

umivers 3f

Illinois Library

at ur3ana-champaign
engineering

NOTICE: Return or renew all Library Materials! The VlPlPW™ Fee for

each Lost Book is $50.00. JUL (J 1988
The person charging this material is responsible for

its return tp the library from.which it was withdrawn
on or^ejdre the Latest Date stamped below.

• ..ntfeil.n.ng <J» bpi sons for discipli-

University.

Theft, Iwlal.
,

nary action and may resolfW anrms'

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

L161—O-1096

enter for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801

THE LIBRARY OF THE

JfXJ

CAC Document Number 233

CCTC-WAD Document Number 7515

Network Research in Front Ending

and Intelligent Terminals

Experimental Network Front End

Software Functional Description

August 1, 1977

UNIVERSITY OF ILLINOIS
'^ANA-CHAMPAIGN

which it was withdrawn on or before the

Latest Date stamped below.

—O-1096

CAC Document Number 233
CCTC-WAD Document Number 7515

Networking Research in front Ending
and Intelligent Terminals

EXPERIMENTAL NETWORK FRONT END SOFTWARE FUNCTIONAL DESCRIPTION

Steven F. Holmgren
Elizabeth Kasprzycki

David C. Healy
Paul B. Jones

Prepared for the
Command and Control Technical Center

WWftCCS ADP Directorate
Defense Communications Agency

Washington, D.C. 20305

under contract
DCA100-76-C-0066

Center for Advanced Computation
University of Illinois at Urbana-Charnpaign

Urbana, Illinois 61b01

August 1 , 1977

Approved for Release:

Peter A. Alsberg, Principal Investigator

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/networkingresearuni

TABLE OF CONTENTS

Page
1 . INTRODUCTION 6

1 .

1

Background b

1.2 Organization 7

2 . FRONT-END HARDWARE ARCHITECTURE 8

2.

1

Mainframe 8

2.2 Hardware Interfaces 8

2.2.1 ARPANET Inter face 8

2.2.2 H6000-PDP-11/70 Interface 8

3. FRONT-END SOFTWARE ARCHITECTURE 9

3.1 General Description 9

3.2 Host-to-Front-End Communications 9

3.2.1 Channel Protocol 9

3.2.2 Channel Protocol module 10
3.3 Process-to-Service Communications 11

3.3.1 Process-to-Service Protocols 13
3.3.2 Service Structure 13
3.3.3 Host-Host Service module 14
3.3.4 Program Access Service module 14
3.3.5 Server Virtual Terminal Service module.. 14

4. ADDITIONS TO UNIX 17
4.1 Introduction 17
4.2 Inter-Process Communication Facility 17
4.3 Non-Blocking I/O Facility 18

5. CHANNEL PROTOCOL MODULE 20
5.1 Function 20
5. 2 Operation 20
5.3 Subroutine-Calling Hierarchy 21

5.4 State Transition Table 22
5.5 Decision Matrix 24
5.6 CPM Data Structures 25

6. CPM: PROGRAM ANALYSIS 26
6 . 1 MAIN 26
6.2 C0MM_INIT 2 7

6.3 MESSAGE 28
6.4 BEGIN 29
6.5 BEGINR 2 9

6 . 6 EXEC 30

6.7 TSER 30

6.8 DRNFLCL 31
6.9 SIGNL 31

6.10 TRANSMIT 32
6.11 ENDR 34
6.12 END 34
6.13 ENDONE 3 4

6.14 waiting Queue .35
6.15 ENQUE 39
6.16 DEQUE 3b>

6.17 MVQ 40
6.18 CLEANQ 41
6.19 FLOWCTRL 41
6 . 20 HT_TEST 43
6.21 FORVvARD 43
6.2 2 H_SEND 4 4

6. 23 S_SEND 44
6.24 H_TR 45
6.25 SERVFLOW 4 5

6.2 6 DISCARD 45
6.27 ERROR 46

7. "TYPICAL" SERVICE ARCHITECTURE 4b
7.1 General Description 48
7.2 Service Operation 4u
7.3 Service Subroutine Hierarchy 50

7.4 Service State Transition Table 51
7.5 Service Data Structures 53

8. SERVICE LOGIC 54
8.1 MAIN. 5 4

8.2 HFP-IN 55
8.3 BEGIN 56
8.4 END 57

8 . 5 TRANSMIT 58
8 . 6 EXECUTE 60
8.7 SIGNAL 60
8.8 XOFF 6 2

8 . 9 XON 6 3

8.10 I/O-IN. 6 4

8 . 1 1 OPEN 6 4

8.12 WRITE 65
8.13 NEWSEG 67
8.14 READ 68
8.15 RETRANS 6 9

8.16 SPECIAL 69

9. SERVICE UTILITIES 71
9.1 General Description 71
9 . 2 MAKCHAN 71
9 . 3 KILLCHAN 71
9.4 FINDCHAN 7 2

9.5 FINDFID 7 2

9.6 BLDMSG 7 3

9.7 SNDMSG 7 3

9.8 RESPOND 7 4

9.9 FLUSHSEGS 7 4

9.10 ENQSEG 75
9.11 DEQSEG 7 5

10. ARPANET HOST-HOST SERVICE (HHS) MODULE ADAPTATION 77
10.1 Function 7 7

10.2 Adaptation 7 7

10.2.1 Subroutine Naming Conventions 77
10.2.2 HHS module I/O Device 78

10. 3 Operation 78
10.4 Service Subroutine Hierarchy 79
10.5 Service State Transition Table 80
10.6 Service Data Structures 80

10.6.1 Channel Data Structure 80
10.6.2 Network Software Open Data Structure ... 80

11. HHS MODULE: PROGRAM ANALYSIS 81
11.1 MAIN 81
11.2 HFEIN 81
11.3 BEGIN 81
11.4 END 8 2

11.5 XMIT 8 2

11.6 EXEC 8 3

11.7 SIGNAL 8 4

11.8 XOFF 8 4

11 . 9 XON 85
11.10 NETIN 86
11.11 CHVRFY 86
11. 12 ivRTNET 87
11.13 NEWSEG 87
11.14 READNET 8 7

11.15 NETimAK 8 8

11.16 SIG2HFE 88

12. SERVER VIRTUAL TERMINAL SERVICE (SVTS) MODULE ADAPTA1 ION . . 90
12.1 Function 9

12. 2 Adaptation 9

12.2.1 Subroutine Naming Conventions 90
12.2.2 SVTS module I/O Device 91

12. 3 Operation 91
12.4 Service Subroutine Hierarchy 93
12.5 Service State Transition Table 94
12.6 Service Data Structures 94

12.6.1 Channel Data Structure 94
12.6.2 Network Software Open Data Structure ... 95

13. SVTS MODULE: PROGRAM ANALYSIS 96
13.1 MAIN 96

13.2 HFEIN 96
13.3 BEGIN 9 6

13.4 END 97
13.5 XMIT 9 7

13.6 EXEC 98
13.7 SIGNAL 98
13 . 8 XOFF 98
13.9 XON 98
13.10 NET IN 100
13.11 CHVRFY 100
13.12 hRTNET 100
13.13 NEWSEG 101
13.14 READNET 101
13.15 N ETNAK 102
13.16 SIG2HFE 102

14. TELNET HANDLER 103
14.1 Telnet Input Translator 103

14.1.1 Buffer Utilization 103
14.2 Telnet Output Translator 103

14.2.1 Buffer Utilization 103
14.3 Telnet Handler State Transition Tables 104

14.3.1 Input Translator 104
14.3.2 Output Translator 105

15. TELNET HANDLER: PROGRAM ANALYSIS 106
15.1 TELNET IN 106
15.2 Disposition Table Ill
15.3 POSITIVE 112
15.4 NEGATIVE 113
15.5 SENDQ 113
15.6 SNDREPLY 114
15.7 TELNETOUT 114

16. PROGRAM ACCESS SERVICE (PAS) MODULE ADAPTATION 118
16.1 Function 118
16.2 Adaptation 118

16.2.1 Subroutine Naming Conventions 118
16.2.2 PAS module I/O Device 119

16.3 Operation 120
16.4 Service Subroutine Hierarchy 12G
16.5 Service State Transition Table 122
16.6 Service Data Structures 124

16.6.1 Channel Data Structure 124
16.6.2 PTY Data Structure 124

17. PAS MODULE: PROGRAM ANALYSIS 125
17.1 MAIN 125
17.2 HFEIN 125
17.3 BEGIN 125

17.4 END 12b
17.5 XMIT 127
17.6 HSTGA 127
17.7 EXEC 127
17.8 SIGNAL 128
17.9 XOFF 128
17.10 XOlM 129
17.11 PT¥IN 130
17. 12 CHVRFY 130
17 .13 VvRTPTY 130
17.14 NEk/SEG 131
17.15 READPTY 131
17.16 GOAHEAD 132
17.17 DEAlri 132

1. INTRODUCTION

1 . 1 Background

At present, the storage, maintenance, and processing

requirements of host-resident network software represent a

significant burden on WWMCCS hosts. Offloading a major portion

of this network software to a mini-computer front end, interposed

between a host and a network, will reduce the extent and

complexity of host-resident software. As a result, host

performance will improve considerably. Proper design of front-

end and interface software will also yield improved security.

Under contract DCA100-76-C-0088 , the Center for Advanced

Computation (CAC) of the University of Illinois at Urbana-

Champaign is investigating the capabilities of network front

ends. As part of that contract, an experimental network front

end (ENFE) is being developed to interface a WWMCCS H6000 to the

ARPA Network and to conduct experiments with the proposed ARPANET

host-to-Front-End Protocol.

The operating system for the front end is a hybrid Unix

operating system. Unix, a general purpose operating system

developed by Bell Telephone Laboratories, supports time-sharing

and has facilities such as editors, compilers and word

processors. The CAC has already constructed an ARPA Network

Control Program (NCP) for the Unix system. The NCP is a system

software module that implements the ARPA Network Host-Host and

Initial Connection Protocols. These are the basic protocols used

in communication across the ARPA Network. This document

-6-

describes the further enhancements to Unix and the software

modules that are necessary to support investigation of the

front-end concept.

A

•

£ Organizat ion

This document is logically divided into tour major

sections. Each section defines a major software module in the

network front end (Channel Protocol module, host-Host Service

module, Server Virtual Terminal Service module, and Program

Access Service module). Multiple chapters defining eacn module

have been incorporated due to the extensive number of subroutines

comprising each specific service.

The first section (chapters five and six) defines the

internal hierarchy and actions of the Channel Protocol module.

Tne second section (cnapters seven, eight, and nine) defines a

"typical" service and service support. Specific descriptions of

the remaining three modules are adpated from this description of

the "typical" service. Thus, section three (chapter ten and 11)

defines the Host-Host Service module, section four (chapters 12,

13, 14, and 15) defines the Server Virtual Terminal Service

module, and section rive (cnapters 16 and 17) defines the Program

Access Service module.

-7-

2. FRONT-END HARDWARE ARCHITECTURE

.£••1 Mainframe

The front-end mainframe is a Digital Equipment

Corporation (DEC) PDP-11/70 computer with 128K words of memory

and disk storage. The PDP-11/70 is the largest and fastest or

the PDP-11 family of mini-computers. The PDP-11/70 is being used

to determine the full extent of PDP-11/Unix front-end

capabilities. Measurement of these capabilities in this effort

and in a follow-on effort will determine the potential of other

smaller members of the PDP-11 family.

2.2 Hardware Interfaces

Hardware interfaces to the ARPANET, the H6000, and to

terminals will be provided.

2.2.1 ARPANET Interface . A DEC IMP-11A ARPANET

interface will be used to connect the 11/70 to the ARPANET. The

IMP-11A is a DEC standard product.

2.2.2 H6000 -PDP-11/70 Interface. The H6000 and

PDP-11/70 will be linked by a pair of interfaces, similar to

ARPANET host-to-IMP interfaces, connected so that the outputs of

one interface are the inputs of the other. The H6000 interface

will be an Asynchronous Bit Serial Interface (ABSI) which uses

two Common Peripheral Interchange (CPI) channels on the H6000 I/O

multiplexor. The PDP-11/70 interface will be a general purpose,

full duplex, direct memory access (DMA) interface. The interfaces

will use ARPANET IMP-to-host data transmission techniques to

communicate with each other.

-8-

3. FRONT-END SOFTWARE ARCHITECTURE

_3.1 General Des cription

The offloaded network software can be thought of as a set

of services provided to host processes or to users. These

services allow the network and the various hosts connected to the

network to be conveniently used.

3.2 Host -to-Front -End Comm un ications

A basic mechanism must be provided to support

communication between host processes and front-end services.

This mechanism is the Host-to-Front-End Protocol (HFP) , which is

defined in CAC Document 219 (ARPA Request for Comments (RFC)

710). The HFP specification distinguishes two protocol layers:

the channel protocol and the process-to-service protocols.

3.2.1 Channel Protocol . By means of the channel

protocol, logical channels are set up between host processes and

the front-end services, and messages are transmitted on these

channels. Provisions are made for flow control and for out-of-

sequence signaling. The channel protocol defines five types of

HFP Messages:

1. BEGIN, which sets up logical channels;

2. END, which terminates logical channels;

3. TRANSMIT, which transmits data;

4. SIGNAL, which provides a means for

-9-

synchronizing the ends of a logical channel,

for interrupting the other end, and for

flushing data from the other end of the

channel; and

5. EXECUTE, which provides a means for passing

service-specific information "out-of-band"

(i.e. outside of the strict sequencing

required for the TRANSMIT Messages)

.

Each Message type can be either a Command (requesting that the

action defined by the Message be taken) or a Response (indicating

whether the action was taken and, if not, providing some

explanation). The KFP Specifications use the capitalized word,

Message, to refer to these Message types. This convention will

be followed throughout the document.

_3.2.£ Channel Protocol module . The front end contains a

software module, the Channel Protocol module (CPM) , which manages

the logical channels and serves as a bi-directional multiplexor.

The host also contains a CPM which similarly manages the other

ends of the logical channels. The CPM performs several

functions

.

1. It de-multiplexes HFP Messages arriving from
the host interface and passes them to the
appropriate service modules in the front end.

2. It accepts input in the form of HFP Messages
from the service modules and multiplexes them
to the host interface.

-10-

3. It controls the tlow ol HFP TlJVNSi-iIT Commands
into the front ena.

4. It periorms error checking at the Channel
Protocol level .

3«3 Process -to-Service Comm unicat

i

ons

Communications between a host process and a iront-ena

service may be divided into three stages:

1. communications between the host process and
the host CPM (describea in CSC Document wo.
R493700056-2-1 , "Host to Front-End Processor
Protocol Interlace Functional Description"),

communications between the nost Chi\ and the
front-end CPM (described in CAC Document Imo.

220, "H6000 Software Specifications"), and

communications between the front-end CPM ana
a front-eno service (aescrioec in section 7).

Figure 1 on the next page illustrates the process-to-service

communication architecture.

-11-

£
W
CO

I

O
H

I

co
CO
w
u
o
Pm

o
S3w
H
S3
O

O

S3

ooo

CD

a
•H
>

CU

CO

Channel

Protocol

module

(CPM)

i

Channel

Protocol

module

(CPM)

co

en

cu

a
o
u
a

cu

u

M
•H

12

3.3.1 Process-to-Service Protocols . The process-to-

service protocols specify the content, sequencing, and type of

HFP Messages by which host processes communicate with front-end

services. The process-to-service protocols implemented to date

are :

1. ARPANET Host-Host Process-to-Service Protocol

(CAC Technical Memorandum No. 80)

,

2. Program Access Process-to-Service Protocol

(CAC Technical Memorandum No. 81), and

3. Server Virtual Terminal Process-to-Service Protocol

(CAC Technical Memorandum No. 82)

.

3.3.2 Service Structure . Each front-end service

implements one process-to-service protocol. All front-end

services execute within their own address spaces; e.g., as user

level programs.

Each program is structured as a finite state machine

accepting HFP Messages from the front-end. HFP Message inputs

are generated by processes in the host requesting action from the

front-end services. I/O completion event inputs are generated in

response to service-initiated device I/O operations. Eacn input

is associated with an HFP logical channel. The input type and

current channel state determine the immediate action and next

channel state. Most actions result in the transmission of data

to another destination and in the generation of an HFP Response

indicating the success or failure of the action. The specific

-13-

action taken is process-to-service protocol dependent.

3.3.3 Host-Host Service module. The ARPANET Host-Host

Service (HHS) module enables programs running in the host to use

the ARPANET NCP in the front end. It implements the ARPANET

Host-Host process-to-service protocol. The HHS module performs

several functions, using the ARPANET NCP in the front end.

1. It opens and closes ARPANET connections to
hosts on the network.

2. It passes data between the host and foreign
hosts on the network.

3. It maintains connection status information.

3*3*4 Program Access Service module . The Program Access

Service (PAS) module enables programs running in the host to

execute arbitrary programs in the front end. It implements the

Program Access process-to-service protocol. The PAS module

performs the following functions.

1. It enables programs on the host to log in to
and log out of the front-end system.

2. It enables programs on the host to run
programs on the front end (for example, the
User Telnet program)

.

3. It passes data between programs on the host
and programs running on the front end.

_3.3.f^ Server Virtual Terminal Service module . The

ARPANET Server Virtual Terminal Service (SVTS) module enables

-14-

programs on the host to be accessed by terminals connected to

other hosts on the ARPANET. It implements the ARPANET Server

Virtual Terminal process-to-service protocol. It also implements

the ARPANET Telnet protocol described in NIC Document No. 15372.

The SVTS module performs the following services.

1. It opens and closes ARPANET connections to
hosts on the network.

2. It passes data between the local host and
foreign hosts on the network, transforming
the data in accordance with Telnet protocol.

3. It maintains connection status information.

4. It performs Telnet option negotiation.

5. It enables front-end terminals to access the
host

.

Figure 2 on the next page illustrates the relationship between

tnese ENFE service modules and other front-end components.

-15-

1
« I t I H I 1 t

IBAJJLQ SOTASQ

«

WHM
g
9

O
CO

E
W

I

CO CO

a)

u 4)
•H t-l

4J > 3
u TJ

o o <u o

«8

c

E
u
a»H

6 a>
co en o
>-l CO -H i—I

60 <U > 3
O U h-O
t-l o <u o
Ph <C co S

r-i <0 0)
(-. CO C O 0)

«l 3 -H -H H
>-i >.. C p -o
<u -h a» <u o
co > h co £

0)

«H O
<u u
C O

4J 3
Cd O T3
,c >-• oU PL, S

e
0)
4-1

CO

>>
CO

60
c

CO

t-l

0)

o.
o

4)

4->

c
0)

•o
•H
CO

a>

u
0)

tO

CM

01

u
3
&0
•H

Host Interface \N
Device Driver n^O

SO
w

16

4. ADDITIONS TO UNIX

4 . 1 Introduction

The Unix operating system has been modified to support

HFP operations. Parts of some general purpose system functions

are not needed. These functions have been streamlined. Several

system functions have been removed completely.

Device drivers have been added to Unix to manage the

IMP-to-host interface, the H6000 to PDP-11 interface, and VIP

terminals. The Unix terminal handler and numerous other system

modules have been modified for the front-end effort.

Two additional facilities have been implemented to

efficiently support HFP operations: an inter-process

communication facility and a non-blocking I/O facility.

4 . 2 Inte r

-

Proces s Communication Fac il ity

An inter-process communication (IPC) facility has been

added to effect efficient communication between ENFE programs and

to provide a convenient mechanism for the implementation of non-

blocking I/O. IPC communications consist of events and messages.

Events communicate small amounts of control information.

Events have a source process, a destination process, an opcode,

and a word of data. The contents of the opcode ana data fields

are application-dependent.

Messages transfer large amounts of data. Messages are

created, transmitted, and received within segments. A segment is

-17-

an area of physical core memory dynamically mapped into and out

ot the address spaces of communicating processes.

Each process has an IPC queue where events and message

descriptors are stored until requested.

The IPC facility is described in CAC Technical Memorandum

i\o. 84, "Illinois Inter-Process Communication Facility for Unix."

vn understanding of the contents of this memorandum is essential

to a complete comprehension of the detailed technical

descriptions which follow.

^.3 Non -61ocking I/O Facility

The non-Dlocking I/O facility enables a single program to

perform I/O concurrently on multiple devices. As a result, the

number of active programs required for the ENFE is greatly

ceiuced. The standard Unix system does not have this capability.

Non-blocking I/O uses IPC events to notify user processes

of the completion of I/O operations. The Unix I/O system has

been modified to generate events at appropriate times:

1. the opening of an I/O device,

2. the closing of an I/O device,

3. the arrival of input data,

4. the completion of output operations, ana

5. the occurrence of special device conditions.

when programs receive these events, they execute standard I/O

system primitives in the usual manner.

-18-

CHANNEL PROTOCOL MODULE

-19-

5. CHANNEL PROTOCOL MODULE

5.1 Funct ion

The Channel Protocol module manages logical channels and

serves as a bi-directional multiplexor. The CPM is implemented

within its own address space as a user level program. The CPM

performs several functions.

1. It de-multiplexes HFP Messages arriving from
the host interface and passes them to the
appropriate service modules in the front end.

2. It accepts input in the form of HFP Messages
from the service modules and multiplexes them
to the host interface.

3. It controls the flow of HFP TRANSMIT Commands
into the front end.

4. It performs error checking at the Channel
Protocol level.

5.2 Operation

The Channel Protocol module (CPM) waits for input from

the host and from the service modules. Messages from both

sources have the form of HFP Commands and Responses. These HFP

Commands and Responses are transported within inter-process

communication messages. As the CPM receives each input, it calls

a subroutine appropriate to the service and type of HFP Message.

These subroutines perform multiplexing, flow control, and error

check ing

.

-20-

5*3 Subroutine-Callin g H ier archy

The following table illustrates the principal subroutines

in the CPM subroutine-calling hierarchy. The "c/r" following

subroutine names indicates the existence of both a command

subroutine and a response subroutine. For example, "BEGIN c/r"

indicates that subroutines exist at that level to process both an

[iFP BEGIN Command and an HFP BEGIN Response.

MAIN

I
(host

I
messages)

I

I

FINDCHAN

I II I

BEGIN c/r FLOVvCTRL END c/r TRANSMIT c/r

I
(service

I
messages)

SIGNL c/r EXEC c/r

END c/r TRANSMIT c/r SIGNL c/r EXEC c/r

-21-

5 . 4 S tat e Transition Table

The following table depicts CPM logical channel states.

The STATE column indicates the current channel state, the EVENT

column indicates the occurrence of a specific event, the ACTION

column indicates the action taken when an event occurs, and the

NEXT STATE column indicates the state of the channel after the

action is performed.

STATE EVENT ACTION NEXT STATE

NULL BEGIN Command
from host

Initialize channel
data structure,
pass Command to
service

PEND

PEND BEGIN Response
Status =

from service

Pass Command to host
or service

ESTAB

BEGIN Response
Status not =

from service

Pass Command to host
or service

NULL

ESTAB

END Command

END Command
w/drain

END Command
w/o drain

Pass Command to TERM
destination

Wait for queued DRAIN
TRANSMITS to drain

Cleanup channel data TERM
structure, pass command
to destination

SIGNAL Command

All other
Commands

Take appropriate ESTAB
signal action

Update flow control ESTAB
and acknowledge
information

-22-

DRAIN TRANSMITS
drained

Send END Command TERM

TERM END Response Release channel
data structure

NUEL

BEGIN Response
from service

Ignore TERM

-23-

k 9 -* Decision Matrix

The following table is a matrix ot the subroutines called

when an HFP Message is received.

MSG TYPE CHANNEL STATES

NULL PCND ESTAB DRAIN TERM

BEGIN BEGIN ERROR ERROR ERROR ERROR
BEGINR DISCARD BEGINR DISCARD DISCARD DISCARD

TRANSMIT DISCARD DISCARD TRANSMIT DRNFLCL DISCARD
TRANSMITR DISCARD DISCARD TSER TSER DISCARD

SIGNAL DISCARD DISCARD SIGNAL SIGNAL DISCARD
SIGNALR DISCARD DISCARD TSER TSER DISCARD

EXECUTE DISCARD DISCARD EXECUTE DRNFLCL DISCARD
EXECUTER DISCARD DISCARD TSER TSER DISCARD

END END END END ERROR ERROR
ENDR DISCARD ENDR DISCARD DISCARD ENDR

-24-

5.6 CPM Data Struc tures

Channel information is kept in an ordered list of data

structures. The list is ordered by channel group and channel

member. Each active HFP logical channel has an entry in this

list. Each entry contains the following fields (the numbers in

parens are the field widths in bits)

:

c link (16)

c_group
c_member
c_state

c_service number

c_service IPC

c_hiscredit
c ack

c_cred it

c_myseq

c_seq

c_qhd

c sendq (16)

(16)
(16)
(08)

(08)

(08)

(08)
(08)

(08)

(08)

(08)

(16)

pointer to the nex
element, NULL indi
of list
channel group memb
channel member num
channel state (see
below)
number of the serv
this channel
IPC address of the
for this channel
current credit giv
sequence number of
TRANSMIT received
host
amount of credit g
front end
last TRANSMIT ackn
by host
sequence number of
TRANSMIT sent to h

queue head of Comm
waiting to be sent
or acknowledged
Commands waiting t

sent

t channel
cates end

er
ber
states

ice for

service

en by host
last

from

iven by

owledged

last
ost
ands

o be

The following are state variable values

NULL
PEND 1

ESTAB 2

DRAIN 3

TERM 4

-25-

6. CHANNEL PROTOCOL MODULE (CPM) : PROGRAM ANALYSIS

The following subroutines comprise the Channel Protocol module.

6.1 MAIN

Abstract . MAIN procures required inter-process

communication (IPC) resources, initializes free lists, initiates

communications with the host, and provides the "driving loop" for

the program.

Logic . The ABSI (Asynchronous Bit Serial Interface)

process located in the network front end, stores data from the

host CPM in Messages for the front-end CPM. This data has the

form of HFP Commands and Responses. In order to facilitate

identification of both the front-end CPM and the ABSI process,

"generic" names must be assigned. MAIN calls a system primitive,

IPCGEN, for this assignment.

A certain portion of the CPM's memory is reserved for

channel data structures. For organizational purposes, MAIN calls

INIT_CriAN to link these structures into a free list. When

neeaed, the channel data structures are transferred from a free

list to an active list. Each cnannel data structure in the

active list represents the existence of a particular HFP logical

channel

.

HFP TRANSMIT Commands from the services may be blocked

from transmission to the host CPM due to the channel protocol

flow control mechanism. These TRANSMIT Commands must be buffered.

As a result, each channel data structure has an associated

waiting queue which stores TRANSMIT Command identifiers. The

waiting queue is constructed as a circularly-linked list holding

-26-

SIGNAL Commands with the Synchronize bit set, END Commands with

the Flush Away bit cleared, and TRANSMIT Commands trom the

service moaules. The TRANSMIT Commands may or may not have been

sent

.

hFP Message identifiers are stored in queue elements

which are linked onto the end of the waiting queue. MAIN calls

UNIT to link these queue elements into a free list where they

remain until needed.

MAIN executes the GETSBA system primitive. The operating

system returns a segment base address or SBA. An SBA is a user-

level virtual address used to access HFP Messages received from

the host CPM and the service modules.

MAIN then calls COMM_INIT to establish direct CPM-to-CPivi

communications with the H6000.

After setting up the necessary IPC resources (generic

names and SBA) , MAIN falls into a loop where it calls the system

primitive WALL to wait for HFP Messages from the service modules

and the ABSI process. As these HFP Messages arrive,

command/response subroutines are called to process specific HFP

Message types.

6.2 CGMM IN IT

Abstract . The CGMM_INIT subroutine "brings up" the

logical communications link with the H6000.

Logic . CGMM_INIT calls H SEND to transmit an END Command

to the ABSI process and thus to the host CPM. COMM_INIT then

calls the system primitive FREESEG to free the HFP Message just

transmitted. W TYPE is called to wait for an END Command from

-27-

the host CPM.

Upon receipt ot an END Command, COMM_INIT again calls the

system primitive FREESEG to discard the HFP Message. to_TYPE is

called to wait for a BEGIN Command from the host CPM.

Upon receipt of a BEGIN Command, COMM_INIT calls H_SEND.

H_SEND transmits a BEGIN Response to the host CPM. The system

primitive FREESEG is then called to discard the BEGIN Response.

At this point, a communications link has been established between

the host CPM (H6000) and the front-end CPM.

6.3 MESSAGE

Abstract . The MESSAGE subroutine sets up a series of

actions to be taken upon the receipt of an HFP Message.

Logic .

The MESSAGE subroutine manipulates system primitives to

gain access to HFP Message input. If the input is not an HFP

Message, MESSAGE calls the system primitive FREESEG to discard

the Message. However, if an HFP Message is received, the size

field in the HEADER of the Message is examined. If the message

size is greater than a predefined maximum size limitation,

i-iESSAGE calls ERROR. If the size field is within the allowable

range, MESSAGE calls FINDCHAN. If FINDCHAN returns a pointer to a

valid channel data structure, the state is copied out of the

structure. Otherwise, the state is set to NULL.

The MESSAGE subroutine then computes the source of the

Message, the type of Message, and the process identification of

the destination of the Message. The MESSAGE subroutine logs the

Message. The MESSAGE subroutine uses the Message type and

-28-

channel state to call a subordinate subroutine which completes

the processing of the HFP Message.

6.4 BEGIN

Abstract . The BEGIN subroutine processes a BEGIN Command

from the host.

Logic . The BEGIN subroutine will only be called if the

channel is in the NULL state. The BEGIN subroutine verifies the

requested service module's validity and existence. It the service

is invalid, BEGIN calls ERROR to generate a BEGIN Response. If

the service is valid, BEGIN calls the system primitive IPCGEN to

determine the address of the requested service module. If IPCGEN

returns an error, BEGIN calls ERROR to generate a BEGIN Response

indicating that the service is dead.

MAKCHAN is then called to allocate a tree cnannel data

structure to the BEGIN subroutine. Pertinent information is

copied into the channel data structure. BEGIN sets the channel

state to PEND (pending). The BEGIN Command is then forwarded to

the requested service module.

6 . 5 BEGIN

R

Abstract . The BEGINR subroutine processes a BEGIN

Response

.

Logic . If the BEGIN Response indicates that the begin

request tailed, BEGINR calls FORWARD to forward the BEGIN

Response and FREE_CHAw to free the channel data structure.

If the begin request was successful, BEGINR sets the

channel state to ESTAB (established). If the BEGIN Response was

sent by a service module, the CPM initializes the amount of

-29-

credit given by the front end. BEGINR then calls FORWARD to

forward the Message.

6.6 EXEC

Abstract . The EXEC subroutine processes an EXECUTE

Command.

Logic . If an EXECUTE Command is received from the host,

the EXEC subroutine updates flow control information and forwards

the EXECUTE Command to the service module associated with the

Command

.

If an EXECUTE Command arrives from a service module, the

EXEC subroutine updates the amount of credit given by the front

end. EXEC then forwards the EXECUTE Command to the host CPM.

6.7 TSER

Abstract . The TSER subroutine is called when HFP

TRANSMIT, SIGNAL, and EXECUTE Responses are received.

Logic . If a TRANSMIT, SIGNAL, or EXECUTE Response

arrives from a service module, the TSER subroutine updates the

amount of credit given by the front end and forwards the Message

to the host CPM.

If the channel is in the DRAIN state or the the waiting

queue is not empty, and a TRANSMIT Response is received from a

service module to update flow control information, the TRANSMIT

Response is discarded.

If a TRANSMIT, SIGNAL or EXECUTE Response arrives from

the host indicating a channel protocol error, TSER calls LOGERR

to log the error. The TSER subroutine then updates flow control

information and forwards the Message to the service module.

-30-

However, if a TRANSMIT, SIGNAL, or EXECUTE Response

arrives from the host indicating that the channel was not found,

TSER calls CLEAN. CLEAN removes all Commands on the channel's

waiting queue. FREE_CHAN is called to return the channel data

structure to the free list and a system primitive FREESEG is

called to discard the Message.

If a TRANSMIT Response arrives from the nost with a CPM-

specific error value or if the channel state is set to DRAIN,

TSER calls the system primitive FREESEG to discard the Message.

If a SIGNAL Response or an EXECUTE Response or a TRANSMIT

Response with a service-specific error value arrives, TSER

updates flow control information and then forwards the Message to

the service module.

6.8 DRNFLCL

Abstract . DRNFLCL processes TRANSMIT or EXECUTE Commands

which reference a channel in the DRAIN state.

Logi c. If a TRANSMIT or EXECUTE Command arrives from the

host, DRNFLCL calls FLOVvCTRL to update flow control information.

DRNFLCL then calls the system primitive FREESEG to discard the

Message

.

6.9 SIGNL

Abstract . The SIGNL subroutine processes KFP SIGNAL

Commands

.

Logic . If a SIGNAL Command arrives from the host

requesting an immediate SIGNAL Response, SIGNL calls FLOVvCTRL to

update flow control information and ECHO to return the Message to

the host.

-31-

However, if a SIGNAL Command arrives from the host

requesting Flush Toward, SIGNL calls CLEAN to remove all TRANSMIT

Commands on the associated channel's waiting queue. SIGNL then

calls FLOwCTRL to update flow control information and FORWARD to

send the Message to the associated service module.

If a SIGNAL Command arrives from a service module, SIGNL

updates the amount of credit given by the front end and forwards

the Message to the host. However, if the SIGNAL Command

requested Flush Away, SIGNL first calls CLEAN to remove all

TRANSMIT Commands on the associated channel's waiting queue. Any

previously queued SIGNAL Commands are forwarded to the host.

If a Synchronize action is requested, and the associated

channel's waiting queue is not empty, SIGNL calls ENQUE. ENQUE

adds the SIGNAL Command to the end of the waiting queue and SIGNL

returns .

it a SIGNAL Command arrives from the host and the

associated channel state is set to DRAIN, SIGNL calls the system

primitive FREESEG to discard the Message. Otherwise, the Message

is forwarded to the the service module.

6 . 10 TRANSMIT

Abstract . The TRANSMIT subroutine processes HFP TRANSMIT

Commands

.

Logic . If a TRANSMIT Command arrives from a service

module, the TRANSMIT subroutine updates credit information and

queues the TRANSMIT Command. TRANSMIT then calls HT_TEST to

determine whether any credit is available from the host. If

credit is available, the TRANSMIT Command is immediately

-32-

forwarded to the host.

however, it the TRANSMIT Command cannot be forwarded

(credit unavailable), TRANSMIT must determine whether the service

module should stop sending TRANSMIT Commands over the associated

logical channel. It the flow of TRANSMIT Commands has not

already oeen stopped, and it the number of queued TRANSMIT

Commands is greater than a preaefined limit (HIwAT), TRANSMIT

calls SLhVFLOv\. SERVFLOVv sends an XOFF request to instruct the

service moaule to stop the transmission of TRANSMIT Commands on

the associated channel. The CPM sets a flag in the channel

structure to avoid duplicating this request.

If a TRANSMIT Command arrives from the host, TRANSMIT

updates flow control information. The TRANSMIT subroutine then

determines wnether the TRANSMIT Command is in sequence, in window

(correct ack and credit fields) , and is not a duplicate. If the

TRANSMIT Command is out-ot-sequence or out-o t-window , TRANSMIT

calls ft_TR to send a TRANSMIT Response to the host indicating the

error. However, if the TRANSMIT Command is a duplicate, TRANSMIT

calls the system primitive FREESEG to discard the Message.

If the TRANSMIT Command is in sequence and in window,

TRANSMIT updates flow control and acknowledgement information.

It no HtP Messages are waiting tor transmission to the host,

TRANSMIT calls H_TR to generate a TRANSMIT Response. This

TRANSMIT Response will advise the host CPM of current flow

control and acknowledgement status.

TRANSMIT now calls FLOWCTRL to update front-end CPM flow

control information. The TRANSMIT subroutine then calls FORWARD

-33-

to send the Message to the associated service module.

6.11 ENDR

Abstract . ENDR is called when an HFP END Response is

received. ENDR performs the functions necessary to terminate a

logical channel.

Logic . ENDR calls CLEAN to remove all TRANSMIT Commands

on the waiting queue. ENDR then forwards the END Response to the

specified destination and calls FREE_CHAN. FREE_CHAN returns the

channel data structure to the free list.

6.12 END

Abstract . The END subroutine processes HFP END Commands.

Logic . If an END Command refers to one specific logical

channel, END calls ENDONE. ENDONE generates an HFP END Command

on the specified logical channel and returns.

If an END Command does not refer to one specific logical

channel, END determines whether the END Command specifies a valid

group. If not, ERROR is called to generate an END Response with

an error indication.

Otherwise, VvILDCHAN is repeatedly called to locate those

channel data structures which are members of the specified group.

A separate END Command is constructed for each located channel

data structure.

6.L3 ENDONE

Abstract . The ENDONE subroutine processes an HFP END

"ommand on a specific logical channel.

Logic . If the END Command is from the host, or if the

END Command has the Flush Away bit set, ENDONE calls CLEAN.

-34-

CLEAN removes all TRANSMIT Commands on the channel's waiting

queue.

It the channel's waiting queue is empty, the logical

channel state is set to TERM (terminating) . The ENDONE

suoroutine forwards the END Command.

nowever , il the channel's waiting queue is not empty, the

logical channel's state is set to DRAIN. ENDONE calls ENQUE to

add the END Command to the waiting queue. The END Command must

be retained until all TRANSMIT Commands on the waiting queue have

been sent and acknowledged.

6.1_4 siting Queue

An understanding of the ENQUE, DEQUE, MVQ, and CLEANQ

subroutines described below requires a basic knowledge of the

purpose and function of the waiting queue. As noted previously,

the waiting queue is constructed as a circularly-linked list

holding SIGNAL Commands with the Synchronize bit set, END

Commands with the Flush Away bit cleared, and TRANSMIT Commands

from the service modules. The TRANSMIT Commands may or may not

have been sent. The waiting queue is required tor several

reasons

.

The first concerns the amount or credit remaining with

tne host. The credit field contains the number of TRANSMIT

Commands which the host is currently prepared to receive. If the

value of the credit field is zero (no credit), a TRANSMIT Command

sent by a service module must be placed on the waiting queue to

await transmission to the host.

The second concerns the HFP acknowledgement mechanism.

-35-

Any sent, but unacknowledged, TRANSMIT Commands must be retained

on the waiting queue.

The third concerns the arrival of a SIGNAL Command with

the Synchronize bit set sent by a service module. If the waiting

queue is empty, the SIGNAL Command is immediately sent to the

host. If, however, the waiting queue contains HFP Messages

waiting to be sent or acknowledged, the SIGNAL Command must be

entered at the end of the queue.

The final reason concerns the receipt of an END Command

with the Flush Away bit cleared sent by a service module. If the

waiting queue contains HFP Messages waiting to be sent or

acknowledged, the END Command must be added to the end of the

queue.

Figure 3 on page 38 illustrates the construction of the

waiting queue. The three pointers establish the distinction

between sent, unsent, and unacknowledged TRANSMIT Commands. The

"send" pointer (pointing to the element containing TRANSMIT

Command 2) distinguishes between sent and unsent (wait for

credit) TRANSMIT Commands. The distance between the "unacked"

pointer and the "send" pointer indicates that TRANSMIT Command 1

has been sent, but not acknowledged. The distance between the

"send" pointer and the "queue head" pointer (pointing to the

element containing TRANSMIT Command 3) indicates that TRANSMIT

Commands 2 and 3 are awaiting transmission. The "queue head"

pointer, which points to the most recent entry on the waiting

queue, is incorporated solely for the purpose of maintaining the

circularly-linked list.

-36-

Descriptions of the ENQUE, DEQUE, MVQ, ana CLEANQ

subroutines tollow. Each description is correlated to the

illustration or the waiting queue on page 38.

-37-

n
H T3
: d
CO CO

z e ^- s
K o
t-i u

£

7K d
O)

en

ai

0X1

d

H
M T3
S C
CO 03

22 E 04

2 E
o

H u

<--

/
<>

d
a)

E
cu

d)

-H

o
d
-^
a
co

M
O

00
d

d
0)

d
cr

oo
c
•H
4-J

•H
CO

cu

d
o

>>

4-J

d
ai

d
a)

a
cu

S-i

4-J

Uj

O
E

cu

x:
4J

CO

4-1

d
•H
o

o
ex

co

XI

CU

d
cu

d
cr

4-1

d
a)

en

cu

X
o
4-1

d
a3

I
O

en

i
H
4-1

X
0)

C

<D

X
4-1

o
4-1

d
•H
O
a

0)

4-1

d
•H
O
a
-a
d
<u

en

d
03

o

S
CO

T3
a;

oo

<u

rH

o
d

a
co

d
3

4-»

CO

MH
U-l

CU

x

o
4-J

d
•H
o

^1

cu

4-1

d
•H
O
a.

cu

a
CO

c
3

C
•H

-a

CO

o

CO

cu

d
00
•H

A

4 <— ^
38

6.1_5 ENQUE

Abstract , The ENQUE subroutine adds an HFP Message to a

logical channel's waiting queue on a first-in, first-out basis.

Logic . If there are no available queue elements, ENQUE

calls PANIC. PANIC logs a fatal error and restarts the front-end

CPM.

However, it there are available queue elements, ENQUE

delinks the last queue element from the free list and links it

onto the end of the waiting queue. The HFP Message identifier is

then copied into the queue element.

The ENQUE subroutine updates the "queue head" pointer.

For purposes of illustration, it will be assumed that the element

containing TRANSMIT Command 3 has just been entered on the

waiting queue. The "queue head" pointer points to the most

recent entry; i.e., that containing TRANSMIT Command 3. If

TRANSMIT Command 2 has not yet been sent, the "send" pointer

remains intact. However, if TRANSMIT Command 2 has been sent,

the "send" pointer will point to the element containing TRANSMIT

Command 3. In this case, the "send" pointer would be equal to

the "queue head" pointer.

6.16 DEQUE

Abstract. The DEQUE subroutine removes an HFP Message

from the waiting queue.

Logic . If a Message arrives from the host indicating

that TRANSMIT Command 1 has been acknowledged, the DEQUE

subroutine removes the oldest entry on the waiting queue. As

illustrated in the diagram, the oldest entry contains TRANSMIT

-39-

Command 1.

If the "send" pointer had been pointing to the oldest

entry, DEQUE moves it to the next entry; i.e., that which contains

TRANSMIT Command 2. DEQUE calls the system primitive FREESEG to

discard TRANSMIT Command 1. If the element containing TRANSMIT

Command 1 is the last and only element on the waiting queue,

DEQUE initializes both the "send" pointer and the "queue head"

pointer

.

However, if there are other elements on the waiting

queue, the value of the forward link between the elements

containing TRANSMIT Command 1 and TRANSMIT Command 2 is copied to

the "unacked" pointer. As a result, the "unacked" pointer now

points to the element containing TRANSMIT Command 2. The element

which contained TRANSMIT Command 1 is returned to the free list.

6.12 MVQ

Abstiac -:. . The MVQ subroutine updates the "send" pointer.

Logic. For purposes of illustration, it will be assumed

that due to the availability of credit, TRANSMIT Command 2 has

been sent to the host. The MVQ subroutine moves the "send"

pointer to the next element awaiting transmission. According to

the diagram, the next element is that which contains TRANSMIT

Command 3. The "send" pointer is now equal to the "queue head"

pointer. The MVQ subroutine initializes the value of the "sena"

pointer

.

However, if the "send" pointer had previously been equal

to the "queue head" pointer, the value of the "send" pointer

would be set to zero.

-40-

6.18 CLEANQ

Abstract . The CLEANQ subroutine removes all HFP Commands

from the waiting queue.

Logic . If the waiting queue is empty, CLEANQ returns.

If, however, the waiting queue is not empty, the CLEANQ

subroutine discards all entries on the queue from the oldest to

the most recent.

CLEANQ first points to the oldest element on the waiting

queue. CLEANQ calls the system primitive MAPSEG to obtain access

to the associated HFP Message. If the Message is a TRANSMIT

Command, the transmit count is decremented and CLEANQ calls

DEQUE. DEQUE removes the Message from the waiting queue.

If the Message is an END Command, CLEANQ sets the channel

state to TERM. CLEANQ calls H_SEND to send the END Command to

the host and the END Command is dequeued.

If the Message is a SIGNAL Command, and only TRANSMIT

Commands are to be discarded, CLEANQ calls H_SEND to send the

SIGNAL Command to the host. The SIGNAL Command is dequeued.

6.19 F LOVvCTRL

Abstract . The FLOWCTRL subroutine updates flow control

information

.

Logic . Upon receipt of an HFP Message from the host, the

credit field in the HEADER is examined. The credit field

contains the number of TRANSMIT Commands which the host is

currently prepared to receive. If the value of the credit field

is greater than the allowable limit of eight, an error is logged

and the value is set to eight. If the value of the credit field

-41-

is less than eight, FLOWCTRL copies that value into the hiscredit

(current credit given by the host) field in the channel data

structure.

The ack field in the HEADER of the HFP Message is then

examined. The ack field contains the sequence number of the last

TRANSMIT Command correctly received by the host. FLOWCTRL copies

the value of the ack field into the myseq (last TRANSMIT Comamnd

acknowledged by the host) field in the channel data structure.

FLOWCTRL calls DEQUE to discard acknowledged TRANSMIT Commands

from the waiting queue and the count of the number of queued

TRANSMIT Commands is decremented.

If the status field in the HEADER indicates an out-of-

window or out-of-sequence error, FLOWCTRL calls NFELOG to

indicate an error. As a result, the "send" pointer must be moved

back to the beginning of the waiting queue so that all

unacknowledged TRANSMIT Commands will be resent. The sequence

number of the oldest previously sent TRANSMIT Command is used as

the sequence number for the first retransmitted HFP Command.

FLOWCTRL obtains access to TRANSMIT Commands which must

be retransmitted to the host. FLOWCTRL then calls HT_TEST to

determine whether the host is accepting TRANSMIT Commands (credit

available) . If so, H_SEND is called to send as many queued

TRANSMIT Commands as credit allows.

HFP Messages containing SIGNAL or END Commands which have

been entered on the waiting queue must be retained until all

TRANSMIT Commands on the queue have been sent and acknowledged.

Once all TRANSMIT Commands have been sent and acknowledged up to

-42-

the current Command ("send" pointer equal to the oldest entry),

FLOWCTRL calls H_SEND to send the first queued SIGNAL or END

Command. If an END Command is found, FLOWCTRL sets the channel

state to TERM, and sends the END Command. FLOWCTRL calls DEQUE

to remove the END Command from the queue.

FLOWCTRL must now determine whether the service module

should be allowed to send TRANSMIT Commands. If the CPM

previously instructed the service module to stop sending TRANSMIT

Commands on a logical channel (XOFF) , and if the number of queued

TRANSMIT Commands is less than a predefined minimum (LOWAT)

,

FLOWCTRL calls SERVFLOW. SERVFLOW sends an XON request to

instruct the service module to restart the transmission of

TRANSMIT Commands on the channel.

6.20 HT TEST

Abstract . The HT_TEST subroutine determines whether a

TRANSMIT Command may be sent to the host.

Logic . If the sequence number of the next TRANSMIT

Command to be sent is within the credit window specified by the

host, that sequence number is copied into the HEADER of the next

TRANSMIT Command to be sent. HT_TEST then calls MVQ to update

the waiting queue "send" pointer.

6.21 FORWARD

Abstract . The FORWARD subroutine passes an HFP Message

to the host or a service module.

Logic . If a Message arrives from the host, S_SEND is

called to send the HFP Message to the requested service module.

If a Message arrives from a service module, H_SEND is

called to send the HFP Message to the host.

6.22 H SEND

Abstract . The H_SEND subroutine sends an HFP Message to

the host.

Logic . If the Message is not a BEGIN Command, the

credit, ack, and seq fields must be copied from the channel data

structure into the HEADER of the Message.

If the specified logical channel state is set to either

DRAIN or TERM, H_SEND sets the credit field value to eight.

H_SEND then calls the system primitive SNDSEG to send an HFP

Message to the host CPM. If SNDSEG returns an error, H_SEND

determines whether the error type is temporary or permanent. If

temporary, H_SEND waits for one second, and then calls SNDSEG

again. This process is repeated until the Message is

successfully transmitted. If the error is permanent, H_SEND

calls PANIC to restart the CPM.

If the Message is not a TRANSMIT Command, H_SEND calls

the system primitive FREESEG to discard the HFP Message.

6.23 S SEND

Abstract . The S SEND subroutine sends an HFP Message to

a service module.

Logic . S_SEND calls the system primitive SNDSEG to send

the HFP Message to the requested service module. If SNDSEG

returns an error, S_SEND determines whether the error is

temporary or permanent. If temporary, S_SEND waits for one

second, and calls SNDSEG again. This process is repeated until

the Message is successfully transmitted. When SNDSEG finally

-44-

sends the HFP Message to the service module, S^SEND calls the

system primitive FREESEG to discard the HE'P Message.

If the error is permanent, S_SEND calls LOGERR. S_SEND

then calls the system primitive FREESEG to discard the HFP

Message

.

6 . 2_4 H TR

Abstract . The H_TR subroutine sends a TRANSMIT Response

witn the specified status to the host.

Logi c. H_TR manipulates IPC system primitives to

construct an HFP TRANSMIT Response. H_TR then fills in the

following fields in the HEADER of the Message: size, type,

group, member, and status. Finally, H_TR calls H_SEND to send

the TRANSMIT Response.

6.25 SERVFLOW

Abstract . The SERVFLGw subroutine sends an XGN or XGFF

request to a service module.

Logic. SERVFLOto manipulates IPC system primitives to

construct an HFP Message. SERVFLOw then fills in the group and

member fields of the HEADER and calls H_SEND to send the HFP

Message to a service module.

6 . 2 6 DISCARD

Abstract . DISCARD is called when an HFP Message is

received referencing a logical channel which is in an

inappropriate state. DISCARD releases the Message.

Logic. An error is logged, but it is not reported to the

host. The system primitive FREESEG is called to free the

Message

.

-45-

6.22 ERROR

Abstract . ERROR is called to send an HFP Response with

an error indication.

Logic . An error is logged. The error code is copied into

the status field of the Message. ECHO is called to return the

Message to the sender.

-46-

A FRONT-END SERVICE

-47-

7. INTERNAL SERVICE ARCHITECTURE

7.1 General Description

Communications between the front-end CPM and a front-end

service (stage 3 communications) have been structured in terms of

Host-to-Front-End Protocol Messages. The inter-process

communication (IPC) facility used to convey these Messages

between the front-end CPM and a service is described in the

section entitled "Additions to Unix" on page 17. This facility

is functionally equivalent to the CPM-to-ser vice protocol

described in the HFP specification.

The following section describes the internal hierarchy

and actions of a "typical" service. Descriptions of the specific

services (HHS Module, PAS Module, SVTS Module) are adapted from

this section. These descriptions begin in section 10 on page 77.

Z • 1 Service Operation

A service receives HFP Messages from the front-ena CPM.

As each Message is received, the service calls a subroutine

appropriate to the. HFP Message type: BEGIN, TRANSMIT, SIGNAL,

EXECUTE, or END. These subroutines perform Command-specific

functions, handle error situations, execute state transitions,

and generate HFP Responses.

The Unix system generates I/O completion events to

indicate the completion of device I/O operations. As each event

is received, the service calls a subroutine appropriate to the

event type: OPEN, READ, WRITE, RETRANS (retransmit), and SPECIAL.

-48-

These subroutines complete the processing or HFP TRANSMIT Command

data being output to an I/O device, handle error situations,

execute state transitions, and generate HFP Responses.

-49-

7 . 3 Service Subroutine Hierarchy

This form ot operation dictates the internal structure ot

a service. Two major divisions in program logic occur to

accomodate input from the front-end CPM and the Unix I/O system.

The following chart illustrates this hierarchy. Each node in the

hierarchy represents a subroutine.

MAIN

1

1

HFP-IN
1

1

1

1

I/O-IN
1

1

i 1 1 1 1 1 1

I
END | XOFF | XON

I

1 1 1 1

BEGIN SIGNAL TRANSMIT EXECUTE

1 1 1 1

OPEN | SPECIAL
|

1 1

VvRITE RETRANS
1

NEVvSEG

1

READ

-50-

7.4 Service St.ate Transition Table

Each service is programmed as a finite state machine.

Inputs are received from the front-end CPM and the Unix I/O

system. Each input is associated with a logical channel. The

input type and current channel state determine immediate action

and next channel state. The following table depicts the channel

states, actions, and state transitions.

STATE EVENT (input)

NULL BEGIN Command

ACTION (output)

Open I/O Device

NEXT STATE

PEND

FEND I/O open success
I/O open failure
END Command

SIGNAL Command

EXECUTE Command

notify host ESTAB
notify host NULL
close I/O device
free resources NULL
error response PEND
to host
error response FEND
to host

ESTAB I/O error

TRANSMIT Command

notify host
free resources
data to I/O device

NULL
ESTAB

data from I/O device

END Command

SIGNAL Command
EXECUTE Command

TRANSMIT Command
to host
close channel
free resources
process command
process command

ESTAB

NULL
ESTAB
ESTAB

BUSY I/O error

TRANSMIT Command
data from I/O device

I/O completion -

transmit queue empty

END Command to host
flush buffers
free resources
queue command
TRANSMIT Command
to host

NULL
BUSY
BUSY

ESTAB

-51-

I/O completion -

queue not empty
END Command
SIGNAL Command
EXECUTE Command

start a new transfer BUSY
let data drain TERM
process command BUSY
process command BUSY

TERM data drained to device

SIGNAL Command
EXECUTE Command
I/O error

END Response to NULL
host
process command TERM
process command TERM
END Response to host NULL

-52-

7.5 Service Data Structures

A certain amount of a service's memory is reserved tor

channel data structures. Each channel data structure contains

all information relevant to an HFP logical channel. Certain

utility subroutines for manipulating these data structures are

explained in section 9 on page 71. The following table defines

the fields within a channel data structure (the numbers in parens

are the field widths in bits)

:

link (16) address
group (16) channel
member (16) channel
state (08) channel
flag (08) channel
size (16) number

from th
curseg (08) iden tif

output
fid (08) I/O dev
nout (16) number
seqhd (16) head of
oldaddr (16) last 1/
bytslf

t

(16) number
from cu

bytstran (16) number
device

of next channel list element
group identifier
member identifier
state
flag bits

of bytes waiting to be read
e I/O device
ier of TRANSMIT Command being
to the I/O device
ice identifier
of TRANSMIT Commands outstanding
I/O output queue

O starting address
of bytes remaining to be output
rrent TRANSMIT Command
of bytes last sent to the I/O

-53-

8. SERVICE LOGIC

The following subroutines comprise the "typical" service.

8 . 1 MAIN

Abstract . The MAIN subroutine is the first subroutine

executed. MAIN initializes variables, procures inter-process

communicat ion resources, and provides the "driving-loop" tor a

service. MAIN waits for HFP Messages and flow control inputs

from the front-end CPM f and I/O completion events from the Unix

system. when an input arrives, the source and type are used to

call either HFP-IN or I/O-IN. These two subroutines provide

input-specific processing. When control is returned to MAIN, it

branches to the top of the "driving loop" and repeats the

r rocess

.

Logic . In order to facilitate the identification of a

service by other r ront-end programs, a service must be assigned a

generic name. MAIN executes a system primitive, IPCGEw, tor this

assignment

.

As stated, a certain portion of a service's memory is

reserved for channel data structures. For organizational

purposes, MAIN links these structures into a free list. When

needed, the channel data structures are transferred from a free

list to an active list.

A service must retain data transmitted to an I/O device

until acknowledgement of its transfer is received. Otner

TRANSMIT Commands which arrive prior to this acknowledgement must

-54-

be queued. The storage elements for these queues are linked into

a free list.

MAIN executes the system primitive GETSBA to obtain a

segment base address or SBA. An SBA is a user-level virtual

address used to access HFP Messages.

After obtaining the necessary IPC resources (generic name

and SBA), MAIN falls into a loop where it calls the system

primitive WALL to wait for input. If an I/O completion event

arrives from the Unix system, MAIN calls I/O-IN. If an HFP

Message or flow control input arrives from the front-end CPM,

MAIN calls HFP-IN.

8.2 HFP-IN

Abstract . HFP-IN processes HFP Commands and flow control

inputs from the front-end CPM. HFP-IN manipulates IPC system

primitives to access an input message. If the input is of an

"unknown" type, an error is logged and the input is discarded.

If the input is of a "known" type, the associated logical channel

data structure is found. HFP-IN then calls a subroutine specific

to the input type.

Logic . HFP-IN issues the system primitive MAPSEG

requesting access to the input transmitted by the front-end CPM.

If the input is of an "unknown" type, HFP-IN calls the

system primitive FREESEG to deallocate the input and exits.

-55-

If the input is of a "known" type, HFP-IN calls FINDCHAN

to locate the HFP logical channel data structure referenced by

the input. FINDCHAN searches the active channel list and returns

the address in memory where the logical channel data structure

may be found. HFP-IN calls a subordinate subroutine appropriate

to the HFP Message or flow control input type. The BEGIN, END,

TRANSMIT, EXECUTE, SIGNAL, XOFF , and XON subroutines are

described below.

8.3 BEGIN

Abstract . BEGIN is called when an HFP BEGIN Command is

received. BEGIN obtains a logical channel data structure and

fills in appropriate information. BEGIN then "opens" the I/O

device described in the TEXT field of the BEGIN Command. Later,

the Unix system will respond with an I/O completion event

indicating the success or failure of the open request. The OPEw

subroutine will be called upon receipt of this event. OPEN will

complete the processing of the BEGIN Command.

Logic . A BEGIN Command may only reference a logical

channel which is in the NULL state (non-existent) . If the

logical channel is not in the NULL state, BEGIN calls RESPOND to

generate an HFP error Response. It the logical channel is in the

NULL state, BEGIN calls MAKCHAN. MAKCHAN returns a partially

initialized channel data structure. BEGIN sets the channel state

to PEND or pending.

The information from the BEGIN Command TEXT field is used

to initiate an I/O system open request by calling NBOPEN (system

-56-

subroutine: non-blocking open).

NBOPEN returns an I/O system file descriptor. The tile

descriptor is used in later READ, WRITE, and CLOSE I/O system

calls

.

If the open attempt fails at this point, BEGIN calls

KESPCND. RESPOND generates an HFP BEGIN Response to report the

failure of the open attempt. Otherwise, the channel remains idle

until an open I/O completion event arrives. Ihe I/O completion

event will indicate the success or failure of the open request

(see OPEN on page 64)

.

8.4 END

Abstract . The END subroutine is called when an HFP END

Command is received. If there is no data queued for output to

the I/O device, the logical channel is destroyed and an HFP END

Response is generated. Otherwise, the channel state is set to

TERm or terminating and queued data is allowed to "drain" to the

I/O device. The WRITE subroutine manages the processing of

cueued output data. When all queued data is processed, WRITE

will complete the processing of the END Command.

Logic . An HFP END Command may only reference an existing

logical channel (a channel not in the NULL state). It tne

logical channel referenced by the END Command is in the NULL

state, an HFP error Response is generated and END exits.

If there is no queued data awaiting output, END calls

-57-

KILLCHAN. KILLCHAN destroys an existing channel, regardless of

its state, and returns channel resources to their various pools.

If there is queued data awaiting output (channel state is

BUSY) , and the Flush Away bit is cleared, the END Command will be

queued on the end of the I/O output queue. WRITE will complete

the processing of the END Command after all previously queued

data has been output to the I/O device. The channel state is set

to TERM and data is allowed to drain.

If, however, tne FLUSH Away bit is set in the control

field of the HFP END Command, data which is queued for output is

immediately discarded and KILLCHAN is called.

END now calls RESPOND. RESPOND generates an HFP END

Response to notify the host process that the channel has been

closed as requested.

8.5 TRANSMIT

Abstract . The TRANSMIT subroutine is called when an HFP

TRANSMIT Command is received. Data is transferred to an I/O

device via a series of I/O write operations. I/O completion

events are returned after a write operation. Because of this

structure, a TRANSMIT Command may require several I/O write

operations before all data is transferred to an I/O device. The

arrival of other TRANSMIT Commands during this process

necessitates that they be queued in a first-in, first-out I/O

output queue and processed later.

-58-

If data is not being output to an I/O device when a

TRANSMIT Command arrives, a write I/O operation is initiated.

Later, the Unix system will generate a write I/O completion

event. The WRITE subroutine will complete TRANSMIT Command

processing

.

Logic . The TRANSMIT subroutine attempts to output the

contents of an HFP TRANSMIT Command TEXT field to the I/O system

as follows.

The two legal states for output are: BUSY ana ESTAB

(established). A channel is considered BUSY when a previous

non-blocking I/O request could not accept all data, or the

service is anticipating confirmation of a previous I/O write

request via a write completion event. If the logical channel is

BUSY, TRANSMIT calls ENQSEG. ENQSEG queues the TRANSMIT Command

on the channel's I/O output queue. Later, the TRANSMIT Command

will be processed by WRITE.

If the channel is in state ESTAB (no output in progress) ,

the data is immediately transmitted. TRANSMIT issues a write I/O

operation. The channel state is then set to BUSY.

Pertinent information is copied into the channel data

structure. The IPC segment identifier (used to access the HFP

TRANSMIT Command) is copied into 'curseg,' the address of the

beginning of the TRANSMIT Command TEXT field is copied into

'oldaddr,' the total number of bytes of data remaining to be

output is copied into "bytslft, 1 and the number of bytes of data

-59-

just output is copied into 'bytstran.'

If the I/O write call does not return an immediate error,

the service anticipates a future I/O completion event indicating

the success or failure of the write request, and the amount of

additional data which may be sent (see WRITE on page 65, and

NEwSEG on page 67).

If the I/O write call immediately returns an error,

RESPOND is called to generate an HFP TRANSMIT Response indicating

the type of error.

8 .

6

EXECUTE

Abstract . The EXECUTE subroutine is called when an HFP

FXECUTE Command is received. The EXECUTE subroutine performs a

service-specific function and returns an HFP EXECUTE. Service-

specific functions include returning I/O device status

information and initiation of "special" I/O operations.

Logic. The EXECUTE functions are service-specific.

Detailed logic descriptions are delayed until each service is

described (See descriptions beginning in section 10 on page 77).

8.7 SIGNAL

Abstract . The SIGNAL subroutine is called when an HFP

SIGNAL Command is received. An HFP SIGNAL Command may request

the "flushing" of logical channel data, the synchronization of

the channel (return a SIGNAL Response when all queued data has

been output), and the causing of an "interrupt" operation on the

-60-

I/O device.

Logic . The SIGNAL subroutine confirms the existence or

the specified logical channel, parses the HFP control field, and

executes the actions specified by four SIGNAL Command control

bits

.

The four control bits define data flushing, synchronize,

and interrupt functions. Any combination of these control bits

may be set within a single HFP SIGNAL Command. The precise

meanings of these bits are service dependent. A generalized

description of each is given below.

Synchronize . If a SIGNAL Command with the

Synchronize bit set arrives and the channel state is BUSY or

TERM, the SIGNAL subroutine calls ENQSEG. ENQSEG places the HFP

SIGNAL Command at the end of the I/O output queue. The SIGNAL

Command will be executed by NEtoSEG when all TRANSMIT and SIGNAL

Commands previously entered on the queue have been processed.

Note that the processing of a SIGNAL Command with the Synchronize

and Interrupt bits set is delayed until any queued TRANSMIT

Commands have been output to the I/O device (see NEWSEG on page

67) .

If a SIGNAL Command with the Synchronize bit cleared

arrives or the channel is not EUSY, SIGNAL calls RESPOND to

generate a SIGNAL Response.

Inter rupt . If the SIGNAL Command has the

Interrupt bit set, and the Synchronize bit is cleared, the SIGNAL

-61-

subroutine issues an I/O device-dependent interrupt request.

Flush Toward . The SIGNAL subroutine ignores the

Flush Toward bit. HFP TRANSMIT Commands in transit to the host

are queued by the front-end CPM and flushed there.

Flush Away . If the Flusn Away bit is set, the

SIGNAL subroutine empties the channel's I/O output queue, one HFP

Message at a time. The SIGNAL subroutine acts upon each queued

HFP Command as described below.

The I/O output queue may contain any or all of the

following HFP Command types: SIGNAL, LND, and/or TRANSMIT.

1. TRANSMIT: All queued HFP TRANSMIT Commands

are discarded.

2. SIGNAL: If the Interrupt bit is set, an I/O

interrupt request is issued. RESPOND is called to generate a

SIGNAL Response for the queued HFP SIGNAL Command.

3. END: KILLCHAN is called to destroy the

logical channel data structure and generate an HFP END Response.

k SIGNAL Response is generated for the flushing SIGNAL Command.

8 . 8 XOFF

Abstract . The XOFF subroutine is called when an Xoff

input is received. A flag in the channel data structure is used

to inhibit the reception of data from an I/O device (see the READ

subroutine on page 68). This flag is set by the XOFF subroutine.

-62-

Logic. The XOFF subroutine verifies the existence of the

logical channel data structure. If the channel exists, the Xoff

bit is set in the 'flags' field. FREESEG is then called to

discard the Xoff input.

8.9 XON

Abstrac t. The XON subroutine is called when an Xon input

is received. XON resets the flag blocking the receipt of data

from an I/O device. If I/O device input data is available, XON

calls the READ subroutine.

Logic . The XON subroutine verifies the existence of the

logical channel data structure. If the channel exists, the Xoff

flag is reset. If I/O device data has become available during

the period when input was inhibited, XON calls READ to process

this data.

-63-

8.10 I/O- IN

Abstract . The I/O-IN subroutine is called by MAIN when a

Unix I/O completion event is received. I/O-IN searches for the

associated logical channel data structure. If the channel data

structure is not found, an error is logged and the I/O completion

event is discarded. If the channel data structure is found, a

subordinate subroutine is called to process the specific I/O

completion event.

Logic . I/O-IN calls FINDFID to locate the HFP logical

channel data structure in the active channel list. FINDFID

returns a pointer to an address in memory where the channel data

structure may be found. If, however, the HFP logical channel

data structure cannot be found, an error is logged and the I/O

completion event is discarded.

If the channel data structure is found, I/O-IN calls a

subordinate subroutine appropriate to the I/O completion event

type. These subroutines generate the necessary HFP Message

sequences. The OPEN, WRITE, READ, RETRANS , and SPECIAL

subroutines are described in detail below.

8.n OPEN

Abstract . The OPEN subroutine is called when an open I/O

completion event is received. Open I/O completion events are

generated in response to file system open requests. The BEGIN

subroutine issues such a request when an HFP BEGIN Command is

received. OPEN completes the processing of a BEGIN Command. A

-64-

BEGIN Response is generated indicating the success or failure ot

the open request. If the request failed, the logical channel is

destroyed.

Logic . It the I/O completion event indicates a

successful open, OPEN sets the channel state to ESTAB and cnannel

flags are initialized. ESTAB indicates that the channel is open

ana no output I/O is in progress.

OPEN now calls RESPOND to generate a BEGIN Response. The

status field in the HEADER of the BEGIN Response is set to

indicate the success or failure of the open attempt. The TEXT

field of the BEGIN Response contains service-specific

information

.

If the I/O completion event indicates that input data is

available from the I/O device, OPEN calls READ to process that

data

.

If, however, the open request was unsuccessful, OPEN

calls KILLCHAN. KILLCHAN destroys the associated logical

channel. OPEN then calls RESPOND to generate a BEGIN Response

indicating the failure of the open attempt.

8.12 WRITE

Abstract . The WRITE subroutine is called in response to

a write I/O completion event. WRITE manages a first-in, first-

out queue of HFP TRANSMIT, SIGNAL, and END Commands. Write I/O

operations are initiated either by the TRANSMIT, RETRANS

subroutines, or by a previous WRITE invocation. WRITE

-65-

repetitively processes each queued TRANSMIT Command until all

data has been output to the associated I/O device. Vvhen

processing of a TRANSMIT Command is complete, it is dequeued and

a TRANSMIT Response is generated indicating the success of the

TRANSMIT Command. If an unrecoverable I/O occurred during the

output operation, a TRANSMIT Response with an error indication is

generated.

Certain conditions will cause HFP SIGNAL and END Commands

to be queued in the I/O device output queue (see SIGNAL on page

60, and END on page 57). If a SIGNAL Command is encountered, the

appropriate functions are executed and a SIGNAL Response is

generated. If an END Command is encountered, the channel is

destroyed and an End Response is generated.

Logic . The Unix I/O system generates an I/O completion

event indicating the disposition of a previous I/O write request.

Receipt of such an event prompts the execution of the VvRITE

subroutine.

The channel data structure variables, 'oldaddr' ana

'bytslft,' control the output of data from a TRANSMIT Command.

The 'oldaddr' variable contains the last memory address from

which data was output. The 'bytslft' variable contains the

number of bytes remaining to be output. 'Bytslft' will be set to

zero when all data from the associated TRANSMIT Command has been

output. VmRITE updates 'oldaddr' and 'bytslft.' If 'bytslft' is

zero, NEtaSEG is called to obtain another TRANSMIT Command from

the I/O output queue. If NEVvSEG returns an empty indication, the

-66-

channel state is set to ESTAB , and WRITE exits. If NEWSEG

returns an HFP END Command, WRITE calls KILLCHAN to terminate the

logical channel, generate an END Response, and exit.

It, however, 'bytslft' is not equal to zero, another I/O

write request is issued. Later, an I/O completion event will be

generated by the Unix I/O system and WRITE will continue

processing the HFP TRANSMIT Command.

8.13 NEWSEG

Abstract . The NEWSEG subroutine is called by WRITE when

all data from an HFP TRANSMIT Command has been processed. NEWSEG

generates a TRANSMIT Response indicating the successful output of

TRANSMIT Command data. NEWSEG then loops, obtaining the first

entry in the channel I/O output queue. If the queue is empty,

NEWSEG exits. If the first command is a SIGNAL Command, the

Command is processed and the next entry is obtained from the I/O

output queue. If the first command is an END Command, it is

returned to WRITE. If the first command is a TRANSMIT Command,

some initial processing is performed and the Command is returned

to WRITE for output to the I/O device.

Logic . NEWSEG calls RESPOND to generate a TRANSMIT

Response. The TRANSMIT Response references the TRANSMIT Command

whose processing has been completed. NEWSEG then calls DEQSEG to

obtain the next queued HFP Command. IF DEQSEQ returns, the I/O

output queue is empty and NEWSEG exits.

If the HFP Command returned by DEQSEG is a SIGNAL

-67-

Command, the Interrupt bit in the control field is tested. It

the Interrupt bit is set, an I/O interrupt request is issued and

a SIGNAL Response is generated. NEtoSEG again calls DEQSEG. If

the HFP Command returned is not a SIGNAL Command, it returns the

HFP Command to the toRITE subroutine.

8.14 READ

Abstract . The READ subroutine is called when a read I/O

completion event is received. Read I/O completion events are

automatically generated by the Unix system when data is

available. READ first checks the XON-XOFF flag. If this flag is

on, READ indicates that data is available and exits. If this

flag is off, READ formats an HFP TRANSMIT Command and obtains

data from the I/O device. Any translation of input data takes

place at this point. The TRANSMIT Command is then forwarded to

the front-end CPM for transmission to the host.

Logic . A read I/O completion event is automatically

generated indicating that a certain amount of I/O device input

data is available. READ is called by either I/O-IN or OPEN.

READ obtains input data from the I/O system. No further I/O

completion events will be generated until an I/O system read is

issued.

READ first calls BLDMSG to construct a "skeleton" HFP

TRANSMIT Command. READ then issues an I/O read request to obtain

I/O device data. If the I/O read request immediately fails, READ

calls KILLCHAN to terminate the logical channel and generate an

-68-

HFP END Command. If the I/O read request is successful, READ

calls SNDMSG to pass the HFP TRANSMIT Command to the front-end

CPM. The front-end CPM will pass the TRANSMIT Command on to the

host.

If the front-end CPM has stopped the transmission of data

to itself with an Xoff input, the 'size' field in the channel

data structure is loaded with the number of available input

bytes, and a flag is set indicating the availablity of input

data

.

8.1_5 RETRANS

Abstract . The RETRANS subroutine is called in response

to a retransmit I/O completion event. Certain situations occur

which require the retransmission of previously output data.

RETRANS performs this operation.

Logic . RETRANS is called to retransmit data previously

output. RETRANS simply issues an I/O write request with the

parameters previously saved in 'oldaddr' and 'bytstran.' It the

I/O write request immediately returns an error, RETRANS calls

KILLCHAN to destroy the logical channel and generate an HFP END

Command

.

8.16 SPECIAL

Abstract . The SPECIAL subroutine is called in response

to certain exception I/O completion events. SPECIAL generates an

HFP SIGNAL Command. This particular class of SIGNAL Command is

-69-

service -spec if ic.

Logic , Logic descriptions are delayed for service-

specific presentations in later sections (descriptions begin in

section 10 on page 77)

.

-70-

9. SERVICE UTILITIES

9 .

1

General Description

A group of subroutines perform service utility functions.

These utility functions include manipulation of logical channel

data structures (MAKCHAN, KILLCHAN, FINDCHAN, FINDFID) , and

manipulation of HFP Messages (BLDMSG, SNDMSG, RESPOND, FLUSHSEGS,

ENQSEG, DEQSEG) . These subroutines are detailed below.

9.2 MAKCHAN

Abstract . MAKCHAN obtains a channel data structure from

the free list, initializes certain fields, and links the

structure into an active list.

Logic . If the free list is empty, MAKCHAN returns a zero

value. Otherwise, MAKCHAN delinks the first entry from the free

list and links it into the active list. Channel Group ana Member

values are passed as parameters. These values are stored in the

•group' and 'membr' fields. The address of the initialized

channel data structure is returned.

9.3 KILLCHAN

Abstract . KILLCHAN reinitializes an active logical

channel data structure. As a result, the associated HFP logical

channel is destroyed.

Logic . KILLCHAN calls FLUSHSEGS to free all HFP Messages

queued on the I/O output queue. If the channel state is BUSY or

TERM, KILLCHAN calls a system primitive FREESEG to release the

-71-

Message being output. The generation of an HFP END Command may

be requested via a parameter. If the generation of an END

Command was requested, KILLCHAN calls BLDMSG to construct a

"skeleton" END Command. KILLCHAN then fills in certain HEADER

and TEXT fields and calls SNDMSG to transmit the HFP Message to

the front-end CPM.

The I/O device associated with the logical channel is

closed, and the logical channel data structure is delinked from

the channel data structure active list and linked in to the

channel data structure free list.

9.4 FINDCHAN

Abs trac t. FINDCHAN is called to locate a logical channel

data structure in the active channel list. HFP Group and Member

fields are used as parameters to the search.

Logic . FINDCHAN first checks to see if there are any

entries in the active channel list. It there are none, FINDCHAN

returns zero. If there are entries, FINDCHAN initializes loop

variables and checks each active channel data structure for a

match between the 'group' and 'membr' fields and the subroutine

'agrp' and 'amemb' parameters. If a match is found, FINDCHAN

returns the address of the logical channel data structure. If

the active channel list is completely searched and a match is not

found, FINDCHAN returns zero.

9.5 FIND FID

Abstract. Like FINDCHAN, FINDFID is called to locate a

-72-

logical channel data structure. However, the channel I/O device

file identifier is used as a parameter to the search.

Logic . The logic for FINDFID is the same as that tor

FINDCHAN except that the channel 'fid' field is compared to the

'afid' parameter. The return values are the same.

9.6 B LDMSG

Abstract . BLDMSG is called to construct a "skeleton" HFP

Message. BLDMSG will obtain memory of the correct size, fill the

'group' and 'membr ' parameters into the HFP HEADER ana return an

identifer which may be used to access the "skeleton" Message.

Logi c. BLDMSG first determines the required memory size

using manifest constants and a 'bsize' parameter. It then loops,

requesting an area of memory of a calculated size. Once memory

is obtained, the HFP Message HEADER size, type, group, and member

fields are filled in. BLDMSG then returns an identifer which may

be used to access the "skeleton" HFP Message.

9.7 SNDMSG

Abstract . SNDMSG is called to send an HFP Message to the

front-end CPM. The parameters to SNDMSG are a logical channel

data structure and an HFP Message identifier.

Logic . SNDMSG calls a system primitive SNDSEG to

transmit the Message to the front-end CPM. If the SNDSEG call

fails (returns negative one) , an error message is logged, the

front-end CPM's existence is verified, and another attempt is

-73-

made to send the HFP Message. This process repeats until the

Message is successfully transmitted. SNDMSG then calls a system

primitive FREESEG to release the service's association with the

HFP Message.

9.8 RESPOND

Abstra ct. RESPOND is called to send an HFP Response to

the front-end CPM. RESPOND is called with an HFP Message

identifier and a status.

Logi c. Access to the HFP Message is obtained by calling

a system primitive MAPSEG. RESPOND sets the response flag in the

HFP HEADER 'type' field. This action turns an HFP Commana into

an HFP Response. The HFP HEADER 'status 1 field is filled in with

the 'status' parameter and the HFP Response is sent to the

front-end CPM via a call to SNDMSG.

9.9 FLUSH SEGS

Abstra ct. FLUSHSEGS is called to free all HFP Commands

queued on a logical channel I/O output queue. FLUSHSEGS is

called with a pointer to a logical channel data structure.

Logic . If the logical channel I/O output queue is empty,

FLUSHSEGS simply returns. Otherwise, loop variables are

initialized and each HFP Message in the I/O output queue is

delinked from the queue and freed via a call to the system

primitive FREESEG. This sequence continues until the queue is

empty.

-74-

I'M ENQSEG

Abstra ct. ENQSEG is called to add an HFP Message to the

end of a logical channel I/O output queue. ENQSEG is called with

a pointer to an HFP logical channel queue and an HFP Message

identifier

.

Logic . Each HFP Message is queued by storing its

identifier in a queue element. These queue elements are linked

into a logical channel I/O output queue. If no queue elements

are available, ENQSEG returns negative one. Otherwise, the HFP

Message identifier is stored in the queue element and the queue

element is linked onto the end of the channel I/O output queue.

9. .11 DEQSEG

Abstract . DEQSEG removes the first HFP Message from the

front of a logical channel's I/O output queue. DEQSEG is called

with a pointer to a logical channel's I/O output queue.

Logic . If the I/O output queue is empty, DEQSEG returns

negative one. Otherwise, the first queue element is delinked

from the front of the I/O output queue and the associated HFP

Message identifier is returned. The queue element is then

returned to a free pool.

-75-

ARPANET HOST-HOST SERVICE MODULE

-76-

10. ARPANET HOST-HOST SERVICE MODULE ADAPTATION

10. 1 Function

The ARPANET host-Host Service (HHS) module enables

programs running in the host to manipulate the ARPANET NCP in the

front end. It implements the ARPANET Host-Host process-to-

service protocol definded in CAC Technical Memorandum No. 80.

The HHS module performs several functions, using the ARPANET wCP

in the front end.

1. It opens and closes ARPANET connections to
foreign hosts on the network.

2. It passes data between the H6000 and foreign
hosts on the network.

3. It maintains connection status information.

10 . 2 Adaptation

The ARPANET HHS module conforms to the operation of a

"typical" service as described in section 7 beginning on page 48.

This section adapts the HHS module's structure to the "typical"

service architecture.

10.-2._1 Subroutine Nami ng Conven t ions. Various HHS

module subroutines perform the same functions as those of the

"typical" service. However, the names used for these subroutines

are different. These differences will be resolved by placing the

subroutine name from which the HHS module's subroutine name is

derived, in parens, immediately following any usage of an

alternate HHS module name.

-77-

1Q.2.2 HHS module I/O Device . The Unix ARPANET software

is implemented as a Unix I/O device. ARPANET open, close, read,

and write I/O system calls corespond to "typical" service I/O

system operations. In this context, the ARPANET software is the

HHS module's I/O device.

10 . 3 Operation

The basic operation of the ARPANET HHS module is the same

as that of the "typical" service described in section 7.2 on page

48.

-78-

10 . 4 Service Sub routine Hierarchy

The subroutine-calling hierarchy of the HHS module is the

same as that of the "typical" service described in section 7.3 on

page 50.

MAIN

HFEIN
I

NETIN
I

I

I I I I I I

XMIT | EXEC | XON |

I I I

CHVRFY | SIG2HFE READNET
I

BEGIN
I

SIG END
I

XOFF WRTNET

NEVvSEG

NETNAK

-79-

10*5 Service Sta te Transition Table

The HHS module's logical states and state transitions are

identical to those of the "typical" service described in section

7.4 on pages 51 and 52.

10.6 Service Data Structures

1£.6.1 Channel Data Structure . The channel oata

structure is the same as that of the "typical" service described

in section 7.5 on page 53.

1£.6.2 Network Software Open Data Structure . when the

HHS module attempts to establish a network connection for a given

logical channel, it must pass parameters with the request. These

parameters are obtained from the TEXT field of the HFP BEGIN

Command requesting the initiation of the network connection.

The Open Data Structure has the following fields (the

numbers in parens indicate the field width in bits)

:

.. used internally by the network software

. . connection type

.. used internally by the network software

.. host's local socket for this connection

.. host's foreign socket for this connection

.. foreign host to which the connection is to
be initiated

.. number of bits per network logical byte

.. nominal allocation to be maintained

.. number of seconds to wait before timing
out a network connection attempt

relid (16) internal to the network software

op (08)
type (08)
id (16)
lskt (16)
fskt (32)
frnhost (08)

bsize (08)
noma 11 (16)
timeo (16)

-80-

11. HHS MODULE: PROGRAM ANALYSIS

The following subroutines comprise the Host-Host Service module.

11.1 MAIN

Abstract . MAIN obtains IPC resources, initializes

several data structure free lists, and provides the "driving

loop" for the program.

Logic . The operation and logic of the MAIN subroutine is

the same as the MAIN subroutine for the "typical" service

described in section 8.1 on page 54.

11.2 HFEIN (HFP-IN)

Abstract . HFEIN (HFP-IN) handles HFP and flow control

commands from the front-end CPM. There are seven subroutines

immediately subordinate to HFEIN (HFP-IN) that handle HFP

Command-specific processing: BEGIN, END, XMIT (TRANSMIT), EXEC

(EXECU1E) , SIGNAL, XOFF , and XON

.

Logic . The operation and logic of the HFEIN (HFP-IN)

subroutine is the same as that of the HFP-IN subroutine described

in section 8.2 on page 55.

11.3 BEGIN

Abstract . The BEGIN subroutine parses the BEGIN Command

TEXT field and initiates the requested network connection.

Logic . BEGIN calls NBOPEN to initiate an I/O network

open request. Connection information (connection type, foreign

-81-

host, foreign socket, nominal allocation, timeout, and byte size)

is copied from the TEXT field of the BEGIN Command into a network

software open structure. BEGIN uses this now initialized

structure to open a network connection to the specified foreign

host. The system primitive NBOPEN is executed for this purpose.

The rest of the operation and logic is the same as that of the

BEGIN subroutine described in section 8.3 on page 56.

11.4 END

Abstract . The END subroutine terminates a logical channel

by destroying the associated logical channel data structure.

Data queued for output to the network I/O device may be

discarded.

Logic . The operation and logic of the END subroutine is

the same as that of the END subroutine described in section 8.4

on page 57

.

11.5 XMIT (TRANSMIT)

Abstract . The XMIT (TRANSMIT) subroutine initiates data

transfers to the network I/O device and enqueues incoming

TRANSMIT Commands.

Logic . The operation and logic of the XMIT (TRANSMIT)

subroutine is the same as that of the TRANSMIT subroutine

described in section 8.5 on page 58.

-82-

11.6 EXEC (EXECUTE)

Abstract , When an HFP EXECUTE Command is received, one

of three functions are requested:

1. transmission of a Host-Host protocol
Interrupt by Receiver (INR) over the
associated network connection,

2. return of network connection status
information, or

3. alteration of the suggested data allocation
on the associated network connection.

Logic . If the EXECUTE Command specifies the transmission

of a Host-Host INR protocol message, the EXEC (EXECUTE)

subroutine calls the system primitive SENDINR. RESPOND is called

to generate an HFP Response.

If the EXECUTE Command requests an alteration in the

suggested allocation on the network data connection, the EXEC

(EXECUTE) subroutine simply calls RESPOND to generate an HFP

Response. The alteration of network allocation is not allowed in

the Unix Network software.

If the EXECUTE Command requests status information, the

EXEC (EXECUTE) subroutine calls the system primitive FSTAT.

FSTAT returns the network connection's status (local socket,

foreign socket, foreign host) and places this information and the

channel state into the EXECUTE Response TEXT field. EXEC

(EXECUTE) then calls RESPOND to transmit this Message to the

host.

-83-

All other EXECUTE Command requests cause the generation

ot an HFP Response with an "unimplemented*' status via the RESPOND

subroutine.

11.7 SIGNAL

Abstract . The SIGNAL subroutine processes the HFP SIGNAL

Command by performing data flushing, channel synchronization, and

interrupt functions.

Logic . The data flushing and channel synchronization

functions are implemented as described in section 8.7 on page 60.

The interrupt function is implemented by calling the system

primitive SNDINS. This transmits a Host-Host protocol Interrupt

by Sender (INS) protocol message over the associated network

connection. The action of calling SNDINS will be delayed if the

synchronize flag is set and data is in the I/O output queue. The

toRTNET (VvRITE) subroutine will complete processing of the SIGNAL

Command.

11.8 XOFF

Abstract . The XOFF subroutine inhibits the receipt of

network data.

Logic . The operation and logic of the XOFF subroutine is

the same as that of the XOFF subroutine described in section 8.8

on page 62.

-84-

11.9 XON

Abstrac t The XON subroutine restarts the flow of data

from network software to the front-end CPM.

Logic . The operation and logic of the XON subroutine is

the same as that of the XON subroutine described in section 8.9

on page 63.

-85-

11.10 NETIN (I/O- IN)

Abstract . NETIN (I/O-IN) receives I/O completion events

from tne network I/O device and dispatches control to an I/O

completion event type-specific subroutine. The five subroutines

called by NETIN (I/O-IN) include: CHVRFY (OPEN), READNET (READ),

wRTNET (WRITE) , NETNAK (RETRANS) , ana SIG2HFE (SPECIAL)

.

Logic. The operation and logic of the NETIN (I/O-IN)

subroutine is the same as that of the IO-IN subroutine described

in section 8.10 on page 64.

11.11 CHVRFY (OPEN)

Abstract . CHVRFY (OPEN) completes the processing of an

HFP BEGIN Command. CHVRFY (OPEN) verifies the successful

completion of the network connection and generates a BEGIN

Response

.

Logic . The operation and logic of the CHVRFY (OPEN)

subroutine is the same as that of the OPEN subroutine described

in section 8.11 on page 64 with the following addition. The TEXT

field of the HFP BEGIN Response is filled in with the connection

state, foreign host, foreign socket, number of messages

allocated, number of bits allocated, local socket, and byte size.

-86-

11.12 WRTNET (WRITE)

Abstract . The wRTNET (WRITE) subroutine processes

network write I/O completion events. These completion events are

generated by the network I/O device to acknowledge the successful

transmission of previous data.

Logic . The operation and logic of the WRTNET (WRITE)

subroutine is the same as that of the WRITE subroutine described

in section 8.12 on page 65.

11.13 NEWSEG

Abstract . The NEWSEG subroutine is called when all data

for an HFP TRANSMIT Command has been processed. NEWSEG searches

the I/O output queue for another HFP Command. If the HFP Command

is a SIGNAL Command, it is processed. Otherwise, it is returned

to the caller.

Logic . The operation and logic of the NEWSEG subroutine

is described in section 8.13 on page 67.

11.14 READNET (READ)

Abstract . The^EADNET (READ) subroutine is called when a

network read I/O completion event is received. READNET (READ)

obtains network data, formats it into an HFP TRANSMIT Command and

forwards it to the front-end CPM.

Logic . The operation and logic of the READNET (READ)

subroutine is the same as that of the READ subroutine described

-87-

in section 8.14 on page 68.

11.5 NETNAK (RETRANS)

Abstract . when the transmission of data to a foreign

host fails, the network software generates a negative

acknowledgement I/O completion event. NETNAK (RETRANS) is called

when a negative acknowledgement I/O completion event is received.

Logic . The operation and logic of the NETNAK (RETRANS)

subroutine is the same as that of the RETRANS subroutine

described in section 8.15 on page 69.

11.16 SIG2HFE (SPECIAL)

Abstract . When the network software receives an ARPANET

Host-Host Interrupt by Sender (INS) protocol message, it

generates a special I/O completion event. SIG2HFE (SPECIAL) is

called when a special I/O completion event is received. SIG2HFE

(SPECIAL) generates an HFP SIGNAL Command with the interrupt flag

set and sends this Message to the host.

Logic . SIG2HFE (SPECIAL) calls BLDMSG to construct a

"skeleton" HFP SIGNAL Command. The interrupt flag is set in the

status field of the SIGNAL Command. SIG2HFE (SPECIAL) then calls

SNDMSG to forward the HFP SIGNAL Command to the front-end CPM.

-88-

SERVER VIRTUAL TERMINAL SERVICE MODULE

-89-

12. SERVER VIRTUAL TERMINAL SERVICE MODULE ADAPTATION

12. 1 Function

The ARPANET Server Virtual Terminal Service (SVTS) module

enables programs on the host to be accessed by terminals

connected to other hosts on the ARPANET. It implements the

ARPANET Server Virtual Terminal process-to-service protocol

defined in CAC Technical Memorandum No. 82. It also implements

the ARPANET Telnet Protocol described in NIC Document No. 15372.

The SVTS module performs the following functions.

1. It opens and closes ARPANET connections to
hosts on the ARPANET.

2. It passes data between the local host and
hosts on the ARPANET in accordance with
Telnet protocol.

3. It maintains connection status information.

4. It performs Telnet option negotiation.

5. It enables front-end terminals to access the
host.

12.2 Adaptation

The ARPANET SVTS module conforms to the operation of a

"typical" service as described in section 7 beginning on page 48.

This section adapts the SVTS module's structure to the "typical"

service architecture.

12.2.1 Subroutine Naming Conventions . Various SVTS

module subroutines perform the same functions as those of the

-90-

"typical" service. However, the names used tor these subroutines

are different. These differences will be resolved by placing the

subroutine name from which the SVTS module's subroutine name is

derived, in parens, immediately following any usage of an

alternate SVTS module name.

12.2.2 SVTS module I/O Device. The Unix ARPANET

software is implemented as a Unix I/O device. ARPANET open,

close, read, and write I/O system calls corespond to "typical"

service I/O system operations. In this context, the ARPANET

software is the SVTS module's I/O device.

12 . 3 Opera t ion

The basic operation of the SVTS module is the same as

that of the "typical" service described in section 7.2 on page

48. However, in the SVTS module, the XMIT and NEtoSEG subroutines

invoke a Telnet output translator (TELNETOUT) and the READNET

(READ) subroutine invokes a Telnet input translator (TELNETIN)

.

The Telnet input and output translators (and several auxiliary

subroutines) comprise what is known as the Telnet handler.

The Telnet input and output translators operate as finite

state machines accepting input from various sources. These inputs

are characters and Telnet commands (inter-mixed with Telnet data)

that drive the machines from state to state. Figure 4 on the

next page shows the Telnet handler configuration. A description

of the Telnet input and output translators, as well as the

auxiliary subroutines, follows in a later section.

-91-

P6W
J
Q

HW

W
H

M
CD

H-f

M M-4

O 3
J34-1

rH &
CO

C
CO
,4

m u
>-i o
H 4-1

CTJ

4J rH

3 CO

a c
COcM
4-»

4-1

0) T3

rH

cy

4J

CO01

Eh rH U
co a;

3 CO <4H

Cfl 4-1 M-l

^(0 3
4J T3 43

r-l

O
4-1

cd

iH
CO

c
ct)

M
H
4-1

3a
4-1

3
o
4-1

<D

c
rH
a>

H

cu

r-l

•H

r-l

O
•U
CO

rH
CO

c
CO

U
4j

4-1 u
3 CU

a, <4_i

U <4-l

3 3
O XI

e
o

4-1
92

A2

*

4 Service Subroutine Hierarchy

The subroutine-calling hierarchy ot the SVTS module is

the same as that of the "typical" service described in section

7.3 on page 50 except tor additional calls to TELNETIN and

TELNETOUT as described above.

MAIN
I

I

HFEIN
I

I

I

NETIN
I

I I I I I I I

I
XMIT

|
EXEC | XON |

I I I I

BEGIN SIG END XOFF

I

CHVRFY

VvRTNET
I

NEVvSEG

I I I

SIG2HFE | READNET
I

NETNAK

-93-

12.5 Service State Transition Table

The SVTS module's logical states and state transitions

are the same as those of the "typical" service described in

section 7.4 on pages 51 and 52.

Service Dat a Stru ctures

12.6.1 Channel Data Structure . The SVTS module's

channel data structure is an expanaed version of the "typical"

service's channel data structure as described in section 7.5 on

page 53. The

information :

link (16) ...
group (16) ...
member (16) ...
state (08) ...
flag (08) ...
size (16) ...

curseg (08) ...

fid (08) ...
nout (16) ...
seqhd (16) ...
oldaddr (16) ...
bytslft (16) ...

bytstran (16) ...

rawbase (16) ...
rawptr (16) ...

rawcnt (16) ...
trnbase (16) ...

trnptr (16) ...

trncnt (16) ...

trnsiz (16) ...
outbase (16) ...
outsiz (16) ...
istate (08) ...
ostate (08) ...
options (08*n) .

following fields are used to hold channel

. address of next channel list element

. channel group identifier

. channel member identifier

. channel state

. channel flag bits

. number of bytes waiting to be read
from the I/O device

. identifier of TRANSMIT Command being
output to the I/O device

. I/O device identifier
. number of TRANSMIT Commands outstanding
. head of I/O output queue
. last I/O starting address
. number of bytes remaining to be output
from current TRANSMIT Command

. number of bytes last sent to the I/O
device

. address to start in raw input buffer

. current position in raw buffer
during translation

. number of characters in raw buffer

. starting address in translated input
buffer

. current position in translated buffer
during translation

. number of characters in translated
buffer

. size of translated data buffer

. starting address in output buffer

. size of output buffer

. telnet input state

. telnet output state

.. bit map of options in use

-94-

inscount (08) number of network INS messages received
gacount (16) number of host go aheads received
inqhd (16) queue of TRANSMIT Commands awaiting

go aheads from host.

12.6.2 Networ k Softwar e Ope n Dat a Structure . Vvhen the

SVTS module attempts to establish a network connection for a

given logical channel, it must pass parameters with the request.

These parameters are obtained from the TEXT field of the HFP

BEGIN Comamnd requesting the initiation of the network connection

and are stored in the Open Data Structure.

The Open Data Structure has the following fields (the

numbers in parens indicate the field width in bits)

:

. used internally by the network software

. connection type

. used internally by the network software

. host's local socket tor this connection

. host's foreign socket for this connection

. foreign host to which the connection is to
be initiated

. number of bits per network logical byte

. nominal allocation to be maintained

. number of seconds to wait before timing
out a network connection attempt

relid (16) internal to the network software

op (08) .

type (08) .

id (16) .

lskt (16) .

fskt (32) .

f rnhost (08) .

bsize (08) .

nomall (16) .

timeo (16) .

-95-

13. SVTS MODULE: PROGRAM ANALYSIS

The following subroutines comprise the Server Virtual Terminal

service module.

13.1 MAIN

Abstract . MAIN obtains IPC resources, initializes

several data structure free lists, and provides the "driving

loop" for the program.

Logic . The operation and logic of the MAIN subroutine is

the same as that of the MAIN subroutine described in section 8.1

on page 54.

13.2 HFEIN (HFP-IN)

Abstract . HFEIN (HFP-IN) handles HFP and flow control

commands from the front-end CPM. There are seven subroutines

immediately subordinate to HFEIN (HFP-IN) that handle HFP

Command-specific processing: BEGIN, END, XMIT (TRANSMIT), EXEC

(EXECUTE), SIGNAL, XOFF , and XON

.

Logic . The operation and logic of the HFEIN (HFP-IN)

subroutine is the same as that of the HFP-IN subroutine described

in section 8.2 on page 55.

13.3 BEGIN

Abstract . The BEGIN subroutine parses the BEGIN Comm?rd

TEXT field and initiates the requested network connection.

Logic. BEGIN calls NBOPEN to initiate an I/O network

-96-

open request. Connection information (connection type, foreign

host, foreign socket, nominal allocation, timeout, and byte size)

is copied from the TEXT field of the BEGIN Command into a network

software open structure. BEGIN uses this now initialized

structure to open a network connection to the specifiea foreign

host. The system primitive NBOPEN is executed for this purpose.

The rest of the operation and logic is the same as that of the

BEGIN subroutine described in section 8.3 on page 56.

13.4 END

Abstract . The END subroutine terminates a logical channel

by destroying the associated logical channel data structure.

Data queued for output to the network I/O device may be

discarded.

Logic . The operation and logic of the END subroutine is

the same as that of the END subroutine described in section 8.4

on page 57

.

13.5 XMIT (TRANSMIT)

Abstract . The XMIT (TRANSMIT) subroutine initiates data

transfers to the network I/O device and enqueues incoming

TRANSMIT Commands.

Logic . The operation and logic of the XMIT (TRANSMIT)

subroutine is the same as that of the TRANSMIT subroutine

described in section 8.5 on page 58 with the following addition.

The TELNETOUT subroutine is called to translate characters from

-97-

the host into Telnet protocol-defined ASCII, perform Telnet

option processing, and translate certain command character

sequences according to Telnet protocol.

13.6 EXEC (EXECUTE)

Abstract . The HFP EXECUTE Command is not used in this

process-to-service protocol.

Logic . EXEC (EXECUTE) calls RESPOND to generate an HFP

EXECUTE Response with an "unused" error status.

13.7 SIGNAL

Abstract . Like the EXECUTE Command, the HFP SIGNAL

Command is not used in this process-to-service protocol.

Logic . The SIGNAL subroutine simply calls RESPOND to

generate an HFP Signal Response with an "unused" error status.

13.8 XOFF

Abstract . The XOFF subroutine inhibits the receipt of

network data

Logic . The operation and logic of the XOFF subroutine is

the same as that of the XOFF subroutine described in section 8.8

on page 62.

13.9 XON

Abstract The XON subroutine restarts the flow of dd\.a

from network software to the front-end CPM.

-98-

Logic . The operation and logic of the XOiM subroutine is

the same as that of the XON subroutine described in section 8.9

on page 63.

-99-

13.10 N ETIN (I/Q-IN)

Abs tract . NETIN (I/O-IN) receives I/O completion events

from the network I/O device and dispatches control to an I/O

completion event type-specific subroutine. The five subroutines

called by NETIN (I/O-IN) are: CHVRFY (OPEN), WRTNET (WRITE),

READNET (READ) , NETNAK (RETRANS) , and SIG2HFE (SPECIAL)

.

Logic . The operation and logic of the NETIN (I/O-IN)

subroutine is the same as that of the I/O-IN subroutine described

in section 8.10 on page 64.

13.11 CHVRFY (OPEN)

Abstract . CHVRFY (OPEN) completes the processing of un

HFP BEGIN Comamnd. CHVRFY (OPEN) verifies the successful

completion of the network connection and generates a BEGIN

Response.

Logic . The operation and logic of the CHVRFY (OPEN)

subroutine is the same as that of the OPEN subroutine described

in section 8.11 on page 64 with the following addition. The TEXT

field of the HFP BEGIN Response is filled in with the connection

state, foreign host, foreign socket, number of messages

allocated, number of bits allocated, local socket, and byte size.

13.12 WRTNET (WRITE)

Abstract . The WRTNET (WRITE) subroutine processes

network write I/O completion events. These completion events are

generated by the network I/O device to acknowledge the successful

-100-

transmission of previous data.

Logi c. The operation and logic of the WRTNET (WRITE)

subroutine is the same as that of the WRITE subroutine described

in section 8.12 on page 65.

13.13 NEwSEG

Abstract . The NEWSEG subroutine is called when all aata

for an HFP TRANSMIT Command has been processed. NEWSEG searches

the I/O output queue for another HFP Command. If the HFP Command

is a SIGNAL Command, it is processed. If the HFP Command is a

TRANSMIT Command, TELNETOUT is called.

Logic . The operation and logic of the NEWSEG subroutine

is the same as that of the NEwSEG subroutine aescribed in section

8.13 on page 67 with the following addition. If a TRANSMIT

Command is dequeued from the I/O output queue, NEWSEG calls

TELNETOUT. TELNETOUT will translate the TRANSMIT Command data in

accordance with Telnet protocol.

13.1_4 READNET (READ)

Abstract . The READNET (READ) subroutine is called when a

network read I/O completion event is received. READNET (READ)

obtains network data, calls TELNETIN to translate the data,

formats it into an HFP TRANSMIT Command, and forwards it to the

front-end CPM.

Logic . The operation and logic of the READNET (READ)

subroutine is the same as that of the READ subroutine described

-101-

in section 8.14 on page 68 with the following addition. READNET

calls TELNETIN. TELNETIN translate the data in accordance with

Telnet protocol.

13.15 NETNAK (RETRANS)

Abstract . When the transmission of data to a foreign

host fails, the network software generates a negative

acknowledgement I/O completion event. NETNAK (RETRANS) is callea

when a negative acknowledgement I/O completion event is received.

Logic . The operation and logic of the NETNAK (RETRANS)

subroutine is the same as that of the RETRANS subroutine

described in section 8.15 on page 69.

13.16 SIG2HFE (SPECIAL)

Abstract . when the network software receives an ARPANET

Host-Host Interrupt by Sender (INS) protocol message, it

generates a special I/O completion event. SIG2HFE (SPECIAL) is

called when a special I/O completion event is received. SIG2HFE

(SPECIAL) generates an HFP SIGNAL Command with the interrupt flag

set and sends this Message to the host.

Logic . SIG2HFE (SPECIAL) calls BLDMSG to construct a

"skeleton" HFP SIGNAL Command. The interrupt flag is set in the

status field of the SIGNAL Command. SIG2HFE (SPECIAL) then calls

SNDMSG to forward the HFP SIGNAL Command to the front-end CPM.

-102-

14. TELNET HANDLER

14.

1

Telnet Input Translator

14.1.1 Buffer Utilization . As Figure 4 on page 92

illustrates, the Telnet input translator has two buffers for each

channel. The raw input buffer receives characters and Telnet

commands (data) directly from the NCP and thus the network and

foreign host. The translator then filters the Telnet commands

and changes the characters from Telnet representation to host

representation. The translated data buffer holds up to one line

of these translated characters. This line of translated

characters (data) is then placed into a message containing a

TRANSMIT Command and sent to the CPM and thus to the local host.

14.2 Telnet Output Translator

14.2.1 Buffer Utilization . As the diagram on page 92

indicates, the Telnet output translator has only one buffer: the

output buffer. The Telnet output translator receives characters

(data) from the CPM and thus from the local host. The translator

changes the characters from host representation to Telnet

representation. The translated data is placed in the output

buffer and then sent to the network and thus to a foreign host.

-103- 7/1/77

Ii*3 Telnet Handler State Transition Tables

.L4.3.1 Input Translator . The following table depicts

the Telnet input translator's logical states, actions, and state

transitions.

STATE

NEUTRAL

IAC SEEN

CHARACTER

<IAC>

NULL

<LF> Line Feed

<CR>

all others

<IAC>

<DM>
<AO>
<SE>
<NOP>
<IP>
<AYT>
<SB>

BREAK

<EC> Erase
Character

<EL> Erase Line

ACTION

discard

send queued
data to host

place in buffer

place in buffer

discard

send SIGNAL Command

back up pointer

,

decrement count

reset pointer
zero count

NEXT STATE

IAC SEEN

NEUTRAL

CR_SEEN

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

-104-

STATE CHARACTER ACTION NEXT STATE

CR SEEN

<GA>

WILL

DO

WON'T

DON ' T

all others

<LF>

send blank
TRANSMIT Command

all others

DO_SEEN
WILL_SEEN

W ON' T_SE EN
DUN'T SEEN

back up raw
pointer and count

place <CRXLF> in
buffer and sena
TRANSMIT Command to
host

place <CR> in data
stream ana rescan
other character

call positive
negotiator

call negative
negotiator

NEUTRAL

WILL_SEEN

DO_SEEN

WON'T_SEEN

DON'T SEEN

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

L4._3._2 Output Translator . The following table

depicts the Telnet output translator's logical states, actions,

and state transitions.

STATE CHARACTER

NEUTRAL <CR>

<LF>

<IAC>

all others

CR_SEEN <LF>

all others

ACTION

output <CRXLF>

output <IACXIAC>

place in output
buffer

output <CRXLF>

output <CRXNULL>,
back up pointer

N EXT STATE

CR SEEN

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

NEUTRAL

-105-

15. TELNET HANDLER: PROGRAM ANALYSIS

15.1 TELNETIN

Abstract . The TELNETIN subroutine translates data ana

handles offloaded Telnet options.

Logic . READNET calls TELNETIN to translate network data.

The TELNETIN subroutine determines whether the translated data

buffer is large enough to accomodate the new data. If the number

of characters in the raw buffer (' rawcnt
*

) in the channel data

structure and the number of characters in the translated data

buffer ('trncnt') are greater than the size of the translated

data buffer ('trnsiz') , a new translated data buffer is

necessary. The TELNETIN subroutine copies the characters from

the old translated data buffer into the new. The ' trnbase'

(pointer to the beginning of the translated data buffer) and

'trnsiz' (size of the translated data buffer) fields in the

channel data structure are updated.

If the old translated data buffer is large enough,

TELNETIN saves the current position in the translated data buffer

during translation ('trnptr').

TELNETIN sets the current postion in the raw buffer

during translation ('rawptr'). The current position is the

beginning of the raw buffer, pointing to the first character

obtained by the read I/O system operation. TELNETIN then

switches on the input state.

C ase 1: State =NEUTRAL

If the character is <IAC> or Interpret As Command, no

106-

action is taken and the state becomes IAC_SEEN.

If the character is NULL, it is simply discaraed.

If the character is <LF> or Line Feed, TELNETIN must

determine whether a Synch is being performed. A Synch signal

consists of a Host/Host Protocol INS command, coupled with the

Telnet command <DM> or Data Mark. The INS command, is used to

invoke special handling of the data by the process which receives

it. In this mode, the data stream is immediately scanned for

"interesting" (<A0>, <IP>, <AYT>) signals, discarding intervening

data

.

The Telnet command <DM> is the synchronizing mark in the

data stream which indicates that any special signal has already

occurred and the recipient can return to normal processing of the

data stream. When a <DM> arrives before its associated INS, the

recipient should not process the data stream further until the

matching INS is received, in order to insure that the two ends of

the connection remain synchronized. In some cases, several

Synch's may be sent in succession. In general, this will require

a count of the INS's received so as to properly pair them with

the associated <DM's>.

Thus, if the 'inscount' field (INS counter) in the

channel data structure is equal to zero, normal processing of the

data stream may occur. The character is stored in the translated

data buffer and the buffer's character count is incremented.

SENDQ calls BLDMSG to construct a "skeleton" HFP TRANSMIT

Command. SENDQ copies in network data and transmits it to the

CPM and thus to the host. TELNETIN resets the pointer to the

-107-

start of the translated data buffer ('trnbase').

If the character is <CR> or Carriage Return, TELNLTIN

must determine whether a Synch is being performed. If the

' inscount 1 field in the channel data structure is equal to zero,

normal processing of the data stream may take place. No action

is taken and the state becomes CRSEEN.

All other characters are data. If the 'inscount 1 field

is equal to zero, normal processing of the data occurs. TELNLTIN

stores the particular character in the translated data buffer and

the buffer count is incremented.

Case 2: State =I AC SEEN

If the command is another <IAC>, the <IAC> is placed in

the translated data buffer and sent as data. The number of

characters in the buffer is incremented and the state becomes

NEUTRAL.

If any of the following Telnet commands are received,

they are discarded and the state becomes NEUTRAL: <DM> (Data

Mark), <AO> (Abort Output), <SE> (End of Subnegotiat ion) , <NOP>

(No operation) , <IP> (Interrupt Process) , <AYT> (Are You There?)

,

and <SB> (Start Subnegotiat ion)

.

If the command is BREAK, a SIGNAL Command with the

Synchronize, Flush Away, and Interrupt bits set in the control

field is sent to the CPM and thus to the host. The go-ahead

counter in the channel data structure is decremented and the

state becomes NEUTRAL.

If the command is <EC> or Erase Character and the number

of characters in the translated data buffer is greater than zero,

-108-

the pointer to the current position in the butter is moved back

to the preceding undeleted character. The character count in the

translated data buffer ('trncnt') is decremented and the state

becomes NEUTRAL.

If the command is <EL> or Erase Line, the pointer to the

start of the translated data buffer ('trnbase') is reset and the

number of characters in the buffer ('trncnt') becomes zero. (The

translated data buffer may never hold more than one line of

data) . The state becomes NEUTRAL.

If the command is <GA> or Go Ahead, TELNETIN calls SENDQ

to send a TRANSMIT Command (with go-ahead flag set) to the CPM

and thus to the host. The pointer to the start of the translated

data buffer ('trnbase') is reset and the state becomes NEUTRAL.

The following Telnet commands indicate the initialization

of some option negotiation. As the list indicates, no action is

taken, only state transitions occur.

CHARACTER NEXT STATE

WILL WILL_SEEN
DO DO_SEEN
WON '

T

WON'T SEEN
DON'T DON'T SEEN

If a character does not match any of the previously

mentioned commands, the pointer to the current position in the

raw buffer ('rawptr') is backed up. The number of characters in

the raw buffer (
' rawcnt

'
) is incremented and the state becomes

NEUTRAL.

-109-

Case 3: State=CR SEEN

If the character is not <LF>, <CR> is placed in the data

stream and the number of characters in the translated data buffer

('trncnt') is incremented.

If the character is <LF> or Line Feed, it is placed in

<CRXLF> and the translated data buffer count is incremented.

TELNETIN calls SENDQ to send a TRANSMIT Command to the CPM and

thus to the local host. The pointer to the start of the

translated data buffer ('trnbase') is reset and the state becomes

NEUTRAL.

Case 4: State =DQ SEEN , State =WILL SEEN

In each of these states, positive options are negotiated.

TELNETIN calls the subroutine POSITIVE to handle the WILL/DO

negotiations and the state becomes NEUTRAL.

Case 5: State =hlON'T SEEN , State =DON'T SEEN

In each of these states, negative options are negotiated.

TELNETIN calls the subroutine NEGATIVE to handle the WON ' T/DON '

T

negotiations and the state becomes NEUTRAL.

In all five cases mentioned above, after the character

translation is complete, the number of characters in the raw

input buffer becomes zero and the pointer to the current position

in the buffer is copied for the next data stream.

-110-

Ih . k D ispositi o n 1 a d 1 e

This table determines the disposition of telnet options

(see POSITIVE and NEGATIVE). In this implementation, all option

negotiations are relused.

DlSPQSlIlQN

REFUSE

REFUSE

REFUSE

REFUSE

REFUSE

REFUSE

REFUSE

REFUSt

REFUSE

REFUSE

REFUSE

R E £ boL

REFUSE

REFUSE

REFUSE

REFUSE

REFUSE

TELNET 0FT10N

binary transmission

echo

reconnec tion

suppress go ahead

approximate message size

status

timing mark

RC1E

negotiate output line size

negotiate output p a ~ e size

negotiate output carriage return
C i sposit i on

negotiate output horizontal tab
stops

negotiate output horizontal t a d

disposit i on

negotiate output lorm feed
di sposit ion

negotiate output vertical tab
stops

negotiate output vertical tab
disposition

negotiate output line feed
disposition

-111-

15.3 POSITIVE

Abstract . The POSITIVE subroutine handles WILL/DO

negotiations.

Logic . Upon receipt of a WILL or DO command, TELNETIN

calls POSITIVE. The POSITIVE subroutine sets the state to

NEUTRAL. If the option is not legal, POSITIVE returns. It the

bit map of turned-on options in the channel data structure

indicates that the option is already being implemented, POSITIVE

returns.

If neither of the preceding cases is true, the POSITIVE

subroutine examines the Disposition Table (page 111) to determine

how to process each option.

If the option is accepted, POSITIVE sets an option

specific bit in the channel data structure. POSITIVE then calls

SNDREPLY to send an affirmative Telnet reply to the foreign host.

If the option is refused, POSITIVE calls SNDREPLY to send

a negative reply to the foreign host.

If the option is to be forwarded to the local host, it is

placed in the translated data buffer. The number of characters

in the buffer is incremented by three and an <IACXDO/VvILL>

<option> is constructed. POSITIVE then calls SENDQ to send a

TRANSMIT Command to the CPM and thus to the local host. The

pointer to the beginning of the translated data buffer

('trnbase') is then reset.

-112-

15 . 4 NEGATIVE

Abstract . The NEGATIVE subroutine handles WON'T and

DON'T negotiations.

Logic . Upon receipt of a wON ' T or DON'T command,

TELNETIN calls NEGATIVE. The NEGATIVE subroutine sets the state

to NEUTRAL. If the option is not legal, NEGATIVE returns.

The NEGATIVE subroutine examines the Disposition Table to

determine how to process each option. If an option has

previously been accepted, NEGATIVE clears an option-specific flag

in the channel data structure. NEGATIVE calls SNDREPLY to sena a

proper reply to the foreign host.

If the option is to be forwarded to the local host, it is

placed in the translated data buffer. The number of characters

in the buffer is incremented by three. NEGATIVE calls SENDQ to

send a TRANSMIT Command to the CPM and thus to the local host.

The pointer to the beginning of the translated data buffer is

then reset.

1_5.5 SENDQ

Abstract . The SENDQ subroutine sends translated Telnet

characters (data) to the local host.

Logic . The SENDQ subroutine copies the number of

characters in the translated data buffer (' trncnt
') . SENDQ then

calls BLDMSG to construct a "skeleton" HFP TRANSMIT Command. The

data is then copied into the TRANSMIT Command. SENDQ then

performs any host-specific data translation. If the host has not

issued a Go Ahead, the message segment is enqueued to await

transmission. Otherwise, the message is immediately transmitted

-113-

to the host. The number of characters in the translated data

buffer is now zero and the pointer to the beginning of the buffer

is reset.

15 .

6

SNDREPLY

Abstract . The SNDREPLY subroutine sends data generated

internally in the SVTS module to the network.

Logic . If the logical channel is in state ESTAb

(established), SNDREPLY issues a network write I/O operation.

However, if the state of the logical channel is bUSY,

SNDREPLY calls ELDMSG to construct a "skeleton" HFP TRANSMIT

Command. The status field in the HEADER of the message is set to

negative one (-1) to prevent the message from being sent back to

the local host as an HFP Response (see NEWSEG in section 13.13 on

page 101) . The data is copied into the Message and the Message

is added to the I/O output queue.

15.7 TELNETOUT

Abstract . The TELNETOUT subroutine handles translation

to Network Virtual Terminal Representation (NVT) from the local

host

.

Logic . XMIT or NEtoSEG call TELNETOUT to obtain data from

the the local host. TELNETOUT extracts data size information

from the TRANSMIT TEXT. TELNETOUT then determines whether the

output buffer is large enough to accomodate the new data. If it

is not large enough, a new output buffer is obtained. TELNETOUT

saves the go-ahead flag in the channel data structure. TELNETOUT

then performs any host-specific data translation. The pointer to

the start of the output base is reset. The number of bytes

-114-

remaining to be output to the network from TEXT ('bytslft') is

set to zero.

If the number of bytes of data sent from the host is

greater than zero, TELNETOUT obtains the first character.

TELNETOUT then switches on the output state.

Case 1: State =NEUTRAL

If the character is <CR> or Carriage Return, no action is

taken and the state becomes CR_SEEN.

If the character is <LF> or Line Feed, it is translated

to <CRXLF> and the state becomes NEUTRAL. The number of

characters in the output buffer is incremented. The number of

bytes remaining to go to the network from TEXT ('bytslft') is

incremented by two.

If the character is <IAC>, it is translated to <IACXIAC>

and the state becomes NEUTRAL.

All other characters are simply placed in the output

buffer and the state remains NEUTRAL. The number of characters

in the output buffer is incremented.

Cas e 2: State = CR SEEN

If the character is <LF> or Line Feed, it is translatea

to <CRXLF> and the state becomes NEUTRAL. The number of

characters in the output buffer is incremented.

All other characters are translated into a <CRXNULL>

sequence and the pointer to the current position in the output

buffer is moved back to rescan the character. The state becomes

NEUTRAL.

After the character translation is complete, the pointer

-115-

to the beginning of the output buffer is reset. If the go-ahead

flag in the channel data structure is set, an <IACXGA> is placed

in the data stream.

If the go-ahead flag of the message containing the

TRANSMIT Command (data just translated) is cleared, any data

queued for the foreign host is sent. If no data is queued, a

Telnet Go-Ahead command ana the data just translated is sent to

the foreign host.

-116-

PROGRAM ACCESS SERVICE MODULE

-117-

16. PROGRAM ACCESS SERVICE MODULE ADAPTATION

16 . 1 Function

The Program Access Service (PAS) module will enable

programs running in the H6000 to execute arbitrary programs in

the tront end. It will implement the Program Access process-to-

service protocol described in CAC Technical Memorandum No. 81.

The PAS module performs several functions using the Unix pseudo-

Teletype (PTY) facility.

1. It enables programs on the H6000 to log in to
and log out of the Unix system.

2. It enables programs on the H6000 to run
programs under Unix (for example, Telnet).

3. It passes data between programs on the H6000
and programs running under Unix.

16 . 2 Adaptation

The PAS module conforms to the operation of a "typical"

service as described in section 7 beginning on page 48. This

section will adapt the PAS module's structure to the "typical"

service architecture.

1_6.2^1 Subroutine Naming Conventions . Various PAS

module subroutines perform the same functions as those of the

"typical" service. However, the names used for these subroutines

are different. These differences is resolved by placing the

subroutine name from which the PAS module's subroutine name is

-118-

derived, in parens, immediately following any usage ot an

alternate PAS module name.

]J>.2.2 PAS module I/O Device . The Unix pseudo-Teletype

(PTY) mechanism is implemented as a non-blocking I/O device.

Pseudo-Teletypes are a Unix community term tor software-

controlled terminals. Pseudo-Teletypes are dual-sided, having a

master side and a slave side.

Both the master and the slave sides have open, close,

read, and write I/O system entry points. The slave I/O system

write software is "coupled" to the master I/O system read

software. The slave I/O system read software is "coupled" to the

master I/O system write software. Thus, data "written" to one

side may be "read" by the other side.

Slave software operates like a standard Unix terminal

device. Slave write I/O operations process data as if it were

to output to a terminal "printer." Master read I/O operations

obtain this data. Master write I/O operations process data as it

it were generated by a terminal "keyboard." Slave read I/O

operations obtain this data.

The PTY facility allows arbitrary front-end programs to

be initiated with the slave side of a pseudo-teletype as the

"controlling" terminal. The PAS module manages the master side

of all pseudo-Teletypes. Data flowing through the master side ot

a pseudo-Teletype is coupled to an HFP logical channel. Thus,

the PAS module and the PTY facility enable host processes to

-119-

execute arbitrary front-end programs.

16.3 Operation

The basic operation ot the PAS module is the same as

that of the "typical" service described in section 7.2 on page

48, with the addition of the Go-Ahead facility. The Go-Ahead

facility is required to handle host half-duplex terminals. A

detailed description of the Go-Ahead facility is found in the

Program Access process-to-service protocol specification.

16.

4

Service Subroutine Hierarchy

The subroutine-calling hierarchy is the same as the

calling hierarchy of the "typical" service described in section

7.3 on page 50, with the addition of two subroutines (HSTGA,

GOAHEAD) to implement the Go-Ahead facility.

The PAS module's form of operation dictates the internal

structure of the service. Two major divisions in program logic

occur to accomodate input from the front-end CPM and the Unix PTY

facility. The chart on the following page illustrates this

hierarchy. Each node in the hierarchy represents a subroutine.

-120-

MAIN

I I

HFEIN PTYIN
I I

r I

i r i r r i r i t r r i i

I
END | XOFF | XON

| |
CHVRFY

I
GOAHEAD | READPTY

I I I I I I I

BEGIN SIGNAL XMIT EXEC DEATH KRTPTY RETRANS
I I

HSTGA NEVvSEG

I

HSTGA

-121-

16. 5 Service Sta te Tr ansition Table

The PAS module's states and state transitions are the

same as those of the "typical" service described in section 7.4

on pages 51 and 52. Some of the ACTIONS, however, are PAS

moaule-specif ic.

The PAS module is programmed as a finite state machine.

Inputs are received from the front-end CPM and Unix PTY facility.

Each input is associated with a logical channel. The input type

and current channel state determine immediate action and next

channel state. The table on the following page depicts the

channel states, actions, and state transitions.

-122-

STATE EVENT (input)

NULL BEGIN Command

ACT ION (output)

Open PTY

NEXT STATE

PEND

PEND PTY open success
PTY open failure
END Command

SIGNAL Command
EXECUTE Command

notify host ESTAB
notify host NULL
close PTY device
free resources NULL
error response to host PEND
error response to host PEND

ESTAB PTY error

TRANSMIT Command
data from PTY device

END Command

SIGNAL Command
EXECUTE Command

notify host
free resources
data to PTY device
TRANSMIT Command
to host
close cnannel
free resources
process command
process command

NULL
BUSY
ESTAB

NULL
ESTAB
ESTAB

BUS¥ PTY error

TRANSMIT Command
data from PT¥ device

I/O completion -

transmit queue empty

I/O completion -

queue not empty
END Command
SIGNAL Command
EXECUTE Command

END Command to host
flush buffers
free resources
queue command
TRANSMIT Command
to host

start a new transfer
let data drain
process command
process command

NULL
BUSY
BUSY

ESTAB

BUSY
TERM
BUSY
BUSY

TERM data drained to device
SIGNAL Command
EXECUTE Command
PTY error

END Response to host NULL
process command TERM
process command TERM
END Response to host NULL

-123-

16.6 §^rv;i£e Data Structu res

16.6.1 Channel Data Structure . The form and usage ot

the PAS module's channel data structure is the same as that of

the "typical" service's channel data structure described in

section 7.5 on page 53. The PAS module's channel data structure,

however, has two additions: a pointer to a PTY data structure and

a variable to store the process identifier of the program

currently attached to the slave side of the PTY.

16.6.2 PTY Dat a Structu re . When the PAS module receives

a BEGIN Command, it allocates a PTY to the logical channel. This

PTY is described by two Unix I/O system file names, a PTY slave

file name, and a PTY master file name. The last character of the

slave and master file names determine the specific PTY to be

referenced. The last character of the slave and master file

names are stored in the PTY structure.

The PTY data structure has the following fields (the

numbers in parens indicates the field width in bits)

:

name (08) last character of PTY filenames
inuse (08) set to 1 if the PTY structure is

in use.

-124-

17. PAS MODULE: PROGRAM ANALYSIS

Tne tollowing subroutines comprise the Progam Access Service

module.

17.1 MAIN

Abstract . MAIN obtains IPC resources, initializes

several data structure free lists, and provides the "driving

loop" for the program.

Logic . The operation and logic of the MAIN subroutine is

the same as the MAIN subroutine described in section 8.1 on page

54 with tne addition of a small piece of initialization software

that marks all PTY data structures as unused.

17.2 HFEIN (HFP-IN)

Abstract . hFEIN (hFP-IN) handles HFP and flow control

commands from the front-end CPM. There are seven subroutines

immediately subordinate to HFEIN (HFP-IN) that handle HFP and

flow control commands: BEGIN, END, XMIT (TRANSMIT), EXEC

(EXECUTE) , SIGNAL, XOFF , and XON .

Logic . The operation and logic of the HFEIN (HFP-IN)

subroutine is the same as that of the HFP-IN subroutine described

in section 8.2 on page 55.

12 '1 BEGIN

Abstract . The BEGIN subroutine parses the HFP BEGIN

Command TEXT field, assigns a PTY to the logical channel, and

-125-

initiates a "logger" program on the slave side of the PTY. This

logger program will handle host login requests and initiate

front-end programs.

Logic . BEGIN searches the PTY data structures for a tree

PTY. If one is not found, RESPOND is called to generate an HFP

bEGlJM Response with an error indication of "no-resources." It an

unused PTY is found, BEGIN manufactures the correct Unix file

name and issues a non-blocking Unix open I/O operation. Later,

the Unix I/O system will generate an open I/O completion event.

CHVRFY (OPEN) will be executed and will complete the processing

of the HFP BEGIN Command. BEGIN then calls MAKCHAN to obtain a

channel data structure. If there are no free channel data

structures, BEGIN calls RESPOND to generate an HFP BEGIN Response

with an error indication of "no-resources." If a channel data

structure is found, BEGIN initializes several variables.

Finally, BEGIN spawns a logger process whose controlling terminal

is the slave side of the newly assigned PTY.

17.4 END

Abstract . The END subroutine terminates a logical

channel by destroying the associated logical channel data

structure. Data queued for output to the PTY I/O device may be

discarded.

Logic . The operation and logic of the END subroutine is

the same as that of the END subroutine described in section 8.4

on page 57

.

-126-

17.5 XMIT (TRANSMIT)

Abstract . The XMIT (TRANSMIT) subroutine enqueues an

incoming HFP TRANSMIT Command on the logical channel I/O output

queue. If the PTY is not busy, an I/O write operation is

initiated.

Logic . The operation and logic of the XMIT (TRANSMIT)

subroutine is the same as that of the TRANSMIT subroutine

described in section 8.5 on page 58 with the following addition.

If all TRANSMIT Command data was transferred to the

master side of the PTY, RESPOND is called to generate an HFP

TRANSMIT Response with a "success status" indication. If the

Go-Ahead bit in the TRANSMIT Command was zero (go-ahead) , HSTGA

is called to initiate a data transfer from the PTY to the host.

1J7.6 HSTGA

Abstract . HSTGA is called in response to go-ahead

functions from the host. HSTGA initiates data transfers from the

PTY to the host.

Logic . If data is available from the PTY, and if the

XOFF flag is not inhibiting data input to the front end CPM,

HSTGA calls READPTY (READ) to obtain the data and pass it on to

the host via the front-end CPM.

17.7 EXEC (EXECUTE)

Abstract. The HFP EXECUTE Command is not used for this

-127-

process-to-service protocol. This routine handles the error

situation when one arrives.

Logic . The EXEC (EXECUTE) subroutine calls RESPOND to

generate an HFP EXECUTE Response with a "not implemented" error

status indication.

r7.8 SIGNAL

Abstract . The SIGNAL subroutine executes the KFP SIGNAL

Command by performing data flushing, cnannel synchronization, and

interrupt functions.

Logic . The data flushing and channel synchronization

functions are implemented as described in section 8.7 on page 60.

The interrupt function is implemented by calling the system

primitive STTY. This function causes a Unix standard Interrupt

signal to be sent to the process controlling the slave side of

the PTY. In most cases, a Unix Interrupt signal causes program

termination. A Unix facility exists to "catch" these signals ana

interpret them in a program-specific manner. Some Unix programs

use this facility. The action of calling STTY will be delayed if

the synchronize flag is on and data is in the I/O output queue.

The NEtoSEG subroutine will complete processing of the SIGNAL

Command

.

17.9 XOFF

Abstract . The XOFF subroutine inhibits the receipt of

PTY generated data.

-128-

Logic . The operation and logic of the XOFF subroutine is

the same as that of the XOFF subroutine described in section 8.8

on page 62.

17.10 XQN

Abstract The XGN subroutine restarts the flow of data

from network software to the front-end CPM.

Logic . The operation and logic of the XON subroutine is

the same as that of the XON subroutine described in section 8.9

on page 63.

-129-

17.11 PTYIN (I/O- IN)

Abstract . PTYIN (I/O-IN) receives I/O completion events

from the pseudo-Teletype I/O device and dispatches control to an

I/O completion event type-specific subroutine. The five

subroutines called by PTYIN (I/O-IN) are: CHVRFY (OPEN) , WRTPTY

(WRITE), READPTY (READ), GOAHEAD, and DEATH.

Logic . The operation and logic of the PTYIN (I/O-IN)

subroutine is the same as that of the IO-IN subroutine described

in section 8.10 on page 64. If the IPC event returned is not an

I/O completion event, but rather a DEATH event (generated by the

Unix processs ' control software to detail a child process death),

PTYIN (I/O-IN) calls DEATH.

17.12 CHVRFY (OPEN)

Abstract . CHVRFY (OPEN) completes the processing of an

HFP BEGIN Command. CHVRFY (OPEN) verifies the successful

completion of a PTY open I/O operation and generates a BEGIN

Response

.

Logic . The operation and logic of the CHVRFY (OPEN)

subroutine is the same as that of the OPEN subroutine described

in section 8.11 on page 64.

17.13 WRTPTY (WRITE)

Abstract . The WRTPTY (WRITE) subroutine processes PTY

write I/O completion events. These completion events are

generated by the PTY I/O device to acknowledge the successful

-130-

transmission of previous data.

Logi c. The operation and logic of the WRTPTY (WRITE)

subroutine is the same as that of the WRITE subroutine described

in section 8.12 on page 65.

17.14 NEWSEG

Abstract . The NEWSEG subroutine is called when all data

for an HFP TRANSMIT Command has been processed. NEWSEG searches

the I/O output queue for another HFP Command. If the HFP Command

is a SIGNAL Command, it is processed. Otherwise, it is returned

to the caller

.

Logic . The operation and logic of the NEWSEG subroutine

is the same as that of the NEWSEG subroutine described in section

8.13 on page 67 with the following addition. If the TRANSMIT

Command whose processing has just been completed has the Go-Ahead

bit set to zero (go ahead) , NEWSEG calls HSTGA to potentially

initiate a data transfer from the PTY to the host via the front-

end CPM.

1/7.15 READPTY (READ)

Abstract . READPTY (READ) obtains slave process data,

formats it into an HFP TRANSMIT Command, and forwards it to the

front-end CPM.

Logic . The operation and logic of the READPTY (READ)

subroutine is the same as that of the READ subroutine described

in section 8.14 on page 68 with the following addition. Both the

-131-

XOFF and GO-AHEAD flags are checked in the channel data structure

flag field before a PTY I/O read operation is initiated. It

either of these flags is on, PTY data is available, and READPTY

will exit.

17.16 GOAHEAD

Abstract . The GOAHEAD subroutine is callea when a PTY

go-ahead event is received. When an event of this type is

received, the program which manages the slave side of the PTY has

issued a read I/O operation.

Logic . If the front-end CPM has not turned off data

input via an XOFF input, an empty (no data in the TEXT field) HFP

TRANSMIT Command with the Go-Ahead flag set to zero (go ahead) is

sent to the host via the front-end CPM.

17.17 DEATH

Abstract . DEATH is called when a Unix process-control

death event is received. This event indicates that the program

which manages the slave side of the PTY has completed processing.

Logic . If an associated logical channel data structure

can be found, KILLCHAN is called to terminate the logical

channel, de-allocate the channel data structure, and send an HFP

END Command to the host via the front-end CPM.

-132-

Ml

