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Executive Summary

Background

This document summarizes the progress we have made during

FY76-7T on a number of research problems in network data management and

resource sharing. The goal is to develop techniques applicable to the

World-Wide Military Command and Control System (WWMCCS) Intercomputer

Network (WIN). The work is supported by the WWMCCS ADP Directorate,

Command and Control Technical Center, of the Defense Communications

Agency. The work has been structured into two separate but interacting

programs:

1. the design and implementation of an experimental distributed

data base system, and

2. basic research on alternative techniques.

A companion report documents the progress to date of the experimental

system effort. This report deals with the basic research.

The Research Program

There are two aspects to the basic research program. These

are

1. a mathematical modeling and analysis task, designed to provide

tools needed to evaluate system design alternatives, and

2. the investigation of specific research areas. The specific

areas studied during FY76-7T included deadlock, synchronization, resiliency

techniques, network file allocation, and optimization of query strategies.

Results of both phases of the program have been extensively

documented. A total of five technical reports and notes describing the

research effort [2,3,4,6,7] have been delivered to CCTC-WAD during the

contract year.



Summary of Results

This document as a whole provides a complete summary of the

investigations that were carried out and the results obtained. Here we

list only a few results - those that we consider substantial contributions

to the state of the art.

Modeling . Models for cost and availability were developed.

These provided the tools for investigating such questions as whether

remote storage in a network can be cost effective and how much data base

availability can be improved by having a backup copy. We discovered,

for example, that a readily accessible (e.g., on disk), up-to-date

backup copy can improve availability to nearly 100 percent. On the

other hand, for a wide range of realistic environments, a backup copy

stored on tape, (a common practice in the WWMCCS) does not improve

availability. This result is of immediate importance to the WWMCCS

community.

Synchronization . This was a major research area during the

year. The various methods for process and data access synchronization

were surveyed and their applicability in a distributed environment

assessed. In addition, an in-depth study of the update ordering problem

was undertaken. The problem is to ensure that updates are applied to

all copies of the data in the same order. Otherwise the copies may

become inconsistent. A new scheme for maintaining update order, the

"reservation center", was developed. Improvements were added to old

schemes. An extensive analysis has been carried out to pinpoint advantages

and disadvantages of the several schemes. We are close to being able to

provide definitive recommendations as to the best scheme to use in any

particular circumstance.



Resiliency . It was essential that techniques be developed to

ensure resiliency in distributed operations. It is impossible to provide

for recovery from all possible combinations of failures. In order to

establish a criterion for an acceptable level of resiliency, we introduced

the concept of n-host resiliency. That is, in order for service to be

disrupted, n hosts must simultaneously fail in a critical phase of

service. We worked out a scheme for two-host resiliency in some detail.

Two-host resiliency is sufficient to achieve failure intervals measured

in centuries. Implementation of the scheme seems feasible and not too

costly. The only problem is that enough hosts must be standing by ready

to play a role in the resiliency scheme so that at least two are nearly

always up. In most circumstances, a total of three or four hosts should

be adequate.

Network file allocation . This is the problem of determining

where copies of the files of a distributed data base should be located.

Formulating this question as an optimization problem mainly requires

careful definition of how the files are used and where costs are incurred.

However, solving the optimization problem is computationally expensive.

The work required doubles with each additional network site. Months or

years of computation are required to calculate optimum allocations for

networks of sizes existing today (40-50 sites) . In order to reduce this

work, we developed three rules which determine a priori that certain

sites should, or should not, be included in any optimal allocation.

These rules can reduce the file allocation problem for large networks to

manageable size. In some simple - but realistic - situations, the rules

can provide a complete solution to the problem.



Optimization of query strategies . If copies of data exist at

several sites in a network, there are many ways to choose the particular

sites that will be used to respond to a given query. It is straightforward

to generate the mathematical description of the optimum choice of sites.

Unfortunately, the calculation of the optimum requires knowing the size

of intermediate files that will be generated during the query. Theoretically,

it can be harder to obtain this information than to respond to the query

in an arbitrary, possibly inefficient, way. We have devised a statistical

sampling scheme to obtain the needed information. That is, a sample

data base is formed by selecting - in some statistically valid way - a

subset of the records in the entire data base. The query is then run

against the sample, and the result is used to deduce the best way to

apply the query to the entire data base. The results of tests carried

out to date show the method to be very promising.



Mathematical Modeling and Analysis

Introduction

During the contract year, a large effort was put into the

development of mathematical models and of analytical tools. The moti-

vation for this development was as follows. In order to determine the

relative merits of various distributed data management strategies,

objective, quantitative evaluations are necessary. Subjective arguments

can go on interminably and lead to no convincing conclusions. But

quantitative evaluations are not easy to carry out. They require good

models of system behavior. Sometimes a model can consist of a simple

algebraic formula that evaluates some system aspect in terms of known -

or measurable - system parameters. In other cases, simple, deterministic

formulas are not appropriate, and sophisticated analyses (e.g. involving

queueing theory or stochastic analysis) must be carried out.

In the preceding contract year (FY75) we identified three main

aspects of a distributed data management system which require modeling.

These aspects are

1. availability,

2. cost, and

3. response time.

Preliminary models for each of these areas were reported on in [5].

During the current contract year, work has continued on these three

areas. Two documents have been produced [4,6] and further reports will

be forthcoming. We here summarize overall progress for the year.

Availability

The problem . The availability of a data base may be simply

defined as the fraction of time that the data is available to users.



Many things can cause a data base to become unavailable in a network

setting. If the data base is stored at the same location as the user,

the system through which the data must be accessed may fail, or the

device on which the data base is resident may crash. If the data base

is located at a remote site on the network, the remote site or system

may fail, the network may partition so that the remote site cannot be

reached, or some local failure may make the network inaccessible to the

user.

In most of these cases, availability can be considerably

improved if a backup copy of the data base exists. If copies of the

data base exist at two sites in the network, the danger of losing access

because of network partitioning or site failure is reduced. Furthermore,

if a local device holding all or part of the data base crashes, data may

be destroyed. It is likely to be much faster (as well as more reliable)

to ready a locally archived copy of the data for usage than to try to

recover the lost or degraded data from audit trails, etc.

How much the existence of a backup copy improves availability

depends on a number of factors. For example:

1) How available is the backup copy? (Is it stored on disk

for immediate access? If it is stored on tapes, a sizeable delay may be

incurred while the tapes are located, mounted, and loaded onto a rapid-

access device.)

2) How up-to-date is the backup copy? (Are all updates applied

to the backup copy as rapidly as possible? Is there a long backlog of

updates that must be processed before the data base is really ready for

use?)

3) How often is the site (or device) holding the data base

likely to fail? (If failures are infrequent, the backup copy may pro-

vide little improvement in availability.)



Even small improvements in availability can, of course, be

important. Availability can be over 0.99 and still be disastrously low

if, say, the data is unavailable for one 24-hour period during a year

and that period happens to be during a crisis. It is important, there-

fore, to understand thoroughly how availability is affected by the

factors discussed in the preceding paragraph, and hence by the strategy

used for backing up a data base.

The model . We have developed simple algebraic formulas for

availability as a function of the factors listed above. Additional

parameters were incorporated to model the delay incurred in initiating

the process of readying the backup copy, the rate at which updates are

generated, and the rate at which updates are processed. In the work

reported in [4], we assumed the existence of a single backup copy, and

studied the improvement in availability that the existence of a backup

provides over single-copy availability. The formulas were kept simple

by using average values for parameters that are actually random vari-

ables. For example, we used the "mean time between failures" in the

availability formula, while system failure is actually a random process.

The validity of this simplification was investigated. We concluded that

its affect on computed availabilities is, in most realistic situations,

to make them appear only slightly larger than they actually would be.

Adequacy of two copies . Since much of our earlier work [4]

was based on the assumption of a single backup, we subsequently felt

that it was important to look into the adequacy of a single backup. We

therefore investigated this question and found that in general a thrid

copy is not very useful. Our approach and principal results are sum-

marized here. For a description of the model on which this analysis is

based, the reader should consult [4].



Our study took the approach of trying to answer the following

four questions.

1. What events might make a third copy useful?

2. How often will they occur?

3. When they occur, how long is the expected downtime when there

are only two copies?

4. Can the third copy be readied in time to be of use?

In answer to question 1, we identified one basic event to be investigated.

This is the possibility that the backup site fails before the primary

site has been repaired. This includes as a subcase the even more drastic

event that the backup site fails before its copy can be gotten ready.

The basic probability P that the backup may fail before the

primary is repaired was worked out in [4]. The formula is

P
f

= 1 - exp(- T
M
/F),

where T is the total time to repair the primary and get its copy of the

data updated and ready for use, and F is the mean time between host

failures. (F is assumed to be the same for all sites.) If Tw/F is
M

small, P can be approximated by

P
f

. T
M
/F.

Thus, to a good approximation, T /F gives the fraction of the time that,

after the primary has failed, the backup will also fail soon enough to

leave the user without any copy. Suppose, for example, that T /F = 0.1.

(This is a reasonable ratio; it holds for, say, T = 2 hrs. and F = 20 hrs.)

With failures of the primary occurring once every 20 hrs., and the backup

also failing one time in ten, it seems that a third copy would be put

into use once every 200 hrs., or about eight days. This begins to look

like the third copy may not be worthwhile. But question 3 is also



important. How long a period of downtime is expected? Offhand, one

might suspect that usually the primary is "almost" ready when the backup

fails, so that little is gained. However, our analysis shows that this

is not the case. If the backup fails within the repair time T of the

primary, on the average this failure will occur at time T /2. Thus,

there will be an average time period of T /2 (one hour, for the param-

eters of our example) when primary and first backup are both down and a

third copy would be useful. One hour of use every 200 hours may not be

enough to make a third copy worthwhile. However, that hour could occur

at a highly critical time.

Finally, we need to investigate whether the primary is likely

to be repaired and ready before the third copy can be readied. If so,

the third copy is not of much use. In order to analyze this question,

we assumed that the repair time for the primary is not a constant but

has a probability distribution as described in appendix 2 of [4]. Using

1/2 hour for the time to ready the third copy and realistic values of

the other parameters, we found that the probability that the primary is

repaired and ready before the third copy can be gotten ready is over

0.7. That is, more than two times out of three readying the third copy

will have been a waste of time. Thus, instead of being useful about

every eight days or so, the third copy will only be useful about once a

month. (The details of this analysis will be reported in a forthcoming

technical note.) Furthermore, the reader should remember that, with

primary and backup down for an hour and the third copy requiring 1/2

hour to ready, "useful" means elimination of 1/2 hour of downtime. It

is highly questionable whether it is worthwhile to maintain a third copy

just to eliminate less than an hour of downtime once a month.

Conclusions to date . Including results from our earlier study

[4], we may summarize our conclusions on availability as follows.
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1. A backup copy can improve the availability of a data base by

as much as 5 to 10 per cent. To put this result into more

concrete terms, suppose that a single copy is likely to be

down for two hours per day (availability = .917). A 5 percent

improvement would produce an availability of .963, or a reduc-

tion of probable down time from the original two hours to

about 54 minutes.

2. If the backup copy is readily accessible and kept reasonably

up to date, the availability is very close to 1. On the other

hand, if the backup copy is stored on tape, so that it is

relatively out of date and locating it is a time-consuming

process, availability may be little better than was provided

by a single copy. (This is because one can probably repair

the original system about as rapidly as one can ready the

backup.) Indeed, a backup of this sort tends to be mainly

useful for recovery from some accident which destroys data in

the original data base.

3. A third copy is unlikely to increase availability by any

significant amount.

It should be emphasized that these conclusions are based on the assump-

tion that failures are nicely random. In examining data on failures and

repair times that have recently become available from MIT Multics, we

have observed that this assumption is questionable. There appear to be

occasional clusters of two or three failures, followed by rather long

failure-free periods. Often the failures in a cluster stem from one

root cause which is only located with difficulty. Thus it may be wrong

to assume (as we do) that individual failures are independent, random

events. We plan to analyze failure data over a long time period to see

10



if our model needs revision and, if so, whether our basic conclusions

are affected.

Cost

In developing models for the cost of distributed data manage-

ment, a number of difficult questions must be answered. Where are the

costs of processing a query or performing an update actually incurred?

How should system costs be pro-rated over time, or among programs in a

multi-programming environment? Should costs be simply dollar costs, or

should they be broadly defined as general weighting factors and assigned

values on the basis of, for example, scarcity of resources? Because of

the complexity of the problem, there have been few documented attempts

to develop cost models with much detail. One such attempt was that made

by Lum and co-workers at IBM Research to model data retrieval from a

memory hierarchy [12], In our early work on cost modeling, we built on

Lum's model. This work has been reported fully [6] and we give only a

brief summary of it here. More recently we have attempted an ambitious,

ab initio cost model. The emphasis has been on computing the cost of a

job or process from the point of view of the individual user. This
,

seemed to be the most valid basis for making comparisons of various

detailed strategies for handling data. (An attempt to compute the

global cost of maintaining a complete data management system would

probably yield less useful information with far more work. It could be

done, however, by computing results for various "typical" usage patterns

and averaging over these.) This work is still in progress and will be

reported in a later document. In this report we briefly indicate the

progress to date.

Preliminary model . The model developed by Lum et al. [12],

describes a data staging process in a hierarchical memory. That is, the

11



data is assumed to be stored on a slow, cheap storage device when not in

use and transferred to a rapid, expensive device for accessing. What

attracted us to this model was its fineness of detail and the ease with

which we felt we could extend it to a network situation by including (as

part of the hierarchy) devices at a remote site. We did, however, have

some reservations about the model. Nevertheless, we decided that the

questions we had about it might be more easily and more rationally

resolved after we had experimented with it and better understood its

limitations, as well as its good points. We therefore began with Lum's

cost formula, with its terms for storage, data transfer, and accessing,

and added network terms - including costs for data transfer to, from and

over the network, as well as protocol costs. In adding these terms, we

felt that, if only for consistency, we should follow the spirit of Lum's

model. Hence the extended model also has questionable terms, such as

those involving costs of "lost" CPU idle time. The model also has

serious limitations, such as no provision for remote processing.

In spite of its limitations, we believed that the preliminary

model was adequate for an initial study of the key question: Is it ever

more economical to store data at a remote site (instead of locally) and

bring it over the net when needed? We used the model to study this

question and arrived at the basic conclusion - which we believe to be

valid for real systems - that heterogeneity is a necessary requirement

for remote storage to be cost effective. In fact, the cost differential

due to heterogeneity must be sizable - not small percentages, but orders

of magnitude.

Framework for better models . After working with the preliminary

model and getting to understand its weaknesses, we believed that we

could proceed to build a more useful model. The preliminary model did
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not lend itself to evaluation of many important network strategies, such

as remote processing and front-ending. To avoid these limitations we

have taken a different approach and developed a general framework within

which a wide variety of models may be represented. Within this frame-

work, each functional part of the system configuration or strategy under

consideration is represented by a module. These modules are then strung

together to represent the entire system configuration to be evaluated.

This approach will provide a sufficiently flexible framework to allow

consideration of a wide variety of system configurations and software

architectures for models of different aspects of computer networking.

Thus, the framework should be not only good for cost modeling but also

for modeling response and other features.

Each module, no matter what its function, is assumed to have a

standard format consisting of four sections:

1. the means by which requests are made to it,

2. the means by which support from other modules is requested,

3. the nature of the computation, and

4. the characteristics of its use of secondary storage.

Each of these sections can be characterized by two sets of parameters:

1. those that characterize the hardware the function resides on,

and

2. those that characterize the function itself.

Thus, if one wishes to construct a model (such as a cost or response

model) within this framework, it is necessary to develop the general

equations for each of these four sections in terms of the parameters of

that model, and then determine the proper values or range of values for

the parameters which describe the hardware and the functions under

consideration. In some modules, one or more sections may be vacuous.

For example, only a few functions require access to secondary storage.

13



Most of the models that will be developed within the basic

framework may be described by the following scenario:

Inputs or requests of some length are submitted to the first

module. It performs its "function", which requires utilization of

the sections of that module. Communication is established with the

next module, and requests for support (possibly more or less than

were input) are generated. (Note that it is not necessary for each

function to use all sections of its module.) Requests continue to

be generated to subsequent modules until the original task is

completed.

Such a scenario is followed, for example, in responding to a query. The

user types his query into a terminal (the first module) which transmits

it to a host. After proceding through some host software (other modules),

the query is handed to the data management system (a module with access

to the data base in secondary storage) . The data may then be transmitted

through a succession of modules, which may perform complex data analyses,

before the response is finally returned to the user.

Given this kind of a scenario, there are a few general things

we can say about what sort of parameters will enter into the equations

to describe the various sections of the module. The intercommunication

sections (which receive or transmit requests) will tend to depend on the

number of separate communication set-ups, the number of requests per

unit time (some models may require an interarrival time) , and the average

length of a request. The utilization of the secondary store will generally

depend on the nature of the function in terms of the average number of

accesses and number of opens generated per request. It should be noted

that the module structure makes no assumptions about the physical secon-

dary store. The structure definitely does not imply that each module

14



has a separate physical secondary store. Different kinds of secondary

storage or the finiteness of storage can be taken into account by the

equations and boundary conditions built into a particular model. The

computation section is, in a sense, the heart of the module. Equations

for this section describe, in more or less detail, the function of the

module. Parameters fall into two general classes, "application" and

hardware". Application parameters include not only those describing the

internal workings of the section, but also information transmitted from

other modules. For a high-level model of a well-specified process, the

externally generated information may consist primarily of numbers of

requests received and lengths (or complexities) of those requests.

Use of the framework for cost modeling . We have developed

detailed cost formulas for the storage access and intercommunication

sections of a typical module. The formulas are lengthy and contain many

parameters. We will therefore not write down the formulas here (they

will be given in a forthcoming document), but will qualitatively describe

what goes into them.

Accessing secondary storage . The cost of accessing secondary

storage is broken down into four components

1. the static cost of storing data,

2. the cost of opening a file,

3. the CPU cost of servicing the access, and

4. the channel costs.

These last three are dynamic costs, incurred for each access. They must

be multiplied by an access rate to get a cost term compatible with the

first term. Costs of both user and system buffers are taken into account

in the storage cost and the buffer allocation strategy plays an important

role.

15



We made the tentative decision to include the cost of opening

a file as a single, measured quantity. We felt that the mechanics of a

file open are sufficiently different on various systems that any attempt

to represent an open in finer detail would introduce considerable com-

plexity without contributing significantly to the model.

To determine CPU costs, we examined in detail the steps that

take place in satisfying a typical disk access. The steps include the

system call, decoding of the request, queueing of the request (if the

data is not already available) , and (later) a disk interrupt and process

switch to transfer the data to a user area. The process switching and

queue handling which the system must carry out are time-consuming and

add important components to the CPU costs. Some of the factors in the

CPU cost term necessarily involve probabilities - probability that the

process blocks, probability that a disk access is required, etc.

Calculation of such probabilities would require rather complex sto-

chastic submodels, involving both program and system characteristics.

It might be more reasonable to attempt to measure these probabilities.

Finally, the model must account for the channel costs that

come from moving blocks of data from the disk to the primary store.

This term involves the data transfer rate and block size, as well as the

actual cost of using the channel.

Interprocess communication . The costs incurred in interprocess

(i.e. intermodule) communication will depend upon the form of communica-

tion linking the modules. We have worked out cost equations for four

basic types of interprocess communication:

1. message queues,

2. shared core,

3. shared files, and

4. hardware channel.

16



Although the detailed scenarios that must be modeled differ, the cost

formula for each of these contains such basic factors as CPU costs for

process switching and system calls, as well as message sizes and cost of

the data transfer medium. For example, the cost of the shared-core

mechanism must include the cost of the storage area in core reserved for

this process.

Cost of computation . The equation for this section of a

module will depend upon the specifics of the module's function. How-

ever, cost factors that will contribute in general are CPU cost to carry

out the function, the cost of page faulting, and the cost of user primary

storage (working space)

.

Current and future work . The basic framework for sophisticated

cost modeling has been constructed. The major effort now and in the

future is to apply the framework to the development of models to study

specific aspects of distributed data management - e.g. remote processing

of queries, front-ending, etc. The determination of the parameters to

be inserted into the models will require extensive work. Some parameters

can be measured; others might require the development of submodels.

Nevertheless, this work is necessary if reliable conclusions are to be

reached for real systems.

Response Time

In a complicated computer system, the time it takes to complete

a process is not easy to determine theoretically. Not only the actual

processing time must be included, but also all the time that the process

spends waiting in queues. The latter depends upon both the process of

interest and its interaction with all the other processes concurrently

in the system.

The higher the level of the model, the less one need be con-

cerned with these difficult details. For this reason, our preliminary

17



work (reported in [5]) assumed a simple linear dependence of response

time on system load. Essentially, we looked into the question of when,

because of load differentials, a local user can get a faster response

from a remote site (including network delay) than he can get locally.

We were suspicious of the linearity assumption, but further study during

the current contract year appeared to verify its validity. We therefore

felt that, as a high-level model, that reported in [5] was reasonably

correct and complete; hence we did not pursue that line of work further.

Clearly, a lower-level, more detailed model was needed to

answer less trivial strategy questions. In looking into the literature,

we found little in the way of response-time analysis dealing directly

with questions of data management. However, both time-sharing systems

and multiprogramming systems have been analyzed. Both of these types of

systems are characterized by competition for shared resources. Several

jobs reside in the system simultaneously and must occasionally wait for

processing, I/O, etc. The natural mathematical models to describe the

progress of jobs through such a system of waiting lines and processors

are those of queueing theory. Accordingly, queueing theory has been

heavily and successfully used to develop formulas for response time in

such systems.

It should be possible to develop models of this type which are

specific to data management - i.e. in which the concurrent jobs are

queries or updates. An attempt at developing such a model was made by

Chu [9] in his work on network file allocation. Chu's work was simpli-

fied by his view of a query/update as a simple file transfer. Chu

further neglects all queues but one (that for sending the file to the

user) and hence treats what is a very difficult problem as a single-

server queueing system. To make even this problem tractable, Chu makes

18



other simplifying assumptions, notably that all files have the same

length and that there is only a single copy of each file in the network.

We have attempted to relax these assumptions, in the hope of obtaining a

more realistic model without making the mathematics completely intractable.

This work is still in progress and will be reported later.

As another approach, we are using the general modeling framework

discussed above to model response time as well as cost. The formulas

need a few modifications. Terms such as storage costs may simply be

deleted. The CPU cost terms are of the form of a product of the time it

takes to carry out some process, times the CPU cost per unit time. This

last factor is omitted to yield a time term. It is necessary to insert

additional terms giving the time spent waiting in queues. And obtaining

this waiting time may require a queueing analysis. However, we believe

that we understand what is needed to develop a response-time model by

using the modular framework. Working up response-time models for speci-

fic applications is expected to be a bit more difficult than for cost

models, but still feasible.
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Specific Research Areas

Introduction

In parallel with the development of mathematical models and

analytical tools, we made in-depth studies of a number of research

areas. These areas are:

1. deadlock,

2. synchronization,

3. techniques to ensure resiliency in distributed operations,

A. optimal allocation of files in a network, and

5. optimization of query strategies.

Much of our progress in these areas has been reported in detail in

previous documents. Here we summarize overall progress to date and

emphasize results not previously reported.

Deadlock

The deadlock problem and techniques for treating it were

discussed in detail in a previous technical report [2]. To summarize,

we found that this problem has been very heavily studied over the last

six years. The basic techniques for handling deadlock fall into three

classes:

1. Detection and recovery.

2. Avoidance, or elaborate schemes for assigning resources to

processes only when it is "safe" to do so.

3. Prevention, or the imposition of some discipline on the pro-

cesses (e.g., requiring them to ask for needed resources in a

prescribed order) which precludes the circular blocking con-

figuration characteristic of deadlock.

We assessed the applicability of these techniques in a distri-

buted environment, particularly with reference to data base access
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control. We concluded that avoidance is probably too expensive and

time-consuming to be practical. The prevention schemes also may impose

too much of a burden on the system or, alternately, on the application

programmer. Simple detection schemes may be feasible in a network. We

proposed one such scheme which, unlike one previously discussed in the

literature, does not require a central monitor.

There is also the possibility that deadlocks occur infrequently

enough that the problem may be ignored; i.e., that a deadlock may be

handled like any process failure. Several studies exist in the litera-

ture on the expected frequency of deadlock. As one might intuitively

expect, as data bases grow larger, contention for the same items (and

hence the probability of deadlock) should decrease.

Existing computer systems tend to use a combination of tech-

niques for handling deadlock. Different schemes or disciplines are

applied to handling different types of resources. Some possible sources

of deadlock are even ignored. The practicality of combining techniques

in worth keeping in mind, since there appears to be no single "best" way

to handle deadlock.

An important point to notice is that the choice of synchroniza-

tion mechanism (see below) will impact on the deadlock problem. Synchroni-

zation techniques need to be studied with one eye on their potential for

causing deadlock. If synchronization is handled properly, the need for

a separate concern with techniques for handling deadlock can be minimized.

For this reason, we did not extend our study past the basic state-of-

the-art assessment and the preliminary development of a distributed

detection scheme (i.e., past the work reported in [2]). Sophisticated

technology is available for use. For any distributed data management

system, the problem of synchronization must first be solved. Then one
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must determine where deadlocks can arise and how these potential dead-

locks are best handled. The problem must be solved within the context

of a particular system. There seems to be no quick, general solution.

Barring an unexpected breakthrough which yields such a solution, we

believe that in the future useful work in this area will be limited to

engineering (i.e., application of known techniques) and experimentation.

Synchronizat ion

Synchronization mechanisms are needed to ensure that concur-

rent processes do not interfere with one another. In the context of

data management, the need is particularly acute. Concurrent updates may

interfere with one another in such a way that the data becomes garbled

or inconsistent. Updates may interfere with queries and cause the user

to get a nonsense answer.

Semaphores and locks . In our previous report [2], we surveyed

existing techniques for synchronization. First, there are semaphores by

which processes communicate with one another. Semaphores are essentially

variables which can be accessed (read and altered in a strictly defined

way) by all the processes to be synchronized. By modifying the values

of such variables, a process can communicate its state to the other

processes. Conversely, by examining the values of the semaphores, a

process can determine whether or not it is safe to proceed.

Second, there are locking mechanisms . Similar to semaphores,

locks are, however, directly attached to data (records, blocks of records,

etc.). They give the state of the data (essentially whether or not it

is in use) instead of the state of a process. Thus, by locking the

relevant data, an update program can ensure that no concurrent program

will interfere with it.

Problems with semaphores . We identified a number of diffi-

culties which semaphores may encounter in a distributed environment.
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First, semaphores reside in shared memory; all the processes to be

synchronized must have ready access to the semaphores. Second, even if

it is feasible for the semaphores to be stored at one reliable site on

the network, the time delays involved in network communications are

likely to make synchronization prohibitively slow. Third, the time

delays, which may vary considerably, have other adverse affects. They

make the problem of races much more severe than it is within a single

system. Furthermore, extraordinarily long delays may be virtually

indistinguishable from failures. Serious trouble can be caused if a

process attempts error recovery on a (remote) process which is still

working properly, albeit slowly. Fourth, problems of errors become more

severe. Much care needs to be taken to see that communication among

processes is resilient to lost and delayed messages, and to other common

errors.

Resiliency . We have addressed this last problem - the resil-

iency problem - in some detail. Essentially, our approach is to back

up each critical message and to wait until at least two sites have

received it before taking (or allowing the user to take) any action.

The approach, as applied to synchronization primitives, is sketched in

[2]. Further development and analysis of resiliency techniques were

reported in a later document [3]. This work will be summarized briefly

in a later section.

Assessment of locks . Although locking mechanisms are well

understood, certain problems have required further study. One of these

is the data "level" at which exclusive use is assigned. It may be that

usage is assigned on a record-by-record basis. Or, at the other end of

the scale, only one user at a time may be allowed access to the entire

data base. The choice of level is a difficult decision. In [2] we

discussed some of the tradeoffs which should be considered.
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A problem specific to distributed environments is that of

using a mechanism which minimizes network traffic and network delay. In

particular, there is a need to minimize the number of synchronizing

messages which must be sent across the network. Looking at current

single-site synchronization techniques in the light of this requirement,

we found [2] that the frequent, explicit setting of semaphores or locks

appears to be too time-consuming. The most promising techniques seem to

be those in which only the transaction requests themselves, with perhaps

some information on the order in which they should be performed, are

transmitted across the network. The local data managers are then respon-

sible for setting locks or enforcing a usage protocol that avoids inter-

ference. More work needs to be done in this area, especially in conjunc-

tion with experimentation.

Maintaining consistency among multiple copies . In order to

maintain consistency among multiple copies of data, it is important to

ensure that the updates are applied to each copy in the same order. For

example, if one update adds 10 to a field and a second increases the

same field by 10 percent, interchanging the order of the operations will

change the final result. There is very little in the literature on this

problem. We have therefore made this topic the subject of a major

research effort. In our report [2], we briefly indicated our preliminary

findings. A final report on this work is forthcoming. Meanwhile, we

will here discuss our progress to date in some detail.

There are essentially two different ways to maintain the

update sequence. One way is by seeing to it that all sites receive the

updates in the same order. The second is by explicitly attaching a

sequence number to each update. The first scheme runs something like

the following. An ordering of the sites holding a copy is established.
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Each update is first sent to the host designated as the primary. The

primary then sends the update to the next host, and so forth. The

precise sequence of the updates is therefore determined by the order in

which they arrive at the primary. Some safeguard must be taken to see

that updates from the same user will arrive in order (if that order is

important) and that the primary (or some later host) does not somehow

mix up the ordering. To ensure that no mix-ups occur, it is advisable

that the primary attach a sequence number to the update before sending

it along to the backups. This consideration then leads us to emphasize

the second approach.

The second approach is to attach explicit sequence numbers to

the transactions. If each update in the network, no matter where it was

generated, has a unique sequence number attached, then every data base

manager can use these numbers to order the operations. The question

that then arises is how the sequence numbers should be assigned. Three

different techniques are presented here. These are

1. centralized assignment (primary host),

2. partially distributed assignment (the "reservation center,")

and

3. completely distributed assignment.

Centralized assignment: The most obvious way to assign sequence

numbers is to have a distinguished host (the primary ) from whom sequence

numbers are requested. In this scheme, the host generating the update

sends it to the primary, where a sequence number is attached. At this

point, two variations are possible. (1) The update, with the assigned

number, may be returned to the originating host for transmission to the

various data base copies. This scheme envisions the number-assigner as

a very simple piece of software which does nothing but hand out numbers
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on request. (2) The primary may have the responsibility of broadcasting

the update (with its sequence number) to all the copies. This scheme is

functionally equivalent to the approach (discussed above) which orders

the sites. Adding sequence numbers can be thought of as one way of

providing some of the needed resiliency; i.e., of ensuring that none of

the sites destroys the order of the transactions. A centralized assign-

ment scheme with updates broadcast by the primary has been discussed in

some detail by Bunch [1]. It is this alternative that we will be dis-

cussing here as the "centralized" or "primary host" scheme.

Centralized sequence number assignment has several apparent

defects. First, the primary might be a bottleneck, because it must

assign a sequence number to each transaction. However, compared to the

work involved in applying the update to the data base, the additional

work of assigning a sequence number is quite small. Second, each trans-

action can incur delay because it must wait for the sequence number to

be assigned. The transaction delay should be negligible (a few hundred

milliseconds) at the primary site itself. However, the host generating

the update might find it inconvenient to wait for a number to be returned

from a remote site before applying the update.

Partially distributed assignment: A more distributed scheme

that we have developed is the socalled "reservation center" (RC) scheme.

In this scheme sequence number assignment is a two-step process. First,

the reservation center, a distinguished host, gives each host a block

of sequence numbers. These numbers are valid only during a limited time

interval. All numbers issued are ordered. When a host wishes to initiate

a transaction, it takes the next unused sequence number from its block

of numbers for the current time interval. Some strategy must be devised

to handle the case when more numbers are requested than are available.

A simple way to handle this is for each host to have two sets of numbers.
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When the first set is used up, the host begins to use the second and

simultaneously notifies the RC that it needs a new set.

Some of the problems of the central number assigner are

ameliorated by using the reservation center. For example, when the

number assigner fails and this task is transferred to a new host, there

may be some difficulty in determining the "next" number to be assigned.

There is no such problem if the reservation center fails. Instead,

sequence numbers from the next time interval are assigned. They will be

greater than any previously sent numbers. The reservation center is

also less likely to be a bottleneck because its response is not critical

for the continuation of an update, as is the case with a primary copy.

The workload of the reservation center is more periodic and predictable.

Every time interval it must make up and transmit new blocks of sequence

numbers. There is a minor problem in determining exactly which sequence

numbers have been used. This is necessary to detect a failure in which

updates have been lost.

We noted above that there is a delay in applying locally

generated updates to the local copy when the site must wait for the

sequence number to be returned from the primary. This is not the case

in the RC scheme, since the local site applies a sequence number from

the list it already has. It is then ready to apply the update - although

it may have to wait for an update with an earlier sequence number to

arrive and be applied first. However, since blocks of sequence numbers

expire after a fixed, brief time interval, this delay will necessarily

be fairly short.

Completely distributed assignment: If we let each host

generate its own sequence numbers, we have a completely distributed

scheme. One such scheme has been described by Johnson and co-workers
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[10,11]. Their scheme was more motivated by a concern for maintaining

the temporal sequence of updates; i.e., maintaining the precise order in

which the updates are generated by the users. They tried to achieve

this by generating the sequence numbers partly from the local clock

time. The required uniqueness of the sequence numbers may be achieved

by appending host id, user id, etc., to the timestamp. There is an

interval of uncertainty because the clocks on the various hosts may not

agree. One would expect this interval to be small in the WIN environ-

ment because the military already requires good time coordination.

Since this is not true in all environments, we have developed techniques

for detecting and correcting an inaccurate clock. Essentially, time-

stamps on updates arriving from remote sites should agree with the local

time plus an adjustment for network transmission delay. A more or less

sophisticated analysis can be used to determine the probability that a

particular clock requires adjustment, and by what amount.

There is, however, a similar interval of uncertainty in the

other schemes considered. In a centralized scheme, network delays may

cause updates from different sites to be ordered quite differently than

their precise time of generation would indicate. The reservation center

approach was in large part developed to formalize the viewpoint that the

precise sequence of updates within a certain time interval doesn't

matter. It appears that overconcern with applying updates in their

"real" order is something of a red herring. Even for a single-site

time-sharing system, the order of transactions from different users may

sometimes be determined as a random outcome of the terminal polling

process.

In briefly discussing the schemes for sequencing updates, we

have touched on some of the more obvious advantages and disadvantages.

28



There are many more points which need to be considered in deciding which

of the schemes is best used in a particular distributed environment. We

here list and briefly discuss several of these.

1. Storage requirements. In Johnson's timestamp scheme, as well

as in the reservation center scheme, the timestamp of the last update

applied to each record (or even each field of each record) is appended

to the record. This is done so that the data base manager can look at

the record and determine whether an update was applied out of order. If

there is a central sequence number assigner, all updates theoretically

are applied in the assigned order, so that this enormous storage over-

head is not necessary.

2. Operations supported. This is a key problem that we have

studied extensively. If the operations which one is allowed to perform

on the data are severely restricted, almost any synchronization scheme

will work. For example, Johnson and his co-workers assume that only

assignments are allowed. This solves some tricky problems. Superseded

assignments may be simply thrown away. On the other hand, if only

increments and decrements are allowed (as for an inventory system) the

order in which these operations are performed doesn't matter, and no

sequencing scheme at all is needed.

In a realistic, multi-operation system, assignments, incre-

ments, decrements, etc., will all be allowed. If an update arrives at a

site out of order (as determined by explicit sequence number), it may

cause earlier arriving updates to have to be redone. That is, the

system must have some provision for undoing and redoing operations. We

have looked in some detail at the work that might be involved in carrying

out such a process. If the updates which get out of order are indepen-

dent, in the sense of having no effect whatsoever on each other, then
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there is no problem. But in general out-of-order updates may not only

affect specific field values (as in the example given at the beginning

of this section) but also may alter the applicability of other updates.

Consider the following simple example. Suppose that, in a military

personnel file, update u promotes a number of persons to the rank of

captain. Suppose that update u increases the salary of all captains by

$2000. Now if the updates are applied in reverse order (u , u ), then

all of the newly promoted captains will (alas!) miss out on their pay

raise.

We have analyzed the problem of two out-of-order updates

(rearranging u , u- to u , u_) in some detail. As many as eight dis-

tinct cases (types of interaction between the updates) must be con-

sidered. If we procede one step further and try to rearrange u , u
,

u to u , u_, u , we find the problem to be so complex as to be vir-

tually intractable.

As an alternative to rearranging out-of-order updates, the

system could wait for "missing" sequence numbers - an approach that is

feasible only if all numbers are assigned centrally and all sites

receive all updates. We have also done some investigation of a delay

pipeline as a flexible way to impose a waiting period. The idea is that

as each update arrives at a site, it enters a pipeline, or queue. After

a certain time delay, the system is ready to take the update from the

pipeline and apply it. Before doing so, the system checks to see whether

there is any other update in the pipeline which should be applied first.

If so, the updates are applied in the correct order. Such a pipeline

could take care of updates which get out of order by small amounts due

to the normal fluctuation in network transmission delays. However, the

scheme is not adequate to handle seriously out-of-order updates. Serious
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disordering will inevitably occur when hosts go down or the network

partitions.

3. Application delay at remote sites. In discussing the various

schemes, we have noted that they differ in how rapidly an update may be

applied at the site which generates it. They also differ in how rapidly

updates may be applied at the remote sites. Again, the timestamp and RC

schemes have the advantage, since updates may be almost immediately

broadcast to remote sites. The process of going through a primary copy

necessarily causes some delay. And in the implicit ordering scheme, in

which updates percolate down the list of copies, the delay to reach the

last one may be considerable.

4. Other considerations. A number of less critical features have

been studied. For example, one scheme may cause less network traffic

than another. Detailed analysis of the schemes - and perhaps even of

particular implementations - are required to give fine comparisons on

this basis. No reason for large differences among the schemes is evi-

dent. There is, however, a difference in the sensitivities of the

schemes to network traffic. If the traffic into the primary is very

high, increased network delay may adversely affect the primary-host

scheme. Similarly, an overloaded primary host could be a real bottle-

neck.

Table 1 summarizes our ranking of the three schemes (primary

host, reservation center, and timestamp) with respect to various con-

siderations. A "1" indicates "best", a "3" worst. The implicit scheme

discussed at the beginning of this section is not listed separately,

since it has the same general properties as the primary host scheme.

The latter, however, has advantages with respect to resiliency, since

lost updates or dead hosts can be identified through missing explicit

sequence numbers.
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Basis of

Comparison
Timestamp
Scheme

Reservation
Center
Scheme

Primary
Host
Scheme

Maintenance of "real"

update sequence
3 2 1

Local applicaton delay 1 1 3

Remote application delay 1 1 3

Storage requirement 3 3 1

Variety of operations
supported

3 3 1

Sensitivity to host
failures

1 2 3

Sensitivity to network
traffic

1 2 3

Sensitivity to host load 1 2 3

Table 1

Assessment of three schemes for assigning sequence numbers.
A "1" indicates that a scheme is the best on this basis; a
"3" indicates that it is the worst.
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In attempting to make an overall judgment as to the best

scheme, we have to weight the various considerations with what we

believe their relative importance. In addition, we have to consider the

magnitudes of the differences indicated by the rankings of table 1. For

example, all the schemes are rather sensitive to host failures. The

timestamp scheme has only a small advantage, and that disappears if the

primary host scheme is made more resilient. On the other hand, the

problem of supporting complex operations seems insurmountable for the

timestamp scheme. After weighing all the evidence, we favor the primary

host scheme. We feel that its advantages far outweigh its disadvantages.

Since this opinion represents a change from that of several months ago,

we hesitate to claim that now we have the ultimate answer. More analysis

and experimentation is needed to make the case for the primary host

scheme completely convincing.

Resiliency Techniques

Early in our study of multi-copy management, we identified two

problems which required in-depth study before we could proceed with

further work. One was the synchronization problem, which has been

discussed above. The other was the resiliency problem. A recent tech-

nical report [3] contains the details of our work on resiliency. The

following is a brief review, largely abstracted from that more complete

report.

Need for resiliency . The current protocols on the ARPANET

(and similarly in its "copy" PWIN) operate under basic assumptions that

are at best questionable in a production networking environment. It is

assumed that all hosts correctly obey protocol. It is assumed that no

host is malicious. It is assumed that messages are not lost in the

network. It is assumed that when a host fails, it will fail at a

"convenient" point in the execution of a protocol sequence. In fact,

33



all of these assumptions are commonly violated every day in the ARPANET

environment. What is required for production networking are resource

sharing strategies which are as resilient as possible to protocol

violations, malicious attack, communication failures, and host failures.

Characteristics of resilient service . "Resiliency" is a term

which might mean different things to different people. It is clearly

unrealistic to expect a resilient service to be completely free of

errors. In our work, we have assumed that a resilient service should

have four major attributes.

1. It should be able to detect and recover from a given maximum

number of errors.

2. It should be reliable to a sufficiently high degree that a

user of the resilient service can ignore the possibility of

service failure.

3. If the service provides perfect detection and recovery from n

errors, the (n+l)st error should not be catastrophic. A "best

effort" is made to continue service.

4. The abuse of the service by a single user should have a

negligible effect on other users of the service.

In short, the user of a resilient service should not have to consider

the failure of the service in his design. He should be able to assume

that the system will make a "best effort" to continue service in the

event that perfect service cannot be supported. Finally, the system

should not fall apart when the user does something he is not supposed to

do.

It is important to establish criteria for acceptable resil-

iency. We have introduced the concept of n-host resiliency. That is,

in order for service to be disrupted, n hosts must simultaneously fail
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in a critical phase of service. It may be possible for n or more hosts

to fail outside of such a critical phase without disrupting service.

Techniques for achieving resiliency . In [3], we describe

several alternative schemes for implementing two-host resiliency with

respect to communication system and host failures. A linearly ordered

set of hosts is assumed to have the responsibility for resiliency. In

one scheme, users send critical messages to the primary host, which

relays them to the first backup. The backup then sends acknowledgments

to the primary and to the user, as well as relaying the messages to the

second backup. Thus, both the primary and the first backup have know-

ledge of a message before the user gets an acknowledgment and may pro-

ceed further. It is so unlikely that both primary and backup will fail

at a critical point in this process that two-host resiliency is suffi-

cient to achieve failure intervals measured in centuries.

Feasibility . The resiliency criterion is a question of ser-

vice integrity. If the criterion is met, the service will almost cer-

tainly be functioning correctly. Unfortunately, large service hosts are

down for substantial periods of time during the day for both scheduled

maintenance and unscheduled failures. A possibly large number of service

sites may be required, simply in order that there be a reasonable expec-

tation that at any time at least two of them will be up. This raises an

important issue related to resiliency - the availability of resilient

service.

We have analyzed this question in some detail. Results are

tabulated and graphed in [3]. To summarize, we found that when resil-

ient service must be supported in a WWMCCS-like network, it appears that

three or four service hosts must be supplied. This will support a

service availability in an acceptable range during non-crisis periods.
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In a crisis situation, by judicious management of down-time parameters,

the same three or four service hosts should be capable of providing

significantly improved availability for the duration of the crisis.

If only one service host is available, it would be possible to

discard the resiliency scheme and to operate with only the single host.

We have investigated the question of what allowing this degradation in

resiliency would cost us in the way of service integrity. In a single

host environment it is possible to have undetected errors creep into

distributed resources like data bases. The probability of service

errors is greatly dependent on the frequency of the errors that would

normally be detected by the resiliency scheme. If, for example, these

normally detected errors occurred at the rate of one every one to four

hours (a reasonable assumption based upon ARPANET experience) , then a

two-host service which was permitted to operate in degraded one-host

mode would experience undetected errors at the rate of one every day or

two. If three service hosts were permitted to degrade to single-host

service, then the errors could occur every three to nine days. If four

service hosts were permitted to degrade to single-host service, then

undetected service errors would occur approximately every month. (To

get these quantitative results, realistic values were assumed for

failure and repair rates. See [3] for details.) There is then a

tradeoff to be considered. Suppose there are three hosts in the scheme.

Is it better to cut off service for the 1/2 hour or so a day when two

hosts are not available, or to take the chance of introducing an error

once or twice a week? This is a management decision.

Applications . We feel that our report [3] contains the

essential information required for implementing a resilient service.

Future work needed in this area consists mainly of experimentation - to
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see how well, in fact, the various schemes work - and of application to

specific distributed system functions. These applications might include

the following.

1. Synchronization . A two-host resilient scheme for handling

synchronization primitives was sketched in [2], Further work and

experimentation would be useful.

2. Directories and data access . In a distributed environment the

problem of accessing and updating network virtual file systems and their

associated directories is difficult. For example, consider the problem

of a single network-wide tree-structured file directory scheme. Each

host on the network must be able to determine, in some reasonably trans-

parent fashion, where individual files are stored. If each site in a

large network is required to keep the entire directory structure, the

cost for updates and synchronization of access to all of those direc-

tories (whenever they are updated) would clearly be prohibitive. It is

relatively straightforward to use a scheme where the very highest levels

of the directory structure are fixed and replicated on all hosts.

Alterable directories and files are at lower levels of the tree. A list

of potential service hosts is stored at the point where the hierarchy

becomes variable. These service hosts are coordinated via a resiliency

technique to provide access to files below that point. This approach

has the advantage of partitioning the hierarchy in such a way as to

minimize the number of hosts required to cooperate in an update.

3. Load sharing . Automated load sharing requires that multiple

processors be controlled in a resilient and transparent fashion to

provide processing services to requesting hosts. The resiliency tech-

nique can be applied in a straightforward way to coordinate the offering

of that service. Any potential service site can receive a request for

37



service and pass it on to the primary for determination of an optimum

processor for the work. Once the task has been successfully forwarded

to the primary it would not matter if one of the service hosts involved

in the task were to die. Adequate information would be maintained to

support the automatic recovery of the service host.

Network File Allocation

A report [7] on this research area was written late in the

contract year. The following summary of our work in this area is there-

fore largely abstracted from that document.

The problem . The file allocation problem is simply stated.

If we want to set up a distributed data base in a network, where should

we put copies of the various files? To make the problem precise, we

must first define carefully the file usage process which we want to take

into account in the decision on allocation. That is, we must develop a

model for how files are expected to be used. The next step is to define

what is meant by best (or optimal ) . In most studies in the literature,

optimal is defined as least cost, where "cost" can be broadly defined to

include more than dollars. That is, "costs" can be weight factors

imposed by management to reflect, for example, the scarcity of certain

resources. Alternatively, it might be worthwhile to minimize response

time instead of cost.

Once we have a model, and have decided that (say) cost is to

be minimized, the next step is to develop a cost formula , reflecting the

model and including all essential parameters. Additional formulas may

need to be developed for constraints , in case it is not realistic to

assume that only cost need be taken into account.

Finally, the optimization problem that has been defined must

be solved. In general, this is a straightforward, but very large,

computational problem.
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Models . We have identified three aspects of file handling

that must be included in any file allocation study. Basically, the file

must be

1. stored,

2. updated, and

3. queried.

The precise impact on cost of these basic processes will depend on how

they are carried out. In the models which one usually sees discussed in

the file allocation literature (see [8], for example) the cost formula

is of the following form:

Cost = Cost of Storage

+ Cost of Sending Queries to Nearest Copy

+ Cost of Sending Updates to All Copies

Notice that as the number of copies increases, the cost of

updates and storage will also increase. But the cost of querying

decreases as closer sites become available to send the queries to. We

therefore have a classic tradeoff, which makes the problem of finding

the cheapest allocation a nontrivial one. In case the reader feels that

not all relevant costs appear to be included in this formula, we remark

that only a slight modification is needed for this basic scheme to

reflect such additional features as the costs of processing queries and

updates. Furthermore, parameters can be interpreted broadly. The

"nearest" copy is not necessarily nearest in the geographical sense, but

the one that can respond to the query most cheaply.

However, we identified a more serious difficulty with this

scheme. The assumption is made that all sites generating updates send

them independently to all the file copies. In our parallel work on

synchronization and resiliency (see above), we identified many diffi-

culties with such a decentralized model for updating. We believe that a
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primary-copy scheme, in which all updates are first sent to a "primary"

has many advantages. The primary plays a role in ensuring both resil-

iency and proper synchronization of the updates. For a primary-copy

scheme in which the primary subsequently broadcasts the updates, the

cost formula will be something like the following:

Cost = Cost of Storage

+ Cost of Sending Queries to Nearest Copy

+ Cost of Sending Updates to Primary

+ Cost for Primary to Send Updates to Copies

Surprisingly, although this formula looks like it would probably lead to

higher cost than the broadcast formula, this is not necessarily the

case. That is, in many situations lower-cost file allocations can be

obtained for a primary-copy scheme than for a broadcast scheme. Intui-

tively, this can occur when the primary is more centrally located than

the sites generating the updates.

There are a number of constraints which one might want to

impose on the problem. The four most useful ones that are discussed in

the literature are:

1. Forbidden or prescribed sites . For historical or policy

reasons, a copy of a data base might be reqiured at a given

site. Conversely, security considerations could forbid

certain locations.

2. Prescribed number of copies . Primarily for reasons of in-

creased availability [4,9], it may be desirable to specify

that there be, say, two copies of the data base, or of certain

files. One might also specify a minimal number of copies.

3. Limited storage . It may be necessary to take into account the

limited storage capacity of certain sites.
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4. Upper bound on response time . If the access process is

modeled in considerable detail, and if enough information on

system parameters is known, the expected time to access each

file may be computed. The constraint can be imposed that this

time be less than some given bound.

Of these four constraints, the first two appear to be the most

relevant to WWMCCS needs. Fortunately, they turn out to be very easy to

impose. Straightforward conditions on number of copies or on file

locations reduce the options and hence tend to reduce the computation

necessary to find an optimum.

On the other hand, the third and fourth constraints actually

tend to increase the difficulty of the problem. This is because these

constraints couple together the impact of all the files in the system.

Storage limitations obviously must take into account all the files. In

response-time constraints, the file locations interact in more subtle

ways, such as in increased network traffic and resulting delays.

Without such coupling, the best location for each file (or group of

files) can be determined independently. It turns out to be much easier

to solve a number of small allocation problems than one gigantic one.

One further point should be made about storage constraints.

It is not only difficult to impose them, but it may be unrealistic to do

so. If it is otherwise worthwhile to store a file at a given site,

there seems to be no good reason why additional storage capacity could

not be added to accommodate that file. That is, "storage cost" in the

cost formula can just as well reflect the cost of new storage capacity.

If one takes this point of view, then the only classical

constraint which is troublesome to impose is a bound on response time.

Further study may be useful to determine whether response-time constraints
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can be handled in some simple fashion - and also whether they are really

worthwhile in most environments. It may be that some more straight-

forward constraint - for example, on network traffic between various

sites - would be easier to apply and at the same time have the same

effect on system performance as the response-time constraint.

Finding the optimal allocation . If there are n sites in a

network, and for each site there are two possibilities - either it has a

copy or it doesn't - then there are 2 different file allocations to be

considered. (This number becomes 2 -1 if we omit the null allocation,

i.e. no copy.) Computationally, there are no foolproof shortcuts to

finding the optimal allocation. As the network increases in size, the

work to solve the allocation problem will in general grow exponentially,

doubling with every additional site. Consider the following example.

Casey [8] notes that a program run on the 360/91 took less than 10

seconds to solve six different optimal allocation problems for a network

of 19 sites. (This time included the Fortran compilation.) Thus, if we

assume that it takes about 2 seconds to optimally allocate a single file

in a 19-site network, it will take over an hour in a 30-site network,

about 48 days in a 40-site network, and about 136 years in a 50-site

network. These figures must then be multiplied by the number of files

to be allocated.

It therefore becomes imperative to reduce the computational

work in any way possible. There are some useful theorems reported in

the literature, but it seemed to us that it was possible to make further

progress in this area. We therefore developed three theorems which

determine a priori that certain sites should, or should not, be included

in any optimal allocation. Each such a^ priori determination reduces by

a factor of two the size of the remaining allocation problem. We feel
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that our theorems can be enormously useful In reducing the file alloca-

tion problem for large networks down to manageable size.

Applications to special situations . Following another line of

research, we investigated certain simple models and related allocation

questions which may be particularly useful in the WWMCCS environment.

First we assumed that network transmission cost is the same for all site

pairs. However, we added the costs of processing queries and updates to

the model, and we assumed that these may differ from site to site. Here

are the questions we investigated, with summaries of our results.

Question 1 . Suppose that all updates are generated at a

single site, but queries may originate anywhere in the network. What is

the best allocation?

In a homogeneous network, the optimal allocation often turns

out to be a single copy, located at the site generating the

updates. Specifically, this happens when it costs more to

maintain (store and update) a copy elsewhere than it does to

answer remote queries from the updating site. In a heteroge-

neous network, more tradeoffs enter into the picture. We

present two simple strategy rules for this case.

Question 2 . Suppose that there are only two sites under

consideration - a remote site holding a copy of the data base and

responsible for updating it, and a local site generating queries for the

data base. Is it worthwhile to have a local data cache?

A simple inequality suffices to answer this question. If the

savings per query, multiplied by the number of queries in a

given time period, is more than the local storage cost of the

data cache for that time period, then it pays to have the

local cache. Otherwise it does not.
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At this point we feel that the basic file allocation problem

is well understood. Future work is likely to be more along the lines of

applying the known principles to other special situations and particular

network environments. A practical problem which must be addressed

before real optimal allocations can be made is that of collecting the

data on usage patterns and "costs" which go to make up the parameters in

the formulas.

Optimization of Query Strategies

When distributed data management systems become a reality,

many more options will be available to the user than exist in a simple

single-site system. If multiple copies of data exist, there is a choice

of sites from which to retrieve needed data. The different sites may

have the data organized in different ways or may have different indexes.

Some sites may be busier than others. In short, a particular query

might be answered very rapidly (and cheaply) at one site but very slowly

(and expensively) at another. Even without multiple copies, complex

queries may require combining data from several sites, with consequent

transmission of large amounts of data across the network. How much data

need be shipped depends upon the strategy for handling the query. One

could hardly expect the individual user to have enough information (or

time) to decide on a strategy for each of his queries. The system must

be able to make the strategy decisions. One would hope that then this

decision could be made optimal, or near optimal. However, the develop-

ment of algorithms to find the best strategy in various situations is a

difficult research topic. Our work to date has been only preliminary.

The conclusions drawn -and even the approaches taken - should be con-

sidered tentative. We present only a brief summary of the work here.

Since it was carried out in conjunction with the experimental system
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design effort, a more thorough account of the work may be found in the

Experimental System Report, which is being prepared concurrently.

Models for query strategies . In simple cases, models for

handling queries can be formulated in much the same way as those for

file allocation. In the latter case, the question is whether or not a

file should be placed at a certain site. Relevant costs can be computed

and the total costs of alternate allocation strategies compared. In the

case of modeling query strategies, the question is whether or not a

given data operation should be carried out at a certain site. Again,

associated costs can be computed and total costs of rival strategies

compared.

One model that we have developed for studying query strategies

contains the following basic parameters:

1. The cost C. . of performing a given operation (i) at a specific

site (j) which holds a copy of the relevant data. Costs may

vary from site to site because of pricing policies, differ-

ences in system software or hardware, or differences in how

the data are stored or indexed.

2. The amount A. of output from a given operation (i) . The

decision on where to carry out an operation can be affected by

whether or not this output must be transported over the network.

For example, suppose sites 1 and 2 both have copies of the

relevant files, and the results of the request are needed at

site 1. Then, even if site 2 can respond to the request

(i.e., carry out the necessary operations) more cheaply than

can site 1, the cost of shipping the results (which may be a

large set of records) from site 2 to site 1 may make total

costs lower if the operations are performed at site 1.
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Responding to a query may involve a sequence of operations

(perhaps with some parallelism) to be carried out on different files.

We have found that the order in which these operations are performed can

have a considerable effect on total cost, but the problems which arise

in trying to optimize over all possible orderings of operations are

enormous.

Taking the order of operations as given, a formulation of the

cost optimization problem as a zero-one programming problem has been

developed. The variables Y.. to be determined (and that take on only

the values one or zero) indicate whether or not a given operation (i)

is performed at a given site (j). The total cost formula consists of

two terms:

1. the cost of carrying out the operations, i.e.,

I C. .Y. ., and

i,J

2. the cost of the network traffic incurred; i.e., the sum over

all operations i of the cost of transporting A. if the opera-

tion is carried out at one site and the result is then needed

at another.

If there are m operations to be carried out in fulfilling a

request and n sites (on the average) at which each may be carried out,

the number of variables Y. . is mn. Hence there is likely to be a rather

large programming problem required to optimize the handling of each

query. Clearly, solving large programming problems in this setting is

much more impractical than it is in file allocation, where allocations

are optimized only infrequently. There is too much overhead involved

even in heuristic methods for finding near-optimal solutions. Further-

more, an enormous amount of a_ priori information on database content is

assumed in the presumption that one knows the parameters A - and even
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the costs C... That is, unless there is some simple way to generate

good guesses for these parameters, it would appear that optimizing

retrievals in this way requires more work to get the parameters than the

actual retrieval (even if done inefficiently) should take.

Application of sampling theory . In an attempt to solve the

problem of obtaining valid estimates for the parameters A. , we have

looked into using the techniques of statistical sampling for that

purpose. In order not to confuse our results by including too many

extraneous factors, we considered only one small aspect of the overall

strategy question. Suppose we have a simple query involving two files

at two different hosts. Suppose that, to respond to the query, a subset

of the records in each file is first selected. To make this precise,

suppose that all of the records satisfying property "r" are selected

from file F at site 1, and all those satisfying property "q" are

selected from file F~ at site 2. Further suppose that these subsets

must then be combined in some way. An example of such a query is the

following. Suppose site 1 contains a personnel file F of air force

officers and their detailed job qualifications. Suppose site 2 contains

a general military personnel file F with information on such things as

eligibility for retirement. The search for an officer for a certain

command post might involve selecting those with the appropriate job

qualifications from F , selecting those from F who are not scheduled

for imminent retirement, and then finding, by a combining operation, the

officers common to both subsets.

To carry out the combining operation, one of the subsets must

be shipped to the site holding the other. The question is, which one?

We assume that the decision should be made strictly on the basis of

which subset is smaller - that is, we want to ship the smaller set of
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records. In a simple case like this, the system manager might just ask

each site to find the subset and report its size. Then the manager

could determine which subset to ship. However, for more complex pro-

blems this sort of step-by-step monitoring may not be practical; an a.

priori decision may have to be made. The results from investigating how

well a. priori decision tools work out in this simple case should carry

over to the more complex cases where they are really needed.

Our proposed decision tool is the following. Let F. be a

randomly chosen sample of records from file F.. Find (by searching if

necessary) the fraction of the records from F satisfying the given

property "r" (denote this by p ..), and similarly the fraction of the

records from F satisfying property "q" (p „). Let S , S be the number

of records in F , F_, respectively. (If the records in files 1 and 2

are of different lengths, it might be better to define S ,S
?

as general

file sizes (e.g. numbers of bytes).) If the inequality

Vrl i S 2"q 2
(1)

holds, we decide a_ priori that, after the selections from the complete

files have been made, the subset from site 1 will be shipped to site 2.

That is, we hope that it is also true for the complete files that

S
n
P . < S_P

, (2)
1 rl — 2 q2'

where P n , P represent the true fraction of the entire files having
rl q2

properties r, q, respectively.

We find that there are a number of ways in which statistical

sampling theory aids in developing and understanding this approach.

First, a standard formula relates the sample fraction p having a certain

property to the fraction P of the complete population having that pro-

perty. Parameters in the formula include the desired precision d (= | P-p | )

,
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the confidence level (i.e. with what probability |P-p| is less than d)

and the sizes of both sample and parent population. Using this formula,

one can readily determine how large a sample is needed to give a desired

precision (with reasonable confidence) . It turns out (luckily for the

political pollsters) that rather small samples give high confidence

levels. For example, suppose we find that p=0.100 for a sample of 500

records out of 10 . Then the probability is 0.95 that P is really

between .074 and 0.126.

One might question whether the assumptions underlying statis-

tical sampling theory are valid for properties of records in a file. We

therefore tried the sampling technique on a test data base. The data

4
base contained 10 records with information on fuel storage at military

sites. Twenty-two queries were run against the full data base and

against a sample of 100 records. In all cases, the sample predicted the

actual query performance well within the theoretical limits.

Another problem that needed to be addressed is to determine

how likely it is that the correct decision is made. Notice that this is

a tricky problem. Even though our estimates are bad, as long as the

inequalities (1) and (2) both hold (or both fail to hold) we make the

right decision. Making standard probabilistic assumptions, we are able

to compute confidence levels for the decision as a function of expected

absolute difference in subset sizes:

D =
|
S p - S_p J.

1 1 rl 2
r q2'

As this difference increases, the probability that we make the right

decision rapidly approaches one. (Sample sizes, etc., enter in here

too, of course.)

Finally, we have looked briefly into the question of how

costly it is (on the average) to make the wrong decision. That is, how
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much extra data, on the average, will we have to ship when we make the

wrong decision? The answer is that very little need be shipped. Intui-

tively, we obtain this result because we are most likely to make the

wrong decision when the difference in subset sizes is very small. The

larger the true difference the less likely we are to mis-estimate so

badly that inequality (1) gives the wrong answer.

In summary, it appears that sampling will allow us to make the

low level decision discussed here with good accuracy. Further investiga-

tion is required to determine if this technique can be applied to more

complex operations. The good results of this preliminary study do,

however, make us very optimistic of future progress in the optimization

of query strategies.
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