LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
510.84 Il63c no.1-10

AUG $\quad 51976$

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

Digitized by the Internet Archive in 2012 with funding from
 University of Illinois Urbana-Champaign

Center for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801

CAC Document No. 5
ANALYSIS OF SIMULTANEOUS OPERATIONS
AND MEMMORY CONFLICT IN
A MULTIMEMORY COMPUIER SYSTHM

by

Luther C. Abel
March 15, 1971

CAC Document No. 5

ANALYSIS OF SIMULTANEOUS OPERATIONS AND MEMORY CONFLICT IN A MULTIMEMORY COMPUTER SYSTEM

> by

Luther C. Abel

Center for Advanced Computation
University of Illinois at Urbana-Champaign Urbana, Illinois 61801

March 15, 1971

ABSTRACT

This paper is an extension of the work of Shemer and Gupta [4] on the effect of multiple independent memory modules on processor efficiency and throughput. Their conclusions, although valid, were unnecessarily restricted. The results derived herein expand them to include instructions of differing execution times, instructions which do not require memory access, single as well as multiple instruction fetch and single as well as multiple word data fetches, plus the effects of a non-Poisson high-rate input-output device such as a swapping disk. An example of the application of the results to the ILLIAC IV computer system is given.

TABLE OF CONTENTS

PageINTRODUCTION1
SYSTEM MODET AND OPERATION 2
ANALYSIS 6
EXAMPLE 18
REFERENCES 23

IIST OF FIGURES

Figure Page

1. System Configuration 3
2. Generalized $\operatorname{Pr}\left[I_{k}\right]$ Curve 11
3. Typical $\operatorname{Pr}\left[\mathrm{I}_{\mathrm{k}}\right]$ Curve With Exponential Approximation 11

LIST OF TABLES

Table Page

1. ILLIAC IV PE Instruction Useage 19
2. Instruction Sets 20
3. Memory-oriented Pseudo-instruction Set 20
4. Probability of Processor Self-interference and Expected Delay 21

This paper is an extension of the work of Shemer and Gupta [4] on the effect of multiple independent memory modules on processor efficiency and throughput. Their conclusions, although valid, were unnecessarily restricted. For example, their results were derived under the clearly unrealistic assumption that the execution times of all processor instructions were equal. The results derived herein expand Shemer and Gupta's results in that instructions of differing execution times, instructions which do not require memory access, single as well as multiple instruction fetch, and single as well as multiple word data fetches are permitted and the effects of a non-Poisson high-rate input-output device such as a swapping disk are included.

Consider the system configuration shown in Figure l. The processor and input-output controller have independent data paths for communication with each of the \mathbb{N} (the notation of Shemer and Gupta [4] will be used insofar as applicable) independent memory modules which form the primary memory of the system. In order to minimize data queue lengths in the input-output controller (typically only a one word queue is implemented) and to prevent obliteration of waiting data by other closely following data, memory cycle requests from the input-output controller are given non-preemptive priority over those from the processor.

M contiguous words are fetched simultaneously at any memory access. For $M>1$, this corresponds to the concept of fetching an M-word superword. Addresses are interlaced among the independent memory banks such that address "a" is in memory bank (a div M mod \mathbb{N}). The processor fetches M instructions simultaneously, and M^{\prime} of these require an operand from memory. Thus each M instructions require $M^{\prime}+1$ memory cycles. It is assumed that all memory cycles require time C.

Let the instruction set of the processor consist of a repertoire of R instmuctions, $g_{I}, g_{2}, \ldots, g_{R}$ of length $r_{I}, r_{2}, \ldots, r_{R}$ respectively. We add to this instruction set the instruction fetch operation g_{0}, which requires time r_{0} between initiation and execution of the first fetched instruction.

Some of the R instructions require memory accesses during their execution, others do not. Without loss of generality, let us order the elements of the instruction set such that the first Q - I instmuctions require a memory cycle. We then define

$$
\begin{aligned}
& G^{\prime}=\left\{g_{i} \mid 0 \leq i \leq Q-I\right\} \\
& G^{\prime \prime}=\left\{g_{i} \mid Q \leq i \leq R\right\} .
\end{aligned}
$$

To convert this instmetion set $G=G^{\prime} U G^{\prime \prime}$ into a memory-oriented set

Figure 1. System Configuration
of operations, we define

$$
h_{i}^{k}=\left\{\left(g_{i}, g_{x}, g_{y}, \ldots, g_{z}, G^{\prime}\right) \mid g_{i} \in G^{\prime}, h_{x}, h_{y}, \ldots h_{z} \in G^{\prime \prime}\right\}
$$

That is, h_{i}^{k} is a n-tuple consisting of the $i^{\text {th }}$ processor instruction which requires a memory cycle, followed by some number of non-memory accessing instructions, and terminated by any instruction which does require a memory access. The superscript k is simply a member of the index set which allows us to record all possible sequences of the instruction g_{i} followed by some number of non-memory reference instructions before the next instruction requiring a memory access.

Associated with each $h_{i}{ }^{i}$ there is an execution time

$$
t_{i}^{k}=r_{i}+r_{x}+r_{y}+\ldots+r_{z}
$$

(note that it does not include the time to execute the terminating, memoryreferencing instruction). Each h_{i}^{k} occurs with a certain probability, $\operatorname{PR}\left[h_{i}^{k}\right]$, in an instruction stream.

We now define

$$
h_{i}=U_{k} h_{i}^{k}
$$

The set

$$
H=\left\{h_{i}\right\}
$$

is then a memory-oriented pseudo-instruction set for the processor. Associated with each pseudo-instruction, h_{i}, is a probability

$$
\operatorname{Pr}\left[h_{i}\right]=\sum_{k} \operatorname{Pr}\left[h_{i}^{k}\right]
$$

and an average execution time

$$
t_{i}=\sum_{k} \operatorname{Pr}\left[h_{i}^{k}\right] t_{i}^{k}
$$

average duration of a pseudo-instruction is the expectation of t_{i},

$$
E[T]=\sum_{i=0}^{Q-1} \operatorname{Pr}\left[h_{i}\right] t_{i} .
$$

A number of questions arise:
lat is the probability that a processor's memory access will be delayed ecause of input-output traffic, as a function of that traffic density? urther, what is the average duration of such a delay, and how does the perormance of the likelihood that the processor will be delayed, either by itelf or by an input-output transaction? In the following section, the analysis
ill seek to answer these questions.

ANALYSIS

An exact, detailed analysis would be extremely difficult, requiring differing conditional relations for each step of a program describing the previous history of the program and its environment and the current state of all components of the system. The system is therefore examined on a statistical basis assuming: a) stationary conditions, b) generation of memory requests by the input-output controller is characterized by a combination of a Poisson process and a high speed device (such as a swapping disk) generating requests at a uniform rate, c) if the processor is denied a memory access during execution of an instruction, it will wait rather than proceed with any other task.

The input-output controller is assumed to be simultaneously regulating and providing memory service for a large number of peripherals such as tapes, printers, card equipment, and teletypes. Since memory requests arise from a large number of independent sources, the generation of memory commands by the input-output controller is considered to be partially governed by a Poisson phenomenon with cumulative request rate λ. It is assumed that the input-output controller also services a high speed device which generates memory access requests with uniform rate γ when actuated. This device has a probability of being actuated (i.e., a duty cycle) of $\operatorname{Pr}[\mathrm{X}]$.

Since there are N independent memory banks and addresses are interlaced among them, it is reasonable to assume that the cumulative demands λ and γ are evenly divided among all N memories. Since each memory cycle is of length C, the input-output controller imposes a load

$$
\begin{aligned}
\rho & =\frac{\lambda C}{N}+\frac{\operatorname{Pr}[X] \gamma C}{N} \\
& =\frac{(\lambda+\operatorname{PR}[X] \gamma) C}{N} \\
& =\frac{\zeta C}{N} \quad \text { where } \zeta=\lambda+\operatorname{PR}[X] \gamma .
\end{aligned}
$$

Therefore under stationary conditions with $\rho<1$, the probability that k out of N memory modules are not busy is

$$
\operatorname{Pr}[k]=\binom{N}{k} \quad(1-\rho)^{k} \rho^{N-k} .
$$

We denote by " A " the event that the processor does not experience delay in memory access due to input-output servicing. Assuming independence between processor and input-output memory access addresses,

$$
\operatorname{Pr}[A \mid k]=k / \mathbb{N}
$$

Averaging over all values of k, we obtain

$$
\operatorname{Pr}[A]=\sum_{k=1}^{\mathbb{N}} \frac{k}{N}\binom{N}{k}(l-\rho)^{k} \rho^{N-k}
$$

Closing the series,

$$
\operatorname{Pr}[A]=(1-\rho)
$$

This should not be a surprising result, since if ρ is the probability that a memory bank will be busy servicing an input-output controller request then l - ρ should be the probability that the bank is available to the processor.

Even if the processor requests a memory cycle from a memory bank which is not servicing an input-output controller command, it is still possible for the servicing of the request to be delayed if the memory bank is still busy servicing a previous processor request.

Let

$$
S^{k}=\left\{S_{1}^{k}, S_{2}^{k}, \ldots, S_{Q}^{K}\right\}
$$

where S_{j}^{k} is the k-tuple of memory-oriented pseudo-instructions $\left(h_{x}, h_{y}, \ldots, h_{z}\right), x, y, \ldots z \in\{0,1,2, \ldots, Q-1\}$, and j is the image of $x, y, \ldots ., z$ in a l-l mapping of k-tuples of non-negative integers less than Q onto the positive integers not greater than Q^{k}.

$$
T_{j}^{k}=t_{x}+t_{y}+\ldots+t_{z}
$$

is the time required to execute the pseudo-instruction sequence s_{j}^{k} if no delay occurs. The expectation $E\left[T^{k}\right]$ is the average value of $T_{j} k$,

$$
E\left[T^{k}\right]=\sum_{j=1}^{Q^{k}} \operatorname{Pr}\left[S_{j}^{k}\right] T_{j}^{k}
$$

Now consider the execution of a sequence of k memory-oriented pseudo-instructions. Let $\operatorname{Pr}\left[I_{k}{ }^{\prime}\right]$ be the probability that the input-output controller requests access to a particular memory bank due to the high speed swapping device, and $\operatorname{Pr}\left[I_{k}{ }^{\prime \prime}\right]$ the probability of an input-output generated cycle in that same memory due to any of the other input-out devices. Then

$$
\operatorname{Pr}\left[I_{k}{ }^{\prime}\right]=\sum_{j=1}^{Q^{k}} \operatorname{Pr}\left[S_{j}^{k}\right] \operatorname{Pr}[X] \min \left(1, \frac{\gamma \mathrm{~T}_{j}^{k}}{N}\right)
$$

and

$$
\operatorname{Pr}\left[I_{k}{ }^{\prime \prime}\right]=\sum_{j=1}^{Q^{k}} \operatorname{Pr}\left[S_{j}^{k}\right]\left(1-\exp \left(-\lambda T_{j}^{k} / \mathbb{N}\right)\right)
$$

These probabilities are of interest in the following work for small values of k only; contemporary primary and secondary memory speeds result in

$$
\frac{\gamma \mathrm{T}_{\mathrm{j}}^{\mathrm{k}}}{\mathrm{~N}} \leq 1
$$

for small k. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[I_{k}^{\prime}\right] & =\operatorname{Pr}[X] \sum_{j=1}^{Q^{k}} \operatorname{Pr}\left[S_{j}^{k}\right] \quad{ }_{N}^{N} T_{j}^{k} \\
& =\operatorname{Pr}[X] \frac{\gamma}{N} E\left[T^{k}\right] .
\end{aligned}
$$

The cumulative request rate λ is quite small also. Typically, each word transferred to a computer's memory by an input-output device (other than a swapping disk which has been considered separately) will require several processor cycles of manipulation. Therefore, $\lambda \ll l$ and for small k the approximation

$$
1-\exp \left(-\lambda T_{j}^{k} / \mathbb{N}\right)=\lambda T_{j}^{k} / \mathbb{N}
$$

zan be used. Then

$$
\begin{aligned}
\operatorname{Pr}\left[I_{k}^{\prime \prime}\right] & =\sum_{j=1}^{Q^{k}} \operatorname{Pr}\left[S_{j}^{k}\right](\lambda / N) T_{j}^{k} \\
& =(\lambda / \mathbb{N}) E\left[T^{k}\right] .
\end{aligned}
$$

Let K_{k} denote the event that no input-output controller memory access xcurs in a particular memory bank during the execution of k pseudo-instructions by the processor. Then

$$
\operatorname{Pr}\left[K_{k}\right]=1-\operatorname{Pr}\left[I_{k}^{\prime}\right]-\operatorname{Pr}\left[I_{k}^{\prime \prime}\right]
$$

Again for small values of k which are of interest,

$$
\begin{aligned}
\operatorname{Pr}\left[K_{k}\right] & =1-\operatorname{Pr}[\mathrm{X}](\gamma / \mathbb{N}) E\left[T^{k}\right]-(\lambda / \mathbb{N}) E\left[T^{k}\right] \\
& =1-\left(E\left[T^{k}\right] / \mathbb{N}\right)(\lambda+\gamma \operatorname{Pr}[\mathrm{X}]) .
\end{aligned}
$$

Jsing the previously defined $\zeta=\lambda+\gamma \operatorname{Pr}[X]$,

$$
\operatorname{Pr}\left[K_{k}\right]=1-(\zeta / \mathbb{N}) E\left[T^{k}\right]
$$

The probability of occurrence of one of the Q pseudo-operation codes in, e.g., the $i^{\text {th }}$ position of an instruction sequence of length k is certainly not uncorrelated with the occurrence of certain operations in the other $\mathrm{k}-1$ positions. For example, a store operation is almost certainly followed by a load and was (particularly for compiler generated code) likely preceded by a series of arithmetic operations. Nevertheless, it is a reasonable first-order approximation to assume the occurrence of operation codes in various positions of the sequence to be uncorrelated with the occurrence of instructions in other positions. Then

$$
E\left[T^{k}\right]=k E[T]
$$

and

$$
\operatorname{Pr}\left[K_{K}\right]=1-\frac{K_{\zeta}}{N} \quad E[T]
$$

If the processor is delayed because the $i^{\text {th }}$ preceding pseudoinstruction required access to the same memory bank, let this be denoted by B_{i}.

For example

$$
\operatorname{Pr}\left[B_{1}\right]=(I / \mathbb{N}) \operatorname{Pr}[A] \operatorname{Pr}\left[L_{1}\right] \operatorname{Pr}\left[K_{1}\right],
$$

where $\operatorname{Pr}\left[L_{1}\right]$ is the probability that the previous pseudo-instruction was of length less than C. Similarly

$$
\operatorname{Pr}\left[B_{2}\right]=(I / N) \operatorname{Pr}[A] \operatorname{Pr}\left[L_{2}\right] \operatorname{Pr}[A]\left(\frac{N-1}{N}\right) \operatorname{Pr}\left[K_{2}\right]
$$

and in general

$$
\operatorname{Pr}\left[B_{k}\right]=(I / N) \operatorname{Pr}[A] \operatorname{Pr}\left[I_{K}\right]\left(\operatorname{Pr}[A]\left(\frac{N-1}{N}\right)\right)^{k-1} \operatorname{Pr}\left[K_{k}\right] .
$$

Thus the probability that the processor is undelayed by any previous processor memory access, denoted by the event B, is

$$
\begin{aligned}
\operatorname{Pr}[\mathrm{B}] & =\frac{\operatorname{Pr}[A]}{\mathbb{N}} \sum_{\mathrm{k}=1}^{\infty} \operatorname{Pr}\left[\mathrm{L}_{\mathrm{k}}\right] \operatorname{Pr}\left[\mathrm{K}_{\mathrm{k}}\right]\left(\operatorname{Pr}[A]\left(\frac{N-1}{N}\right)\right)^{\mathrm{k}-1} \\
& =\frac{1}{N-1} \sum_{\mathrm{k}=1}^{\infty} \operatorname{Pr}\left[\mathrm{I}_{\mathrm{k}}\right] \operatorname{Pr}\left[\mathrm{K}_{\mathrm{k}}\right]\left(\operatorname{Pr}[A]\left(\frac{N-1}{N}\right)\right)^{\mathrm{k}} .
\end{aligned}
$$

The evaluation of $\operatorname{Pr}\left[I_{k}\right]$ is in general a difficult task since the probability curve has the appearance shown in Figure 2 (T_{l} is the execution time of the longest pseudo-instruction, T_{s} the execution time of the shortest). One simplifying assumption is that $\operatorname{Pr}\left[I_{k}\right]$ in the region between k_{1} and k_{2} can be expressed as a simple linearly decreasing function

$$
\operatorname{Pr}\left[L_{k}\right]=\left(k_{2}-k\right) /\left(k_{2}-k_{1}\right), k_{1} \leq k \leq k_{2},
$$

perhaps with judicious juggling of the values of k_{1} and k_{2} if the instruction set includes rarely used, extremely short or long operation codes. With such an approximation, the series can be closed. The form of the closed expression is so complex, however, as to obscure simple observation of the effects of ζ, N, and processor speed on the likelihood of processor delay.

We note that a computer's instruction set invariably includes several instructions which require time considerably in excess of one memory cycle for execution. In that case $k_{1}=1$ and the $\operatorname{Pr}\left[I_{k_{k}}\right.$] curve may appear as in

$$
\begin{aligned}
\text { where } \mathrm{k}_{1} & =\left\lfloor\mathrm{C} / \mathrm{T}_{\ell}\right\rfloor \\
\mathrm{k}_{2} & =\left\lceil\mathrm{C} / \mathrm{T}_{\mathrm{s}}\right\rceil
\end{aligned}
$$

Figure 2. Generalized $\operatorname{Pr}\left[\mathrm{I}_{\mathrm{k}}\right]$ Curve

Figure 3. Typical $\operatorname{Pr}\left[L_{k}\right]$ Curve With Exponential Approximation

Figure 3. We therefore make the alternative simplifying assumption that $\operatorname{Pr}\left[I_{K}\right]$ can be approximated by the exponential

$$
\operatorname{Pr}\left[L_{k}\right]=\alpha_{1} \exp \left(-\alpha_{2} k\right)
$$

where α_{1} and α_{2} are constants adjusted to best fit the actual $\operatorname{Pr}\left[I_{k}\right]$ curve. Substituting for $\operatorname{Pr}\left[L_{k}\right]$ and $\operatorname{Pr}\left[K_{k}\right]$ in the expression for $\operatorname{Pr}[B]$,

$$
\operatorname{Pr}[B]=\frac{1}{N-1} \sum_{k=1}^{\infty} \alpha_{1} \exp \left(-\alpha_{2} k\right)\left(1-\frac{k \zeta}{N} E[T]\right)\left(\operatorname{Pr}[A] \frac{N-1}{N}\right)^{k}
$$

Again, for small values of ζ,

$$
I-\frac{k \zeta}{N} E[T]=\exp (-k \zeta E[T] / N)
$$

and

$$
\operatorname{Pr}[B]=\frac{\alpha_{1}}{N-1} \sum_{k=1}^{\infty}\left(\exp \left(-\alpha_{2}-\zeta E[T] / \mathbb{N}\right) \operatorname{Pr}[A] \frac{N-1}{N}\right)
$$

Define

$$
\beta=\exp \left(-\alpha_{2}-\zeta E[T] / \mathbb{N}\right) \operatorname{Pr}[A](N-1) / \mathbb{N} .
$$

Then
$\operatorname{Pr}[B]=\frac{\alpha_{1}}{N-1} \sum_{k=1}^{\infty} \beta^{k}$,
and closing the series,

$$
\begin{aligned}
& \operatorname{Pr}[B]= \frac{\alpha_{1}}{N-1} \frac{\beta}{1-\beta} \\
&=(1-\rho)\left(\frac{\left.\alpha_{1}\right)}{N} e^{-\alpha_{2}} e^{-\zeta E[T] / N}\right. \\
& 1-(1-\rho)\left(\frac{N-1}{N}\right) e^{-\alpha_{2}} e^{-\zeta E[T] / N}
\end{aligned}
$$

We note that for $N=1$, this simply reduces to the expression for $\operatorname{Pr}\left[B_{1}\right]$

$$
\operatorname{Pr}\left[\mathrm{B}_{1}\right]=(1-\rho) \alpha_{1} e^{-\alpha_{2}} \mathrm{e}^{-\zeta E[T] / \mathbb{N}}
$$

which is simply the probability that the previous pseudo-instruction was less than C in length, diminished by the probability that an input-output transaction has occurred or is pending.

The probability that a processor is delayed due to any cause is $\operatorname{Pr}[D]=\operatorname{Pr}\left[A^{\prime}\right.$ or $\left.B\right]=(1-\operatorname{Pr}[A])+\operatorname{Pr}[B]$
where $\operatorname{Pr}\left[A^{\prime}\right]=1-\operatorname{Pr}[A]$ is the probability that the processor is delayed due to input-output servicing.

$$
\operatorname{Pr}[D]=\rho+\frac{(1-\rho)\left(\alpha_{1} / \mathbb{N}\right) \exp \left(-\alpha_{2}\right) \exp (-\zeta E[T] / \mathbb{N})}{1-(1-\rho)\left(\frac{N-1}{N}\right) \exp \left(-\alpha_{2}\right) \exp (-\zeta E[T] / N)}
$$

If event D occurs (i.e., the processor is delayed), it is natural to consider the length of the delay. First consider the delay if the interference is caused by the input-output controller. Let W_{c} be the length of the delay resulting from input-output controller access of a memory bank; define T_{c} to be the time remaining for completing an in-process memory cycle when the processor request occurs, and let $E\left[n_{1}\right]$ denote the expected number of inputoutput memory access requests queued for this memory. The mean value of W_{c} is then given by

$$
E\left[W_{c}\right]=E\left[T_{c}\right]+E\left[n_{1}\right] C+\frac{\zeta C}{N} E\left[W_{c}\right]
$$

The three terms of this expectation are the average amount of time needed to finish an in-process command, the average time to complete the remainder of the queued requests, and the average time required to service any new commands which arrive while the other requests are being serviced (these new requests will be serviced ahead of the processor's request).

To arrive at $E\left[W_{c}\right], E\left[n_{l}\right]$ and $E\left[T_{c}\right]$ must be obtained. The average length of the queue, $E\left[n_{1}\right]$, is related to the average time an arriving request must wait in the queue, $E\left[W_{1}\right]$:

$$
E\left[W_{1}\right]=E\left[T_{c}\right]+\frac{\zeta C}{N} E\left[W_{1}\right] .
$$

Here the first term is again the time required to complete an in-process command, and the second is the time needed to empty the queue. From this,

$$
E\left[W_{1}\right]=\frac{E\left[T_{c}\right]}{1-\zeta C / N}=\frac{E\left[T_{c}\right]}{1-\rho}
$$

Since the system is in equilibrium, the average size of the queue [3] is simply the number of additional requests which arrive while a request is waiting for service,

$$
E\left[n_{1}\right]=\frac{\zeta}{N} E\left[W_{1}\right]=\frac{\zeta E\left[T_{c}\right]}{N(1-\rho)}
$$

Substituting this into the equation for $E\left[W_{c}\right]$ and solving,

$$
E\left[W_{c}\right]=E\left[T_{c}\right] /(1-\rho)^{2}
$$

The arrival input-output memory access requests are uncorrelated with respect to both other input-output requests and processor commands. Therefore the probability of the arrival of a request when a memory bank is busy may be assumed to be uniformly distributed over the memory cycle time C, whence the expected waiting time for access is simply

$$
E\left[T_{c}\right]=C / 2
$$

Thus

$$
E\left[W_{c}\right]=\frac{C}{2(1-\rho)^{2}}
$$

Now consider the processor delay due to the $k^{\text {th }}$ previous pseudoinstruction being directed to the same memory bank. Let W_{p}^{k} be the duration of such a delay, and $E\left[T_{p}^{k}\right]$ be the average time to complete a previously initiated memory cycle. To this completion time we add the delay due to any input-output transactions arriving during the period:

$$
E\left[W_{p}^{k}\right]=E\left[T_{p}^{k}\right]+(\zeta / N)\left(C-E\left[T_{p}^{k}\right]+E\left[W_{p}^{k}\right]\right) C
$$

from which

$$
\begin{aligned}
E\left[W_{p}^{k}\right] & =\frac{\rho C+(1-\rho) E\left[T_{p}^{k}\right]}{(1-\rho)} \\
& =\rho C /(1-\rho)+E\left[T_{p}^{k}\right]
\end{aligned}
$$

Given that the processor is delayed, the expected value of the waiting time is therefore

$$
E[W \mid D]=\frac{\operatorname{Pr}\left[A^{\prime}\right] E\left[W_{c}\right]+\sum_{k=1}^{\infty} \operatorname{Pr}\left[B_{k}\right] E\left[W_{p}^{k}\right]}{\operatorname{Pr}[D]}
$$

The expected time to complete a memory cycle due to the $k^{\text {th }}$ previous pseudo-instruction is in general as intractable to analysis as the previous quantities we have used. However, it is not unreasonable to assume that this expectation is also exponentially related to k :

$$
E\left[T_{p}^{k}\right]=C \exp \left(-\alpha_{3} k\right)
$$

Unfortunately, α_{3} is not in general directly related to the α 's used in the approximation to $\operatorname{Pr}\left[L_{k}\right]$, and hence must be separately determined. We define $\alpha_{4}=\alpha_{2}+\alpha_{3}$. Closing the series in the expression for $\operatorname{Pr}[W \mid D]$,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \operatorname{Pr}\left[B_{k}\right] \quad\left(\rho C /(1-\rho)+E\left[T_{p}^{k}\right]\right) \\
&= \frac{C \alpha_{1}}{N-1} \sum_{k=1}^{\infty} \exp \left(-\alpha_{2}-\zeta E[T] / N\right)\left(\operatorname{Pr}[A] \frac{(N-1)}{N(1-\rho)}\right) k \\
&+\sum_{k=1}^{\infty} \exp \left(-\alpha_{4}-\zeta E[T] / N\right)(\operatorname{Pr}[A](N-1) / N)^{k} \\
&= \frac{\left(\rho C \alpha_{1} / N\right) \exp \left(-\alpha_{2}-\zeta E[T] / N\right)}{1-\left(\frac{N-1}{N}\right) \exp \left(-\alpha_{2}-\zeta E[T] / N\right)} \\
& \quad+\frac{(1-\rho)\left(C \alpha_{1} / N\right) \exp \left(-\alpha_{4}-\zeta E[T] / \mathbb{N}\right)}{1-(1-\rho)\left(\frac{N-1}{N}\right) \exp \left(-\alpha_{4}-\zeta E[T] / \mathbb{N}\right)}
\end{aligned}
$$

The total expected time to execute an $M+1$ step sequence of instruction fetch and execution can now be derived. Recalling that only $M^{\prime}+l$ of these actions require memory access, the probability of j delays in the ($M^{\prime}-1$) - cycle sequence is

$$
\operatorname{Pr}[j]=\binom{M^{\prime}+1}{j}(\operatorname{Pr}[D])^{j}(1-\operatorname{Pr}[D])^{M^{\prime}+1-j} .
$$

The expected time to execute the $M^{\prime}+1$ cycle sequence when j delays occur is $E[S \mid j]=\left(M^{\prime}+I\right) E[T]+j E[W \mid D]$.

Hence the expected time to execute the sequence is
$E[S]=\sum_{j=0}^{M^{\prime}+1} \operatorname{Pr}[j] E[S \mid j]$
$=\sum_{j=0}^{M^{i}+l}\binom{M^{\top}+l}{M} \operatorname{Pr}[D]^{j}(l-P R[D])^{M^{\prime}+l-j}\left(\left(M^{1}+l\right) E[T]+j E[W \mid D]\right)$
$=\left(M^{\prime}+1\right) E[T]+E[W \mid D] \sum_{j=0}^{M^{\prime}+1} j\binom{M^{\prime}+1}{j} \operatorname{Pr}[D]^{j(1-\operatorname{Pr}[D])^{M^{\prime}+1-j}}$
$=\left(M^{\prime}+I\right) E[T]$
$+E[W \mid D]\left(M^{\prime}+1\right) \operatorname{Pr}[D] \sum_{j=0}^{M^{\prime}+l}\binom{M^{\prime}}{j-1} \operatorname{Pr}[D]^{j-1}(1-\operatorname{Pr}[D])^{M^{\prime}-(j-1)}$
$=\left(M^{\prime}+I\right) E[T]+E[W \mid D] \operatorname{Pr}[D] \sum_{j=0}^{M^{\prime}}\binom{M^{\prime}}{j} \operatorname{Pr}[D]^{j}(I-\operatorname{Pr}[D])^{M^{\prime}-j}$
$=\left(M^{\prime}+I\right)(E[T]+E[W \mid D] \operatorname{Pr}[D])$.

This is again an intuitive result--the expected delay should simply be the expected delay per cycle times the number of cycles.

Expanding this result and substituting,

$$
\begin{aligned}
E[S]= & \left(M^{\prime}+1\right)\left(E[T]+(I-\operatorname{Pr}[A]) E\left[W_{C}\right]\right. \\
& +\sum_{k=1}^{\infty} \operatorname{Pr}\left[B_{k}\right]\left(\frac{\rho C}{I-\rho}+E\left[T_{p} k^{\prime}\right)\right) \\
= & \left(M^{\prime}+1\right)\left(E[T]+\frac{\rho C}{2(1-\rho)^{2}}\right. \\
& +\frac{\left(\rho C \alpha_{1} / \mathbb{N}\right) \exp \left(-\alpha_{2}-\zeta E[T] / \mathbb{N}\right)}{1-\rho\left(\frac{\mathbb{N}-1}{N}\right) \exp \left(-\alpha_{2}-\zeta E[T] / \mathbb{N}\right)} \\
& \left.+\frac{(1-\rho)\left(C \alpha_{1} / \mathbb{N}\right) \exp \left(-\alpha_{4}-\zeta E[T] / \mathbb{N}\right)}{1-(1-\rho)\left(\frac{\mathbb{N}-1}{\mathbb{N}}\right) \exp \left(-\alpha_{4}-\zeta E[T] / \mathbb{N}\right)}\right)
\end{aligned}
$$

In the case where input-output activity is absent (i.e., $\zeta=\rho=0$), the above expression reduces to

$$
E[S]=\left(M^{\prime}+1\right)\left(E[T]+\frac{\left(C \alpha_{1} / \mathbb{N}\right) \exp \left(-\alpha_{4}\right)}{1-\left(\frac{N-1}{N}\right) \exp \left(-\alpha_{4}\right)}\right)
$$

Barring a transfer of control during the sequence of instructions, the average execution time for M instructions is then $E[t]=E[S] / M$.

The ILLIAC IV Processing Unit [1, 2] will be used to demonstrate results from the foregoing analysis. Table l shows a breakdown of instruction types used in several IILIAC IV codes (timing information in this and subsequent work is given in clock periods). Table 2 shows these instructions partitioned into the previously defined sets G^{\prime} and $G^{\prime \prime}$.

ILIIAC IV fetches 16 instructions simultaneously. It is assumed that half of these are Advast instructions which do not enter into the calculations. Hence $M=8$ for this analysis and $\operatorname{Pr}\left[g_{0}\right]=l l \%$. The probabilities of the other instructions have been reduced by one ninth to include the fetch cycle. Since memory reference and non-memory reference instructions are evenly divided, $M^{+}=4$.

It is assumed that the Final Instruction Queue (Finq) is kept sufficently full that the only delays are due to PE Memory conflicts. An excess of Advast instructions or such operations as LOAD and BIN are excluded in this analysis; their inclusion can only further delay the PE. The time to execute any pseudo-instruction, h_{i}, is given by

$$
\begin{aligned}
T_{i} & =r_{i}+5.5 \sum_{k=0}^{\infty}(0.57) k(0.43)^{k} \\
& =r_{i}+4.1 .
\end{aligned}
$$

The set, H, of memory-oriented pseudo-instructions, along with their probabilities of occurrence and average execution times is shown in Table 3 . Assuming perfect memory overlap (i.e., memory access delays the PE only because of closely following sequential memory requests, rather than a lack of overlap access paths), an exact calculation of $\operatorname{Pr}\left[B_{1}\right]$ (with $\zeta=\rho=0$) and $E\left[T_{p}{ }^{1}\right]$ is given in Table 4. From these, using $C=7$ clocks, $\alpha_{1}=1$, $\exp \left(-\alpha_{2}\right)=0.55, \exp \left(-\alpha_{3}\right)=0.78$, and $\exp \left(-\alpha_{4}\right)=0.43$ are calculated.

The expected duration of one block of instructions (again under the assumption of no input-output activity) is

$$
\begin{aligned}
E[S] & =(4+1)(7.2+3.0) \\
& =51 \text { clocks } .
\end{aligned}
$$

Number of Clocks Assuming Perfect Overlap

Add/Subtract
from memory 10\% 7
from registers $\quad 6 \%$
Multiply
from memory 9%
from registers 5%
Divide
2\%
56
Load 18\% I

Register to register 18\% I
Route 10\% 4
Mode Register Comparison
and Bit Operations 9%
Store 13\% I

Table l. ILLIAC IV PE Instruction Usage

Memory Instructions (G')			Non-Memory Instructions (G")		
Probability		Number of Clocks	Probability		Number of Clocks
g_{0}	11\%	1	g_{5}	4\%	7
g_{1}	10\%	7	g_{6}	4\%	9
g_{2}	8\%	9	g_{7}	2\%	56
g_{3}	16\%	1	g_{8}	16\%	1
S_{4}	12\%	1	g_{9}	9\%	4
			g_{10}	8\%	1
Totals	57\%			43\%	

Table 2. Instruction Sets

Pseudo-instruction		Probability (\%)
	19	Number of Clocks
h_{0}	18	5
$\mathrm{~h}_{1}$	14	11
$\mathrm{~h}_{2}$	28	13
$\mathrm{~h}_{3}$	21	5
$\mathrm{~h}_{4}$		5

Mean execution time $E[T]=7.2$ clocks

Table 3. Memory-oriented Pseudo-instruction Set

Table 4. Probability of Processor Self-interference and Expected Delay

This corresponds to an average instruction execution rate (over the set G) of

$$
E[t]=6.4 \text { clocks per instruction }
$$

as opposed to the ideal execution time

$$
E[r]=4.5 \text { clocks per instruction }
$$

Thus it is seen that the ILLIAC IV Processing Element efficiency is degraded by almost 43% due to the memory interference. Note that about one quarter of this is due to instruction fetching. Small kernels of code which can be entirely contained in the instruction look-ahead store are clearly advantageous.

Under the assumption that the exponential approximations used in the analysis are valid for the PE instruction distribution, the expected instruction block execution time for two independent memory banks per PE becomes

$$
\begin{aligned}
E\left[S^{\prime}\right] & =(4+1)(7.2+1.5 /(1.0-0.21)) \\
& =45 \text { clocks. }
\end{aligned}
$$

The average instruction execution rate would then be
$E\left[t^{\prime}\right]=5.6$ clocks per instruction,
with memory conflicts causing a 24% reduction in processor efficiency.
[1] Barnes, G. H., et al., "The ILLIAC IV Computer," IEEE Transactions on Computers, Vol. C-17, pp. 746-757, August 1968.
[2] Davis, R. L., "The ILLIAC IV Processing Element," IEEE Transactions on Computers, Vol. C-18, pp. 800-816, Semptember 1969.
[3] Saaty, T. L., Elements of Queueing Theory, New York: McGraw Hill, 1961.
[4] Shemer, J. E. and Gupta, S. C., "A Simplified Analysis of Processor 'LookAhead' and Simultaneous Operation of a Multi-Module Main Memory, " IEEE Transactions on Computers, Vol. C-18, pp. 64-71, January 1969.

Security Claasification

DOCUMENT CONTROL DATA - R \& D

 ORIGINATING ACTIVITY (Corporale exthor)
20. REPORT SECURITY CLA\&SIFICATION

Center for Advanced Computation
UNVCLASSIFIED
University of Hlinois at Urbana-Champaign Urbana, Illinois 61801

2b. GROUP REPORT TITLE

Analysis of Simultaneous Operations and Memory Conflict In A Multimemory Computer System
OESCRIPTIVE NOTES (TYPO of repert and tneluoive dofon)
Research Report
AUTHOR(S) (Firel nase, midde inilial, leel natio)
Luther C. Abel

REPORT DATE		
March 15, 1971	Ta. TOTAL NO. OF PAGES	Tb. NO. OF REFS
CONTRACTOR GRANTNO.	30	

DISTRIBUTION STATEMENT

Copies may be requested from the address given in (1) above.
SUPPLEMENTARY NOTES

None

ABSTRACT

This paper is an extension of the work of Shemer and Gupta on the ffect of multiple independent memory modules on processor efficiency and hroughput. Their conclusions, although valid, were unnnecessarily restricted. he results derived herein expand them to include instructions of differing xecution times, instructions which do not require memory access, single as well s multiple instruction fetch and single as well as multiple word data fetches, lus the effects of a non-Poisson high-rate input-output device such as a wapping disk. An example of the application of the results to the ILLIAC IV omputer system is given.
Security Classification
KEY WORDs
Computer Systems (General Purpose Computers)
Control Units
Storage Units
Multiprogramming, Multiprocessing

Mltiprogramming, Multiprocessing

