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ON SOME HETEROSKEDASTICITY-ROBUST ESTIMATORS
OF VARIANCE-COVARIANCE MATRIX

Anil K. Bera and Totok Suprayitno*

University of Illinois at Urbana- Champaign

ABSTRACT

Chesher and Jewitt (1987) demonstrated that White's (1980) consistent estimator of the variance-covariance

matrix in heteroskedastic models could be severely biased if the design matrix is highly unbalanced. In this

paper we, therefore, reconsider the Rao (1970) minimum norm quadratic unbiased estimator (MINQUE).
We derive the analytical expressions for the mean square errors (MSE) of White's (1980), one of MacKinnon
and White's (1985) and MINQU estimators, and perform a numerical comparison. Our analysis shows
that although MINQUE is unbiased by construction, it has very large variance particularly for the highly
unbalanced design matrices. Since the variance is the dominant factor in our MSE computation, MINQUE
is not the preferred estimator in terms of MSE comparison. We also studied the finite sample behavior
of the confidence interval of regression coefficients in terms of coverage probabilities based on different

variance-covariance matrix estimators. Our results indicate that although MINQUE generally has the
largest MSE, it performs relatively well in terms of coverage probabilities. Overall, taking both MSE
and coverage probabilities as choice criteria, the 'almost unbiased' estimator suggested in MacKinnon and
White (1985) is the winner.

1. Introduction

When the disturbance process in a regression model exhibits heteroskedasticity, the

invalidity of standard inference procedures stems from the wrong estimation of the stan-

dard errors. A conventional way of overcoming this problem in econometric modeling is

to specify the model under an assumed error structure, and apply Aitken's weighted least

squares. This method does not seem to be attractive to many practitioners as usually there

is very little or no guidance regarding the form of heteroskedasticity. White (1980) pro-

posed an estimator of variance-covariance matrix of the least squares regression coefficients

which, under certain conditions, is consistent under heteroskedasticity. Other attractive

features of this estimator are that it is obtained without specifying the structural form of

heteroskedasticity, and it is very easy to compute. This may explain the reason behind its

popularity in applied econometric work.

We would like to thank Roger Koenker, Paul Newbold for helpful comments, and Sungsup Ra for his

research assistance. Financial support from the Research Board of the University of Illinois is gratefully

acknowledged.



Recently, several researchers criticized the widespread acceptance of White's proce-

dure, which some people call it the "White washing". Chesher and Jewitt (1987) showed

analytically that for certain regression designs the estimator exhibits a large bias even in

large sample. In particular, a severe bias arises when there is a large value of point leverage

of the regression design, rendering inferences drawn from this estimator uninformative. A

Monte Carlo study conducted by Mishkin (1990) also indicated that the use of White's

standard errors cannot always correct the inferences, and in some situations can make

things even worse.

Alternatives to the heteroskedasticity-consistent variance estimator are available. A

close variant of White's estimator is the one suggested by MacKinnon and White (1985).

They considered an estimator based on the unreplicated "almost unbiased estimator" of

Horn, Horn and Duncan (1975). This estimator is unbiased when there is no heteroskedas-

ticity, but is biased if the homoskedastic assumption is not satisfied. In the special case of

balanced regression designs, it reduces to the estimator considered by Hinkley (1977), which

differs from White's estimator only by some proportional constant. Other alternatives in-

clude those based on minimum norm quadratic estimation (MINQUE) principle of Rao

(1970), resampling method of Wu (1986) and maximum likelihood estimation of Hartley

and Jayatillake (1973). Some of the extensions to a more general case where the distur-

bances are also serially correlated are provided by Newey and West (1987), Wooldridge

(1989) and Andrews (1991).

In this paper we reconsider the MINQUE principle to obtain an unbiased estimator

for variance-covariance matrix under heteroskedasticity. The paper proceeds as follows.

In Section 2 we provide some review of White's consistent estimator, highlighting its bias

and indicating a simple way to eliminate the bias. In Section 3 we discuss the MINQUE
procedure within the framework of a variance component model. The exact expressions

for the finite sample variance of different estimators are derived in Section 4, and some

numerical and Monte Carlo results are given in Section 5. The last section provides a

conclusion.

2. The Bias of White's Heteroskedasticity-Consistent Estimator

We consider the standard regression model

y = X/3 + e , (1)
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where y is a (n x 1) vector of dependent variables, X is a (n x k) matrix of independent

variables, /? is a (k X 1) vector of unknown parameters, and e is a (n X 1) random vector

with mean zero and variance-covariance matrix E = dia,g(a
2

,
. . . ,cr\). Under this setup,

the ordinary least squares (OLS) estimator of (3 is given by

$ = {X'XT l X'y, (2)

and its true variance-covariance matrix is

QT = {X'X)- lX ,llX{X ,Xy l
. (3)

Under homoskedasticity assumption e ~ (0,cr 2 /) this variance-covariance matrix is esti-

mated by

ns = *2(x'x)-\ (4)

where a 2
is the standard OLS estimator of a 2

. This latter estimator is inconsistent if in

fact the disturbances are heteroskedastic.

White's (1980) heteroskedastic-consistent estimator is given by [see also Eicker (1963)]

Slw = {X'X)- lX'tX(X'X)- 1

(5)

where S = diag(e|, . . . ,£^), with £ t
being the OLS residual. Note that this S is similar

to the unreplicated J.N.K Rao's (1972) modified MINQUE or the unreplicated average of

squared residuals of Horn, Horn and Duncan (1975). Different from the traditional ways

of overcoming the heteroskedasticity problem in econometrics literatures, the Q,\y does not

require specification of the particular form of heteroskedasticity.

Under the regularity conditions given in White ( 1980), Qjy is a consistent estimator for

Q.T, but it is generally biased under both homoskedastic and heteroskedastic disturbances.

Following Chesher and Jewitt (1987), let us define H = XiX'X^X', M = I - H, h
2 is

the z'-th column of matrix if, rrij is the z'-th column of matrix M, and h tJ is the (z, j)-th

element of matrix H . We have i = (fi, . . . ,£n )' = Me and therefore,

n

E{i2
) = miSm, = a; - 2h ll a

2 +^ h
2

tJ
a 2

= <7?-2h;h,<7?+h;Sh„ (6)

since H is an idempotent matrix. The bias of £
2 then is given by

bias(ff) = £(£?) -a2

= h;Eh
l
-2h;h l^,

= hJCE - 2<7?/)hi5 (7)



and the bias of White's consistent estimator Q\y is

•/ v\-i
bias(ftn') = (X'X)- l X'BX(X'X) (8)

where B — diag (hj(S — 2(j\J)hi,. . . ,hn(E ~" 2o ,

J/)hB ) 1
which is not zero under both

homoskedastic and heteroskedastic disturbances. Obviously, when max;(<7?) < 2min,-(of

)

for all t, all elements of B are negative, and therefore the standard error of all elements of

/? would be underestimated.

When the disturbances are homoskedastic, the bias of the White's consistent estimator

will be -(7 2 (X'X)- l X'[dmg(hn h nn )}X(X'X)- 1
. Horn, Horn and Duncan (1975)

proposed £j /(l — ha) as an almost unbiased estimator (AUE) for of, which was then used

by MacKinnon and White (1985) to modify the White's consistent estimator. MacKinnon

and White's (1985) estimator can be written as

n MVV = (X'X)- 1X'HX(X,X) -1
(9)

where E = diag (e?/(l — /in),... ,£ n /(l — h nn )). This estimator is of course unbiased

only when the disturbances are homoskedastic. In the special case of a balanced design

matrix X, where ha = k/n for all i, Qmw reduces to {n/(n — k))$lw, which is the variance-

covariance matrix estimator suggested by Hinkley (1977). Both MacKinnon and White's

(1985) and Hinkley's (1977), however, are biased when the disturbances are heteroskedas-

tic.

Given the relation between e and e, the derivation of unbiased version of the White's

estimator for general design matrix X is straightforward. Let us denote by rriij the (i, ji)-th

element of matrix M. Then, from (6), we have

£(e1) =£ m\
}
a)

;=i

which can be expressed as

for i = 1, ,n, (10)

£1

in

m
li
2
21

m nl

9m12
9

77299

m n2

m
m

2 -,

In
2
2n

m
.»i-

(11)

E(e) = Qa ( ~'
, say.



Therefore, <7^ 2) = (<7
2
,<7

2
,. . . , o 2

n
)' = Q~ l e is an unbiased estimator of a^ if Q is non-

singular, and our unbiased version of the White's estimator can be obtained by putting

the z-th element of <7
(2) instead of i] in the expression for Qvy. It is interesting to see that

<7
2 turns out to be exactly MINQUE of a 2 proposed by Rao (1970), as demonstrated in

the following section.

3. MINQUE of Variance-Covariance Matrix
in Heteroskedastic Linear Models

We write the disturbance process £ of (1) in an identity similar to the variance com-

ponents type model as follows,

e = uiei +--- + un en , (12)

where u; [i = 1,.. . ,n) is a (n x 1) known vector whose i-th element is one and the

rest are zero. Since var(tj ) = of (i — 1, . .
.

, n), the variance-covariance matrix of e is given

by E = diag(cr 2
, . .

.
, a 2

n ) which is exactly the heteroskedastic problem we usually consider.

Rao (1970) approached precisely this problem in a somewhat different way, and obtained

MINQUE of a 2
. We will see that variance component representation of the disturbance

process above arrives at the same result and provides a more convenient way of obtaining

MINQUE of heteroskedastic variances. This variance component framework is also useful

for analyzing various forms of heteroskedasticity.

Turning back to our present problem, our interest is to obtain the MINQUE of k x k

variance-covariance matrix Q,t — [X'X)~ l X'HX(X'X)~ l
. Denoting by XXJ the (z,j)-th

element of (.Y'.Y)
-1

A'' for i — 1, . .
.

,

k and j = 1, . . . ,n, the (r, .s)-th element of Qt may

be written as a linear combination of a 2
, (j = 1, . .

.
, n)

n

QTJr>s) = ) XrjXsjO* , r, s = 1, . .
.

, k

= <s
° (2)

(13)

where a'r3 =(Xr\Xa i, ¥r nXsn ).

It is easy to see that the MINQUE of Qj-(r,5) can be obtained directly from Rao

(1972). Let us write \\ = u,u'
(

, then £"=1 Vt
= I. The MINQUE of Q,T(r,s) is given by

y'Ay, with .4 satisfying

min tr {AA) subject to AX = and tv(AV
t )
= XriX3t , i — 1, 2, . .

.
, n, (14)

A



m
\

l
m\ 2 . • m\n~

Q = M * M = m 21 m\ 2 .
• • ™2n

- m nl m 2
n2 . • mln-

where tr(-) denotes a trace of a matrix. The above two restrictions impose invariance and

unbiasedness. The solution to (14) is given by

n

A* = J2 x
*
MV*M i (15)

where A' = (Ai , A2, . .
.

, A n ) satisfies

A'Q = a'r3 , (16)

with Q = [tr (MVl
MV

J )]. Here we write Ja,jJ to denote a matrix whose (i, j)-th element is

a,j. Some simple algebra shows that Q is the Hadamard product of matrix M; explicitly,

(17)

where m tJ is the (z, j)-th element of M.

Now, let us denote by Qm(^-s) the MINQUE of ^^(r,^) = a'rs <7
(2)

. It is given by

n n n

SIm{t,s) = y'A*y = £ \
t
y'MV

t
My = J] X

l
£'V

t i = £ \ t e} = A'e. (18)

1=1 1=1 1=1

If Q is non-singular,

QM (r,^) = a'r3
Q- 1

e. (19)

A contrast between MINQUE and White's consistent estimator of Q,t can be made in

terms of their weighting scheme. Each MINQUE of aj is estimated by a linear combination

of squares of all the OLS residuals with the weights are related to the design matrix

-Y. In White's approach, on the other hand, all the weights are given to the respective

OLS squared residual, i.e, af is estimated by i"\ for all i. Clearly, White's estimator

is always biased unless matrix H = A'(A''-Y)
_1

.Y' = \hij\ is zero. Chesher and Jewitt

(1987) specifically show that very severe bias may arise when there are large /i,;, and

becomes extreme as max(/iu ) approaches 1, rendering the inferences drawn from White's

consistent estimator uninformative. In such situation the MINQUE may be useful as a

point estimator.

The obvious problem encountered in using MINQUE is that matrix Q may be singular.

An easily verifiable condition for nonsingularity of matrix Q is given by Horn and Horn

(1975), namely,

max(/?,, ) < - for i = l,...,ra, (20)
1 v



1 2 1

1 2 1

1 2 1 1

where h u = 1 — m u = x^A'A')
-^, which is often regarded as a measure of points of

leverage of the regression design. To see the above result note that Q is nonsingular if

it is a dominant diagonal matrix, i.e., if m 2
lt
> Yll^i m lj

f°r a^ l ~ 1,2, ... ,n [see, e.g.,

Graybill (1983) pp. 250-251]. Since M is idempotent, X^J=I m
2- = rau , and the required

condition becomes ma{\ — 2m tl ) < 0, which is the same as 3h u — 2h 2
t
< 1. Note that

3hu — 2h 2
t

is a monotonically increasing function for < ha < |, and it is less than 1 if

ha < |. Another set of conditions for nonsingularity of matrix Q is also suggested by Rao

(1970), but it is apparently not easy to verify for economic data where we usually have

quite complicated regression design.

The condition (20) is sufficient but not necessary. For example, consider the following

regression design

X' =

The matrix Q = {I — X(X'X)~ 1 X') * (I — A"(A"'A')
-1

A'') is nonsingular even though

maxl= i i ... i
6 h lx = 0.8. A set of necessary and sufficient conditions is proposed by Mallela

(1972) as follows. Let A*i be a set of k linearly independent rows of A', and X2 be the set

of X complementary to A"i in A. Define Z = A^A'j
-1

, and let z 2
be the i-th row of Z.

Further, let R be the ((?? — k)(n — k — l)/2) x k whose rows are the Hadamard product

Zj * Zj for i < j , i, j = 1,2, ... ,n — k. Then Q is nonsingular if and only if the rank of R
is equal to k. This set of conditions, however, is neither simple nor easy to interpret and

may be computationally burdensome.

Another drawback of MINQUE procedure is the possibility of getting some negative

estimates of individual variances a 2
. A common suggestion when this problem arises is to

apply an ad hoc procedure by replacing the non-positive values by a small positive number,

resulting a truncated MINQUE

a 2
if <rf >

Si if cr
2 < 0,

where ^ t 's are some small numbers guaranteed to be greater than zero. This modification,

of course, destroys the unbiasedness property of MINQUE and may not be theoretically

justified.

4. The Finite Sample Variance of the Estimators

Given the seriousness of bias in White's estimator it is natural to ask how the unbiased

~ 2
07 =



estimator MINQUE will perform in terms of variance. It is expected that MINQUE will

have higher variance. As a compromise, we will later use mean square error (MSE), which

combines bias and variance, as a criterion to compare different estimators. From Section

2 biases of all variance estimators can be easily obtained. In this section we derive the

variances of Qs{ r ,$), &w{r, $), QA(r,s) and HM( r^)i respectively corresponding to the

standard OLS, White's (1980) consistent, almost unbiased MacKinnon and White (1985)

and MINQU estimators of the (r,s)-th element of the true OLS variance r2^(r, 5). We
assume the disturbance vector e is normally distributed with mean zero and variance

diag( crj, ... ,<7^). To simplify the derivation, we first note, as we mentioned earlier, that

the algebra of those estimators differ from each other only in their weighting scheme of the

squared OLS residuals. Specifically, all but the standard OLS variance estimator can be

written as

ft(r,s) = a'raWe, r,s = 1, . .
.

, k, (21)

where W is a (n x n) weighting matrix. For the White (1980), MacKinnon and White

(1985) and MINQU estimators, W corresponds to Inxn, diag(l/mn, . .
.

, l/rann ) and Q~1
,

respectively. The standard OLS variance estimator is the special case for which ar5 is the

scalar corresponding to the (r, s)-th element of (X'X)' 1 and W is (nxl) vector of \/{n— k).

Under the representation (21), the variance of Q(?\ 3) is given by

var(fi(r,,s)) = a'rsW V(e) War„ (22)

where V(e) denotes the variance-covariance matrix of e. It can be shown that V(e) has

the following typical elements (see the Appendix for derivation):

n

var(f?) = 2(^m^) 2 = 27ll , (23)

n

cov(e
2
,£

2
) = 2(]Tmltmit (7t

2
)

2 = 2liy (24)

Let us denote by q
1^ the (t,j)-th element of matrix Q~ l

. Then the variance of

MINQUE nM (r,s) is

n n n n

var(fiM ( r, s)
) = 2 ]T J^HH *«*« XrjXsj q

lf
q
jg

lfg (25)

j=l j= \ f=\ g=l

for r, s = 1, . .
.

, k. If q
11 = l/m„ and q

1J = for 1 ^ j, i,j = 1, 2, ... n, then it reduces to

the variance of ft .4(7% s)

var(^(r,,)) = 2TT X"X°* XnX'J
T (26)

£j jTi rnumjj

S



Variance of White estimator Q,w{i\ s) is the special case when q
11 — 1 and q

lJ = for

i jz j, z\ j = 1, 2, . . . , n; it is simply

n n

var( 0,w(r, s)) = 2^^ #hXsi XrjXSJ 7^

.

(27)

1=1 j=\

More trivially, the variance of the standard OLS estimator Qs( r^) is given by

var(ft 5(r,6))=a
9

;s
var(a 2

), (28)

where a 2
is the usual OLS estimator of variance of e% under homoskedasticity assumption

and ars is the (r,s)-th element of (A''A')
_1

. Under heteroskedasticity, var((7 2
) is of the

form
_ n n

V^^=T^]^T.T^- (»)
1 ; t=l J=l

Note that because M = \piij\ is idempotent, Y^i=\ J21=1(^^=1 rn it rnjt)
2 — Y!n=i m " =

n — k. Therefore, when in fact a] — a 2
for all z,

var((7" ) =
2a 4

n — k'

which is the standard formula under the homoskedasticity.

The first three variances have very similar algebraic expressions. Obviously, since

< m lt < 1, the variances of White's consistent estimator will never exceed those of

MacKinnon and White's. In the special case of a balanced experimental design for which

m tt = (n — k)/n, they differ only by a proportional constant. An analytical comparison

with the MINQUE variance, however, seems to be difficult due to the complicated nature

of the weight q
lJ

. For a comparison of those four variances, we will do a simple numerical

exercise for given design matrices with different sample sizes and leverage points.

5. A Numerical Exercise

To the best of our knowledge, a numerical comparison on the MSE of those estima-

tors based on their exact expression has not been done before. Since we have the exact

expression of the variance of those estimators, no sampling experiment is required for the

MSE comparison. However, to study the finite sample behavior of the confidence inter-

vals of regression coefficients in terms of coverage probabilities, we carry out a Monte



Carlo study. Related simulation studies have been done previously by MacKinnon and

White (1985) and Nanayakkara and Cressie (1991). MacKinnon and White (1985) did

not consider MINQUE and concentrated on the behavior of ^-statistic based on different

variance-covariance matrix estimators. They also did not experiment with different de-

sign matrices. Nanayakkara and Cressie (1991) studied mainly the coverage probability

of confidence intervals and did not include MINQUE in their study when the regression

model has an intercept. And also they used a 'well- behaved' design matrix in their sim-

ulation. Here we use less well-behaved design matrices so as to allow an investigation of

the performance of each estimator for different nature of such design matrices. Therefore,

our numerical exercise could be viewed as a complimentary to the simulation studies of

the above two papers. Our experiment is based on a linear regression model specified as

follows:

where we set parameter /3
1 = (10.0,3.5,2.5). The first regressor x\ was obtained from

independent log-normal pseudo-random numbers generator with the corresponding normal

variable has mean zero and variance unity. That is, xu = eZi where z
x
is a vV(0, 1) variable.

The regressor X2 is simply a A'(2, 1) variable. The choice of the distributions here is to

generate quite high enough point of leverage in the design matrix, so we could examine its

effect on the behavior of estimators under consideration. In this experiment all pseudo-

random ;V(0, 1) variables were generated by the IMSL routine RNNOA, and the log-normal

variable were generated directly from the routine RNLNL.

To investigate the effect of heteroskedasticity on the performance of the estimators we

assumed a certain structure of the disturbances. In particular, we assumed

£i = (7jt>t,

where cr, is a function of non-stochastic variables and V{ is a white noise process. The vari-

ance of £, then is <7^, which determines the nature of the heteroskedasticity depending on

its prespecified functional forms. In our experiment we considered two different models of

heteroskedasticity. First, we assumed the heteroskedasticity was induced by the regressors

according to

Model 1: o] = Xq + XiXu + A2X 2l .

The second structure of heteroskedasticity was specified as

Model 2: a] = + 0i«i + #2"?,

10



where u x
was drawn independently from jV{0, 1). The experiment was conducted for 1000

replications with xu, X21 and u t held fixed in each replication.

For each structure we carried out the experiments by varying degree of heteroskedas-

ticity, which can be easily accomplished by selecting different values of A' = (Aq,Ai,A2)

and 8' = {80,81,82). Following Chesher and Jewitt (1987), we measure the degree of

heteroskedasticity by the ratio max,(of )/ min,-(of). The value of 1 for this ratio indi-

cates homoskedasticity and the values of greater than 1 correspond to the presence of

heteroskedasticity. Four different sets of A' = (Ao, Ai, A2) and 8' = (80,81,82) were chosen.

For the first set we took A' = (20.0,0.0,0.0) and 8' = (20.0,0.0,0.0), corresponding to the

homoskedastic case where the standard OLS variance estimator is appropriate. This case

was considered to check the cost of using the alternative variance- covariance estimators

when in fact there is no heteroskedasticity. In the second, third and fourth set of exper-

iments we took the values of (20.0, 0.01, 3.5), (20.0,0.01,7.0), and (20.0,0.01,10.5) for A,

and (20.0,0.01,10.0), (20.0,0.01.20.0). and (20.0,0.01,30.0) for 9, producing a relatively

moderate to a very severe degree of heteroskedasticity.

One way to study the finite sample performance of an estimator is to use the MSE,

which in some sense encompasses both the bias and the variance of the estimator. We

carried out each experiment with eight different sample sizes n = 30, 40, 50, . .
.

, 100. In

every experiment, for each sample size, we calculated the MSE of each estimator from the

exact expression of variances we derived in Section 4. Note, these computations does not

require any replication, and therefore, are not subject to sampling error.

As we mentioned earlier, the MINQUE procedure may produce negative estimates of

<7j
2 and even negative estimates of the variance of fi. Given this situation we also considered

a truncated MINQUE with each negative estimate of aj being replaced by if/{l — ha),

where i{ is the OLS residual and h u is the diagonal element of the hat matrix X(X'X)~ 1 X'

.

Since the algebraic expression of this estimator is difficult to obtain, we estimated the

bias, the variance and the MSE of the estimator from the sampling experiment. For

each experiment and sample size, let vic r and Vkr denote the true and the estimate of the

variance of the OLS estimator j3k in the r-th replication, respectively. The bias of the

variance estimator of ftk was estimated by the average bias; we denote this as

1000 .

„

.

bTas = £ (

1000

11



The variance and the MSE were estimated by

(Vjfcr - Ujfc)VAR = £
1000 ,„ _ n9

{Vkr ~ Vk)

1000
r=l

1000
r=l

and
1000 , „ xo

MSE = L 1000 '

r=l

respectively, where Vk is the sample average of all ujfer . For comparison, we also carried out

the computations for all other procedures.

Since the variance-covariance matrix estimators are usually used for statistical infer-

ences, it is important to study the performance of each estimator in terms of statistical

inference. In our experiment we used the estimators to estimate the confidence inter-

val coverage probabilities for the regression parameters. We assumed the distribution of

/W\/var(/3jfc) is Student's t, where fik {k = 1,2) is the OLS estimator of 0k under the

complete model and var(/3jt) is tne variance of /?;. in a given procedure. For each procedure

we estimated Pr(/3fc — £ Q /2\/var(/3jfc) < 0k < 0k + *a/2V var(A-)), where t Q / 2
is the a/2-th

quantile of Student's t distribution. We took the nominal size a = 5%. The estimate of

this probability is p = F/R, where F is the observed frequency of (3k being in its 95%

confidence interval and R is the number of replications. Since we have 1000 replications,

an estimate of the standard error of p is y/p{l — p)/1000. We also carried out this com-

putation for a procedure which utilizes the true variance of /?. In this particular case, t a /2

is the a/2-th quantile of the standard normal distribution.

Summary of the results of our experiments on the bias, the variance and the mean

square errors is presented in Tables I through III. Table I contains some information for ho-

moskedastic case, while Tables II and III present the results for the case of heteroskedastic-

ity of Model 1 for sample sizes 60 and 100, respectively. The rests are not reported as they

are generally similar to those presented in the tables. Also, the results for heteroskedas-

ticity of Model 2 have quite similar pattern to those of Model 1. Information contained in

these tables is generally self explanatory. Here we mention only some interesting points.

In Tables I through III, the numbers in parentheses in those tables indicate that the

results were estimated from the sampling experiment, which evidently are reasonably close

to those calculated from their exact expressions. The results for homoskedastic case in

Table I shows, as one should expect, that the OLS performed quite well in terms of bias,

variance and MSE. As we observe the results in other tables, in each experiment and for a
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given sample size, the OLS variance estimator generally has the smallest variance, except

for a few cases when the heteroskedasticity is very strong. Among the robust procedures,

the pattern of their variances is more systematic. As it is expected, the variance of White's

estimator is always smaller than that of MacKinnon and White's (MWE). It is also evident

that MINQUE consistently have much smaller bias but larger variances than the other three

variance estimators.

The MSE results for heteroskedastic cases are quite surprising. In Tables II and III

we present only for sample sizes 60 and 100; the other results are very similar. In Table

II, except for the coefficient 0q, the OLS estimator generally has smallest MSE, even

in the presence of strong heteroskedasticity. Such surprising results are more prominent

for sample size 100, in Table III, where we observe that MSE's associated with OLS are

the smallest ones for all /3's. Based on these results, one might be tempted to suggest

that OLS is the estimator of choice even in the presence of heteroskedasticity. Such a

conclusion, however, requires cautions, simply because MSE may not be an appropriate

criterion to characterize an estimator. As we observe from those tables, the MSE's of

the robust procedures are very much dominated by the variance part. Consequently,

an MSE comparison is essentially a variance comparison, and whether or not this is an

appropriate approach remains questionable. In the subsequence discussion we will make

bias comparisons across different design matrices (represented by different sample sizes)

and degrees of heteroskedasticity. Also, we will study the behavior of ^-statistic associated

with each procedure through simulated confidence interval coverage probabilities.

Since the true variance of (3 differs across design matrices and degrees of heteroskedas-

ticity (see Table VI), a meaningful comparison requires some adjustment that eliminates

the effect of these differences. In Tables IV and V we present the relative bias which we

define as the ratio between the bias and the true variance of (3. The sample sizes 60 and 100

in Table IV are to represent the design matrices with small maximum value of ha, which

is regarded as a measure of point of leverage, while the sample sizes 40 and 90 in Table V

correspond to those with large maximum value of ha. The following figures describe the

nature of all eight design matrices in terms of h tl :

Sample Size 30 40 50 60 70 80 90 100

max (h tt )
0.609 0.666 0.500 0.266 0.377 0.417 0.749 0.274

min (ha) 0.035 0.025 0.021 0.017 0.015 0.013 0.012 0.011

max( hij )

min(/i,,

)

17.604 26.320 24.380 15.952 26.007 32.795 64.603 26.095
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Here we should note that to study the effects of different degree of points of leverage,

we did not attempt to construct design matrices for various sample sizes with the same

measure of points of leverage of the regression design.

General observation on Tables IV and V reveals an obvious result that OLS performs

well when disturbances are homoskedastic, but its performance gets worse and worse as the

degree of heteroskedasticity increases. White's estimator seems to possess special behavior.

The estimator clearly exhibits a large bias if in fact the disturbances are homoskedastic.

The downward bias is of course guaranteed in this case since the degree of heteroskedasticity

is less than 2. It is quite evident, however, that White's estimator tend to underestimate

the true variance even in the presence of strong heteroskedasticity. When the disturbances

are indeed heteroskedastic, even though the biases of White's estimator are smaller than

those of OLS if the design matrix is relatively balanced, it is not true if the design matrix

is unbalanced. Clearly, White's estimator is very sensitive to the presence of high point of

leverage. In such a situation the performance of White's estimator is no better than that

of OLS, and it is even worse especially for inferences regarding the coefficient (3\.

MacKinnon and White's estimator performs quite well in terms of its bias. Even

though there is evidence that it is also sensitive toward the unbalancedness of the design

matrix, the effect is not as severe as that in White's estimator. In the extreme case where

both max(/ij,) and max(/i,j)/min(/iji) are high (sample size 90), the relative biases are

still quite severe, but they are small enough compared with those of OLS and White's

estimators. As in the case of White's estimator, the most severe effect of point of leverage

is on the variance of f3\ which is associated with the regressor contributing most to the

presence of high point of leverage.

From the sampling experiments, MINQUE is of course the only procedure which

consistently produced very small bias, because theoretically its bias is zero irrespective

of the nature of the design matrix and the degree of heteroskedasticity. However, to

achieve its unbiasedness property, MINQUE seems to have to bear the cost in the form of

producing large variance and negative estimates when the design matrix is unbalanced.

Our results also indicate that the large maximum value of h^ affects the variance of

MINQUE corresponding to 3\. In Table I, for example, the variance of MINQUE for

j3\ explodes in sample size 30. The same is also true for sample sizes 40 and 90. Even

though the variance of MWE also increases, the effect does not seem as severe as in the

MINQUE case. The ad hoc truncated MINQUE, denoted by MINQUE1 in the tables,

which is obtained by replacing any negative estimate of a] by e\ /(l — /i„), exhibits quite

14



large bias and variance.

Next, we study the performance of different estimators in terms of coverage probabili-

ties. In Figures I through IV we present the estimates of 95% confidence interval coverage

probability for fa and fa for different sample sizes. They illustrate how the use of different

variance estimators of each regression coefficient alters the coverage probabilities in the

absence and presence of heteroskedasticity. When the disturbances are homoskedastic, in

Figure I, the robust variance estimators cover fa quite nicely. Even though they are not

as good as OLS, the cost of using them does not seem too high, except White's estimator

whose coverage is the farthest away from 95%. When the disturbances are indeed het-

eroskedastic, in Figure II, all the robust procedures perform much better than the OLS

which now cover fa far bellow 95% of the time. Interestingly, even though the truncated

MINQUE has large MSE, it performs reasonably well in terms of coverage probabilities.

The performance of MWE also appears to be good for this case.

The behavior of the variance estimators for fa , in Figures III and IV, is much differ-

ent. In both homoskedastic and heteroskedastic cases, all the robust estimators perform

very poorly. In the heteroskedastic case, even though there is slight improvement in the

performance of the robust estimators and some deterioration in the performance of OLS,

the robust estimators are still worse than the OLS. This illustration shows once again

that the use of the robust procedures, especially White's, can lead to a serious inferential

problem when the design matrix exhibits high points of leverage.

6. Conclusion

In this paper we have reconsidered MINQUE as an alternative procedure for esti-

mating variance-covariance matrix in a general heteroskedastic model. We showed that

the problem can be approached very easily within the framework of variance components

models, where the heteroskedastic model is a special case. By construction, MINQUE
incorporates all the information on the design matrix in order to eliminate the bias which

is known to be the leading cause of inferential problems of White's estimator. Our Monte

Carlo study, however, indicated that high points of leverage in the design matrix can

lead to negative estimates of MINQUE and dramatically increase its variance. We also

considered an ad hoc truncation of MINQUE by replacing the negative estimates by some

small positive values. In terms of coverage probabilities, this truncated MINQUE performs

reasonably well compared to the other robust procedures. It is, however, quite desirable
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to truncate those negative estimates in a more systematic way. Overall, based on the

previous two simulation studies of MacKinnon and White (1985) and Nanayakkara and

Cressie (1991) and our results on the bias, variance and coverage probabilities, the simple

almost unbiased estimator suggested by MacKinnon and White seems to be preferable for

practical purposes.

MINQUE is developed within the framework of variance components model. This

framework is very rich and it encompasses many econometric models. One interesting

extension of our approach is the estimation of the autoregressive conditional heteroskedas-

ticity (ARCH) models. Suprayitno (1992) applied MINQUE for various ARCH models

to provide an alternative method to the maximum likelihood estimation procedure. This

approach might be promising since MINQUE does not require the explicit distributional

assumption. Also in this case, MINQUE might have better finite sample properties since

here we need to estimate onlv a few ARCH coefficients.
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Table I

Biases, Variances and Mean Square Errors for Homoskedastic Case

Sample ^ c

Size
Coef -

OLS

Estimation Procedure
*

White MWE MINQUE MINQUE1

BiasxlO

30 00 0.00 ;0.43) -5.97 (-5.87) 0.00 (0.05) 0.00 (-0.06) (3.26)

01 0.00 ;o.o5) -1.95 (-2.00) 0.00 (-0.15) 0.00 (-0.45) (1.90)

02 0.00 ,0.10) -1.40 (-1.34) 0.00 (0.08) 0.00 (0.10) (0.66)

Variancex 100

30 00 118.93 (1 5.75) 213.35 (214.01) 301.50 (300.33) 347.81 (341.01) (366.86)

01 1.83 ;i.78) 3.55 (3.04) 18.33 (15.38) 107.00 (90.52) (70.23)

02 6.77 ,6.59) 13.36 (13.89) 19.34 (20.09) 23.17 (24.08) (24.70)

Mean Square Error

x

100

30 00 118.93 (1115.94) 248.96 (248.50) 301.50 (300.33) 347.81 (341.01) (377.50)

01 1.83 ;i.78) 7.36 (7.06) 18.33 (15.40) 107.00 (90.72) (73.87)

02 6.77 ;6.60) 15.32 (15.67) 19.34 (20.10) 23.17 (24.09) (25.15)

BiasxlO

60 00 0.00 ,0.02) -1.54 (-1.53) 0.00 (0.01) 0.00 (0.00) (0.39)

01 0.00 ;o.oo) -0.29 (-0.26) 0.00 (0.04) 0.00 (0.04) (0.15)

02 0.00 ,0.00) -0.34 (-0.34) 0.00 (0.01) 0.00 (0.02) (0.08)

Variancex 100

60 00 20.20 (118.86) 47.84 (46.54) 57.58 (55.51) 63.74 (60.74) (60.96)

01 0.20 [0.18) 0.72 (0.74) 1.07 (1.10) 1.34 (1.35) (1.40)

02 0.76 ,0.71) 1.55 (1.53) 1.88 (1.86) 2.09 (2.05) (2.06)

Mean Square Error

x

100

60 00 20.20 (]L8.86) 50.22 (48.88) 57.58 (55.51) 63.74 (60.74) (61.12)

01 0.20 ,0.18) 0.80 (0.81) 1.07 (1.10) 1.34 (1.35) (1.43)

02 0.76 ,0.71) 1.66 (1.66) 1.88 (1.86) 2.09 (2.05) (2.06)

BiasxlO

100 00 0.00 ( -0.02) -0.62 (-0.65) 0.00 (-0.04) 0.00 (-0.05) (0.13)

01 0.00 ,0.00) -0.09 (-0.10) 0.00 (-0.02) 0.00 (-0.02) (0.01)

02 0.00 ,0.00) -0.11 (-0.11) 0.00 (0.00) 0.00 (0.00) (0.02)

Variancex 100

100 0o 2.96 [2.98) 6.63 (6.35) 7.78 (7.36) 8.95 (8.36) (8.26)

01 0.01 ;o.oi) 0.08 (0.07) 0.11 (0.11) 0.17 (0.15) (0.15)

02 0.10 ;o.io) 0.26 (0.26) 0.30 (0.29) 0.31 (0.31) (0.31)

Mean Square Error x 100

100 0o 2.96 [2.98) 7.01 (6.78) 7.78 (7.36) 8.95 (8.36) (8.26)

01 0.01 [0.01) 0.08 (0.08) 0.11 (0.11) 0.17 (0.15) (0.15)

02 0.10 (0.10) 0.28 (0.27) 0.30 (0.29) 0.31 (0.31) (0.31)

T Numbers in parentheses were calculated from sampling experiment.
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Table II

Biases, Variances and Mean Square Errors for Heteroskedasticity of Model 1

(Sample Size=60, Max(/»i,-)=.266, Min(/i it )=.017)

Estimation Procedure
*

max(<7?

)

Coef.
mm((7|')

OLS White MWE MINQUE MINQUE1

BiasxlO

3.25 A 7.33 (7.42) -1.97 (-1.85) 0.17 (0.30) 0.00 (0.13) (0.74)

A 0.55 (0.56) -0.32 (-0.25) 0.07 (0.16) 0.00 (-0.09) (0.28)

A -0.72 (-0.71) -0.61 (-0.60) -0.01 (0.00) 0.00 (0.01) (0.17)

Variancex 100

3.25 A 62.75 (58.43) 74.88 (75.78) 89.62 (90.39) 97.39 (97.56) (98.09)

A 0.61 (0.57) 1.44 (1.63) 2.04 (2.30) 2.39 (2.65) (2.81)

A 2.37 (2.21) 6.48 (6.71) 7.70 (8.00) 8.33 (8.67) (8.78)

Miean Square Error>:100

3.25 A 116.45 (113.44) 78.77 (79.19) 89.65 (90.48) 97.39 (97.57) (98.64)

A 0.91 (0.88) 1.55 (1.70) 2.05 (2.32) 2.39 (2.66) (2.89)

A 2.90 (2.71) 6.85 (7.07) 7.70 (8.00) 8.33 (8.67) (8.81)

BiasxlO

5.42 A 14.66 (14.80) -2.40 (-2.16) 0.34 (0.59) 0.00 (0.25) (1.10)

A 1.11 (1.12) -0.36 (-0.25) 0.15 (0.27) 0.00 (0.13) (0.41)

A -1.45 (-1.42) -0.88 (-0.85) -0.02 (-0.01) 0.00 (0.03) (0.26)

Variancex 100

5.42 A 135.49 (126.59) 118.27
(
123.24) 141.11 (147.10) 151.14 (157.17) (159.25)

A 1.32 (1.22) 2.51 (2.96) 3.46 (4.07) 3.89 (4.52) (4.84)

A 5.12 (4.78) 16.02 (16.65) 18.98 (19.79) 20.44 (21.38) (21.75)

M.ean Square Error>:100

5.42 A 350.38 (345.80) 124.03
(
127.92) 141.22 (147.45) 151.14 (157.23) (160.46)

A 2.54 (2.49) 2.64 (3.02) 3.49 (4.15) 3.89 (4.54) (5.01)

ft 7.21 (6.80) 16.79 (17.37) 18.98 (19.79) 20.44 (21.38) (21.82)

BiasxlO

7.50 ft 21.99 (22.19) -2.83 (-2.48) 0.50 (0.88) 0.00 (0.38) (1.47)

A 1.66 (1.68) -0.39 (-0.24) 0.22 (0.39) 0.00 (0.18) (0.54)

ft -2.17 (-2.13) -1.15 (-1.10) -0.03 (-0.02) 0.00 (0.05) (0.36)

Variancex 100

7.50 ft 238.45 (223.30) 178.02(188.83) 212.07 (225.53) 225.05 (239.43) (243.52)

A 2.32 (2.17) 3.93 (4.73) 5.33 (6.42) 5.84 (6.98) (7.51)

ft 9.01 (8.44) 30.19 (31.33) 35.72 (37.20) 38.43 (40.16) (40.91)

M<ean Square Error*:100

7.50 ft 722.04 (715.78) 186.02(194.98) 212.33 (226.32) 225.05 (239.58) (245.69)

A 5.08 (5.00) 4.08 (4.79) 5.38 (6.57) 5.84 (7.01) (7.81)

ft 13.72 (12.98) 31.50 (32.54) 35.72 (37.20) 38.43 (40.17) (41.04)

• Numbers in parentheses were calculated from sampling experiment.
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Table III

Biases, Variances and Mean Square Errors for Heteroskedasticity of Model 1

(Sample Size=100, Max(/»i,-)=.274, Min(/i;i)=.011)

Estimation Procedure
*

max(<7f)
Coef.

min(<r-)

OLS White MWE MINQUE MINQUE1

BiasxlO

4.42 00 1.25 (1.25) -1.69 (-1.72) -0.30 (-0.36) 0.00 (-0.08) (0.23)

lh -0.23 (-0.23) -0.28 (-0.31) -0.06 (0.10) 0.00 (-0.05) (0.01)

02 -1.04 (-1.04) -0.33 (-0.32) -0.05 (-0.04) 0.00 (0.01) (0.06)

Variancex 100

4.42 00 11.71 (11.92) 24.61 (22.67) 32.19 (28.89) 41.56 (36.25) (36.00)

01 0.05 (0.05) 0.45 (0.38) 0.78 (0.65) 1.26 (1.04) (1.03)

02 0.41 (0.41) 2.43 (2.35) 2.80 (2.71) 3.03 (2.92) (2.95)

M«?an Square Error

x

100

4.42 00 13.28 (13.48) 27.46 (25.64) 32.28 (29.02) 41.56 (36.25) (36.06)

01 0.11 (0.11) 0.53 (0.48) 0.78 (0.66) 1.26 (1.04) (1.03)

02 1.49 (1.50) 2.53 (2.45) 2.80 (2.71) 3.03 (2.92) (2.95)

BiasxlO

7.71 00 2.49 (2.52) -2.75 (-2.79) -0.60 (-0.67) 0.00 (-0.11) (0.35)

01 -0.46 (-0.46) -0.47 (-0.52) -0.13 (0.19) 0.00 (-0.08) (0.01)

02 -2.08 (-2.07) -0.54 (-0.52) -0.09 (-0.08) 0.00 (0.02) (0.09)

Variancex 100

7.71 00 27.80 (28.32) 61.47 (55.75) 82.09 (72.49) 107.84 (92.42) (92.19)

01 0.13 (0.13) 1.18 (0.97) 2.06 (1.68) 3.39 (2.75) (2.73)

02 0.97 (0.99) 7.11 (6.87) 8.23 (7.93) 8.93 (8.58) (8.67)

M«^an Square Error

x

100

7.71 00 34.02 (34.66) 69.05 (63.55) 82.45 (72.95) 107.84 (92.43) (92.31)

01 0.34 (0.34) 1.40 (1.24) 2.08 (1.72) 3.39 (2.76) (2.73)

02 5.29 (5.29) 7.41 (7.14) 8.24 (7.93) 8.93 (8.58) (8.68)

BiasxlO

10.87 00 3.74 (3.79) -3.82 (-3.86) -0.90 (-0.99) 0.00 (-0.14) (0.47)

01 -0.70 (-0.69) -0.65 (-0.73) -0.19 (-0.27) 0.00 (-0.10) (0.01)

02 -3.12 (-3.11) -0.76 (-0.73) -0.14 (-0.11) 0.00 (0.02) (0.13)

Variancex 100

10.87 00 51.25 (52.19) 117.21 (105.62) 157.49 (138.18) 207.83 (176.90) (177.11)

01 0.23 (0.24) 2.25 (1.84) 3.96 (3.21) 6.56 (5.29) (5.25)

02 1.78 (1.82) 14.32 (13.81) 16.59 (15.95) 18.01 (17.28) (17.49)

M san Square Error

x

100

10.87 00 65.21 (66.54) 131.83 (120.52) - 158.31 (139.16) 207.83 (176.92) (177.33)

01 0.72 (0.72) 2.68 (2.36) 4.00 (3.29) 6.56 (5.30) (5.25)

02 11.51 (11.48) 14.90 (14.35) 16.61 (15.96) 18.02 (17.28) (17.49)

T Numbers in parentheses were calculated from sampling experiment.
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Table IV

Relative Bias '

for Homoskedastic Case and Heteroskedasticity of Model 1

S^Ple
gg*(

*J
} Coef. OLS White MWE MINQUE MINQUE1

0o

40 1.00 3 l

a i

90 10.82

0.472 -11.338 0.270 0.202 7.154

0.000 -47.468 -2.110 -3.165 79.114

0.000 -9.958 1.062 1.195 4.249

A 26.658 -10.647 1.099 0.523 9.104

40 3.00 &i 1.971 -47.306 -0.394 -2.628 80.815

02 -2.612 -9.813 -0.158 1.662 4.669

00 43.554 -10.215 1.817 0.641 10.344

40 4.94 01 2.869 -47.346 -0.478 -2.869 81.779

02 -3.721 -9.755 -0.226 1.804 4.849

00 55.239 -9.899 2.312 0.723 11.182

40 6.82 3, 3.383 -47.368 -0.376 -3.008 81.842

02 -4.335 -9.678 -0.307 1.883 4.905

00 -0.0S5 -5.527 -0.680 -0.595 3.486

90 1.00 01 0.000 -56.548 0.000 5.952 107.143

02 -0.390 -4.677 -0.779 -0.779 0.390

00 8.539 -7.210 -0.716 -0.102 4.500

90 4.42 3, -25.735 -63.725 -15.931 6.127 84.559

02 -21.647 -6.088 -0.676 0.507 0.676

00 12.252 -7.936 -0.987 0.146 5.120

90 7.69 3, -32.483 -64.965 -20.108 6.961 77.340

02 -27.652 -6.481 -0.972 -0.324 0.864

00 14.262 -S.341 -1.167 0.256 5.323

3, -35.008 -66.064 -22.021 6.776 76.228

02 -30.546 -6.665 -1.031 -0.238 1.031

1 The figures below each procedure are the percentage of the ratio between the bias and the true

variance. For homoskedastic case, the numbers below OLS and MWE were calculated from sampling

experiment. All the numbers below MINQUE were calculated from sampling experiment.
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Table V
Relative Bias

*

for Homoskedastic Case and Heteroskedasticity of Model 1

S
s£e

le

minffi)
Coef- 0LS White MWE MINQUE MINQUE1

00

60 1.00 X

02

100 10.90

See note on Table IV.

0.083 -6.419 0.0417 0.000 1.626

0.000 -12.262 1.691 1.691 6.342

0.000 -7.290 0.214 0.429 1.715

0o 22.249 -5.979 0.516 0.395 2.246

60 3.25 0i 16.091 -9.362 2.048 -2.633 8.192

02 -8.418 -7.132 -0.117 0.117 1.988

0o 34.996 -5.729 0.812 0.597 2.626

60 5.42 01 24.849 -8.059 3.358 2.910 9.178

02 -11.656 -7.074 -0.161 0.241 2.090

00 43.258 -5.567 0.984 0.748 2.892

60 7.50 01 30.094 -7.070 3.988 3.263 9.790

02 -13.291 -7.044 -0.1S4 0.306 2.205

00 -0.167 -5.174 -0.334 -0.417 1.085

100 1.00 01 0.000 -11.097 -2.466 -2.466 1.233

$2 0.000 -4.919 0.000 0.000 0.894

00 5.961 -8.059 -1.431 -0.381 1.097

100 4.42 01 -13.249 -16.129 -3.456 -2.880 0.576

02 -20.062 -6.366 -0.965 0.193 1.157

0o 8.315 -9.1S4 -2.004 -0.367 1.169

100 7.71 01 -17.300 -17.676 -4.889 -3.009 0.376

2 -25.584 -6.642 -1.107 0.246 1.107

00 9.609 -9.815 -2.312 -0.360 1.208

0i -19.542 -18.146 -5.304 -2.792 0.279

02 -2S.169 -6.862 -1.264 0.181 1.174
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Table VI

True Variances of J3
'

S
S?ze

le
Coef

-
H (°'0) H

(U) H
(
1

'2) H^'3
)

H(2 'X )
H

(2 '
2

)
H (2 '

3 )

30

A 4.0068 5.4141 6.8189 8.2237 8.0799 12.1552 16.2304

A 0.4971 0.7170 0.9360 1.1550 0.6692 0.8415 1.0137

A 0.9563 1.6766 2.3964 3.1162 1.8673 2.7788 3.6903

A 2.9634 3.8225 4.6792 5.5359 6.1454 9.3290 12.5126

40 A 0.0948 0.1522 0.2091 0.2660 0.1027 0.1105 0.1184

& 0.7532 1.2636 1.7735 2.2835 1.5338 2.3146 3.0954

A 2.5372 3.3862 4.2340 5.0817 4.1211 5.7060 7.2909

50 A 0.0833 0.1229 0.1623 0.2017 0.0950 0.1067 0.1183

A 0.6340 1.0885 1.5425 1.9965 0.9636 1.2934 1.6231

A 2.3991 3.2946 4.1890 5.0835 4.5405 6.6830 8.8255

60 A 0.2365 0.3418 0.4467 0.5516 0.3679 0.4993 0.6308

A 0.4664 0.8553 1.2440 1.6327 0.8938 1.3212 1.7487

A 1.5109 2.4239 3.3359 4.2478 2.9763 4.4422 5.9080

70 A 0.0756 0.1297 0.1834 0.2372 0.1010 0.1264 0.1519

A 0.3416 0.7395 1.1371 1.5347 0.6914 1.0413 1.3911

A 1.4829 2.3171 3.1502 3.9834 2.8315 4.1807 5.5298

80 A 0.1411 0.2527 0.3640 0.4753 0.1745 0.2079 0.2414

A 0.2684 0.6096 0.9507 1.2918 0.6030 0.9376 1.2723

A 1.1761 1.9557 2.7343 3.5129 2.3632 3.5507 4.7382

90 A 0.0336 0.0816 0.1293 0.1771 0.0522 0.0708 0.0894

A 0.2566 0.5913 0.925S 1.2604 0.5S35 0.9103 1.2372

A 1.1984 2.0970 2.9945 3.8920 2.2594 3.3205 4.3816

100 A 0.0811 0.1736 0.2659 0.3582 0.1267 0.1726 0.2184

A 0.2236 0.5184 0.8130 1.1076 0.4735 0.7234 0.9733

' Numbers under H(i,j) are the true variances in the heteroskedasticity of Model i level j; H(0,0) denotes

homoskedastic case.
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Figure I: Homoskedastic Case
Estimated 95% C.I. Coverage Prob. of B2
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Figure II: Heteroskedastic Case
Estimated 95% C.I. Coverage Prob. of B2
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Figure III: Homoskedastic Case
Estimated 95% C.I. Coverage Prob. of B1
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Figure IV: Heteroskedastic Case
Estimated 95% C.I. Coverage Prob. of B1
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Appendix

We derive the variance-covariance matrix V(e) of vector of the OLS residuals squared e' = (i^, . . . , £n ).

We assume the disturbance process e is normally distributed with mean and variance S = diag(crj, . .
.

, a^),

and define M = [m^-] = I - X(X'X)~ l X'. Then £= Me is also normally distributed with mean and
variance-covariance matrix T = MT,M . Explicitly,

r =

En oo
l=l mU ff

t

En o

l=l mu m2tai En •> 2
*=1 ^l^l

Yl7=i rnUrnnt^t 5Z?=i mitmnttf

Ei 1

t_ 1
rai LmnL ai

En 11
= hijh say- (Al)

Variance-covariance matrix V(e) can be derived following the standard procedure. Define a real valued

vector t' — {i\ , . .
.

, tn ) and let A = y/—T, then the characteristic function of t = (i\, . .
. ,

i

n ) is given by

G(t]

/co poo

•/ exp(At'£)dF,
•co J — co

(A2)

where dF is the multivariate normal density function of z. It can be shown that the integral in (A2) factorizes

into (n — k) single integrals, each of which is bounded above for all real values of ii (i = 1, . .
.

, n). Thus
(A2) is bounded, and therefore we can differentiate it under the integral signs. Taking partial derivatives of

(A2) with respect to (A*;, Xtj), r and s times respectively, and putting t\ — %i — • • • = tn = 0, we have

dr»G(tu ...,tn )

t =

/CO rOO/ i^dF^E^i]).
-co J —ood(\t i y diXtj)

1

Evaluation of the right hand side of (A2) leads to [Anderson (1984, pp. 45-46)]

G(* 1 ,...,* n ) = exp(-At , rAt)

(A3)

ri n

(A4)

i=ij=i

and the following immediately follows from (A3):

£(£\
2

) = 7u- »= 1, •-,»»,

E{i?) = 37,
2
,, i = l,...,n,

E{i1 i] ) = 2-ffj + yufjj , i, j = 1, . .
. , n; i £ j.

Consequently, the variances of e are given by

var(e?) = E{£}) - (E(e;)f = 27 = = 2^ ™Wt

for i = 1, ... , n, and the covariances,

cov(f?,e?) = E{ijq) - E{i]) E(i]) = 2tJ = : 2( ^m^m^c?

for i, j = l,...,n;i^ j.

*=i

(A5)

*=i

(A6)
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