
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/10199486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

510.84

I£G3c
no.l-10

AUG 51976

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

'

GONFERE

JUL

AU6.0

7fEC0

mHm

Km

L161— O-1096

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/analysisofsimultOOabel

31+

FER

jOK/\K?

W&Nw* IUINOB

CAC Document No. 5

ANALYSIS OF SIMULTANEOUS OPERATIONS AND
MEMORY CONFLICT IN A MULTIMEMORY COMPUTER SYSTEM

by

Luther C. Abel

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

March 15, 1971

"..,'-/"«*

ABSTRACT

This paper is an extension of the work of Shemer and Gupta [k] on

the effect of multiple independent memory modules on processor efficiency and

throughput. Their conclusions, although valid, were unnecessarily restricted.

The results derived herein expand them to include instructions of differing

execution times, instructions which do not require memory access, single as

well as multiple instruction fetch and single as well as multiple word data

fetches, plus the effects of a non-Poisson high-rate input-output device such

as a swapping disk. An example of the application of the results to the

ILLIAC IV computer system is given.

TABLE OF CONTENTS

Page

INTRODUCTION 1

SYSTEM MODEL AND OPERATION ' 2

ANALYSIS 6

EXAMPLE 18

REFERENCES 23

LIST OF FIGURES

Figure Page

1. System Configuration 3

2. Generalized Pr[L, 1 Curve ' 11
k

3. Typical Pr[L] Curve With Exponential Approximation 11

LIST OF TABLES

Table Page

1. ILLIAC IV PE Instruction Useage 19

2. Instruction Sets . . , , 20

3. Memory-oriented Pseudo-instruction Set 20

k. Probability of Processor Self-interference
and Expected Delay 21

INTRODUCTION

This paper is an extension of the work of Shemer and Gupta [h~\ on the

effect of multiple independent memory modules on processor efficiency and

throughput. Their conclusions, although valid, were unnecessarily restricted.

For example, their results were derived under the clearly unrealistic assump-

tion that the execution times of all processor instructions were equal. The

results derived herein expand Shemer and Gupta's results in that instructions

of differing execution times, instructions which do not require memory access,

single as well as multiple instruction fetch, and single as well as multiple

word data fetches are permitted and the effects of a non-Poisson high-rate

input-output device such as a swapping disk are included.

-1-

SYSTEM MODEL AMD OPERATION

Consider the system configuration shown in Figure 1. The processor

and input-output controller have independent data paths for communication with

each of the N (the notation of Shemer and Gupta [h] will be used insofar as

applicable) independent memory modules which form the primary memory of the

system. In order to minimize data queue lengths in the input-output controller

(typically only a one word queue is implemented) and to prevent obliteration

of waiting data by other closely following data, memory cycle requests from

the input-output controller are given non-preemptive priority over those from

the processor.

M contiguous words are fetched simultaneously at any memory access.

For M > 1, this corresponds to the concept of fetching an M-word superword.

Addresses are interlaced among the independent memory banks such that address

"a" is in memory bank (a div M mod N) . The processor fetches M instructions

simultaneously, and M' of these require an operand from memory. Thus each M

instructions require M' + 1 memory cycles. It is assumed that all memory

cycles require time C.

Let the instruction set of the processor consist of a repertoire of

R instructions, g , g , . .., g of length r , r , . .., r respectively. We
_L c. R -L d R

add to this instruction set the instruction fetch operation g , which requires

time r between initiation and execution of the first fetched instruction.

Some of the R instructions require memory accesses during their

execution, others do not. Without loss of generality, let us order the ele-

ments of the instruction set such that the first 0,-1 instructions require a

memory cycle. We then define

G' = {g. |

< i < Q - 1}

G" = {g.
|
Q < i < R}

.

To convert this instruction set G = G'UG" into a memory-oriented set

-2-

(
CPU D

Memory #1 Memory #2 Memory #N

1 1 1

Input-Output

Controller

A /I A A A

V \f M V V

Input-output

Devices

Figure 1. System Configuration

3-

of operations, we define

h.
k

= {(g., gx , gy, ..., g
z

, G')
| g±e G', h

x , hy, ... h
z

e G"}.

k th
That is, h. is a n-tuple consisting of the i processor instruction which

requires a memory cycle, followed by some number of non-memory accessing in-

structions, and terminated by any instruction which does require a memory

access. The superscript k is simply a member of the index set which allows us

to record all possible sequences of the instruction g. followed by some number

of non-memory reference instructions before the next instruction requiring a

memory access.

Associated with each h. there is an execution time
1

k
t. =r. + r +r + . . . + r
1 1 x y z

(note that it does not include the time to execute the terminating, memory

-

referencing instruction). Each h. occurs with a certain probability,

PR Th. 1 , in an instruction stream.
i

We now define

h. = U h.
k

.

i k i

The set

H = {h.}

is then a memory-oriented pseudo-instruction set for the processor. Associated

with each pseudo-instruction, h., is a probability

Pr [h.l = I Pr [h.
k

] ,

k

and an average execution time

t. = E Pr [h.
k

] t.
k

.

k

-h-

le average duration of a pseudo-instruction is the expectation of t. ,

Q-l
E [T] = E Pr [h.] t. .

i=0
x x

A number of questions arise:

lat is the probability that a processor's memory access will be delayed

scause of input-output traffic, as a function of that traffic density?

irther, what is the average duration of such a delay, and how does the per-

^rmance of the likelihood that the processor will be delayed, either by it-

2If or by an input-output transaction? In the following section, the analysis

Lll seek to answer these questions.

-5-

ANALYSIS

An exact, detailed analysis would be extremely difficult, requiring

differing conditional relations for each step of a program describing the

previous history of the program and its environment and the current state of

all components of the system. The system is therefore examined on a statisti-

cal basis assuming: a) stationary conditions, b) generation of memory

requests by the input-output controller is characterized by a combination of a

Poisson process and a high speed device (such as a swapping disk) generating

requests at a uniform rate, c) if the processor is denied a memory access

during execution of an instruction, it will wait rather than proceed with any

other task.

The input-output controller is assumed to be simultaneously regula-

ting and providing memory service for a large number of peripherals such as

tapes, printers, card equipment, and teletypes. Since memory requests arise

from a large number of independent sources, the generation of memory commands

by the input-output controller is considered to be partially governed by a

Poisson phenomenon with cumulative request rate \. It is assumed that the

input-output controller also services a high speed device which generates

memory access requests with uniform rate 7 when actuated. This device has a

probability of being actuated (i.e., a duty cycle) of Pr [X].

Since there are N independent memory banks and addresses are inter-

laced among them, it is reasonable to assume that the cumulative demands X and

y are evenly divided among all N memories. Since each memory cycle is of

length C, the input-output controller imposes a load

P
\C Pr [X] yC

N N

(\ + PR [X] y)C

N

|£ where
(;

= \ + PR [X] y .

-6-

Therefore -under stationary conditions with p < 1, the probability

that k out of N memory modules are not busy is

t, ri t /N\ /-, sk N-k
Pr [k] =

Ik]
(1 " p) p

We denote by "A" the event that the processor does not experience delay in

memory access due to input-output servicing. Assuming independence between

processor and input-output memory access addresses,

Pr [A
|

k] = k/N.

Averaging over all values of k, we obtain

N
E

k=:

Closing the series,

D rnl y k (Nl/, xk N-k
11 |AJ \ N U/ (l

" P) P

Pr [A] = (1 - p).

This should not be a surprising result, since if p is the probability that a

memory bank will be busy servicing an input-output controller request then

1 - p should be the probability that the bank is available to the processor.

Even if the processor requests a memory cycle from a memory bank

which is not servicing an input-output controller command, it is still possi-

ble for the servicing of the request to be delayed if the memory bank is still

busy servicing a previous processor request.

Let

S = { S^ , Sg , . . . , Sq }

where S. is the k-tuple of memory-oriented pseudo-instructions
J

(h , h , ..., h), x, y, ...z e {0, 1, 2, ..., 0,-1}, and j is the image of
x y z

x, y, ..., z in a 1-1 mapping of k-tuples of non-negative integers less than

Q onto the positive integers not greater than Q, .

T. =t +t + .. . + t
J x y z

is the time required to execute the pseudo-instruction sequence S . if no delay
_ k k ^

occurs. The expectation E [T] is the average value of T . ,

J

-7-

Q
k

E [T*] = Z Pr [S.
k

] T
k

.

0=1
J J

Now consider the execution of a sequence of k memory-oriented

pseudo-instructions. Let Pr [I,
1

] be the probability that the input-output

controller requests access to a particular memory bank due to the high speed

swapping device, and Pr [I "] the probability of an input-output generated cycle

in that same memory due to any of the other input-out devices. Then

k m k

Pr [I '] = Z Pr [S.
K

] Pr [X] min (l, —f-)
3=1

and

Pr [L "] = Z Pr [S,
k

] (1 - exp (- \ T Vn)) •

These probabilities are of interest in the following work for small values of

k only; contemporary primary and secondary memory speeds result in

N

for small k. Therefore,

Pr [I
k

'] = Pr [X] Z Pr [S .

k
] § T .

k

= Pr [X] g E [T
k

] .

The cumulative request rate X is quite small also. Typically, each

word transferred to a computer's memory by an input-output device (other than

a swapping disk which has been considered separately) will require several

processor cycles of manipulation. Therefore, \ « 1 and for small k the

approximation

1 - exp (- \ T.
k
/N) = X T

k
/N

J CI

-8-

;an "be used. Then

^ k k
Pr [I "] = I Pr [ST| (\ /N) T

*
k

0=1 J J

= (\ /N) E [T
k

] .

Let K_ denote the event that no input-output controller memory access

occurs in a particular memory bank during the execution of k pseudo-instruc-

tions by the processor. Then

Pr [ly = 1 - Pr [I
k

*] - Pr [1^'] .

^Lgain for small values of k which are of interest,

Pr [K^ = 1 - Pr [X] (y /N) E [T
k

] - (\ /n) E [T
k

]

= 1 - (E [T
k
]/N) (\ + y Pr [X]) .

Jsing the previously defined ^ = \ + 7 Pr [X],

Pr [iy = 1 - (g /N) E [T
k

] .

[he probability of occurrence of one of the Q, pseudo-operation codes in, e.g.,

th
the i position of an instruction sequence of length k is certainly not un-

corrected with the occurrence of certain operations in the other k-1 posi-

tions. For example, a store operation is almost certainly followed by a load

and was (particularly for compiler generated code) likely preceded by a series

of arithmetic operations. Nevertheless, it is a reasonable first-order ap-

proximation to assume the occurrence of operation codes in various positions

3f the sequence to be uncorrelated with the occurrence of instructions in

other positions. Then

and

E [T
k

] = k E [T]

Pr [ly = 1 - ££ E [T] .

th
If the processor is delayed because the i preceding pseudo-

Lnstruction required access to the same memory bank, let this be denoted by B.

-9-

For example

Pr [B
x

] = (1/N) Pr [A] Pr [1^] Pr [K^
,

where Pr [L] is the probability that the previous pseudo-instruction was of

length less than C. Similarly

Pr [B
2

] = (1/N) Pr [A] Pr [Lg] Pr [A] (^) Pr [Kg]

and in general

Pr [B
k

] = (1/N) Pr [A] Pr [L^ (pr [A] (^)) Pr [^

Thus the probability that the processor is undelayed by any previous processor

memory access, denoted by the event B, is

Pr [B] = £-t£L E Pr [L
k

] Pr [iy (Pr [A] (Sj*))

k-1

k=l

Pr [LJ Pr [Kj (Pr [A] (2=±)
J

k=l
= nTI ^ ^V ^[^(^[a] (^))

k

.

The evaluation of Pr [L] is in general a difficult task since the probability

curve has the appearance shown in Figure 2 (T« is the execution time of the

longest pseudo-instruction, T the execution time of the shortest). One
s

simplifying assumption is that Pr [L] in the region between k and k can be

expressed as a simple linearly decreasing function

Pr [L
k] = (k

2
- k) / (kg - k^ , k

x
< k < kg ,

perhaps with judicious juggling of the values of k and k if the instruction

set includes rarely used, extremely short or long operation codes. With such

an approximation, the series can be closed. The form of the closed expression

is so complex, however, as to obscure simple observation of the effects of

£, N, and processor speed on the likelihood of processor delay.

We note that a computer's instruction set invariably includes sever-

al instructions which require time considerably in excess of one memory cycle

for execution. In that case k = 1 and the Pr [L,] curve may appear as in

-10-

1.0

Pr[L
k]

where k

k

Figure 2. Generalized Pr[L] Curve

1.0

Pr[L
k]

1 2

Figure 3- Typical Pr[L,] Curve With Exponential Approximation

-11-

Figure 3- We therefore make the alternative simplifying assumption that

Pr [L,] can be approximated by the exponential

Pr [L
k] = c^ exp (- a

2
k)

where a. and a are constants adjusted to best fit the actual Pr [L] curve.

Substituting for Pr [L] and Pr [K,] in the expression for Pr [B],

Pr [B] = jjL E a
±

exp (-a
2

k)
(
1- S. E [T])(pr [A] 2j*

)

Again, for small values of £,

1 - |£ E [T] = exp (-kg E [T]/n)

and

Pr [B] = jj~ Z (exp (-a
2

-g E [T]/N) Pr [A] ^±)
k=l

Define

P = exp (-QL - g E [T]/N) Pr [A] (N-l)/N .

Then

(X, oo

Pr
k=l

and closing the series,

a p
I* [B] =

5PJ "^
-« -£E [T]/N

(1 - p) (<h) e
2

e

N
" ~

2
-£E [T]/N

/ n v /N-1n
i - (i - p) ("Y")

e e

We note that for N = 1, this simply reduces to the expression for

Pr [B
]_]

-a -£E [T]/N
Pr [B] = (1 - p) a e e

-12-

which is simply the probability that the previous pseudo-instruction was less

than C in length, diminished by the probability that an input-output transac-

tion has occurred or is pending.

The probability that a processor is delayed due to any cause is

Pr [D] = Pr [A* or B] = (l - Pr [A]) + Pr [B]

where Pr [A'] = 1 - Pr [A] is the probability that the processor is delayed

due to input-output servicing.

(1 - p) (ql/n) exp (-a) exp (-£E [T]/N)
Pr [D] = p +

1 - (1 - p)
(^i) exp (-a

2
) exp (-£E [T]/N)

If event D occurs (i.e., the processor is delayed), it is natural to

consider the length of the delay. First consider the delay if the interfer-

ence is caused by the input-output controller. Let W be the length of the

delay resulting from input-output controller access of a memory bank; define

T to be the time remaining for completing an in-process memory cycle when the
c

processor request occurs, and let E [n] denote the expected number of input-

output memory access requests queued for this memory. The mean value of ¥ is

then given by

E [W] = E [T] + E [n_] C + & E [W] .
l c j L c J L 1 J N L c

The three terms of this expectation are the average amount of time needed to

finish an in-process command, the average time to complete the remainder of

the queued requests, and the average time required to service any new commands

which arrive while the other requests are being serviced (these new requests

will be serviced ahead of the processor's request).

To arrive at E [W], E [n] and E [T] must be obtained. The average

length of the queue, E [n], is related to the average time an arriving re-

quest must wait in the queue, E [W-,] :

E [wy = E [T
c
] + |£ E [W

1
] •

Here the first term is again the time required to complete an in-process

command, and the second is the time needed to empty the queue. From this,

-13-

E [T
c
] E [T

c]

E [W
1]

=
i^c7n

= 37" '

Since the system is in equilibrium, the average size of the queue [3] is simply

the number of additional requests which arrive while a request is waiting for

service,

, ? E [T]

E [nj . | E [Wl] . -
rjI-^

Substituting this into the equation for E [W] and solving,

E [W
c

] = E [T
c

] / (1 - p)
2

.

The arrival input-output memory access requests are uncorrelated

with respect to both other input-output requests and processor commands.

Therefore the probability of the arrival of a request when a memory bank is

busy may be assumed to be uniformly distributed over the memory cycle time C,

whence the expected waiting time for access is simply

E [T
c

] = C/2 .

Thus n

E [V =2(1- of
th

Now consider the processor delay due to the k previous pseudo-
o-

bstruction being directed to the same memory bank. Let W be the duration
k p

of such a delay, and E [T be the average time to complete a previously

initiated memory cycle. To this completion time we add the delay due to any

input-output transactions arriving during the period:

E [W
p

k
] = E [T

p

k
] + (g/N) (C - E [T

p

k
] + E [W

p

k
]) C ,

from which

pC + (1 - p) E [T
k

]

E [W
k

] = E-
P

(1 - P)

= pC/(l - p) + E [T
p

k
]

-Ik-

Given that the processor is delayed, the expected value of the waiting time is

therefore ^

Pr [A'] E [W] + S Pr [B] E [W*]
k=1 P

[W
I

D] - p^
The expected time to complete a memory cycle due to the k previous

pseudo-instruction is in general as intractable to analysis as the previous

quantities we have used. However, it is not unreasonable to assume that this

expectation is also exponentially related to k:

E [T
k

] = C exp (-OL k) .

P 3

Unfortunately , a is not in general directly related to the cc's used in the

approximation to Pr [L], and hence must be separately determined. We define
k

a , = a + oc . Closing the series in the expression for Pr [W
|
D],

00

S Pr [B
k] (pC/(l - p) + E [T *])

k=l

yi- £ exp (-a
2

-
?
E [T]/N)|pr [A] y^}

00 k
+ Z exp (-d. - £E [T]/N)(Pr [A] (N - l)/N)

k=l

(pCQ^/N) exp (-a
2

- £E [T]/N)

1 - ($=k exp (-QL - ^E [T]/N)
N

(1 - p) (COLjTS) exp (-C^ - ^E [T]/N)

1 - (1 - p)
(^i) exp (-a

h
- ^E [T]/N)

The total expected time to execute an M + 1 step sequence of instruc-

tion fetch and execution can now be derived. Recalling that only M' + 1 of

these actions require memory access, the probability of j delays in the

(M 1 - l) - cycle sequence is

Pr [j] =
(

M
'
+

.

1

)
(Pr [D])

J
(1 - Pr [D])

M'+l-j
U V-"-

- Jtj. LJjjy

The expected time to execute the M' + 1 cycle sequence when j delays occur is

E [S
| j] = (M' + l) E [T] + j E [W | D] .

Hence the expected time to execute the sequence is

M'+l
E [S] = I Pr [j] E [S

| j]

z+1
(

M
'm

1

)
Pr [D] ^ (1 - PR ^DM '+1"

;3 ((M ' +1) E [T] + d E [W
'

D])
M' + l

Z

M'+l /M ,+1 x (l-Pr[D])M,+1^
= (M'+l) E [T] + E [W

|
D] S J

i
Pr ^

j=0 \ J
'

(M'+l) E [T]
M'+l

M*

z

= (M'+l) (E [T] + E [W |
D] Pr [D])

+ E [W I D] (M'+l) Pr [D] Z (
*'

) Pr [D]^
1

(l - Pr [D])
1

j=0 V J x
/

M' / , \

= (M'+l) E [T] + E [W
|
D] Pr [D] Z

(J J
Pr [D] J

(l - Pr [D])
M '"

j

This is again an intuitive resuit-the expected delay should simply he the

expected delay per cycle times the number of cycles.

Expanding this result and substituting,

•16-

E [S] = (M'+l) (e [T] + (1 - Pr [A]) E [W
Q]

k=l

--
' '

] ™ + 2^kf

(pOQ^/N) exp (-a
2

- £E [T]/N)

1 - p (Sli) exp (-a
2

- £E
[T]/N)

(1 - p) (Cc^/N) exp (-0^ - £E [T]/N)

1 - (1 - p) (^) exp (-a^ - ^E [T]/N)

In the case where input-output activity is absent (i.e., £ = p = 0), the above

expression reduces to

/ (Cql/n) exp (-a,) v

E [S] = (M'+l) /E [T] +

1 - (~r-) exp (-a,,)

Barring a transfer of control during the sequence of instructions,

the average execution time for M instructions is then E [t] = E [S]/M

-IT-

EXAMPLE

The ILLIAC IV Processing Unit [1, 2] will be used to demonstrate

results from the foregoing analysis. Table 1 shows a breakdown of instruc-

tion types used in several ILLIAC IV codes (timing information in this and

subsequent work is given in clock periods). Table 2 shows these instructions

partitioned into the previously defined sets G' and G".

ILLIAC IV fetches 16 instructions simultaneously. It is assumed

that half of these are Advast instructions which do not enter into the calcula-

tions. Hence M = 8 for this analysis and Pr [g] = 11%. The probabilities of

the other instructions have been reduced by one ninth to include the fetch

cycle. Since memory reference and non-memory reference instructions are

evenly divided, M' = k.

It is assumed that the Final Instruction Queue (Finq) is kept suf-

ficently full that the only delays are due to PE Memory conflicts. An excess

of Advast instructions or such operations as LOAD and BIN are excluded in this

analysis; their inclusion can only further delay the PE. The time to execute

any pseudo-instruction, h., is given by

T = r + 5-5 Z (0.57) k (0.1*3)

k=0

= r. + k.l .

i

The set, H, of memory-oriented pseudo-instructions, along with their

probabilities of occurrence and average execution times is shown in Table 3«

Assuming perfect memory overlap (i.e., memory access delays the PE only be-

cause of closely following sequential memory requests, rather than a lack of

overlap access paths), an exact calculation of Pr [B,] (with £ = p = 0) and

E [T] is given in Table k. From these, using C = 7 clocks, OL = 1,

exp {-a) = O.55, exp (-a) = O.78, and exp (-a.) =0.1*3 are calculated.

The expected duration of one block of instructions (again under the

assumption of no input-output activity) is

E [S] = (k + 1) (7.2 + 3-0)

= 51 clocks

-18-

Number of Clocks
Assuming Perfect

PE Operation Probability Overlap

Add/Subtract

from memory 10$ 7

from registers 6$ 7

Multiply

from memory 9$ 9

from registers % 9

Divide 2$ 56

Load 18$ 1

Register to register 18$ 1

Route 10$ k

Mode Register Comparison
and Bit Operations 9$ 1

Store 13$ 1

Table 1. ILLIAC IV PE Instruction Usage

-19-

Memory Instructions (G 1

)
Non-Memory Instructions (G")

Number of
. Number of

Probability Clocks Probab:Llity Clocks

g 11* 1 g
5

if* 7

gx
10* 7 g6

i+* 9

g2
8* 9 g

7
2* 56

g
3

16* 1 g8
16* 1

g^ 12* l S
9

9* If

g10 8* 1

Totals 57* ^3*

Table 2. Instruction Sets

Pseudo-instruction

K

K
h,

h,

Probability (*) Number of Clocks

19 5

18 11

lU 13

28 5

21 5

Mean execution time E[T] = 7«2 clocks

Table 3- Memory-oriented Pseudo-instruction Set

-20-

X

X

X

X

X

B Events Probability Time to Complete

G' 39-0 6

g
9

G T 3-5 2

g
y

G' 9.k 5

2
G' 2.2 U

g
y

Pr

G'

[B
x]

•5

5h.6

3

Note: gx
= (g^Ug^), g = (ggU giQ)

Mean wait if delayed = E[T] = 5--5 clocks

Mean average delay = E[T] Pr[B..] = 3»0 clocks

Table h. Probability of Processor Self-interference and Expected Delay

-21-

This corresponds to an average instruction execution rate (over the set G) of

E [t] = 6.J+ clocks per instruction

as opposed to the ideal execution time

E [r] = k.5 clocks per instruction

Thus it is seen that the ILLIAC IV Processing Element efficiency is degraded

"by almost kjfo due to the memory interference. Note that about one quarter of

this is due to instruction fetching. Small kernels of code which can be

entirely contained in the instruction look-ahead store are clearly advanta-

geous.

Under the assumption that the exponential approximations used in the

analysis are valid for the PE instruction distribution, the expected instruc-

tion block execution time for two independent memory banks per PE becomes

E [S 1

] = (k + 1) (7.2 + 1.5/(1.0 - 0.21))

= V? clocks

The average instruction execution rate would then be

E [t 1

] = 5.6 clocks per instruction,

with memory conflicts causing a 2k% reduction in processor efficiency.

-22-

REFERENCES

[1] Barnes, G. H., et al., "The ILLIAC IV Computer/' IEEE Transactions on
Computers , Vol. C-17, pp. 7^-757, August 1968.

[2] Davis, R. L., "The ILLIAC IV Processing Element," IEEE Transactions on
Computers, Vol. C-l8, pp. 800-816, Semptember 1969.

[3] Saaty, T. L., Elements of Queueing Theory , New York: McGraw Hill, 1961.

[k] Shemer, J. E. and Gupta, S. C, "A Simplified Analysis of Processor 'Look-

Ahead' and Simultaneous Operation of a Multi-Module Main Memory," IEEE
Transactions on Computers, Vol. C-l8, pp. 6k- r

Jl, January 1969*

-23-

:

UNCLASSIFIED
Security Classification

(Security claaaltlemtlon ot till*.

DOCUMENT CONTROL DATA -R&D
ot abatract and Indamlng annotation atuat be entered when the overall report la claaalllad)

originating ACTIVITY (Corporate author)

Center for Advanced Computation
University of Illinois at Urbana- Champaign
Urbana, Illinois 6l801

»m. REPORT SECURITY CLASSIFIC ATION

UNCLASSIFIED
2b. GROUP

REPORT TITLE

Analysis of Simultaneous Operations and Memory Conflict In A Multimemory

. Computer fSyntiPnn __—__________ . _
descriptive notes (Type ot report and rnelualve dmtaa)

Research Report
author(S) (Firat name, middle Initial, laat name)

Luther C. Abel

76. NO. OF REPS

k

REPORT DATE

March 15, 1971
. CONTRACT OR GRANT NO.

USAF 30(602)^1^4
. PROJECT no.

ARPA Order 788

7a. TOTAL. MO. OP PACES

32.
•a. ORIGINATOR'S REPORT NUMBER(3>

CAC Document No. 5

9b. OTHER REPORT NO(S> (Any other numbers that may be aaalgned
thla report)

DISTRIBUTION STATEMENT

Copies may be requested from the address given in (l) above.

SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Rome Air Development Center
Griffiss Air Force Base
Rome, New York 1^40

ABSTRACT

This paper is an extension of the work of Shemer and Gupta on the

ffect of multiple independent memory modules on processor efficiency and

hroughput. Their conclusions, although valid, were unnnecessarily restricted.

he results derived herein expand them to include instructions of differing

xecution times, instructions which do not require memory access, single as well

s multiple instruction fetch and single as well as multiple word data fetches,

lus the effects of a non-Poisson high-rate input-output device such as a

wapping disk. An example of the application of the results to the ILLIAC IV

omputer system is given.

FORM
I NOV SB1473 UNCLASSIFIED

Security Classification

TTNCTASSIFIED
Security Classification

KEY WORD!

Computer Systems (General Purpose Computers)

Control Units

Storage Units

Multiprogramming, Multiprocessing

LINK A

ROLE

UNCLASSIFIED
Security Classification

IAM1

