> UNIVERSITY OF
> ILLINO'S :IRPARY
> AI URBANA L: WIPA!GN
> ENGINEERIN!

NOTICE: Return or renew all Library Materialsl The Minlmum Fee for each Lost Book is $\mathbf{\$ 5 0 . 0 0}$.
The person charging this matemel is ralle8sible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.
Theft, mutilation, and underlining of books afe reasans for disciplinary actioh and may rejult on cismissil fram lan Uliversity.

university of illinois library at urbana-champaign

NOV 25 100 ${ }^{5}$

NOV 22 RELT

Center for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

 URBANE, ILLINOIS 61801
CAC Document No. 98
TRANSFERRING FROM URBAN CARS TO BUSES:
THE ENERGY AND EMPLOYMENT IMPACTS
By
E. Pule Fanon
April 1974
MAY 5976 URBANE, ILLINOIS 61801
CAC Document No. 98
TRANSFERRING FROM URBAN CARS TO BUSES:
THE ENERGY AND EMPLOYMENT IMPACTS
By
E. Pule Fanon
April 1974
MAY 5976 URBANE, ILLINOIS 61801
CAC Document No. 98
TRANSFERRING FROM URBAN CARS TO BUSES:
THE ENERGY AND EMPLOYMENT IMPACTS
By
E. Pule Fanon
April 1974
MAY 5976 URBANE, ILLINOIS 61801
CAC Document NO. 98
TRANSFERRING FROM URBAN CARS TO BUSES:
THE ENERGY AND EMPLOYMENT IMPACTS
Bruce Fanon
F. Pule
April l974
By
Bruce Fanon
F. Puleo
April 1974
Puce fanon
 f

1
 CONFERENCE ROOM
 En

\qquad

- - -

\square
π

> E
$+$

.

\square

[^0]\square

Digitized by the Internet Archive in 2012 with funding from

 University of Illinois Urbana-ChampaignBruce Hannon
Assistant Professor, Director
F. Puleol
Research Assistant
Energy Research Group Center for Advanced Computation
University of Illinois
Urbana, Illinois

April 1974
${ }^{l}$ Associate Professor, University of Los Andes, Merida, Venezuela
f

ACKNOWLEDGEMENT

We wish to thank Ernest Dunwoody, Robert Herendeen and Clark Bullard for their aid in formulating the ideas in this paper, to Deborah Forman for her editing and Marcie Howell for the preparation.

TABLE OF CONTENTS

Page

Introduction 1
Purpose of the Research 1
Concept of System 3
Urban Transportation Systems 4
Attributes of the System Entities 6
Attribute Measurements 7
Car-Bus Transfer 12
Nationwide Change 12
Individual Transfer 14
Energy and Employment Impacts 17
Modifying the Environment 19
Changing the Cost of the Fuel 19
Changing the Number of Bus Passengers 21
Conclusions 22
Nationwide Change 24
Individual Transfer. 25
References 27
Appendixes 48

1. System Analysis 48
2. Financing Charge 95
3. Urban Adjusting Factor 96
4. Disposal Input-Output Ratio 98
5. Economic Deflators 100
6. Car Variable Cost per Mile 102
7. Bus Average Trip Length. 104
8. Statistical Analysis 106
9. Fractional Cost Distribution 119
10. Path Analysis 123

Introduction

As energy demand exceeds growth in supply, the concerned public and policymaker alike are taking a closer look at the efficiency of the energyintensive sectors of our modern society. One of the most informative areas appears to be the use of energy for transportation.

Transportation accounts for approximately 41.8 percent of the total energy consumed in the United States (Herendeen, 1973). Automobiles consume almost one-half of the total transportation energy, and urban automobiles in turn consume more than half of the total energy used by automobiles (see table l).

This paper describes the development and application of a method for evaluating the direct and indirect dollar, energy, and labor costs of urban passenger transportation by two modes: bus and private automobile. The change in costs when urban passengers transfer from the average car to the average bus is then evaluated.

The two travel modes, bus and private automobile, are each treated as an entire system of urban passenger transportation. The costs are evaluated in units of dollars, British Thermal Units (BTU), and man-years of labor which are required both directly and indirectly to provide each unit of travel.

Purpose of the Research

Our research was directed at answering the following questions:

1. What are the total (direct and indirect) energy and employment costs per passenger for typical United States urban cars and bus companies?
2. What are the dollar costs per passenger for these transport systems?
3. What are the dollar, energy, and employment impacts if the average urban car driver becomes an average urban bus passenger?
4. What are the dollar, energy, and employment impacts when an urban car passenger decides to become an urban bus passenger in the context of an unchanging system?
5. If the dollar cost per passenger rises or falls with the transfer from a car to a bus, what are the energy and employment impacts of this net change in dollar costs?
6. If energy conservation is a goal, how can the system be modified to allow voluntary change to the least energy-consumptive system?

This section is addressed to answering these questions. Later sections provide much useful information to the more determined reader: breakeven points are presented where dollar, energy, and employment impacts of the car and bus are equal (these allow each owner of a typical auto to determine whether he could save energy by taking the bus); energy and labor intensities of both forms of transportation are compared.

This report also includes a detailed statistical analysis of urban cars and bus companies in order to explain the variance of each variable. Using stepwise multiple regression, the top five significant variables of each entity are determined and used to develop a path model for dollar, energy, and labor costs according with linear and nonlinear characteristics. With this model the sensitivity and elasticity of the two entities are studied with respect to ridership.

We also developed a computer simulation program to deal with daily scheduling, preventive and corrective maintenance, and personnel allocations for a bus company (Puleo, 1974). In this model, buses are designated as
sources of discrete events of preventive maintenance (normal or special) and performance data (repairs or breakdowns) in order to cover daily routes and schedules of the bus company. The maintenance service sector has mechanics, with day or night schedules, different skills and absence probabilities, which have to satisfy the requirements of bus transportation in a city.

The variables which describe a bus company were combined in a statistical model to produce a new set of mutually independent variables called principal components. A definition of "stress" was obtained from the combination of the principal components in a generalized n-dimensional analogy with special concepts in engineering mechanics (Hannon and Puleo, 1973).

Concept of System

A system is defined as a set of related entities, located in a specified environment.

The entities have attributes which have real or abstract meaning: they have real meaning if they are perceptible to the senses or measurable; they have abstract meaning if they are related to inherent qualities or properties of a concept.

The relationships show the logical or natural association between two or more entities, or between their attributes. The relationships can be structural or functional: they are structural if they deal with the organization, the configuration, or the properties of elements, parts, or constituents of the entities; they are functional if they deal with the natural or proper action for which the entities are assigned relative to a certain purpose or goal.

The environment is the set of all the entities. A system can be closed or open: a system is closed if the system is considered to be completely isolated from its environment; a system is open if the system maintains proper relations with the environment.

Urban Transportation Systems

Here we study a system which has as its environment urban areas and as its function the transportation of people between two points in the area. All the entities in this case are real and correspond to bus companies and individual urban cars. The relationship between the entities is structural, as we are studying the properties of their attributes related with dollar, energy, and labor costs (DEL costs). The system is closed because there is no consideration of the relationship of the system entities with their environment.

Before describing the method and results, let us examine the existing data in a preliminary effort to assess the potential for energy conservation in this area of transportation.

The approximate distribution of United States energy use by selected transportation categories is shown in table l. In this comparison "urban automobile" is defined by Goss and McGown (1972).

This table shows that approximately 17 percent of the total U. S. transportation energy is consumed directly as fuel by urban automobiles. This is a direct consumption by the urban automobile of approximately 7.1 percent, or a total consumption of 12.3 percent of all annual U. S. energy consumption. In comparison, the urban (and suburban and school) bus consumes approximately 0.33 percent of all the direct energy used for
transportation in the United States annually. This is a direct consumption by urban buses of 0.14 percent, or a total consumption of 0.24 percent, of total annual U. S. energy. Clearly the automobile dominates urban passenger transport energy consumption and is a major single consumer.

Table 2 shows that the urban automobile contributes 99.6 percent of the urban passenger vehicle miles while carrying 93.4 percent of the urban passenger trips. The urban bus on the other hand contributes about 0.3 percent of the urban passenger vehicle miles and carries 4.5 percent of the urban passenger trips.

Table 3 shows the actual and potential direct energy consumption per mile of travel for compact automobiles, standard automobiles, and urban buses as calculated by other workers. A comparison of the seat miles per gallon with the actual passenger miles per gallon for each of these three modes provides an estimate of the potential for improving the direct energy efficiency equivalent to the maximum potential energy efficiency of a compact automobile.

The data of table 3 indicate that there is a large potential for saving substantial amounts of direct energy if passengers change their mode of travel from cars to buses. Both modes have the potentiai for saving a lot of direct energy by increasing their occupancy level, although buses offer the greatest potential. We note that approximately 30 percent of the metropolitan families owned two or more cars in 1971 (Automobile Manufacture Association, Inc., 1971).

Attributes of the System Entities

Recall that the entities are bus companies and individual urban cars, both having the following real attributes:

1. Dollar, energy, and labor (DEL) costs for overhead, which are the fixed annual costs for each entity, for the availability of equipment
2. Dollar, energy, and labor (DEL) costs for operation, which are the annual costs for the use of the equipment and provision of services
3. Dollar, energy, and labor (DEL) costs for streets, which are the annual costs of maintenance and new constructions of bus and automobile rights-of-way
4. Dollar, energy, and labor (DEL) costs for disposal, which are the costs of final recovery and the recycle value of all equipment no longer used

Figure 1 shows the generalized scheme for the computation of DEL costs for both entities. The dollar return upon disposal may be likened to the return of a deposit and has to be subtracted from the overhead dollar cost. However, the energy and labor costs which this deposit causes in the recoverable parts and recycling industry is a cost to the system, and has to be added to the overhead energy and labor costs.

The total output for each entity, corresponding to DEL costs is the following: DELPCO is dollar, energy, and labor costs (DEL) per bus company per year; DELPCA is dollar, energy, and labor costs (DEL) per urban car per year. The general model for each entity is:

DEL = DEL(Overhead) + DEL(Operation) + DEL(Streets) + S(DEL)*DEL(Disposal) (I)

Attribute Measurements

Each attribute is measured in dollar, energy, and labor costs (DEL). Dollar cost is obtained directly from operations data.

The measurement of each variable was made after an extensive data search involving 140 urban bus companies and urban car operation in twentyeight major U. S. cities in 1971 (see Appendix 8). There is slight dominance of larger bus companies in the data base, and the auto data came from leasing companies. This tends to slightly depress the average bus cost and elevate the average car cost. We also found that the variance in bus-data is very large compared with similar data for the urban car. See Appendix 1.

Energy and labor costs are computed using the Energy, Employment, Pollution Model developed by the Energy Research Group of the Center for Advanced Computation, University of Illinois. This method is based upon the determination of an energy and labor input-output matrix for the United States. The matrix gives energy and labor coefficients to convert dollar expenditures for final demand into the corresponding energy and labor requirements. The model has 362 specific industrial sectors, and the latest available data is for 1963. Energy and labor requirements include direct and indirect demands resulting from the demand for goods and services on each sector. Details of this method are given in Herendeen (1973).

In general, the method is used in this way: If we have a variable X (I, K) which corresponds to Sector I of the U. S. economy given in dollars at year K, the DEL costs are computed through the following equation:

$$
\begin{equation*}
X(I, K, D E L)=X(I, K) * D F(I, K) * I \varnothing(I, D E L) * I F(I, K, D E L) \tag{2}
\end{equation*}
$$

where:
$X(I, K, D E L):$ DEL costs of variable $X(I, K)$ at year K
DF (I,K) : Dollar deflator from year K to year 1963 of sector I
Iø (I,DEL) : DEL Input-Output coefficient per dollar corresponding to sector I in year 1963

IF (I,K,DEL): DEL inflator of sector I in year 1963 to year K

Dollar Deflator: DF (I,K)
Dollar deflators of sector I from year K to year 1963 are computed using the implicit price deflators (IPD) given by the Survey of Current Business (1972). See Appendix 5.

The corresponding deflator is given by

$$
\begin{equation*}
D F(I, K)=\frac{\operatorname{IPD}(I, 1963)}{\operatorname{IPD}(I, K)} \tag{3}
\end{equation*}
$$

For example, the deflator of dollars expended in the wholesaling of fuel for bus companies in 1971 corresponds to sector 69.01 (wholesale trade) which has the following implicit price deflators:

$$
\begin{aligned}
& \operatorname{IPD}(69.01,1963)=103.05 \\
& \operatorname{IPD}(69.01,1971)=120.5
\end{aligned}
$$

hence

$$
D F(69.01,1971)=103.05 / 120.5=0.8589
$$

DEL Input-Output coefficient: Iø (I,DEL)
Thase coefficients are obtained from tables determined by Herendeen (1973).
For the variable used in the last example (wholesaling of fuel for bus companies), the corresponding DEL coefficients are:

```
I\emptyset (69.01, Dollar) = 1.00 Dollar/Dollar
I\varnothing (69.01, Energy) = 0.033261xl0}\mp@subsup{}{}{6}\textrm{BTU}/Dollar
I\varnothing (69.01, Labor ) = 0.114199\times10-3 Jobs/Dollar
```

DEL Inflator: IF (I,K,DEL)
Dollar inflator of sector I from year 1963 to year K is computed by taking the reciprocal of the corresponding dollar deflator, hence

$$
J F(I, K, D o l l a r)=\frac{l}{D F(I, K)}
$$

Energy and labor inflators of sector I from year 1963 to year K were computed by Herendeen and Sebald (1973). The corresponding values for all sectors for the year 1971 are:

```
IF (All sectors,1971,Energy) = l.029 BTU 1971/BTU 1963
IF (All sectors,1971,Labor ) = 0.853 Jobs l971/Jobs 1963
```

If the variable used is wholesale of fuel to bus companies (WFUEL) which has a mean value of 75,230 dollars in 1971, the DEL costs are then the following:

$$
\begin{aligned}
& \text { WFUEL }(69.01,1971, \text { Dollar })=75230 * 0.8589 * 1 \cdot \frac{* 1}{0.859}=75,230 \text { Dollars } \\
& \text { WFUEL }(69.01,1971, \text { Energy })=75229 * 0.8589 * 0.033261 \times 10^{6} * 1.029=0.21173 \times 10^{10} \mathrm{BTU} \\
& \text { WFUEL }(69.01,1971, \text { Labor })=75229 * 0.8589 * 0.114199 \times 10^{-3} * 0.853=6.295 \mathrm{Jobs}
\end{aligned}
$$

Thus the wholesale of fuel to bus companies required in 1971 an average cost of 2.2 billion Btu and 6.3 jobs per bus company.

The DEL costs for each variable of the bus companies (thirty-eight company average) and urban car (twenty-eight city average) are given in tables 4 and 5, respectively, for 1971. See Appendix 1 and Appendix 8.

The data of tables 4 and 5 are totaled in table 6.
The average trip length (ATL) of the average bus passenger is computed as

$$
\begin{equation*}
\mathrm{ATL}=\frac{T \mathrm{BM} \times \mathrm{PPB}}{\mathrm{PPCO}} \tag{4}
\end{equation*}
$$

where

> PPCO $=$ Passengers per bus company per year
> TBM $=$ Total miles per bus company per year
> PPB $=$ Passengers per bus or average loading

Estimated values of these parameters are:

TBM $=8.3699 \times 10^{6}$ Miles/Bus Co. - Year	See Appendix 8.
PPB $=12$ Passengers/Bux	U.S. Dept. of Transportation (1973)

PPCO $=26.725 \times 10^{6}$ Passengers/Bus Co. - Year See Appendix 8.

Then the computed value of ATL is

$$
\text { ATL }=3.758 \text { Miles }
$$

The average number of passengers (ANP) per year who use a car is given by the expression:

$$
\begin{equation*}
\mathrm{ANP}=\frac{\mathrm{MPCY}^{*} \mathrm{PPT}}{\mathrm{MPT}} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { MPCY }=\text { Miles per car per year } \\
& \text { PPT }=\text { Passengers per trip } \\
& \text { MPT }=\text { Miles per trip }
\end{aligned}
$$

Estimated values of these parameters are

```
MPCY = ll200 Miles/Car-year See Appendix 8.
PPT = l.9 Passengers/Trip U.S. Dept. of Transportation (1972)
MPT = 8.3 Miles/Trip U.S. Dept. of Transportation (1972)
```

Then the computed value of ANP is:

$$
\text { ANP }=2563.86 \text { Car-Passengers/year }
$$

Knowing the average number of passengers and their average trip length we can construct table 7 which gives us a DEL cost comparison between the urban bus and the urban car.

The results of table 7 are familiar to the energy researcher: the car costs less per passenger mile on the average, but demands far more energy and is less labor intensive. Also note from tables 4 and 5 that increases in energy costs affect the car operation adversely relative to the bus, and that the opposite is true for employment.

Car-Bus Transfer

There are two processes of transferring from urban cars to buses, one is a nationwide change (or a shift of the average consumer) and the other is on an individual basis. The effects on the DEL costs are quite different. Typically, we have four different purposes for travel: work, family business, education, and recreation. The DEL costs of both types of transfer processes are calculated for each trip purpose and for a weighted average.

Nationwide Change

We are always assuming that the DEL costs per passenger trip by car for the remaining cars remains the same during the transfer of car passengers to buses. This is true since we assume that there are no "fixed costs" in the long run. That is, if we reduce the amount of use of the "average" car, the car will last proportionally longer (assuming no style-dependent depreciation), and the overhead costs will be distributed over a proportionally longer period of time. Also, the "fixed costs" such as insurance and licenses, etc., should be proportionally lower with each incremental transfer of passengers since auto driving will decrease. This model does not apply to the individual who changes his personal car usage if there is no accompanying change in the national amount of personal car usage. The nationwide change model transfers the "average" car passenger to the "average" bus as though the entire nation were shifting its mode of urban travel.

The following expression gives the total DEL decrease per car (TDPC) in DEL costs per year:

$$
\begin{equation*}
\text { TDPC }(D E L)=\left(\text { DELPCA-DELPCO } \times \frac{\text { TPTC }}{\text { PPCO }}\right) \text { MPP } \tag{6}
\end{equation*}
$$

where:
DELPCA: Total DEL costs per car year, given in table 6
DELPCO: Total DEL costs per bus company per year, given in table 6

PPCO : Passengers per bus company per year
MPP : Percentage of car miles, per trip purpose, per car, per year, or miles purpose percentage

TPTC : Trip purpose transfer coefficient in trippurpose passengers per year is given by

$$
\begin{equation*}
\mathrm{TPTC}=\frac{\mathrm{MPCY} * \mathrm{PPTP}}{\mathrm{MPTP}} \tag{7}
\end{equation*}
$$

where:

```
MPCY : Miles per car-year
PPTO : Passengers per trip-purpose in a car
MPTP : Miles per trip-purpose in a car
```

The estimated values are:

```
MPCY = ll200.0 miles/car-year
PPCO = 26.725\times10 6 Passengers/Bus Co. - Year
```

The remaining estimated values are given in table 8 (U. S. Department of Transportation, 1972).

Using the computed values of DELPCA and DELPCO given in table 6 and the estimated values given previously, we can compute the total decrease per year in DEL costs for a nationwide-change. These values are given in table 9.

This table shows that the most money, energy, and labor would be saved if work and recreational trips, respectively, were made by bus rather than by car. The weighted average for this 1971 distribution of trip purposes shows that there would be a general savings of dollars, energy, and labor if passengers transferred from cars to buses.

The current urban passengers per trip-purpose per car-year (TPTC) values are given in table 10. We have also shown the sign of the total DEL decrease (+) per car, when passengers are transferred to buses for each of the trip purposes.

Table 10, in conjunction with table 9, allow the reader to estimate the DEL costs of special cases of partial national average transfer from cars to buses in the U. S. urban area.

Individual Transfer

In this case we consider the situation in which an average individual urban car owner changes his personal (and family) urban travel mode from car to bus while the system as a whole does not change. The change is envisaged as occurring incrementally by travel purpose in this order: work, recreation, family business, and education.

As the urban car owner switches his travel mode, the annual operating costs of the car decreases, while the annual fixed or overhead costs remains essentially the same. However, there will be an increase in costs associated with using the bus. The cost to the revenue passenger of using the bus system is estimated using the mean DEL values for the entities. These are the DEL cost changes to the system, not to the individual. The amount, type, and purpose distribution of urban travel has been held constant in this computation.

The total DEL decrease (TDPC) that would be experienced by an urban car owner who transferred from car to bus for his urban travel, while there was no change in the system as a whole is given by

$$
\begin{equation*}
\operatorname{ITDPC}(D E L)=\operatorname{VCM}(D E L) \sum_{K=1}^{4} \operatorname{MPTP}(K) * \operatorname{TN}(K)-\frac{\operatorname{DELPCO}}{\operatorname{PPCO}} \sum_{K=1}^{4} \operatorname{TN}(K) * \operatorname{PPTP}(K) \tag{8}
\end{equation*}
$$

where:

ITDPC(DEL):	Individual total DEL cost decrease per car-year
VCM(DEL):	Variable DEL cost per mile
MPTD (K):	Miles per trip purpose (K) in a car
TN(K):	Number of car trips for each purpose (K) per year
DELPCO:	Total DEL costs per bus company per year
$\operatorname{PPCO}:$	Total passengers per bus company per year
$\operatorname{PPTP}(K):$	Passengers per trip purpose (K) in a car

Variable DEL cost per mile [VCM(DEL)] is estimated by taking the following operation and street variables: maintenance, repairs, fuel volume energy, fuel cost to produce, fuel cost to transport, fuel cost to wholesale, fuel cost to retail, and fuel volume tax. The variable DEL cost per mile is then given by:

$$
\begin{equation*}
\operatorname{VCM}(D E L)=\mathrm{V} \operatorname{COST}(D E L) / \mathrm{MPCY} \tag{9}
\end{equation*}
$$

where $V \operatorname{COST}(D E L)$ corresponds to the sum of the given variable. DEL costs are given in table 5 .

The number of car trips, $\operatorname{TN}(K)$, per each purpose per year is estimated assuming that for every passenger trip not made by car, an equivalent passenger trip is made by bus. Then

$$
\begin{equation*}
\operatorname{TN}(K)=\frac{\operatorname{MPCY} * \operatorname{MPP}(K)}{\operatorname{MPTP}(K)} \tag{10}
\end{equation*}
$$

where:

```
MPCY: Miles per car-year
MPP(K): Percentage of car miles per trip purpose (K)
    per car-year, or miles purpose percentage
```

The estimated values of $\mathbb{T N}(K)$ are given in table 12 ; the estimated number of bus passengers $P T(K)$ equivalent to car trips is computed by the relation

$$
\begin{equation*}
D T(K)=\operatorname{TN}(K) x \operatorname{PPTP}(K) \tag{11}
\end{equation*}
$$

The individual total DEL cost decrease per car-year ITDPC(DEL), is given in table 13 for each trip purpose.

Clearly, the average individual is not going to initiate a change from car to buses even though such a change would save energy and increase employment because all his costs are increased (negative decrease). It simply is not in his interest to give up savings to ride the bus, especially if he views urban buses as psychologically undesirable relative to his car. This situation calls for external regulation from the environment if energy conservation is to be achieved.

A significant decrease in energy consumption and increase in employment could be obtained if the nation were to use, on the average, urban buses instead of passenger cars. However, note what confronts the individual car owners when they intend to change to bus travel in the context of an unchanging system: Depreciation and fixed costs remain the same regardless of the miles driven, thus the individual who transfers a portion of his urban travel needs to buses but retains his car experiences an increase in dollar cost per mile for every trip purpose. The typical individual would at first transfer only part of his car needs and so immediately discover that this is
a dollar costly process. Nevertheless, he would still decrease energy consumption and increase employment. The weighted average in table 13 assumes that the individual has switched entirely to the bus but still retains his car in operating condition. If he sells the car, the net costs would be as given in the bottom row of table 9. Note that the easiest car to eliminate would be the second car, used for work trips.

Energy and Employment Impacts in the Car to Bus Passenger Transfer

The ratios of energy and labor costs to dollar cost provide an estinate of the energy and labor impacts for both bus companies and urban cars. These intensities are given by the following equations for each transfer mode, nationwide and individual.

For bus companies:

$$
\begin{align*}
& \text { EI (Bus) }=\frac{\text { DELPCO (Energy) }}{\text { DELPCO (Dollar) }} \tag{12}\\
& \operatorname{LI}(\text { Bus })=\frac{\text { DELPCO (Labor, Jobs) }}{\text { DELPCO (Dollar) }} \tag{13}
\end{align*}
$$

For urban cars:

$$
\begin{align*}
& \text { EI (Car) }=\frac{\text { DELPCA (Energy) }}{\text { DELPCA (Dollar) }} \tag{14}\\
& \mathrm{LI}(\text { Car })=\frac{\text { DELPCA (Labor, Jobs) }}{\text { DELPCA (Dollar) }} \tag{15}
\end{align*}
$$

The estimated values of these impacts are given in table 14.
The urban car has a higher energy impact than the bus companies and provides less employment, per dollar.

We can also compute the saving impacts of the individual transfer from car to buses using values given in table 9 and table 13 for a nationwide change
and for an individual transfer, respectively. These impacts are given in table 15.

Table 15 shows that the highest energy impact is in the individual transfer corresponding to work trips and the least is for education trips. The data in this table indicate the energy or labor savings rate (i.e., energy or labor change as a ratio to dollar change).

Table 16 reveals the impacts of other categories of transportation and some other sectors of the economy. All values have been adjusted from the base year 1963. Impacts for 1971 are estimated from national average energy and labor productivity data and are considered as estimates only.

Tables 15 and 16 can now be used in a novel and informative way. From table 15, and the supporting tables 9 and 13, we find that the switch from car to bus saves not only energy but dollars. Take, for example, the weighted average for the national transfer. Here the consumer is saving energy and dollars at the rate of 410,830 BTU per dollar. How will he spend this dollar savings so that he remains a net energy conserver? He must be careful not to choose something more energy intensive than the rate at which he saves in his transport change. Table 16 provides a partial list of personal consumption items, ranked in order of decreasing energy intensity. The labor intensity of each item is also given.

The average consumer must choose to spend his dollar savings on any of the categories shown in table 16 except electricity or gasoline if he wishes to maintain his position as a net energy saver. Note that since the individual passenger's changes require money to be extracted from other existing expenditures in every case this consumer will be an even larger energy conserver. The
magnitude of the total savings can be computed only after the areas of spending reduction is chosen. The same procedure applies to the conservation of labor.

Modifying the Environment

Two economic solutions are available for the increased cost problem facing the individual who wishes to change from a car to a bus but retain his car during the process of change. They are: increasing the cost of auto fuel or decreasing the bus costs by increasing ridership. These two breakeven problems are now solved for each trip purpose.

Changing the Cost of Fuel

According to equation (9) the variable DEL cost per mile is an aggregated value of the variables given in table l7, where the corresponding estimated dollar values for ll, 200 Miles/car-year in 1971 are also given.

The variable cost per mile in dollars is

$$
\text { VCM (Dollar) }=572.51 / 11200=0.0511 \text { Dollar } / \text { Mile-year }
$$

The total cost of fuel to the consumer is given by variables 4 through 8 and this is

$$
\text { TFUELC }=301.91 \text { Dollar/Year }
$$

The percentage of the total fuel cost related to total cost is

$$
\text { PFUEL }=301.91 \times 100 / 572.21=52.73 \%
$$

The average cost of fuel per mile is

$$
\text { CPM }=0.027 \text { Dollar/Mile-Year }
$$

Here we assume that the change in the environment affects only the cost of car fuel per gallon. The average cost per gallon in 1971 was

$$
\text { CPG }=0.377 \text { Dollar/Gallon }
$$

and the average miles per gallon was

$$
\mathrm{MPG}=\mathrm{CPG} / \mathrm{CPM}=0.377 / 0.027=13.96 \text { Miles/Gallon }
$$

The required change in VCM (Dollar) is given by the change in the total fuel cost per mile, hence

$$
\Delta C P M=\text { BEVCM (Dollar) }- \text { VCM (Dollar) }
$$

where BEVCM (Dollar) is the break-even value for variable DEL cost per mile, which determines a null DEL cost decrease in the individual transfer, given by the equation

$$
\begin{equation*}
\operatorname{BEVCM}(D E L, K)=\frac{\operatorname{DELPCO} \times \operatorname{PPTP}(K)}{\operatorname{PPCO}} \operatorname{MPTP(K)} \tag{16}
\end{equation*}
$$

where K represents each trip purpose. Values of BEVCM (DEL,K) are given in table 18.

The new cost per mile is then

$$
\begin{equation*}
C P M^{*}=\mathrm{CPM}+\triangle \mathrm{CPM} \tag{17}
\end{equation*}
$$

and the new cost per gallon is then

$$
\begin{equation*}
C P G *=C P M * \times M P G \tag{18}
\end{equation*}
$$

The corresponding fractional change in the cost per gallon is given by

$$
\begin{equation*}
\mathrm{PCPG}=\frac{\mathrm{CPG} *}{\mathrm{CPG}} \tag{19}
\end{equation*}
$$

The values of $\triangle C P M, C P G *$ and $P C P G$ per trip-purpose are given in table 19 for a null dollar decrease with transfer from car to buses.

We can see that in 1971 the new price of fuel had to be increased 2.47 times to an average cost of 0.93 dollar/gallon in order that the total dollar cost of the bus companies be equivalent to the variable dollar cost of the urban car, i.e., null dollar decrease for the transfer.

Changing the Number of Passengers Using the Bus

The number of passengers, PPCO, per bus company per year required for a break-even value necessary to reduce bus costs so that it becomes equal to the variable costs of owning a car (individual transfer case) is given by

$$
\begin{equation*}
\operatorname{BEPPCO}(K)=\frac{D E L P C O}{\operatorname{VCM}(D E L)} * \frac{\operatorname{PPTP}(K)}{\operatorname{MPTP}(K)} \tag{20}
\end{equation*}
$$

and the required fractional change is

$$
\begin{equation*}
\operatorname{PPPCO}(K)=\frac{\operatorname{BEPPCO}(K)}{\operatorname{PPCO}} \tag{21}
\end{equation*}
$$

We assume that the total bus company costs remain the same, while an increase in the number of passengers reduces the average fare.

The estimated values for dollar costs only are given in table 20.
We can see that on the average the bus companies had to increase 1.77 times their total number of passengers in order that the transfer from car to buses produces equal cost to the consumer. Work trips could be attracted to the bus by only a 6 percent increase in bus ridership.

It costs an average urban bus company $\$ 10,583.464$ and $530.11 \times 10^{9} \mathrm{BTU}$ and 838.63 man years of labor to operate an average of 256 buses in 1971. Each bus carried an average of 267,250 revenue passengers in 1971 at a total cost of $39.6 \neq 19,835 \mathrm{BTU}$ and 31.38×10^{-6} man years per revenue passenger trip. This total cost includes both the fixed and variable costs, and the direct and indirect costs for the urban bus company.

Other workers have expressed their results in dollars per passenger mile. Because there are no good sources of data about the characteristics of urban bus travel nationwide, such estimates are likely to vary widely. If we presume that an average urban bus traveller rides an average of 3.8 route miles per bus trip then the total costs of urban bus travel are 10.5ϕ, $5,279 \mathrm{BTU}$, and $8.35 \times 10^{-6} \operatorname{man}$ years of labor per revenue passenger mile.

Urban Cars

The cost of using one standard American automobile exclusively for an average amount of urban travel in 1971 was $\$ 1,353.95$, $189.978 \times 10^{6} \mathrm{BTU}$ and $88.92 \times 10^{-3} \operatorname{man}$ years of labor. Each standard American urban automobile (or urban automobile equivalent) was used for an average of $1,349.4$ vehicle trips and each trip was approximately 8.3 miles long. In travelling this amount, each average urban car provided 2,564 passenger trips at a total cost of $52.80 \phi, 74,099 \mathrm{BTU}$, and 34.68×10^{-6} man years of labor per passenger trip. This is equivalent to $6.90 \phi, 8,928 \mathrm{BTU}$, and 4.18×10^{-6} man years of labor per urban passenger mile. Again, this includes both the fixed and variable costs and the direct and indirect costs of urban car transportation. Home garage costs were not included because of a lack of data.

Comparison

A comparison of the total actual user costs for urban cars and buses reveals that urban bus travel costs 52 percent more money, uses 41.9 percent less energy, and is 99.8 percent more labor intensive than urban car travel on a per passenger mile basis. While many people are currently in the habit of making comparisons between different modes of transportation on a per mile basis we feel that in the instance of urban passenger transportation it is more meaningful to base comparisons on a functional unit rather than an arbitrary mileage basis. For this reason our car-bus transfer model is based on transferring trips for each of four purposes from one mode of travel to the other mode. On a passenger trip basis, urban bus travel costs 25.0 percent less money, 73.2 percent less energy and 9.5 percent less labor than travel by the urban car. These comparisons are based on total costs to the system of transportation. The numerical values may therefore be greater than the direct out-of-pocket expenses.

In making the comparison in this manner there are, no doubt, statistically significant differences in the number of miles travelled by the car and bus modes for each of the four trip purposes. The extent of the differences remains unknown because of the absence of detailed bus-use data. It is our judgment that any present differences in urban car and bus trip lengths for different purposes would be largely mitigated by compensating changes in travel patterns, route design and urban activity location, in the long run. For this reason we caution against simplistic comparisons of the two modes previously presented.

Nationwide Change

In table 9 we have shown that if urban car travel transferred to bus travel there would be a total saving by the system of $\$ 338.63,139.12 \times 10^{6} \mathrm{BrU}$, and 8.47×10^{-3} man years of labor per car for the year 1971. These estimates are based on the premise of a long-term national change in urban travel from cars to buses.

The amount of dollars, energy, and labor that would be saved by a transfer of passengers from urban cars to buses for each of the four major types of travel purposes and for the weighted average travel are also indicated in this table. (Negative signs indicate that there would be an increase rather than a decrease in the dollar energy or labor cost.) The largest financial savings would come from transferring work travel (\$302.54) and recreational travel ($\$ 1.69 .00$) to the urban bus. There would be no financial saving in transferring family business and educational travel from the urban car to the urban bus; it would cost $\$ 30.18$ and $\$ 53.88$ per car per year more, respectively.

The transfer of all categories of urban travel from cars to buses would decrease the amount of energy used. The energy savings, for a one percent transfer, would be greatest for the transfer of work travel ($64.75 \times 10^{6} \mathrm{BTU}$), followed in order by recreation travel ($49.14 \times 10^{6} \mathrm{BrU}$), family business travel ($22.92 \times 10^{6} \mathrm{BTU}$), and educational travel ($3.29 \times 10^{6} \mathrm{BTU}$).

A one percent transfer of work and recreational travel from cars to buses would save 16.52×10^{-3} and 7.28×10^{-3} man years of labor, respectively. Family business and educational travel would require 6.07×10^{-3} and 5.17×10^{-3} more man years of labor, respectively. Overall there would be a small decrease in the amount of labor needed to provide the same amount of urban travel.

The shift to bus saves the consumer money which will be spent and consequently demand a new round of energy and employment. How much depends on the consumer choice of where he would spend his new found dollar savings. A table of the energy and employment costs of various consumer goods is provided from which the consumer could establish his alternate spending plans to maintain or even increase his energy conservation.

Individual Transfer

The individual urban car user who changes to the bus for all urban travel purposes or for some partial combination thereof, while continuing to own an average car will experience the DEL changes shown in table 13. Substitution of the bus for the car costs more for each travel purpose from a low of $\$ 14.72 /$ year to a high of $\$ 186.46 /$ year/car year. Substitution of the bus for the car while still owning the car causes a demand for more labor and less energy, for all urban travel purposes.

The weighted average values for DEL for the individual substitution indicate that it would cost $\$ 442.79$ more, save $102.00 \times 10^{6} \mathrm{BTU}$, and require 45.58×10^{-3} more jobs per urban car per year for an individual urban car owner to retain ownership of his car but to give up using it for urban travel and use the bus in its place. The DEL costs for substituting the bus for the car for a percentage of the urban travel may again be obtained by multiplying the values in table 13 by $T P$ where $T P$ ranges from 0 to 1.

Here we reveal the crux of the policy problem of inducing people to change from urban auto to buses.

In the existing system, it is simply not economical in a dollar sense for an individual to replace some of the auto use by bus, while still retaining the auto for the remaining trips, even though there is an energy savings. If, for example, the individual owns a special auto used only for work trips and he decides to take a bus to work to save energy, he will lose money unless he disposes of this auto.

If, on the other hand, the auto system was regulated so that the fixed costs and depreciation of the auto become essentially functions of the mileage instead, the individual would have the dollar motivation to save a considerable amount of energy and increase employment.

Two alternative modes to remove the dollar disincentive to slowly giving up the auto and taking the bus are: taxing auto fuel and reducing the bus cost. We found that price of gasoline would have to rise from 37 to 93 cents per gallon (1971) or bus ridership would have to increase by 77 percent, before the variable cost of the car and bus cost were equal.

REFERENCES

American Transit Association (1971). "1971 Transit Operating Report, Revenues, Expenses, Operating Statistics." Parts II and IV.

Automobile Manufacturers Association, Inc. (1971). "1971 Automobile Facts and Figures."

Goss, W. P. and McGowan, J. G. (1972). "Transportation and Energy - A Future Confrontation." Transportation, vol. l, no. 3, pp. 265-289.

Hannon, B. and Puleo, F. (1973). "A Stress Model for Mass Transit Systems." Energy Research Group. Center for Advanced Computation, University of Illinois, Urbana, Illinois.

Herendeen, R. A. (1973). "An Energy Input-Output Matrix for the United States, 1963: Users Guide." CRC Document no. 69. Center for Advanced Computation, University of Illinois, Urbana, Illinois.

Herendeen, R. A. and Sebald, A. (1973), "The Dollar, Energy and Employment Impacts of Certain Consumer Options: Preliminary Report to the Ford Foundation." Energy Research Group. Center for Advanced Computation, University of Illinois, Urbana, Illinois.

Hirst, E. (1973), "Energy Intensiveness of Passenger and Freight Transport Modes: 1950-1970." ORNL-NSF Environmental Program-44.

Michaels, R. M. and Maltz, A. B. (1973). "Energy Requirements in Urban Transportation." First Annual Illinois Energy Conference, June 15, 1973. Sponsored by the University of Illinois and the State of Illinois.

Puleo, F. (1974). "Bus Maintenance and Resources Simulation Model (BMARS)." Technical Memorandum No. 28. Center for Advanced Computation. University of Illinois, Urbana, Illinois.

Rice, R. A., "System Energy as a Factor in Considering Future Transportation." ASME Paper no. 70-WA/Ener-8.

Survey of Current Business (1972). "Implicit Price Deflators." U.S. Dept. of Commerce, Washington. Tables 8.1, 8.6, 8.7 and 8.8.
U. S. Department of Transportation (1970). Federal Highway Administration. Highway Statistics 1970. Table VM-1, p. 52.
U.S. Department of Transportation (1972). Federal Highway Administration. National Personal Transportation Study. Reports no. 1, 2, and 3.
U.S. Bureau of Census (1973). Statistical Abstract of the United States, 1972. Section 2, Transportation Land, table 910.

Transportation
Category

Total Transportation Used (1963)

Energy

Directly	$55.3^{\text {d }}$	$23.1^{\text {c }}$
Directly and	100	$41.8^{\text {c }}$

Directly	28.5^{e}	11.9^{c}
Directly and Indirectly	49.5^{f}	20.7^{c}

Directly	17.0^{g}	7.1^{h}
Directly and	29.4^{j}	$12.3^{\mathrm{i}, \mathrm{r}}$

Directly	0.33^{k}	$0.14^{\text {I }}$
Directly and	0.58^{n}	$0.24^{\mathrm{m}, \mathrm{s}}$

All Urban Buses ${ }^{\text {b }}$
Used..... (1971) Indirectly
a. Total refers to the sum of direct and indirect energy.
b. This includes urban, rural, and school buses (not intercity).
c. Herendeen (1973).
d. Assumes that transportation and the GNP have similar indirect energy intensities ($55.3 \%=23.1 / 0.418$).
e. $(28.5 \%=11.9 / 0.418)$
f. $(49.5 \%=20.7 / 0.418)$
g. $\quad\left(17.0 \%=55.3 \times 0.307^{q}\right)$
h. $(7.1 \%=17.0 \times 0.418)$
i. $(12.3 \%=7.1 / 0.577)$
j. $(29.4 \%=12.3 / 0.418)$
k. $\left(0.33 \%=0.006^{q} \times 55.3\right)$

1. $(0.14 \%=0.33 \times 0.418)$
m. $(0.24 \%=0.14 / 0.577)$
n. $\quad(0.58 \%=0.24 / 0.418)$
p. The ratio of all auto direct energy to total transportation direct energy was 0.515 in 1963 and 0.571 in 1972^{c}.
q. Goss and McGowan (1972).
r. Assumes that urban autos and average autos have similar indirect energy intensities.
s. Assumes that buses have similar indirect energy intensities to average autos.
Table 1. Approximate percentage distribution of annual direct and total ${ }^{\text {a }}$ United States energy used by selected transportation categories.

	Percentage of Total U.S. Energy Consumption (1971)	Percentage of Total U.S. Urban Passenger Vehicle Miles (1970)	Percentage of Total Urban
Mode Passenger Trips(1970)			
Urban Auto	12.3^{a}	99.62^{b}	93.4 d
Urban Bus	0.24^{a}	0.31^{c}	4.5^{e}

a. See Table 1.
b. Urban automobile mileage $=494,543 \times 10^{6}$. (U.S. Department of Irransportation, 1970) Transit vehicle mileage $=1,883 \times 10^{6}$. (U.S. Bureau of Census, 1973).
c. Urban bus mileage $=1,409 \times 10^{6}$ plus 8%. (U.S. Bureau of Census, 1973). See d.below.
d. Average automobile trip length in incorporated places $=8.3$ miles. (U.S. Department of Transportation, 1972). Urban automobile mileage as in b . Transit passenger trips $=7,332 \times 10^{6}$ plus 8% adjustment factor. (U.S. Bureau of Census, 1973). Comparison of Federal Highway Statistics and American Transit Association (ATA) data on urban buses reveals that the ATA data does not account for approximately 8% of the U.S. urban bus fleet.
e. Urban bus passenger trips $=5.034 \times 10^{6}$ plus 8%. (d.) (U.S. Bureau of Census.1973).

Table 2. Energy and performance characteristics for the urban bus and automobile.

Mode	Seat ${ }^{\text {b }}$	Passenger ${ }^{\text {c }}$	Seat ${ }^{\text {b }}$	Passenger ${ }^{\text {c }}$
Compact Automobile	$120^{\text {d }}$	$42^{\text {d }}$	$1,300^{\text {f }}$	--
Urban a Automobile	$64^{\text {d }}$	$15^{\text {d }}$	$2,817^{f}$	8,1008
Urban Bus a	215^{e}	$110{ }^{\text {d }}$	1,548 ${ }^{\text {f }}$	3,700 g,1
	$220{ }^{\text {d }}$	$125^{\text {e }}$		

a. The three footnotes in these two categories may vary slightly in their definition of this mode.
b, Seat miles/gallon based on theoretical average seating capacity.
c. Passenger miles/gallon based on approximation of actual passenger load.
d. Goss and McGowan, (1972).
e. Rice, (1970).
f. Michaels and Maltz, (1973)
g. Hirst, (1973).
l. The figures of Michaels and Maltz (1973) are not comparable because they have expressed their values in $B T U^{*} / r e v e n u e ~ p a s s e n g e r, ~ n o t ~ B T U / p a s s e n g e r ~ m i l e . ~$
*BTU = British Thermal Units
Table 3. Direct energy consumption per unit of transportation service by urban bus and automobile as reported by other markers.

NO.	VARIABLE	$\begin{aligned} & \text { DOLLAR } \\ & \left(x 10^{3}\right) \end{aligned}$	$\begin{aligned} & \text { ENERGY } \\ & \left(\text { BTUx }^{9}\right. \text {) } \end{aligned}$	$\begin{aligned} & \text { LABOR } \\ & \text { (JOBS) } \end{aligned}$
OVERHEAD				
1	Manufacture	625.217	43.252	47.192
OPFRATION				
2	General Maintenance	827.742	17.113	34.921
3	New Tires and Tubes	10.418	0.883	0.484
4	Retread Tires and Tubes	93.761	2.685	5.480
5	Repairs	891.614	66.871	83.786
6	Station	47.829	2.578	3.230
7	Transportation	945.849	21.980	74.312
8	Drivers	4136.520	0.0	0.0
9	Driver Years	0.0	0.0	407.367
10	Fuel Volume Energy	0.0	257.049	0.0
11	Fuel Cost to Produce	122.162	21.235	4.258
12	Fuel Cost to Transport	8.052	1.304	0.428
13	Fuel Cost to Wholesale	75.229	2.212	6.295
14	Fuel Cost to Retail	24.616	0.712	11.113
15	Lub. Oil Volume Energy	0.0	3.284	0.0
16	Lub. Oil Cost to Produce	6.101	1.061	0.213
17	Lub. Oil Cost to Transport	0.402	0.065	0.021
18	Lub. Oil Cost to Wholesale	3.757	0.110	0.314
19	Lub. Oil to Retail	1.229	0.036	0.145
20	Administration	1674.190	32.980	88.193
21	Traffic Services	47.587	0.937	2.507
22	Advertising	31.725	0.856	1.671
23	Insurance	351.572	7.505	23.546
24	Licenses	228.230	14.969	12.836
25	Rents	37.173	0.573	1.010
	STREETS			
26	Taxes	228.230	15.130	12.209
27	Fuel Volume Tax	186.251	12.347	9.999
DISPOSAL				
28	Recoverable Value	23.485	1.778	6.761
29	Recyclable Value	2.609	0.606	0.340

NO.
VARIABLE
OVERHEAD

Manufacture
Rail Transport
Truck Transport
Wholesale
Retail
Financing Charge
Maintenance
Repairs
Fuel Volume Energy
145.600
4.169
8.509
125.000
3.579
7.305

$$
0.0
$$

117.738
0.0

Fuel Cost to Produce
93.710
16.289
3.266

Fuel Cost to Transport
8.935
1.773
0.466

Fuel Cost to Wholesale
62.335
1.833
5.216

Fuel Cost to Retail
42.803
1.238
5.052

Insurance 237.399
5.068
15.899

Licenses
19.740
1.295
1.110

Local Government
25.198
1.557
1.335

STREETS

Fuel Volume Tax
New Constructions
94.137
6.241
5.054
25.198
1.670
1.353

DISPOSAL

Recoverable Value	4.032	0.305	1.161
Recyclable Value	0.403	0.094	0.053

Table 5: DEL costs per urban car per year (1971)

	BUS COMPANY			URBAN CAR		
ATTRIBUTE	$\begin{aligned} & \text { DOLLAR } \\ & \left(x 10^{3}\right) \end{aligned}$	$\begin{aligned} & \text { ENERGY } \\ & \left(\text { BTUx10 }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \text { LABOR } \\ & \text { (JOBS) } \end{aligned}$	DOLLAR	$\begin{aligned} & \text { ENERGY } \\ & (\text { BTUx10 }) \end{aligned}$	$\begin{gathered} \text { LABOR } \\ \left({\text { JOBS } \times 10^{-3}}^{-3}\right) \end{gathered}$
OVERHEAD	625.217	43.252	47.192	478.327	27.129	33.139
OPERATION	9569.760	456.998	762.128	760.719	154.540	48.159
STREETS	414.481	27.477	22.209	119.335	7.911	6.407
DISPOSAL	26.094	2.382	7.101	4.435	0.399	1.213
TOTAL	10583.464	530.109	838.630	1353.950	189.978	88.919

Table 6: Dollar, energy and labor costs per year, DELPCO and DELPCA, 1971

DOLLAR	$\begin{aligned} & \text { ENERGY } \\ & \left(\text { BTUx10 }^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{LABOR} \\ \left(\mathrm{JOBS} \times 10^{-6}\right) \end{gathered}$

URBAN BUS

Cost Per Passenger	0.396	19.835	31.380
Cost Per Passenger-Mile	0.105	5.279	8.352
URBAN CAR	0.528	74.099	34.682
Cost Per Passenger	0.069	8.928	4.179

Table 7: DEL Intensity comparison for urban bus and urban car, 1971

TRIP PURPOSE	PPTP	MPTP	MPP
Work	1.4	10.2	0.406
Family Business	1.9	5.6	0.200
Education	2.6	4.7	0.049
Recreation	2.5	13.1	0.333
Weighted Average	1.9	8.3	1.000

Table 8: Estimated values of passengers per trip purpose (PPTP), miles per trip purpose (MPTP), and miles purpose percentage (MPP), 1971

TRIP PURPOSE	DOLLAR	ENERGY $\left(\mathrm{BTUx10}^{6}\right)$	LABOR $\left(\mathrm{JOBSx}^{-3}\right.$)
Work	+302.542	+64.751	+16.516
Family Business	-30.178	+22.920	-6.065
Education	-53.882	+3.287	-5.169
Recreation	+169.002	+49.144	+7.275
Weighted Average	+338.634	+139.122	+8.465

Table 9: Total DEL decrease $(+$) per car per year, nationwide transfer 1971

TRIP PURPOSE	TPTC	DOLLAR	ENERGY	LABOR
Work	1537.25	+	+	+
Family Business	3800.00	-	+	-
Education	6195.74	-	+	-
Recreation	2137.40	+	+	+
Weighted Average	2563.85	+	+	+

Table 10: Current values of trip purpose passengers per car year (TPTC) 1971, and sign of the total DEL decrease

	DOLLAR/MILE	BTU/MILE	JOBS/MILE
VCM(DEL)	0.0511	0.0136×10^{6}	3.113×10^{-6}

Table 11: Variable DEL costs per mile per car-year, 1971

TRIP PURPOSE	MILES $^{(*)}$	TRIPS	PASSENGERS
Work	4547.20	445.80	624.13
Family Business	2240.00	400.00	760.00
Education	548.80	116.77	303.60
Recreation	3729.60	284.70	711.76
Total	11200.00	1349.40	2563.86

Table 12: Car miles, car trips, and bus passenger-trips by trip purpose, 1971
${ }^{(*)}$ The four trip purpose mileages sum to slightly less than the total urban mileage because there are 1.2% of "other" or "not available" trip purposes in the data used.

TRIP PURPOSE	DOLLAR	ENERGY $\left(\mathrm{BTUx10}^{6}\right)$	LABOR $\left(\mathrm{JOBS} \times 10^{-3}\right.$)
Work	-14.72	+49.68	-5.43
Family Business	-186.46	+15.50	-16.88
Education	-92.17	+1.47	-7.82
Recreation	-91.21	+36.78	-10.72
Total	-442.79	+102.00	-45.58

Table 13: Individual transfer DEL cost decrease (+) per car-year, 1971

ENTITY	ENERGY $\left(\right.$ BTU/DOLLARx10 $\left.{ }^{3}\right)$	LABOR $\left(\right.$ JOBS/DOLLARx10 ${ }^{-6}$)
Bus Co.	50.08	79.24
Urban Car	140.31	65.67

Table 14: Energy and labor impacts for 1971

NATIONWIDE CHANGE

 ENERGY$\left.(\mathrm{BTU} / \mathrm{DOLLAR}) \times 10^{3}\right)$
TRIP PU゙RPOSE

LABOR (JOBS/DOLLAR) $\times 10^{-6}$)

INDIVIDUAL TRANSFER

ENERGY
LABOR (BTU/DOLLAR) $\times 10^{3}$) $(J O B S / D O L L A R) \times 10^{-6}$

Work	+214.02	+54.59	-337.50	+368.89
Family Business	-759.49	+200.97	-83.13	+90.53
Education	-61.00	+95.93	-15.95	+84.84
Recreation	+290.79	+43.05	-403.25	+117.53
Weighted Average	+410.83	+24.99	-230.36	+102.94

Table 15: Energy and labor impacts per dollar for a nationwide change and individual transfer for 1971
(decrease is +)

Personal Consumption Expenditure \qquad Sector Description	$\begin{gathered} \text { Energy } \\ \text { Intensity BTU/\$ } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Labor } \\ & \text { Intensity Jobs/\$ } \end{aligned}$
Electricity	502,473	0.04363
Gasoline and oil	480,672	0.07296
Cleaning preparations	78,120	0.07332
Kitchen and household appliances	58,724	0.09551
New and used cars	55,603	0.07754
Other durable house furniture	45,593	0.08948
Food purchases	41,100	0.08528
Furniture	36,664	0.09176
Women and children's clothing	33,065	0.10008
Meals and Beverages	32,398	0.08756
Men and boys clothing	31,442	0.09845
Religious and welfare activity	27,791	0.086365
Privately controlled hospitals	26,121	0.17189
Automobile repair and maintenance	23,544	0.04839
Financial interests except insurance co.	21,520	0.07845
Tobacco products	19,818	0.05854
Telephone and Telegraph	19,043	0.05493
Tenant occupancy non-farm dwelling	18,324	0.03502
Physicians	10,271	0.03258
Owner occupancy non-farm dwelling	8,250	0.01676

Table 16. The Energy and Labor Intensity of the largest twenty activities of personal consumption expenditures, ranked in order of Decreasing Energy Intensity, 1971. (CAC Energy-Employment Model)

NO.	VARIABLE	DOLLAR
1	Maintenance	145.60
2	Repairs	125.00
3	Fuel Volume Energy	0.0
4	Fuel Cost to Produce	93.71
5	Fuel Cost to Transport	8.93
6	Fuel Cost to Wholesale	62.33
7	Fuel Cost to Retail	42.80
8	Fuel Volume Tax	94.14
	Total	572.51

Table 17: Dollar value of the variables affecting the variable DEL cost per car mile in 1971

BEVCM (DEL,K)

TRIP PURPOSE	DOLLAR/MILE $\left(x 10^{-2}\right)$	BTU/MILE $\left(\times 10^{3}\right)$	JOBS/MILE $\left(\times 10^{-6}\right)$
Work	5.43	2.72	4.30
Family Business	13.42	6.72	10.64
Education	21.89	10.97	17.35
Recreation	7.56	3.79	5.99
Weighted Average	9.07	4.54	7.19

Table 18: Break-even values of variable DEL cost per mile (BEVCM), 1971

	CPM $\left(x 10^{-2}\right)$	CPG* (DOLLAR/GALLON)	PCPG
TRIP PURPOSE	+0.320	0.42	1.12
Work	+8.31	1.54	4.08
Family Business	+16.78	2.72	7.21
Education	+2.45	0.72	1.91
Recreation	+3.96	0.93	2.47

Table 19: Values of the required change in car variable cost per mile (CPM), new cost per gallon (CPG*) and the fractional change (PCPG) in cost per gallon for 1971

TRIP PURPOSE	BEPPCO $\left(\right.$ PASS. $\left.\times 10^{6}\right)$	PPPCO
Work	28.37	1.06
Family Business	70.21	2.63
Education	114.53	4.29
Recreation	39.56	1.48
Weighted Average	47.43	1.77

Table 20: Estimated break-even values for passengers per bus company (BEPPCO) and the fractional change (PPPCO) to produce equal variable car and bus costs

APPENDIX I

SYSTEM ANALYSIS

Content:
I. Analysis of the Transportation Systems Attributes

1. DEL Overhead
a. DEL Bus Overhead
b. DEL Car Overhead
2. DEL Operation
a. DEL Bus Company Operation
b. DEL Urban Car Operation
3. DEL Streets
a. DEL Bus Company Streets
b. DEL Urban Car Streets
4. DEL Disposal
a. DEL Bus Disposal
b. DEL Urban Car Disposal
5. DEL Total
a. Bus Companies
b. Urban Cars
II. Results
6. Bus Companies (DELPCO) 1971
7. Urban Car (DELPCA) 1971
III. References

The analysis for each transportation system, bus companies, and urban cars is shown in Figure 1 and also in Puleo (1974) (27). Recall that the entities are bus companies and individual cars which have the following real attributes:
a. Dollar, energy and labor (DEL) costs for overhead, which are the fixed annual costs for each entity, for the availability of equipment.
b. Dollar, energy and labor (DEL) costs for operation, which are the annual costs for the use of the equipment and provision of services.
c. Dollar, energy and labor (DEL) costs for streets, which are the annual costs of maintenance and new constructions of bus and automobile rights-of-way.
d. Dollar, energy and labor (DEL) costs for disposal, which are the costs of final recovery and recycle value of all equipment not longer in use.

Analysis of the Transportation Systems Attributes

Figure 1 shows the generalized scheme for the computation of DEL costs for both entities. The dollar return upon disposal may be likened to the return of a deposit and has to be subtracted from the overhead dollar cost. However, the energy and labor costs which this deposit causes in the recoverable parts and recycling industry is a cost to the system and has to be added to the overhead energy and labor costs.

The total output for each entity, corresponding to DEL costs is the following: DELPCO is dollar, energy, and labor costs (DEL) per bus company per year; DELPCA is dollar, energy, and labor costs (DEL) per urban car per year. The general model for each entity is then:

```
DEL = DEL(Overhead) + DEL(Operation) + DEL(Streets) + S(DEL) * DEL(Disposal)
```


1. DEL Overhead

The overhead models for bus companies and urban cars are shown in Figure 2 and Figure 3, respectively.
a. DEL Bus Overhead
(i) Assumptions

Buses are purchased by contract directly from the manufacturers (assembly plants) and there are in effect no transportation, wholesale or retail margins in their purchase price.
(ii) Variables

We define the following variables:

```
NSPCO \(=\) Number of Seats Per bus Company (1971)
            \(\mathrm{CPB}=\) Cost Per Bus (1971)
            BL = Bus Life
            SPB = Seats Per Bus
```

(iii) Parameters

We have the following parameters:

DF = Dollar Defiator, 1971 to 1963
$I \not \subset(D E L)=$ Input-Output factor for DEL corresponding to code number $N(28)(29)(1963)$

IF $(D E L)=$ DEL Inflator 1963 to 1971
(iv) Equations

The DEL Overhead for Bus companies is given by the following
equation:

$$
\begin{equation*}
\text { BUSOVH }(D E L)=\frac{C P B \times N S P C O}{B L \times S P B} \times D F \times I \emptyset 5901(D E L) \times I F(D E L) \tag{I}
\end{equation*}
$$

Fig. 2: Bus Company Overhead DEL Computation

Fig. 3: Car Overhead DEL Computation
(v) Estimated Values

The estimated mean values for variables and parameters are given in the following tables.

VARIABLE	VALUE	UNIT	REFERENCE
BL	14.78	Years	6
CPB	35940	Dollar/Bus	7
NSPCO	12513.79	Seats/Bus Co	8
SPB	48.67	Seats/Bus	8

Table l: Estimated mean values for the bus overhead variables (1971).

	$I \varnothing(D E L)^{(1)}$				$\text { Inflator }{ }^{(10)}$		
Value ${ }^{(9)}$	Code Number	Dollar	$\begin{aligned} & \text { Energy } \\ & \left(x 10^{6}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Labor } \\ \left(\mathrm{x} 10^{-3}\right) \\ \hline \end{gathered}$	Dollar	Energy	Labor
0.8221	5901	1.0	0.081788	0.107650	1.216	1.029	0.853

Table 2: Estimated mean values for the bus overhead parameters.
b. DEL Car Overhead
(i) Assumptions

The retail price of cars includes a margin for transportation,
wholesale and retail costs.
(ii) Variables

$$
\begin{aligned}
C C & =\text { Customer Cost (1971) } \\
\text { MPC } & =\text { Miles Per Car }- \text { Year (1971) } \\
\text { MPCL } & =\text { Miles Per Car Life }
\end{aligned}
$$

```
NC = Number of Cars (1971)
TFC = Total Financing Charge per year (1971)
FC = Financing Charge per car-year (1971)
```


(iii) Parameters

```
            P(K) = Percentage of total overhead used to compute
                variable (K), 1971.
                    DF(K) = Dollar Deflator, 1971 to 1963, used for variable (K).
I\emptysetN(DEL) = Input-Output factor for DEL corresponding to code
                number N (1963).
IF(DEL) = DEL Inflator, 1963 to 1971.
```


(iv) Equations

The DEL overhead for urban cars is given by the following
equations:
(a) Manufacturing Overhead
$\operatorname{MAN}(D E L)=\frac{C C \times M P C}{M P C L} \times P(1) \times D F(1) \times I \varnothing 5903(D E L) \times I F(D E L)$
(b) Rail Transportation Overhead
$\operatorname{RAIL}(D E L)=\frac{C C \times M P C}{\text { MPCL }} \times P(2) \times \operatorname{DF}(2) \times I \not \subset 6501(D E L) \times \operatorname{IF}(D E L)$
(c) Truck Transportation Overhead
$\operatorname{TRUCK}(D E L)=\frac{C C \times M P C}{M P C L} \times P(3) \times D F(3) \times I \not \subset 6503(D E L) \times \operatorname{IF}(D E L)(4)$
(d) Wholesaling Overhead

$$
\begin{equation*}
\text { WHOL (DEL) }=\frac{\text { CC } \times M P C}{M P C L} \times P(4) \times D F(4) \times I \not \subset 6901(D E L) \times I F(D E L) \tag{5}
\end{equation*}
$$

```
(e) Retailing Overhead
RET(DEL) = CC x MPC }\timesP(5)\timesDF(5)\timesI\varnothing6902(DEL) x IF(DEL)
(f) Financing Charge
\[
\begin{equation*}
\mathrm{FC}(\mathrm{DEL})=\frac{\mathrm{TFC}}{\mathrm{NC}} * \mathrm{DF}(6) * I \varnothing 7001(\mathrm{DEL}) * \operatorname{IF}(\mathrm{DEL}) \tag{7}
\end{equation*}
\]
```

(g) Total Urban Car Overhead
$\operatorname{CAROVH}(D E L)=\operatorname{MAN}(D E L)+\operatorname{RALL}(D E L)+\operatorname{TRUCK}(D E L)+$ WHOL $(D E L)+\operatorname{RET}(D E L)+\operatorname{FC}(D E L)$

(v) Estimated Values

The estimated mean values for variables and parameters are
given in the following tables.

VARIABLE	VALUE	UNIT	REFERENCE
CC	3,640	Dollars	4
MPC	11,200	Miles/Car-Year	Il
MPCL	100,000	Miles	12,13
TFC	5.957×10^{9}	Dollars	25
NC	84.320×10^{6}	Cars	25

Table 3: Estimated mean values for the car overhead variables (1971).

PERCENTAGES (15)				
$P(1)$	$P(2)$	$P(3)$	$P(4)$	$P(5)$
0.798	0.010	0.010	0.020	0.162

Table 4: Estimated mean percentages of the cost per type of overhead (1971).

DEFLATOR	VALUE ${ }^{(14)}$	I $I \phi(\text { DEL })^{(1)}$				INFLATOR ${ }^{(10)}$		
		$\begin{gathered} \text { CODE } \\ \text { NUMBER } \end{gathered}$	DOLLAR	$\begin{aligned} & \text { ENERGY } \\ & \left(\mathrm{xl0} 0^{6}\right) \end{aligned}$	$\begin{aligned} & \text { LABOR } \\ & \left(\mathrm{xl} 0^{-3}\right) \\ & \hline \end{aligned}$	DOLLAR	ENERGY	LABOR
DF(1)	0.902	5903	1.0	0.070015	0.080079	1.1086	1.029	0.853
DF(2)	0.728	6501	1.0	0.079524	0.107589	1.3736	1.029	0.853
DF (3)	0.792	6503	1.0	0.084037	0.104663	1.2626	1.029	0.853
DF(4)	0.902	6901	1.0	0.033261	0.114199	1.1086	1.029	0.853
DF (5)	0.902	6902	1.0	0.032718	0.161077	1.1086	1.029	0.853
DF (6)	0.660	7001	1.0	0.019208	0.093114	1.5147	1.029	0.853

Table 5: Estimated mean values for the car overhead parameters.

2. DEL Operation

The models for the operation of bus companies and urban cars are shown in Figures 4 and 5, respectively.
a. DEL Bus Company Operation
(i) Assumptions

We assume linear relationships between the operation variables and their corresponding behavior in the system.
(ii) Variables

There are both direct and related variables. The direct variables correspond to variables that are taken directly from the data on hand. Related variables are computed from the direct variables using a specified relationship. All the variables and their corresponding codes are listed in Table 6.

Fig. 4: Bus Company Operation DEL Computation

$\left.\begin{array}{llll}\text { Direct Variables } & \text { Code } & \text { Related Variables } & \text { Code } \\ \text { General Maintenance } & \text { GENM } & & \\ \text { Tires and tubes } & \text { TT } & & \text { New tires and tubes } \\ & & & \text { Retread tires and tubes }\end{array}\right]$ RETT

(iii) Parameters

We have the following parameters:
$P(K)=$ Percentage of a direct variable used to compute a related variable (K), 1971.
$\mathrm{DF}(\mathrm{K})=$ Dollar Deflator, 1971 to 1963, for variable (K).
$I \varnothing N(D E L)=$ Input-Output factor for DEL corresponding to code number N (1963).

IF(DEL) = DEL Deflator, 1963 to 1971.
MY/MH = Man Year/Man Hour
(iv) Constants

The following are constants:
$E C(1)=$ Energy content of diesel in BTU per gallon.
$E C(2)=$ Energy content of propane in BTU per gallon.
$E C(3)=$ Energy content of gasoline in BTU per gallon.
$\mathrm{EC}(4)=$ Energy content of lubricating oil in BTU per gallon.
BTU = British Thermal Units
(v) Equations

The DEL operation for bus companies is given by the following set of equations:
(a) General Maintenance

GENM(DEL) $=$ GENM \times DF(I) $\times I \varnothing 7500(D E L) \times I F(D E L)$
(b) New Tires and Tubes

NEWTT(DEL) $=T T \mathrm{x} P(1) \mathrm{x} \quad \mathrm{DF}(2) \mathrm{x}$ I申3201(DEL) $\mathrm{x} \quad \mathrm{JF}(D E L)$
(c) Retread Tires and Tubes
$\operatorname{RETT}(D E L)=T T \times[1-P(1)] x \quad D F(3) x I \not \subset 7500(D E L) \times I F(D E L)$
(d) Repairs
$\operatorname{REP}(D E L)=\operatorname{REP} \mathrm{x} \operatorname{DF}(4) \mathrm{x}$ Iø6502(DEL) $\mathrm{x} \quad J F(D E L)$
(e) Station Expenses

STA(DEL) $=$ STA x DF(5) x Iø6502(DEL) x JF(DEL)
(f) Transportation
$\operatorname{TRAN}(D E L)=\operatorname{TRAN} \mathrm{x} \operatorname{DF}(6) \mathrm{x} \operatorname{I\phi 6507(DEL)} \mathrm{x} \operatorname{IF}(D E L)(14)$
(g) Drivers
$\operatorname{DRIV}(D E L)=\operatorname{DRIV} \mathrm{x} \operatorname{DF}(7) \mathrm{x} \operatorname{I\phi }(D E L) \quad \mathrm{x} \operatorname{IF}(D E L) \quad$ (15)
Note that the values for $I \varnothing I(D E L)$ are:
$I \varnothing \perp($ Dollar $)=1.0, I \phi 1($ Energy $)=0.0, I \not \varnothing 1($ Labor $)=0.0$
(h) Driver years

DRIVY=BUSH x MY/MH x I \varnothing (DEL)
The $I \varnothing_{l}$ (labor) value applies to Driver years as shown in the model. Note that the values for I $\varnothing 6$ (DEL) are:
$I \phi 6($ Dollar $)=0.0, \quad I \emptyset 6($ Energy $)=0.0, \quad I \emptyset 6($ Labor $)=1.0$
(i) Fuel Volume Energy

FUELVE(DEL) $=[\operatorname{DIV} \times E C(1)+\operatorname{PRV} \times E C(2)+\operatorname{GAV} \times E C(3)](16)$

Dollar and labor values do not apply to this variable and hence, for $I \not \varnothing 2(D E L)$ we have:
$I \phi 2($ Dollar $)=0.0 ; I \phi 2($ Energy $)=1.0 ; I \phi 2($ Labor $)=0.0$
(j) Fuel: Cost to Produce

FUELCP(DEL) $=F \operatorname{FUELC} \times P(2) \times \operatorname{DF}(8) \times I \not \subset 3101(D E L) \times I F(D E L)(17)$
(k) Fuel: Cost to Transport

FUELCT(DEL) $=$ FUELC $\times P(3) \times \operatorname{DF}(9) \times I \not \subset 3(D E L) \times \operatorname{IF}(D E L)$
In this case, a weighted average value is used for the Iø
factor in order to take into account the different kinds of transportation: ${ }^{(22)}$ by rail (Iф6501), by pipeline (I申5506), by truck (Iф6503) and by water (Iф6504). The weighted average is given by the following equation:


```
    P3(truck) x I \(\varnothing 6503(\) DEL ) + P3(water) x I 166504 (DEL)]/
    [P3(rail) + P3(pipe) + P3(truck) + P3(water)]
```

where $P 3($.$) is the corresponding percentage of each kind of$ transportation of the total fuel.
(1) Fuel Cost to Wholesale

FUELCW(DEL) $=$ FUELC $\times P(4) \times \operatorname{DF}(10) \times I \phi 6901(D E L) \times \operatorname{IF}(D E L)$
(m) Fuel Cost to Retail

FUEICR(DEL) $=$ FUELC $\times P(5) \times D F(11) \times I \phi 6902(D E L) \times \operatorname{IF}(D E L)$
(n) Lubricating $0 i l$ Volume Energy

LUBOVE(DEL) $=$ LUBOV \times EC(4) $\times I \phi 4(D E L)$
In this case dollar and labor costs do not apply to this
variable and hence the values for $I \phi 4$ (DEL) are the following:
$I \phi 4$ (Dollar) $=0.0$ I 44 (Energy) $=1.0 I \phi 4$ (Labor) $=0.0$
(0) Lubricating Oil: Cost to Produce
$\operatorname{LUBOCP}(D E L)=\operatorname{LUBOC} \times P(6) \times D F(12) \times I \phi 3101(D E L) \times \operatorname{IF}(D E L)$
(p) Lubricating Oil Cost to Transport

LUBOCT(DEL $=$ LUBOC $\times P(7) \times D F(13) \times I \phi 5(D E L) \times I F(D E L)$
In this case a weighted average is used for the I $\bar{\phi}$ factor in order to account for the different kinds of transportation; by rail (I $\varnothing 6501$), by pipeline (I $\varnothing 6506$), by truck (I $\varnothing 6503$) and by water
(I $\varnothing 6504$). The weighted average is given by the following equation:
 P7 (truck) x I $\varnothing 6503(D E L)+P 7$ (water) x I $\phi 6504$ (DEL) $] /$ P7 (rail) + P7(pipe) + P7 (truck) + P7 (water)
where $P 7($.$) is the corresponding percentage of each type of$ transportarion of the lubricating oil.
(q) Lubricating Oil Cost to Wholesale
$\operatorname{LUBOCW}(D E L)=$ LUBOC $\times P(8) \times D F(14) \times I \phi 6901(D E L) \times \operatorname{IF}(D E L)$
(r) Lubricating Oil Cost to Retail

LUBOCR(DEL) $=$ LUBOC $\times P(9) \times D F(15) \times I \phi 6902(D E L) \times I F(D E L)$
(s) Administration
$\operatorname{ADM}(D E L)=A D M \times D F(16) \times I \not \subset 2301(D E L) \times \operatorname{IF}(D E L)$
(t) Traffic Services
$\operatorname{TRAFS}(D E L)=\operatorname{TRAF} \times P(10) \times D F(17) \times I \phi 7301(D E L) \times \operatorname{IF}(D E L)$
(u) Advertising
$\operatorname{ADV}(D E L)=\operatorname{TRAF}[1-P(10)] \times \operatorname{DF}(18) \times \operatorname{I} \phi 307(D E L) \times \operatorname{IF}(D E L)$
(v) Insurance
$\operatorname{INS}(D E L)=\operatorname{INS} \times \operatorname{DF}(19) \times I \phi 7004(D E L) \times \operatorname{IF}(D E L)$
(w) Licenses
$\operatorname{LIC}(D E L)=$ LIC $\times P(11) \times D F(20) \times I \not \subset 7903(D E L) \times I F(D E L)$
(x) Rents

RENTS (DEL) $=$ RENTS $\times \operatorname{DF}(11) \times I \phi 7902(D E L) \times \operatorname{IF}(D E L)$
(y) Total bus company operation
$\operatorname{BUSOP}(D E L)=\operatorname{GENM}(D E L)+N E W I T(D E L)+\ldots \ldots+\operatorname{RENTS}(D E L)$
(vi) Estimated Values

The estimated mean values for variables and parameters are given in the following tables.

$$
\begin{gathered}
\text { Value (..) } \\
(x 103) \\
827.742 \\
104.179 \\
895.614 \\
47.829 \\
945.849 \\
4136.521 \\
782194.8 \\
1840.191 \\
3.938 \\
17.985 \\
230.059 \\
22.759 \\
11.489 \\
1674.195 \\
79.312 \\
351.572 \\
456.461 \\
37.173
\end{gathered}
$$

Unit

Dollar/Bus Company
Doilar/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Bus Hours/Bus Company
Gallnns/Bus Company
Gallons/Bus Company
Gallons/Bus Company
Dollar/Bus Company
Gallons/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Dollar/Bus Company
Dollar/Bus Company

Table 7: 1971 Estimated mean values for the bus company operation variables, 1971.
(See Appendix 8)

New Tires Tubes	Fuel	Cost Mar	$\text { gins }{ }^{(3}$		Lube	Cost	Margins	(30)	Traffic Services	Licenses
P(1)	P(2)	P(3)	$P(4)$	P(5)	P(6)	P (7)	P(8)	P(9)	P(10)	P (11)
0.100	0.531	0.035	0.327	0.107	0.531	0.035	0.327	0.107	0.600	0.500

Table 8: Estimated mean percentages of the cost per type of direct variables operation (1971).

	Value $\left(\times 10^{6}\right)$	Unit
Constant	0.138238	BTU/gallon
$\operatorname{EC}(1)$	0.091500	$\mathrm{BTU} / \mathrm{gallon}$
$\mathrm{EC}(2)$	0.125071	$\mathrm{BTU} / \mathrm{gallon}$
$\mathrm{EC}(3)$	0.144286	$\mathrm{BTU} / \mathrm{gallon}$
$\mathrm{EC}(4)$		

Table 9: Energy content of the different kinds of fuel and lubricating oil. ${ }^{16}$

The percentages used to compute the weighted mean values of the I申 factors for the fuel cost (transport) (P3) and lubricating oil cost (transport) (P7) are given in Table 10 with their corresponding I \varnothing (DEL) values.

Percentages (30)				I¢ (DEL)			
	Value	Lub Oil code	ost Value	Code Number	Dollar	Energy $\left(x 10^{6}\right)$	$\begin{gathered} \text { Labor } \\ \left(\times 10^{-3}\right) \end{gathered}$
P3(rail)	0.006	P7(rail)	0.006	6501	1.0	0.079524	0.107589
P3(pipe)	0.010	P7(pipe)	0.010	6506	1.0	0.488015	0.038587
P3(truck)	0.007	P7(truck)	0.007	6503	1.0	0.084037	0.104663
P3(water)	0.012	P7(water)	0.012	6504	1.0	0.138870	0.064694

Table 10: Percentages of fuel cost and lubricating oil cost need to compute $I \phi(D E L)$ of transportation.

The estimated value of the parameter, man years per man hour, (MY/MH),
is:

$$
\mathrm{MY} / \mathrm{MH}=0.5208 \times 10^{-3}
$$

This corresponds to 48 weeks per year and 40 hours per week, giving 1920 man hours per man year.
DEFLATOR VALUE ${ }^{(14)}$

IO (DEL) ${ }^{(1)}$
INFLATOR ${ }^{(10)}$

		Code Number	Dollar	$\begin{aligned} & \text { Energy } \\ & \left(x 10^{6}\right) \end{aligned}$	$\begin{aligned} & \text { Labor } \\ & \left(x \geq 0^{-3}\right) \\ & \hline \end{aligned}$	Dollar	Energy	Labor
DF(1)	0.5968	7500	1.0	0.033655	0.082847	1.6756	1.029	0.853
DF (2)	0.8270	3201	1.0	0.09964	0.065796	1.2092	1.029	0.853
DF(3)	0.8270	7501	1.0	0.033655	0.033655	1.2092	1.029	0.853
DF(4)	0.8270	6502	1.0	0.087740	0.132616	1.2092	1.029	0.853
DF(5)	0.5968	6502	1.0	0.087740	0.132616	1.6756	1.029	0.853
DF (6)	0.5968	6507	1.0	0.037829	0.154282	1.6756	1.029	0.853
DF(7)	0.5968	1	1.0	0.0	0.0	1.6756	1.0	1.0
DF(7)	0.5968	6	0.0	0.0	1.0	0.0	0.0	1.0
-	-	2	0.0	1.0	0.0	0.0	1.0	0.0
DF (8)	0.8589	3101	1.0	0.196658	0.047571	1.1600	1.029	0.853
DF(9)	0.8589	3	1.0	0.183171	0.072612	1.1600	1.029	0.853
DF(10)	0.8589	6901	1.0	0.033261	0.114199	1.1600	1.029	0.853
DF(ll)	0.8589	6902	1.0	0.032718	0.161077	1.1600	1.029	0.853
-	-	4	0.0	1.0	0.0	0.0	1.0	0.0
DF(12)	0.8589	3101	1.0	0.196658	0.047571	1.1600	1.029	0.853
DF(13)	0.8589	5	1.0	0.183171	0.072612	1.1600	1.029	0.853
DF(14)	0.8589	6901	1.0	0.033261	0.114199	1.1600	1.029	0.853
DF(15)	0.8589	6902	1.0	0.032718	0.161077	1.1600	. 1.029	0.853
DF(16)	0.5968	2301	1.0	0.052344	0.133347	1.6756	1.029	0.853
DF(17)	0.5968	7301	1.0	0.032067	0.103444	1.6756	1.029	0.853
DF(18)	0.5968	7302	1.0	0.043939	0.103402	1.6756	1.029	0.853
DF(19)	0.6602	7004	1.0	0.031432	0.031432	1.5147	1.029	0.853
DF(20)	0.7064	7903	1.0	0.090283	0.118963	1.4200	1.029	0.853
DF(21)	0.6980	7902	1.0	0.072152	0.059547	1.4300	1.029	0.853

b. DEL Urban Car Operation
(i) Assumptions

We assume a linear relationship between the variables and their corresponding behavior in the system.
(ii) Variables

There are direct and related variables. The direct variables correspond to variables that can be measured directly from the data at hand. Related variables are computed from the direct variables using a specified relationship. All the variables and their corresponding codes are listed in Table 12.
(iii) Parameters

$$
\begin{aligned}
\mathrm{P}(\mathrm{~K})= & \text { Percentage of a direct variable used to compute a related } \\
& \text { variable (1971). } \\
\mathrm{DF}(\mathrm{~K})= & \text { Dollar deflator, } 1971 \text { to } 1963 . \\
I \varnothing \mathbb{N}(D E L)= & \text { Input-Output factor for DEL corresponding to code number } \\
& \mathbb{N} \text { (1963). } \\
I F(D E L)= & \text { DEL inflator, } 1963 \text { to } 1971 . \\
\mathrm{UAF}= & \text { Urban adjusting factor to account for the increased fuel } \\
& \text { consumption in the urban trips relative to the national } \\
& \text { average. (I9) } \\
& \text { See Appendix } 3 .
\end{aligned}
$$

HTAX=Highway tax (1971)
(iv) Constants

We have only one constant in the car system:
$\mathrm{EC}=$ Energy Constant of gasoline in BTU per gallon.
(v) Equations

The DEL of operation for urban cars is given by the following set of equations:
(a) Maintenance

$$
\operatorname{MAINT}(D E L)=\text { MAINT } \times D F(I) \times I \phi 7500(D E L) \times I F(D E L) .
$$

Direct Variables	Cost	Related Variables	Code
Maintenance	MAINT		
Repairs	REP		
Cost per gallon	CPG		
Cost per mile	CPM		
Miles per year	MPY		
		Fuel Volume	FUELV
		Fuel volume energy	FUELVE
Fuel cost	FUELC		
		Fuel cost to produce	FUEICP
		Fuel cost to transport	FUELCT
		Fuel cost to wholesale	FUEICW
		Fuel cost to retail	FUEICR
Insurance	INS		
Licenses	LIC		
Taxes	TAX		
		Local government	LGOV

Table 12: Direct and related variables of the urban car operation system.
(b) Repairs
$\operatorname{REP}(D E L)=R E P \times \operatorname{DF}(2) \times I \phi 7500(D E L) \times \operatorname{IF}(D E L)$
(c) Fuel Volume Energy

First we compute the fuel volume:
FUELV $=\frac{\text { CPM } \times \text { MPY }}{P G} \times$ UAF
Then the fuel volume energy is given by:
FUELVE(DEL) = FUELV x EC x I \varnothing (DEL)
In this case dollar and labor costs do not apply and the values for $I \varnothing 1(D E L)$ are:
$I \varnothing 1$ (Dollar) $=0.0$, I \varnothing (Energy) $=1.0$, $I \phi 1($ Labor $)=0.0$
(d) Fuel: Cost to Produce

FUELCP(DEL) $=(F U E L C-F U E L V \times$ HTAX) $\times P(1) \times D F(3) \times I \neq 310(D E L)$ $\mathrm{x} \operatorname{IF}(\mathrm{DEL})$
where FUELV is the fuel volume as computed in part (c).
(e) Fuel: Cost to Transport

FUELCT (DEL) $=$ (FUELC-FUELV x HTAX) $x P(2) \times D F(4) x$ Iф2(DEL) x IF (DEL) (39)
In this case a weighted average value is used for the I ϕ
factor in order to account for the different kinds $(30)_{o f}^{1}$ transportation by rail (Iф6501), by pipe(I $\varnothing 6506$) by truck (I $\varnothing 6503$)
and by water (Iф6504). The weighted average is:
$\begin{aligned} I \phi 2(\mathrm{DEL})= & {[\text { P3(rail) } \times I \phi 6501(\text { DEL })+\text { P3(pipe) } \times I \phi 6506(\mathrm{DEL})} \\ & + \text { P3(truck) } \mathrm{I} \Phi 6503(\text { DEL) }+ \text { P3(water) } \times I \phi 6504 \\ & (\text { DEL) }] /[P 3(\text { rail })+\text { P3(pipe) }+ \text { P3(truck) }+ \text { P3 } \\ & (\text { (water) }]\end{aligned}$
where P3(.) is the corresponding percentage of each kind of transportation of the total fuel cost.
(f) Fuel Cost to Wholesale

FUELCW (DEL) $=$ (FUELC-FUELV \times HTAX) $\times P(3) \times D F(5) \times(41)$ I甲6901(DEL) x IF(DEL)
(g) Fuel Cost to Retail

FUELCR(DEL) $=$ (FUELC-FUELV \times HTAX) $\times P(4) \times \operatorname{DF}(6) \times$ (42) I $\varnothing 6902$ (DEL) \times IF (DEL)
(h) Insurance
$\operatorname{INS}(D E L)=\operatorname{INS} \times D F(7) \times I \phi 7004(D E L) \times \operatorname{IF}(D E L)$
(i) Licenses
$\operatorname{LIC}(D E L)=\operatorname{LIC} \times \operatorname{DF}(8) \times I \not \subset 7903(D E L) \times \operatorname{IF}(D E L)$
(j) Local Government

```
LGOV(DEL) = TAX x P(5) x DF(9) x I\phi7903(DEL) x IF(DEL)
```

(k) Total Urban Car Operation

$$
\begin{align*}
\operatorname{CAROP}(D E L)= & \text { MAINI }(D E L)+ \tag{46}\\
& \text { REP }(\text { DEL })+\ldots . .+\operatorname{LIC}(D E L) \\
& +\operatorname{LGOV}(D E L)
\end{align*}
$$

(vi) Estimated Values

The estimated mean values for variables and parameters are given in the following tables.

Variable	Value (18)	Unit
MAINT	145.6	Dollar/year
REP	125.0	Dollar/year
CPG	0.377	Dollar/gallon
CPM	0.0269	Dollar/mile
MPY	11200.0	Miles $/$ year
FUELC	301.280	Dollar/year
INS	237.399	Dollar/year
LIC	19.741	Dollar/year
TAX	50.395	Dollar/year

Table 13: Estimated mean values for the urban car operation cost variables based on ll, 200 miles per car year(1971).

PERCENTAGES (15)

$P(1)$	$P(2)$	$P(3)$	$P(4)$	$P(5)^{(27)}$
0.451	0.043	0.300	0.206	0.500

Table 14: Estimated mean percentages of the cost per type of direct operating variables,(1971).

Several additional parameters and constants are given in the folloring table:

Code	Value	Unit	Reference
UA F	1.175	UFV/HFV	19
HTAX	0.10	Dollar/gallon	20
EC	125071	BTU/gallon	16

Table 15: Estimated values of certain constants for the car system.

The percentages needed to compute the weighted mean value of the Iф factor for the fuel transport cost (P3) are given in Table 16 along with their corresponding Iめ (DEL) values.

Code	Value	Number	Dollar	Energy $\left(\times 10^{6}\right)$	Labor $\left(x 10^{-3}\right)$
P3(rail)	0.007	6501	1.0	0.079524	0.107589
P3(pipe)	0.013	6506	1.0	0.488015	0.038587
P3(truck)	0.008	6503	1.0	0.084037	0.084037
P3(water)	0.015	6504	1.0	0.138870	0.064694

Table 16: Percentages (15) fuel cost to compute I $\phi(D E L)$ of transportation.

Deflator	Value (14)	$I \phi(D E L)(1)$				Inflator (10)		
		Number	Dollar	$\begin{aligned} & \text { Energy } \\ & (\mathrm{xl0}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Labor } \\ & \left(\times 10^{-3}\right) \\ & \hline \end{aligned}$	Dollar	Energy	Labor
DF (1)	0.8270	7500	1.0	0.033655	0.082846	1.2092	1.029	0.853
DF (2)	0.8270	7500	1.0	0.033655	0.082846	1.2092	1.029	0.853
--	--	1	0.0	1.0	0.0	0.0	1.0	0.0
DF (3)	0.8589	3101	1.0	0.196658	0.047571	1.600	1.029	0.853
DF(4)	0.8589	2	1.0	0.224488	0.071220	1.600	1.029	0.853
DF (5)	0.8589	6901	1.0	0.033261	0.114199	1.600	1.029	0.853
DF (6)	0.8589	6902	1.0	0.032718	0.161077	1.600	1.029	0.853
DF (7)	0.6602	7004	1.0	0.031432	0.118963	1.5147	1.029	0.853
DF (8)	0.7064	'7903	1.0	0.090283	0.093393	1.4156	1.029	0.853
DF (9)	0.6648	7903	1.0	0.090283	0.093393	1.5042	1.029	0.853

Table 17: Estimated values for urban car operation parameters.

3. - DEL Streets

The models for bus companies and urban cars are shown in Figures 6 and 7 , respectively.
a. DEL Bus Company - Streets

(i) Assumptions

We assume a linear relationship between the variables and their corresponding behavior in the system.

(ii)Variables

There are direct and related variables. The direct variables correspond to variables that can be measured directly from the available data. Related variables are computed from the direct variables using a specifiedrelationship. All the variables and their corresponding codes are listed in Table 18.

DIRECT VARTABLES	CODE	REIATED VARIABIES	CODE
Licenses and Taxes	LICT		
Diesel Volume	Taxes	Tax	
Propane Volume	PRV		
Gasoline Volume	GAV		
		Fuel Volume	FUELV

Table 18: Direct and related variables of the bus-streets system.

DIESEL
VOLUME
PROPANE VOLUME $\begin{array}{c}\text { GASOLINE } \\ \text { VOLUME }\end{array}$

Fig. 6: Bus Company Street DEL Computation

Fig. 7: Car Street DEL Computation
(iii) Parameters

We have the following parameters:
$P(l l)=$ Percentage of licenses and taxes applicable to licenses only (1971). HTAX = Highway Tax (1971).

DF $(\mathrm{K})=$ Dollar Deflator, 1971 to 1963.
$I \not \subset N(D E L)=$ Input-Output factor for DEL corresponding to code number N (1963). IF $($ DEL $)=$ DEL Inflator, 1963 to 1971.
(iv) Equations

The DEL of streets for bus companies is given by the following set of equations:
(a) Taxes $\operatorname{TAX}(D E L)=\operatorname{IICT}[1-P(11)] \times D F(1) \times I \phi 1104(D E L) \times \operatorname{IF}(D E L)$
(b) Fuel Volume

FUELV (DEL) $=(D I V+\operatorname{PRV}+G A V) \times \operatorname{HTAX} \times D F(2) \times I \varnothing 1104(D E L) \times \operatorname{IF}(D E L)$
(c) Total Bus Company DEL Streets

$$
\begin{equation*}
\operatorname{BUSST}(D E L)=\operatorname{TAX}(D E L)+\operatorname{FUELV}(D E L) \tag{49}
\end{equation*}
$$

(v) Estimated Values

The estimated mean values for the variables and parameters are given in the following tables.

VALUE (17) $\left(x 10^{3}\right)$		
VARIABIE	456.461	Dollar/Bus Co.
LICT	1840.191	Gallons/Bus Co.
DIV	3.938	Gallons/Bus Co.
PRV	17.985	Gallons/Bus Co.
GAV		

Table 19: Estimated mean values of the variables for Bus Company Streets, (1971).

The percentage of licenses and taxes corresponding to licenses only is estimated at 50% (21).

$$
P(11)=0.500
$$

The highway tax is computed at the rate of $10 \not / \mathrm{gal}$. of fuel (31) :

$$
\text { HTAX }=0.10 \text { Dollar/gallon. }
$$

Deflator	(14)	$I \phi($ DEL $)(1)$				Inflator (10)		
		Number	Dollar	$\begin{aligned} & \text { Energy } \\ & \left(x 10^{6}\right) \end{aligned}$	$\begin{aligned} & \text { Labor } \\ & \left(x 10^{-3}\right) \\ & \hline \end{aligned}$	Dollar	Energy	Labor
DF (1)	0.6541	1104	1.0	0.098507	0.096236	1.5288	1.029	0.853
DF(2)	0.6541	1104	1.0	0.098507	0.096236	1.5288	1.029	0.853

Table 20: Estimated values for Bus Company Streets parameters.
b. DEL Urban Car - Streets
(i) Assumptions

We assume a linear relationship between the variables and their corresponding behavior in the system.

(ii) Variables

There are direct and related variables. The direct variables can be measured directly from the collected data. Related variables are computed from the direct variables using a specified relationship. All the variables and their corresponding codes are listed in Table 21.

Direct Variables	Code	Related Variables	Code
Cost per gallon	CPG		
Cost per mile	CPM		
Miles per year	MPY		FUELV
		Fuel volume	
Taxes	TAX	New construction	NEWC

Table 21: Direct and related variables of the urban car-streets system.
(iii) Parameters

We have the following parameters:
$P(5)=$ Percentage of taxes used for local government only (1971).
UAF = Urban Adjusting Factor to account for the increase in fuel consumption
in the urban area relative to the average. (See Appendix 3.)
$\mathrm{DF}(\mathrm{K})=$ Dollar Deflator 1971 to 1963.
I \varnothing NN $(D E L)=$ Input-Output factor for $D E L$ corresponding to code number \mathbb{N} (1963). IF $($ DEL $)=$ DEL Inflator, 1963 to 1971.

HTAX = Highway Tax (1971).

(iv) Equations

The DEL of streets for urban cars is given by the following set of equations.
(a) Fuel Volume

$$
\operatorname{FUELV}(D E L)=\frac{C P M \times M P Y}{C P G} \times U A F \times H T \times D F(1) \times I \varnothing 1104(D E L) \times I F(D E L)
$$

(b) New Construction

$$
\operatorname{NEWC}(D E L)=\operatorname{TAX}[1-P(5)] \times \operatorname{DF}(2) \times I \phi 1104(D E L) \times \operatorname{IF}(D E L)
$$

(c) Total Urban Car DEL Streets

$$
\begin{equation*}
\operatorname{CARST}(D E L)=\operatorname{FUELV}(D E L)+\operatorname{NEWC}(D E L) \tag{52}
\end{equation*}
$$

(v) Estimated Values

The estimated mean values for variables and parameters are given
in the following tables.

Variable	Value (18)	Unit
CPG	0.377	Dollar/gallon
CPM	0.0269	Dollar/mile
MPY	$11200.0^{(15)}$	Miles/year
TAX	50.395	Dollar/year

Table 22: Estimated mean values for the urban car-streets variables, 1971.
The percentage of Taxes $(P(5)$) assigned to local government operations is 50%.

$$
P(5)=0.500
$$

The urban adjusting factor as estimated in Appendix 3 is:

$$
\begin{equation*}
\mathrm{UAF}=1.175 \mathrm{UFV} / \mathrm{HFV} . \tag{53}
\end{equation*}
$$

The estimated highway tax is:

$$
\text { HTAX }=0.10 \text { Dollar/Gallon. }
$$

Deflator	Value (14)	$I \phi(\mathrm{DEL})$				Inflator (10)		
No.		Code Number	Dollar	$\begin{aligned} & \text { Energy } \\ & \left(x 10^{6}\right) \end{aligned}$	$\begin{array}{r} \text { Labor } \\ \left(x 10^{-3}\right) \\ \hline \end{array}$	Dollar	Energy	Labor
DF (1)	0.6541	1104	1.0	0.098507	0.096236	1.5288	1.029	0.853
DF ${ }^{(2)}$	0.6541	1104	1.0	0.098507	0.096236	1.5288	1.029	0.853

Table 23: Estimated values for urban car-streets parameters.

4 DEL Disposal

The disposal models for bus companies and urban cars are shown in Figures 8 and 9, respectively.

a. DEL Bus Disposal

(i) Assumptions

We assume a linear relationship between the variables and their corresponding behavior in the system.
(ii) Variables

There are both direct and related variables. The direct variables can be measured directly from the available data. Related variables are computed from the direct variables using a specified relationship. All the variables and their corresponding codes are listed in Table 24.

Direct Variables	Code	Related Variables
Disposal value	DIVAL	
Seats per bus company	SPBCO	
Bus life	BL	SPB
Seats per bus		Recoverable value

(iii) Parameters

We have the following parameters:
$P=$ Percentage of total value used for recoverable value only (1971).
$\phi I(D E L)=$ DEL Output-Input ratio for the metal scrap industry (1963).
(See Appendix 4.)

DF = Dollar Deflator, 1971 to 1963.

I $\varnothing \mathrm{N}(\mathrm{DEL})=$ Input-Output factor for $D E L$ corresponding to code number N (1963). $\operatorname{IF}($ DEL $)=$ DEL Inflator, 1963 to 1971.

(iv) Equations

The DEL Disposal for bus companies is given by the following set of equations.
(a) Recoverable Value
$\operatorname{RECOV}(D E L)=\frac{\text { DIVAL } \times \text { SPBCO }}{\text { BL } \times S P B} \times D F \times \phi I(D E L) \times P \times I \phi 7202(D E L) \times I F(D E L)$
(b) Recyclable Value
$\operatorname{RECYC}(D E L)=\frac{\text { DIVAL } \times \text { SPBCO }}{B L \times S P B} \times D F \times \phi I(D E L) \times(1-P) \times I \phi 3704(D E L) \times \operatorname{IF}(D E L)$
(c) Total Bus Company DEL Disposal

$$
\begin{equation*}
\operatorname{BUSDIS}(D E L)=\operatorname{RECOV}(D E L)+\operatorname{RECYC}(D E L) \tag{56}
\end{equation*}
$$

(v) Estimated Values

The estimated mean values for the variables and parameters are given in the following tables.

Variable	Value	Unit	References
DIVAL	1500.0	Dollar/Bus	32
SPBCO	12513.79	Seats/Bus Co.	8
BL	14.78	Years	6
SPB	48.67	Seats/Bus	8

Table 25: Estimated mean values for the bus company disposal variables, 1971.

The dollar deflator 1971-1963 (DF) has the value:

$$
D F=0.7619^{(14)}
$$

The recoverable value percentage (P) for 1971 is estimated as:

$$
P=0.900
$$

The Output-Input ratio $(\varnothing I(D E J))$ as shown in Appendix 4 has the following values:

$$
\phi I(\text { Dollar })=1.0 \quad \emptyset I(\text { Energy })=2.4 \quad \phi I(\text { Labor })=2.4
$$

Then the Deflator is given by

$$
D F=0.7619 \times 2.4=1.82856
$$

The $I \varnothing$ coefficients and inflators are given in the following table.

	Iф(DEL)	(1)	Inflator (10)			
Number	Dollar	Energy $\left(x 10^{6}\right)$	Labor $\left(x 10^{-3}\right)$	Dollar	Energy	Labor
7202	-1.0	0.040195	0.184524	0.546	1.029	0.853
3704	-1.0	0.123328	0.083579	0.546	1.029	0.853

Table 26: Estimated values for bus company disposal parameters.

Note that $I \varnothing($ Dollar $)$ is negative because disposal dollar value is subtracted from overhead. See Figure 1 and related text.

b. DEL Urban Car Disposal

(i) Assumptions

We assume a linear relationship between the variables and their corresponding behavior in the system.

(ii) Variables

There are both direct and related variables. The direct variables are taken directly from the available data. The related variables are computed from the direct variables using a specified relationship. All the variables and their corresponding codes are listed in Table 27.

| Direct Variable | Code | Related Variables |
| :--- | :--- | :--- | Code

Recoverable value RECOV
Recyclable value RECYC

Table 27: Direct and related variables of the urban car-disposal system.

```
(iii) Parameters
                    We have the following parameters:
                    \(P=\) Percentage of the disposal value which is due to
                        recoverable parts (1971).
            \(\phi I(D E L)=\) DEL Output-Input ratio for the metal scrap industry
                (1963). (See Appendix 4.)
            DF = Dollar Deflator, 1971 to 1963.
            \(I \not \subset N(D E L)=\) Input-Output for DEL corresponding to code number, \(N\)
                (1963).
            IF (DEL) = DEL Inflator 1963 to 1971.
            (iv) Equations
```

 The DEL for disposal of urban cars is given by the following
 set of equations:
(a) Recoverable Value
$\operatorname{RECOV}(D E L)=\frac{\text { DIVAL } \times M P C Y}{M P C L} \times D F \times \emptyset I(D E L) \times P \times I \phi 7202(D E L) \times \operatorname{IF}(D E L)$ (57)
(b) Recyclable Value
$\operatorname{RECYC}(D E L)=\frac{\text { DIVAL } \times M P C Y}{M P C L} \times D F \times \not \subset I(D E L) \times(1-P) \times I \phi 3704(D E L) \times I F(D E L)$
(c) Total Urban Car DEL Disposal
$\operatorname{CARDIS}(D E L)=$ RECOV(DEL) $+\operatorname{RECYC}(D E L)$
(v) Estimated Values

The estimated mean values for variables and parameters are given in the following tables.

Variable	Value	Unit	References
DIVAL	40.0	Dollars/car	23
MPCY	$11,200.0$	Miles/car-year	11
MPCL	$100,000.0$	Miles	13

Table 28: Estimated mean values for the urban car disposal variables, 1971.

The dollar deflator for 1971 to 1963 (DF) has the value

$$
D F=0.7619^{(14)}
$$

The recoverable value percentage (P) for 1971 is

$$
P=0.900
$$

The output-input ratio $\varnothing I(D E L)$ as shown in Appendix 4 has the following values:

$$
\phi I(\text { Dollar })=1.0 \quad \phi I(\text { Energy })=2.4 \quad \phi I(\text { Labor })=2.4
$$

Then the Deflator is given by

$$
D F=0.7619 * 2.4=1.82856
$$

The $I \varnothing$ factors and the Inflators are given in the following table.

	Iø(DEL) (1)	Inflator (10)				
Code Number	Dollar	Energy $\left(x 10^{6}\right)$	Labor $\left(x 10^{-3}\right)$	Dollar	Energy	Labor
7202	-1.0	0.040195	0.184524	0.546	1.029	0.853
3704	-1.0	0.123328	0.083579	0.546	1.029	0.853

Table 29: Estimated values for urban car disposal parameters.

Note that $I \varnothing$ (Dollar) is negative because disposal dollar value is subtracted from overhead. See Figure 1 and related text.
5. DEL Total

As shown in Figure 1 the DEL totals for each system are:
(a) Bus Companies

DELPCO $=\operatorname{BUSOVH}(D E L)+\operatorname{BUSOP}(D E L)+\operatorname{BUSST}(D E L)+S(D E L) x \operatorname{BUSDIS(DEL})$
where DELPCO is the value of DEL per bus company per year in the year 1971.
(b) Urban Cars

$$
\text { DELPCA }=\operatorname{CAROVH}(D E L)+\operatorname{CAROP}(D E L)+\operatorname{CARST}(D E L)+S(D E L) \times \operatorname{CARDIS}(D E L)
$$

where DELPCA is the value of DEL per car per year in the year 1971.

II. Results

The significant results are given in the following subsections. More detailed resuits and supporting evidence may be found in the relevant appendices.

1. Bus Companies (DELPCO) 1971.

The DEL values for bus companies for the year 1971 are given in Table 30. The units are DEL per bus company per year. (DELPCO)

The estimated mean values of DEL per bus company per year are the following:

$$
\begin{aligned}
& \text { Dollars }=10,583.46 \times 10^{3} \\
& \text { Dollars/Bus Co. - year } \\
& \text { Energy }=530.11 \times 10^{9} \\
& \text { Btu/Bus Co. - year } \\
& \text { Labor }=838.63
\end{aligned} \quad \text { Jobs/Bus Co. - year }
$$

2. Urban Car DEL (DELPCA) 1971

The DEL values for urban cars for 1971 are given in Table 3. The units are DEL per car per year.

The estimated mean values of DEL per average car per year are the following:

$$
\begin{array}{lll}
\text { Dollars }=1,353.95 & \text { Dollars/car - year } \\
\text { Energy }=189.98 \times 10^{6} & \text { BTU/car }- \text { year } \\
\text { Labor }=0.08892 & \text { Jobs/car }- \text { year }
\end{array}
$$

Variable	$\begin{array}{r} \text { Doller } \\ \left(\times 10^{3}\right) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{PT}^{*} \\ & (\%) \\ & \hline \end{aligned}$	PGT** $(\%)$	$\begin{aligned} & \text { Energy } \\ & \text { (Btu } \times 10^{9} \text {) } \end{aligned}$	$\begin{aligned} & \mathrm{PT}^{*} \\ & (\%) \end{aligned}$	$\begin{gathered} \text { PGT** } \\ (\%) \\ \hline \end{gathered}$	Labor (jobs)	$\begin{aligned} & \text { PT* } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \text { PGT** }^{*}(\%) \\ \hline \end{gathered}$
OVERHEAD									
Overhead	625.21	100.00	5.91	43.25	100.00	8.16	47.19	100.00	5.63
Total	625.21	100.00	5.91	43.25	100.00	8.16	47.19	100.00	5.63
OPERATION									
General Maintenance	827.74	8.65	7.82	17.11	3.75	3.23	34.92	4.58	4.16
New Tires and Tubes	10.42	0.11	0.10	0.88	0.19	0.17	0.48	0.06	0.06
Retread Tires and Tubes	93.76	0.98	0.89	2.69	0.59	0.51	5.48	0.72	0.65
Repairs	895.61	9.36	8.47	66.87	14.63	12.62	83.79	10.99	9.99
Station	47.83	0.49	0.45	2.58	0.56	0.49	3.23	0.42	0.39
Transportation	945.85	9.88	8.93	21.98	4.81	4.15	74.31	9.75	8.86
Drivers 4	4136.52	43.22	39.09	--	--	--	--	--	--
Driver Year	--	--	--	--	--	--	407.37	53.45	48.58
Fuel Volume Energy	--	--	--	257.05	56.25	48.49	--	--	--
Fuel Cost to Produce	122.16	1.28	1.15	21.24	4.65	4.01	4.25	0.56	0.51
Fuel Cost to Transport	8.05	0.08	0.08	1.30	0.29	0.25	0.43	0.06	0.05
Fuel Cost to Wholesale	75.23	0.79	0.71	2.21	0.48	0.42	6.29	0.83	0.75
Fuel Cost to Retail	24.62	0.26	0.23	0.71	0.16	0.13	11.11	1.46	1.33
Lub. Oil Volume Energy	--	--	--	3.28	0.72	0.62	--	--	--
Lub. Oil Cost to Produce	6.10	0.06	0.06	1.06	0.23	0.20	0.21	0.03	0.03
Lub. Oil Cost to Transport	rt 0.40	0.00	0.00	0.07	0.01	0.01	0.02	0.00	0.00
Lub. Oil Cost to Wholesale	le 3.76	0.04	0.04	0.11	0.02	0.02	0.31	0.04	0.04
Lub. Oil Cost to Retail	1.23	0.01	0.01	0.03	0.00	0.01	0.15	0.02	0.02
Administration 1	1674.20	17.49	15.82	32.98	7.22	6.22	88.19	11.57	10.52
Traffic Services	47.59	0.49	0.45	0.94	0.21	0.18	2.51	0.33	$0 . j u$
Advertising	31.73	0.33	0.30	0.86	0.19	0.16	1.67	0.22	0.20
Insurance	351. 57	3.67	3.32	7.50	1.64	1.42	23.55	3.09	2.81
Licenses	228.23	2.38	2.16	14.97	3.28	2.82	12.84	1.68	1.53
Rents	37.17	0.39	0.35	0.57	0.13	0.11	1.01	0.13	0.12
Total 9	9569.76	100.00	90.42	456.99	100.00	86.21	762.13	100.00	90.88
STREETS									
Taxes	228.23	55.06	2.16	151.30	55.06	2.85	12.21	54.98	1.46
Fuel Volume Tax	186.25	44.94	1.76	123.47	44.94	2.32	9.99	45.02	1.19
Total	414.48	100.00	3.92	274.77	100.00	5.18	22.21	100.00	2.65
DISPOSAL									
Recoverable Value	-23.48	90.00	-0.22	1.78	74.58	0.34	6.76	95.21	0.81
Recyclable Value	-2.61	10.00	-0.03	0.61	25.42	0.12	0.34	4.79	0.04
Total	-26.09	100.00	-0.25	2.39	100.00	0.45	7.10	100.00	0.85
grand total	10,583.46		100.00	530.11		100.00	838.63		100.00

Table 30. DEL per bus company per year (DELPCO)

Variable	Dollar	$\begin{aligned} & \text { PT* } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { PGT** } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Energy } \\ & \left(\mathrm{x} 10^{\mathrm{b}}\right) \end{aligned}$	$\begin{aligned} & \text { PT* } \\ & (\%) \end{aligned}$	$\begin{gathered} \mathrm{PGT}^{*} \\ (\%) \end{gathered}$	$\begin{aligned} & \text { Labor } \\ & \left(\times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{PT}^{*} \\ & (\%) \end{aligned}$	$\begin{gathered} \text { PGT** } \\ (\%) \end{gathered}$
OVERHEAD (DEPRECIATION)									
Manufacture	325.32	68.01	24.02	21.14	77.93	11.13	19.97	60.27	22.46
Rail Transport	4.08	0.85	0.30	0.24	0.90	0.13	0.27	0.82	0.31
Truck, Transport	4.08	0.85	0.30	0.28	1.03	0.15	0.29	0.87	0.32
Wholesale	8.15	1.71	0.60	0.25	0.93	0.13	0.72	2.16	0.81
Retail	66.04	13.81	4.89	4.29	15.82	2.26	8.19	24.70	9.21
Financing Charge	70.65	14.77	5.22	0.92	3.40	0.49	3.70	11.18	4.17
Total	478.83	100.00	35.33	27.13	100.00	14.28	33.14	100.00	37.27
OPERATION									
Maintenance	145.60	19.14	10.75	4.17	2.70	2.20	8.51	17.67	9.57
Repairs	125.00	16.43	9.23	3.58	2.32	1.88	7.31	15.17	8.22
Fuel Volume Energy	--	--	--	117.74	79.19	61.98	--	--	--
Fuel Cost to Produce	93.71	12.32	6.92	16.29	10.54	8.57	3.27	6.78	3.67
Fuel Cost to Transport	8.93	1.18	0.66	1.77	1.15	0.93	0.47	0.97	0.52
Fuel Cost to Wholesale	62.33	8.20	4.60	1.83	1.19	0.97	5.22	10.83	5.87
Fuel Cost to Retail	42.80	5.63	3.16	1.24	0.80	0.65	5.05	10.49	5.68
Insurance	237.40	31.21	17.53	5.07	3.28	2.67	15.90	33.01	17.88
Licenses	19.74	2.60	1.46	1.29	0.84	0.68	1.11	2.30	1.25
Local Government	25.20	3.31	1.86	1.56	1.01	0.82	1.34	2.77	1.50
Total	760.72	100.00	56.19	154.54	100.00	81.35	48.16	100.00	54.16
STREETS									
Fuel Volume Tax	94.14	78.89	6.95	6.24	78.89	3.29	5.05	78.89	5.68
New Constructions	25.20	21.12	1.86	1.67	21.11	0.88	1.35	21.11	1.52
Total	119.34	100.00	8.81	7.91	100.00	4.16	6.40	100.00	7.20
DISPOSAL									
Recoverable Value	-4.03	90.91	-0.29	0.31	76.52	0.16	0.16	95.67	1.31
Recyclable Value	-0.40	9.09	-0.03	0.09	23.48	0.05	0.05	4.33	0.06
Total	-4.43.	100.00	-0.33	0.40	100.00	0.21	1.21	100.00	1.37
GRAND TOTAL	1,353.95		100.00	189.98		100.00	88.92		200.00

Table 3l. DEL per car per year (DELPCA)

[^1]
REFERENCES

1. Herendeen, R. A. (1973). An Energy Input-Output Matrix for the United States, 1963: Users Guide. Center for Advanced Computation Document No. 69. For Labor Data see CAC \#63.
2. U. S. Department of Transportation, Federal Highway Administration (1972). National Personal Transportation Study. Report No. 3. Seasonal Variations of Automobile Trips and Travel. Table l, p. 8.
3. American Transit Association (1972). 1971 Transit Operating Report, Revenues, Expenses, Operating Statistics. Part II and Part V.
4. Automobile Legal Association, Auto and Travel Club (1972). What it costs to run a car. Table I and Table II.
5. American Transit Association (1971-72). 1971-1972 Transit Fact Book, p. 20.
6. Calculated from data given in reference 5 and reference 9 .
7. Based on confidential communications between J. E. Dunwoody and The Cleveland Transit System, General Motors Corporation, Truck and Coach Division and Rohr Industries, Inc. (Jan., Feb., 1973).
8. Calculated from reference 5.
9. Survey of Current Business (1972). "Implicit Price Deflators," U. S. Department of Commerce, Washington, Table 8.8.
10. Herendeen, R. A. and A. Sebald (1973). The Dollar, Energy and Employment Impacts of Certain Consumer Options. Preliminary Report to the Ford Foundation. Appendix A.
11. Reference 4. Report No. 4. Annual Miles of Automobile Travel. Table 8, p. 21.
12. Liston, L. L. and C. L. Gauthier (1972). Cost of Operating an Automobile. U. S. Department of Transportation, Federal Highway Administration, p. ll.
13. Kreher, E. R. (1972). Letter from Automobile Manufacturers Association, Inc. of January l9, citing R. L. Polk and Company and reference 18.
14. Survey of Current Business (1972). Implicit Price Deflators. Tables 8.6, 8.8, 8.1 and 8.7.
15. Bureau of Economic Analysis (1971). Personal Consumption Expenditures in the 1963 Input-Output Study. Survey of Current Business. Jan. Detailed 368 level unpublished data available on request from the BEA, U. S. Department of Commerce.
16. Reardon, W. A. (1972). An Input/Output Analysis of Energy Use Changes from 1947 to 1958 and 1958 to 1963. Batelle Memorial Institute. Table B-l.
17. Calculated from reference 5. See Appendix.
18. Calculated from reference 6. See Appendix.
19. Based on a 15% decrease in urban car mileage per gallon compared with the national average urban and intercity mileage per gallon (13.57 mpg (2) or $14 \mathrm{mpg}(6)$). See Appendix 3 .
20. Federal and State Highway Tax. Reference 2, Table MF-1, p. 10 .
21. This is an estimate. It may be changed to reflect actual experience by any company.
22. The Association of Auto and Truck Recyclers (1972), Introducing the Auto and Truck Parts Recycling Industry, p. 8.
23. Current estimate based on: "Obituary of an Auto" by J. M. Callahan (1962) Automotive News, August 27.
24. The Highway Tax is estimated at $4 \phi /$ gallon federal, and a weighted average of $6 \phi /$ gallon state and local tax on gasoline from R. L. Polk and Company, "Handbook on Trucks in the United States," pp. 8, 9. This may be 1 to l. 2ϕ per gallon underestimated.
25. See Appendix 2 and reference 26.
26. U. S. Department of Transportation. "Summary of National Transportation Statistics." Office of System Analysis and Information. November 1972, p. 20.
27. Puleo, F. "Dollar, Energy and Labor Analysis of Transportation Systems." Technical Memorandum No. 27. Center for Advanced Computation. University of Illinois, Urbana, Illinois. 1974.
28. The Technical Committee on Industrial Classification, Office of Statistical Standards (1957). Standard Industrial Classification Manual.
29. U. S. Department of Commerce (1969). Input-Output Structure of the U. S. Economy: 1963: Vol. l-3.
30. U. S. Department of Commerce (1969). Input-Output Structure of the U. S. Economy: 1963. Combined Transactions and Margins Tape, 367 Industry Level, available from BEA.
31. As per reference 20. Although municipal bus transit companies do not pay either the federal highway tax or their state highway tax, we assume in this model that they still use a proportion of the right-of-way (streets) equal to the amount of highway tax that they would have paid, had they had to pay the tax at the current rate.
32. This is the estimated value received upon disposal of an average, 14.78 year old, urban transit bus. The estimate is based on confidential discussions with the Chicago Transit Authority and the Cleveland Transit System.

APPENDIX 2

FINANCING CHARGE

From the Summary of Transportation Statistics, November 1972, we obtain the following data:

	$\underline{1960}$	$\underline{1970}$
Interest on debt (dollars)	2.777×10^{9}	5.668×10^{9}
Number of vehicle registrations	61.882×10^{6}	82.279×10^{6}

Using a linear extrapolation for the year 1971, we have that the total financing charge (TFC) is given by

$$
T F C=\frac{2.777 \times 10^{9}(1971-1970)-5.668 \times 10^{9}(1971-1960)}{1960-1970}=5.957 \times 10^{9}
$$

Reference:
U. S. Department of Transportation. "Summary of National Transportation Statistics." Office of System Analysis and Information. November 1972. p. 20.

APPENDIX 3

URBAN ADJUSTING FACTOR (UAF)

From references 1,2 , and 3 we have estimates of 13.63 (1969), 13.7 (1970) and 14.00 (1971) miles per gallon respectively. These values are for a national average automobile which, from references 2 and 4 , we find does between 54.9% and 63.9% of its travel in urban areas. Clearly then, the national average estimate of about 14 miles per gallon (mpg) reflects approximately 40% inter-city driving and 60\% urban driving.

In our model we are concerned with a national average automobile whose annual mileage consists solely of urban travel. Such a vehicle will, on the average, obtain a smaller number of miles per gallon than an automobile which does a higher percentage of interurban travel. Apparently the high aerodynamic drag at high speeds does not add the fuel penalty of the start-stop driving of an urban area.

In our model we have chosen to estimate an annual average reduction of 15% in mpg from the national average mpg for a solely urban automobile. For example, this would mean that a car that got 20 mpg on the open highway (60%) would get about 12.5 mpg in urban travel (40%). On this basis, assuming
 17.5% in the amount of fuel consumed by a strictly urban car compared to an average car. Hence, UAF $=1.175 \%$.

REFERENCES

1. Automobile Manufacturers Association, Inc. "1971 Automobile Facts and Figures." 1971. Pg. 57.
2. U. S. Department of Transportation. "Highway Statistics." Federal Highway Administration. 1970. Table VM-1. Pg. 52.
3. Automobile Legal Association, Auto and Travel Club. "What it costs to run a car." 1972. Table I and Table II.
4. U. S. Department of Transportation. "National Personal Transportation Study." 1972. Report No. 2. Table 8. Pg. 21.

APPENDIX 4

DISPOSAL OUTPUT-INPUT RATIO

At the end of their useable life the average urban bus and car bring a dollar return when disposed of, either for scrap metal or reclaimable parts or a combination of both. Disposal of the vehicles in this way actually represents the input to the industrial sector 83.00 , scrap, used and second-hand goods. The scrap portion of this sector which goes into reclaimed metals, etc. may be considered as being distributed throughout the various industrial sectors which produced the vehicle in the first place. Then the cost to produce each new vehicle has contained in it the cost of utilizing that proportion of reclaimed material attributable to it.

The energy and labor costs of the ERG, energy, employment and pollution policy model are based on the dollar value delivered to final demand. However, we only have a measure of the intermediate input value for the disposal of these urban vehicles. To estimate the energy and labor required for their disposal we need to know the value added in order to obtain the total inputs.

Sector 83.00 has no value added according to the input-output structure of the U.S. economy. However, 90% or greater of the value of a disposed car or bus is realized, from the recovery of salvageable parts. As far as this applies to cars and buses we believe that there is a genuine value added in the recovery of these parts. For this reason we have applied the output-input ratio of sector 72.02 , Personal and Repair Services, to evaluating the final demand worth of the disposed vehicles.

From Sector 72.02 we have:

Total Intermediate Inputs	$=3.7 \times 10^{9}$
Value Added	$=5.1 \times 10^{9}$
Total Inputs	$=8.8 \times 10^{9}$

Then the output/input (\varnothing / I) ratio is:

$$
\phi / I=\frac{8.8 \times 10^{9}}{3.7 \times 10}=2.4
$$

REFERENCES

1. U. S. Department of Commerce. "Input-Output Structure of the U. S. Economy, 1963. Transactions Data for Detailed Industries." 1969. Vol. $1 . \mathrm{Pg} .195$.
2. The Association of Auto and Truck Recyclers. "Introducing the Auto and Truck Parts Recycling Industry." 1972. Pg. 8.

ECONOMIC DEFLATORS

The ERG energy, employment and pollution policy model is presently structured for the year 1963. Our data for the urban car and bus systems was collected for the year 1971. The following deflators were used to convert from 1971 to 1963 dollars.

Model, Input Account Name	National Income Product Account		1963 Index	1971 Index	Ratio(1963/1971
	Table	Name			
Manufacture	8.6	New Cars and Net Purchases of Used Cars	101.6	112.7	0.9015
Rail Transport	8.6	Purchased Inter-city Railway Transportation	102.3	140.4	0.7286
Truck Transportation	8.6	Purchased Inter-city Transportation	110.2	139.2	0.7917
Wholesale	8.8	Passenger Cars	101.6	111.4	0.9015
Retail	8.6	New Cars and Net Purchases of Used Cars	101.6	112.7	0.9015
Financing Charge	8.6	Services	118.7	179.8	0.6602
Maintenance	8.6	Tires, Tubes,Accessories and Spares	$93 \cdot 7$	113.3	0.8270
Repairs	8.6	" " "	93.7	113.3	0.8270
Fuel Production	8.6	Gasoline and Oil	103.5	120.5	0.8589
Fuel Transport	8.6	" "	103.5	120.5	0.8589
Fuel Wholesale	8.6	" "	103.5	120.5	0.8589
Fuel Retail	8.6	" "	103.5	120.5	0.8589
Insurance	8.6	Services Furnished----	118.7	179.8	0.6602
Licenses	8.3	Services	112.6	159.4	0.7064
Taxes, Local Gov't.	8.1	State and Local	116.4	175.1	0.6648
Streets	8.7	Highways and Streets	100.6	153.8	0.6541
Disposal	8.8	Sale of Equipment Scrap	83.2	109.2	0.7619

Table 1. Car System Deflators.

Table 2 . Bus System Deflators.

APPENDIX 6

CAR DEL VARIABLE COST PER MILE (VCM)

To compute the DEL variable cost per mile (VCM) corresponding to the use of the car we take the values given in Table 5 of the main report corresponding to the following operation and streets variables:

Operation:
Maintenance
Repairs
Fuel volume energy
Fuel cost to produce
Fuel cost to transport
Fuel cost to wholesale
Fuel cost to retail
Streets:
Fuel volume tax

The DEL variable cost per mile (VCM) is then given by:

$$
\operatorname{VCM}(D E L)=\operatorname{VCOST}(D E L) / M P C Y
$$

where VCOST(DEL) corresponds to the sum of the given variables in dollar, energy, and labor costs respectively. According with Table 5 results:

$$
\begin{array}{lll}
\text { VCOST(Dollar) } & =572.32 & \text { Dollar/car-year } \\
\text { VCOST(Energy) } & =152.32 \times 10^{6} & \text { BTU/car-year } \\
\text { VCOST(Labor) } & =0.03487 & \text { Jobs/car-year }
\end{array}
$$

The variable cost per mile for 11,200 miles per car-year of use (MPCY) are:

$$
\begin{array}{rll}
\text { VCM(Dollar }) & =0.0511 & \text { Dollar/Mile } \\
\text { VCM(Energy }) & =0.0136 \times 10^{6} & \text { BTU/Mile } \\
\text { VCM }(\text { Labor }) & =3.1133 \times 10^{6} & \text { Jobs/Mile }
\end{array}
$$

APPENDIX 7

BUS AVERAGE TRIP LENGTH (BATL)

The average trip length for a bus (BATL) is computed through the total passenger-mile (TPM) and the passengers per bus company (PPCO) in the following form:

$$
\mathrm{BATL}=\frac{T P M}{\text { PPCO }}
$$

but

$$
T P M=T B M * P P B
$$

where

$$
\begin{aligned}
& \text { TBM }=\text { Total miles per bus company per year } \\
& \text { PPB }=\text { Passengers per bus }
\end{aligned}
$$

hence

$$
\mathrm{BATL}=\frac{\mathrm{TBM} * \mathrm{PPB}}{\mathrm{PPCO}}
$$

Values of TBM and PPCO for bus companies used in this report are:

$$
\begin{aligned}
& \text { TBM }=8.3699 \times 10^{6} \quad \text { Miles/Bus Co.-Year } \\
& \\
& \text { PPCO }=0.26725 \times 10^{8} \quad \text { Passengers/Bus Co.-Year }
\end{aligned}
$$

The value of PPB given by reference (2) is:

$$
\mathrm{PPB}=12 \text { Passenger/Bus }
$$

Then the computed value of ATL is:

$$
\mathrm{ATL}=\frac{8.3699 \times 10^{6} \times 12}{0.267250 \times 10^{8}}=3.758
$$

REFERENCES

1. See Appendix 8.
2. French, A. Federal Highway Administration. Highway Statistics Division. November 1973.

APPENDIX 8

STATISTICAL ANALYSIS

Contents:
I. Introduction
2. Methodology
2.1 Variables and Sources of Data
2.2 Dollar, Energy, and Labor Model

References

1. Introduction

A statistical analysis of the direct and indirect dollar, energy, and labor (DEL) costs of shifting passengers from urban cars to buses has been completed. Previous workers have neglected to include the indirect DEL costs in their evaluation of urban transportation systems. Grover (3) developed a comprehensive cost model for urban automobile, bus and rail network flow calculations. This model includes the dollar cost of all the components of each transportation system, but it does not include their indirect costs to the rest of the economy or the energy and labor costs of each system.

The method developed in this report enables computation of both the direct and indirect dollar, energy, and labor costs of operating a transit bus company and an urban car. It is important to realize the limiting assumptions of the model: a) Input/Output modeling assumes a linear relationship between the variables, and b) both passenger transfer models are linear. The car-bus transfer model both for nationwide and individual changes provides a conservative or lower bound estimate of the dollar, energy and labor changes. This is because the DEL cost per passenger of using the bus system is held constant while more passengers are transferred to the system. No cost savings due to economy of scale of operation have been allowed for, although they might reasonably be expected to occur. Welbs and Thomas ${ }^{(4)}$ have shown that the urban bus transit industry was economically more prosperous when it carried an average of 3.24 revenue passengers per vehicle mile in 1960 than it was in 1969 when it carried an average of 2.81 revenue passengers per vehicle mile.

The bus-car model was developed from data supplied by the American Transit Association and the Automobile Legal Association.

From the American Transit Association ${ }^{(1)}$ data, we selected 38 companies (all those possessing complete input account records) from their 143 reporting members. These companies operated 9,731 buses in 1971, the year of our study, or 48% of the total number of buses for which some data was reported. Thus, our study is slightly biased toward the larger companies. Each of these companies reported on 39 common variables which formed the basis of the bus model investigation.

The Automobile Legal Association (2) data was based on average standard size U. S. cars from 28 different major cities, costing $\$ 3,640$ retail in 1971. The data on 8 separate expense variables was available and formed the data set for this model.

Using the $E R G^{\text {a }}$ energy, employment, pollution policy model, a 362 sector linear input-output model developed at the Center for Advanced Computation, we converted these expense variables to the total (direct and indirect) energy and labor which they required. Since the I/O model technology is for 1963 , the latest available complete data, we had to deflate the 1971 expenses to 1963 and then convert 1963 energy and labor costs back to 1971 using suitable energy and labor productivity ratios. The I/O model attempts to account for all activities except the costs of new capital formation. This omission is believed to produce less than a 5% error in the energy and employment estimates.

2. Methodology

To study the bus and car transportation systems all the endogeneous variables, which are potential sources of variation on which the output of the system depends, were taken and classified into four groups according to their
a. Energy Research Group - CAC
characteristics in:
a. overhead variables
b. operation variables
c. streets variables
d. disposal variables

2.1 Variables and Sources of Data

Variables corresponding to the bus companies are given in table l, where exogeneous variables not related with the system are also given. These variables were obtained from data supplied by the American Transit Association (ATA). In table 1 the method of computation is indicated based upon this source of data. For example, general maintenance, variable number 1. (GENM) is given by the relation

$$
\text { GENM }=K(4)-K(5)-K(6)
$$

meaning that the values given in the rows corresponding to key numbers 4,5 , and 6 are used according to this expression in order to compute GENM.

Sometimes values already computed are used to compute another variable. For example, lubricating oil cost to produce, variable number 23 (LUBOCP) is computed using values of variable 22 , lubricating oil cost.

Table 2 corresponds to variables and sources of data of the urban car transportation system. In this case data was supplied by the Automobile Legal Association (ALA) and was taken on basis of 11,200 miles per car-year. 2.2 Dollar, Energy, and Labor (DEL) Model

In order to compute the dollar, energy, and labor values for each system we use the following expression:

Variable	Code	Description	Relationship
Endogeneous			
1	GEMM	General maintenance	$K(4)-K(5)-K(6)$
2	TT	Tires and tubes	K(6)
3	NEWTT	New tires and tubes	$K(6) \times 0.1$
4	RETT	Retread tires and tubes	$\mathrm{K}(6) \times 0.9$
5	REP	Repairs	K (5)
6	STA	Station	K(13)
7	TRAN	Transportation	$K(7)-K(8)-K(9)-K(10)-K(11)-K(12)$
8	DRIV	Drivers	K(8)
9	BUSH	Bus hours	K(32) -3
10	DRIVY	Driver years	$K(32) \times 0.5208 \times 10^{-3}$
11	DIEVOL	Diesel volume	K (35)
12	PROVO-	Propane volume	K(34)
13	GAVOL	Gasoline volume	K(33)
14	FUELVE	Fuel volume energy	$K(35) \times 138238.0+K(34) \times 91500.0+K(33) \times 125071.0$
15	FUELC	Fuel cost	$K(9)+K(10)+K(11)$
16	FUEICP	Fuel cost to produce	$V(16) \times 0.531$
17	FUELCT	Fuel cost to transport	$\mathrm{V}(16) \times 0.035$
18	FUEICW	Fuel cost to wholesale	$V(16) \times 0.327$
19	FUETCR	Fuel cost to retail	$V(16) \times 0.107$
20	LUBOV	Lubricating oil volume	K (36)
21	LUBOVE	Lubricating oil volume energy	$V(21) \times 144286.0$
22	IUBOC	Lubricating oil cost	K(12)
23	LUBOCP	Lubricating oil cost to produce	$V(22) \times 0.531$
24	LUBOCT	Lubricating oil cost to transport	$\mathrm{V}(22) \times 0.035$
25	LUBOCW	Lub. oil cost to wholesale	$V(22) \times 0.327$
26	IUBOCR	Lub, oil cost to retail	$V(22) \times 0.107$
27	ADM	Administration	K (17)
28	TRF	Traffic	K(14)
29	TRFS	Traffic services	$v(28) \times 0.60$
30	ADV	Advertising	$v(28) \times 0.40$
31	INS	Insurance	K (15)
32	TAXL	Taxes and licenses	K (20)
33	LIC	Licenses	$V(32) \times 0.50$
34	STRT	Streets	$V(32) \times 0.50$
35	RENT	Rents	K(21)
Exogeneous			
36	POP	Population	
36 38	ROUTM	Round trip route miles	K(24)
39	TBM	Total bus miles	K(28)
40	REVP	Revenue passengers	K (38)
41	NSTS	Number of seats	--
42	PREV	Passenger revenue	K(3)
43	EMP	Employees	K(27)
44	PRFT	Profit	K(23)

Table 2. Variables and Sources of Data for Bus Company Variables
$K(I) \Rightarrow$ Refers to key number of Section A of ATA 1971.
$V(I) \Rightarrow$ Refers to variable number (I).

$$
\begin{equation*}
Y(I)=\sum_{K=1}^{M} \operatorname{CDEL}(I, K) \times W(I, K) \quad I=I: 3 \tag{I}
\end{equation*}
$$

where

$$
\begin{aligned}
& Y(I)= \text { Dependent variable number (I) corresponding to: } \\
& \text { Dollar }=Y(I) \\
& \text { Energy }=Y(2) \\
& \text { Labor }=Y(3) \\
& M= \text { Number of endogeneous variables } \\
& \operatorname{CDEL}(I, K)= \text { DEL coefficient for independent variable (K) } \\
& \text { and dependent variable (I) }
\end{aligned}
$$

The coefficient $\operatorname{CDEL}(I, K)$ used in equation 1 is given by the following expression:

$$
\begin{equation*}
\operatorname{CDEL}(I, K)=D F(I, K) * I \varnothing(I, K) * I F(I) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{DF}(I, K)= & \begin{array}{l}
\text { Deflator coefficient for independent variable (K) } \\
\text { and dependent variable (I) }
\end{array} \\
I \varnothing(I, K)= & \text { Input-Output coefficient for independent variable } \\
& (K) \text { and dependent variable (I) }
\end{aligned}
$$

All these coefficients were given in Appendix 1.
The mean values of all variables classified into four groups are given in table 3 for bus companies and in table 4 for urban cars for the year 1971.

Table 5 and table 6 gives the statistical characteristic values of each variable related with dollar costs only. Table 7 gives the total dollar, energy, and labor costs statistical characteristics for both systems.

NO.	VARIABLE	$\begin{aligned} & \text { DOLLAR } \\ & (x 103) \end{aligned}$	ENERGY $\left(\text { BTU } \times 10^{9}\right. \text {) }$	$\begin{aligned} & \text { LABOR } \\ & \text { (JOBS) } \end{aligned}$
OVERHEAD				
1	Manufacture	625.217	43.252	47.192
OPERATION				
2	General Maintenance	827.742	17.113	34.921
3	New Tires and Tubes	10.418	0.883	0.484
4	Retread Tires and Tubes	93.761	2.685	5.480
5	Repairs	891.614	66.871	83.786
6	Station	47.829	2.578	3.230
7	Transportation	945.849	21.980	74.312
8	Drivers	4136.520	0.0	0.0
9	Driver Years	0.0	0.0	407.367
10	Fuel Volume Energy	0.0	257.049	0.0
11	Fuel Cost to Produce	122.162	21.235	4.258
12	Fuel Cost to Transport	8.052	1.304	0.428
13	Fuel Cost to Wholesale	75.229	2.212	6.295
14	Fuel Cost to Retail	24.616	0.712	11.113
15	Lub. Oil Volume Energy	0.0	3.284	0.0
16	Lub. Oil Cost to Produce	6.101	1.061	0.213
17	Lub. Oil Cost to Transport	0.402	0.065	0.021
18	Lub. Oil Cost to Wholesale	3.757	0.110	0.314
19	Lub. Oil to Retail	1.229	0.036	0.145
20	Administration	1674.190	32.980	88.193
21	Traffic Services	47.587	0.937	2.507
22	Advertising	31.725	0.856	1.671
23	Insurance	351.572	7.505	23.546
24	Licenses	228.230	14.969	12.836
25	Rents	37.173	0.573	1.010
		STREETS		
26	Taxes	228.230	15.130	12.209
27	Fuel Volume Tax	186.251	12.347	9.999
		DISPOSAL		
28	Recoverable Value	23.485	1.778	6.761
29	Recyclable Value	2.609	0.606	0.340

Table 4: DEL Costs Per Bus Company Per Year (1971)
VARIABLE CCLNT
VAKINALE _ _
VAKIMNCE SKERVEDS

VARIABLE	CCLNT	MEAN		STANLAFC		VAKİANCL		SKEmVEs		くLFTOSIS	
				LEVIATILT							
1	38.	0.62521740	L6	C． $1<643450$		C． 14504480		0．30Uうj770		0．879	01
2	38.	U．82774220	C6	c． 24225850	$\checkmark 7$	U．587u855	15	0.44504050	U1	L． $2 \cup 479860$	C2
3	38.	0.10417880°	c 5	C． 258615 CL	C5	0.60881140	09	0.35202840	U1	U．1141552L	C2
4	30.	$0.9376059 i$	05	0.2327530 C	U0	U． 54174 くbu	11	U． 35202040	01	0.1147551 C	C2
5	38.	C． 8450142 L	06	C． 25246800	U 7	U．6374u510	13	U．44003）70	UL	し．15465550	C2
6	38.	0.4782863 J	05	C．2360626	Cb	0.55725630	11	J． 55012550	U1	0.2967281 L	C2
7	38.	C． 945444	06	C．36617740	¢ 7	U．12572016	14	U．5u3480la		v． 2551639 C	02
8	36.	0.41365210	07	L．10UU7E4C	vo	U．1U615240	15	U． 10607670	$\checkmark 1$	C． 1363506 C	c2
9	38.	0.40736680	03	C．88805200	C3	0.7887074 L	C6	0.3550155 L	01	0.1277937 C	02
10	38.	U．2b7U4 0 U	12	C． 3264758 C	12	U．277161UC	24	U．318944UL		C． 58340110	C1
11	38.	0.1221617 D	C6	C． 251725 bi	00	0.03365710	11	0.32309410	$\cup 1$	U．10274010	02
12	38.	C．80520910	04	U．16592C7L	05	0.2752968 D	09	0.32309400	01	$0.10274 C 10$	L2
13	38.	$0.7522954 D$	05	v．1550174L	Ut	U． 24030380	11	U．323Jソ410	01	0.1027401 C	02
14	38.	$0.246164 C D$	05	$0.507<434 \mathrm{~L}$	00	0． 25729550	10	0.323009410	U1	0.10274010	02
15	38.	0.32637360	10	C．7627C66C	IC	$0.5817 \angle 14 \mathrm{~L}$	20	0.35039290	Ui	U．1139575C	C2
16	38.	0.61008680	04	c．11541070	45	U．142589UL	Us	U． 324 OU8 0 C	U1	0.1003346 C	02
17	jo．	0.40212870	03	C． 7870759 L	¢3	0.61940840	U6	0.324 duob0	い	C． 10033460	02
18	38.	J． 5757 LJID	04	C．73525370	$\checkmark 4$	0.54074500	$\checkmark 8$	U．3240000L	U1	C．16033460	$\stackrel{1}{ }$
19	38.	0.12253650	04	c． 24.66030	04	～．57898130	07	0.32400080	$\cup 1$	c． 10033460	02
20	38.	0.16741550	C 7	c．59242530	c 7	U．3515004D	14	U． 50251590	Ul	C． 2553833 C	02
21	38.	0.47587270	J5		Ct	U．1206248L	11	$0.29510 \angle 9 D$	01	0.8782481 C	01
22	38.	0.31724840	C5	C． $73<1550 L$	Uら	0.33011040	16	$0.24510<40$	U1	0.8782482 C	01
23	38.	U．35157160	co	C． 87212760	U6	U． 1606066 D	12	0.35490070	ᄂ1	0.1172852 D	02
24	38.	0.22823020	C6	6．54801895	C6	0.30032480	12	U．37808200	01	U．1459258D	02
25	38.	0.37172710	05	C．15161く6－	06	U． 22986150	11	0.54176594		C．29098180	02
26	38.	0． 2262302 D	C6	C．54801690	06	U．300324bL	12	U．37860くUU	U1	0.14592580	02
27	38.	0.18625050	U6	C． 3801714 C	i6	U．144ヶ64UL	12	0.31901590	01	C．9838325C	01
28	38.	0.23404750	C5	C． 4523833 C	45	U． 20465070	10	U．3005377D	ul	0.87324030	01
29	38.	U．26094210	04	C． $5 \mathrm{C}<6481 \mathrm{C}$	－4	U． 25265510	00	0．3UU53770	01	U．8732405C	01

NO.	VARIABLE	DOLLAR	$\begin{aligned} & \text { ENERGY }{ }^{\text {EN }} \text {) } \end{aligned}$	$\begin{gathered} \text { LABOR } \\ \left(\mathrm{JOBSx}^{-3}\right) \end{gathered}$
OVERHEAD				
1	Manufacture	325.328	21.141	19.974
2	Rail Transport	4.077	0.242	0.272
3	Truck Transport	4.077	0.279	0.288
4	Wholesale	8.154	0.251	0.716
5	Retail	66.044	4.292	8.185
6	Financing Charge	70.648	0.922	3.703
OPERATION				
7	Maintenance	145.600	4.169	8.509
8	Repairs	125.000	3.579	7.305
9	Fuel Volume Energy	0.0	117.738	0.0
10	Fuel Cost to Produce	93.710	16.289	3.266
11	Fuel Cost to Transport	8.935	1.773	0.466
12	Fuel Cost to Wholesale	62.335	1.833	5.216
13	Fuel Cost to Retail	42.803	1.238	5.052
14	Insurance	237.399	5.068	15.899
15	Licenses	19.740	1.295	1.110
16	Local Government	25.198	1.557	1.335

STREETS
Fuel Volume Tax
New Constructions
94.137
6.241
5.054

Recoverable Value
4.032
0.305
1.161

Recyclable Value
0.403
0.094
0.053

Table 5: DEL costs per urban car per year (1971)

KURTOSIS
0.1681146 D 02
0.1261673 D 02
0.1595654 D 02
0.2692981 D 01
0.5334302 D 00
0.2760635 D 01

STANDARD DEVIATION	VARIANCE	SKEWNESS
0.2831010D 08	0.8014616 D 15	0.4063035 D 01
0.1217215 D 13	0.1481613 D 25	0.3574356 D 01
0.2093154 D 04	0.4381295 D 07	0.3959030 D 01
0.9129908 D 02	0.8335522 D 04	0.1642493 D 01
0.3231956 D 07	0.1044554 D 14	0.5388319 D 00
0.5951514 D 02	0.3542052 D 04	0.1677837 D 01

COUNT	MEAN
38	0.1058337 D 08
38	0.5301101 D 12
38	0.8386324 D 03
28	0.1353947 D 04
28	0.1899781 D 09
28	0.8891919 D 01

ENTITY

Bus Companies | Dollar |
| :--- |
| Energy |
| Labor |
| Urban Car | Dollar

Energy
Labor

From table 7 three observations are drawn:
a. The potential variation of the estimated mean DEL costs of the bus companies are ± 87 percent, ± 47 percent, and 79 percent respectively, and for the $u r b a n$ car are ± 2 percent, ± 0.3 percent, and ± 2 percent respectively. This means that the estimated means for bus companies must be used with caution.
b. The bus companies data have a leptokurtic distribution, that is, the variance is high and the distribution has a high positive skewness with a high kurtosis.
c. The urban car data has a platykurtic distribution, that is, it has a small variance and small positive skewness with small kurtosis.

The skewness is a measure of the lack of symmetry in a distribution, whose value is zero for a symmetrical distribution. Kurtosis is the relative peakedness or flatness of a distribution, whose value is equal to three for the normal distribution.

1. American Transit Association (1972). "1971 Transit Operating Report: Revenues, Expenses, and Operating Statistics." Part II and Part V.
2. Automobile Legal Association, Auto and Travel Club (1972). "What it costs to run a car." Table I and Table II.
3. Grover, C. A. (1968). Cost Models of Present Urban Transportation Systems for Network Flow Calculations. General Research Corporation, IMR-600.
4. Wells, J. D. and S. Thomas (1972). Economic Characteristics of the Urban Bus Transit Industry, 1960-1970. Table 3.19 in Economic Characteristics of the Urban Public Transportation Industry. Institute for Defense Analysis.

APPENDIX 9
 FRACTIONAL DISTRIBUTION OF THE DOLLAR, ENERGY, AND LABOR COSTS FOR BUS COMPANIES AND URBAN CARS

Contents:

1. Introduction
2. Fractional Distribution

The transportation systems under study in this report and bus companies and urban cars which have attributes measured over twenty-nine variables for the bus companies and over twenty variables for the urban car. All these variables were given in Appendix 1 and in Appendix 8.

In this appendix energy costs have been divided into four additional categories: coal energy, refined petroleum energy, electricity and gas energy.
2. Fractional Distribution

Tables 1 and 2 give values of dollar, energy, and labor costs in per unit of each total as was given in Appendix 1.

For bus companies, Table l, we can see that variable 8 (drivers) and 20 (administration) have 55 percent of the total expenses. Variables 5 (repairs) and 10 (fuel volume energy) have 61 percent of the energy requirements and variables 9 (driver years) and 20 (administration) have 59 percent of the labor utilized.

In the urban car, variables 1 (manufacture), 7 (maintenance), and 14 (insurance) have 52 percent of the total expenses. Variables 1 (manufacture) and 9 (fuel volume energy) have 73 percent of the energy requirements, and variables 1 (manufacture) and 14 (insurance) have 40 percent of the labor utilized.

urbation of the dollar, energy, and labor costs for
urb 1971

APPENDIX 10

PATH ANALYSIS

Content:

1. Introduction
2. Statistical Models
3. Sensitivity and Elasticity for Bus and Car Transportation Systems
4. Path Analysis
5. Results
6. Introduction

To study the bus and car transportation systems we have classified their variables in the following way:

a. State Variables

These variables are the sources of variation that account for the greatest reduction in variance of the output. When linear multiple regression is used to estimate these variables, they make the greatest improvement in "goodness of fit" or, stated in another way, they are variables which are significant in the regression equation. These variables may be determined using the stepwise linear multiple regression method with an F statistical criterion.

b. Relational Variables

They are all the remaining non-significant variables which can be related to the state variables through some linear or non-linear function.

2. Statistical Models

In order to describe the inherent structure of selected aspects (Dollar, Energy, Labor) of both systems, we can use two kinds of models through which to express the relationship of the state variables with the output in which we are interested.
a. Linear Model

In this model the equation relating the state variables with the outputs is linear and has the following form:

$$
\begin{equation*}
Y(I)=\hat{Y}(I)+E(I) \quad I=1: 3 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
Y(I)= & \text { Dependent variable number }(I) \\
& \text { corresponding to } \\
& \text { Dollar }=Y(I) \\
& \text { Energy }=Y(2) \\
& \text { Labor }=Y(3) \\
\hat{Y}(I)= & \text { Estimated linear value of } Y(I) \\
E(I)= & \text { Error value of } Y(I)
\end{aligned}
$$

Using stepwise linear multiple regression we can determine the "significant" variables which explain the maximum amount of variance. By definition, these are the state variables of the systems. The estimated dependent variable $\widehat{Y}(I)$ is given by

$$
\begin{equation*}
\hat{Y}(I)=A(I, O)+\sum_{j=1}^{P} A(I, J) \times Z(I, J) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{P}= & \text { Number of state variables for a } \\
& \text { certain value of the coefficient } \\
& \text { of determination } R^{2} .
\end{aligned}
$$

b. Power Model

In this model the equation relating the state variables with outputs is a power function of the following form:

$$
\begin{equation*}
Y(I)=\hat{Y}(I) \times E(I) \quad J=1: 3 \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& Y(I)=\text { Dependent variable } \\
& \hat{Y}(I)=\text { Estimated power value of } Y(I) \\
& E(I)=\text { Error value of } Y(I)
\end{aligned}
$$

Using stepwise linear multiple regression applied to the logarithm of each variable which explains the maximum amount of the variance, we obtained the following expression for the estimated dependent variable

$$
\begin{equation*}
\hat{Y}(I)=B(I, O){\underset{i=l}{P}}_{x_{i=1}}^{Z(I, J)} \times x B(I, J) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
B(I, O)= & \text { Independent coefficient } \\
B(I, J)= & \text { Power coefficient of state } \\
& \text { variable } Z(I, J) \\
P= & \text { Number of state variables for } \\
& \text { a certain value of the coeffi- } \\
& \text { cient of determination, } R^{2} .
\end{aligned}
$$

3. Sensitivity and Elasticity for Bus and Car Transportation Systems

Both models can be used to study the possible changes in the car and bus systems. This is done by calculating the sensitivity and elasticity for each system from its state variables.

a. Sensitivity

From the linear model we obtain

$$
\begin{equation*}
\frac{\partial Y(I)}{\partial Z(J)}=A(I, J) \doteq \frac{\Delta Y(I)}{\Delta X(J)} \tag{5}
\end{equation*}
$$

This relationsbip represents the change in the dependent variable $Y(I)$ per unit of change in the state variable $Z(J)$.
b. Elasticity

From the power model we obtain:

$$
\begin{equation*}
\frac{\partial Y(I) / Y(I)}{\partial Z(J) / Z(J)}=B(I, J) \doteq \frac{\Delta Y(I) / Y(I)}{\Delta Z(J) / Z(J)} \tag{6}
\end{equation*}
$$

This relationship represents the percentage of change in the dependent variable $Y(I)$ per percentage unit of change in $Z(J)$. 4. Path Analysis

If we express all of the variables in standard form then the technique of path analysis can be used to represent the bus and car transportation systems. This technique deals with observed interrelated variables for which it can be assumed that there are several "ultimate" variables that completely determine the behavior of the system.

Using the state variables and the relational variables we can represent the system as in Fig. l, where the coefficients correspond to the standard regression coefficients and the error is calculated by

$$
\begin{equation*}
e(I)=\sqrt{1-R(I)^{2}} \tag{7}
\end{equation*}
$$

5. Results

Using data from thirty-eight bus companies and urban car operations in twenty-eight major U.S. cities, all in 1971, and following the model given in the main text of this report the results are as follows.
a. Linear Model

Stepwise multiple regression was used to compute the linear models for the bus and car transportation systems. The corresponding coefficients and variables are given in Tables 1 and 2 respectively, where:

$$
\begin{aligned}
P & =\text { Number of state variables } \\
R^{2} & =\text { Coefficient of Determination } \\
M & =\text { Mean Value }
\end{aligned}
$$

FIG. 1 GENERAL PATH DIAGRAM.

$$
\begin{aligned}
\text { Sy }= & \text { Standard error of estimated dependent variable. } \\
\text { Se }= & \text { Standard error of estimate. } \\
\text { Se/M }= & \text { Ratio of Se with the mean value of the dependent } \\
& \text { variable. } \\
()= & \text { Number in parenthesis correspond to the variable } \\
& \text { number. }
\end{aligned}
$$

b. Power Model

Stepwise multiple regression was used to compute the power models for the bus and car transportation systems. The corresponding coefficients and variables are given in Tables 3 and 4 respectively. c. Sensitivity and Elasticity

The sensitivities of each system to the state variables are given by the coefficient $A(I, J)$ which are given in Table 1 for bus companies and in Table 2 for urban cars.

The elasticities of each system to the state variables are given by the coefficient $B(I, J)$ and these are given in Table 3 for bus companies and in Table 4 for urban cars.

d. Path Analysis

The corresponding path diagrams for dollars, energy and labor for the bus and car transportation systems are shown in Figs. 2 and 3. For the sake of simplicity, the relational variables have been omitted in these figures.

These figures show the values for the standard regression coefficients ($b_{i j}$). The standard regression coefficients are a measure of the relative importance of each variable in explaining the variance of the dependent variable.

POWER MODEL

FIG. 3 PATH DIAGRAMS OF THE CAR TRANSPORTATION SYSTEM.

POWER MODEL

FIG. 2 PATH DIAGRAMS OF THE BUS TRANSPORTATION SYSTEM.

	DOLLAR	ENERGY	LABOR
P	5	5	5
M	10.583×10^{6}	530.109×10^{9}	838.630
R^{2}	0.999	0.999	0.999
Sy	0.183×10^{5}	0.151×10^{10}	2.520
Se	0.112×10^{6}	0.916×10^{10}	15.330
Se / M	0.011	0.017	0.018
A($I, 0$)	0.269×10^{5}	-0.545×10^{9}	-3.075
A(I, I)	1.039	0.195×10^{6}	0.188×10^{-3}
A (1,2)	1.374	0.253×10^{6}	0.262×10^{-4}
A (1,3)	1.705	62.367×10^{6}	1.066
A (1,4)	4.413	0.863	0.679×10^{-4}
A(1,5)	2.176	1.284×10^{6}	0.464×10^{-3}
Z (1,1)	Repairs (5)	Repairs (5)	Repairs (5)
Z (1,2)	Drivers (8)	Station (6)	Drivers (8)
$Z(I, 3)$	Administration (20)	Driver Years (9)	Driver Years (9)
Z (I, 4)	Licenses (24)	Fuel Vol. En. (10)	Administration (20)
$\mathrm{Z}(\mathrm{I}, 5)$	Rents (25)	Fuel Cost to Whol. (13)	Rents (25)

Table 1. Linear Model of the Bus Transportation System.

DOLLAR
5
1353.950
1.000
0.131×10^{-4}
0.680×10^{-4}
0.0000
744.923
0.799×10^{-6}
0.232×10^{2}
$A(1,2)$
1.000
0.999
1.999

Fuel Vol. Energy
$Z(I, 2) \quad$ Fuel Cost to Transport (ll)
Insurance
Z(I,4) Licenses
$Z(I, 5)$ Local Gov.
$A(I, 0)$
$A(I, I)$
$A(I, 3)$
A($I, 4$)
$A(I, 5)$
$Z(I, 1) \quad$ Fuel Vol. Energy
$Z(I, 3)$

Loc.

ENERGY
5
189.978×10^{6}
1.000
6.696
34.795
0.0000
0.0000
(14)
(15)
(16)
(9) Fuel Cost to Tr . (11)
(14)
(15)

Fuel Vol. Tax
(17)

Fuel Cost to Tr . (ll)
Insurance
Licenses
Local Gov.
Fuel Vol. Tax

Table 2. Linear Model of the Urban Car Transportation System.

	DOLLAR		ENERGY		LABOR	
P	5		5		5	
M	7.025		11.724		2.924	
R^{2}	0.999		0.999		0.999	
Sy	0.344×10^{-2}		0.264×10^{-2}		0.246×10^{-2}	
Se	0.209×10^{-1}		0.016		0.015	
Se / M	0.003		0.001		0.005	
$B(I, 0)$	8.954		139.959		0.146	
$B(I, 1)$	0.127		0.146		0.125	
$B(I, 2)$	0.046		0.693		0.040	
$B(I, 3)$	0.505		0.044		0.609	
$B(I, 4)$	0.162		-0.009		0.107	
$B(I, 5)$	0.159		0.126		0.119	
$Z(I, 1)$	Repairs	(5)	Repairs	(5)	Repairs	(5)
$Z(I, 2)$	Transportation	(7)	Fuel Vol. En	(10)	Transportation	(7)
$Z(I, 3)$	Drivers	(8)	Administration	(20)	Driver Years	(9)
$Z(I, 4)$	Administration	(20)	Traffic Serv.	(21)	Administration	(20)
$Z(I, 5)$	Recov. Value	(28)	Recov. Value	(28)	Recov. Value	(28)

Table 3. Power Model of the Bus Transportation System.

P	4		5		4	
M	3.132		8.279		-1.051	
R^{2}	0.973		0.956		0.977	
Sy	0.948×10^{-3}		0.329×10^{-3}		0.882×10^{-3}	
Se	0.493×10^{-2}		0.171×10^{-2}		0.418×10^{-2}	
Se / M	0.0015		0.0002		0.0043	
$B(I, 0)$	1.649		1.335×10^{6}		0.183×10^{-3}	
$B(1,1)$	0.179		0.113		0.182	
$B(I, 2)$	0.202		0.035		0.205	
$B(1,3)$	0.019		0.271×10^{-2}		0.016	
$B(1,4)$	1.041		0.848×10^{-2}		0.924	
$B(I, 5)$	--		0.928		--	
$Z(I, I)$	Fuel Cost to Pr.	(10)	Fuel Cost to Pr.	(10)	Fuel Cost to Pr .	(10)
$Z(I, 2)$	Insurance	(14)	Insurance	(14)	Insurance	(14)
$Z(I, 3)$	Local Gov.	(16)	Licenses	(15)	Local Gov.	(16)
$Z(I, 4)$	Fuel Vol. Tax	(17)	Local Gov.	(16)	Fuel Vol. Tax	(17)
$Z(1,5)$	--		Fuel Vol. Tax	(17)	--	

Table 4. Power Model of the Urban Transportation System.

[^0]: \square

[^1]: *PT = Percent of Total
 **PGT $=$ Percent of Grand Total

