
bHP™EemmSmSm

JHI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/10199597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
BOOKSTACKS



Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/comparisonoftrad204judg





3 3

0/K fs

Faculty Working Papers

A COMPARISON OF TRADITIONAL AND STEIN-RULE

ESTIMATORS UNDER SQUARED ERROR LOSS

George G. Judge and Mary E. Bock

#204

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign





FACULTY WORKING PAPERS

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

September 6, 1974

A COMPARISON OF TRADITIONAL AND STEIN-RULE

ESTIMATORS UNDER SQUARED ERROR LOSS

George G. Judge and Mary E. Bock

#204



I-.:'- .--.i
•' •'

! ... ;



28 August, *.*><i

A COMPARISON OF TRADITIONAL AND STEIN-RULE ESTIMATORS

UNDER WEIGHTED SQUARED ERROR LOSS

George G. Judge and Mary Ellen Bock

University of Illinois at Urbana-Champaign

Using a weighted squared error loss measure of goodness maximum likelihood,

pre test and Stein rule estimators are analytically compared and the conditions

necessary for one estimator to be superior to another are developed.

1. Introduction

For the problem of estimating the mean vector of a multivariate normal

distribution or more explicitly for our purposes, the problem of estimating

the K dimensional parameter vector 8_ for the orthonormal regression model

(1.1) v_ * X6 e = XS~V*S + e * Z6 e

,

where y_ and e_ are (T x 1) normal vectors with means Z8_ and £, respectively,

and covariance o
2
I
T , the following results have been obtained under a total

squared error loss measure of goodness, with risk E [ (8 - 6)
!

(£ - 8.)] J i)

James and Stein [1961] developed a Stein-rule estimator, 0* = (1 - c*/u)£,

which, for K > 3 and < c* < 2(K-2) (T-K)K*"
1
[T-K+2]"

1
, where u = f/f/Ka

2
= F-

K T_ K)

is the likelihood ratio test statistic, dominated the conventional maximum

likelihood estimator, £ - Z'yJ; ii) Baranchik [1964] and Stein [1966] developed a

positive part variant of the Stein-rule estimator, 9 = I r # . 0-0 (1 - c*/u)8,~ Lc , °°) —

where I r # ^ (u) is a zero-one indicator function, that dominated the James

and Stein estimator, 6_*; iii) Strawderman [1971] developed minimax rules

which were admissible but did not dominate the Stein rule positive part

estimator, iv) Sclove, Morris, and Radhakrishnan [1972] showed the pre

test estimator, 6 = I r n(u)6, an estimator often used in econometric work,— [c, °°) — *

is uniformly inferior or dominated by a modified version of the positive

part Stein-rule estimator, 6* ' = I
r

,(u)I r rt «a (u) (1 - c*/u)£, and v) Efron

and Morris [1973], using empirical Bayes ideas, showed that the Stein positive

rule estimator, 9_ , is a member of a class of good rules that have Bayesian
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properties.

These results apply to the |3 space where the coefficient variances

and weights are equal. In practice nk-ny situations may arise where the

coefficient variances are not all equal or we wish to weight certain elements

of B_ differently than others. Therefore, the purpose of this paper is to

summarize the conditions necessary for the James and Stein estimator [1961]

and its variants to dominate the conventional and pre test estimators for

the regression statistical model under a weighted squared error loss

measure of goodness. It is noted that under situations usually found in

econometric paractice, where nonexperimental data and model building pro-

cedures are employed, these conditions may often not be fulfilled.

2. Estimator Comparisons

To compare the estimators we use the weighted risk function

(2.1) E[t| - evwcS - 6)] - e[(|> - (ys^ws-^ce - 03],

where W is a (K x K) symmetric positive definite matrix and from (1.1),

u
= S 3. If as a special case the weight matrix is W « I., then the weight

-W -k -1 -1
matrix in the space is S S = 5 " (X'X) and for expository purposes

this is the case we will consider, although it should be understood that the

results we present are valid for any positive definite W matrix.

In the comparing the estimators, _9, will be said to dominate, iB,

if

(2.2) E[(6 - 6)'S"^-/S"^(e - 6)3 - E[(£ - 6) 8 S"\s"^(6 - 6)3 < 0,

for all 9_, with strict inequality holding for some 6L

From the work of Bock, Yancey and Judge [1973] and Bock [1974], we

may write, for the case W - I™., the risk function for the James and Stein

estimator 0*, as
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(2.3) E[(£*> .ys'^S'^Ce*- 0J] = a 2 tr$~
l

+ a
2 trS

-1
c*(T - K)

F{(K -f 2H)"
l
(K - 2 + 2H)"

1
[c*(T - K + 2) - 2(K - 2)

+ Ci'S'^/ePeCtrS"
1
}) 2H(c*(T - K 2)

- 2{3 f e(trS"
1
}/i'S"

1
^ - 2})]i

wjjere H is a Poisson random variable with parameter £*8/o"
2

.

In order for the risk of the James and Stein estimator, 9*, to be

equal to or less than the risk of the maximum likelihood estimator, 8_,

over the entire range of the parameter space, 0, the expression between

the {} brackets must be zero or negative, For this to occur and thus

E [(£ "" £)' s" C£ - £)3 - E[(£* - £)'S (£* - £)] l 0, it must be true that

K
-1

(2.4) I. d./d, = trS /d
{

.
> 2

(2.5) o < c* < 2(T - KHtrS"
1

d"
1

- 2)/K(T - K + 2),

where the d. are the roots of S" , with d. being the largest. For the
1 L

general weighted case these roots wou~d be associated With the matrix

s~\ s'
1

*.

These conditions imply that under the weighted squared error loss, the

superiority of the James and Stein estimator, 6*, relative to the conventional

estimator, §_, depends not only on the number of explanatory variables or

hypotheses, as was one of the requirements for the traditional unweighted loss

in the _6 space, but also on whether or not trS or the sum of characteristic

-i
roots divided by the largest characteristic root of S is equal to or larger than !

-1
If trS /d

L
< 2, then for no value of c > does the James-Stein dominate

the least squai-es estimator.
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Since the degree of col linearity of the columns of the design matrix

X is related to the magnitude of the roots of S , and ill conditioned X'X

matrix may affect whether or not the risk functions cross at some point in the

parameter space and thus has a direct impact on the choice of estimator. An

analysis of the design matrix for several auto regressive and conventional estimated

economic relationships suggests that the condition trS^/d, > 2 may often

not be fulfilled in econometric work and therefore the James and Stein

estimator does not fulfill the minimax criterion,

These same conditions or requirements (trS Vd > 2) and (2.S) must
Li

also hold in order for the James and Stein positive part estimator, 8_,

and the extension of the Sclove modified positive part Stein-rule or pre-

liminary test estimator, 6_ , to dominate the least squares, §_, and con-

ventional preliminary test, £, estimators, respectively. This means the

appearance of three or Biore regressors and a suitably small c* do not insure,

as they did in the unweighted loss (prediction in the
J3

space) case, that the

risk of these various extensions of the Stein-rule estimators, will be less over

the entire parameter space than conventional and pre test estimators , As a

consequence the condition (2.4) suggests a new rule for determining the range of

d. or in another sense the coefficient weights or degree of collinearity per-

missible among the columns in the design matrix X to permit these extensions

of the Stein-rule estimators to dominate the conventional sampling theory estimators.

3. Concluding Remarks

As we change from the traditional statistical model usually analyzed in

the literature when considering Stein-rule estimators to that of the more

general regression case with a weighted squared error loss function, the

following analytical results hold:

i) In order for the extended Stein-rule estimators specified in this

paper to dominate conventional estimators, the ratio of the sunt of

the characteristic roots of the (X'X) matrix, to the largest root of





:

this matrix must be equal to or greater than 2.

ii) If this ratio is not greater than two then some members of the

family of potential risk functions for extensions of the

Stein-rule mators problem, cross the risk function

of the least squares est

iii) If conditions (2A and 2.S) are fulfilled, the Sclove modified

Stein-rule (pre aator, for the general model, is

uniformly superior to the conventional pre test estimator over

the parameter space. Like the conventional pre test estimator

however, its risk function crosses that of the least squares

estimator for large values of the critical value c or small values

of a; the Stein-ruie only yields , ftinima estimator for smaller

values of c or larger values of a than are ordinarily used in practice,

iv) The incidence of col linearity among the columns of the X matrix to the

extent that the X s X matrix is "borderline" full rank, and one root is

small relative to the other roots , means that, the conventional pre

test and the family of .Stein-rule estimators are superior (smaller

risk) to the least squares estimator only over a small interval of

the parameter space and are inferior (larger risk) over a large, and

in some esses, infinite range of the parameter space.

The ans^ :1 results summarized herein suggest that unless the re-

searcher has great confidence that his linear hypotheses are true, under the risk

measure we have employed when col linearity among the columns of the design matrix

is present, there is much to lose and very little to gain by broadening the class

of estimators and using the two stage pre test or Stein-rule procedures.

Finally we note the rules discussed in this paper, with the exception of

those by Strawderman [1971] do not satisfy the conditions necessary for a generalized

Bayes estimator and thus are not admissible. One important area of work for the
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future is t0 evaluate the performance of these under alternative

specifications and loss In regard to alternative measures of per-

formance it shou ited that BednareK-Kozek [1973], using his measure of

.1- - JU
goodness E[S*

2
(9 - 6 has, my making use of the work of

Stein [1SS5] demonstrated ths ?ast s< s estimator is admissible.
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