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SPLINE LAGS: WHY THE ALMON LAG HAS GONE TO PIECES

by

Dale J. Poirier*

"We may be asking too much of our data. We want them
to test our theories, provide us with estimates of

important parameters, and disc-lose to us the exact
time form of the interrelationships between the various
variables. Progress in this area is likely to be slow
until we have a much better theoretical base for im-
posing a time-lag structure on the data."

Zvi Griliches (1967, pp. 17-18)

1. Introduction

The distributed lag literature is voluminous to say the least.

One indication of the continuing growth of the literature is that since

the survey article of Griliches (1967) , three subsequent survey works

have come on the scene: Dhyrmes (1971), Nerlove (1971), and Sims (1973).

The already extensive "classical" literature on the subject has been

recently augmented by numerous studies taking Bayesian approaches (e.g.,

Chetty (1971), Learner (1972), and Shiller (1973)). This influx of Bayesian

ideas has been fruitful if for no other reason than to emphasize why con-

ventional unconstrained least squares estimation techniques often perform

so unsatisfactorily. Instead of bad data, the real culprit is revealed to

The author is an assistant professor of economics at the
University of Illinois at Urbana-Champaign . An earlier version of this
study was presented at the NBER-NSF Workshop on Segmented and Switching
Regressions held in Madison, Wisconsin June 3-4, 1974. The comments of
its participants were most appreciated, however, none of them should be
held responsible for any weaknesses that remain. Also the author wishes
to acknowledge the computational assistance of Jeffrey Greenspan in pre-
paring the empirical results of sections 4 and 5.
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be inadequate prior information. The opening quotation — by Griliches

(1967) —and the works of Learner (19 2, 1973), Nerlove (1971), and

Sims (1973) are aimed at awakening researches to this reality.

While there has been progress both in developing dynamic economic

theory and in efforts to apply it to distributed lag models, its role, in

the words of Sims (1973, p. 4 ), has "been for the most part not to provide

us with solutions, but to help us better understand the limits of our

ignorance." In practice the typical applied researcher incorporates prior

information in a distributed lag model in an ad hoc fashion. Few attempts

are made to derive the lag structure from an optimizing framework, and for

the most part, whatever prior information is available is loosely used in

selecting a lag parameterization.

The imposition of any parameterization on the lag weights can be

viewed from two distinct methodological vantage points. The first assumes

that nonstochastic restrictions reflecting the lag parameterization are in

fact literally true. (For example, the lag weights may be required to be

on a cubic polynomial.) If these restrictions are false, then the classi-

cal estimation approach yields biased and inconsistent estimators of the

lag weights. The requirement that the weights lie exactly (not even off

—6
by 10 ) on the assumed lag parameterization is viewed much the same way

the whole standard classical linear regression model is viewed — as a

theoretical construct, adequate for the purposes at hand, which captures

the "flavor" of the theoretical model, and which serves in a sense as a

One classic counter-example is the derivation of the partial
adjustment model from a cost minimization hypothesis. See Poirier (1973c)
for a further extension.
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place to "hang one's hat" and begin analysis. Obviously, such stringent

requirements demand that all availat e prior information be examined to

insure that the specified lag parameterization does not rule out any lag

shapes which are theoretically possible.

From the second vantage point the lag parameterization restric-

tions are not viewed as being exactly true, but rather only as a "reasonable"

approximation to the true unknown lag structure. If these restrictions are

in fact only approximately true and if they are specified in a nonstochastic

manner, then the resulting lag weight estimators will be biased and incon-

sistent — although they may still dominate other estimators in mean square

error. Such approximate restrictions can yield consistent estimators if

they are specified stochastically along the lines suggested by Theil and

2
Goldberger (1961) and Theil (1963). However, it seems (to this author

at least) that once such "mixed" estimators are considered, the full-

fledged Bayesian framework provides a much better vehicle in which to

incorporate stochastic prior infomation.

In any case such estimation issues are not directly the subject

of this study. Rather the issue here is the choice of lag parameterization.

Clearly, from both vantage points it is desirable to incorporate all

available prior information concerning the shape of the lag, and in the

case of the second vantage point, it is also desirable to select a lag

parameterization which is flexible enough to serve as an adequate

approximation to other possible lag structures.

2
See Yancey, Bock, and Judge (1972) and Mehta and Swaray (1974)

for an analysis of some small sample properties of Theil' s mixed estimator.
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Fortunately, modern approximation theory offers a family of

functions that not only serves as "• ic most successful approximating

3
functions in use today," but which also can be used quite handily in

representing prior information (which jLs likely tc be available) concerning

the shape of the lago Members of this family are called spline functions

and can be defined as follows.

Definition . An nth degree polynomial spline function is a

piecewise polynomial function made up of polynomials of degree

at most n such that the spline and its derivatives up to

and including the (n - l)th are continuous.

A thorough discussion of the approximation properties of spline

4
functions is beyond the scope of this study. Intuitively, spline func-

tions owe much of their approximating power to the discontinuities per-

mitted in their nth derivative. In comparison to polynomials (i.e., Almon

lags) which are a subclass of spline functions, this permits spline functions

to better approximate lag functions -?ith asymptotes. Since splines are

made up of polynomials, they cannot have asymptotes. However, they can

have flat segments as will be seen in section 3.

In this study the use of spline functions in lag parameteriza-

tions, hereafter referred to as spline lags, will be motivated as follows.

Sections 2 and 3 will provide theoretical motivations. Often it is felt a

3
de Boor and Rice (1968, p. 7).

4
A concise Introduction to the use of spline functions in approxi-

mation theory can be found in Handscomb (1966) , and a thorough discussion
of their mathematical properties can be found in Ahlberg, Nilson, and Walsh
(1967). As for their use in economics, see Poirier (1973a, 1973b, 1973c,
1973d, 1975).





priori that the lag weights should be on a smooth curve, and section 2

gives an analytical interpretation to the concept of "smoothness, " as

well as showing that a cubic spline is in a sense the smoothest function.

Section 3 weakens the 3tringent requirement of most lag paraneterizations -

namely, that the exact lag length be known - and replaces it with a less

stringent requirement which in turn leads again to spline lags. In con-

trast to sections 2 and 3, section 4 provides "approximation" motivations for

the use of spline lags by looking at its "robustness" compared to an Almon

lag. Section 5 illustrates many of the ideas discussed in the preceding

sections by empirical applications of both linear and cubic spline lags.

Finally, section 6 provides a summary of results as well as comments on

practical implementation.

2. Motivation I; Smoothness

Consider the distributed lag model

y
t

- e
Q
x
t
+ 3lVl + ... + &k

x
t_k

+ e
t

(t - 1, 2 T)

or

y « X6 + e (2.1)

where

r
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h

*p ,,,x
l-k

rl " ,X
2~k

Vl *"Vk

We assume that the x 's are fixed in repeated sampling, or if stochastic,

distributed independently of e and such that plim (^X'X) is positive definite.

2
We also assume that e^N(0, a I).

Throughout the distributed lag literature, it has been postulated

that the lag coefficients should lie on a "smooth" curve and that "wild"

changes in magnitude and sign are unlikely. Specifically, Shiller (1973,

p. 777) gives the following motivation for smoothness priors.

"First degree smoothness priors can be likeiied to
a draftsman's flexible curve. The favored shape is a

straight line; moreover, the shapes that one can draw
with a flexible curve will have small 'second differences'
unless the curve is bent very hard."

Sea Sims (1971, 1973) for a counter-argument in terms of discrete
approximations to continuous-tima distributed lag models. The relationship
between the discrete lag distribution and the underlying continuous-time
distribution depends on the local .serial correlation of the independent
variable. For locally smooth independent variables, the graph of the

discrete distribution looks very much like the continuous-time distribution.
However, the discrete distribution corresponding to a one-sided continuous-
time distribution is unlikely to be smooth near a time lag of zero. Hence,
this line of reasoning implies that the smooth cubic spline lag described
in this section should not include the first couple of lag weights. Other-
wise, the suggested techniques are relevant and the example in section 5

will illustrate this. Arguments for unconstrained ordinary least squares
are also presented in Cargill and Meyer (1974).
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Interestingly, Shiller's analogy to the draftsman's flexible

curve immediately brings to mind spline functions since their name in fact

stems from their similarity to the draftsman's spline. The widespread

popularity of spline functions in approximation theory is in large part

due to the following mathematical property.

Theorem 1: Let t~ < t.. < ... < t (m < k) be a set of abscissa

—

<j i m

values (called knots), and 3«, &-.»•••» $ an associated set of ordinates
u 1 m

2
(lag weights). Then of all functions f(t) e C [t , t 3 such that

f(t.) - B (j " 0, 1, . .., m), the integral

t ,
/

t

m
[f"(t)]<lt (2.2)

o

is minimized when f(t) is a natural cubic spline, i.e.. a third degree

7
polynomial spline whose 3econd derivative at t. and t vanishes.

U m

Using (2.2) as a measure of smoothness, Theorem 1 indicates that

the natural cubic spline is the "optimal" lag structure passing through

Q
(t., 8.) (j 0, 1, ..., m). However, this optimality ir conditional on

the knot selection. Fortunately, as will be seen in the following section,

See Ahlberg, Nilson, and Walsh (1967).

7
For a proof see Ahlberg, Nilson, and Walsh (1967, pp. 75-77).

An application of Theorem 1 in monetary theory is given in Poirier (1973d).

8
A discussion of the optimality of spline functions in the

smoothing of stochastic processes can be found in Kineldorf and Wahba (1970)
Since (2.2) is often a good approximation to the integral of the square of
the curvature of the function y - f (t) , Theorem 1 is often referred to as
the minimum curvative property (see Ahlberg, Nilson, and Walsh (1967)).
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the location of knots can often be dictated by theoretical considerations.

In any case we delay discussion' of knot selection until section 6.

To gain a better understanding of Theorem 1 and the use of cubic

9
spline lags, consider the following. Suppose we have a monthly distributed

lag model with a one year (k»=12) lag, and that five equally-spaced knots

are chosen in "lag time," i.e., at 0, 3, 6 E 9, and 12. Then it is possible

to write $ as a linear combination of the lag weights at the knots, i.e.,

= W
x y» (2.3)

where y a [Pn» &v &&* ®9* ^1?^' and W
l

(calcu^ated from equation (2.14)

in Poirier (1973a 3 p. 518)) is given by

W,

1.0000 .0000

.5873 .5132

.2341 .8915

.0000 1.0000

-.07804 .7646

-.05291 .3545

.0000 -0003

.02116 -.1270

.01455 -.08730

.0000 ,0000

-.006614 ,03968

-.005291 .03175

.0000 .0000

.0000

-.1270

-.1587

.0000

.3862

.8042

1.0000

.8042

. 3862

.0000

-.\587

-.1270

.0000

.0000

.03175

.03968

.0000

-.08730

-.1270

.0000

.3545

. 7646

1.0000

.8915

.5132

.0000

.0000

-.005291

-.006614

.0000

.01455

.2116

.0000

-.05291

-.07804

.0000

.2341

.5873

I. 0000

For the remainder of this study we shall refer to c natural
cubic spline as simply a cubic spline unless the context indicates otherv7i'3e.

This convention reflects the strong implications of Theorem 1 favoring the

use of a natural cubic spline. For a detailed discussion of other type3
of cubic splines, which may be of value in particular eases, see Poirier
(1973a) and (1973b, Chapter 3).
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Substituting (2.3) into (2.1) yields

y - (XW )y 4- e
'

(2.4)

which is in the form of a standard unconstrained linear model. Theorem 1

2
tells us that of all possible lag parameterizations in C [0, 12] passing

through
3fl»

3~, 8
fi

, 8Q » 6,
2 , tne cu°ic spline lag given by (2.3) is the

smoothest in the cense of (2.2).

Exactly how the estimation procedure proceeds from here depends

on the methodological beliefs of the individual. The strict classical

statistician, having incorporated all the prior information he can, would

proceed to estimate y directly from (2.4), and then most likely, by means

of hypothesis testing, check to see if his resulting estimates were "con-

sistent" with maintained hypotheses. Statisticians with Bayesian

tendencies would most likely use Theil's "mixed" approach discussed

earlier or a full-Bayesian approach. In the latter case, like Chetty (1971)

and Mouchart and Arsi (1974), but unlike Leader (1972) and Shiller (1973),

a parsimonious parameterization is introduced first to characterize the

lag structure., then an informative f.jtijugate prior can be. used.

3. Motivation II: Variable Lag Length

In some situations the researcher may not feel that the lag

structure need by smooth in the sense of Theorem 1, but only that it be

continuous. One such simple formulation would be a continuous piecewise

linear representation, i.e., a linear spline . One of the first distributed

lag formulations, by Fisher (1937), assumed that the regression coefficients

satisfy an arithmetic (linear) progression. While more recent distributed
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lag techniques such as the Aimon (1963) lag emphasize higher degree

polynomials, non-monotonic lag formulations can also be represented

by piecewise linear functions. Such formulations have received some

recent attention by Sims (1971, p. 562) and Clark (1974). Interestingly,

Clark (1974, p. 8) explains his choice by saying that connected broken

line distributions are "closer to the present author's prior notions

than Lagrange polynomials .

"

Besides being reasonable and flexible, the linear spline is

also particularly useful in cases where the exact lag length is not

known, buy only a set of conceivable lag lengths (including the true

one) are known, For example, suppose that in a monthly model it is

believed that the distributed lag ends at either two, three, or four

quarters. Then a linear spline with knots at 0, 3, 6, 9, and 12. months

permits (but does not require) an inverted V-shaped structure for lag

periods 0-6, and allows for zero lag coefficients from 6-12 or 9-12.

Furthermore, it is easy to test for such possible lag lengths.

To see this consider the following. Analogus to (2.3) the

monthly lag weights can be expressed as a linear combination of the

weights at the knots by

- W
2

y

where
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w.

3 c

2 1

1 2

3

2 1

1 2

3

2 1

1 2

3

2 1

1 2

3

Then the sets of hypotheses

H : 6
6 " 3

9
" 3

i2 " ° % '' 3
9

" 12 - °

(2.5)

n
±

: 3
6

i or e
Q

^ or B 12 * H| : $
9

^ or &
12

*

test for the lag ending at 6 or 9 months, respectively. Furthermore, the

hypotheses H~ : 3-
2

and H" : 8-
2

^ test whether the lag ends at

12 months

.
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The importance of not restricting oneself to a fixed lag length

when there is some uncertainty about :he exact length should not be over-

looked. Schmidt and Waud (20, pp. 12-13) have pointed out that the

popular Almon lag is quite restrictive even when the true lag length is

overspecified , since a polynomial of degree p < k can have a most p zeros

in an interval. The use of "endpoint conditions" further restricts the

number of zeros in the interval [0, k]. Once again the continuity con-

ditions on all the derivatives of a polynomial rule out flat segments

permissible with a linear spline.

A cubic spline can also have flat segments, but the continuity

of its first and second derivatives has important implications for the

shape of the other segments. For example, a natural cubic spline with

knots at 0, 3, 6, 9 and 12, and which has flat segments along the horizontal

axis over [6, 12], must be either convex or concave, but not both, over

[0, 6]. This is easily seen by recalling that the second derivative of a

cubic spline is a linear spline. If such a restriction is undesirable,

then it can be weakened by either including more knots in the interval [0. 6],

or by using a cubic spline with a left end condition different than a

11
vanishing second derivative.

It should be noted that in the case of the cubic spline,
hypotheses (2.5) must be augmented by the additional specification that
the second derivative vanishes over the interval under consideration.
See Poirier (1973a, p. 520) for details.

See Poirier (1973b, Chapter 3).
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Table 1 gives the effects of continuity In derivatives for a

cubic spline with five segments, having knots at t-, t.. , ..., t_, and

with a flat fifth segment along zero. Writing the equation of the cubic

spline in the i th interval as

S(t) - a
±
+ ^(t-t^ + c

±
(t-t

±
)

2
+ c^Ct-t^

3
, t

±-1
< t < t

± ,

with interval lengths h= t. - t. . (i = 1, 2, ..., 5), the coefficients

for segments two through five are given in Table 1. The discontinuities

in the third derivative imply one additional "degree of freedom" is picked

up in each interval as we move away from the flat segment. Not until we

are four segments away are the coefficients in some sense "free." If this

segment is the first segment (as in this example) , then the left end

condition of the natural cubic spline will require c, 0.

4. A Robustness Comparison of Alroon and Spline Lags

The success spline functions have enjoyed in approximation theory,

together with the best approximation property given in section 2, lead one

to believe that spline lags should be less susceptable to specification

12
error than Alroon lags. This section presents evidence which strongly

supports this claim.

Suppose we restrict the lag coefficients of (2.1) to satisfy

the linear restrictions

P - Ry, C4.1)

where R is a (k+1) x m matrix of known constants with rank m, and y is

12
Section 3 has also illustrated this with respect to lag

length.
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amxl column vector of unknown parameters. In the case of a cubic or

linear spline lag, R is given by the matrices W. and W~ respectively,

13
discussed in sections 2 and 3. In the case of an Almon lag, R may take

on various forms, e.g., we may express the 0's as a linear combination of

ordinate values analogous to the cubic spline, or as a linear combination

14
of conventional polynomial coefficients.

Subject to (4,1) the ordinary least squares estimate of 6 in

(2.1) is

» Dy - DX0 + De= Ry - R (R'X'XRrVx'

where D - R(R , X ? XR)"
1
R'X' and DD' - R(R , X'XR)"

1
R f

.

The mean square error matrix of 0* is

M - E(0 - 0)(0 - 0)'

r ir i 1

- E (DX - 1)0 + De (DX - 1)0 + Be
L_ .J L _j

- a
2
DD' + (DX - 1)00* (DX - I)' (4.2)

It would be nice to have a simple scalar function (e.g., trace

or determinant) of (4.2), however, (4,2) itself is much too cumbersome to

work with. Instead we will follow the strategy of Amemiya and Morimune

(1974, p. 379) and consider only the much-simplified function

13
Of course there are other parameterizations available also,

e.g., in terms of conventional polynomial coefficients and jump dis-
continuities in the nth derivative (n 1 or n 3) at the interior
knots

.

14
See for example Cooper (1972).
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tr(MT~
1
X , X) - o^T^trCDD'X'X) + tr (DX - I)j3B

f (DX - I)

a
2
T
-1

tr RtR'X'ltRj'Vx'X + tr e
f (dx -d't'^'xcdx - i)

'T'Vxj

•]

a
2
T""

1
(k + 1) + 8* T^X'X - T^X'XRCRT^X'XR) 'Vrt'xB

.

(4.3)

One rationale for (4.3) is that it equals T ' times the trace of the mean

square error matrix of the estimator of Xg, and hence it measures how well

we can estimate the systematic part of the dependent variable.

By computing (4.3) for various choices of R it is possible to

compare in a sense the efficienty of an Almon lag with various spline lags.

However, before doing this we shall make one more simplification of (4.3),

again patterned after the approach of Amemiya and Moumume (1974). Assum-

ing that x follows a stationary first-order autoregressive process with

E(x
fc

) * and ECx^^)
2 s

a p

'

x

1-p'
o »

we will take the probability limit of (4.3) to obtain

plim trCMT^X 1 X)
2„,

a
x
e fl - QR(R ,

flR)~
1
R f

fi B, (4.4)

where

15
Amemiya and Morimune (1974) are concerned T«/ith selecting the

"optimal" order of the polynomial in an Almon lag. In their discussion
they use a different parameterization of the Almon lag than (4.1). They
report that they computed the trace of (4.2) for certain parameter values
and that their results did not differ significantly from those using (4.3).
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1-p'

k k-1
P P

k-1

Now letting R « A represent the Almon lag (AL) case, and

R » S represent the spline lag (SL) case, we compute (4.4) for each case

and form the ratio

„-l

plimftrCM^T'-Sc'X)] 3' [ft- flRCR'^'^'filS

(4.5)

In their analysis, Amemiya and Morimune (1974) replace the second
term of (4.3) with its probability liioit, leaving the first term untouched.
The resulting expression for efficiency can then be regarded as the
asymptotic expectation of the essential part of the usual mean square
prediction error (see Amemiya and Morimune (1974, p. 379)). If this pro-
cedure had been followed here, than instead of then instead of (4.5) we
would have

-1.
6 + 3' [Q - ftS(S'QS) S'fllB

e + b
1 n - AACA'nA)"^^ 3

2 2
where 9 (k + 1) a /To . In this context (4.5) is merely the limiting

case as 9 -* 0. While under this measure the relative efficiencies of the
two types of lags will tend to unity as 9 increases, the difference in their
absolute efficiencies will still remain constant.
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In order to make meaningful statements concerning (4.5) in light

of its many unknown parameters, we will proceed as follows. First, we will

use the twelve sets of lag weights ($' s) found in Amemiya and Morimune

(1974, p. 380) and the three sets of weights found in Cargill and Meyer

17
(1974 pp. 1036-1037) . Graphs (the ordering of which will become clear

later) are shown in Figure 1. Graphs (a), (c) , (f ) , (i) , (j), (m) , and

(0) correspond to estimates from various empirical studies and come from

1 ft

Amemiya and Morimune (1974). Graphs (b) , (e) , (k) , (1), and (n) are also

taken from Amemiya and Morimune (1974) and they correspond to second-order

autoregressive models with different parameter values. Graphs (d) , (g)

,

and (h) in Figure 1 are taken from Cargill and Meyer (1974)

.

Second, we will choose k 15. This corresponds to the maximum

lag length of these beta sets. Since nine of the fifteen beta sets

have lag lengths shorter than fifteen periods (e.g., the weights shown in

graph (h) of Figure 1 have a lag length of five) , this specification will

permit a comparison of robustness with respect to lag length misspecification.

Third, we will choose Almon and spline lags with m = 4 unknown

parameters. In the first case this corresponds to a cubic Almon lag —

a choice which is likely to be representative of many of the applications

found in the literature. In the second case this corresponds to a spline

19
lag with four equally-spaced knots at 0, 5, 10, and 15. Note that in

The third set of weights taken from Cargill and Meyer (1974,

p. 1037) correspond to their Model 3. This model contains distributed lags
in two different explanatory variables, but only those weights corresponding
to the second explanatory variable are used here.

18
The sources for these seven sets of lag weights are given in

Amemiya and Morimune (1974) . None of these empirical studies used either
Almon or spline lags.

19
For the cubic spline lag the W-matrix was computed using equation

(2.14) in Poirier (1973a, p. 518) and is given in the Appendix.
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Figure 1
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Figure 1 (continued)
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Figure 1 (continued)
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order not to prejudice the results, these knots have not been chosen on

the basis of possible lag lengths. To the extent that such choices can

be feasibly made in pratice, the results presented here will understate

the efficiency of the spline lag.

Fourth and finally, ratio (4,5) will be computed for the following

values of p : .1, .3, .5, .7, and .9. These choices for p permit investi-

gation of the effect on the two lag parameterizations of smoothness in

the explanatory variable series.

The results of these computations are summarized in Table 2 for

the cubic spline lag and in Table 3 for the linear spline lag. As can be

seen from these tables, on the average the spline lags did quite well —

with efficiency gains of approximately 9 percent for the cubic spline lag

20
and 8 percent for the linear spline lag. The efficiency gains for the

spline lags are greatest (for most of the beta sets) when .5 <_ p j< .7.

Unfortunately, the effect of the "nature" of the lag shape on A

is not so clear. For convenience the graphs have been ordered in such a

way that proceeding from (a) to (o) corresponds to decreasing efficiency

of the cubic spline. Graphs (a) through (i) correspond to the nine lag

weight sets for which the cubic spline lag dominated the Almon lag (on

the average), and graphs (j) through (o) correspond to the remaining six

lag weight sets. The relative dominance was the same for the linear spline

lag except in case (i) . Basically, it seems (to this author at least) that

in those lag shapes which seem most "reasonable," especially (a), (e) , and

(g), the spline lags do better than the Almon lag. Those cases in which

20
Of course the relevance of these averages depends upon whether

the equal weights each of the fifteen beta sets and the five values of p
are given are indicative of their frequency of occurrence in practice.
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Tabl< 2

X - Values for the Cubic Spline Lag

. Beta
set

p * .1 p * .3 p - .5
1 p = .7

1

p » .9
Column
mean

(a) .456 .441 .428 .416 .406 .429

(b) .712 .709 .709 .713 .720 .713

(c) .800 .750 .713 .694 .692 .730

(d) .779 .748 .725 .712 .707 .734

(e) .850 .821 .796 .781 .779 .805

(f) .853 .835 .819 .809 .809 .825

(g) .930 .901 .878 .865 .864 .888

(h) .931 .951 .974 .990 .997 .969

(i) 1.02 1.00 .986 .975 .973 .990

(J) 1.03 1.02 1.00 .987 .983 1.00

GO 1.04 1.05 1.06 1.07 1.08 1.06

(1) 1.06 1.06 1.06 1.06 1.07 1.06

(m) 1.13 1.13 1.14 1.15 1.17 1.14

(n) 1.11 1.13 1.14 1.16 1.18 1.14

(o) 1.21 1.20 1.19 1.19 1.19 1.20

Row
mean

.928 .916 .908 .905 .907 .913
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Table 3

X - Values for the Linear Spline Lag

Beta
Set p - .1 p . 3 p .5 p - .7 p - .9

Column
mean

(a) .527 .519 .516 .515 .514 .518

(b) .650 .660 .674 .689 .699 .675

(c) .614 .544 .494 .469 .465 .517

(d) .600 .546 .511 .493 .485 .527

(e) ,833 .806 .793 .791 .796 .804

(f) .689 .679 .676 .681 .692 .683

(g) .907 .877 .860 .857 .865 .873

(h) .954 .974 .991 1.00 1.00 .985

(i) 1.06 1.05 1.04 1.04 1.04 1.05

(J) 1.18 1.17 1.16 1.14 1.13 1.16

00 1.05 1.06 1.08 1.10 1.12 1.08

(1) 1.09 1.09 1.09 1.10 1.11 1.10

(m) 1.21 1.23 1.27 1.30 1.34 1.27

(n) 1.17 1.20 1.22 1.25 1.28 1.22

(o) 1.44 1.41 1.38 1.36 1.35 1.39

Row
mean

.932 .921 .917 .919 .926 .923
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the Almon lag dominates (i.e., (j) through (o)) tend to have large jumps in

21
weights between lag periods zero an; one. Since a natural cubic spline

requires the second derivative to vanish at zero, this smoothness require-

ment may in part explain its relative inefficiency, and hence give at

support to the procedure of not including the weight at zero in the lag

parameterization.

Exactly how far the successful results (in terms of the spline

lags) of this section can be generalized is of course not clear. The par-

ticular lag wieght sets were chosen because (i) they had been used in

recent studies for choosing and comparing lag parameterizations, (ii) they

cover an extremely wide range of lag shapes, and (iii) they did not seem to

in any way prejudice the results beforehand. As in any investigation of

this kind, generalizations can be dangerous — but hopefully no more so than

those that may come from Amemiya and Morimune (1974) and Cargill and Meyer

(1974).

21
Recall footnote 5.
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5. Empirical Illus tration

To illustrate the practical application of spline lags, the

following empirical illustration is presented. Shiller (1973, p. 783)

discusses a model in which the corporate bond yield average is treated

as a distributed lag in the commercial paper rate. There exists sub-

stantial literature (see e.g., Modigliani and Shiller (1973)) in which

the theoretical model relating the long rate to the short rate is developed.

Typically the lag coefficients are supposed to reflect an expectational

mechanism, and hence, for the most part are assumed to lie on a smooth

curve - except for Bn (see footnote 5).

Along these lines, model (2.1) was postulated with k 18 and

a first-order autoregressive disturbance term. The dependent variable was

the Federal Reserve Board Corporate Aaa yield series and the explanatory

variable was the four to six month prime commercial paper rate, with t 1

corresponding to the third quarter, 1955 and T = 48 corresponding to the

22
fourth quarter, 1969.

Based on many similar models contained on Modigliani and

Shiller (1973), it was expected a priori that the lag shape would have

the following characteristics. Beginning at a lag of one period the

weights would increase rapidly from negative to positive reaching a

maximum near a lag of six or seven quarters, and then declining with an

22
While it was initially the intention to replicate Shiller'

s

example, a comparison of unconstrained ordinary least squares results for
identical models indicated that this was not possible. Since at exact
replication of Shiller' s results was not possible, we have (unlike Shiller)
used the Prais-Winsten two-step procedure to correct for first-order
autoregression in the disturbance term. The data used in this study were
taken from the Federal Reserve Board Bulletin over the period 1953-19 70.
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inflection point near a lag of nine quarters and possibly a positive

asymptotic runout beginning at about a lag of twelve quarters.

These a priori beliefs were utilized in picking the knots of

the following two spline lags - each with four unknown parameters. First,

following the general suggestions of Wold (1974), a cubic spline lag with

knots at 1, 5, 9, and 18 was chosen. This knot selection reflects Wold's

suggestions to have extreme points near the center of intervals and in-

flection points near knots. Second, a linear spline lag with knots at

1, 6, 12, and 18 was also chosen. This knot selection reflects the expected

maximum near 6 and the possible asymptote-like behavior beyond 12.

The undesirability of unconstrained ordinary least squares is

clearly reflected in Figure 2 which shows the estimated lag coefficients

from such a procedure. Not only is the lag shape highly irregular, but

the standard errors of all lag coefficients are quite large. In contrast

the spline lags yield quite acceptable results. Letting the coefficient

of the lag at zero be "free" and constraining all other coefficients to

lie on the previously mentioned spline lags resulted in the estimated

coefficients and statistics in Table 4. (y
1

, y_, y, and y, are the lag

weights at the respective knots.) The constrained lag coefficients are

shown in Figure 3 for the cubic spline lag and in Figure 4 for the linear

spline lag. As can be seen from these figures , both spline lags give

23
intuitively pleasing and surprisingly similiar results.

23
The expected asymptotic behavior did not materialize. For the

linear spline lag the null hypothesis H_: y = Y, was rejected in favor of

H-: Y 3
¥ y. at the five percent level - indicating that the final segment

is indeed significantly idfferent than a horizontal line.
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Figure 2

Unconstrained Ordinary Least Squares
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Figure 3

Cubic Spline Lag
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Figure 4

Linear Spline Lag
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6. Conclusion

The intention of this study has been to address itself to only

one aspect of the distributed lag model - the parameterization of the lag

weights. While the discussion has neglected complications in the error

term, the presence of other explanatory variables, and simultaneous equation

problems, their introduction into the model would not appear to negate the

following three conclusions.

First, if a smooth lag shape is desired over some interval of

lagged time, then the natural cubic spline gives the smoothest lag in the

sense of Theorem 1. Depending on the methodological beliefs of the in-

dividual researcher, such a parameterization can be imposed nonstochastically

(i.e., exact) or stochastically. In the case of the latter, a "mixed

estimator" analogue of the cubic spline lag can be formulated in much the

same fashion as Taylor's (1974) mixed estimator analogue of Shiller's lag.

The full-fledged Bayesian approach (see for example Zellner (1971)) is an

even more attractive alternative.

Second, if the exact lag length is not known, but rather only a

set of possible lag ending points, then a linear spline lag (or possibly

a cubic spline lag) may be used to test for lag length - assuming of course

that the true lag is a linear (or cubic) spline. Such a procedure allows

for the testing of lag length within the context of a single model, which

is more desirable than the "fishing expedition" typically used in the

24
applied literature.

24
See Cohen, Gillingham, and Helen (1973) for evidence relating to

the poor performance of typical goodness of fit measures for detecting lag
length and shape.
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Third, based on the limited investigation of section 4, there is

an indication that spline lags are more robust than Aimon lags. At the very

least the results must be viewed as encouraging for the spline lags.

While the preceding results are encouraging, no pretense is made

that they are beyond criticism. Indeed it seems that much of the dis-

tributed lag literature is quick to criticize the techniques of others,

but slow to suggest positive solutions. Probably, the aspect of spline

lags most susceptible to criticism is the question of knot selection. In

his previous writings on spline functions, the author has emphasized select-

ing knot locations based on theoretical considerations. Indeed, selection

25
based on possible lag lengths does precisely that. However, this is not

intended to rule out other approaches. The use of Wold's "rules of thumb"

in section 5 is one such alternative. Similarly, the numerous variable knot

techniques to be discussed in Poirier (1975) are other candidates. Of these,

26
Bayesian approaches again seem most attractive, if for no other reason

than that informative priors force researchers into potentially fruitful

thought concerning the model being investigated. Spline lags are not

immune from the abuse of users, and potential fishing expeditions for knot

locations can only be discouraged - not prevented.

25
The selection of a knot reflecting the ending of the lag is an

extreme example in which two adjacent pieces are thought to be different. Past
works of the author have emphasized the testing of such "structural changes,"
and it remains to be seen whether such tests are of interest in the context of
distributed lags.

6
See also Halpern (1973).
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In closing it may be appropriate to recall the remarks of Learner

(1972, p. 1080): "In the final analysis, choice among methods will come

down to 'which bed is more comfortable, ' rather than 'which bed has clean

linen.'" Paraphrasing Learner, the author finds bed 1 (Almon lags) terribly

uncomfortable, but sleeps blissfully on bed 2 (spline lags), perhaps only

because it is not crowded.
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6. Appendix

The transformation matrix for the natural cubic spline with

knots at 0, 5, 10, and 15, which was used in sections 4, is given by:

W

1.000 .0000 .0000 .0000

.7488 .3152 -.07680 .01280

.5104 .6016 -.1344 .02240

.2976 .8304 -.1536 .02560

.1232 .9728 -.1152 .01920

.0000 1.000 .0000 .0000

-.06400 .8960 .2000 -.03200

-.08000 .6960 .4480 -.06400

-.06400 .4480 .6960 -.08000

-.03200 .2000 .8960 -.06400

.0000 .0000 1.000 .0000

.01920 -.1152 .9728 .1232

.02560 -.1536 .8304 .2976

.02240 -.1344 .6016 .5104

.01280 -.07680 .3152 .7488

.0000 .0000 .0000 1.000
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The transformation matrix for the natural cubic spline with

knots at 1, 5, 9, and 18, which was used in section 5, is given by:

W

1.000 .0000 .0000 .0000

.6891 .3813 -.07448 .004167

.4025 .7100 -.1192 .006667

.1647 .9338 -.1043 .005833

.0000 1.000 .0000 .0000

-.07594 .8775 .2093 -.01083

-.08250 .6200 .4825 -.02000

-.04781 .3025 .7645 -.01917

.0000 .0000 1.000 .0000

.03778 -.2267 1.145 .04395

.06222 -.3733 1.200 .1116

.07500 -.4500 1.175 .2000

.07778 -.4667 1.083 .3062

.07222 -.4333 .9340 .4272

.06000 -.3600 .7400 .5600

.04278 -.2567 .5122 .7017

.02222 -.1333 .2617 .8494

.0000 .0000 .0000 1.000
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