

The CAD model was then outputted as a mesh file by ProE along with its textures. Autodesk Maya 

was then used to modify the textures and colors such that they are close to the real AR.Drone. 

Following the same technique we could also personalize the backgrounds to be similar to our lab.  

The mesh files and textures are then uploaded to Irrlicht Engine by the scene manager. The 

following figures are from the Irrlicht Engine where the AR.Drone and the lab’s floor have been 

updated.  
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Figure 6.3 Personalized AR.Drone Scene in Irrlicht Engine 

6.2.3 Movement of the mesh pictures 

The movements are achieved by frequently drawing the scene and updating the mesh’s positions. 

One cycle of the drawing and updating could be executed by function IrrPrint() with the following 

pseudo code. 

 

 

6.2.4 Interface with model 

A C++ file, Irr.cpp, was created to combine the two functions. Then by linking to Irr.cpp, the 

functions could be used by the main.cpp file to interface with the dynamics. Note all the other C 

files have to be formatted to C++ to be compiled. The following pseudo code is added to 

main.cpp.  
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Chapter 7 Conclusion 

This paper mainly contains the kinemics and dynamics, modeling, identification, controller and 

filter design, simulation, experiments and animation on an electric-motor drive small-scale 

quadrotor --- AR.Drone. It also suggests a model, conducts identification of a motion sensor 

camera Kinect. The camera’s model along with AR.Drone’s on board sensor models improved the 

fidelity of simulation.  

 

While the kinemics, dynamics and modeling of AR.Drone is similar to that of other quadrotors, 

the identification utilized model CAD software to identify the moment of inertia matrix of the 

drone, and applied engineering reverse methodology to determine the aerodynamic thrust and 

drag. Modeling of AR.Drone’s on board sensors such as the rate gyro and altimeter was also very 

detailed with thorough identifications. 

 

While the controllers’ design follows common PID algorithm, this paper discusses and compares 

several sophisticated designs of the filters, which is very important to conduct a successful and 

accurate run during experiments, especially with those low-cost and low-precision sensors and 

complicated aerodynamics during fly.      

 

The simulation was conducted in two stages in two different simulators. A first stage MATLAB 

simulation was designed with perfect sensors and no filters, to only test the controllers and 

obtain a preliminary set of gains. The second stage C/C++ simulation also includes the sensor 

models and filter designs to enhance the fidelity. Animation is also included to visualize the 

model. The simulation-tuned controllers and filters’ gains were used as a preliminary start for 

experiments. 

 

Numbers of experiments have been conducted to test the controllers and compare the filters. 

The best filters were selected based on the flying performance. The controller gains were further 

tuned to achieve the best flying. Then experiment results were compared to those form 

simulation with the same filters and controllers, to evaluate the modeling and identification. The 

simulation correlated well with experiments at both local references following and global position 

tracking. The model and identification was proved to be successful.  

 

A lot of improvement could have been made to the modeling, control design and experiments. 

The model could have been more accurately identified, including the air resistance force and 

torque. The global position tracking controller could have directly commanded the motors, 

instead of a outer loop to command angle, to improve the global tracking performance. Local 

Kalman Filter and Complementary Filter could have been used not based on accelerometers 

readings, but on the net angular acceleration from input torque and air resistance torque. The 

acceleration estimation method of global Kalman Filter and Complementary Filter could have 

been improved by combining with air resistance force instead of accelerometer reading. The local 

angles and global positions could have been exactly measured by precise motion camera sensors 

such as the Vicon. These ideas either have been tried but failed due to inaccurate identification, 

or have not been tried due to time constraint. They are listed as suggested future work.  
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Appendix A  Rotational and Translational Matrix 

A.1 Rotational Matrix 

The rotational matrix that maps a vector from earth frame to body-fixed fame is a multiplication 

of three basic rotation matrices.   

 

1. The yaw rotation about the ZE axis transforms the earth frame to Quadrotor 1 frame by 

𝑅𝐸
1 = [

𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

]     (A.1) 

 

Figure A.1 

 

2. The pitch rotation about the Y2 axis transforms the Quadrotor 1 frame to Quadrotor 2 frame 

by 

                 𝑅1
2 = [

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
]           (A.2) 

   

Figure A.2 

 

3. The roll rotation about the X1 axis transforms the Quadrotor 2 frame to fixed-body frame by 

𝑅2
𝐵 = [

1 0 0
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

]     (A.3) 
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Figure A.3 

 

Then the rotational matrix 𝑅𝜃 is calculated by 

𝑅𝜃 = 𝑅2
𝐵 ∙ 𝑅1

2 ∙ 𝑅𝐸
1  = [

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙  𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃  𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

]  

(A.4) 

 

A.2 Translational Matrix 

 

Figure A.4 

The translational matrix can be found by resolving earth frame angular velocity to body-fixed 

frame angular velocity 

[
𝑝
𝑞
𝑟
] = [

�̇�
0
0

] + 𝑅2
𝐵 ∙ [

0
�̇�
0
] + 𝑅2

𝐵 ∙ 𝑅1
2 ∙ [

0
0
�̇�
]    (A.5) 

                                        = [

1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

] [

�̇�

�̇�
�̇�

] = 𝑇𝜃
−1 [

�̇�

�̇�
�̇�

] 

Inverting we have 

 �̇�𝐸 = [
�̇�

�̇�
�̇�

] = [

1 sin(𝜙) tan (𝜃) cos (𝜙)tan (𝜃)
0 cos (𝜙) −sin (𝜙)
0 sin (𝜙)sec (𝜃) cos (𝜙)sec (𝜃)

] [
𝑝
𝑞
𝑟
]    (A.6) 
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Appendix B  MATLAB Block Details 

 
Detail Block 1. Throttle PID Control 

 

 

Detail Block 2. Motor Mixing 



62 
 

 

Detail Block 3. Force and Torque Calculation 

 

 
Detail Block 4. Dynamics embedded MATLAB function 

 

 

 

 

 

 

 



63 
 

Appendix C  Example Source Code 

 
Detail Source Code 1. High level function ConDyn() of ConDyn.c 

 

 
Detail Source Code 2. Function MotorMixing() in ConDyn.c 
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Detail Source Code 3. Function MotorMixing() in ConDyn.c 

 

 

Detail Source Code 4. Function Gyro() in SenDyn.c 
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Detail Source Code 5. Function LP() in FilDyn.c 
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