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BIMULTIVARIATE REDUNDANCY MAXIMIZATION 1

by

Johny K. Johansson and R. Narayan
University of Illinois

Introduction

The relationship between two sets of variables is often analyzed

with the help of canonical correlation techniques. The interpreta-

tion problems are often severe, however, as soon as more than one pair

of variates are significant at the pre-selected level. Stewart and

Love (1968) have suggested a method, called "redundancy analysis", to

deal with these problems. Miller and Farr (1971) pointed out that the

redundancy measure would remain invariant with respect to any ortho-

gonal rotation of the complete set of canonical variates, and that,

consequently, canonical correlation was only one special case of a

general redundancy analysis.

It can be argued that since the redundancy measure provides a

straightforward interpretation of the degree to which two sets of

variables covary, one focus of bimultivariate analysis ought to be

the maximization of the redundancy contribution from as small a set

of variates as possible. As a start in that direction, this paper

presents an approach to the maximization of the partial redundancy

attributable to the first pair of variates.

'Several persons contributed to this paper. Jagdish Sheth encouraged us

to focus upon the problem and gave valuable feedback throughout; Charles

Lewis gave exceedingly helpful assistance on the theory part; and Joseph
Kolman and Maurice Tatsuoka contributed many valuable ideas to the testing
of the optimizing approach. Funds were made available by the University
of Illinois Computer Services Office and the Bureau of Economic and
Business Research. The authors want to thank the people involved but
also absolve them of the responsibility for any remaining errors.





The Theory

Miller and Farr (1971) show that the redundancy attributable to the

first linear combination of the Y variables Gi i? equal to

2
RED, = (L6 /tr(RYY ))*(5 r GF.)

where L« stands for the sum o1 of :he Y variables upon

6j > tr (Ryy) stands for the trace of the correlation matrix of the Y's

(equal to the number of criterion variables), and the F. , i=l,..., I

2
stand for the successive orthogonal factors of the X variables.

Because these orthogonal factors together span the space of the X's

completely, we have

I 2 * 2

so that the redundancy becomes a product of the loadings and the squared

multiple correlation:

RED
Gi

. (L
Gi

/tr(RYY ))*R
2

SiX

The canonical correlation technique maximizes the latter component of

the product, whereas a principal component analysis of the Y's would

maximize the loading part. In general, then, neither of these two

approaches would maximize the redundancy measure.

2 In what follows, we will treat the Y's as "dependent" and the X's as

"independent" -- an inverse relationship is dealt with similarly but
yields no new insights so is ignored here. Also, in what follows, the

redundancy measure will always refer to the first linear combination
of Y's unless otherwise stated. Finally, both the Y's and the X's

are assumed standardized.





To derive an expression of the redundancy measure — our objec-

tive function -- in the original variables Y and X we proceed as

follows. Let Wr denote the m by 1 vector.of variable weights for
1

the first linear combination G-,. Then we. have

Y W^ = B, ,

with the dimension of the Y matrix equal to n by m, n denoting the

number of observations, m the number of Y's. Then for the loadings

we have

R
YG

1

: R
YY

W
G
]

R again denoting the correlation matrix. Since we want the squared

loadings we need

*il
}
\ = w

g{
ryy ryy

w
g

1

-

the T superscript indicating transpose. We also note for future use

that

tr(Ryy) - m .

As for the squared multiple correlation, we have first

XB * G
1

,

as the predicted value of G , with B denoting the I by 1 vector, of '.parar

meter weights. Using a least squares fit, we compute B as

B = R
XX

R
XG

1
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To get a measure of the squared simple correlation between the

«.

actual and the predicted G^s -- which is the squared multiple correla-

tion we are looking for — we compute first

V
G

1

G
]

= B R
XX

B

K BR
xGl •

where V stands for the variance. Then we get

VG
1
G

1

(R"
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for the correlation between the predicted and actual G's. The complete

objective function cag then be written

RED
G

( W4 (R
V V

)2W
S1 >< W

gJ

R
XY

R
XX

R
XY % >

"s,"rY \
'

-

which is to be maximized under a normalizing constraint such as Wr Wr = 1 ,G
l

G
l

•

or W<J R
YY W

Gi
* 1

.





The Algorithm

Since the objective function (1) consists of the product of two

quadratic functions, for which a gradient procedure might easily stop

at a local maximum, the algorithm empoyed was a direct search routine
i

(the Hooke-Jeeves algorithm described in detail by Himmelblau, 1972,

p. 142).

The basic approach to the maximization routine utilized the fact

that the objective function can be written

RED = F(a)* H(a,b) ,

with a,b, denoting the weights of the Y-compound and X-compound, respec-

tively. This is a direct generalization of the function as stated in (1).

Then the dynamic programming "knapsack" approach gives a solution as

max{RED} = max{F(a) * max{H(a,b)}}.
a,b a b

That is, for a given vector a, find the vector b that maximizes H(a,b);

then, search over feasible vectors a, maximizing H every time, to find

the one that maximizes RED. Since for a given a, and thus a given Y-

compound, the maximum G is obtained by a multiple regression of the given

Y-combination upon all the X variables, the first maximum can be located.

Then, considering the constraints, the search can be made over a relatively

small number of a-values, namely those that lie within the limits -1.0

to +1.0 for all elements in a.

Thus, the algorithm iterated a search by first picking the trial

a's, then getting the loadings of the original Y variables upon the

generated linear compound, and finally computing the regression of the

compound upon the X variables. The derived R , multiplied by the

average squared loadings constituted the trial value of the objective





function. A search then generated new a-values, and another iteration

took place. The routine would stop iterating when either one of four

preset test values was superceded.

The strength of the search routine was abetted by the fact that a

generally good starting point could be generated (the canonical correla-

tion weights) and by the fact that the total redundancy between the two

2
sets was given by the average R between each of the Y's and the X's.

3
Thus, the maximum obtainable solution could be checked against it.

The constraint used in the runs was Wr Wr =1. Initially, each
G

]

G
1

set of trial a's within the [-1, +1] hypercube were scaled so as to ful-

fill the constraint, before the value of the objective function was com-

puted. This approach impaired the efficiency of the algorithm considerably,

however, making it necessary to adopt another approach. The constraint

was now tested for, and the a-values scaled, only after the optimal solu-

tion had been located. The approximation resulting from this approach

4
was very close to the earlier solution for the problems tested.

Initially, the algorithm was set up for raw data only, but as can

be seen from equality (1), the only d, ta input needed would be the correla-

tion rnrtrix of the Y's and the X's. When raw data are input, this correla-

tion ~.~tr::: !: c^p'jted at the initial iteration, and the program can

u»w..
k
y
n =*ss this computation in later iterations.

3
In addition, an alternative search routine, the Nelder-Mead technique
of searching successive simplexes (Himmelblau, p. 148), was used for
some runs. The optimal solutions located by the two algorithms were
the same throughout.

4
This closeness can be attributed to the fact that the contours of the

objective function in all the cases examined formed a ridge in a radial

direction from the origin (see Figure 1).





The Results

Initial runs were made on the TALENT data provided by Cooley and

Lohnes (1971, Appendix B). The use of published and thus easily acces-

sible data facilitates cross-checks and further analysis. The analysis

carried out and their results follow.

The criterion set of variables chosen consisted of "Physical Science

Interest", "Office Work Interest", and "Plans to attend College". The

predictor set of variables consisted of test scores on "Information test

II", "Mechanical Reasoning", and "Reading Ability", plus the student's

"Socioeconomic Status". (For further information on the data and these

variables, the reader is referred to the Cooley and Lohnes book). The

algorithm was run from two starting points, one provided by the criterion

weights of a canonical correlation analysis, the other by a principal

component analysis of the Y variables. In all cases the search routine

Isolated the same maximum of the objective function. The runs were
c

i?,ade separately for males and females.

The results are presented in Table 1. Overall, they are somewhat

surprising in that the redundancy maximization routine only does mar-

ginally better than the canonical correlation solution. For the males

data the reason is clear: there is wery little additional redundancy

to account for once tne first canonical solution has been taken out.

In the female data the reason is less clear — but one explanation for

the almost zero improvement of the redundancy maximization would be

that the data are truly explained by two, rather than one, pair of

5
Additional runs were made for males and females combined, as well as
for other sets of variables. Since the results were similar to the
runs reported here, these other runs are not included.
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variates. With these marginal improvements, no great changes are to

be expected in the weights — as can be seen, only minor fluctuations

away from the canonical solution occur. The principal components solu-

tion, on the other hand, is not as close to the optimal as is the canonical

solution. The principal components weights accordingly also show a wider

divergence from the redundancy solution.

Since these results were largely reproduced in other runs, it was

decided that the objective function be plotted and its behavior more

closely examined. As the plotting required one dimension for the func-

tion value, plus one additional dimension for each criterion variable,

it was decided to plot a case where only two criterion variables were used.

Accordingly, the "Office Work Interest" variable was dropped, and the

objective function as a function of the ensuing two-element vector a was

plotted (the predictor variables remained the same). The values of the

resulting objective function for the male data are depicted in Figure .1.

As could have been inferred from the earlier runs, the function has a

flat ridge around the optimum, making for quite a large near-optimal

region. Plots of other runs tended to follow the same pattern. There

seems, then, to be a general indication that the canonical solution will

quite often be very close to optimizing the redundancy contribution from

the first pair of variates.

The symmetry of the objective function follows from the fact that a

change in sign will not affect the optimal property of the weights.
For completeness, the redundancy analysis results for this case

with two criterion variables are included in Table 4.





Conclusions and Extensions

Although these initial data runs pointed in the other direction, it

is clearly too early to dismiss the possibility that significant changes

in the weights — and hence of the interpretations — of the original

variables can occur when the redundancy attributable to the first pair

of variates is maximized rather than its canonical correlation. The

theory is unequivocal: the canonical solution will in general not be

optimal. In what type of particular data structures it will be approxi-

mately optimal remains to be investigated further. One thing seems

already quite clear: If only one canonical root is significant at the

pre-selected level, chances are that a redundancy maximization will

make very little difference.

Although in this paper redundancy was maximized with reference

only to the first pair of variates, a straightforward generalization

to further variates is easily made. For the optimal linear Y-compound,

the loadings of the separate Y-variables are first computed. Using the

fundamental factor theorem the amount of variation in the original Y-

variables explained by the optimal compound is then derived. The unex-

plained variation in the Y-variables is what then remains to be explained

by a second Y-compoun<J. Similarly, the residual variation in the X-

variables after the first X-cornpound is extracted can be derived. The .

second redundancy maximization can then take place using the residual

variations in the Y and X variables.
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List of variables : for TALENT DATA (Males and Females)

Y] Plan College full time
1

.

Definitely will go

2. Almost sure to go

3. Likely to go

4. Not likely to go

5. Definitely will not go\

Y2 Physical Science Interest Inventory

Y3 Office Work Interest Inventory

X-j Information Test Part II

X2 Reading Comprehension Test

X3 Mechanical Reasoning Test

X4 Socioeconomic Status Index
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TABLE 1

MALES : Total Redundancy = .180

h

CC

-.187

PC

.085

RED

- -.161

b
2

-.173 .182 -.184

b
3

-.112 .137 -.124

b
4

-.303 .250 -.299

a
l

.715 -.599 .688

a
2

-.636 .673 -.636

a
3

.292 .435 .312

Redundancy .171 .136 .179

FEMALES : Total Redundancy = .145

bl

cc

.204

PC

.211

RED

.207

b2 .131 .141 .136

b3 .144 .101 .129

b4 .188 .197 .193

*1 -.690 -.651 -.690

a2
.651 .515 .609

a3
-.316 -.558 -.404

Redundancy .121 .118 .120
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TABLE 2

CANONICAL CORRELATIONS

MALE DATA

Function Eigenvalue Correlation Wilfcs Lambda Chi -Square DF

1 0.3727 0.6105 0.6017 116.8313 12

2 0.0339 0.1842 0.9592 9.5756 6

3 0.0071 0.0842 0.9929 1.6373 2

FEMALE DATA

Function Eigenvalue Correlate)n Wilks Lambda Chi -Square DF

1 0.2460 0.4960 0.6851 100.9900 12

2 0.0876 0.2960 0.9086 25.6011 6

3 0.0042 0.0645 0.9958 1.1130 2
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TABLE 3

Sample Size = 234

Correlation Matrix
•

MALE DATA

XI X2 X3 X4 Yl Y2

1 2 3 4 5 6

1 1.00000

2 0.79089 1,.00000

3 0.50389 0,,44324 1.00000

4 0.48847 0.,36824 0.27985 1.00000

5 * -0.43111 -0.,43956 -0.28882 -0.44597 1.00000

6 0.43540 0.,36442 0.34489 0.36142 -0.47276 1.00000

7 -0.04110 0.00452 0.03433 -0.01529 -0.11191 0.29653

MEANS STANDARD DEVIATION

"" »n 09 0.17882D 02

2 0.33585D 02 0.95132D 01

3 0.13568D 02 0.35819D 01

4 0.98543D 02 0.94442D 01

5 0.29017D 01 0.15596D 01

6 0.21321D 02 0.92181D 01

7 0.12291D 02 0.790T*3D 01

Y3

7

1 .00000





TABLE 3 (con't)
Sample Size =271

Correlation Matrix FEMALE DATA

XI X2 X3 X4 Yl Y2 Y3

1 2 3 4 5 6 7

1 1.00000

2 0.66609 1.00000

3 0.50726 0.57799 1.00000

4 • 0.30383 0.23813 0.16453 1.00000

5. -0.32493 -0.33711 -0.19538 -0.32406 1.00000

6 0.31734 0.27348 0.39062 0.13056 -0.28241 1.00000

7 -0.24229 -0.20473 -0.11889 -0.18551 0.32471 -0.13402 1.00000

MEANS STANDARD DEVIATION

1 0.73786D 02 0.17970D 02 •

2 0.33860D 02 0.89382D 01

3 0.90627D 01 0. 34981 D 01

4 0.98531 D 02 0.10733D 02

5 0.32362D 01 0.16963D 01

6 0.12066D 02 0.769J8D 01

7 0.25317D 02 0.97818D 01
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TABLE 4

Males (Two Criterion Variables): Total Redundancy = .2581

b
l

CC

.133

PC

-.152

RED

.140

b2 .203 -.183 .196

b
3

.121 -.130 .124

b
4

.302 -.293 .299

a
l

-.808 .707 -.774

a
2

.590 -.707 .634

Redundancy .2568 .2562 .2574

CANONICAL CORRELATIONS :

Function Eigenvalue

1 .3507

2 .0289

Correlation

.5922

.1700

Wilks Lambda Chi -Square DF

.6305 106.32 8

.9711 6.76 3
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