
Doctoral Committee:

Professor Gerald DeJong, Chair
Professor Dan Roth
Assistant Professor Derek Hoiem
Assistant Professor Paris Smaragdis
Doctor Qiang Sun, Alexa Internet, Inc.

Urbana, Illinois

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

BY

LI-LUN WANG

USE OF PRIOR KNOWLEDGE IN CLASSIFICATION OF SIMILAR AND
STRUCTURED OBJECTS

Abstract

Statistical machine learning has achieved great success in many fields in

the last few decades. However, there remain classification problems that

computers still struggle to match human performance. Many such prob-

lems share the same properties—large within class variability and complex

structure in the examples, which is often true for real world objects. This

does not mean lack of information for classification in the examples. On

the contrary, there is still a clear pattern in the examples, but hidden be-

hind a many-way covariance structure such that useful information is too

dilute for conventional statistical machine learners to pick up. However, if

we can exploit the structural nature of the objects and concentrate informa-

tion about the classification, the problem can become much easier. In this

dissertation we propose a framework using prior knowledge about modeling

the structures in the examples to concentrate information for classification.

The framework is instantiated to the task of classifying pairs of similar of-

fline handwritten Chinese characters. We empirically demonstrate that our

proposed framework indeed concentrates useful information for classification

and makes the classification problem easier for statistical learning. Our ap-

ii

proach advances the state of the art both in offline handwritten character

recognition and in machine learning.

iii

Table of Contents

1 Introduction . 1

1.1 Challenging Classification Problems 1

1.2 Exploiting the Structure in Objects 2

1.3 Classifying Similar Offline Handwritten Chinese Characters . 8

1.4 A Full Offline Handwritten Chinese Character Recognition

System . 16

1.5 Related Work . 17

2 Knowledge-guided Classification 19

2.1 Modeling Offline Chinese Characters 19

2.2 Templates and Affine Transformations 23

2.3 Gaussian-smoothed Matching of Character Images 27

2.4 Gaussian-smoothed Matching of Sub-structures 35

2.5 Initial Point for the Optimization 49

2.6 Stroke Correspondences and Match Sequences 56

2.7 Target Region and Gradient Features 67

2.8 SVM Model Selection . 77

3 Theoretical Framework . 84

iv

3.1 Problem Definition . 84

3.2 Features . 89

3.3 Useful Information for Estimating the Parameters 91

3.4 Quality of Features . 94

4 Empirical Results . 97

4.1 Overview . 97

4.2 Multiclass LDA Baseline . 101

4.3 Human Baseline . 101

4.4 Support Vector Machine Baseline 105

4.5 Experiment 1: Does prior knowledge help where predicted? . 105

4.6 Experiment 2: Does our approach concentrate classification

information? . 111

4.7 Experiment 3: What is the value of the prior knowledge? . . 119

5 A Chinese Character Recognition System 131

5.1 A Look at the Confusions . 131

5.2 A Full Offline Handwritten Chinese Character Recognition

System . 133

5.3 Estimated Improvement . 135

6 Conclusions and Future Work 136

6.1 Conclusions . 136

6.2 Future Work . 139

Bibliography . 143

v

Chapter 1

Introduction

1.1 Challenging Classification Problems

Classification using statistical machine learning has achieved great success in

many fields in the last few decades. However, there remain problems that the

computer still struggles to match the human’s performance. One example

of such problems is pedestrian detection. One of the best approaches is only

able to achieve a 60% recall at 1 false positive per image for unoccluded

pedestrians over 80 pixels high [7], or 80% recall at 1 false positive per

image on the dataset it is trained on [5]. Another example of classification

problem that is difficult for computers is the classification between similar

objects, such as distinguishing images of ketches vs. schooners [16].

Consider, as a more detailed example, the problem of classifying cars of

different brands in a clear and unoccluded image. This is different from the

extensively studied problem of recognizing cars in images. In the problem of

recognizing cars in images, we collect evidence of whether a car is present in

1

the image, e.g. by classifying patches of the image, and decide whether the

image contains a car. In the problem of classifying cars of different brands,

however, we know there is a car in the image. We want to, through looking

at the various details of the car, decide the brand of the car.

Because cars share very similar structures, this is a much harder problem.

Different images of the cars can show a lot of variability due to the different

backgrounds of the images, the slight change in camera angles, the lighting,

different dents and dings through out the years, dirtiness of the cars, etc.

The difference in appearance between different brands of cars is very much

diluted by this variability. However, cars are highly structured objects. If

we are able to make use of their structures and locate the right parts of the

cars, say the hood ornament or the logo, the relatively subtle difference at

this specific part of the image makes the classification almost trivial.

These difficult classification problems share the same property—large

within-class variability and complex structure, which is often true for real

world objects. The discriminating information in the examples for class

labels is too dilute for the statistical machine learner to pick up. However, if

we can exploit the structure of the object and concentrate the information

by focusing on the right part of the object, the classification can be made

much easier.

1.2 Exploiting the Structure in Objects

We propose a way of exploiting structures in objects to benefit classifica-

tion through the use of prior domain knowledge on modeling the structure,

2

along with a few structurally labeled training examples. These structurally

labeled examples construct and calibrate the structural models, and help in

concentrating information for classification.

The structural models are a sequence of generative models, each of which

models a sub-structure of the object. Structures in the objects are repre-

sented as variables in the structural models, which we call structural fea-

tures. We evaluate the structural features by fitting the structural models

to the objects.

After we find the structures in the object by evaluating the structural

features, the target feature model designates part of the object according

to the structures that bears the most information for classification, and

uses it to generate discriminative features. These discriminative features

contain concentrated information for classification, resulting in a much easier

classification problem for the classifier.

Prior domain knowledge specifies how the structural models and the

target feature model are constructed in terms of basic constituents of the

objects, as well as how the basic constituents are modeled. It also spec-

ifies how information of an estimated sub-structure in the object can be

subtracted from its representation. The structurally labeled examples are

examples with their basic constituents labeled.

The structural model can be regarded as a learning bias automatically

constructed for the given task. Figure 1.1 outlines the learning of this ap-

proach. Compare to the conventional machine learning in Figure 1.2. The

conventional machine learning relies on having a static learning bias that

is just right for the task, a flexible enough statistical learner, and a very

3

Small set of

structurally labeled

training examples

Larger set of

class-labeled

training examples

Prior

domain

knowledge

Model

construction

Statistical

learner
Classifier

Figure 1.1: Simplified outline of the learning by exploiting the structures in
objects. The output of model construction serves as a very strong learning
bias to the statistical learner. Compare to the conventional machine learning
in Figure 1.2.

Very large set

of class-labeled

training examples

Weak

learning

bias

Statistical

learner
Classifier

Figure 1.2: Outline of the conventional machine learning.

large set of class-labeled training examples. On the other hand, the output

of the model construction in our approach serves as a very strong learn-

ing bias, which may not be as high quality as human-supplied bias, but is

automatically generated to fit all problems in the same domain.

Figure 1.3a shows the detailed block diagram for doing classification us-

ing our proposed approach. Given an unknown test example, we apply the

structural models and evaluate the structural features in the test example.

4

S
tr
u
ct
u
ra
l

M
o
d
el
s

T
a
rg
et

F
ea
tu
re

M
o
d
el

S
ta
ti
st
ic
a
l

C
la
ss
ifi
er

T
es
t

E
x
a
m
p
le

E
v
a
lu
a
ti
o
n
o
f

S
tr
u
ct
u
ra
l

F
ea
tu
re
s

S
tr
u
ct
u
ra
l

F
ea
tu
re
s

+
D
is
cr
im

in
a
ti
v
e

F
ea
tu
re
s

+
C
la
ss
ifi
ca
ti
o
n

(a
)
B
lo
ck

d
ia
g
ra
m

fo
r
cl
a
ss
ifi
ca
ti
o
n

S
tr
u
ct
u
ra
l

M
o
d
el

1

S
tr
u
ct
u
ra
l

M
o
d
el

2
·
·
·

S
tr
u
ct
u
ra
l

M
o
d
el

m

+
S
tr
u
ct
u
ra
l

F
ea
tu
re

1
+

S
tr
u
ct
u
ra
l

F
ea
tu
re

2
·
·
·

+
S
tr
u
ct
u
ra
l

F
ea
tu
re

m

T
es
t

E
x
a
m
p
le

(b
)
B
lo
ck

d
ia
g
ra
m

fo
r
ev
a
lu
a
ti
n
g
st
ru
ct
u
ra
l
fe
a
tu
re
s

Figure 1.3: Block diagram for exploiting structures in examples to benefit
the classification of similar objects. Double-boxed items in Figure 1.3a are
components that need to be learned. Figure 1.3b details the evaluation of
structural features in Figure 1.3a.

5

With the evaluated structural features, we then generate discriminative fea-

tures with high concentration of information about the classification. These

discriminative features are then fed into a statistical classifier for to decide

the class label.

Evaluation of structural features in this process is in the form of a series

of model fittings, and is shown in Figure 1.3b. With a generative model of

part of the structure, we find the set of parameters for the model that best

fits the test example and parameters of previous model fittings.

In Figure 1.3, the structural model, the target feature model, and the

statistical classifier are components that need to be learned in our approach.

Figure 1.4 shows the detailed block diagram for learning these models. Given

the prior domain knowledge about modeling the structures, along with the

structurally labeled training examples, we infer the structural correspon-

dences between the two classes of objects. Structures that do not have cor-

respondences in the other class are used in constructing target features. We

then hierarchically decompose the structures, and construct structural mod-

els for evaluating structural features. Given the set of class-labeled training

examples, we use the learned structural models to evaluate their structural

features, and use the target feature model to generate discriminative fea-

tures. The statistical machine learner is then applied to the discriminative

features to learn the statistical classifier.

We choose the task of classifying similar offline handwritten Chinese

characters as our illustrative domain. Note that when applying our approach

to offline handwritten Chinese characters, the same domain knowledge about

modeling the Chinese characters is used across classification problems of

6

T
a
rg
et

F
ea
tu
re

M
o
d
el

P
ri
o
r

D
o
m
a
in

K
n
o
w
le
d
g
e

+
S
tr
u
ct
u
ra
l

C
o
rr
es
p
o
n
d
en
ce

H
ie
ra
rc
h
ic
a
l

D
ec
o
m
p
o
si
ti
o
n

+
S
tr
u
ct
u
ra
l

M
o
d
el
s

E
v
a
lu
a
ti
o
n
o
f

S
tr
u
ct
u
ra
l

F
ea
tu
re
s

S
tr
u
ct
u
ra
l

F
ea
tu
re
s

+

S
tr
u
ct
u
ra
ll
y

L
a
b
el
ed

T
ra
in
in
g

E
x
a
m
p
le
s

C
la
ss

L
a
b
el
ed

T
ra
in
in
g

E
x
a
m
p
le
s

D
is
cr
im

in
a
ti
v
e

F
ea
tu
re
s

+
S
ta
ti
st
ic
a
l

C
la
ss
ifi
er

S
ta
ti
st
ic
a
l

M
a
ch
in
e

L
ea
rn
er

Figure 1.4: Block diagram for learning the models in Figure 1.3. Double-
boxed items are the learned components.

7

different pairs of characters of varying difficulty. The resulting structural

models are constructed using structurally labeled training examples for the

specific problem and the same domain knowledge.

1.3 Classifying Similar Offline Handwritten Chi-

nese Characters

In the following chapters, we instantiate the framework described in Sec-

tion 1.2 to the problem of classifying pairs of similar offline handwritten

Chinese characters.

Offline handwritten Chinese character recognition is an extensively stud-

ied problem. Over the years the most mature and popular set of features

for use in Chinese character recognition remains the gradient-based features

[14] [13] [20] [6]. Although overall recognition accuracies of over 99% have

been reported on certain data sets [13] [32], this is largely due to the fact

that most Chinese characters look very different from each other. There are

still pairs of similar Chinese characters that the best recognition systems

perform significantly worse than humans. We are interested in classifying

such pairs of characters using our approach. Figure 1.5 lists some pairs

of similar handwritten Chinese characters that existing recognition systems

have trouble on.

Figure 1.6 illustrates how we concentrate information for classification

in a pair of similar Chinese characters. Crucial information for classification

in this pair is in the middle box radical. In order to find structures in

the character image, we first construct templates of parts of the character

8

(a) (b)

(c) (d)

Figure 1.5: Examples of similar pairs of handwritten Chinese character im-
ages that existing recognition systems have trouble on.

Figure 1.6: Concentrating information for classification through the use of
a sequence of template matching operations. Structures in the character
images are found by matching a sequence of affine-transformed templates to
the image. The sequence of match operations allows for both convexity and
accuracy in estimating the structures.

9

consisting of strokes. We then apply affine transformations and match the

templates to the character image. The affine transformation parameters are

our structural features. After we find the structures, or stroke locations, in

the character image, we extract a region around the middle box from the

image, and generate discriminative features from the extracted region. This

target region contains concentrated information for classification. Note that

the whole character template at the beginning of the sequence results in

the least accurate overall match of the strokes, and each subsequent smaller

template refines the match of a sub-structure. While larger templates results

in less accurate matches, the objective function for matching the template

is more convex with larger templates. On the other hand, while smaller

templates can produce more accurate template matches, there are more local

optima in the objective function. Using a sequence of match operations as

in Figure 1.6 we achieve both convexity and accuracy of the match. This

sequence of match operations are our structural models.

Figure 1.7 shows a target learning curve that we want to achieve using

our approach. This learning curve is for the pair 季 vs. 李, which is one of

the pairs that our approach does relatively well on. The LDA baseline is the

accuracy of classifying examples from this pair of classes using the multiclass

LDA classifier training on all classes of characters. The learning curve for our

approach is steeper than that of the SVM for this pair, and achieves a better

accuracy than all baseline accuracies except the human baseline. However,

we do not think this trend will always continue. Because of the strong bias

in our approach, with enough training examples, the conventional purely

statistical approach will eventually surpass the accuracy of our approach.

10

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

class labeled training examples

Our approach
RBF SVM

Human baseline
Multiclass LDA baseline

Figure 1.7: The goal learning curve that we want to achieve.

Several components need to be implemented to instantiate our frame-

work to the problem of classifying similar offline handwritten Chinese char-

acters:

• Prior knowledge for modeling

We model a Chinese character as a set of simple long and thin rect-

angular strokes. Figure 1.8 lists some common stroke types and the

use of long rectangles to model them. Each stroke is parameterized

using the coordinates of its two end points and its width. Modeling of

Chinese characters is detailed in Section 2.1.1.

• Structural models

Structures in the character are specified using joint configurations of

11

Straight strokes Slightly curved strokes Composite strokes

(a) Actual strokes in images of Chinese characters
Straight strokes Slightly curved strokes Composite strokes

(b) Modeled strokes using long and thin rectangles

Figure 1.8: Use of long and thin rectangles to model strokes in Chinese
characters.

(a) (b) (c) (d)

Figure 1.9: Character templates for pairs of characters in Figure 1.5. Strokes
specific to each character class are rendered with half intensity.

sets of strokes. Sets of highly correlated strokes form templates of

portions of the character. These templates are our structural mod-

els. Figure 1.9 shows the whole character templates for the pairs of

characters in Figure 1.5, and Figure 1.10 shows examples of templates

for some sub-structures of the pair of characters in Figure 1.5a. Note

that our approach is not limited to using radicals of characters as the

templates.

We use the affine transformation parameters of a template as a reduced

representation of the structure. Figure 1.11 shows examples of affine

transformed templates. This is detailed in Section 2.2.

12

(a) (b) (c) (d)

Figure 1.10: Examples of templates of sub-structures for the character in
Figure 1.9a.

Construction of the series of structural models to use in our approach

is described in Section 2.6.2 and Section 2.6.3.

• Evaluation of structural features

Evaluation of the structural features is done by matching the templates

to the character image, and is described in Section 2.3 and Section 2.4.

Figure 1.12 shows the matching of the whole character template to

the character image and the matching of a radical template to the

character image. We use a gradient-based optimization to match the

templates. Section 2.5 discusses in detail the importance of initializing

the optimization to the right place.

• Target feature model

Strokes that do not have correspondences in the other class are treated

as target strokes. Section 2.6.1 talks about how stroke correspondences

are found.

• Discriminative features

We use gradient-based features around the target region as our dis-

13

M =

(
sx 0
0 sy

)
(a) Scaling

M =

(
cos θ − sin θ
sin θ cos θ

)
(b) Rotation

M =

(
1 k1
k2 1

)
(c) Shearing

Figure 1.11: Affine transformed templates and their transformation matri-
ces.

14

(a) Matching the whole
character

(b) Matching the middle
radical

Figure 1.12: Matching of templates to a character image.

(a) Original character im-
age

(b) Target region

Figure 1.13: The target region for a character image.

criminative features for the statistical classifier. Section 2.7 details

how the target region is prepared and how the gradient features are

generated. Figure 1.13 shows the target region for a character image.

• Statistical machine learner

We use the support vector machine with the radial basis function ker-

nel as our statistical machine learner.

15

Start
Multiclass LDA

Classification

Is

classification

in confusion

set?

Use the LDA

Classification
End

Can

SVM improve

the classification

significantly?

Use the SVM

Classification
End

Use Our

Approach
End

No

Yes

Yes

No

Figure 1.14: A full Chinese character recognition system that incorporates
our approach and a multiclass Chinese character recognition system.

1.4 A Full Offline Handwritten Chinese Character

Recognition System

Although we focus on the task of pairwise classification of difficult Chinese

characters, it is easy to integrate our approach into a full Chinese character

recognition system.

Figure 1.14 outlines this full Chinese character recognition system. We

describe this system in detail in Chapter 5.

Given any multiclass Chinese character recognition system such as the

multiclass linear discriminant-based system in [14] and a training data set,

we use cross-validation to find the confusion set that the system performs

the worst on. The confusion set will be small, as most Chinese characters

look very different from each other. Among these most confusing characters,

16

the recognition accuracies of some characters can be significantly improved

by using a support vector machine. We identify these characters as well.

During testing, we first apply the multiclass Chinese character recogni-

tion system on the test example. If the classification is not among one of the

most confusing characters, the output of the multiclass recognition system

is used as the classification. If the classification is among those that can

be significantly improved by using the SVM, we use the SVM classification.

Otherwise, we apply our approach on the test example.

1.5 Related Work

Chinese characters are made of radicals, and it is natural to recognize the

character by looking for its radicals. Ni et al. [21] proposed a way of extract-

ing radicals from Chinese characters. However, they fall short of recognizing

the character after extracting the radicals. Our approach also differs from

theirs in that we are not restricted to using pre-defined radicals of Chinese

characters, but we are free to use any set of highly correlated strokes in our

system.

There have been other approaches in classifying structured objects by

finding its parts. Endres et al. [9] use shared body plans to learn to recognize

several related classes of objects. Felzenszwalb et al. [10] use mixtures of

multiscale deformable part models to recognize different objects in images.

Karlinsky et al. [12] propose the chains model that detects specific target

parts of the object by creating and evaluating feature chains between known

reference points on the target and the target parts. Our approach differs

17

from these approaches in that we focus on the important part of the object

based on the estimated structures in the object to distinguish extremely

similar objects.

Duan et al. [8] also deal with the classification problem of closely related,

or structurally similar, categories of objects by finding discriminative local

features. However, they do not build models to estimate the structures.

Instead of making use of the structure of the object to find the discriminative

region, they rely on hierarchical segmentation to produce regions at different

scales, and learn a latent CRF to choose a region for each attribute in each

image. Classification and feature detection become inference problems on

the same CRF.

Besides computer vision applications, structure prediction is also useful

in many other fields of machine learning. Roth et al. [23, 3] introduced a

general framework for constrained optimization, the constrained conditional

models, that supports incorporating declarative knowledge into statistical

models. While there is much similarity in incorporating prior knowledge

into statistical models, instead of predicting the structured output, we focus

on using the predicted structure to concentrate information that ultimately

helps classification.

18

Chapter 2

Knowledge-guided

Classification

2.1 Modeling Offline Chinese Characters

2.1.1 Modeling the strokes

A Chinese character is composed of one or more radicals arranged in a par-

ticular way. These radicals are portions of characters shared among different

characters. Figure 2.1 shows some examples of offline Chinese character im-

ages, as well as some cases of shared radicals. The composition of radicals

in Chinese characters forms a hierarchical structure, providing us a natural

way to divide the image of a character into sub-parts. Figure 2.2 shows an

example of a more complex character and one way of decomposing it into

sub-parts. Note that this is merely one of the many possible ways of decom-

posing the character. There are an exponential number of possible ways of

19

(a) (b)

(c) (d)

Figure 2.1: Examples of offline Chinese character images. In Figure 2.1a,
the top radical is shared between the two classes. In Figure 2.1c, the bottom
radical is shared between the two classes. The top radical of the top class
in Figure 2.1c and the bottom radical in Figure 2.1d are also shared.

decomposing a character, the same as the number of possible tree structures

given the strokes as leaves.

The radicals in Chinese characters are made of strokes. As can be seen

in Figure 2.1, the actual appearance of the strokes in a character image is

almost never perfect lines, and varies according to the writer, the writing

instrument, and the discretization of the image. The same character made

by different writers can look very different, while similar characters made

by the same writer can look very similar.

There are a few common types of strokes in Chinese characters. Most

strokes are straight lines of various lengths and orientations. Other stroke

types include slightly curved lines and bent lines. Figure 2.3 lists some

common types of strokes.

20

Figure 2.2: One way of hierarchically decomposing a character.

Straight strokes Slightly curved strokes Composite strokes

(a) Actual strokes in images of Chinese characters
Straight strokes Slightly curved strokes Composite strokes

(b) Modeled strokes using long and thin rectangles

Figure 2.3: Examples of strokes of different types in Chinese characters.

21

Despite the noisy appearance of the strokes in Chinese characters, we

model them as simple long and thin rectangles, as shown in Figure 2.3b.

These long rectangles are parameterized using the coordinates of their two

end points, along with the width. The slightly curved strokes are treated as

straight strokes, and modeled as long rectangles as well. The bent stroke is

treated as a composite stroke with straight line segments joined at the end

points, and modeled as several long rectangles separately for each segment.

Each long rectangle is represented as a vector of 5 parameters:

Ψ = 〈x1, y1, x2, y2, w〉, (2.1)

where (x1, y1) and (x2, y2) are the coordinates of the two end points, and w

is the stroke width.

2.1.2 Labeling the strokes in training examples

Figure 2.4 shows some images of actual Chinese characters, along with their

rectangular approximations. Each example is normalized and re-registered

to a 100 × 100 image without changing the aspect ratio of the character.

We generate the structurally labeled training examples by marking the two

end points of the strokes. The stroke width is approximated by repeatedly

thinning the strokes until 80% of the stroke pixels in the image are accounted

for, and is fixed across all strokes within the same instance of the character.

Therefore, a character with l stroke segments is represented as a vector of

4l + 1 numbers, with 4 parameters representing the two end points of each

22

stroke, and one parameter shared across every stroke for their width:

Γ = 〈Ψ1,Ψ2, . . . ,Ψl〉 (2.2)

= 〈〈x1,1, y1,1, x2,1, y2,1, w〉, 〈x1,2, y1,2, x2,2, y2,2, w〉, . . . ,

〈x1,l, y1,l, x2,l, y2,l, w〉〉 (2.3)

= 〈x1,1, y1,1, x2,1, y2,1, x1,2, y1,2, x2,2, y2,2, . . . ,

x1,l, y1,l, x2,l, y2,l, w〉. (2.4)

2.2 Templates and Affine Transformations

2.2.1 Character templates

Given structurally labeled training examples of the two classes of characters

that we want to classify, we make a template character based on the stroke

parameters. For strokes common to both classes of characters, we take the

mean values of the stroke parameters from both classes. For strokes specific

to each class, we assume a multivariate normal distribution among the stroke

parameters, condition on the mean common stroke parameters, and take the

conditional mean of the stroke parameters specific to the class. The strokes

specific to each class are rendered with half intensity. Figure 2.5 shows the

character templates for characters classes in Figure 2.4. These templates

are used to find structures in unknown test examples.

23

(a) (b)

(c) (d)

Figure 2.4: Examples of characters with their strokes modeled using long
and thin rectangles.

24

(a) (b) (c) (d)

Figure 2.5: Character templates generated using stucturally labeled training
examples. Strokes specific to each character class are rendered with half
intensity.

2.2.2 Affine transformations on the templates

We find structures in character images by affine transforming characters

templates such as those in Figure 2.5 and matching them to unknown test

character images. The family of transformations we consider include trans-

lation, scaling, rotation, shearing, as well as any composition of them. An

affine transformation is represented as 6 parameters, with 4 parameters spec-

ifying the 2× 2 transformation matrix and 2 parameters for the translation

in the two directions:

A = 〈M, 〈tx, ty〉〉 (2.5)

=

〈 a b

c d

 , 〈tx, ty〉

〉
. (2.6)

Figure 2.6 shows some examples of transformed templates and their trans-

formation matrices.

25

M =

(
sx 0
0 sy

)
(a) Scaling

M =

(
cos θ − sin θ
sin θ cos θ

)
(b) Rotation

M =

(
1 k1
k2 1

)
(c) Shearing

Figure 2.6: Affine transformed templates and their transformation matrices.

26

2.2.3 Origin used in affine transformations

The choice of the origin used in the affine transformation is important in

our application. The origin of the transformation is typically fixed at the

upper-left corner of the image. This makes the gradient of some components

of the transformation less apparent when we use gradient-based optimiza-

tions to find the transformation that best matches the template to an image

(Figure 2.7a). Instead, we place the origin of the transformation at the cen-

ter of mass of the template (Figure 2.7b) so that the different components

of the transformation are more linearized.

2.3 Gaussian-smoothed Matching of Character Im-

ages

The affine transformed templates are used to find structures in the charac-

ter images. This is achieved by Gaussian-smoothing the template and the

character image, and doing a gradient-based optimization to find the affine

transformation on the Gaussian-smoothed template that best matches the

27

Scaling Translation

(a) Origin fixed at the upper-left corner

Scaling

(b) Origin placed at the center of mass

Figure 2.7: Placement of the origin in affine transformations and its effect.
In Figure 2.7a, when the origin is fixed at the upper-left corner, it requires
a scaling and a translation to shrink a template in place. When the origin
is placed at the center of mass as in Figure 2.7b, shrinking the template in
place only requires a scaling operation.

28

smoothed character image as follows:

A∗

= argmax
A

P (A|X) (2.7)

= argmax
A

P (X|A)P (A)

P (X)
(2.8)

= argmax
A

P (X|A)P (A) (2.9)

= argmax
A

P (X|A) (2.10)

= argmax
A

P (X|Transform(T,A)) (2.11)

= argmin
A
− logP (X|Transform(T,A)) (2.12)

= argmin
A
‖Smooth(Transform(T,A), σ)− Smooth(X,σ)‖2 , (2.13)

where X is the character image, T is the template image for the whole

character, Transform(T,A) transforms T using affine parameters A, and

Smooth(X,σ) applies a Gaussian filter with standard deviation σ to im-

age X. Equation (2.10) assumes that all transformations are equally likely.

P (X|Transform(T,A)) in Equation (2.11) is the conditional probability of

seeing the character image X assuming that the stroke pixels in X are gen-

erated by the underlying stroke configuration specified by the affine trans-

formed template Transform(T,A) with a Gaussian noise model, and the

objective function in Equation (2.13) is proportional to the negative log-

likelihood. We use an implementation of limited memory bound-constrained

BFGS algorithm [1, 33] for our gradient-based optimization.

After the optimization finishes, we can easily extract the approximate

29

configuration of each stroke in the transformed template:

Γ∗ = ExtractStrokes(Transform(T,A∗)). (2.14)

The Gaussian-smoothing serves as the error model for the appearance

matching. It assumes a spherical normal distribution for each stroke pixel in

the template image and the character image. That is, for each stroke pixel

appearing at (x0, y0) in the image, the actual location that generates that

stroke pixel is distributed according to the probability density function:

f(x, y) =
1

2πσ2
e−

1
2σ2 ((x−x0)2+(y−y0)2). (2.15)

Figure 2.8 shows a character template smoothed using Gaussian filters

of different standard deviations, and Figure 2.9 shows an actual character

image smoothed using Gaussian filters of different standard deviations. The

best match between the affine transformed template and the character image

is shown in Figure 2.10. In general, the less heavily the images are smoothed,

the more accurately the global minimum of Equation (2.13) will match each

individual stroke.

Although the global minimum of Equation (2.13) corresponds to an affine

transformation such that the transformed template more accurately matches

the stroke pixels in the character image, unfortunately Equation (2.13) is

not convex. A gradient-based optimization may not necessarily converge to

the global optimum. Furthermore, the optimization is more likely trapped

in an undesirable local optimum when insufficient amount of smoothing is

30

(a) σ = 1 (b) σ = 2 (c) σ = 4 (d) σ = 8

Figure 2.8: A character template smoothed with Gaussian filters of different
standard deviations.

(a) σ = 1 (b) σ = 2 (c) σ = 4 (d) σ = 8

Figure 2.9: An actual character image smoothed with Gaussian filters of
different standard deviations.

(a) σ = 1 (b) σ = 2 (c) σ = 4 (d) σ = 8

Figure 2.10: The best affine transformed character template that matches
the character image with different standard deviations for the Gaussian
smoothing used in the optimization in Equation (2.13). The best affine
transformed template matches the individual strokes more accurately with
less smoothing.

31

used. Figure 2.11 shows how the optimization converges to different local

optima when initialized at different places and how smoothing helps the

optimization to converge to the global optimum.

The amount of smoothing, or the standard deviation for the Gaussian

filtering σ, is chosen to balance the accuracy of the match and convergence

to the global optimum. Section 2.4.3 describes learning σ, as well as other

parameters used in matching templates, in detail.

Section 2.3.1 describes registration of the character image, which helps to

initialize the optimization to find the global optimum. Section 2.5 describes

initialization of the optimization in detail.

2.3.1 Registration of the character image

In order to place the initial template so that the optimization is more likely to

converge to the global optimum, as well as coming up with a better statistical

model for the stroke parameters used to predict the sub-structures as will

be discussed in Section 2.4, each example of the character is re-registered

in the image frame. This is done through a two-step template matching on

the character image as described in Algorithm 1. First, given the character

template T0, copies of T0 of various scales and aspect ratios are generated

as in Figure 2.6a. Then, for each scale and aspect ratio of the template, Ti,

the best global match T ∗
i to the character image X and its matching score

vi are found efficiently using the sum of squared difference criterion and

Fast Fourier Transform. Notice that this first stage matching only considers

a discretized set of scaling and translation. The best match among all T ∗
i

is then used as the initial template to do a more flexible matching with

32

Initial position σ = 1 σ = 2 σ = 4

Figure 2.11: Where the gradient-based optimization converges with different
amount of smoothing and different initial template position. With insuffi-
cient smoothing, the optimization has to be initialized very close to the
desired optimum in order to converge to it. With more heavily smoothing,
the optimization is more tolerant to the initial position, albeit less accurate
match.

33

Algorithm 1 Re-registering a character image X given character template
T0.

function Reregister(X,T0)
S ←MakeScaledCopies(T0)
for all Ti ∈ S do

T ∗
i , vi ← FftSsdBestMatch(X,Ti)

end for
i∗ ← argmini vi
T ∗ ← AffineMatch(X,T ∗

i)
b← BoundingBox(T ∗)
X∗ ← RegisterToBoundingBox(X, b)
return X∗

end function

full affine transformations on the character image using the same gradient

based algorithm as described in Section 2.3. Finally, the bounding box of the

affine-transformed template T ∗ that best matches X is used to re-register

the character image.

2.3.2 Estimating the stroke width

After the character image is properly registered, the width of the strokes

is approximated by multiplying the stroke width of the character template

with the ratio of the number of stroke pixels in the character image to the

number of stroke pixels in the template:

width = widthtemplate ×
#stroke pixels in the character image

#stroke pixels in the template
. (2.16)

34

(a) (b) (c) (d)

Figure 2.12: Examples of templates of sub-structures for the character in
Figure 2.5a.

2.4 Gaussian-smoothed Matching of Sub-

structures

After a rough estimate of the location of each stroke in the character image

is obtained using the whole character template matching in Section 2.3,

we proceed to refine the match of its sub-structures such as radicals, sub-

radicals, and other highly correlated sets of strokes, by generating templates

of portions of the character and matching them using a similar gradient-

based algorithm. Figure 2.12 shows a few examples of templates of sub-

structures for the character in Figure 2.5a. Figure 2.13 shows how the strokes

of the middle radical can be more accurately located over the locations found

by doing the whole-character match. This sub-structure matching can be

performed recursively to improve the accuracy of the match for each subpart

of the character.

The optimization for matching the template of a sub-structure to the

character image X given affine parameters found in previous matchings

A∗
r−1, A

∗
r−2, . . . , A

∗
1 is:

35

(a) Matching the whole
character

(b) Matching the middle
radical

Figure 2.13: Comparison of the match quality for the middle radical. Note
how the match quality of each strokes in the middle radical in Figure 2.13b
is much better than the match quality of each stroke in the middle radical
in Figure 2.13a.

A∗
r

= argmax
Ar

P (Ar|X,A∗
r−1, A

∗
r−2, . . . , A

∗
1) (2.17)

= argmax
Ar

P (X|Ar, A
∗
r−1, . . . , A

∗
1)P (Ar|A∗

r−1, A
∗
r−2, . . . , A

∗
1)

P (X|A∗
r−1, A

∗
r−2, . . . , A

∗
1)

(2.18)

= argmax
Ar

P (X|Ar, A
∗
r−1, . . . , A

∗
1)P (Ar|A∗

r−1, A
∗
r−2, . . . , A

∗
1) (2.19)

= argmax
Ar

P (Xr|Ar)P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1) (2.20)

= argmax
Ar

P (Xr|Transform(Tr, Ar))P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1) (2.21)

= argmin
Ar

− log(P (Xr|Transform(Tr, Ar))

× P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1)) (2.22)

= argmin
Ar

‖Smooth(Transform(Tr, Ar), σf,r)− Smooth(Xr, σf,r)‖2

− ρ̂r logP (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1), (2.23)

36

where X is the character image, and Xr is the character image with pixels

in irrelevant parts of the character discounted. Tr is the template image for

sub-structure r, Transform(Tr, Ar) transforms Tr using affine parameters Ar,

and Smooth(Xr, σf,r) applies a Gaussian filter with standard deviation σf,r

to image Xr. A∗
r−1, A

∗
r−2, . . . , A

∗
1 are affine parameters for sub-structures

r − 1, r − 2, . . . , 1 found in previous matchings, among which A∗
1 is the set

of best affine parameters for matching the whole character.

In Equation (2.23), compared to the objective function for the whole

character match in Equation (2.13), there are two differences. First, instead

of the whole character image X, we discount pixels in irrelevant parts of the

character and use the discounted character image Xr specific to the sub-

structure that we want to match. This will be detailed in Section 2.4.1. The

other difference is the conditional prior P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1), which will

be discussed in Section 2.4.2. Note that the objective function for the whole

character match in Equation (2.13) is a special case of Equation (2.23).

2.4.1 Discounting distracting stroke pixels

Consider the alternative optimization for matching a sub-structure, that

better resembles the optimization used for matching the whole character in

Equation (2.13):

A∗
r = argmin

Ar

‖Smooth(Transform(Tr, Ar), σf,r)− Smooth(X,σf,r)‖2 .

(2.24)

37

Equation (2.24) matches the transformed template Transform(Tr, Ar) to the

whole character image X instead of the discounted character image Xr, and

does not have the conditional prior P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1).

As is the same for the whole character matching, matching the template

of a sub-structure to the character image using Equation (2.24) is not a

convex optimization problem. In fact, the match that we want may not

even be the global optimum based on the appearance measure, and the

optimization is even more likely trapped in an undesirable local optimum.

Figure 2.14 shows some examples of local optima with different amount of

smoothing used in the matching.

Unfortunately, unlike the whole character matching, re-registering the

character image does not help much in initializing the optimization to the

right place. More heavily smoothing the image does not by itself help much,

either. The problem is that, in addition to the sub-structure that we are

trying to find, there are also many distracting stroke pixels that we do not

intend to match to the template in the character image. Not matching these

distracting stroke pixels that we do not intend to match should not result

in a penalty in the objective function.

We find the structures in a character image by matching templates to

the character image in a hierarchical way. That is, we match the whole char-

acter first, then we recursively match its sub-structures. When we match

templates of a portion of the character to the character image, we can dis-

count pixels in the character image that we do not intend to match using

the rough stroke locations that we found in previous template matchings.

Xr, the character image with irrelevant parts discounted, is computed

38

Initial position σf,r = 1 σf,r = 2 σf,r = 4 σf,r = 8

Figure 2.14: Where the gradient-based optimization converges with different
amount of smoothing and different initial template position. More heavily
smoothing by itself does not help much in finding the desired optimum.

39

as follows:

Xr = X ◦ (1− Smooth(Render(Γ̂∗
r−1), σb,r))

◦ (1− Smooth(Render(Γ̂∗
r−2), σb,r)) ◦ . . .

◦ (1− Smooth(Render(Γ̂∗
1), σb,r)), (2.25)

where ◦ is the Hadamard product defined as (A ◦ B)i,j = (A)i,j(B)i,j . 1

is the matrix of 1s, Smooth(T, σb,r) applies a Gaussian filter of standard

deviation σb,r to image T , and Render(Γ) renders stroke parameters Γ into

an image of strokes. Γ∗
i = ExtractStrokes(Transform(Ti, A

∗
i)) is the stroke

parameters extracted from the transformed template Transform(Ti, A
∗
i), and

Γ̂∗
i is the largest subset of Γ∗

i that does not include any stroke refined by

later matchings Γ∗
i+1,Γ

∗
i+2, . . . ,Γ

∗
r−1 or strokes in the current sub-structure

to be matched Γr.

The Gaussian smoothing in Equation (2.25) again serves as the error

model. It assumes that for each stroke pixel located at (x0, y0) in the trans-

formed template, the location of the actual stroke pixel in the character

image corresponding to it is distributed according to the spherical normal

distribution

f(x, y) =
1

2πσ2
b,r

e
− 1

2σ2
b,r
((x−x0)2+(y−y0)2)

. (2.26)

The value for the standard deviation of the Gaussian smoothing σb,r will be

optimized for the matching, and will be described in Section 2.4.3.

Suppose we want to match the middle radical after the whole character

is matched as in Figure 2.13, Figure 2.15 shows the matching results to the

40

Figure 2.15: Previous matching results to the strokes that we do not intend
to match using the current template.

strokes other than those in the middle radical. These are the rough locations

of strokes that we do not intend to match using the current template of the

radical, and the stroke pixels at these locations in the character image should

be discounted.

To discount the irrelevant pixels in the character image, we first apply

Gaussian smoothing to the strokes in the transformed templates matched to

the irrelevant strokes to compute the probability of each pixel explained by

an irrelevant stroke according to the error model in Equation (2.26), then

the pixels in the character image is discounted according to Equation (2.25).

Figure 2.16 shows the matched irrelevant strokes found in previous template

matchings smoothed with Gaussian filters of various standard deviations,

and Figure 2.17 shows the corresponding discounted character image Xr.

Figure 2.18 shows the results of matching the middle radical to the dis-

counted image Xr with the irrelevant strokes found in previous template

matchings smoothed using Gaussian filters of various standard deviations

and discounted. Notice how the matchings are greatly improved over those

in Figure 2.14.

41

(a) σb,r = 1 (b) σb,r = 2 (c) σb,r = 4 (d) σb,r = 8

Figure 2.16: Irrelevant strokes in the matched template smoothed using
Gaussian filters with various standard deviations.

(a) σb,r = 1 (b) σb,r = 2 (c) σb,r = 4 (d) σb,r = 8

Figure 2.17: Discounted character image Xr with irrelevant strokes
smoothed using Gaussian filters of various standard deviations and dis-
counted.

(a) σb,r = 1 (b) σb,r = 2 (c) σb,r = 4 (d) σb,r = 8

Figure 2.18: Results of matching the middle radical to the discounted image
Xr with irrelevant strokes found in previous template matchings smoothed
using Gaussian filters of various standard deviations and discounted. σf,r is
set to 1.

42

2.4.2 Conditional prior prediction for sub-structures

The optimization in Equation (2.23) includes a conditional prior

P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1), or the conditional distribution for the affine pa-

rameters Ar given best affine parameters found in previous template match-

ings A∗
r−1, A

∗
r−2, . . . , A

∗
1. This distribution is defined in terms of stroke pa-

rameters.

The affine parameters Ar along with its associated template Tr define a

set of parameters for strokes included in Tr:

Γr = ExtractStrokes(Transform(Tr, Ar)) (2.27)

= 〈x1,1,r, y1,1,r, x2,1,r, y2,1,r, x1,2,r, y1,2,r, x2,2,r, y2,2,r, . . . ,

x1,lr,r, y1,lr,r, x2,lr,r, y2,lr,r, w〉. (2.28)

Note that the stroke width w is estimated separately. We define Γ′
r to be

the stroke parameters without the stroke width w:

Γ′
r = 〈x1,1,r, y1,1,r, x2,1,r, y2,1,rx1,2,r, y1,2,r, x2,2,r, y2,2,r, . . . ,

x1,lr,r, y1,lr,r, x2,lr,r, y2,lr,r〉. (2.29)

Similarly, the affine parameters A∗
r−1, A

∗
r−2, . . . , A

∗
1 along with their as-

sociated templates Tr−1, Tr−2, . . . , T1 also define sets of stroke parameters

Γ∗
r−1,Γ

∗
r−2, . . . ,Γ

∗
1. We define Γ̄∗

i to be the largest subset of Γ∗
i that does

not include any stroke refined by later matchings Γ∗
i+1,Γ

∗
i+2, . . . ,Γ

∗
r−1. The

43

union

Γ̄∗S
r−1

=

r−1⋃
i=1

Γ̄∗
i (2.30)

is the set of parameters of the most refined strokes up to Γ∗
r−1. Note that

Γ̄∗S
r−1

includes every stroke in the character, because Γ∗
1 is the strokes ob-

tained from the template match to the whole character and includes every

stroke. Again we define Γ̄∗′S
r−1

to be Γ̄∗S
r−1

without the stroke width w:

Γ̄∗′S
r−1

= 〈x∗1,1, y∗1,1, x∗2,1, y∗2,1, x∗1,2, y∗1,2, x∗2,2, y∗2,2, . . . , x∗1,l, y∗1,l, x∗2,l, y∗2,l〉.

(2.31)

Given structurally labeled training examples, we define a joint multivari-

ate normal distribution

P (Γ′
r, Γ̄

∗′S
r−1

) = N(µr,Σr +
λ1

100
I) (2.32)

= N

 µr1

µr2

 ,

 Σr11 Σr12

Σr21 Σr22

 , (2.33)

where N(µ,Σ) denotes a multivariate normal distribution with mean µ and

covariance matrix Σ. In Equation (2.33), µr1 is the mean corresponding to

Γ′
r, and µr2 is the mean corresponding to Γ̄∗′S

r−1
. The covariance matrix is

split in the same way, and smoothed by adding λ1
100I to it, where I is the

identity matrix and λ1 is the largest eigenvalue of Σr.

The conditional distribution P (Γ′
r|Γ̄∗′S

r−1
) is also a multivariate normal

44

distribution:

P (Γ′
r|Γ̄∗′S

r−1
) = N

(
µr1 +Σr12Σ

−1
r22(Γ̄

∗′S
r−1
− µr2),Σr11 − Σr12Σ

−1
r22Σr21

)
.

(2.34)

The most likely Γ′
r given Γ̄∗′S

r−1
is the conditional mean:

Γ′
r,ML = argmax

Γ′
r

P (Γ′
r|Γ̄∗′S

r−1
) (2.35)

= µr1 +Σr12Σ
−1
r22(Γ̄

∗′S
r−1
− µr2). (2.36)

The conditional prior for Ar is thus

P (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1) ∝ P (Γ′

r|Γ̄∗′S
r−1

). (2.37)

Therefore, the second half of Equation (2.23), the negative logarithm of the

conditional prior, is of the form

−ρ̂r logP (Ar|A∗
r−1, A

∗
r−2, . . . , A

∗
1)

= ρr(Γ
′
r − Γ′

r,ML)
T(Σr11 − Σr12Σ

−1
r22Σr21)

−1(Γ′
r − Γ′

r,ML). (2.38)

Note that not all Γ′
r corresponds to a valid Ar. To find the most likely

value Ar given A∗
r−1, A

∗
r−2, . . . , A

∗
1, we first find the most likely value for Γ′

r

using Equation (2.36), then use the affine parameter A∗
r such that the stroke

parameters Γ∗′
r corresponding to A∗

r is closest to Γ′
r,ML.

This conditional prior is used as a regularization for the template match-

ing. It also helps to initialize the optimization to the right place.

45

Learning the ground truth transformations

In Section 2.4.2, we need the ground truth transformations to learn the

mean µr and covariance Σr in the multivariate normal distribution in Equa-

tion (2.32). Specifically, we need the ground truth Ai,GT for each template

Ti to compute the ground truth stroke parameters

Γi,GT = ExtractStrokes(Ti, Ai,GT). (2.39)

With the structurally labeled training examples, we first segment the image

pixels according to the labeled stroke that the pixel is closest to. We then

mask out pixels closest to strokes not used in Ti, leaving only pixels closest

to a stroke used in Ti. A template matching using Ti is then performed on

this masked image, and the resulting affine transformation parameter Ai,GT

that best matches the masked image is used as the ground truth.

2.4.3 Learning the parameters for template matchings

In the optimization in Equation (2.23), for each template Tr, there are 3

parameters that need to be learned: σf,r, the standard deviation for the

Gaussian filter that smooths Tr andXr, σb,r in Equation (2.25), the standard

deviation for the Gaussian filter that smooths the previously matched strokes

not used in Tr, and ρr in Equation (2.38), the strength of the conditional

prior. We denote Φshape,r to be the set of the three parameters above:

Φshape,r = 〈σf,r, σb,r, ρr〉, (2.40)

46

as Φshape,r decides the shape of the objective function in Equation (2.23).

Additionally, the initial point for the gradient-based optimization in Equa-

tion (2.23) also needs to be learned. We use Φinit ,r to represent the pa-

rameters that decide where to place the initial Ar for the gradient-based

optimization. Φinit ,r does not affect the shape of the objective function. We

cover Φinit ,r in detail in Section 2.5.

Quality of the match

To optimize Φshape,r and Φinit ,r, we first need to define the quality of the

match. Given a structurally labeled training character imageXi for example

i, we segment the stroke pixels in the image according to the labeled stroke

that the pixel is closest to, obtaining a stroke image Xi
j for each stroke j.

Given the set of affine parameters Ai∗
r obtained by matching its associated

template Tr to Xi
r using the gradient-based optimization in Equation (2.23)

with Φshape,r and Φinit ,r as its parameters, we extract the stroke parameters

for each stroke in the transformed template

Γi∗
r = ExtractStrokes(Transform(Tr, A

i∗
r)) (2.41)

= 〈Ψi∗
sr,1 ,Ψ

i∗
sr,2 , . . . ,Ψ

i∗
sr,lr
〉, (2.42)

where Ψi∗
sr,j is the stroke parameters corresponding to stroke sr,j in the

character, and there are lr strokes in Tr. Note thatX
i
r is properly discounted

using Ai∗
r−1, A

i∗
r−2, . . . , A

i∗
1 as described in 2.4.1.

47

For each stroke sr,j in Transform(Tr, A
i∗
r), we define a per-stroke loss as

loss istroke,sr,j =
∥∥∥Smooth(Render(Ψi∗

sr,j), σl)− Smooth(Xi
sr,j , σl)

∥∥∥2 . (2.43)

σl is chosen to define a Gaussian loss model suitable for the domain.

The loss for matching Transform(Tr, A
i∗
r) to Xi

r is defined as

loss iradical ,r =

lr∑
i=1

loss istroke,sr,j . (2.44)

The loss among all n structurally labeled training examples for radical

r using Φshape,r and Φinit ,r is

lossradical ,r =
1

n

n∑
i=1

loss iradical ,r. (2.45)

Algorithm 2 outlines the algorithm that learns Φshape,r and Φinit ,r for

each match operation r in a sequence. For each match operation in the

Algorithm 2 Learning parameters for match operations.

procedure OptimizeParameters
for r ← 1 . . .m do

Φinit ,r ← 0 . Initialize the optimization to the most likely location
according to the conditional prior.

Φshape,r ← Use Pattern Search to optimize Φshape,r to minimize
lossradical ,r.

Φinit ,r ← Optimize Φinit ,r according to Section 2.5.
end for

end procedure

match sequence, we first optimize Φshape,r to minimize lossradical ,r, using the

most likely Ar as the initial point for for the template match. Then Φinit ,r

48

(a) Initial location

(b) Matched stroke

Figure 2.19: Initial location of a single-stroke template and its matching
result on a character image with irrelevant strokes properly discounted.

is optimized to maximize the probability of success of the match operation,

as described in 2.5.

2.5 Initial Point for the Optimization

As is made evident in Section 2.3 and Section 2.4, the objective function for

matching templates to character images is not convex. The success of using

gradient-based optimization to match the template to the correct structure

is sensitive to where we initialize the optimization. Figure 2.19 shows that

the initial point can greatly affect the result of the match even on character

images with distracting strokes properly discounted. If the initial point is

placed within the desired locally convex basin of the objective function, the

optimization can reach the desired local optimum by following the local

gradient. In the following, we look at the shape of the objective function,

the initial point, and probability of success of the optimization in detail.

49

2.5.1 Shape of the objective function

The objective function in Equation (2.23) of each of our template-matching

operation is of the form

fobj (Ar)

= ‖Smooth(Transform(Tr, Ar), σ)− Smooth(Xr, σ)‖2

+ ρr(Γr(Ar)− Γr,ML)
TΣ−1(Γr(Ar)− Γr,ML). (2.46)

In Equation (2.46), Γr(Ar) represents the stroke parameters extracted from

the transformed template Transform(Tr, Ar), and Γr,ML is the most likely

stroke configurations predicted by the conditional prior.

Equation (2.46) is a sum of squared differences. It is smooth and dif-

ferentiable everywhere because all pixel values in the smoothed and trans-

formed template Smooth(Transform(Tr, Ar), σ) and all stroke parameter val-

ues in Γr(Ar) are smooth and differentiable in Ar. The second half of Equa-

tion (2.46), (Γr(Ar)− Γr,ML)
TΣ−1(Γr(Ar)− Γr,ML), which is a squared Ma-

halanobis distance, is always convex in Γr(Ar). However, the first half, the

sum of squared Gaussian-smoothed differences of two images consisting of

strokes, is not convex.

In general, there may be a local optimum in a locally convex region in

the objective function whenever a sub-structure in the template gets close

to matching a sub-structure in the image. These locally convex regions

are a smooth function of the spatial configuration of the structures of the

character image because of the Gaussian smoothing; when stroke pixels

50

move in the character image, the shape of the objective function changes

smoothly. The sizes of the locally convex regions depend on the sizes of

the sub-structures. With extensive Gaussian smoothing to the image that

filters out high-frequency finer structures, the locally convex regions can be

widened, at the expense of losing the ability of accurately matching the finer

structures, as is shown in Figure 2.10 and Figure 2.11.

2.5.2 Success of the gradient-based optimizations

An idealized gradient-based optimization algorithm that follows local gra-

dients always converges to the local optimum that lies in the same locally

convex region that the optimization is initialized in. The locally convex

regions work as basins of attraction of the optimization. We define the suc-

cess of the optimization as finding the “desired” local optimum, which is not

necessarily the global optimum. Therefore, for an idealized gradient-based

optimization algorithm as defined above, the optimization succeeds if and

only if it is initialized in the desired locally convex region that contains the

desired optimum. For our purpose of finding structures in character images

by matching affine-transformed templates to the image, the desired locally

convex region is the one that contains the ground truth affine transformation

for the image.

One intuitive choice of the initialization would be the affine transfor-

mation corresponding to the most likely stroke parameters conditioned on

the structures found by previous matching operations in the sequence of

optimizations according to the conditional prior model in Equation (2.38).

While this may be a good choice in predicting the location of the structure

51

(a) Ground truth obtained using the
method in Section 2.4.2

(b) The result that the optimization
converges to when initialized to Fig-
ure 2.20a

Figure 2.20: Determining the basin of attraction. Figure 2.20a is the ground
truth determined using the method in Section 2.4.2. We initialized the
optimization to Figure 2.20a, and Figure 2.20b is where the optimization
converges to. The basin of attraction is defined as the set of initial points
such that the optimization converges to a point close to Figure 2.20b.

that the current matching operation aims to find, it may not be the best ini-

tialization for the optimization. The most likely prediction could be close to

the boundary of the desired locally convex region. It could even be outside

the desired region due to the model error in the conditional prior.

Furthermore, the actual implementation of the optimization algorithm

does not necessarily always stays within the same locally convex region that

it is initialized in. Sometimes the line search in the algorithm can search

past the ridges in the objective function and end up in a different local

optimum. This happens more easily when the optimization is initialized

near the boundary of the locally convex region. Therefore, we prefer that

the optimizations be initialized in the desired locally convex region and as

far away from the boundary of the locally convex region as possible. This

increases the chance that the optimizer stays in the desired locally convex

region and finds the desired local optimum.

Figure 2.20 shows how the basin of attraction is determined using the

manually labeled ground truth for a stroke. We first initialize the opti-

52

Figure 2.21: An example of the basins of attraction for the two end points
of a single-stroke template. The dotted areas are initial points for the end
point that the optimization converges close to the desired local optimum.
The plus signs denote the predicted most likely end points.

mization to the ground truth transformation determined using the method

described in Section 2.4.2. When the optimization converges, the result of

the optimization is the local optimum that lies in the same locally convex

region as the ground truth. The basin of attraction is defined as the set of

initial points such that the optimization converges to a point close to the

point that it would converge to when initialized to the ground truth. Fig-

ure 2.21 shows an example of the basins of attraction for the two end points

of a stroke.

We propose to move the initialization from the predicted most likely

location, so that it lies closer to the center of desired the basin of attraction,

and that the optimization is more likely to succeed. Φinit ,r, the parameter

for initializing the optimization for matching Tr is an offset to the predicted

most likely location of the template. For a template consisting of multiple

53

strokes, it is the offset in the two coordinate locations to place the template:

Φinit ,r = 〈dx, dy〉. (2.47)

For a template containing a single stroke, we allow both end points to be

moved separately:

Φinit ,r = 〈dx1, dy1, dx2, dy2〉. (2.48)

2.5.3 Modeling the probability of success and moving the

initial point

Let Bj
r be the correct basin of attraction for matching Tr to the jth character

example Xj
r , given the predicted most likely affine parameters A∗

r we want to

choose an offset Φinit ,r such that the probability P (Move(A∗
r ,Φinit ,r) ∈ Bj

r)

is maximized across all j.

For a given Φinit ,r, the success of converging to the desired optimum of

each example j is a Bernoulli trial with a probability of success qbr .

Since the correct basin of attraction Bj
r is a smooth function of the spatial

configuration of the structures of the character image, qbr , the probability

that the moved initialization lies in Bj
r , should also be smooth with regard

to Φinit ,r, the spatial offset from the location of the predicted structure.

Assuming that the relative spatial locations between Bj
r and the pre-

dicted most likely location of the template A∗
r are Gaussian distributed, and

that Bj
r forms similar spatial shapes for each j, the distribution of qbr will

resemble sum of shifted Gaussians. Further assuming that Bj
r form chunks

of continuous regions, the distribution of qbr will take the form of Gaussian

54

smoothed chunks of continuous regions. For qbr distributed in such a way,

everything else being equal, picking a Φinit ,r in the center of a large chunk

of Bj
r results in a higher probability of success qbr .

Because that the actual desired local optimum should always lie within

Bj
r , and that the predicted configuration A∗

r should not be far from the actual

optimum, we assume that there is always a large chunk of success region Bj
r

reasonably close to the predicted configuration A∗
r . We aim to find and

model such success regions for the structurally labeled training examples,

and choose the Φinit ,r that maximizes the estimated qbr based on the model.

Algorithm 3 outlines learning Φinit ,r. We first probe a few locations around

the predicted most likely location A∗
r and make a very crude estimate of the

correct basin around A∗
r for the structurally labeled training examples, then

compute for each offset Φinit ,r the probability of success. The probability of

success is then smoothed with a Gaussian filter. The best Φinit ,r is chosen

to maximize the smoothed probability.

Algorithm 3 Learning Φinit ,r

function LearnInitialOffset(Xr,A
∗)

for j ← 1 . . . n do
Aj∗

r ← argmax
Aj

r
P (Aj

r|Aj∗
r−1, A

j∗
r−2, . . . , A

j∗
1)

Bj
r ← EstimateBasin(Aj∗

r , Xj
r)

end for
Qr ← Smooth(1n

∑n
j=1B

j
r , σ)

Φinit ,r ← argmaxQr

return Φinit ,r

end function

55

2.5.4 Estimating the Basin of Attraction

Finding the actual basin of attraction by probing each initial offset point

to see if it converges close to the ground truth local optimum is extremely

computationally expensive. Instead, we make use of the fact that the basin

of attraction is usually a continuous region around the predicted most likely

location, and make a rough estimate of the region. Algorithm 4 shows how

we estimate the basin of attraction for an character example. We first probe

Algorithm 4 Estimating the basin of attraction

function EstimateBasin(Aj∗
r , Xj

r)
Boundary ← ∅
for dir ← 0◦, 45◦, 90◦, . . . , 315◦ do

Boundary ← Boundary ∪{ProbeBasinBoundary(Xj
r , A

j∗
r , dir)}

end for
return MakeRegion(Boundary)

end function

the boundary of the basin in 8 directions for a limited distance centered at

the predicted most likely location, then we connect the boundary points and

make a closed region, using it as the rough estimate of the basin. Figure 2.22

shows an example of the estimated basin.

2.6 Stroke Correspondences and Match Sequences

Given two classes of similar Chinese characters with some in each class hav-

ing their strokes labeled according to Section 2.1.2, we want to find the struc-

tures in the character images and classify them according to their class label.

The structures are found through a sequence of matching affine-transformed

templates to the character images using techniques in Section 2.3 and Sec-

56

Figure 2.22: Estimated basin for examples in Figure 2.21 based on Algo-
rithm 4.

tion 2.4. After the structures in the characters are located, we mask out

parts of the image that do not contribute much information to the class

label, and classify the examples based on the important part of the image

using a conventional statistical classifier.

In order to generate a sequence of template matching operations for

use in finding the structures in the image, we first create correspondences

between individual strokes in the two classes of characters. After the corre-

spondences are found, we identify strokes that do not have a good counter-

part in the other class, treating them as target strokes to look for. We then

group strokes highly correlated to each other together, using them to create

templates for the matching. A sequence for matching the templates is then

generated so that the templates are used in a hierarchical way to find the

structures in the images.

57

2.6.1 Stroke correspondence and target strokes

Given the stroke parameters of structurally labeled training examples of two

classes

〈Γ1,Γ2〉

=

〈

Γ1
1

Γ2
1

...

Γn1
1

,

Γ1
2

Γ2
2

...

Γn2
2

〉

(2.49)

=

〈

〈
Ψ1

1,1, . . . ,Ψ
1
l1,1

, w1
1

〉
〈
Ψ2

1,1, . . . ,Ψ
2
l1,1

, w2
1

〉
...〈

Ψn1
1,1, . . . ,Ψ

n1
l1,1

, wn1
1

〉

,

〈
Ψ1

1,2, . . . ,Ψ
1
l2,2

, w1
2

〉
〈
Ψ2

1,2, . . . ,Ψ
2
l2,2

, w2
2

〉
...〈

Ψn2
1,2, . . . ,Ψ

n2
l2,2

, wn2
2

〉

〉
,(2.50)

we compute their mean values among the structurally labeled training ex-

amples

〈
Γ̄1, Γ̄2

〉
=

〈

Ψ̄1,1

Ψ̄2,1

...

Ψ̄l1,1

w̄1

,

Ψ̄1,2

Ψ̄2,2

...

Ψ̄l2,2

w̄2

〉
. (2.51)

For each pair of strokes from the two classes, Ψi,1 from class 1 and Ψj,2 from

class 2, we compute the covariance among the stroke parameters, treating

58

them as if they were of the same multivariate normal distribution:

Σi,j

= cov

(
Ψ1

i,1 Ψ2
i,1 · · · Ψn1

i,1 Ψ1
j,2 Ψ2

j,2 · · · Ψn2
j,2

)
(2.52)

= cov

x11,i,1 x21,i,1 · · · xn1
1,i,1 x11,j,2 x21,j,2 · · · xn2

1,j,2

y11,i,1 y21,i,1 · · · yn1
1,i,1 y11,j,2 y21,j,2 · · · yn2

1,j,2

x12,i,1 x22,i,1 · · · xn1
2,i,1 x12,j,2 x22,j,2 · · · xn2

2,j,2

y12,i,1 y22,i,1 · · · yn1
2,i,1 y12,j,2 y22,j,2 · · · yn2

2,j,2

,(2.53)

where in Equation (2.53) each column

x1

y1

x2

y2

represents the coordinates

of the two end points of one stroke in one example. There are n1 examples

in class 1, and n2 examples in class 2.

With the means Ψ̄i,1 and Ψ̄j,2 computed using Equation (2.51) and the

covariance Σi,j computed using Equation (2.53), we compute the squared

Mahalanobis distance between the pair of strokes Ψi,1 and Ψj,2:

DM (Ψi,1,Ψj,2) =
(
Ψ̄i,1 − Ψ̄j,2

)T
Σ−1
i,j

(
Ψ̄i,1 − Ψ̄j,2

)
. (2.54)

The Mahalanobis distance measures the covariance-normalized distance in

standard deviations.

Using the squared Mahalanobis distance computed in Equation (2.54),

we find the stroke correspondences between stokes in two classes of Chinese

59

characters using Algorithm 5. For each stroke Ψi,1 in the first character

Algorithm 5 Finding stroke correspondences between two character
classes.

function StrokeCorrespondence(Γ1,Γ2)
C ← ∅ . Set of correspondences
D ← [] . Squared Mahalanobis distances
for all Ψi,1 ∈ Γ1 do

di,j∗ ← minj DM (Ψi,1,Ψj,2)
if di,j∗ < dθ then . Maximal threshold distance

j∗ ← argminj DM (Ψi,1,Ψj,2)
if 〈·, j∗〉 ∈ C then

if di,j∗ < D[〈·, j〉] then
C ← C \ {〈·, j∗〉}
delete D[〈·, j∗〉]
D[〈i, j∗〉]← di,j∗

C ← C ∪ {〈i, j∗〉}
end if

else
D[〈i, j∗〉]← di,j∗

C ← C ∪ {〈i, j∗〉}
end if

end if
end for
return C

end function

class, we find the stroke Ψj∗,2 in the second class closest to Ψi,1 in squared

Mahalanobis distance. If the distance di,j∗ is under the maximal threshold

distance dθ, we consider the two strokes to be potentially corresponding to

each other. If Ψj∗,2 does not have a corresponding stroke yet, we create

the correspondence 〈i, j∗〉. If Ψj∗,2 already has a correspondence, and di,j∗

is smaller than the distance between Ψj∗,2 and its corresponding stroke,

we replace the existing correspondence with 〈i, j∗〉. The maximal threshold

distance dθ is chosen so that it is adequate for the domain. When the

60

algorithm completes, all strokes without corresponding strokes in the other

class are treated as target strokes that bear the most information about the

difference between the classes.

After the correspondences are found, we re-number the strokes according

to their correspondence:

Γ′
1 = 〈Ψc1(1),1, . . . ,Ψc1(k),1,Ψc1(k+1),1, . . . ,Ψc1(l1),1,w1〉, (2.55)

Γ′
2 = 〈Ψc2(1),2, . . . ,Ψc2(k),2,Ψc2(k+1),2, . . . ,Ψc2(l2),2,w2〉, (2.56)

where c1(·) and c2(·) map the stroke numbers according to their correspon-

dence such that Ψc1(i),1 and Ψc2(i),2 correspond to each other for i ≤ k,

and k is the number of common strokes shared between the two classes.

Ψc1(k+1),1, . . . ,Ψc1(l1),1 and Ψc2(k+1),2, . . . ,Ψc2(l2),2 are the strokes unique

to each class, and are treated as target strokes.

2.6.2 Hierarchical clustering of strokes

With the common strokes and stroke correspondences identified for the two

classes of characters, we divide the common strokes into groups by perform-

ing a hierarchical clustering on them. These groups will be used to generate

character templates for use in matching the structures in character images

as described below.

We use a mutual information-based hierarchical clustering algorithm as

described in [15]. The algorithm is outlined in Algorithm 6. In Algorithm 6,

DMI (·) is the mutual information-based distance measure described below.

61

Algorithm 6 Hierarchical clustering

function HierarchicalClustering(Ψ)
C ← {Ψc(1),Ψc(2), . . . ,Ψc(k)}
while |C| > 1 do

c∗i , c
∗
j ← argminci,cj∈C;ci 6=cj DMI (ci, cj)

C ← C \ {ci, cj}
C ← C ∪ {{ci, cj}}

end while
return C

end function

Distance measure

The distance measure DMI (·) used in Algorithm 6 is based on mutual infor-

mation, and is defined as follows:

DMI (X,Y) = 1− I(X;Y)

h(X,Y)
, (2.57)

where I(X;Y) is the mutual information between X and Y defined as

I(X;Y) = h(X) + h(Y)− h(X,Y), (2.58)

h(X) is the joint differential entropy of X, h(Y) is the joint differential

entropy of Y , and h(X,Y) is the joint differential entropy of X,Y .

We model the strokes common to both classes using a multivariate nor-

mal distribution, and thus the joint differential entropy is easily computed

as

h(X) =
1

2
log
(
(2πe)d |ΣX |

)
, (2.59)

where d is the number of variables in X, which in our case is 4 times the

62

number of strokes. ΣX is the sub-matrix corresponding to variables in X

of the covariance matrix Σ, and |ΣX | is the determinant of ΣX . Σ is the

covariance matrix among the common strokes defined as follows:

Σ = cov

Ψ1
c1(1),1

Ψ2
c1(1),1

· · · Ψn1

c1(1),1
Ψ1

c2(1),2
Ψ2

c2(1),2
· · · Ψn2

c2(1),2

Ψ1
c1(2),1

Ψ2
c1(2),1

· · · Ψn1

c1(2),1
Ψ1

c2(2),2
Ψ2

c2(2),2
· · · Ψn2

c2(2),2

...
...

...
...

...
...

...
...

Ψ1
c1(k),1

Ψ2
c1(k),1

· · · Ψn1

c1(k),1
Ψ1

c2(k),2
Ψ2

c2(k),2
· · · Ψn2

c2(k),2

,

(2.60)

where each column represents the k common strokes for one example. There

are n1 examples in class 1, and n2 examples in class 2. Σ is smoothed by

adding 1
100λ1I to it when we compute the entropy in order to avoid numerical

difficulties due to the underranked covariance matrix.

DML as defined above is a proper metric.

Theorem 1 (Kraskov and Grassberger [15, Theorem 5.1]) The

quantity

DML(X,Y) = 1− I(X;Y)

h(X,Y)
(2.61)

is a metric, with DML(X,X) = 0 and D(X,Y) ≤ 1 for all pairs (X,Y).

Figure 2.23 shows the result of the hierarchical clustering of the strokes

of the same character as Figure 2.2 using Algorithm 6. For simplicity Fig-

ure 2.23 shows the hierarchical clustering of all strokes in one class of charac-

ters, rather than shared common strokes between two classes of characters.

63

Figure 2.23: Result of the hierarchical clustering on a character using Algo-
rithm 6. Compare to the decomposition by radical hierarchy in Figure 2.2.

While Figure 2.23 shows a different decomposition than Figure 2.2, it is

nonetheless a reasonable one.

Strokes unique to each class

Given two classes of characters, Algorithm 6 only works for common strokes

shared between the classes. We deal with the unique strokes to each class,

i.e. the target strokes, by “attaching” them to the shared stroke closest to

them in DMI . Whenever a cluster is selected to generate a template for

matching operations that includes a stroke that a target stroke attaches

64

to, the target stroke is also included in the template. Target strokes are

rendered with half pixel intensity in the template.

2.6.3 Match sequence

Given a hierarchy generated by Algorithm 6, we make a sequence of sets

of strokes that are used to make templates for the matching operations by

traversing the hierarchy recursively. This is outlined in Algorithm 7. In

Algorithm 7, TraverseInto(·) determines whether we should further split

a cluster. We only further split a cluster if there are more than 3 strokes

in the cluster. IncludeCluster(·) determines whether a cluster should be

included in the sequence of match operations. Single-stroke clusters are only

included if the stroke is sufficiently long or if a target stroke attaches to it.

TraverseChild1First(child1 , child2) decides whether we should traverse

child1 or child2 first. If one child contains a stroke attached by a target

stroke and the other child does not, the child that does not contain such

stroke is traversed first. If none of the children contains a stroke attached

by a target stroke, the child further away to the strokes attached by the

target stroke in DMI is traversed first.

Figure 2.24 shows the match sequence according to the hierarchy in

Figure 2.23 using Algorithm 7. For simplicity, instead of showing common

strokes from two classes of character, Figure 2.24 only shows the strokes

from a single class. The left three strokes (the three strokes in the last

template in the sequence) are the target strokes.

65

Algorithm 7 Generating the match sequence using the result of hierarchical
clustering.

procedure MatchSequenceRec(hier , current , target , result)
child1 , child2 ← hier [current]
if TraverseChild1First(child1 , child2) then

if IncludeCluster(child1) then
result ← result + child1

end if
if TraverseInto(child1) then

MatchSequenceRec(hier , child1 , target , result)
end if
if IncludeCluster(child2) then

result ← result + child2
end if
if TraverseInto(child2) then

MatchSequenceRec(hier , child2 , target , result)
end if

else
if IncludeCluster(child2) then

result ← result + child2
end if
if TraverseInto(child2) then

MatchSequenceRec(hier , child2 , target , result)
end if
if IncludeCluster(child1) then

result ← result + child1
end if
if TraverseInto(child1) then

MatchSequenceRec(hier , child1 , target , result)
end if

end if
end procedure
function MatchSequence(hier , target)

result← [Root(hier)]
MatchSequenceRec(hier ,Root(hier), target , result)
return result

end function

66

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17

Figure 2.24: The match sequence according to the hierarchy in Figure 2.23
using Algorithm 7.

2.7 Target Region and Gradient Features

After we find the structures in a character image by performing the match

operations in the sequence generated in Section 2.6.3 using techniques in

Section 2.3 and Section 2.4, we generate discriminative features for the sta-

tistical classifier. This is done by first preparing the image for the target

region that contains the discriminative structure in the image as described

in Section 2.7.1, then collect smoothed histograms of gradients as described

in Section 2.7.3.

2.7.1 Target region

Modeling the error of the match for each stroke

With the strokes parameters found by performing the template matchings in

the sequence on the structurally labeled training examples and the ground

67

Figure 2.25: The error between the ground truth stroke and the stroke found
by performing the template matchings in the sequence.

truth stroke parameters obtained using Section 2.4.2, we build an error

model for each stroke. Figure 2.25 shows an example of the difference be-

tween the stroke found through the template matchings and the ground

truth stroke.

For each stroke, we model the difference between the end points of the

ground truth stroke and the stroke found using the template matchings in

terms of offsets in x and y coordinates. Collecting these offsets among the

structurally labeled training examples and combining both end points, we

compute the mean squared errors for the two coordinate directions:

σ2
x =

1

2n

(
n∑

i=1

(xigt1 − xim1)
2 +

n∑
i=1

(xigt2 − xim2)
2

)
, (2.62)

σ2
y =

1

2n

(
n∑

i=1

(yigt1 − yim1)
2 +

n∑
i=1

(yigt2 − yim2)
2

)
, (2.63)

where xigtk is the ground truth x coordinate of the kth end point in the ith

structurally labeled example, ximk is the x coordinate of the kth end point

found through template matchings in the ith structurally labeled example,

68

yigtk is the ground truth y coordinate of the kth end point in the ith struc-

turally labeled example, and yimk is the y coordinate of the kth end point

found through template matchings in the ith structurally labeled example.

We then define the distribution that the actual stroke pixel in the charac-

ter image corresponding to each stroke pixel (x0, y0) found using template

matchings is located at (x, y) in the image as

fx0,y0(x, y) =
1

2π|Σ|1/2
e
− 1

2
(x−x0 y−y0)Σ−1

“
x−x0
y−y0

”
, (2.64)

where

Σ =

 σ2
x 0

0 σ2
y

 . (2.65)

The probability that a pixel in the image corresponds to any stroke pixel in

a specific stroke is

fs(x, y) =
∑

(x0,y0)∈S

fx0,y0(x, y), (2.66)

where S is the set of stroke pixels in stroke s found using template matchings.

Equation (2.66) can be computed efficiently by applying an axis-aligned

Gaussian filter with standard deviations σx and σy for the two axes respec-

tively to the stroke image rendered using the stroke parameters obtained

through the template matchings. Figure 2.26 shows the result of smooth-

ing each of the rendered strokes using the Gaussian filter of its respective

standard deviations.

69

Figure 2.26: Rendered strokes smoothed differently according to their error
models.

Discounting common strokes

With the distribution in Equation (2.66) defined for each stroke, we compute

the likelihood ratio that pixel (x, y) belongs to a target stroke as

LT (x, y) =

∑
s∈T fs(x, y)∑
s fs(x, y)

, (2.67)

where fs(x, y) is the distribution for stroke s and T is the set of target

strokes. We than normalize LT (x, y) into

L̃T (x, y) =
LT (x, y)

maxx,y LT (x, y)
, (2.68)

such that the maximal value in L̃T (x, y) is normalized to 1.

We discount pixels in the character image belonging to common strokes

according to L̃T (x, y) in Equation (2.68). Figure 2.27 shows the character

image with pixels in common strokes discounted.

70

(a) (b) (c)

Figure 2.27: A character image discounted using the normalized likelihood
ratio in Equation (2.68). Figure 2.27a is the original character image. The
target stroke is the horizontal stroke in the middle box. Figure 2.27b is the
normalized likelihood ratio computed using the Gaussian filtered rendered
strokes in Figure 2.26. Figure 2.27c is the resulting image with pixels in
the common strokes discounted, leaving only pixels likely to belong to the
target stroke.

Cropping the target region

After discounting pixels belonging to common strokes, we cut an axis-aligned

rectangular window containing the target strokes out of the discounted char-

acter image. This rectangular window will be used to generate gradient fea-

tures for the statistical classifier. The window is decided such that all of the

end points of the target strokes are contained in it with high probability.

Specifically, the boundaries of the target window is 3 standard deviations

away from the end points of the target strokes, where the standard devi-

ations are computed using Equation (2.63). Figure 2.28 shows the target

window for the example in Figure 2.27.

71

Figure 2.28: The target window in relation to the whole image for the
discounted character image in Figure 2.27.

2.7.2 The original WDH features

The weighted direction code histogram (WDH) features introduced by

Kimura [14] are one of the most successful set of features for offline hand-

written Chinese character recognition. This set of features are suitable for

binary images of whole characters. The WDH features are generated as

follows:

1. Nonlinear normalization

Before generating the WDH features, the image of the character is

stretched nonlinearly to normalize the line density [31]. Figure 2.29

shows the effect of nonlinear normalization. The histograms of edges

are equalized in each coordinate direction. We do not use nonlinear

normalization in our approach.

2. Contour detection

The contour (edge) of the character is detected as the set of all stroke

pixels adjacent to any blank pixel in its 8 directions. Figure 2.30 shows

72

(a) Original (b) Normalized

Figure 2.29: Effect of the nonlinear normalization. Figure 2.29a is the origi-
nal image. Figure 2.29b is the result of applying the nonlinear normalization
before generating the WDH features. The histograms of edges are equalized
in each coordinate direction.

Figure 2.30: Detected contour pixels for the normalized image in Fig-
ure 2.29b.

the contour pixels detected for the normalized image in Figure 2.29b.

3. Chain coding

For the 3× 3 block around each contour pixel, lines of the 16 possible

orientations are detected by finding pairs of contour pixels in that

orientation in the block.

4. Local direction histograms

The normalized character image is divided into 169 blocks, with 13

73

blocks on each side. The number of contour pixels in each orienta-

tion is accumulated in each block, producing 169 local direction code

histograms of 16 directions.

5. Down sampling

The histograms in 13×13 blocks are smoothed using a 5×5 Gaussian

filter. The spatial resolution is then reduced from 13× 13 to 7× 7 by

down sampling every other block. Similarly, the histograms in the 16

directions are smoothed using a weight vector
(

1
2
1

)
. The directional

resolution is then reduced from 16 to 8. This produces a feature vector

of size 392, in 7 horizontal, 7 vertical, and 8 directional resolutions.

6. Square root of feature values

Square root of each feature value is taken to make the distribution of

features Gaussian-like [30, 11].

2.7.3 Our variant of gradient features

The gradient features that we use in our approach are similar to the WDH

features, with a few key differences:

• No nonlinear normalization

The nonlinear normalization for the WDH features is suitable for mov-

ing the same strokes in different examples to approximately the same

locations in the whole character image. However, since we use our own

method to find and align strokes in the characters, and discount strokes

74

irrelevant to classification, their histogram-based normalization is not

suitable and not used in our approach.

• Gaussian-smoothed gradient operators

The contour detection and chain code in the WDH features only works

on binary images. Since we discount irrelevant parts of the character,

the image is no longer binary. Therefore, we use Gaussian-smoothed

gradient operators to generate the direction code features.

• Variable number and size of blocks

Since we cut a target window around the target strokes, the optimal

number and size of blocks can be very different than that for the whole

character image, and can be different for different pairs of characters.

For each pair of characters, we use cross validation to select the optimal

number and size of blocks to compute the histogram.

With the properly discounted and cropped target window image gen-

erated according to Section 2.7.1, we generate gradient-based features for

classification. The target window is first normalized into a square, and

Gaussian-smoothed gradient operators are applied to the normalized image.

The size of the square equals the number of blocks we divide the image into

times the size of each block. Figure 2.31 shows the normalized target region

and the gradients in the two directions. With the strength of the gradients

in x and y directions, we compute the strength of edge in each of the 16

directions for each pixel in the normalized target window.

75

(a) Normalized target window (b) Vertical gradients (c) Horizontal gradients

(d) (e)

Figure 2.31: Figure 2.31a shows the normalized target window. Figure 2.31b
shows the vertical gradients (horizontal edges) detected in Figure 2.31a.
Figure 2.31c shows the horizontal gradients (vertical edges) detected in Fig-
ure 2.31a. Figure 2.31d and Figure 2.31e are the operators used in detecting
the gradients.

Once the strengths of edges are computed, we divide the target window

into blocks, and the computation of histogram features, including accumu-

lating the local gradient histograms, downsampling, and taking square root

of the resulting features, is exactly the same as that for the WDH features

in Section 2.7.2.

The number of blocks the image is divided into, the size of each block,

and the standard deviation of the Gaussian smoothing are parameters that

we optimize using the technique in Section 2.8.

76

2.8 SVM Model Selection

After we generate the gradient features for the target regions, we use the

support vector machine (SVM) to train a discriminative classifier. The SVM

implementation that we use is the LIBSVM [2] package.

There are many parameters to optimize for the discriminative classifier

in order to achieve a good generalization performance. For the RBF SVM,

there are two kernel parameters, γ, the width of the radial basis function,

and C, the cost of the soft loss. Additionally, we also need to choose the

parameters for generating the gradient features in Section 2.7.3, including

the number of blocks to divide the image, the size of each block, and the

amount of smoothing applied to the gradient filter.

One of the most commonly used criterion for model selection is the cross

validation accuracy. By using the cross validation accuracy on the train-

ing examples, one aims to predict the generalization accuracy of the given

model. However, besides having an accurate prediction of the generaliza-

tion accuracy, we also want the prediction to be confident. With this many

parameters to optimize, we do not have nearly enough training examples to

confidently select a good model using the cross validation accuracy.

Figure 2.32 plots the cross validation accuracy versus the actual test

accuracy on the hold-out set for a pairwise classification task. The classifier

is an SVM with the RBF kernel. 40 training examples are sampled from

two classes. The parameters to choose include the kernel parameters and the

parameters for generating the gradient features. The correlation coefficient

between the cross validation accuracy and the test accuracy on the hold-

77

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

T
es

t A
cc

ur
ac

y

Cross Validation Accuracy

(a)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.8 0.85 0.9 0.95 1

T
es

t A
cc

ur
ac

y

Cross Validation Accuracy

(b)

Figure 2.32: Cross validation accuracy vs. the test accuracy on the hold-
out set. The Pearson product-moment correlation coefficient is 0.55. Fig-
ure 2.32b zooms into the region with high cross validation accuracy.

78

Cross Validation Accu-
racy

Mean Test Accuracy Standard Deviation of Test Accuracy

0.5–0.6 0.8161 0.0854

0.6–0.7 0.8563 0.0650

0.7–0.8 0.8668 0.0493

0.8–0.9 0.9104 0.0464

0.9–1.0 0.9364 0.0283

(a) Using cross validation accuracy

Cross Validation Mean
Posterior Probability

Mean Test Accuracy Standard Deviation of Test Accuracy

0.5–0.6 0.8398 0.1125

0.6–0.7 0.8880 0.0425

0.7–0.8 0.9224 0.0379

0.8–0.9 0.9392 0.0262

0.9–1.0 0.9413 0.0191

(b) Using cross validation posterior probability

Table 2.1: Means and standard deviations of the test accuracy on the hold-
out set at different levels of cross validation accuracy and mean cross vali-
dation posterior probability.

out set is 0.55. As can be seen in Figure 2.32, because the set of training

examples is small, there are not many distinctions that the cross validation

accuracy can make. Furthermore, even if we choose a model with a cross

validation accuracy of 100%, the actual test accuracy on the hold-out set

can still range anywhere from around 80% to 100%. Table 2.1a shows the

means and standard deviations of the test accuracies on the hold-out set at

different levels of cross validation accuracy.

Instead of the cross validation accuracy, we propose to use the cross

validation posterior probability as the criterion for model selection. Support

vector machines can be trained to compute the posterior probabilities for

the class labels given the input features. Platt proposes to compute the

79

posterior probability by fitting a sigmoid function to the kernel value [22]:

P (y = 1|x) ≈ PA,B(f) (2.69)

≡ 1
1+exp(Af+B) , where f = f(x). (2.70)

f(x) is the kernel function.

We use the implementation of Platt’s posterior probability output in

LIBSVM [19]. When we perform cross validation, instead of simply com-

puting the testing accuracy on the validation set, we compute the posterior

probability of each example in the validation set belonging to its correct

class. We then use the joint posterior probability of each example in the

training set belonging to the correct class as our criterion for model selec-

tion.

Figure 2.33 plots the geometric mean of the cross validation posterior

probability versus the actual test accuracy on the hold-out set for the same

pairwise classification task. The correlation coefficient between the cross

validation mean posterior probability and the test accuracy on the hold-out

set is 0.63. The test accuracy for most data points of which the geometric

mean of the cross validation posterior probability is greater than 90% is at

least 90% in Figure 2.33.

Table 2.1b shows the means and standard deviations of the test accura-

cies on the hold-out set at different levels of cross validation mean posterior

probability. Comparing to Table 2.1a, the standard deviations of the test

accuracies at higher levels of cross validation mean posterior probability are

lower than the standard deviations of the test accuracies at higher levels

80

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

T
es

t A
cc

ur
ac

y

Cross Validation Posterior Probability

(a)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.8 0.85 0.9 0.95 1

T
es

t A
cc

ur
ac

y

Cross Validation Posterior Probability

(b)

Figure 2.33: Geometric mean of the cross validation posterior probability
vs. the test accuracy on the hold-out set. The Pearson product-moment
correlation coefficient is 0.63. Figure 2.32b zooms into the region with high
cross validation posterior probability.

81

of cross validation accuracy. Therefore, using the cross validation posterior

probability results in a more confident selected model.

In Figure 2.34, we plot the learning curves for the pair 狠 vs. 狼 and the

pair 睛 vs. 晴 using both the cross validation posterior probability and the

cross validation accuracy for model selection. It can be seen that using the

cross validation posterior probability as the model selection criterion results

in slightly better models being selected at all levels of the training set sizes.

82

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

using cross validation posterior probability
using cross validation accuracy

(a) Learning curve for the pair 狠 vs. 狼

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

using cross validation posterior probability
using cross validation accuracy

(b) Learning curve for the pair 睛 vs. 晴

Figure 2.34: Learning curves for our method using the cross validation pos-
terior probability and the cross validation accuracy for model selection. The
errorbars are standard deviations of the accuracies.

83

Chapter 3

Theoretical Framework

Our approach concerns classification problems for objects that are both

structured and structurally similar.

3.1 Problem Definition

3.1.1 Structured objects

A structured object is a composition of the noisy renditions of its correlated

constituents. Let x ∈ X be a structured object. It can be written as

x = Render(m∗, θ∗) (3.1)

= Render(m∗
1, θ

∗
1)⊕ Render(m∗

2, θ
∗
2)⊕ . . .⊕ Render(m∗

l , θ
∗
l), (3.2)

where Render(m∗
i , θ

∗
i) realizes the model m∗

i using parameters θ∗i and rep-

resents it in the space of X . ⊕ composes the rendered constituents, and is

domain dependent. One of the simplest and commonly used example of the

84

composition operator is numerical addition of vector values. The parameters

θ∗ = θ∗1, θ
∗
2, . . . , θ

∗
l are correlated, and sampled from the joint distribution

θ∗ ∼ pθ∗ . (3.3)

In general, given an example x, we do not know its underlying parameters

θ∗1, θ
∗
2, . . . , θ

∗
l . The only observable is the vector x itself.

Modeling structured objects

The constituents m∗
1,m

∗
2, . . . ,m

∗
l are usually too complex to model exactly.

Instead, we use simplified proxies m1,m2, . . . ,ml, and treat the discrepancy

as noise:

x = Render(m∗
1, θ

∗
1)⊕ Render(m∗

2, θ
∗
2)⊕ . . .⊕ Render(m∗

l , θ
∗
l) (3.4)

= (Render(m1, θ1) + ξ1)⊕ (Render(m2, θ2) + ξ2)⊕ . . .

⊕ (Render(ml, θl) + ξl) (3.5)

= (Render(m1, θ1)⊕ Render(m2, θ2)⊕ . . .

⊕ Render(ml, θl)) + ξl (3.6)

= Render(m, θ) + ξ. (3.7)

The parameters θ = θ1, θ2, . . . , θl are correlated, and sampled from the joint

distribution

θ ∼ pθ. (3.8)

The inverse function Render−1 : m → x is not necessarily accessible.

85

Even if it exists, it can be difficult to compute or unreliable. The use of

composition operations ⊕ and the existence of noise ξ further adds to the

difficulty of obtaining Render−1.

3.1.2 Structurally similar objects

Consider two classes of structured objects

X1 = x1
1,x

2
1, . . . ,x

n1
1 (3.9)

and

X2 = x1
2,x

2
2, . . . ,x

n2
2 , (3.10)

where each example xj
i is a structured object

xj
i = Render(mi,1∗, θj∗i,1)⊕ Render(mi,2∗, θj∗i,2)⊕ . . .⊕ Render(mi,li∗, θ

j∗
i,li

),

(3.11)

and the parameters are sampled from the joint distributions

θ∗i ∼ p∗i . (3.12)

X1 and X2 are considered structurally similar if most of the constituents

in each class has a similar counterpart in the other class. Specifically, there

exist mapping functions c1(.) and c2(.) such that

m∗
1,c1(j)

= m∗
2,c2(j)

, 1 ≤ j ≤ lc, (3.13)

86

where lc ≤ l1, l2, and lc is close to both l1 and l2. Furthermore, the joint

distribution p∗θc1 for the parameters θ∗1,c1(1), θ
∗
1,c1(2)

, . . . , θ∗1,c1(lc) and the joint

distribution p∗θc2 of the parameters θ∗2,c2(1), θ
∗
2,c2(2)

, . . . , θ2,c2(lc) are similar.

The rendition of structurally similar objects in X can be very similar

because the distributions for most of its constituents are similar for both

classes. The constituents that do not have similar counterparts in the other

class are the discriminating constituents.

In practice, instead of the true underlying models m∗, we use the sim-

plified proxies m.

3.1.3 Classification

Given two classes of structurally similar objects, we want to learn a model

to classify the examples according to their class labels. Algorithm 8 outlines

the abstract learning task.

Algorithm 8 Learning to classify structurally similar objects

procedure Learn(X1,X2) . X1,X2 are structurally labeled examples
Identify correspondences between constituents in the two classes.
Hierarchically cluster the constituents based on their mutual informa-

tion.
Construct features based on the clusters in hierarchy.
Select a subset of features and form an order of evaluation for them.
Optimize parameters for evaluating the features.
Learn a discriminative classifier based on information about the dis-

criminating constituents.
end procedure

Algorithm 9 outlines the procedure that classifies unknown test exam-

ples.

87

Algorithm 9 Learning to classify structurally similar objects

procedure Classify(x) . x is an unknown test example.
Evaluate the learned features in order.
Classify x using the discriminative classifier using information about

the discriminating constituents.
end procedure

3.1.4 Requirements

There are a few requirements to apply our framework:

Structured objects The objects must be composed of correlated con-

stituents.

Structurally similar objects Most of the constituents must have similar

counterparts in the other class.

Models for the constituents We must have reasonable parameterized

models for the constituents.

Structurally labeled examples We need a small set of examples with

the parameters of their constituents annotated.

Reduced representation for sets of constituents We need to be able

to represent sets of correlated constituents with reduced numbers of

parameters.

Conditional probabilistic models for parameters We need to be able

to build conditional probabilistic models between parameters of sets

of constituents.

88

Differentiable loss function The mismatch between the rendition of the

modeled constituents and an actual example has to be differentiable

or empirically differentiable with respect to the parameters of the the

model.

Explanations in the examples discountable There needs to be a way

of discounting information in the representation of examples that is

explained by the modeled constituents.

3.2 Features

We find the structure in the structured objects by evaluating a special kind

of features. These features are composed of one or more correlated con-

stituents of the example. Evaluating the feature is equivalent to estimating

parameters of the models of the constituents to fit the example.

The simplest feature consists of the model of a single constituent. The

parameters of the model of the constituent is the same as the value of the

feature:

θi = Fi. (3.14)

Other features are of the form of reduced representations of parameters of

models of highly correlated constituents. The parameters of the models are

a smooth function of the the feature:

〈θr〉 = Tr(Fr), r ∈ r, (3.15)

where 〈θr〉, r ∈ r is the vector of parameters of the constituents included in

89

feature Fr. By using the feature Fr instead of parameters 〈θr〉, we reduce

the number of free scalar variables to estimate from the number of scalar

variables in 〈θr〉 to the number of scalar variables in Fr. Note that not all

values of 〈θr〉 corresponds to a valid Fr, since Fr is a reduced representation

of 〈θr〉. However, we can always find the value for Fr such that Tr(Fr) is

closest to any given 〈θr〉.

3.2.1 Evaluating the feature

We evaluate the features in an ordered sequence. Since the reverse mapping

from x to θ is not readily available, the features are evaluated through an

optimization of the following form:

F ∗
r = argmax

Fr

P (Fr|x, Fr−1, Fr−2, . . . , F1) (3.16)

= argmax
Fr

P (x|Fr, Fr−1, Fr−2, . . . , F1)

P (Fr|Fr−1, Fr−2, . . . , F1) (3.17)

= P (xr|Fr)P (Fr|Fr−1, Fr−2, . . . , F1) (3.18)

= argmin
Fr

Loss(xr,Render(mr, Tr(Fr)))

− ρr logP (Fr|Fr−1, Fr−2, . . . , F1), (3.19)

where

xr = Explain(x, Fr−1, Fr−2, . . . , F1), (3.20)

in which Explain(x, Fr−1, Fr−2, . . . , F1) discounts information in x explained

by constituents in features Fr−1, Fr−2, . . . , F1 that Fr does not include.

Loss(·) and ρr In Equation (3.19), as well as Explain(·) in Equation (3.20)

90

need to be optimized for the match between the model Render(mr, Tr(Fr))

and the underlying Render(m∗
r, θ

∗
r).

3.3 Useful Information for Estimating the Param-

eters

Given an example x ∈ X , the useful information in x for estimating param-

eters 〈θr〉, r ∈ r is the mutual information between x and the constituents⊕
r∈rRender(m

∗
r , θ

∗
r). Assuming an additive composition operator such that

⊕
r∈r

Render(m∗
r , θ

∗
r) ≡

∑
r∈r

Render(m∗
r , θ

∗
r), (3.21)

then

x =
∑
r∈r

Render(m∗
r , θ

∗
r) +

∑
r 6∈r

Render(m∗
r , θ

∗
r), (3.22)

and thus

I

(
x;
∑
r∈r

Render(m∗
r , θ

∗
r)

)

= h(x)− h

(
x

∣∣∣∣∣∑
r∈r

Render(m∗
r , θ

∗
r)

)
(3.23)

= h(x)− h

∑
r∈r

Render(m∗
r , θ

∗
r) +

∑
r 6∈r

Render(m∗
r , θ

∗
r)∣∣∣∣∣∑

r∈r
Render(m∗

r , θ
∗
r)

)
(3.24)

= h(x)− h

∑
r 6∈r

Render(m∗
r , θ

∗
r)

∣∣∣∣∣∑
r∈r

Render(m∗
r , θ

∗
r)

 . (3.25)

91

In Equation (3.22),
∑

r∈rRender(m
∗
r , θ

∗
r) is the signal and∑

r 6∈rRender(m
∗
r , θ

∗
r) is the noise for the purpose of estimating 〈θr〉, r ∈ r.

3.3.1 Suppressing the noise using explanation

When estimating 〈θr〉, r ∈ r, we use xr = Explain(x, Fr−1, Fr−2, . . . , F1) in-

stead of x. Explain(x, Fr−1, Fr−2, . . . , F1) improves the useful information

as defined in Equation (3.25) by explaining information in x using previ-

ously evaluated features Fr−1, Fr−2, . . . , F1, and suppressing the noise term

in Equation (3.22). A “perfect” Explain(·) given perfect models m ≡ m∗

and perfect parameters θ ≡ θ∗ is defined as follows:

xr = Explain(x, Fr−1, Fr−2, . . . , F1) (3.26)

=
∑
r∈r

Render(m∗
r , θ

∗
r) +

∑
r 6∈r

Render(m∗
r , θ

∗
r)

−
∑
r 6∈r

Render(mr, θr) (3.27)

=
∑
r∈r

Render(m∗
r , θ

∗
r) (3.28)

=
∑
r∈r

Render(mr, θr). (3.29)

92

That is, the perfect xr contains only information relevant to 〈θr〉. The useful

information in this perfect case is

I

(
xr;
∑
r∈r

Render(m∗
r , θ

∗
r)

)
= I(xr;xr) (3.30)

= h(xr) (3.31)

= h

(∑
r∈r

Render(mr, θr)

)
. (3.32)

In practice, with an imperfect Explain(·), imperfect models m, and in-

accurate parameters θ, the explained example with the irrelevant parts dis-

counted would be

xr = Explain(x, Fr−1, Fr−2, . . . , F1) (3.33)

=
∑
r∈r

Render(m∗
r , θ

∗
r) +

∑
r 6∈r

Render(m∗
r , θ

∗
r)

− s

∑
r 6∈r

Render(mr, θr)

 , (3.34)

where s(·) is a function that decides how Explain(·) suppresses information

from the imperfect rendition
∑

r 6∈rRender(mr, θr), and is dependent on how

good
∑

r 6∈rRender(mr, θr) is in approximating
∑

r 6∈rRender(m
∗
r , θ

∗
r).

93

The useful information in xr is thus

I

(
xr;
∑
r∈r

Render(m∗
r , θ

∗
r)

)

= h(xr)− h

(
xr

∣∣∣∣∣∑
r∈r

Render(m∗
r , θ

∗
r)

)
(3.35)

= h(xr)− h

∑
r∈r

Render(m∗
r , θ

∗
r) +

∑
r 6∈r

Render(m∗
r , θ

∗
r)

− s

∑
r 6∈r

Render(mr, θr)

 ∣∣∣∣∣∑
r∈r

Render(m∗
r , θ

∗
r)

)
(3.36)

= h(xr)− h

∑
r 6∈r

Render(m∗
r , θ

∗
r)− s

∑
r 6∈r

Render(mr, θr)

∣∣∣∣∣∑
r∈r

Render(m∗
r , θ

∗
r)

)
. (3.37)

Equation (3.37) equals h(xr) when

s

∑
r 6∈r

Render(mr, θr)

 =
∑
r 6∈r

Render(m∗
r , θ

∗
r). (3.38)

3.4 Quality of Features

3.4.1 Entropy of the feature

The value of a feature Fr is an estimation to the parameters of model

mr, such that the rendition
∑

r∈rRender(mr, Tr(Fr)) best approximate the

rendition of the underlying model
∑

r∈rRender(m
∗
r , θ

∗
r) that generates it.

Therefore, Fr is a function of
∑

r∈rRender(m
∗
r , θ

∗
r). For any feature Fr,

whether Fr is a single constituent feature or a feature composed of the

94

reduced representation of more than one constituents, Fr is conditionally

independent of xr given
∑

r∈rRender(m
∗
r , θ

∗
r). That is,

p

(
xr,
∑
r∈r

Render(m∗
r , θ

∗
r), Fr

)

= p(xr)p

(∑
r∈r

Render(m∗
r , θ

∗
r)

∣∣∣∣∣xr

)

p

(
Fr

∣∣∣∣∣∑
r∈r

Render(m∗
r , θ

∗
r)

)
. (3.39)

According to the data-processing inequality, we have

I(xr;Fr) ≤ I

(
xr;
∑
r∈r

Render(m∗
r , θ

∗
r)

)
. (3.40)

Therefore, the conditional entropy h(Fr|xr) is lower bounded as:

h(Fr|xr) = h(Fr)− I(xr;Fr) (3.41)

≥ h(Fr)− I

(
xr;
∑
r∈r

Render(m∗
r , θ

∗
r)

)
. (3.42)

Given the same xr, the conditional entropy h(Fr|xr) is largely influenced

by the entropy h(Fr) itself. Therefore, given the same xr, evaluating the fea-

ture with reduced representation of multiple constituents, which has a lower

h(Fr) because of the reduced representation, results in a lower variance than

evaluating each of the constituents with its full representation separately.

Furthermore, the more restricted Fr is for the same constituents, the lower

the variance is.

95

3.4.2 Accuracy of the feature

Given θr and its reduced representation Fr, the set of possible rendi-

tions using Render(mr, Tr(Fr)) is a subset of the set of possible rendi-

tions using Render(mr, θr). Therefore, Render(mr, θr) is a more expressive

model and can match the underlying Render(m∗
r, θ

∗
r) more accurately than

Render(mr, Tr(Fr)) can.

3.4.3 Sequence of feature evaluations

The choice of suitable features is a tradeoff between the variance of

the feature and the accuracy of the feature. When
∑

r 6∈rRender(mr, θr)

poorly approximates
∑

r 6∈rRender(m
∗
r , θ

∗
r) in Equation (3.37), Explain(·)

suppresses the noise in information badly, and the useful information

I
(
xr;
∑

r∈rRender(m
∗
r , θ

∗
r)
)
is low. In this case, in order to achieve a low

conditional entropy h(Fr|xr) in Equation (3.42), it is desirable to use a

more restrictive Fr, or a reduced representation feature that includes more

constituents, such that the the entropy h(Fr) is low.

After we have more accurate
∑

r 6∈rRender(mr, θr) such that

Explain(·) suppresses noise well for xr and that the useful information

I
(
xr;
∑

r∈rRender(m
∗
r , θ

∗
r)
)
is high enough, we can afford to use a more ex-

pressive feature to compute more accurate estimations for the constituents.

96

Chapter 4

Empirical Results

4.1 Overview

Our approach improves the classification by concentrating information present

in the examples, making the classification problem easier. By focusing on

portions of the example with high mutual information with the class label,

we improve the signal to noise ratio in the example, making the pattern

easier to pick up by the classifier. However, the act of concentrating infor-

mation also throws away information at the same time, and could possibly

hurt the classification in certain cases.

The success of our approach depends on a few factors. We expect our

approach to help the most on classification problems that the signal is too

dilute in the example for the statistical classifier alone to pick up, but that

it can be improved by focusing on the right place, provided that the prior

knowledge is reasonably good at locating the right place to look. Therefore,

we test our approach with the task of classifying pairs of Chinese characters

97

that are likely to have such property. Specifically, we test our approach

on pairs of characters that ordinary statistical classifiers do not do well on,

and that humans do better on. Native Chinese readers with prior domain

knowledge about the characters generally do a better job at finding the right

place to look when recognizing Chinese characters. We are not interested in

classification tasks that cannot be improved by concentrating information

or that purely statistical classifiers already do well on.

The state of the art in the literature of multiclass offline handwritten

Chinese character recognition uses the multiclass linear discriminant analysis

on the weighted direction code histogram (WDH) features. This state of the

art is described in Section 4.2. Section 4.3 establishes a human baseline for

comparison. Section 4.4 provides a pairwise classification approach using

the support vector machine on the WDH features, which is the state of the

art for machine learning. We show that this significantly outperforms the

multiclass LDA system of Section 4.2.

The pairs of characters we aim to improve on using our approach are

those that the accuracies of the support vector machine are lower than 98%

of the human baseline.

4.1.1 Empirical questions that we address

We address empirically the following questions about our approach:

Does prior knowledge help where predicted? (Section 4.5)

The prior knowledge in our approach is a simplified and imperfect stand-in

for additional training examples. In Section 4.5 we compare our approach

98

against the RBF SVM. We expect our approach to do better on most pairs

that there is a large gap in accuracies between the SVM accuracy and the

human accuracy, which likely indicates the classification can be improved

by focusing information. Our approach may not work in some cases. It may

fail to improve the classification if the quality of the prior knowledge is not

good enough, such that the information loss by the process of concentrating

it outweighs the effect of the concentrated information. It may also not

be able to improve if the statistical classifier is flexible enough to pick up

useful information that we do not concentrated on, and that there is enough

training examples such that the flexible statistical classifier does not overfit.

Does our approach concentrate classification information? (Sec-

tion 4.6)

Our approach makes the learning problem easier by concentrating informa-

tion in the examples, making the pattern easier to pick up by the classifier.

This being the case, the classifier should learn faster with fewer training

examples, producing a steeper learning curve than a purely statistical ap-

proach. We think that with reasonably good prior knowledge our approach

concentrates information in all cases, and that the learning curve of our ap-

proach will be steeper even in cases that we do not improve upon in terms

of the final classification accuracy in the end.

What is the value of the prior knowledge? (Section 4.7)

Since the prior knowledge in our approach is a simplified and imperfect

stand-in for additional training examples, we want to measure how much

99

the prior knowledge is worth in terms of number of additional class-labeled

training examples. The value of the prior knowledge depends on its quality,

as well as the difficulty of the task. The better the prior knowledge is in

concentrating the right information, the more additional training examples

the knowledge is worth.

4.1.2 Offline handwritten Chinese character database

There are a few commonly used offline handwritten Chinese databases. One

important database is the ETL9B [24] data set. It contains Chinese char-

acters taken from the Japanese kanji. Much important research is based on

this data set, including that from Sun et al. [29, 28, 27], Kato et al. [13], Liu

and Ding [20], etc. However, examples in this data set tend to be carefully

made and artificially clean that they do not reflect well the variability seen

in real world handwritten documents.

We test our approach on the HITPU [26, 25] offline handwritten Chinese

character database. This is a newer database, and the examples display a

much larger range of variability in this database than in the ETL9B data

set. Lim et al. [17, 18] used this database in their work. The database

contains roughly 751,000 handwritten Chinese characters in 3,755 classes

written by 200 different writers. Figure 2.1 contains samples of characters

in this database. Each character in the database is a binary image. The

widths and heights of the character images are not fixed, and range from 40

pixels to 192 pixels on each side. In our experiments, we zoom and center

the examples to 100-pixel by 100-pixel images.

100

4.2 Multiclass LDA Baseline

One of the most successful set of features used in offline handwritten Chinese

character classification is the weighted direction code histogram (WDH)

feature [14] [4] as described in Section 2.7.2. We generate the WDH features

for all 3,775 classes of examples, and train multiclass Fisher’s discriminant

models using the FDA module in [34] to do 5-fold cross-validation.

After obtaining the confusion matrix for the 3,775 classes, we identify

pairs of character classes that are most confusing, and compute their pair-

wise classification accuracies. The pairs of character classes with the lowest

pairwise classification accuracies are listed in Table 4.1. These pairs of char-

acters are candidate classification tasks for our investigation.

4.3 Human Baseline

It is not possible for every classification problem to achieve a 100% accuracy.

In order to determine a reasonable target accuracy for classifying each pair

of characters in Table 4.1, as well as the possible gap for improvement over

statistical classifiers, we use crowdsourcing and establish a human baseline

accuracy for classifying the difficult pairs of characters.

We build an web-based online system for this purpose. The user is

asked to participate in an online test for recognizing handwritten Chinese

characters. In each question during the test, the image of a random character

is presented to the user, and the user is asked to choose among the options of

two similar character classes, “Obviously none of the above,” “Really can’t

tell,” and “Skip.” Upon recording the choice, the next character image is

101

Pair 竟 竞 睛 晴 日 曰

LDA Accuracy 75.61% 78.05% 78.92%

Pair 鸟 乌 孟 盂 己 已

LDA Accuracy 79.76% 81.13% 84.60%

Pair 鸣 呜 扶 抉 酒 洒

LDA Accuracy 84.88% 86.10% 86.10%

Pair 巳 已 大 犬 白 自

LDA Accuracy 86.31% 86.34% 87.26%

Pair 侯 候 伸 仲 拔 拨

LDA Accuracy 87.32% 87.50% 87.56%

Pair 戒 戎 木 朮 免 兔

LDA Accuracy 87.81% 88.05% 88.05%

Pair 狠 狼 澜 谰 便 使

LDA Accuracy 88.29% 88.29% 88.54%

Pair 干 千 菜 莱 潭 谭

LDA Accuracy 89.02% 89.27% 89.51%

Pair 壕 嚎 季 李

LDA Accuracy 89.51% 90.00%

Table 4.1: Pairwise classification accuracies for the hardest pairs of character
classes according to multiclass Fisher’s discriminant analysis using the WDH
features.

102

presented. In order to ensure recognition within reasonable time and prevent

the user from studying the character image too hard, the image disappears

after three seconds. This time limit does not cause much problem for native

Chinese readers, which is the case for all of our users. The user is asked to

choose “Obviously none of the above” only when the character presented is

obviously not from the two options presented, and “Really can’t tell” only

when the user really cannot tell the character class. The user can choose

to skip the question if he or she is distracted when the image is shown.

“Obviously none of the above” and “Really can’t tell” answers are treated

as half correct, and skipped questions are not included.

There is a 1 in 20 chance that a “trick question” is given. During the

trick question, the character image presented is different from both classes

available in the options. The user is expected to choose “Obviously none of

the above” for the trick question. Trick questions are meant to identify and

exclude malicious responses from the result.

We use browser cookies to keep track of individual users. During the

survey, 73 individual users responded, with a total of 11,808 responses. We

only use responses from users who answered at least 5 trick questions, and

their answers to trick questions must be “Obviously none of the above” at

least 97% of the time. 1,378 responses from 11 users are excluded from the

results. Of the 10,430 remaining responses, 9,937 are not trick questions.

There are 26 pairs of similar characters in the survey, and each pair received

at least 320 valid responses. Table 4.2 shows the resulting human recognition

accuracy and the 95% confidence interval for Bernoulli trials.

103

Pair 竟 竞 睛 晴 日 曰

Human Accuracy 94.63± 2.26% 92.90± 2.58% 81.71± 3.95%

Pair 鸟 乌 孟 盂 己 已

Human Accuracy 91.23± 2.95% 94.32± 2.42% 92.12± 2.21%

Pair 鸣 呜 扶 抉 酒 洒

Human Accuracy 91.64± 2.84% 97.66± 1.56% 94.97± 2.20%

Pair 巳 已 大 犬 白 自

Human Accuracy 87.87± 2.68% 99.71± 0.57% 98.97± 1.00%

Pair 侯 候 伸 仲 拔 拨

Human Accuracy 94.69± 2.30% 99.74± 0.51% 82.61± 3.87%

Pair 戒 戎 木 朮 免 兔

Human Accuracy 99.44± 0.78% 97.34± 1.77% 97.74± 1.50%

Pair 狠 狼 澜 谰 便 使

Human Accuracy 99.22± 0.88% 93.60± 2.51% 98.82± 1.09%

Pair 干 千 菜 莱 潭 谭

Human Accuracy 83.57± 3.85% 88.93± 3.18% 90.93± 2.95%

Pair 壕 嚎 季 李

Human Accuracy 98.69± 1.14% 99.27± 0.90%

Table 4.2: Human recognition accuracy for the hardest pairs of characters
and the 95% confidence interval.

104

4.4 Support Vector Machine Baseline

In order to know how well a purely statistical pairwise classifier performs on

the hardest pairs of characters as determined in Section 4.2, we obtain base-

line accuracies using the support vector machine with RBF kernels trained

on standard WDH features on whole character images as described in Sec-

tion 2.7.2. We generate standard WDH features for the pairs of characters

in Table 4.1, and do 5-fold cross validation using the support vector machine

with an RBF kernel. Best kernel parameters are chosen for each fold using a

separate cross validation. The SVM implementation that we use is LIBSVM

[2]. Table 4.3 shows cross validations accuracies using the RBF SVM. The

“relative accuracy” for SVM in Table 4.3 is defined as the SVM cross vali-

dation accuracy divided by the human accuracy. A relative accuracy higher

than 100% means the SVM outperforms human in that case.

4.5 Experiment 1: Does prior knowledge help

where predicted?

Overview

Our approach improves the classification by using the imperfect prior knowl-

edge to concentrate information in the examples. However, it may not always

help the classification, as we also throw away information at the same time

we concentrate it. We want to empirically determine if and when the prior

knowledge helps. We think our approach works better if there is a larger

gap between the accuracies of the purely statistical approach and human,

105

Pair RBF SVM Accuracy Accuracy Relative to Human

睛 晴 84.15% 90.57%

狠 狼 90.98% 91.70%

壕 嚎 91.71% 92.93%

季 李 93.17% 93.86%

鸣 呜 86.59% 94.49%

木 朮 92.20% 94.72%

便 使 94.15% 95.27%

扶 抉 93.66% 95.90%

伸 仲 95.83% 96.08%

竟 竞 90.98% 96.14%

大 犬 97.32% 97.60%

兔 免 95.61% 97.82%

鸟 乌 89.27% 97.85%

酒 洒 93.41% 98.36%

候 侯 93.17% 98.39%

澜 谰 92.20% 98.50%

白 自 97.55% 98.57%

孟 盂 93.63% 99.27%

戒 戎 99.51% 100.07%

己 已 92.91% 100.86%

潭 谭 92.68% 101.92%

巳 已 89.73% 102.12%

日 曰 83.58% 102.29%

菜 莱 91.22% 102.58%

干 千 89.02% 106.52%

拔 拨 94.15% 113.97%

Table 4.3: Accuracies for the RBF SVM. The “relative” accuracies are rela-
tive to the human accuracy. Relative accuracies higher than 100% are cases
that the SVM outperforms human.

106

indicating possible room of improvement by focusing information. Our ap-

proach may not work if the quality of the prior knowledge is not good enough

in concentrating the useful information, or if there is enough examples for

a flexible enough statistical classifier to pick up patterns that we do not

concentrate on.

Experimental design

We test our approach on the pairs of characters that the RBF SVM accuracy

relative to the human accuracy is lower than 100%, and aim to improve on

most of the pairs that the relative SVM accuracy to human is lower than

98%, which indicates possible room of improvement by focusing information.

For each pairwise classification task, we use 40 structurally labeled train-

ing examples for our approach, with 20 in each class. These structurally

labeled training examples are used to learn and optimize the sequence of

match operations that finds structures in unknown test examples. Fur-

thermore, these training examples are also used in searching for the best

parameters for generating our variant of gradient features described in Sec-

tion 2.7.3 based on the cross validation posterior probability introduced in

Section 2.8.

After our model for finding structures is learned, we apply the model

to the remaining examples excluding the 40 structurally labeled training

examples. We then do 5-fold cross validation on the remaining examples

using RBF SVM with the gradient features for the located target region in

the character images. The SVM kernel parameters are optimized using a

107

separate cross validation in each fold based on the cross validation posterior

probability.

We compare our cross validation accuracy relative to human accuracy

against the SVM baseline obtained in Section 4.4, and compute the relative

improvement as the difference between our relative accuracy and the relative

accuracy of the RBF SVM divided by the relative error of the RBF SVM:

RelativeImprovement =
RelativeAccuracyOur − RelativeAccuracySVM

1− RelativeAccuracySVM

.

(4.1)

We think our approach should work better when there is a larger gap

between the accuracies of the purely statistical approach and human. This

is tested by performing the statistical significance test for the nonparametric

Kendall’s tau rank correlation between SVM accuracy relative to the human

accuracy and the relative improvement. The null hypothesis is that the SVM

relative accuracy and the relative improvement are not negatively correlated.

The alternative hypothesis is that the SVM relative accuracy and the relative

improvement are negatively correlated.

Empirical results

Table 4.4 shows the cross validation accuracies and the cross validation accu-

racies relative to human accuracies using our approach, as well as the relative

improvement defined in Equation (4.1). The p-value for the alternative hy-

pothesis that the SVM relative accuracy and the relative improvement are

negatively correlated is 0.006865.

108

Pair RBF SVM RBF SVM Rel. Our Approach Our Approach Rel. Rel. Improvement

睛 晴 84.15% 90.57% 82.97% 89.31% -13.36%

狠 狼 90.98% 91.70% 98.38% 99.15% +89.76%

壕 嚎 91.71% 92.93% 98.11% 99.41% +91.65%

季 李 93.17% 93.86% 95.95% 96.66% +45.60%

鸣 呜 86.59% 94.49% 87.03% 94.97% +8.87%

木 朮 92.20% 94.72% 95.68% 98.29% +67.61%

便 使 94.15% 95.27% 98.38% 99.55% +90.49%

扶 抉 93.66% 95.90% 97.03% 99.35% +84.15%

伸 仲 95.83% 96.08% 95.65% 95.90% -4.59%

竟 竞 90.98% 96.14% 91.62% 96.82% +17.62%

大 犬 97.32% 97.60% 95.14% 95.52% -90.80%

兔 免 95.61% 97.82% 95.68% 97.86% +3.21%

鸟 乌 89.27% 97.85% 87.03% 95.40% -113.95%

酒 洒 93.41% 98.36% 85.95% 90.50% -479.27%

候 侯 93.17% 98.39% 88.38% 93.34% -313.66%

澜 谰 92.20% 98.50% 95.95% 102.51% +267.33%

白 自 97.55% 98.57% 95.92% 96.92% -115.38%

孟 盂 93.63% 99.27% 92.39% 97.95% -180.82%

Table 4.4: Accuracies for the RBF SVM and accuracies using our approach.
The “relative” accuracies are relative to the human accuracy. Relative ac-
curacies higher than 100% are cases that the specific method outperforms
human.

Interpretation

Among the 13 pairs with the RBF SVM accuracies lower than 98% of their

human accuracies, we outperform the SVM on 9 pairs. Furthermore, we

outperform the SVM on 8 of the 10 pairs of which the relative SVM ac-

curacies are lower than 97%. Among them, we outperform the SVM by

more than 40% on 6 pairs. In these cases the prior knowledge does help the

classification task.

However, as the gap between the accuracies of the SVM and the human

gets smaller, there is less possible room for improvement by concentrating

information, and we do not improve over the SVM as often.

The p-value for the alternative hypothesis that the SVM relative accu-

109

racy and the relative improvement are negatively correlated is 0.006865. Any

p-value below 0.05 is considered significant. Therefore, our approach does

work better when there is a larger gap between the SVM and the human

accuracies.

Other than cases with insufficient room of improvement by concentrating

information, which can be seen by looking at the relative SVM accuracy

to human accuracy, we do not improve over the purely statistical approach

when the quality of prior knowledge itself is not good enough at localizing the

important region of the example. This includes the 睛 vs. 晴 pair, in which

one of the short horizontal strokes in the left box radical in睛 is inadequately

found to be consistent to the short horizontal stroke in the left box radical

in 晴, and as a result the target region does not always include all of the

important information in some examples after these two short horizontal

strokes are masked out. Another such case is the 大 vs. 犬 pair, in which

we treat the long stroke curved to the left at a straight stroke. This model

mismatch prevents us from properly masking out irrelevant information, and

hinders us in accurately locating the target region.

110

4.6 Experiment 2: Does our approach concentrate

classification information?

4.6.1 Experiment 2A: Learning curves

Overview

We claim that our approach concentrates information in the examples. More

concentrated information should result in an easier learning problem. This

in turn should produce a steeper learning curve, which starts at the same

accuracy but initially improves much faster with additional training exam-

ples. We look at the learning curves of our approach, and compare it against

the SVM baseline in this section.

Experimental design

In order to better understand how the prior knowledge in our approach

affects the learning rate, we look at the learning curves of characters with

regard to the number of class-labeled training examples.

For our approach, after learning the best structural model using the 40

structurally labeled training examples, we repeatedly sample sets of train-

ing examples of sizes 2, 10, 20, 40, 80, 160, and 320 from the class-labeled

examples excluding the 40 structurally labeled examples. The remaining

unused examples form the hold-out set for testing. SVM kernel parameters

are found by performing cross validation on the sampled training set using

the cross validation posterior probability except for the 2-example training

set, of which the parameters are take from the 40 structurally labeled train-

111

ing examples. An RBF SVM is then trained using the gradient features for

the target regions of the sampled training set, and tested on the hold-out

set. We plot the test accuracy on the hold-out set versus the number of

class-labeled training examples as the learning curve for our approach.

For the learning curve for the RBF SVM, we repeatedly sample sets of

training examples of sizes 10, 20, 40, 80, 160, and 320 from the whole set of

available examples. SVM kernel parameters are found using cross validation

on the sampled training set. The RBF SVM is trained using the standard

WDH features for the whole character images of the sampled training set,

and tested on the hold-out set. We plot the test accuracy on the hold-out set

versus the number of class-labeled training examples as the learning curve

for the SVM.

Empirical results

Figure 4.1 shows the learning curves for two pairs of characters whose SVM

accuracies are low relative to their human accuracies. Figure 4.2 shows the

learning curves for two pairs of characters whose SVM accuracies are close

to their human accuracies. The error bars are standard deviations of the

accuracies.

Figure 4.1a shows the learning curves for the pair 壕 vs. 嚎, and Fig-

ure 4.2a shows the learning curves for the pair 澜 vs. 谰, which our method

significantly outperforms the SVM on both pairs. Figure 4.1b shows the

learning curves for the pair 睛 vs. 晴, and Figure 4.2b shows the learning

curves for the pair 大 vs. 犬, which we perform worse than the SVM in the

end.

112

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
RBF SVM

(a) Learning curve for the pair 壕 vs. 嚎

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
RBF SVM

(b) Learning curve for the pair 睛 vs. 晴

Figure 4.1: Learning curves for our method and learning curves for the RBF
SVM on pairs of characters of which the SVM accuracies are relatively low
compared to the human accuracies. The errorbars are standard deviations
of the accuracies.

113

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
RBF SVM

(a) Learning curve for the pair 澜 vs. 谰

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
RBF SVM

(b) Learning curve for the pair 大 vs. 犬

Figure 4.2: Learning curves for our method and learning curves for the RBF
SVM on pairs of characters of which the SVM accuracies are close to the
human accuracies. The errorbars are standard deviations of the accuracies.

114

Interpretation

As can be seen in Figure 4.1 and Figure 4.2, our approach always grows

faster initially and significantly outperforms the standard RBF SVM when

the size of the training set is small even for cases that we lose to the SVM in

the end. However, if there are enough training examples, a purely statistical

classifier with enough expressivity such as the RBF SVM may be capable

of eliminating any advantage that the possibly inaccurate prior knowledge

carries.

4.6.2 Experiment 2B: Steepness of the learning curves

Overview

By looking at the learning curves in Section 4.6.1, it can be seen that the

improvement in accuracy with additional training examples for our approach

is always faster than the SVM when the size of the training set is small. In

order to better study the steepness of the learning curves, we fit a model

to the learning curves in this section. We think, through concentrating

information in the examples, our approach has a steeper learning curve than

a purely statistical approach.

Experimental design

To quantify the steepness of the learning curves and have a better compari-

son between our approach and the SVM, we fit a simple model to the learning

curves. Assuming a 50% accuracy at 0 training example and an exponen-

tially decaying growth rate of accuracy with additional training examples,

115

we fit the following model to the learning curves obtained in Section 4.6.1:

y = −(0.5− α)e−λx + (1− α), (4.2)

where x is the number of training examples and y is the testing accuracy.

y = 1 − α is the asymptote of Equation (4.2), and λ is the decay constant

of the growth rate of the accuracy. A larger λ indicates a steeper learning

curve. Figure 4.3 and Figure 4.4 show the fit model to the learning curves

in Figure 4.1 and Figure 4.2.

This model for the learning curves is not perfect. It does not always

achieve a 100% accuracy even with infinite training. However, we think this

simple model is accurate enough for the range we care about, and suitable

for our purpose.

Empirical results

Table 4.5 lists the asymptotes y = 1 − α and the decay constants of the

accuracy growth rates λ of the models fit to the learning curves of the RBF

SVM and our approach. The mean decay constant of the accuracy growth

rate is 0.0432 with a standard deviation of 0.0208 for the RBF SVM, and

0.2058 with a standard deviation of 0.1417 for our approach.

Interpretation

As can be seen in Table 4.5, our approach produces a steeper learning curve

for all pairs of characters in terms of the decay constant of the accuracy

growth rate λ, even for the pairs that we fail to improve in the end. This

116

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

ac
cu

ra
cy

#training examples

our approach
fit curve to our approach

RBF SVM
fit curve to RBF SVM

(a) Fit model for the learning curve of the pair 壕 vs. 嚎

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

ac
cu

ra
cy

#training examples

our approach
fit curve to our approach

RBF SVM
fit curve to RBF SVM

(b) Fig model for the learning curve of the pair 睛 vs. 晴

Figure 4.3: Models fit to the learning curves for our method and for the
RBF SVM on pairs of characters of which the SVM accuracies are relatively
low compared to the human accuracies.

117

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

ac
cu

ra
cy

#training examples

our approach
fit curve to our approach

RBF SVM
fit curve to RBF SVM

(a) Fit model for the learning curve of the pair 澜 vs. 谰

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

ac
cu

ra
cy

#training examples

our approach
fit curve to our approach

RBF SVM
fit curve to RBF SVM

(b) Fit model for the learning curve of the pair 大 vs. 犬

Figure 4.4: Models fit to the learning curves for our method and for the
RBF SVM on pairs of characters of which the SVM accuracies are close to
the human accuracies.

118

Pair 1− α, RBF SVM λ, RBF SVM 1− α, Our Approach λ, Our Approach Our λ− SVM λ

睛 晴 0.8658 0.0210 0.8243 0.1415 0.1205

狠 狼 0.9013 0.0224 0.9787 0.1619 0.1395

壕 嚎 0.8830 0.0485 0.9814 0.1740 0.1255

季 李 0.9219 0.0618 0.9515 0.0944 0.0326

鸣 呜 0.8519 0.0219 0.8542 0.2211 0.1992

木 朮 0.8826 0.0967 0.9548 0.5756 0.4789

便 使 0.9240 0.0419 0.9677 0.1214 0.0795

扶 抉 0.9253 0.0496 0.9578 0.3606 0.3110

伸 仲 0.9519 0.0552 0.9471 0.1692 0.1140

竟 竞 0.8669 0.0176 0.8888 0.1510 0.1334

大 犬 0.9488 0.0798 0.9305 0.4903 0.4105

兔 免 0.9362 0.0470 0.9419 0.3020 0.2550

鸟 乌 0.8607 0.0234 0.8703 0.2762 0.2528

酒 洒 0.9245 0.0342 0.8350 0.0349 0.0007

候 侯 0.8935 0.0351 0.8700 0.0899 0.0548

澜 谰 0.8951 0.0471 0.9565 0.1488 0.1017

白 自 0.9606 0.0509 0.9521 0.1419 0.0910

孟 盂 0.9055 0.0239 0.9066 0.0503 0.0264

mean 0.0432 0.2058 0.1626

standard deviation 0.0208 0.1417

Table 4.5: Asymptotes y = 1 − α and the decay constants of the accuracy
growth rates λ of the models fit to the learning curves of the RBF SVM and
our approach. A larger λ indicates a steeper learning curve.

confirms our claim that our approach does indeed concentrate information,

making the learning problem easier.

4.7 Experiment 3: What is the value of the prior

knowledge?

4.7.1 The worth of the prior knowledge in the number of

class-labeled training examples

Overview

The prior knowledge in our approach is a simplified and imperfect stand-in

for additional training examples. We want to measure how much the prior

knowledge is worth in terms of the number of additional examples. The

119

worth of the prior knowledge indicates the quality of the prior knowledge,

as well as aspects of the difficulty of the classification problem.

Experimental design

To quantify the number of class-labeled training examples our prior knowl-

edge is worth, we use the learning curves obtained in Section 4.6.1, find

the number of class-labeled training examples our approach needs to train

on to achieve 95% of the highest accuracy of our approach in the learning

curve, and compute the number of additional class-labeled training examples

the RBF SVM needs to achieve the same accuracy. We treat the learning

curves as piecewise linear curves during the computation, and extrapolate

the curves if the model is unable to achieve the same accuracy within the

total number of training examples available. Figure 4.5 and Figure 4.6 show

the aforementioned 95% accuracy level along with the learning curves in

Figure 4.1 and Figure 4.2. The length of the line segment of the 95% accu-

racy level between the two learning curves is our estimation of the number

of class-labeled training examples the prior knowledge is worth in our ap-

proach.

The choice of the 95% accuracy level is not absolute. The value of the

prior knowledge changes depending on the accuracy level.

Empirical results

Table 4.6 shows the estimated number of training examples the prior knowl-

edge is worth in our approach, sorted according to the estimation.

120

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
95% max accuracy of our approach

RBF SVM

(a) Learning curve for the pair 壕 vs. 嚎

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
95% max accuracy of our approach

RBF SVM

(b) Learning curve for the pair 睛 vs. 晴

Figure 4.5: Learning curves for our method and the RBF SVM along with
the 95% accuracy level for our method on pairs of characters of which the
SVM accuracies are relatively low compared to the human accuracies.

121

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
95% max accuracy of our approach

RBF SVM

(a) Learning curve for the pair 澜 vs. 谰

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

#training examples

our approach
95% max accuracy of our approach

RBF SVM

(b) Learning curve for the pair 大 vs. 犬

Figure 4.6: Learning curves for our method and the RBF SVM along with
the 95% accuracy level for our method on pairs of characters of which the
SVM accuracies are close to the human accuracies.

122

壕 嚎 1313.04

木 朮 389.77

狠 狼 321.98

澜 谰 247.54

竟 竞 193.48

鸟 乌 132.79

扶 抉 124.61

便 使 121.74

鸣 呜 103.38

季 李 82.68

兔 免 58.71

孟 盂 45.46

大 犬 40.31

候 侯 36.74

白 自 33.39

伸 仲 31.07

睛 晴 7.75

酒 洒 -170.45

mean 173.00

standard deviation 302.29

Table 4.6: Estimated number of training examples the prior knowledge in
our approach is worth. Shaded rows represent pairs of characters that the
SVM accuracies relative to the human are higher than 98%.

123

Interpretation

Among the pairs of characters we tested on, the RBF SVM requires on

average of about 173 additional class-labeled training examples to achieve

the same 95% highest accuracy of our approach.

The examples in Table 4.6 can be roughly divided into 3 groups. The

first group contains 5 pairs of characters. The prior knowledge in this group

is worth hundreds or even thousands more additional training examples.

The prior knowledge in the second group is not worth as much as that in

the first group, and may benefit the classification if the number of available

training examples is limited. The prior knowledge in the third group is not

worth a lot of examples. For many pairs of characters in this group the

SVM accuracies relative to the human are already high, and are represented

as shaded rows in the table. In the case of the pair 酒 vs. 洒, the prior

knowledge actually hurts. This usually means that the prior knowledge in

our approach fails to focus on the right region accurately due to inadequate

modeling, or that the statistical learner picks up useful information that we

are not concentrating on.

4.7.2 Learning curves using reduced numbers of structurally

labeled training examples

Overview

In Section 4.7.1 we measure the value of prior knowledge with a fixed number

of structurally labeled training examples in terms of the equivalent number

of additional class-labeled training examples. As can be seen in Table 4.6,

124

the worth of prior knowledge varies greatly among the different pairs of char-

acters. In order to better understand the relation among prior knowledge,

structurally labeled training examples, and class-labeled training examples,

we investigate a few representative pairs of characters to study their behavior

with reduced number of structurally labeled training examples.

There are two learning elements in our approach. One is the structural

model, and the other is statistical classifier. Each of the elements requires

a certain number of training examples to reach its optimality. We want to

investigate the relationship between the number of training examples and

the optimality of each learning element. We also want to investigate the

fungibility between the structurally labeled training examples and the class-

labeled training examples (i.e., to what extent a deficient number in one

training set can be compensated by increasing the size of the other set).

Experimental design

We choose one pair from each of four different categories: 壕 vs. 嚎, a more

complex pair of characters on which our approach works very well, 狠 vs.

狼, a pair of characters on which our approach works quite well, 鸣 vs.呜, a

pair of characters on which our approach outperforms the SVM by a smaller

margin, and 酒 vs. 洒, a pair of characters on which our approach does not

work well.

For each pair of characters, we learn the best structural model and using

40, 30, and 20 structurally labeled training examples. We then repeatedly

sample sets of training examples of sizes 2, 10, 20, 40, 80, 160, and 320 from

class-labeled examples excluding the structurally labeled examples already

125

used. The remaining unused examples form a hold-out set for testing. As

in Experiment 2A in Section 4.6.1, SVM kernel parameters are found by

performing cross validation on the sampled training set using the cross val-

idation posterior probability except for the 2-example training set, of which

the parameters are take from the structurally labeled training examples. An

RBF SVM is then trained using the gradient features for the target regions

of the sampled training set, and tested on the hold-out set. We plot the

test accuracy on the hold-out set versus the number of class-labeled training

examples as the learning curve for our approach.

Empirical results

Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10 show the resulting learn-

ing curve for the 4 pairs of characters.

Interpretation

The learning curves in Figure 4.7 show the result of the pair 狠 vs. 狼,

and exhibit the more typical behavior that one would expect. With the

reduced numbers of structurally labeled training examples, our approach

concentrates information less effectively, resulting in lower accuracies. As

the number of class-labeled training examples increases, the effects of infor-

mation concentration brought forth by the prior knowledge in our approach

become less prominent, and the learning curves eventually reach similar final

accuracies.

Figure 4.8 shows the result of the pair鸣 vs.呜. The accuracies also drop

with reduced numbers of structurally labeled training examples. Further-

126

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

class labeled training examples

40 structurally labeled training examples
30 structurally labeled training examples
20 structurally labeled training examples

Figure 4.7: Learning curves for our method with 40, 30, and 20 structurally
labeled training examples for the pair狠 vs.狼. The error bars are standard
deviations of the accuracies.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

class labeled training examples

40 structurally labeled training examples
30 structurally labeled training examples
20 structurally labeled training examples

Figure 4.8: Learning curves for our method with 40, 30, and 20 structurally
labeled training examples for the pair鸣 vs.呜. The error bars are standard
deviations of the accuracies.

127

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

class labeled training examples

40 structurally labeled training examples
30 structurally labeled training examples
20 structurally labeled training examples

Figure 4.9: Learning curves for our method with 40, 30, and 20 structurally
labeled training examples for the pair壕 vs.嚎. The error bars are standard
deviations of the accuracies.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 50 100 150 200 250 300 350

ac
cu

ra
cy

class labeled training examples

40 structurally labeled training examples
30 structurally labeled training examples
20 structurally labeled training examples

Figure 4.10: Learning curves for our method with 40, 30, and 20 structurally
labeled training examples for the pair酒 vs.洒. The error bars are standard
deviations of the accuracies.

128

more, with 20 structurally labeled training examples, our structural model

is no longer able to concentrate useful information effectively, and the infor-

mation it throws away overwhelms the information it concentrates, and the

classification suffers greatly. This is due to the fact that the target region

for this pair is harder to locate accurately, and thus our structural model

requires more structurally labeled training examples to reach its optimality.

The noise at the beginning of the learning curves is likely due to sampling

error.

Figure 4.9 shows the result of the pair 壕 vs. 嚎. The learning cliff be-

tween 20 and 30 structurally labeled training examples for this pair also

shows the similar phenomenon of reduced accuracies with reduced num-

bers of structurally labeled training examples. The learning curves for 30

structurally labeled training examples and 40 structurally labeled training

examples almost overlap each other. This is an indication that our structural

model is already optimal with 30 structurally labeled training examples, and

additional structurally labeled training examples do not offer much more in-

formation that helps classification. Another interesting phenomenon is that

the learning curve for 20 structurally labeled training examples flattens out

after 160 class-labeled training examples. This shows that the concentrated

information in our approach with 20 structurally labeled training examples is

exhausted with 160 class-labeled training examples, and the statistical clas-

sifier is already optimal with 160 class-labeled training examples given the

structural model. Additional class-labeled training examples do not further

improve the accuracy due to the bias introduced along with the information

concentration.

129

Figure 4.10 shows the result of the pair酒 vs.洒, a pair that our approach

does not work well in the end in terms of final classification accuracy. The

learning curves with fewer structurally labeled training examples are signif-

icantly steeper at the beginning. Our interpretation is that our structural

model offers a stronger learning bias when calibrated with fewer training

examples in this particular case. With more structurally labeled training

examples, the learning bias from the structural model itself is weaker, mean-

ing less concentrated information in the examples, and the approach requires

more class-labeled training examples to overcome the variance and pick up

the useful pattern.

130

Chapter 5

A Chinese Character

Recognition System

In the previous chapters, we focus on improving the classification of pairs of

structurally similar objects challenging to conventional statistical machine

learners. In many multiclass classification problems, these challenging pairs

account for a small portion of all distinctions, but contribute to a significant

part of misclassifications. In this chapter, we use the offline handwritten

Chinese character recognition system as an example, and provide a way

of improving such multiclass classification by combining our approach and

existing multiclass classification systems.

5.1 A Look at the Confusions

Given the multiclass LDA offline Chinese character recognition system de-

scribed in [14], we compute the 3755×3755 confusion matrix for the HITPU

131

database. There are 9835 nonzero entries in the confusion matrix, excluding

the correct classifications.

The overall recognition accuracy using multiclass LDA on this database

is 92.62%. Among the 3755 character classes, there are 809 character classes

with recognition accuracies lower than 90%, and 60 character classes with

recognition accuracies lower than 80%.

We collect peak entries in the confusion matrix. An entry in the confu-

sion matrix is considered a peak entry if it is being wrongly recognized as

at least 5% of the time for any character. There are 346 peak entries in the

confusion matrix, forming 255 pairs of character classes, consisting of 465

different character classes. We call the set of these 465 character classes set

A. Among these peak confusions, there are 22 3-way confusions, 8 4-way

confusions, and 1 5-way confusion.

Although the 346 peak entries are only 3.52% of the 9835 nonzero en-

tries, they account for 10.13% of all errors. They account for even larger

portion of the errors for characters with lower recognition rates. These peak

entries account for 22.48% of the errors for characters with lower than 90%

recognition rates, and 57.35% of the errors for characters with lower than

80% recognition rates.

Using the all-vs.-all voting strategy to deal with multi-way confusions,

the SVM can improve the recognition accuracies of some of the peak confu-

sions significantly. We call the subset of character classes in set A that the

SVM can improve their recognition accuracies by over 40% set B.

132

Start
Multiclass LDA

Classification

Is

classification

in set A?

Use the LDA

Classification
End

Is

classification

in set B?

Use the SVM

Classification
End

Use Our

Approach
End

No

Yes

Yes

No

Figure 5.1: A full offline handwritten Chinese character recognition system
using the combination of the multiclass LDA system, the SVM, and our
approach.

5.2 A Full Offline Handwritten Chinese Character

Recognition System

Figure 5.1 shows a combined classification strategy using the multiclass LDA

system, the SVM, and our approach for offline handwritten Chinese char-

acters. Given a test example, this system first applies the multiclass LDA

system. If the classification is not among the character classes in set A as

defined in Section 5.1, we use the LDA classification. If the classification is

one of the character classes in set B, we apply the SVM to solve the confusion

and use the SVM classification. Otherwise, we apply our approach and use

its classification. We use the all-vs.-all voting strategy to solve multi-way

confusions.

This combined classification strategy using the multiclass LDA, the SVM,

133

Start
Multiclass LDA

Classification

Is

classification

in set A?

Use the LDA

Classification
End

Use the SVM

Classification
End

No

Yes

Figure 5.2: A full offline handwritten Chinese character recognition system
using the combination of the multiclass LDA system and the SVM.

Start
Multiclass LDA

Classification

Is

classification

in set A?

Use the LDA

Classification
End

Use Our

Approach
End

No

Yes

Figure 5.3: A full offline handwritten Chinese character recognition system
using the combination of the multiclass LDA system and our approach.

and our approach not only outperforms the multiclass LDA system alone,

but also does better than the combined system using only the multiclass

LDA and the SVM, as depicted in Figure 5.2, and the system using only the

multiclass LDA and our approach, as depicted in Figure 5.3.

134

5.3 Estimated Improvement

Among the peak confusions, we have experimental data for the SVM for 26

difficult pairs of characters, and for our approach for 18 difficult pairs of

characters.

Using the experimental data that we have, the combined system us-

ing the multiclass LDA and the SVM improves over the multiclass LDA

system by an average of 44.25% on the difficult pairs of characters. The

combined system using the multiclass LDA and our approach improves over

the multiclass LDA system by an average of 55.03% on the difficult pairs of

characters.

Because our approach tends to do better on pairs of characters that the

SVM does not significantly improve upon, if we use the combined strategy

that utilizes the multiclass LDA, the SVM, and our approach as illustrated in

Figure 5.1, the improvement over the multiclass LDA system on the difficult

pairs of characters is 60.66%.

Assuming a more conservative estimate of 40% combined net improve-

ment on the difficult pairs of characters using the strategy in Figure 5.1 and

the distribution of errors described in Section 5.1, the estimated resulting

improvement in error rate is 4.05% for all characters, 8.99% for characters

with lower than 90% recognition accuracies, and 22.94% for characters with

lower than 80% recognition accuracies.

135

Chapter 6

Conclusions and Future

Work

6.1 Conclusions

We proposed a new framework to improve classification of structurally sim-

ilar objects by making use of prior domain knowledge to concentrate infor-

mation. This concentration of information is achieved in two folds. First,

the structures of the object are estimated through a sequence of model fit-

tings. Then, once the structures are found, one crucial part of the example

bearing the most discriminative information is identified, and information

from the remaining parts of the example is discarded.

Each model in the sequence of model fitting operations is in the form of

a generative model that renders part of the example. By performing an op-

timization we fit the variables in the generative model to the corresponding

part in the example. These variables are the structural features that repre-

136

sent structures in the example. This optimization is not always convex, but

by conditioning on the structural features found by previous model fittings

in the sequence, the optimization is able to find the desired local optimum

in a wide enough locally convex region. This conditioning is achieved by

using a conditional prior as well as subtracting information of constituent

parts of previously matched structures irrelevant to the current model fit-

ting from the representation of the example. Parameters are optimized to

enhance global sequential convexity and accuracy of the final estimate of the

structures.

The approach concentrates information by discarding information from

most of the example, leaving only the most crucial part of the example

bearing the most information for classification. This concentration of infor-

mation serves as a very strong learning bias that results in a much smaller

hypothesis space. Due to the much smaller hypothesis space, the learning

problem is easier, requiring much fewer training examples to learn the pat-

tern. The quality of the final classifier depends on how well the information

for classification is concentrated, which in turn depends on both how well

our model is in localizing the crucial structure in the example and how the

discriminative information is distributed within the example.

Using the structurally labeled training examples and prior knowledge,

we find the correspondence between the structures of two classes of objects

and identify the discriminative structures. Structurally labeled training ex-

amples are training examples with the parameters of its basic constituents

annotated. We use mutual information among the constituents to construct

the sequence of models suitable for estimating the structures.

137

The identification of the crucial structure as well as the construction of

the sequence of models to evaluate the structural features are both auto-

matic, given prior domain knowledge and a small set of structurally labeled

training examples. Prior domain knowledge tells us how to model the most

basic constituents of the objects, how to construct and evaluate the struc-

tural features out of the basic constituents, and how to subtract information

of previously fitted structures from the representation of the example.

We applied this framework to the problem of classifying pairs of similar

offline handwritten Chinese characters. We showed that by concentrating

information, we are able to significantly improve the recognition rate of

pairs of characters that the conventional purely statistical classifier does

poorly compared to humans. We also showed that, regardless of whether

our approach outperforms the purely statistical approach in the end, the

concentrated information in our approach always results in easier learning

problems, producing steeper learning curves, and consistently achieve higher

accuracy when training data is limited. Our approach may not work well

in the end if it cannot localize the crucial structures well because of model

mismatch between the prior knowledge and the examples, or if the statistical

machine learner is able to pick up discriminative information distributed in

parts of the example that we do not concentrate on.

138

6.2 Future Work

6.2.1 Extending to classification problems of other struc-

tured objects

The framework we proposed is general, and can be applied to classification

problems of other structured objects, including other real world objects in

images as well as other structured objects in non-vision domains. To apply

our framework, one requires the prior knowledge of how the object can be

modeled using basic constituent parts, how to construct candidate structural

features using the constituent parts, and how to condition the models in the

sequence by using the conditional prior and by subtracting information of

parts of the object from the representation of the example. Once we have

this prior knowledge and the structurally labeled training examples, we can

identify the discriminative structures, construct the sequence of generative

models for the structural features, and evaluate the structural features by

fitting the models.

Prior knowledge for offline handwritten Chinese characters is relatively

simple because of the relatively simple way how the example is composed

of its constituents. As an example, here is how one might model real world

objects in an image, such as sail boats. The constituent models will need to

include everything that can generate pixels in the image. The complexity

of each model can vary depending on interest. One may want to use much

simpler models for the sky and the sea than for the the hull and the sail.

Compared to modeling the strokes in Chinese characters, the appearance

model may additionally need to take into account color, lighting, angle,

139

and occlusion, etc. Structural features are constructed using simplified joint

configurations of constituent parts. The models form segmentations of pixels

in the image. Subtracting information from the image can be achieved by

penalizing the model for matching pixels outside of its segment.

Unlike Chinese characters, in images of real world objects, one may need

to take into account the possibility for a model to be completely absent from

an example due to occlusion. This affects the identification of corresponding

structures between classes, as well as the construction and evaluation of the

structural features.

6.2.2 Using multiple target regions

In the approach we proposed, we only consider one target region for each

classification problem. One can easily extend the approach to incorporate

multiple target regions, generating a separate target region for each discrim-

inative part. Discriminative features can be generated for each target region,

and concatenated into a large feature vector for the statistical discriminative

learner.

Compared to the alternative that uses one large target region that con-

tains many discriminative parts, using many separate target regions the

statistical learner can better discover discriminative patterns for each target

region. It is an interesting problem to decide when to combine or separate

the discriminative regions and to learn the weights for the target regions.

140

6.2.3 Learning a minimally sufficient model

In our approach, we always include all of the structural features deemed

useful in estimating the structure in the sequence. This is sufficient for

our approach, but not always necessary. One only needs to include the

structural features necessary in locating the target region accurately enough.

It is an interesting problem to construct a minimally sufficient model that

locates the target region well enough for the classification task. A simpler

classification task with classes more dissimilar from each other should require

a simpler model.

6.2.4 Dynamically adapting the structural model

In addition to learning a minimally sufficient model as described in Sec-

tion 6.2.3, one can instead consider deciding at testing time what models

to use using “meta prior knowledge” that specifies when part of the prior

knowledge is useful.

For example, in modeling Chinese characters, it may be sufficient to use

a straight line to model each stroke for most of the examples. However, for

some messier examples, it may be necessary to model the strokes as curves

or to include extra recovery strokes to accurately detect the structures. One

may decide to apply the more sophisticated model to the test example when

the simple model is not good enough or by detecting the writing style of the

character.

Dynamically adapting the structural model can also be one way of ac-

141

counting for the occluded parts in modeling real world objects alluded to

earlier.

142

Bibliography

[1] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A

limited memory algorithm for bound constrained optimization. SIAM

Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for sup-

port vector machines. ACM Transactions on Intelligent Systems and

Technology (TIST), 2(3):27:1–27:27, April 2011. Software available at

http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[3] Ming-Wei Chang, Lev Ratinov, Nicholas Rizzolo, and Dan Roth. Learn-

ing and inference with constraints. In Proceedings of the 23rd National

Conference on Artificial Intelligence, volume 3, pages 1513–1518. AAAI

Press, 2008.

[4] Chi-Hau Chen and Patrick Shen-Pei Wang, editors. Handbook of Pat-

tern Recognition and Computer Vision. World Scientific Publishing Co.

Pte. Ltd., River Edge, NJ, USA, third edition, 2005.

143

[5] Navneet Dalal and Bill Triggs. Histogram of oriented gradient for hu-

man detection. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 1, pages 886–893, 2005.

[6] Kai Ding, Zhibin Liu, Lianwen Jin, and Xinghua Zhu. A comparative

study of Gabor feature and gradient feature for handwritten Chinese

character recognition. In International Conference on Wavelet Analysis

and Pattern Recognition, volume 3, pages 1182–1186, 2007.

[7] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedes-

trian detection: A benchmark. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 304–311, 2009.

[8] Kun Duan, Devi Parikh, David Crandall, and Kristen Grauman. Dis-

covering localized attributes for fine-grained recognition. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2012.

[9] Ian Endres, Vivek Srikumar, Ming-Wei Chang, and Derek Hoiem.

Learning shared body plans. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2012.

[10] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva

Ramanan. Object detection with discriminatively trained part-based

models. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 32(6):1627–1645, September 2010.

[11] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition.

Academic Press, second edition, 1990.

144

[12] Leonid Karlinsky, Michael Dinerstein, Daniel Harari, and Shimon Ull-

man. The chains model for detecting parts by their context. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 25–32,

2010.

[13] Nei Kato, Shin’ichiro Omachi, Hirotomo Aso, and Yoshiaki Nemoto.

A handwritten character recognition system using directional element

feature and asymmetric mahalanobis distance. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 21(3):258–262, March 1999.

[14] Fumitaka Kimura, Tetsushi Wakabayashi, Shinji Tsurouka, and Ya-

suji Miyake. Improvement of handwritten Japanese character recog-

nition using weighted direction code histogram. Pattern Recognition,

30(8):1329–1337, 1997.

[15] Alexander Kraskov and Peter Grassberger. MIC: Mutual information

based hierarchical clustering. In Frank Emmert-Streib and Matthias

Dehmer, editors, Information Theory and Statistical Learning, chap-

ter 5, pages 101–123. Springer, 2009.

[16] Geoffrey Levine and Gerald DeJong. Explanation-based object recog-

nition. In IEEE Workshop on Applications of Computer Vision, pages

1–8, 2008.

[17] Shiau Hong Lim, Li-Lun Wang, and Gerald DeJong. Explanation-based

feature construction. In International Joint Conference on Artificial

Intelligence, pages 931–937, 2007.

145

[18] Shiau Hong Lim, Li-Lun Wang, and Gerald DeJong. Integrating prior

domain knowledge into discriminative learning using phantom exam-

ples. In Eleventh International Conference on Frontiers in Handwriting

Recognition, pages 523–528, 2008.

[19] Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on Platt’s

probabilistic outputs for support vector machines. Machine Learning,

68(3):267–276, 2007.

[20] Hailong Liu and Xiaoqing Ding. Handwritten character recognition

using gradient feature and quadric classifier with multiple discrimina-

tion schemes. In Document Analysis and Recognition, volume 1, pages

19–23, 2005.

[21] Enzhi Ni, Minjun Jiang, and Changle Zhou. Radical extraction for

handwritten Chinese character recognition by using radical cascade

classifier. In Xudong Wang, Fuzhong Wang, and Shaobo Zhong, ed-

itors, Electrical, Information Engineering and Mechatronics 2011, vol-

ume 138 of Lecture Notes in Electrical Engineering, chapter 49, pages

419–426. Springer, London, 2012.

[22] John Platt. Probabilistic outputs for support vector machines and com-

parison to regularized likelihood methods. In Alexander J. Smola, Pe-

ter L. Bartlett, Bernhard Schölkopf, and Dale Schuurmans, editors,

Advances in Large-Margin Classifiers. MIT Press, October 2000.

146

[23] Dan Roth and Wen-Tau Yih. Global inference for entity relation identi-

fication via a linear programming formulation. In Lise Getoor and Ben

Taskar, editors, Introduction to Statistical Relational Learning, chap-

ter 20, pages 553–580. MIT Press, August 2007.

[24] T. Saito, H. Yamada, and K. Yamamoto. On the data base ETL9

of handprinted characters in JIS Chinese characters and its analysis.

IEICE Transactions on Information and Systems, J68-D(4):757–764,

April 1985. In Japanese.

[25] Daming Shi, Steve R. Gunn, and Robert I. Damper. Handwritten

Chinese character recognition using nonlinear active shape models and

the Viterbi algorithm. Pattern Recognition Letters, 23(14):1853–1862,

2002.

[26] Daming Shi, Steve R. Gunn, and Robert I. Damper. Handwritten

Chinese radical recognition using nonlinear active shape models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25(2):277–

280, 2003.

[27] Qiang Sun and Gerald DeJong. Explanation-augmented SVM: An ap-

proach to incorporating domain knowledge into SVM learning. In The

22th International Conference on Machine Learning, 2005.

[28] Qiang Sun and Gerald DeJong. Feature kernel functions: Improving

SVMs using high-level knowledge. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, volume 2, pages

177–183, 2005.

147

[29] Qiang Sun, Li-Lun Wang, and Gerald DeJong. Explanation-based

learning for image understanding. In Proceedings of the Twenty-First

AAAI Conference on Artificial Intelligence, pages 1679–1682, 2006.

[30] T. Wakabayashi, S. Tsuruoka, F. Kimura, and Y. Miyake. On the size

and variable transformation of feature vector for handwritten character

recognition. IEICE Transactions on Information and Systems, J76-

D2(12):2495–2503, December 1993. In Japanese.

[31] Hiromitsu Yamada, Kazuhiko Yamamoto, and Taiichi Saito. A nonlin-

ear normalization method for handprinted kanji character recognition—

line density equalization. Pattern Recognition, 23(9):1023–1029, 1990.

[32] Jia Zeng and Zhi-Qiang Liu. Type-2 fuzzy Markov random fields and

their application to handwritten Chinese character recognition. IEEE

Transactions on Fuzzy Systems, 16(3):747–760, June 2008.

[33] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Al-

gorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-

constrained optimization. ACM Transactions on Mathematical Soft-

ware (TOMS), 23(4):550–560, December 1997.

[34] Tiziano Zito, Niko Wilbert, Laurenz Wiskott, and Pietro Berkes. Mod-

ular toolkit for Data Processing (MDP): A Python data processing

framework. Frontiers in Neuroinformatics, January 2009.

148

