

UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
ENGINEERING

AMI 2 4 WW
The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books
are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSI OIS LIBRARY AT URBANA-CHAMPAIGN

NEEK

L161— O-1096

ENGINEERING LIBRARY
UNIVERSITY OF ILLINOIS

URBANA, ILLINOIS

enter for Advanced Computation
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA. ILLINOIS 61801

CAC Document No. 188

IRIS/NARIS

A Geographic Information System
for Planners

by

Peter A. Alsberg et al

January, 1975

J*Y21 1976

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/irisnarisgeograp188alsb

CAC Document Number 188

IRIS/NARIS

A Geographic Information System for Planners

by

Peter A. Alsberg
William D. McTeer
Stewart A. Schuster

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

January, 1975

This work was supported by
The Ford Foundation,
The Northeastern Illinois Planning Commission, and
The Illinois Institute for Environmental Planning

TABLE OF CONTENTS

Page

Introduction and Summary 1

The Problem 5

2.1 Data 5

2.2 Analysis Techniques 6

2.3 Users 7

The Logical Structure of the Data Base 8

User Language 9

4.1 Introduction 9

A. 2 Data Expressions 11

4.2.1 Simple Expressions 11

4.2.2 Arithmetic Expressions within a Class 12

4.2.3 Boolean Expressions within a Class 12

4.2.4 Arithmetic Expression over a Parcel 12

4.2.5 Boolean Expressions over a Parcel 13

4.3 Creating Regions, Functions, and Abbreviations 14

4.3.1 Regions 14

4.3.2 Functions 15

4.3.3 Abbreviations 15

4.3.4 Utility Information and Housekeeping 16

4.4 Retrieval Requests 16

4.4.1 Tabulate 17

4.4.2 Calculate 17

4.4.3 Output 17

4.4.4 Map 17

Page

A. 5 Data Description and Miscellaneous Requests 18

4.5.1 Data Names 18

4.5.2 Data Descriptions 18

4.5.3 System Statistics 18

5. System Architecture 18

5.1 Introduction 18

5.2 Data Definition and Insertion 20

5.2.1 Data Base 20

5.2.2 Symbol Table 22

5.2.3 Parcel Dictionary 22

5.2.4 Parcel Generator 23

5.2.5 Symbol Table Generator 23

5.2.6 Preprocessor 23

5.2.7 Data Base Inserter 24

5.3 Retrieval and Analysis 24

5.3.1 Compilers 24

5.3.2 Retrieval Machines 25

5.3.3 In Core Data Structures 26

5.3.4 Utility Files 27

5.3.5 Log File 27

5.3.6 Auxiliary files 27

6. Critique 28

6.1 What Was Done Right 28

6.1.1 On Time Delivery 28

6.1.2 Need and Impact Anticipation 28

Page

6.1.3 Simple Data Structure 29

6.1.4 User Acceptable Language 29

6.1.5 Cost Effective System 29

6.1.6 Technology Push 29

6.1.7 Code Documentation 30

6.1.8 Execution Time Traces and Measurements 30

6.1.9 Extensive Data Cleaning 30

6.1.10 Missing Data Facilities 30

6.2 What We Did Wrong 31

6.2.1 One User Dependence 31

6.2.2 Multiple Resolution is Awkward 31

6.2.3 Clumsy Data Insertion 32

6.2.4 User Documentation 32

6.2.5 Scanner/Parser Weaknesses 32

6.2.6 No Distance Concept 33

6.2.7 No Very High Level Data Expressions 33

6.2.8 Direct Indexing of Regions 33

6.2.9 Table Facility for Data Interpretations 34

7. Conclusions 34

8. References 36

IRIS/NARIS

A Geographic Information System for Planners

1. Introduction and Summary

The modern land use planner has to correlate and analyze large quantities

of diverse data. For example, a planner will normally examine data about income,

land use, soils, industry, population, housing, geology, forestry, transportation,

etc. for a single site location problem. The only attribute that all this

data shares is location. It all applies to a specific place on the face of

the earth. Systems which use geographic locators to structure these diverse

kinds of data are called geographic information systems.

Geographic information systems can answer two basic questions. First,

they can tell you the attributes of a given location. Second, they can tell

you in what locations a given set of attributes occur. The first question

is asked by planners when checking that proposed land use modifications for

a given site are compatible with that site and in conformity with the regional

plan. The second question is asked when trying to choose optimal sites for

locating new or relocating existing activities.

The Center for Advanced Computation of the University of Illinois

at Urbana-Champaign began building the Natural Resource Information System

(NARIS) in early 1970. NARIS was originally designed for the storage and analysis

of natural resource data in an eight county region surrounding Chicago. NARIS

was built in cooperation with the Northeast Illinois Natural Resource Service

Center (a local agency), the Northeastern Illinois Planning Commission (a state

agency), and was supported by funds from the Ford Foundation and several state

agencies.

One year later, the Illinois Resources Information System (IRIS)

Feasibility Study was begun [1]. The study was supported by three State of

Illinois agencies: the Institute for Environmental Quality, the Office of

Planning and Analysis, and the Bureau of the Budget. It included an exhaustive

survey of the state-of-the-art in geographic information systems. This survey

covered over 60 organizations in six countries. Today, phase I of IRIS exists

and contains NARIS as a subset.

IRIS/NARIS is a parcel system*. It contains data classes which describe

attributes of land parcels. The data structure supported (a two level heirarchy)

is sufficiently flexible to accommodate natural resource, demographic, and

economic data. The 18 classes of data currently stored fall into eight major

groups: geology, land use, woody vegetation, soil, water, natural resources,

employment, and population.

The original goal of NARIS was to provide a single agency with a

tool to help analyze a regional, natural resource database. NARIS had to meet

severe cost and performance requirements if it was to become an operational

tool in day-to-day use. IRIS had more ambitious goals. It was to accommodate

a much larger and more diverse data base. We hoped that IRIS would be of use,

statewide, to all agencies, both public and private, involved in the planning

process. In spite of the facts that the need for the system was perceived

by the ultimate users, that the users played the major role in procuring funds,

that the system had both high and low level support in government, and that

many short and long term needs were correctly predicted by the computer system

design team and adequately implemented, IRIS/NARIS cannot yet be called a success.

* In the IRIS Feasibility Study [1], we classified geographic information systems
as area, point, or network systems. Area systems were further subdivided into
uniform grid, parcel, and polygon overlay systems.

The modest goals of NARIS have been met. IRIS is now in day-to-day use in

the largest planning agency in Illinois. That agency has planning authority

for two thirds of the population of Illinois. However, the growth of the system

to areas and agencies outside of northeast Illinois has not yet happened.

This history is important because it helps to illustrate the range

of interests involved when building a system like IRIS/NARIS. The complexities

involved in dealing with multiple agencies, with varying levels of skill and

often conflicting approaches to planning cannot be eliminated - in fact, these

complexities are the problem.

We learned and reinforced several concepts by building a large system

of our own and surveying other systems.

1) The user of a user oriented system doesn't know what to ask for.

He doesn't have the computer experience to know what capabilities computer

technology will support and to predict system growth areas. The system designer

must be exceptionally sensitive to the user and learn enough of the user's

job that he can interpret user requests, suggest alternative directions to

take, and predict future needs.

2) There is no such thing as "the" retrieval/analysis language.

Each class of users has developed a jargon and a thought process tuned to his

problem area. For each user there are aspects of his problem approach that

are implicit. These are in conflict with other users who would like the same

aspect of problem definition and solution to be explicit. We believe that

the acceptability of the system and the productivity of the user are both signifi-

cantly enhanced by tuning the retrieval and analysis language to the particular

problem.

3) A geographic information system should store data which is objectively

measurable on the ground. It should be able to construct interpretations from

such "raw" data. In general, interpretations change in time and differ with

analysis techniques. Data collection is the major cost of a geographic information

system (often ten times more than the cost of the software [1]). Storing raw

data is a necessary hedge against data obsolescence.

4) Parcel systems are superior to uniform grid systems. They are

cheaper because they allow the use of previously collected data on census tracts,

ownership parcels, etc. They can be made to conform to the geographic shape

of data collection units (both naturally and politically drawn) . Hence, they

allow a more accurate model of the data. They can be made to conform to the

data cells the planner already uses. Many system designers choose a uniform

grid because it makes the data easier to address and the computer system easier

to build. Unfortunately, the use of uniform grids usually requires a new data

collection effort and a retraining process for the user. The cost and schedule

implications of data collection and user re-education dramatically overshadow

the small advantage a convenient grid choice provides for the computer system

implementor

.

5) Geographic information systems are very sensitive to costs.

In order to generate systems of the necessary cost effectiveness, they must

be carefully tuned to the data structures and analyses desired. Furthermore,

the designers must plan for the rapid expansion of facilities and exploit data

management software techniques which provide the maximum storage and processor

efficiency.

2. The Problem

2.1 Data

The data base which supports the planner Is very large. Once a computer

system is available to manage it, the data base tends to expand to cover additional

geographic areas and new data classes. However, data already entered changes

slowly. During the IRIS feasibility study we found machine readable data that

would occupy more than 800 million bytes when compressed to a minimum number

of bits.

NARIS was designed to work, with only one resolution of data and one

addressing scheme. That was the 40 acre 1/4 1/4 section based on the public

land survey. The public land survey (created in 1785) was supposed to produce

a uniform grid. Unfortunately, surveying errors and other problems have produced

some 1/4 1/4 sections have more or less than four sides and 40 acres. These

idiosyncracies require a parcel system to handle the data and a rather strange

addressing scheme in the retrieval language to mirror the parcel descriptions

in current use.

As the IRIS program took shape, it became obvious that we had problems

trying to expand NARIS. There was a need for several parcel resolutions.

Some data is collected and used at a finer or more coarse resolution than other

data. We had planners who needed a county data base, one based on census divisions,

another on municipalities, or crop reporting districts, and even 160 acre 1/4

sections. Of course, each of these had a different addressing scheme. Sometimes

these addressing schemes are incompatible. That is, they can't simultaneously

exist in the retrieval language because of inherent ambiguities or because

of human engineering considerations (the IRIS/NARIS solution is to allow only

one parcel addressing scheme be active at a time)

.

2.2 Analysis Techniques

A variety of analysis techniques were required by the users. These

varied from the generation of simple tables of data about a single parcel,

to summaries of the data over a set of parcels, to more sophisticated arithmetic

analyses and map generation.

Over all these requirements there was one common theme: the need

for an interactive system. The planner deals with enormous quantities of data

and subtle relationships in that data. He had to be able to browse through

the data to discover those relationships and explore alternative planning strategies,

The requirement for mapping and weighting function analyses is particu-

larly interesting. The idea of a weighting function is to compute a parcel-

by-parcel suitability for a particular land use. This is done by weighting

each important attribute in the parcel positively or negatively depending on

how the attribute mitigates for or against the proposed land use. All of the

weights in the parcel are then summed to produce a composite suitability index.

Some users of IRIS/NARIS had previously done manual weighting function analyses

as large as 50 attributes over 18,000 parcels.

After the weights are calculated for each cell they are normally

displayed as a map. Gray scales or differently colored regions of the map

indicate varying suitability (see fig. 1). IRIS/NARIS produces gray scales

on an electrostatic plotter. Color, pen plotter maps are currently available

on the production system. Unfortunately, the plotter is 150 miles from the

major user. As a result, pen plotter maps are not used. The most frequently

used graphic is a terminal map with weights printed in each parcel. The user

hand colors the parcels according to the printed weight.

r.mm r,k r.*+ .«:«»'..'. -, •r-T.R ft

100%
weight factor

percent swamp

+4T

-4-L
0% 100%

weight factor

percent cemetery

Example of a weighting function analysis in a highway corridor study.

A cell is negatively weighted if it contains a high percentage of

swampland or cemetery.

Figure 1 : Weighting Function Analysis

It is not always possible or desirable to incorporate existing models

and analysis packages in the geographic information system. It is important

that the user be able to use the data and analysis features which are in IRIS/NARIS

to prepare machine readable files which can be input to other systems. This

feature is exercised daily by TRIS/NARIS users.

2.3 Users

The users of the system have diverse capabilities and interests.

Some are data collectors, others are urban planners or analysis specialists,

and still others are administrators and policy makers.

A common profile of the user we should support, however, can be generated

1. The user knows a subset of the data base very well.

2. The user wants access to raw data and the ability to build his

own interpretations of data about which he is expert.

3. The user wants to use standard interpretations of data that he

is not an expert on.

A. The user is not a computer scientist and has probably never used

an interactive terminal.

5. The user is suspicious of computer scientists.

Perhaps the greatest problem with a large class of the users is that

they are not accustomed to planning quantitatively. Before the advent of the

computerized geographic information system, it simply was impossible to quantita-

tively analyze the enormous data base. Therefore, many planners got used to

qualitative analyses and "flying by the seat of their pants". In order to

get the system to this kind of planner, we have an unavoidable education problem.

The planner will have to be taught how to quantize his opinions (e.g. how much

is a farm worth relative to a small pond?) Fortunately, the weighting function

8

has come into acceptance as a quantitative planning tool at many of the larger

planning agencies. This should help in the education process.

3. The Logical Structure of the Data Base

Figure 2 shows the IRIS/NARIS data base structure. The atomic data

units are called data elements . All data elements are aggregated into data

classes . In the figure, forestry is a data class with data elements type,

acres, and density. Data element values may either be numerical quantities

or character codes. In the forestry example, values for forestry type are

the character codes pine s oak3 etc. The values for forestry acres are numerical

quantities ranging from 00.1 to 40.0. In the event that the value of an element

is not recorded, a "missing data" value is stored.

A single class entry in the data base is called an occurrence . An

occurrence has one set of data element values for each data element in the

data class. There can be more than one occurrence for any data class in each

parcel. Occurrences usually describe things like a single stand of trees or

a single plot of soil in the parcel. In figure 2, parcel 1 has 3 tree stands.

Two are pine and one is oak. There are a total of 34.1 acres of woody vegetation

on the parcel.

Each parcel can have many data classes. However, all data must conform

to the two-level, class-element structure with multiple class occurrences.

This logical structure has been adequate for handling all the parcel attributes

we have encountered.

The parcels in the data base are referenced directly by a parcel

specification . This specification is tuned to the particular user and geographic

REGION

PARCEL PARCEL 2

FORESTRY

SOIL

CLASS^
CLASS M

REGION • • •

7 DATA \

1base[PARCEL N

TYPE ACRES DENSITY

PINE 15.0 0.75

PINE 17.0 0.25

OAK 2.1 0.55

DATA ELEMENTS

OCCURRENCES

VALUES

Figure 2: The Iris/Naris Data Structure

addressing scheme involved. The two schemes currently used are hased on the

public land survey and intended for use on the 1/4 section and 1/4 1/4 section

data bases.

In normal use, individual parcels are seldom directly referenced.

Instead, region names are used to refer to sets of parcels. Each parcel has

an internal parcel number. Regions are indexes (inverted lists) which contain

these internal parcel numbers in a compressed form. The parcels in a region

need not be geographically contiguous.

In addition to the parcel data base and region files, there are many

auxilliary files which provide on-line documentation. Every class, data element

and non-numeric data element value can be listed and described on-line. Also,

the request used to create any of the existing utilities (regions, functions,

and abbreviations) can be recalled and displayed.

4. User Language

4.1 Introduction

The user language was intended to provide powerful retrieval capabilities

in an interactive environment. The syntax of the language was made as English-

like as possible to facilitate fast learning, ease of use, and clarity. All

data classes and elements are referred to by full length names. All requests

have a simple, consistent sentence structure. Requests may be several lines

long.

There are two basic categories of requests: those that retrieve

data from the geographic data base and those which perform auxiliary actions.

A retrieval request is composed of phrases that specify the data elements to

be accessed, the action to be executed on the data, the scope to be acted upon

10

(a region), and the destination of the results of the retrieval. Each action

has a unique verb in the request language: tabulate a calculate^ map 3 and output.

Tabulate lists information on a parcel-by-parcel basis. Calculate produces

summaries of data over the complete region. Map produces scaled and accurate

maps of parcels that are gray level shaded according to the computed value

of an arithmetic expression. Output produces a disk file containing the value

of one or more arithmetic expressions for each parcel. The output verb allows

other programs such as report generators, statistical systems, simulators,

and site location algorithms to manipulate the data outside of IRIS/MARIS [2,3].

Regions allow a user to manipulate data using a geographic notion

that is ingrained in their thought processes. By limiting each request to

the parcels specified in a region, serial searching of the entire data base

is eliminated.

Phrases that specify the data elements to be retrieved can be as

simple as a single data element name or as complex as an expression containing

functions and Boolean and arithmetic operators. Parcel weighting schemes are

specified by arithmetic expressions. At the lowest level, these expressions

add, subtract, multiply and divide values of numerical data elements within

the same occurrence. By combining low level arithmetic expressions with Boolean

expressions, a single value for a class can be computed on a subset of the

occurrences in a parcel. A single value or weight for a parcel can then be

computed by arithmetically combining the values calculated for different classes.

Auxiliary requests permit users to create and maintain various utilities

or textual descriptions useful in the construction and execution of retrieval

requests. For example, an abbreviation utility permits a user to abbreviate

portions of a request with a single name. This gives the language a text replacement

11

macro capability which reduces verbosity for the familiar user, permits long

requests to be broken into smaller segments, and lets nonsophisticated data

users easily execute requests created by technical specialists. English text

descriptions of data classes, elements, and values are available through the

what is request. The what is request also allows users to recall the definition

of a utility (a region or abbreviation function) . Other facilities in the

language are used to manage the various utilities. These facilities allow

a user to save a utility, destroy a utility, or control which users and agencies

have access to a utility.

The following sections will give a more precise description of the

user language. Examples of requests and phrases will be used in conjunction

with a flow diagram of the syntax. Data class and element names as well as

data values will be drawn from data bases currently in the IRIS/NARIS system.

Detailed descriptions of the data element values used in examples will not

be given. The user normally obtains this information directly from the system.

For the purposes of this paper, only a general description of the request is

necessary to understand what the system is doing.

4.2 Data Expressions

Data expressions denote data elements to be accessed, specify arithmetic

calculations to be performed on values retrieved, and specify which data occurrences

should be included in higher order calculations. Each reference to a data

name in an IRIS/NARIS request implies the retrieval of the corresponding data

values from the data base.

4.2.1 Simple Expressions

A simple expression is a data element name. Some of the data element

names in the soil class are soil number, soil acres, and soil erosion.

12

4.2.2 Arithmetic Expressions within a Class

A class arithmetic expression specifies the retrieval and calculation

of values within a single class occurrence. Figure 3 shows the syntax of this

phrase along with an example. The arithmetic operations supported are unary

supported are unary plus and minus (+,-), addition (+) , subtraction (-) , multipli-

cation (*), division (/), and exponentiation (**) . All arithmetic is real.

Functions, somewhat like Algol function calls with one argument, can also be

used in arithmetic expressions. The traditional precedence of operators is

used and can be altered, using parentheses, in the usual manner.

4.2.3 Boolean Expressions within a Class

A Boolean facility is provided to specify which occurrences qualify

for higher order calculations or data retrievals. This facility, called

a class Boolean expression , returns a true, false, or maybe value for each

occurrence in a single class. Figure 4 shows the syntax for class Boolean

expressions. A class Boolean expression is given the value true if the relation

is satisfied for the arithmetic expressions or data elements involved. If

the relation is not satisfied then the value is false. If the relation is

indeterminable, because of missing data or execution errors (e.g. divide by

zero), then the value is maybe. The logical operators and and or with traditional

precedence and expression parentheses are supported. Figure 5 shows the true,

false, maybe logic for and and or.

4.2.4 Arithmetic Expression over a Parcel

Parcel arithmetic expressions (PAE) produce a single arithmetic value

for each parcel. Figure 6 shows the PAE syntax. The rules for using PAE primaries

to form PAE's are exactly analogous to the rules for class arithmetic expressions.

w

CD

E
3
C

e
C
o
<n
en

<D
i_

Q.
X
<D

O

aj

E

en

o °
oD
o
k.

co

E

c

CD

E
o
c

c
o>

E
0)

CD

c
g
to
V)
CD
i_

Q.
X
CD

0)

E

© i
cd

E
o
c

in

en

O
O

10 =
c

c

><

CD

w

* \~/

* O
*"

*

>- O
1- k_— CD

CO Ez :d
UJ cQ

0)

* c
o

CO ^_
LU CO

tr

o
o CO

CO

o
< o O

z c CD

Eo o o
u_ c CO

1- O CD

£
o x:

> CO _c
o 3

Eo CD

_J co o CO

o co 3
UJ to E
_ d)

i_ CO

Q. CD
+ X E

CD o
CO O c
UJ •4— t-

cr
o
<

CD

E CD

E
D

c
CD

E
0)

L_ C
>- o CD

cr
CO c O

\- CO CD O
"Oco D E

UJ o CD

cc O CD Oo
Ll — CO

CD CO

Q. CD
•*-

E O
o c
X
CD

c
o
CO
CO
(D
!k_

Q.
X
UJ

o

"SB

E

CO
CO

o

ro

CD

Z3

o
o

E
o

-Q

-4—
</)

E

en
0)

E
o
c

c
0)

E
.92

o
T3

0)

O
c

C
O
co
en
CD
w.
CL

LU

c
D
_CD

O
O
00

CO
CO

O

Z3

OPERANDS OPERATIONS

bl b2 bl AND b2 bl OR b2

true true true true

true fal se false true

true maybe maybe true

fal se true false true

fal se fal se false fal se

false maybe fal se maybe

maybe true maybe true

maybe false false maybe

maybe maybe maybe maybe

Figure 5" True, False, Maybe Logic for AND and OR

13

A PAE primary is shown on the top line in figure 6. Function names may also

be used in PAEs.

A PAE primary is a rule for computing a single result for one class

in one parcel. A vector of values is produced by the evaluation of the class

arithmetic expression on each qualifying data occurrence within each parcel.

If a class Boolean expression is not used then every occurrence within the

class is a qualifying occurrence. When a Boolean expression is included in

the PAE primary, the expression is evaluated on each occurrence. If the resulting

value is false then the data occurrence does not qualify. If the value is

true then the occurrence qualifies. If the value is maybe, then the computation

is terminated on the parcel and the user is notified.

The resulting vector of values are operated upon by the algorithm

associated with the specified functional designator. Total causes the final

result of the PAE primary to be summation of values in the vector. Average

computes the average value. Min and max find the minimum or maximum value

respectively. Count returns the number of values in the vector (equal to the

number of qualifying occurrences)

.

A PAE primary may contain a class Boolean expression which disqual-

ifies all of the occurrences. In this case, a value of zero is assumed for

the result of the primary regardless of the functional designator. This condition

is noted by the system and indicated to the user if necessary.

4.2.5 Boolean Expressions over a Parcel

Parcel Boolean expressions are used to produce a single true, false,

or maybe value on all the data classes and their occurrences within a single

parcel. The syntax of parcel Boolean expressions is given in figure 7. The

primary for a parcel Boolean expression is a class Boolean expression. The

$6&©

>-

co

UJ

Q
>
I-
co
UJ
(T
O
u_

UJ

<
or
UJ
>
<
+
to
o
o
UJ

cr

ui

O
CO

UI
cr
ui
X
$
CO
UI
cr

o
<

o
CO

_i

<

0)

Q.

E
o
X
CD

C
o
(/)

(/)

<D
k_
Q.
X
UJ

o

E

o
k_

CD

k_

en

Q
<

cr
o

a

i-
o
>

CO

LU
cz

o
* CO

(f)
CO a>
LU ^_
cr o.o
< X

LU
>
cr c
CO o
LU _CP

cr
o o
u. o
Q CD
2
<

~CD
ro oO k-

o
LU

cr
UJ
CD

O
Q_

CD

O
CO

CD

Q.

E
o
x
Q)

14

rules for the evaluation and precedence of operations are analogous to class

Boolean expressions.

4.3 Creating Regions, Functions, and Abbreviations

4.3.1 Regions

Regions are one of the more important concepts in the TRTS/MARIS

system. The region request allows a user to select, in language familiar to

him, a portion of the data base for further analysis. This eliminates unnecessary

serial processing. It reduces the cost of using the system, the time needed

to answer a request, and the amount of output that a user must wade through.

Regions point to subsets of the parcels in the data base. Figures

8 and 9 present the syntax for creating regions. They may be created in four

different ways:

(1) by explicit geographic description using standard Public

Land Survey notation to address one or many parcels;

(2) from the data content of parcels using Boolean expressions

to specify the conditions that data values must satisfy;

(3) from the geographic locators attached to external data files;

(4) by constructing new regions from existing regions using the

set operations union, intersect, and exclude.

Regions, internally, are inverted list constructs. However, since

they are completely user specified, there is no system guessing as to what

should be indexed or how limited the data analysis can be to form an index.

This design is unique to IPIS/MARIS but can be useful to ether data systems

maintaining slowly changing data bases.

<D

C
o
<0

CO

<D
i_

Q.
X
a>

c
o
o>
d)
wV
CO

E
o
c

c
o
5>
a>w
$
0)

c

g
o
UJ

CO
cr

o

CE

CO r>
a:

h-
CJ
UJ
CO
DC
UJ
h-
2

cr u

00
cr

ui
Q
_l
O
X
UI

cr

r>>

c
o
CO
CO

CD
k_

CL
x:

LU

c
oo

© en
< CDo

crI
o "D
tu C
a D
3
-1

•+—

O CO

X CD
UJ ^

o
cr
CD

o cro
CO c

o
CO
CD

en
cr CD

3 cr
CD
3 • *

CO CD
z
o CDW© 13
UI cn
tr

Ll
ai)

Q.

E
o
X
<D

*
*

UJ

<T

- <\J tn
CM

in CD
to

(V
*••

•—
* to

oj 1 m

UJ
fO 2 CJ

CM CM
<*
ro 1

TBI
to

to

t
ID

en

00

10 —
j
to

*- CO
|

CSJ

N ^00 o>r°i "
t-

j
ro ro

T T t T ° O O O

UJ
IO

cr

z
ir

<r
i-

*•

o
UJ
V)

o c
UJ o
z —

•ft o
I
UJ

-t—

o
c

in a>•" >
i k_

ô
™

•ft X)
ro c

i o
i™ —

-

O
UJ o
CO !a

r* ^
ro Q.
(0

CO
ir

z (/)

*• -C

<a-

t- • •

a>

0) o
Q. c
E
a
X
0)

c
o

o
o

o
Q.
C/)

CD
O
D
Q_

6S

CD
i_

15

A. 3. 2 Functions

A function request is used to define a function to IRIS/NARIS. The

syntax of this request is found in figure 10. In an arithmetic expression

(figures 3 and 6) the argument for the function is enclosed in parentheses

following the function name. A function is defined by specifying the x,y coordinates

of the end-points of the line segments of a piecewise linear function of one

variable. This provides an easy to use heuristic numerical transformation

capability. The defining coordinate pairs are listed by giving the argument

value (x-coordinate) first and the function value (y-coordinate = f (x)) second.

Coordinate pairs must be listed so that a function is unambiguously defined:

that is, by specifying the x-coordinates in increasing order from left to right.

The limit indicator is used to specify discontinuous functions.

The "+" sign after the coordinate "x" in the coordinate pair (x+,y) states

that the function value "y" is not given to the argument value "x" but to the

next representable argument value larger than "x" . Similarly, the x-coordinate

"x-" indicates a number just less than "x".

4.3.3 Abbreviations

Requests contain frequently used, sometimes lengthy, names and phrases.

Each user needs to have his own abbreviations for those phrases he uses.

There is also a need to allow nonsophisticated data users to easily execute

requests or phrases (data interpretations) created by technical specialists.

An abbreviation request allows a user to specify a single word that represents

an arbitrarily long text string. Figure 11 shows the abbreviation syntax.

An abbreviation name can appear in any request and must be followed by a period.

The system expands abbreviations as it compiles a request. The depth of nesting

is a system parameter.

if)

CD

O"
<D

(T

c
O
t3
c
3
LL

O
CD

3

a>
CVJ

CM
•»

CM
CM

CO*m
-J

CM o
CM CO
m 2

CM
CM

<
o
-1

CO b
ft O
(/>

CM CO
l_ H "*--'

0) ro u_

a 0> o
CM UJ

a 0> z
.C oo •»

CD CO
M— CO

—
o

n cr
(V in UJo in CO

0) — ft
z

D (0 a> ID
CT _J<* z
<D — ^
<n O > UJ

>toa> a:

c 2* UJ
a < m i
r« O^ 5
(0 _j^

I h-
^» -j

~ -J
to* o

E <° <r CO

2 2 £* UJc O io 1-

tion IATI
2 *
.CM

r- .

<
-1
3

o >0> rr CO

w. a: 0> CM 1-

9 CD "> to • •

o 2 *• CM
<x>

CM CM =j

H-
c * O
Y CL

2 E <D
O o— X CL
1- 0)

< £
D> X

UJ a>
cc
o
CD
<

CO

CD

cr
CD

DC

c
o

>
CD

-O

<

CD

z
o

>
ill

ct
CD
CO
<
UJ

<
>
cc
CL

(-

0)

Q.

E
o
X
CD

CO

if)

CD

cr
CD

CC

c
CD

E
CD

O

o

00

CD

Z3

16

4. 3. A Utility Information and Housekeeping

Regions, functions, and abbreviations can be stored at three different

access levels: private, seraipublic, and public. The syntax to save, forget,

change, or display status, retrieve definitions, or list the names of utilities

is shown in figure 12. Each user has the only access to his private utilities.

Several users can be collected together to form a semipublic access group such

as one organization or planning agency. Utilities at this level are available

to all users in the appropriate semipublic group. Public utilities are available

to all users.

Utilities can only be created at the private level. A region, function,

or abbreviation request is used. In order to save this information for use

at another session, a user must execute a save request. To retrieve the names

of the utilities stored, a user can type a list request. In order to retrieve

the statement that created the region, function, or abbreviation a user can

issue a what is request. To destroy a utility, using a forget request, a user

must have been the one who created the utility originally and it must currently

exist at his private level. The access level of a utility can be increased

or decreased by issuing a make request.

4.4 Retrieval Requests

The user can request several different types of retrievals and reports

based on the parcels in a region. Four retrieval verbs are provided: tabulate a

calculate, output, and map. A syntax of retrieval requests appears in figure

13. Retrieval requests are built up out of all the phrases that have been

previously discussed and an additional phrase to specify the destination of

the final report, file or map.

17

Parcels whose data values result In maybe conditions or execution

errors are not included in the final report of a retrieval request. Instead,

a special region is created called the "error region". It exists until written

over with a new error region. This region contains all the parcels causing

trouble. The parcels in the error region can then be accessed to determine

the data occurrences causing execution errors. This facility allows the system

to keep control when execution errors occur, without losing the information

the user needs to analyze what happened.

A.A.I Tabulate

Tabulate generates automatically formatted reports on high speed

line printers or at the user terminal. It lists only the specified data on

a parcel-by-parcel and occurrence-by-occurrence basis.

A. A. 2 Calculate

Calculate produces summaries on data within a region and ignores

parcel boundaries. The summaries can be grouped and sorted by arithmetic value

or by data element value. Reports can be generated on a printer, disk file,

or at the user terminal.

A. A. 3 Output

The output request creates a disk file of numerical calculations

on a parcel-by-parcel basis. Each record in the output file has a geographic

locator derived from the data in the survey class in each parcel. Along with

each geographic locator are stored the values of each parcel arithmetic expression,

A . A . A Map

The map request can produce scaled and accurate plots of regions

on five different devices. The data that determines the points of the polygon

describing the parcel are stored in a data class mapdata. Each parcel in the

00

00
CD

cr
<D

>
CD

CD

cr

ro

CD
L.
=3

o>

(/>

3

o
>

c
0)

E

a>

o
"o

II

• c P

ills
C

0) «>(/)

JJooW
O o o ,

O "O "OH
>• >• v> \J

<n
Ul

UJ a>

2 E
U o
_l c

a, £

II
c a>

s°
o o
O "O

CO £

UJ
a.

>
or
UJ
>
o
o
>
oc.

\-
(O
UJ
<r

o
u.

o
CO

CO

<
I

Q.

£
DX

<
I

en

cr

en

o
C

~a3
o
c/>

a
c
o

o
c/>

o
Q

E

Ll

18

region is shaded. The gray scale is proportional to the value calculated by

the parcel arithmetic expression. Maps of regions whose parcels approximate

a regular grid can be produced on a printer or at the user's terminal.

4.5 Data Description and Miscellaneous Requests

Figure 14 shows the syntax used to retrieve data names, data descriptions

and system usage statistics.

4.5.1 Data Names

The list request was partially described in section 4.3.4. It can

also be used to retrieve the names of the current classes and the names and

allowed values of the data elements in each class.

4.5.2 Data Descriptions

Textual descriptions of all data classes, elements and non-numeric

values are stored in the system. These are most useful to users who may not

know the meaning of some names and codings. This information is accessable

through the what is request.

4.5.3 System Statistics

A user can also request system statistics using the what is request.

The user's disk space, remaining funds, and the current version number under

which IRIS/NARIS is running are accessible.

5. System Architecture

5.1 Introduction

IRIS/NARIS is coded in Algol for a Burroughs B6700. The first system

was brought up on our own machine at the Center for Advanced Computation.

It was transferred to a more service oriented and cheaper B6700 at the University

19

of California at San Diego. The system is currently used and maintained from

Illinois over the ARPA Network.

Until recently, IRIS/NARIS ran as a separate Message Control System

(MCS) on top of the B6700 Master Control Program (MCP) . It was easier and

more efficient to support multiple users and provide the appropriate file interlocks

as an MCS. However, because an MCS communicates closely with the MCP, it requires

constant maintainance to keep up with MCP modifications. Billing and privacy

problems arose as more users exploited IRIS/NARIS and external statistical [2]

and optimal site location [3] packages. As a result, the system has been changed

to run as a separate program under each user's account, and is no longer an

MCS. This has greatly simplified the maintainance and billing problems at

the cost of a less efficient interlock scheme for some shared, writable files.

The single resolution NARIS was designed over a three month period

and coded by four programmers over an 18 month period. The first production

NARIS was approximately 20,000 lines of heavily documented code. The current

IRIS/NARIS code is 30,000 lines and is more efficient and powerful.

A lot of attention was paid to modularizing the system so that even

basic tables could be altered without requiring system-wide modifications.

Access to any table is only permitted through a small number of procedures

or macros. Other program statements are not allowed (by programmer agreement)

to directly access those tables. As a result, critical tables, used throughout

the system, can be (and have been) radically altered without difficulty.

By setting compile-time options, debugging and tuning versions of

the system can be generated. The trace, dumps, and timing features are particularly

extensive. The time spent in any procedure, the procedures it calls and the

20

total can be recorded for each procedure and user request. The emphasis on

instrumentation has paid off in system efficiency.

Figure 15 shows the basic system architecture. In addition to the

files and programs shown, there are back up facilities and tape rotation schemes

to protect these files from system failures. In addition, various log and

status files allow full recovery from system crashes.

5.2 Data Definition and Insertion

The left side of figure 15 is concerned with creating, correcting,

and enlarging the data base and other files used at retrieval and analysis

time. This is a batch activity.

There are three major disk files: the data base file, the symbol

table, and the parcel dictionary. Each of these files has a header record

which contains version information and other file attributes. The header contains

the version number of the file and the version numbers of the other files and

programs which are required for correct operation. This provides a run time

consistency check of the system and its files. It prevents operator, system

programmer, or data administrator errors from turning into major catastrophies.

There are four main programs associated with data definition and

insertion: the parcel generator, the symbol table generator, the preprocessor

and the data base inserter. Each runs as a separate batch program.

5.2.1 Data Base

The data base file is the heart of the system. The first record

is the header record. All other records contain parcel data - one parcel per

record. If the parcel data overflows a record, an overflow record is dynamically

created and a pointer to the overflow record is planted in the previous record.

An arbitrarily large number of overflow records can be used for any parcel.

21

At the head of each record is the overflow pointer to the next record and a

count of how many bytes of class data exist in the record (see figure 16)

.

At the end of the first record are the class pointers. Overflow records do

not have class pointers. Each class pointer has two fields. The first is

the number of occurrences of that class. The second is a pointer to the first

byte of the first occurrence of the class. This pointer may point to a byte

which is many overflow records away.

Some classes will have only one occurrence containing identical data

values for a large number of their parcels (e.g., forestry data frequently

specifies zero trees). In this case a single default occurrence is established.

It is stored once so that it does not have to be repeated in the data base.

A special value in the number of occurrences field in the class pointer is

used to flag this condition. The default occurrence for each class is recorded

in the symbol table and is available in a core array.

The data for each class and each occurrence begins on a byte boundary.

The data element fields may begin and end at any bit within the occurrence

(see figure 16) . The result is a very dense data structure that is still relatively

easy to pick apart using the byte and bit operators available on most machines.

Record access times are fairly large compared to transfer time from

the disk. Furthermore, user requests frequently access parcels whose records

are near each other in the data base. The data base is blocked at around 20

records/ block to take advantage of this. If an average of 2 parcels are used

per block read, there is a net reduction in access time and CPU time. The

data base is periodically reblocked and the record size changed to improve

storage and access efficiency.

A
#

A
.*,<e. O s*

<r o
5

C
o

Da
CO

co

a

CO
CD

o

ZJ

.o

CD

O
cz

CD

ZJ

O
o o
«4- ° i>

CO

o
5

CO
CO

o
O

•

CO
*—
c
CD

E
CD

O i_

<D
CO Q_
CD

>^
W

a ®
+- >>
j= -a

- rO
CD

..
«>

5 •
O Ql
m- CL
t- Z>
CD O
>
o
o
c

CO
D

o
o
CD

c
o
CO
CO

D

CD

a
oa
<*

co

o
o
CD

o

CO

CD

»- o —
o
o
CD CO

CD
CO
CO

o

CD
CO
zj

o
c

CO
*—
c
CD

E

CD

O
a
a
rO

CD
O
cz

CD
k.
w.

ZJ

o
o
o
CD

>N
_Q

CM

CO

CD

E
a
x

OO
CD
v.

CD
(/)

O
-Q

O
Q
• •

CD

<D

cp

22

The combined effects of the compression, default occurrence and blocking

techniques significantly reduce I/O time. As a result, the system is slightly

CPU bound and response time is minimized.

5.2.2 Symbol Table

The symbol table contains complete information about the data base

classes and data values. Specifically, it contains the name of each class

and element, the length of each class occurrence, the position and size of

each data element in a class occurrence, the values allowed for each data element,

the position of each class pointer in the first record of a parcel, and a detailed

textual description of each class, element, and value in the system (for use

by the what is request)

.

Some of the data can have long character values. The symbol table

contains hashing scheme parameters, if necessary, to help the compilers and

data input programs rapidly locate the value. All data element values are

stored internally in a minimum number of bits. The symbol table contains the

compression and decompression parameters.

The most important identifiers, positional information, and compression

parameters in the symbol table are copied into core at run time to reduce compile

time.

5.2.3 Parcel Dictionary

The parcel dictionary is used to convert geographic parcel specifications

into internal parcel numbers. An internal parcel number is the logical record

number of the first data record for each parcel. The parcel dictionary is

used during data insertion and also during retrieval.

23

5.2.4 Parcel Generator

The parcel generator adds new parcels to the data base. It also

adds two initial classes to each parcel: a mapdata class which contains parcel

boundary coordinates and a survey class which contains parcel identification.

These data classes make each parcel self defining and eliminate the need for

auxiliary description files at retrieval time. The map class is used by the

map verb to prepare graphic output. The survey class is used by the tabulate

and output verbs to annotate tables and construct geolocators for output files.

The parcel generator reads a control deck for directions and scans a large

file of digitized map coordinates prepared by the Illinois Geological Survey.

The map coordinates on the tape covers the entire state of Illinois to the

section level. Interpolation is used to produce 1/4 and 1/4 1/4 section map

coordinates.

5.2.5 Symbol Table Generator

The symbol table generator reads a control deck to add new classes

to the symbol table. The control deck contains information on classes, elements,

and values including text information for the what is request. The type and

range of each data element value is also specified. The symbol table generator

uses this information to generate hash coding parameters, if necessary, and

to automatically compute a minimum bit compression scheme and occurrence position

for each data element. Consistency of the information is rigorously checked.

No symbol table is generated if errors are found.

5.2.6 Preprocessor

The preprocessor and data base inserter programs work together to

put data into the data base. The raw class data is read by the preprocessor,

cleaned, compressed using the appropriate scheme and written out as a Standard

Intermediate File (STIFLE). The STIFLE was to have provided archival backup

24

cf the data base in the event of a catastrophic loss of the data base and its

back-up files. Also, it was incorporated into the system to avoid data losses

due to programmer errors. Otherwise, the programmers would be constantly modifying

the data base inserter to handle various data idiosyncracies. In addition,

the mnemonic format of the STIFLE was supposed to permit some radical restructuring

of the data base classes without starting from scratch and a variety of old

input media.

5.2.7 Data Base Inserter

The data base inserter reads the STIFLE file and inserts the data

into the data base. In retrospect, the STIFLE has been valuable as a technique

to separate the volatile and non-volatile aspects of data insertion. However,

the data base backup system has proven to be very reliable as contrasted with

the STIFLE tapes, many of which are no longer readable. The STIFLE tapes are

useless as an archive and are no longer saved.

5.3 Retrieval and Analysis

Requests are processed in two phases. A compile phase is followed

immediately by execution of a pseudo retrieval machine. Each major request

and phrase in the user language has its own compiler and pseudo machine.

5.3.1 Compilers

The job of the compilers is to parse user requests and generate intermedi-

ate code for the pseudo machines. Intermediate code is placed into the stream

array. If the compilation is not successful, then the appropriate error messages

are sent directly from the compilers to the user.

There is a compiler for each IRIS/NARIS verb

—

tabulate t calculate,

output , and nap—as well as each major phrase — arithmetic expressions, Boolean

expressions, and parcel specifications. The verb compilers call the phrase

25

compilers which in turn can call other phrase compilers in a strict lattice

pattern. Recursion is not used. Requests which do not require intermediate

code, e.g., what is 3 list, etc. are executed directly in the compile phase.

Information in the symbol table and the parcel dictionary is used

to recognize reserved words, data names, data element, value codes and geographic

descriptions. Utility files are accessed to obtain abbreviations and functions.

5.3.2 Retrieval Machines

If the compilation is successful, control is passed to the retrieval

machines. It is the job of each machine to interpret the intermediate code

in the stream array and execute it by simulating a sophisticated stack machine.

A machine exists for each compiler. The machine lattice structure is an exact

image of the compiler lattice structure.

Because of the heavy use of Boolean interrogation of the data base,

the Boolean machine provides a unique optimization feature. The Boolean compiler

stores its intermediate code as a tree in the stream array. If one branch

(operand) of a Boolean operator determines (predicts) the outcome of the operation

(e.g. true for an or operation), the other branch is not evaluated. Thus,

the speed with which a Boolean expression is evaluated is dependent upon which

branches are taken first. The IRIS/NARIS Boolean machine keeps track of the

predictive record of each branch in the expression and attempts to evaluate

the most predictive branch first. During retrieval, the Boolean machine will

continually switch the order of evaluation of the branches based on the cost

of evaluating the branch and the recent history of data evaluations. As a

result, the cost of expression evaluation rapidly flattens out and appears

independent of expression complexity. The details of this technique are left

for a future paper.

26

5.3.3 In Core Data Structures

There are three data structures that remain in core at all times

because of their frequency of use: the incore symbol table, the stream array,

and default occurrences. The incore symbol table contains four subtables:

(1) name table: contains all the names of data classes, data

elements, and reserved words.

(2) value table: contains the values and compression parameters

for each data element.

(3) data element information table: describes the position of data

elements within class occurrences and points to relevant

entries in the value table.

(4) class information table: describes the position of class pointers

in the parcel record and points to entries in the data element

information table and default occurrence table.

The stream array stores the compiled code used during retrieval.

It is distinguished from most linear code streams in that the code is organized

into blocks. These blocks are relatively independent of each other. They

insulate one compiler from another. For example, tabulate requests may contain

Boolean expressions. To compile them, the tabulate compiler calls the Boolean

compiler which then compiles a block of Boolean code. During retrieval, the

tabulate machine calls the Boolean machine to execute the block of Boolean

code which the Boolean compiler generated. Thus, changes in the syntax of

Boolean expressions or in Boolean machine pseudo operators only require changes

to the Boolean compiler and machine. No modifications are needed in the tabulate

compiler and machine.

27

5.3.4 Utility Files

Utility files are used to store all user-dependent names and the

information associated with them. Each user can access three utility files:

his private file, the semipublic file of his organization, and the public file.

The files are hashed to eliminate most of the I/O time required to find a name

on disk. The structure is shown in figure 17. Note that the names and data

associated with all utility types (regions, abbreviation, and functions) are

stored in a single file.

5.3.5 Log File

The log file has four kinds of entries: user, history, maintenance,

and data base. User blocks record all of the attributes of each user, (e.g.

account number, permissions, defaults, etc.). History blocks record the text

of each request, the cost, the date and time, the amount of CPU, I/O, connect

time, other resources consumed and certain notable execution conditions. Mainte-

nance blocks log selected system error messages and unusual conditions. Data

base blocks record the name, resolution and number of times each data base

was used. Log analysis routines are available for billing, debugging, and

tuning. The log contains precise information on load factors and human interaction

that can be used to improve the retrieval algorithms, the retrieval language,

and the diagnostic messages for user errors (there are over 400 error messages

at this time)

.

5.3.6 Auxiliary files

Various auxiliary files comprise the last group of disk resident

files. These files are used to store data produced by the map, output, and

calculate verbs. The programs that draw maps also access the auxiliary files.

1

2

k -1

k

k + 1

k + 2

n-1

Header record

Initial name storage records

(each a hash bin)

Mixture of

Name overflow records

Information records

Free records

Header record
pointer to

first free
record

version and miscellaneous information

Mame storage and

overflow records

pointer to
next hash
record

bytes in

use in this
record

name entry name entry name entry
V / / A
unused

/ /

name entry
length

name

utility

type
name

pointer to
information

record

Information records
pointer to
nfo overflow

record

bytes in

use in this
record

utility information (varies with utility type)

ree records
pointer to
next free
record

P
7"

''unused
/ / / A

Figure 17 : Utility File Structure

28

Generalized analysis packages can have access to IRIS/NARIS processed data

through the output and calculate interface files. Some analysis packages create

auxiliary files with IRIS/NARIS compatible geolocators in them. These can

be accessed in the retrieval language and turned into IRIS/NARIS regions.

6. Critique

There were many things that were done right and at least as many

things that were done wrong when building this system. We will describe only

those points which had the greatest impact on IRIS/NARIS and those which are

likely to be of most interest to the designer of any user oriented data system

and, in particular, the designer of a geographic information system.

6.1 What Was Done Right

6.1.1 On Time Delivery

The production system was produced within the two year schedule and

significantly exceeded the original specifications.

6.1.2 Need and Impact Anticipation

The system, as designed and implemented, correctly anticipated many

user needs and the impact of interactive computing on the future demands of

this class of user. Some of the analysis features were implemented without

user knowledge. The users did not understand the need for them and would have

insisted that we not work on them. If we had not implemented these features,

it is clear that the system would not have been powerful and flexible enough

to have attracted new users. It would not have met user needs that became

obvious to users once the system was in use. If we had not over designed,

and, instead, had implemented the system requested by the user, MARIS would

have died at the end of the first two year grant.

29

6.1.3 Simple Data Structure

The simple data structure chosen has proved to be good. The data

structure has been rich enough to accommodate all parcel attributes, and simple

enough to allow a very efficient implementation. Even map coordinates and

parcel specification data are stored in the parcel as normal data classes.

This permits the parcel to be self defining and obviates the need for separate

files to be used to generate tables and graphics.

6.1.4 User Acceptable Language

The part of the system most often praised by the users is the language.

The language has been well engineered to this user class. Potential users

often are able to use it for routine interrogations after a one hour introduction

and demonstration.

6.1.5 Cost Effective System

The system is cheap to use. The planner normally operates with local

dollars on a tight budget. IRIS/NARIS can be run at about a tenth of the cost

associated with comparable systems investigated in the IRIS state-of-the-art

survey [1]

.

6.1.6 Technology Push

At the time this system was designed, it was pushing at the edge

of data management technology. The semi-automatic data compression, the default

occurrence, and dynamic tuning of Boolean expressions during retrieval have

all paid off and helped to make the system cost effective. The user defined,

dynamic index (regions) allows the user to tune his requests and scope of action

on a very large data base to his own needs. Users have been pleased with this

ability. However, it may not be as useful on a smaller data base or one which

changes more rapidly.

30

6.1.7 Code Documentation

From the beginning we insisted on professional, in-line documentation

of the code. The documentation has been done well enough that we have survived

the personnel changes that accompany a multiyear project and do not have an

irreplaceable programmer problem.

6.1.8 Execution Time Traces and Measurements

Execution time trace and measurement facilities can be turned on

for any selected set of the major procedures in the system. The traces produce

detailed listings showing the flow of command and the parameters passed between

procedures. The consumption of various system resources can be measured for

each individual procedure or for various groups of procedures. The modest

effort involved in producing these facilities was amply repaid in reduced debugging

time and the acceleration of subsequent tuning efforts.

6.1.9 Extensive Data Cleaning

The. data base inserter, preprocessor and symbol table were all designed

to increase the redundancy of information at data input. Ample opportunity

is provided and exploited for consistency checks and other cleaning activities.

The cleaning system is so effective that it frequently discovers inconsistencies

in machine readable data bases that were previously in use outside of the IRIS/NARIS

system.

6.1.10 Missing Data Facilities

The system was designed from the ground up to recognize and correctly

process missing data. Patchwork coverage of the geographic region is more

common than complete coverage. Frequently, the data available from the data

supplier contains missing data items for one reason or another. For example,

geologic well logs have been recorded since the turn of the century. The older

31

logs did not record as much information as the more recent ones. However,

the information contained in the older logs is still useful. The missing data

facilities of IRIS/NARIS have permitted this data to be input and then analyzed

in a meaningful way.

6.2 What We Did Wrong

In fairness to the design and programming staff who worked on the

IRIS/NARIS project it should be noted that much of what we did wrong was imposed

by the necessity of getting the project done on time in a limited budget.

In particular, the need for items 2, 3, 5, 6, 7, and 9 below was perceived

in varying degrees during the design phase. However, they had to be dropped

from consideration due to time and manpower limitations. Our perceptions of

the relative importance of each of these items is now more accurate. With

hindsight, we would have modified few of our system priorities.

6.2.1 One User Dependence

We were particularly naive about the political situation when the

project began. As a result, we. depended too heavily on one user for input.

By failing to consider the conflicting missions and attitudes of public agencies

we got a distorted view of the user community that led to blunders 2 and 3

below.

6.2.2 Multiple Resolution is Awkward

Multiple resolution is central to the way planning data is captured

and used. The original NARIS only had one data resolution. The current IRIS/NARIS

can access several data bases of varying resolution. However, the use of data

in two different data bases, for one analysis, is currently clumsy and, quite

frankly, a kludge.

32

6.2.3 Clumsy Data Insertion

Data insertion is clumsy and time consuming. IRIS/NARIS has been

built for production use of a large data base. A lot of attention is paid

to cleaning the data to insure the highest quality data, and to protecting

the data base from a castastrophic loss. There is a need for a quick insertion

of data classes covering a small area. The planner needs a system that can

accommodate the small and volatile data bases he needs in his fire fighting

role. We see no technological reason why a data insertion system cannot handle

the high quality static data base and the volatile data base with equal facility,

6.2.4 User Documentation

We didn't produce a primer for the user. To our knowledge, no user

has read the tome we call the User Reference Manual. While the User Reference

Manual is complete, it is simply too imposing to expect a user to read it.

We do have shirt pocket references for the language, but something in between

is needed. The closest thing to a primer is a document produced by a user

agency to show other agencies how they use IRIS/NARIS [4]. A user is probably

the best person to write the user manual. While awaiting the primer, we are

putting references to the user reference manual into the on-line prompts and

error messages. It is too early to know the results of this latter approach.

6.2.5 Scanner/Parser Weaknesses

The scanner/parser for the query language is not flexible enough.

The current scanner, for example, does not have look-ahead. As a result, some

of the phrase compilers gobble up too much or too little of the input string

and cause correct syntax to be incorrectly parsed. Fortunately, this does

not produce erroneous retrievals. Rather, a compiler error is flagged. The

user can avoid the error by using parentheses.

33

6.2.6 No Distance Concept

There is no distance concept in IRIS/NARIS. Highly accurate map

data is contained in the parcel for graphic output. This can and has been

used to calculate distance, but it is clumsy. A reasonable amount of thought

has been given to the problem of the syntax and semantics which should be used

to implement a distance concept. We do not yet have a solution which fits

the planning problem well.

5.2.7 No Very High Level Data Expressions

In the rush to meet schedule, the concept of very high level data

ixpressions was dropped. This led to several verbs, notably tabulate 3 calculate,

and output, which do similar things on slightly different kinds of expressions.

The concept of a data expression should extend from the element continuously

through to the region level. This would permit more powerful analyses and

only one verb for table and file preparation — hopefully a less confusing

situation for the user. Most use of the output verb has been to circumvent

same of the analytical weaknesses caused by this limitation.

6.2.8 Direct Indexing of Regions

It is fast to use a logical record address in the data base file

a; the internal parcel number. However, since hundreds of regions may contain

that record number, it is very difficult to move parcel data around within

the data base file. It would have been more flexible to store indirect addressing

codes in regions. The system could use the parcel directory to translate the

address codes into direct file references, at retrieval time, on the fly.

This approach would also allow users to specify regions containing parcels

which might later be added to the data base.

34

6.2.9 Table Facility for Data Interpretations

Much of the objectively measured "raw" resource data is difficult

for non-experts to use. Plans for a utility (like abbreviations, functions,

or regions) to allow storage of tabular transformations from broad data to

useable intepretations was considered. Although the need for the facility

was recognized and supported by the users, funds were not available for its

implementation.

7. Conclusions

IRIS/NARIS, as a piece of technology, is one of the best geographic

information systems available. Its user language has been well received, it

is cost effective, it supports many of the analyses frequently needed by the

planner, and permits easy access to external models and analysis packages.

IRIS/NARIS could have been done much better if more resources were

available to implement features known to be desirable but infeasible to implement

given the personnel and funding limitations. IRIS/NARIS is actually a rather

modest system compared to what current technology should support. In fact,

we were surprised to find, during the IRIS state-of-the-art survey, that the

early NARIS facility compared so favorably with other geographic information

systems. Most of the other systems were weak in one or more of the areas of

costs, capabilities or human engineering.

IRIS/NARIS is just a beginning in the planning system area. Planners

have special problems in the areas of reliability, costs, massive interactive

data bases, rapid response, large searches per request, complex analyses and

human engineering. New requirements for environmental impact statements, the

existence of a more aware citizenry, and the tremendous pressures brought to

bear on public decision makers will all continue to fuel the growth of these

35

systems. To meet the special requirements of these systems we will require

sophisticated data management techniques and highly tuned retrieval algorithms

and retrieval/analysis languages.

36

8. References

1. "IRIS Feasibility Study Final Report", Center for Advanced Computation,

University of Illinois at Urbana-Champaign, April, 1972.*

2. Al Meyers, "MONICA User Manual", Center for Advanced Computation, University

of Illinois at Urbana-Champaign.

3. Schuster, S. A., Locating Optimal Sites in Geographic Information Systems ,

Ph.D. Thesis, Department of Computer Science, University of Illinois at

Urbana-Champaign, 1973.

4. Hutzel, I. and al Chalabi, S., "IRIS Evaluation Experiments", Northeastern

Illinois Planning Commission Research Memo #15, Chicago, Illinois, May 2, 1973

* Includes an extensive bibliography and analysis of the state of the art in

geographic information systems.

