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Abstract—According to the Institute of Medicine (IOM)
close to 100,000 safety-related medical incidents happens each
year in US due to preventable medical errors [1]. These
preventable medical errors are caused by lack of timely and
comprehensive information about the patient that makes the
proper and efficient application of best available knowledge
difficult rather than lack of such knowledge. The preventable
medical errors often occur due to slips and lapses in settings
where the staff are overloaded and under stress. Our focus is
on acute care scenarios where medical staff must make quick
decisions based on the best available evidence. In this paper, we
propose an acute care support system (MACMS) that aids the
physician with monitoring and making decisions given the best
available knowledge to decrease preventable medical errors.
Such a system is possible due to the opportunity presented
to us by Medical Device Plug-and-Play (MDPnP) to integrate
information from different devices in an integrated clinical
environment [2], [3]. In this paper, we also present a model
driven approach for designing these acute care support systems
by developing models that correspond closely to medical mental
processes and a system architecture to support execution from
these models.

Keywords-medical systems; architecture; model driven de-
sign; model validation

I. INTRODUCTION

Medical Device ”Plug-and-Play” (MDPnP) interoperabil-
ity opens the door to significantly mitigating the preventable
medical errors [3]. According to the Institute of Medicine
(IOM) at least 44,000 and perhaps as many as 98,000 Amer-
icans die in hospitals each year as a result of preventable
medical errors [1]. These preventable medical errors are
caused by improper application of best available medical
knowledge rather than lack of such knowledge. According
to ”To Err is Human”, a report published by IOM in 1999
[1], the preventable medical errors often occur due to slips
and lapses in settings where the staff are overloaded and
under stress such as emergency rooms and intensive care
units. These slips and lapses include, but are not limited to
error in diagnosis, error in administering a treatment and
inadequate monitoring or followup of treatments.

One of the main contributing factors to slips and lapses in
clinical environments is the lack of integrated information.

According to a study from a Canadian group performed at
2008 the care of critically ill patients generates a median
of 1348 individual data points/day and that this quantity
has increased 26% over five years [4]. Medical staff must
mentally correlate the individual data points they observe
from standalone devices. This is an error-prone process due
to the limitations of human memory and realtime processing
capability. Our goal is to facilitate and improve medical prac-
tice by reducing slips and lapses. We propose a monitoring
system which exploit the benefits provided by safe MDPnP
to combine and fuse information from different devices in
an integrated clinical environment.

In this paper, we focus on the acute care environment
where medical staff must make quick decisions based on the
best available evidence. We created an acute care support
modeling language as well as an executable support system,
the Medical Acute Care Monitoring System (MACMS), that
aids the physician to monitor and making decisions given
the best available knowledge to reduce medical errors.
MACMS tries to bring medical practice close to best practice
by encoding well-accepted medical knowledge and medical
community consensus. Furthermore, MACMS uses this en-
coded information to make suggestions for medical staff and
notifies them of potential conflicts by:

Monitoring: using patient measurements (patient records
and real-time patient physiological measures) to monitor
correctness of a diagnosis and effectiveness of a treatment,

Suggesting: using patient measurements to suggest diag-
nosis and treatments according to best practice,

Adapting: changing the mode of operation of the system
to be best suited for a current situation by selecting the
appropriate set of patient physiologic signals to measure and
using new measurements whenever they become available
(medical device plug-and-play) to increase or decrease con-
fidence in current diagnoses and treatments.

Integrated monitoring, suggesting, and adapting systems
still have not made their way into safety-critical hospital
environments. Medical information is considerably vast and
complex. Even narrowing our focus to acute care settings
with basic physiology (e.g. blood pressure, heart rate, etc.),
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still calls for a systematic approach to collect and process the
available information in a timely manner. Inter-operability of
medical devices is critical for designing such monitoring sys-
tem. MDPnP makes it possible for us to integrate informa-
tion from different sources and coordinate medical actions
by providing an integrated clinical environment (ICE) [2],
[3]. There exist other safety-critical industries (e.g. chemical
and material manufacturing and defense) that already have
extensive experiences in designing monitoring systems [1].
It is common for safety-critical systems to process a large
amount of information and data streaming from different
types of sensors and act upon them [5], [6], [7]. However,
there are unique features in medical systems that makes the
traditional software architecture used to design monitoring
systems inadequate:

Uncertainty Human physiology for acute care is founded
on vital signs. This results in oversimplified and impre-
cise physiological models. Understanding the limitations of
available models is critical for designing safe and efficient
medical systems.

Procedure Flexibility Medical decisions are based on
available information. The complexity and uncertainty of
medicine makes definitive decisions difficult. Medicine must
frequently err on the side of action and must make rea-
sonable choices according to the best available knowledge.
Furthermore, actions must be readily modified according to
a patient’s response.

Configuration Flexibility Medical systems need to in-
herently be run-time configurable. Different patients require
different sensors and monitors. The set of medical devices
including medical sensors required for a medical procedure
can change throughout the procedure. Such dynamic config-
uration is not seen in other monitoring systems.

The MACMS software architecture addresses these chal-
lenges in medicine by using the following design principles.
In order to deal with uncertainty, our system is reactive and
is not predictive. The core of MACMS lies in continuous
monitoring of vital signs through sensor signals because
predicting patient physiology is difficult but detecting that a
treatment is not working (based on expected physiological
change) is simple. To allow flexible procedures and deci-
sions, we let physicians override the system with reason.
Furthermore, for all decisions of diagnosis and treatment
made by the doctors, the system will monitor them for
validity, consistency and effectiveness. Finally for config-
uration flexibility, as new medical sensors are plugged into
the system and additional information becomes available,
the system should check their consistency with the current
information and use the new data to confirm or modify the
current plan.

In the following sections, we will first describe the
essential medical knowledge, core requirements, and our
domain specific model (Section II). We then proceed to
discuss the MACMS system architecture, how it executes the
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Figure 1. Simple Dehydration Example

high level models, and how it interfaces with the physical
world through real devices and input patient records (Section
III). Afterwards, we provide a detailed case study, further
illustrating all the pieces of MACMS operates with a small
but complex acute care scenario (Section IV). Finally, we
wrap up this paper by discussing related work (Section V)
and conclusion (Section VI).

II. MEDICAL DOMAIN KNOWLEDGE AND SYSTEM
SPECIFICATION

We now describe the necessary background for our ar-
chitecture. We start by discussing some relevant points from
the IOM and general medical community consensus. We will
eventually describe some important principles of acute care
practice and present our domain specific models that capture
these principles.

A. Guiding Requirements of the IOM

Many of our major clinical requirements originate from
an important subset of IOM recommendations [1], [8]. We
highlight some of the most relevant and important ones.

1) Avoid reliance on memory and vigilance (p.170 [1]).
Our system needs to be able to encode and retrieve
clinical knowledge so less reliance is placed on human
memory. According to a study from a Canadian group
performed at 2008 the care of critically ill patients
generates a median of 1348 individual data points/day
and that this quantity has increased 26% over five
years [4]. Fusion and processing of many partial
information by the physician is an error-prone process
due to the limitations of human memory and realtime
processing capability. Our system should help support
vigilance by automatically integrating the available



data, providing realtime processing of the information
and continuous monitoring of patient.

2) Improve access to accurate, timely information (p.174
[1]). Our system needs to collect necessary informa-
tion and react upon them in real time.

3) Use simulations whenever possible (p.178 [1]). Our
system needs to be able to encode concrete case
studies, so that we may study how well the system
would perform with doctors by simulations.

B. Current Clinical Practice

Figure 1 shows a simple but common acute care scenario.
A patient is admitted into intensive care. Basic vital sign
measures are added, the blood pressure is low and the heart
rate is high. This is most likely an indication of dehydration.
Medical staff immediately proceed with this assumption, and
IV saline fluid is given to the patient. While this scenario
starts simply, the complexity immediately grows with pos-
sibilities. What if the patient wasn’t actually dehydrated?
What if additional measurements contradict the dehydration
hypothesis? What if it is dehydration, but IV fluid does
not improve the patient? What if it is not dehydration, but
the IV fluid improves the patient anyway? At first glance
through this limited case a clinical environment is very
complex with many interactions between different decisions
and many exceptions for every rule. Over the years, the
medical community has developed an effective procedure
to deal with this seemingly overwhelming complexity:

1) Always proceed with the best available information.
Short term low-risk trial treatments may yield impor-
tant information even if the trial does not succeed.

2) Always keep in the mind that current diagnoses may
be wrong. Continue to validate diagnoses while pro-
ceeding with actions.

3) If it works, it is good. Patient condition improvement
is the goal. The system assists the medical personnel
by checking the physiological parameters of the pa-
tient with diagnosis for consistency.

This means that there may be intermediate reasoning steps
to come up with diagnoses that lead to a treatment, but it
is improvement that matters at the end. As long as we see
that the patient is improving, one may proceed.

When a patient’s condition worsens and without sufficient
data to pinpoint the diagnosis, physicians often perform a
trial treatment based on the available information and their
experience and intuition. The top choice is often lower risk
and reversible treatment that can be stopped, if patient’s con-
dition does not improve as expected. Close monitoring that
integrates all the data in real time is particularly important
during trials.

These principles provide a good model of the medical
decision making. Figure 2 shows how the uncertainty de-
cision process is reflected in the medical domain. Initially,
the available set of patient information indicates an anomaly.
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Figure 2. Iterative Medical Process for Dealing with Uncertainty
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Figure 3. Encoding Medical Knowledge (Metamodel and Diagram
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A likely diagnosis is made by the physician and a possible
treatment is administered. In order to strengthen or invalidate
a diagnosis, additional sensors and lab tests are ordered.
These additional information actually augment the initial
patient information allowing further diagnosis. In order to
validate the effectiveness of treatment, the expected patient
reactions and trends are monitored. In any uncertain stage
of diagnosis or treatment, the physician is alerted as soon as
physiological parameters of the patient show deterioration
or failure to improve. In such case, the prior chain is
reevaluated by the physician to consider other possibilities. If
there was enough time, systematically, all known potentially
effective treatments would have been tried until one is found
that works. Essentially an exhaustive search.



C. Towards a Representative Model

We have just described a likely mental model used by
many doctors. It is desirable to have a software architecture
that operates and matches this closely to best aid doctors.
To effectively use this mental model in software, we need
to encode this medical knowledge. We have identified the
main elements of the system to consist of (1) available
patient information (measurements), (2) diagnosed patient
conditions, and (3) provided treatments. Figure 3 shows the
metamodel based on the relations between these three main
elements. We now dive into the individual model elements.

1) Patient Information: Patient information should de-
scribe all relevant information needed to make a diagnosis.
Currently, we just consider patient information as the set
of available measurements, which are numerical values.
Examples of measurements include sensor readings (e.g.
blood pressure, heart rate), lab values (e.g. creatinine, blood
urea nitrate (BUN)), and other information (e.g. urine output,
pain level). Normally, when diagnosing patient conditions,
the exact measurements of blood pressure and heart rate are
not required to make a diagnosis but just how much they
deviate from normal. For each measurement, many times,
the conditional checks on these measurements are based
on ranges and normally do not require exact values. This
means that for each measurement, there is a definition of
critically high, high, low, critically low, which are abstractions
of the ranges. A range map maps a range abstraction to a
concrete measured value. For example, with heart rate, high
may be mapped to 100 bpm, which defines the heart rate to
be high if it exceeds 100 bpm. Similarly, we may not just
need to reason about the thresholds of a measurement, but
also about how fast it changes which is defined by a rate
granularity (rapid increase, slow decrease, etc.).

Measurements are used by the system through Check
blocks. These contain boolean clauses that can be used for
various decisions in conditions and treatments. Normally,
the Check statements are conjunctions of comparisons. A
comparison could be a threshold comparison or a rate
comparison. A comparison consists of a measurement from
a plugged-in device and a range of either a threshold or a
rate.

2) Diagnosed Patient Conditions: After we have modeled
medical measurements and the statements that can be used to
reason about them, we are ready to model patient conditions.
Each Condition describes the initial measurements that trigger
a diagnosis, the follow up monitoring logic that continues to
confirm the diagnosis, and a possible set of treatments that
can be used to treat this diagnosis. A condition is uniquely
identified by its name. The trigger statement describes the
checks that need to pass in order to have enough confidence
to diagnose this patient condition. The monitor statement
describes the continuous monitoring checks that need to be
evaluated in order to validate a triggered condition diag-
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nosis. Furthermore, each Condition lists the set of requested
treatments which can potentially be administered in order to
correct the patient condition.

3) Provided Treatments: Once a treatment is requested, it
becomes decoupled of any conditions that requested it. The
reasoning is that a diagnosis may change, but its requested
treatments may continue as long as they improve patient
vital signs. This means that a treatment has its own monitor
that will continue to check vital sign trends to make sure
the patient is responding as expected to the treatment.
Furthermore, a treatment has a stop condition to suggest a
potential stopping point of the treatment.

An example instantiation of our model for the dehydration
scenario is shown in Figure 4. The measurements considered
are heart rate and blood pressure. After it is diagnosed,
additional measurements may be requested and used by the
system once available such as BUN and urine output to
confirm the diagnosis. The treatment of IV infusion also uses
the heart rate and blood pressure to monitor its effectiveness.

D. Functional Requirements

For any system to use this model effectively, the following
requirements summarizes the basic assumptions made on the
model elements:

Measurement Updates Patient conditions should be
checked when measurements exceed a set threshold



Measurement Additions The system should support the
ability to incorporate new measurements from new plugged-
in devices during run-time using the capabilities provided by
MDPnP

Misdiagnosis / Change Diagnosis When the diagnosis
changes, then these changes should be propagated to as-
sociated treatments so they can be properly modified after
notifying medical personnel

Continuous Monitoring System should continue to mon-
itor treatments and diagnoses as time elapses or as new
measurements from new plugged-in devices or other sources
(vital signs, lab results,...) become available, and report any
contradictions to current prognosis

Prioritizing Conditions When conflicting conditions may
be diagnosed there should be some method of deciding
which one to proceed with first

Contraindicative Treatment All known treatment con-
traindications should be detected, notified, and stopped un-
less explicitly overwritten by medical personnel

III. DESIGN ARCHITECTURE

We have discussed the domain models, which are static
descriptions of patient conditions and treatments and neces-
sary logical checks on the measurements to monitor them
over time. However, since the model describes when we
can make diagnosis and how to monitor, the information
contained in the model can be directly used to direct system
execution for an acute care support system. We implemented
the system in Java using Eclipse Modeling Framework
(EMF) to manage the models.

A. Models as Execution Parameters

We used EMF to specify the information shown in the
metamodel in Figure 3. EMF generates code that allows us
to specify the acute care instance models (e.g. Figure 4) in an
XMI format. Furthermore, EMF generates code that allows
for the XMI model files to be deserialized into objects, so
that we may directly access these object attributes to obtain
model information during run-time.

Figure 5 shows how the deserialized objects of the model
are used during system execution. Deserialized objects of
the model are static, i.e. they only have attributes without
any methods. Thus, to modularly define execution semantics
using the information from these static objects, generic
wrapper objects are defined. For example, in Figure 5, the
description of dehydration (with trigger logic and monitoring
logic) is deserialized into objects in the system, and a generic
condition wrapper object manages all the subscriptions to
the necessary measurements during execution. Also, the
generic condition wrapper object has methods that are
periodically invoked to check the trigger and monitoring
conditions. Semantics of a Check is defined by a predicate
that compares a current measurement with the corresponding
threshold. For example, the statement HeartRate HIGH

with HIGH:100bpm, will mean to check the latest heart
rate measurement against 100 bpm. In summary, the key
wrapper objects perform the following:

1) Measurement Wrappers:: For each type of measure-
ment defined in a model instance, its measurement wrapper
will subscribe to all the relevant devices (e.g. the heart rate
measurement may subscribe to EKG Monitor, Pulse Oxime-
ter, and Blood Pressure Cuff). Thus, a measurement wrapper
has the ability to provide an aggregated measurement for
this type. Furthermore, it will also contain the threshold
definitions for high, low, rapid increase, decrease, etc. from
the model, so it can also be directly queried for the whether
a measurement is in a predefined range.

2) Condition Wrappers:: For each patient condition de-
fined in a model instance, a condition wrapper will subscribe
to all measurements required to evaluate trigger checks and
monitor checks. It will also request appropriate treatments
through the treatment manager (described later in subsection
III-B). For each check statement, it will be evaluated by
querying the appropriate measurement wrapper for whether
a value is within a range. Condition wrappers also keeps
track of when a condition becomes active (i.e. the trigger
check evaluates to true).

3) Treatment Wrappers:: For each treatment option de-
fined in a model instance, a treatment wrapper will subscribe
to all required measurements, and perform the checks de-
fined by the monitoring statement. It also keeps references
to all conditions that requested to change the parameters of
the treatment.

B. System Architecture

We have described the domain models and the wrappers
that are used to give them appropriate semantics during
execution. However, there still needs to be an overall archi-
tecture to manage these objects and their interactions, and
ultimately, provide an interface to the real-world through
physical devices. As we walk through the architecture, we
will also discuss how the functional requirements described
in Section II-D are met.

1) Managing Devices: Diagnosis and monitoring of treat-
ment are all driven by medical measurements. Some mea-
surements such as observations of the patient and lab tests
may be input through a user interface or obtained through the
electronic medical records (EMR). However, the most im-
portant real-time measurements are obtained through sensor
devices. Normally only a small subset of critical sensors are
connected to the patient in the beginning (e.g. oximeters,
ECG, blood pressure monitor, etc.). But more sensors may
be added depending on the current state of the patient (e.g.
CVP sensor when heart failure is suspected). This means that
we must support a plug-and-play system (Req. Measurement
Additions). ICE standard provided by MDPnP group helps
us reach this objective [2], [3]. In MACMS, we used Java
front-end interfaces to medical devices. Most sensor devices



Heart Rate
(HR)

HR Definition

Trigger Logic Monitor Logic

Condition Wrapper
(Dehydration Block)

Dehydration

Trigger Monitor

Creatinine

Creat. 
Definition

Urine 
Output

(UO)

UO Definition

BUN

BUN  
Definition

Monitor Logic

Monitor

IV Fluid

Treatment Wrapper
(IV Fluid Block)

Dehydration IV Fluid

Trigger Logic

Trigger

Request

Monitor Logic Monitor Logic

Monitor Monitor

Creat.

BUN
Urine 

OutputBlood 
PressureHeart 
Rate

Model Deserialization & 
Wrapping

Request 

Blood 
Pressure

(BP)

BP Definition

Figure 5. Using Models as Parameters for Execution

we use have standard external RS-232 interfaces, such as
Pulse Oximeter and Infusion pump, and these can be easily
interfaced to our system with standard serial communication.

Figure 6 shows the path from hardware sensors to the
actual software measurements obtained in the system. The
thing to note is that there is a many-to-many relation between
sensors and measurements. For example, a pulse oximeter
provides both heart rate and SpO2 measures, and a blood
pressure cuff provides both blood pressure and heart rate.
Here, each devices provide two measurements, and heart
rate is independently measured by two devices.

When a device plugs into the system, this will trigger an
event to create a proxy object. Each hardware device store
internally a model for its interface (i.e. the measurements it
provides, and control parameters), and this interface model
is sent to the system when the device is plugged in. For
example, when an oximeter device plugs into the system,
it will create a proxy oximeter object. The interface model
will describe that the oximeter provides measurements for
heart rate (HR) and SpO2. The oximeter will then create
separate measurement objects for the HR and SpO2 that
it provides. Each individual measured value such as HR
will then register through the Measurement Manager to the
corresponding measurement. This adds the HR measured
value as a possible source of the HR measurement. The
HR measurement manages the HR measured values from
multiple sensors and combines them into one aggregate HR.
For example, if two HR measured values comes indepen-
dently from an oximeter and a blood pressure cuff, the HR
Measurement interface will have either some prioritization
or averaging algorithm to determine the reported HR.

2) Managing Conditions: The main component at the
heart of our system are the diagnoses of patient conditions.
The patient conditions provide the context of operations and
monitoring. Figure 6 show the relations between the patient
conditions and measurements. Each diagnosed patient con-
dition is driven by a set of measurements. This means that
each patient condition object references all of its dependent
measurements. A new patient condition such as dehydration
needs to subscribe to a set of required measurements for
initial diagnosis: heart rate, blood pressure, etc., and the
condition also needs to subscribe to a set of additional mea-
surements for confirmation: urine output, BUN, etc. In the
system once the dehydration object is created, it subscribes
through the Measurement Manager to its list of required
and additional measurements. The Measurement Manager
then provides the dehydration object with the corresponding
references to its requested measurements (Req. Measurement
Update).

Each individual patient condition is kept track of by a
dedicated Condition Wrapper object (described in Subsec-
tion III-A). Once the a Condition object such as dehydration
has the references to its required measurements, the object’s
trigger logic will be rechecked whenever a measurement
changes passed a threshold. When a measurement is updated,
the object’s trigger logic runs and checks all the trigger
conditions (Req. Measurement Updates). For dehydration
the trigger conditions are blood pressure low and heart rate
high. This means that whenever the blood pressure drop and
the heart rate increases, the dehydration trigger should be
rechecked. Once a trigger condition passes, the Condition
object becomes active.

The Condition Manager is responsible for keeping track
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of all active Conditions. The Condition Manger is responsi-
ble for prioritizing active Conditions in terms of likelihood,
criticality, and urgency (Req. Prioritizing Conditions). Fur-
thermore, each active diagnosed Condition may indicate that
other Conditions are likely to become active in the future,
and the Condition Manager is also responsible for keeping
track of potentially active Conditions in the future.

When a Condition object becomes active, it also sets up
monitoring and requests treatment. Once a Condition sets
up monitoring, it becomes time triggered and checks its
vitals signs for inconsistencies on a periodic basis (Req.
Continuous Monitoring). Monitoring for a newly activated
condition may require additional sensors and additional lab
tests. For dehydration, once the condition is activated, then it
will request medical personnel to provide urine output, BUN
samples, etc. The monitoring will use these measurements to
ensure consistency of diagnosis when these sensors values
change (requirement Measurement Updates in Section II).
Aside from monitoring and checking, the conditions are
also responsible for requesting the proper treatment through
the Treatment Manager. If a continuous monitor detects
an inconsistency when validating a condition based on
measurements, it will notify medical staff of the potential
inconsistency, and it will also notify associated conditions
and dependent treatments (Req. Misdiagnosis).

3) Managing Treatment: Once a patient condition is
diagnosed and confirmed by doctors it should also request
appropriate treatments. As shown in Figure 6, the Condition
sends a request to the Treatment Manager upon activation
for the treatments to correct the condition. The Condition

Manager keeps a list of references to the requested treat-
ments for each condition. The TreatmentManager will grant
the request if there is no contradiction between the requested
treatment and the treatments already being administered
(requirement Contraindicative Treatment). The Treatment-
Manager maintains the list of all the active treatments. The
requested Treatment is triggered by the Treatment Manager
and becomes active. The Treatment must subscribe to the
Measurements through the Measurements Manager required
to evaluate the patient progress in response to the treatment.
The Treatment notifies the User Interface of any anomalies
detected in the treatment.

IV. DISCUSSION

In this section, we describe a detailed case study illus-
trating the potential complexities of the acute care process.
The case study illustrates how a simple treatment for de-
hydration can slowly evolve into other conditions of fluid
overload, heart failure, etc. We describe how the diagnosis
and treatment knowledge in this medical process may be
captured in our model, and furthermore, we describe how
these models are used by MACMS during execution to adapt
to the changing medical contexts.

A. Case Study Description

A 60 year old male, with history of mild heart disease is
admitted to the emergency room with dehydration, related
to pneumonia. Our system monitors patient vital signs
continuously. When blood pressure and heart rate exceed
the safe threshold the system should display dehydration as
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Figure 7. Use Case Scenario Model

one possible diagnosis for this patient who has a history
of pneumonia. The system must confirm this diagnosis by
requesting additional required measurements. In this sce-
nario urine output and BUN measurements are required
for confirmation. The patient is given intravenous fluid to
correct the dehydration. However, due to a lapse of caution,
he develops fluid overload. High pulse and low blood pres-
sure indicates the condition which is detected by the system.
The system should attend to the new condition by reducing
the fluid rate and suggesting medication to increase urine
output. After medical personnel modifies the treatment, a
request for new urine output and BUN measurements should
be issued by the system. When these measurements become
available, the system should check their consistency with
fluid overload diagnosis. The patient must be monitored for
his physiological response to the new treatment. If the fluid
overload leads to kidney insufficiency and congestive heart
failure, the system should recognize their criticality and
attend to them before continuing with the current diagnosis.
In this scenario, there is no inconsistency between the
treatments plans of the active condition due to the causality
relation between them. In general, inconsistency in treatment
plans should be detected and notified by the system.

Later, a central IV line is inserted to measure CVP (Cen-
tral Venous Pressure) by the physician. Small pneumothorax

(air in chest compressing lung) from insertion procedure
occurs. The patient develops an acute cough, shortness of
breath worsens, and has new chest pain, and little change
in pulse and blood pressure suggests the condition. The
system will request chest x-ray to confirm the diagnosis. The
inspired oxygen level is increased by the medical staff but do
not result in improvement of patient respiratory function. A
chest tube is inserted by the physician for pneumothorax to
correct respiratory function. However, chest tube becomes
clogged and tension pneumothorax develops. Changes in
both respiratory and pulse/blood pressure measures indi-
cates the diagnosis which is displayed by the system. Medi-
cal staff and system work together to resolve the condition.
Unfortunately, changes in IV rate and ventilator settings
are not effective. Medical staff are alerted and directed
by the system to unclog the tube. Tension pneumothorax is
relieved after the tube is unclogged and patient physiological
measurements return toward normal. Pneumonia remains
primary problem, as pneumonia resolves, the ventilator feed-
back supplies less ventilator function, allowing patient to
breathe more on own. Pneumonia resolves, patient is taken
off the ventilator. The respiratory function and pulse/blood
pressure measurement should be monitored afterward to
ensure that the condition has resolved completely. It should
be mentioned that all suggestions should be verified by the



medical staff before the system can move forward with the
plan. Anytime the physician decides to overrides the system
suggestion, the event should be recorded by the system for
off-line analysis.

B. Modeling Elements of the Case Study

We introduced a metamodel for MACMS in section II to
abstract the acute care process into elements necessary for
a support system that can operate in a way that matches the
mental model of a physician (see Figure 3). As mentioned
before. The main elements of our model are available
patient information (measurements), diagnosed patient con-
dition, and provided treatments. This model is based on
the interaction of these elements which is according to the
medical process in acute care. In the scenario described
above, patient information includes the information entered
by the medical personnel, his existing chronic condition
(Pneumonia), the vital signs including blood pressure and
heart rate. This information will be augmented with addi-
tional measurements representing organ functions as they
become available. In this scenario BUN and Creatinine test
and urine output measure are requested by the system and
their values are added to the patient information when they
become available. The patient information model is divided
into three main categories: vital signs (Figure 7-A1), medical
staff entry (Figure 7-A2), and organ function measurements
(Figure 7-A3).

Dehydration, Fluid Overload, Congestive Heart Failure
and Kidney Failure models shown in Figure 7 are among the
models required for our case scenario. The associated treat-
ment models for each condition are also specified. IV Fluid,
Urine Increasing and Blood Flow increasing medications are
among the treatment models present in this scenario. The
condition and treatment models specify the measurements
required by the trigger logic and additional measurements
required for monitor logic to confirm the condition and
monitor the effect of treatment. For example according
to Dehydration model (Figure 7-B1) BUN, Creatinine and
urine output are the additional measurement needed for
monitoring logic of this condition. As shown in Figure 7-
B2, the IV fluid is the associated treatment for Dehydration
condition. The same set of measurements are also used to
monitor the treatment. Fluid Overload (Figure 7-C1) as one
of the potential complications of IV Fluid treatment.

Congestive Heart Failure model (Figure 7-D1) is associ-
ated to Fluid Overload model (Figure 7-C1) and Kidney Fail-
ure model (Figure 7-E1) is associated to Heart Failure model
(Figure 7-D1). This relations between models represent the
causality relation between these conditions. Central IV Line
model (Figure 7-F) describes the measurements that must
be monitored when Cental IV Line is used in the scenario
to measure CVP (Central Venus Pressure). Pneumothorax
model (Figure 7-G1) is specified as a potential complication
of the Cental IV Line model. As shown in Pneumothorax

model blood pressure, heart rate, respiratory rate, chest x-
ray and physical exam are required by Trigger and Monitor
Logics of the condition. The Chest Intubation treatment
model (Figure 7-G2) is associated with the Pneumothorax
model. According to the Chest Intubation model, blood
pressure, heart rate, respiratory rate, and physical exam is
used by the treatment Monitor Logic.

The above set of models are selectively loaded into the
system based on the current medical context. Furthermore,
relations of potential complications of treatments and associ-
ated conditions are dynamically loaded into the system when
the condition is diagnosed or the treatment is administered.
The following subsection describes how the dynamic use of
the models can be used to drive execution of an adaptive
system.

C. Illustration of System Adaptation

When the system is initialized, the basic sensors such as
blood pressure and pulse oximeter are plugged in. These
provide the basic measurements of BP, HR, and SpO2.
Furthermore, because the patient has pneumonia, the dehy-
dration condition object is loaded from the corresponding
model (with the wrapper method described in Subsection
III-B). This initial configuration is shown on the left of
Figure 8(a).

Once dehydration is detected, the system will ask for
doctors to confirm or ignore the diagnosis. If it is confirmed,
then the system will also request that additional measure-
ments and devices to be provided. The right of Figure 8(a)
shows the system configuration after these doctor confirmed
changes. An infusion pump is connected to the system to
administer the saline fluid, and the corresponding treatment
model is loaded with the necessary control parameters.
Three additional measurements of BUN, Urine Output, and
Creatinine are added. The treatment for IV fluid is added
to provide support. A fluid overload condition (associated
as a complication of giving IV fluid) is also loaded into the
system as a potential complication to monitor.

Through what we just described, the system has gone
through a mode change. Before, there was only one mon-
itor for dehydration using three measurements, but after
a diagnosis confirmation and addition of more devices
and measurements, the system loop now operates on five
measurements with two conditions being monitored and
also providing treatment. This means that the system has
essentially gone through a doctor-confirmed mode change
that adapts to better matches and supports the current context
of the operation.

The system mode change to diagnose dehydration and to
administer IV treatment was completely anticipated, and the
only uncertain part is the doctor’s confirmation. However,
there are also instances where the doctors may do things
outside of the limited medical knowledge of the system. For
example, in Figure 8(b), the initial system was setup with
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Figure 8. System Mode Adaptation Example with Reactions to Anticipated Events (a) and Unanticipated Events (b)

a continuous monitoring loop for congestive heart failure.
The doctor decides to insert a central IV line to measure
the central venous pressure (CVP). This is an unanticipated
event since it is an asynchronous interruption from doctors.
However, the system will similarly load in corresponding
models for CVP and request additional measurements to
check its safety. Furthermore, the likely complications of
the central IV such as pneumothorax is also loaded into
the system. In this example, the system was able to load in
necessary elements to monitor the necessary measurements
to best support a doctor’s decision.

Of course, there is always the case when a doctor need to
perform an action that has no support in the system. In this
case, when things get too complex, the system can always
fall back to a basic mode of operation. This basic mode will
just monitor the most basic vital signs (heart rate, blood
pressure, etc.) and provide notifications at signs of patient
degradation and anomalies.

V. RELATED WORK

The challenges of design of systems of interoperable med-
ical devices are even harder to overcome compared to stand-
alone devices. However, high confidence medical systems
are necessary to avoid medical errors. The authors in [9]
focus on the necessity of proper infrastructures on which net-
works of efficient and fully functioning interoperable plug-

and-play medical devices can be built. According to [10]
having a systems of interconnected plug-and-play medical
devices in the ICU can provide the clinical staff with a more
precise assessment of patient state. In [11] the authors also
discuss the benefits of interoperable medical devices. The
authors present the prototype of an interoperable medical
system including a PCA pump and multiple monitoring
devices to discuss the existing challenges and also the
benefits of such systems. [12] and [13] present a framework
to improve the flexibility and reconfigurability of prototype
multi-device medical systems. In [14] the authors report their
experience with a prototype plug-and-play synchronized
medical system that includes the interconnection of an x-
ray and anesthesia machine ventilator. In [15] the authors
define the system safety properties in terms of patient state
using an existing patient model.

Medical expert systems and clinical decision support
systems assist medical staff with analysis of patient data
and decision making process. These systems mostly use
artificial intelligence, fuzzy logic and to deduction to make
diagnoses and often do not go beyond making diagnosis.
In some cases the system predict the future events based
on the current diagnosis [16], [17], [18], [19] and [20].
In our system the main focus is monitoring the patient
progress after an initial diagnosis is made by the physician.
Fuzzy logic uses complex algorithms to essentially rank



diagnoses. Most of the time these are one shot and for
chronic diagnoses. However, these ranking algorithms of
fuzzy logic can be used later to improve the quality of
prioritization schemes in our system [21], [22], [23]. There
are many paper about modeling and verification for the
medical domain [24], [25]. However, much of the focus has
been on device level modeling, and not on capturing the
physiological responses and monitoring for the patient. This
builds upon the current modeling work for devices because
this type of monitoring can be seamlessly integrated into
existing systems to provide more robustness.

VI. CONCLUSION

We presented a software architecture for a support system
for acute care, MACMS, that aims at reducing preventable
medical errors specified in IOM reports. MACMS aids the
physician to confirm diagnoses and monitor treatments given
the available patient information. The system is based on
the representation of medical process that closely matches
mental model of physicians. The system collects and in-
tegrates all the measurements and patient data as they
become available with simultaneous matching to the patient
condition and expected physiological response of the patient.
MACMS provides the medical personnel with realtime alert
which are based on integrated patient data. We demonstrate
the applicability of our model and execution framework
using an acute care scenario.

The long term goals of our project is to provide a
software architecture that is adaptive, dynamic, real-time,
and provides the depth needed in a field of expanding
criticality.
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