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ABSTRACT

An algorithm for the scheduling of information acquisition is

explored in the new product evaluation context. The decision process

proposed indicates the need for an orderly scheduling process in con-

junction with a specified objective function. Simulations employing

a variety of parameter inputs are presented for illustrative purposes.





INTRODUCTION

We consider the decision-making .ramework to involve an option on

the decision-maker's part to accept an alternative, reject an alternative

or defer the decision until additional information is collected that pre-

sumably has a bearing on alternative acceptance or rejection. One area

dealing with information collection and utilization is Bayesian decision-

making as proposed in the work of Raiffa [6] and Schlaifer [7], (In the

marketing research context, see [l]). Utilizing this framework, work in

the sequential sampling area has extended the "collect information" option

to the situation where the decision maker collects information, notes the

outcome and then elects to accept, reject, or collect additional informa-

tion [3]. The presumption is that information collection is a costly

operation and that information should not be collected beyond the point

where the cost exceeds the value.

Previous work in this area has generally involved only the single

parameter decision problem. Consideration of a decision involving many

parameters poses an additional dimension to the strategic framework.

Now the decision maker must decide between accept, reject, and informa-

tion collection in which he has a number of alternative parameters to

estimate. If we use the word "experiment" to refer to information

collection for the sake of parameter estimation, then it becomes crit-

ical to specify the first experiment to be performed as well as a sub-

sequent experimental order which is dependent on the prior experimental

outcomes.

Since only the experimental outcomes, and not the order of com-

pleted experiments is critical to subsequent experimental selection,





a dynamic programming recursion algorithm will be proposed. Basic inputs

are the same as in any single parameter Bayesian decision framework: the

cost of each experiment, the prior pxobabilities of the unknown parameter,

conditional probabilities that relate experimental outcomes to the true

value of the parameter, and an objective function specifying relationships

between variables and the objective.

The problem of multi-parameter estimation are neither trivial nor

infrequent in management. An aircraft manufacturer has a number of tests

that may need to be performed on a new or modified product; the experi-

ments are costly and, thus, savings with this proposed solution may be

realized. New product evaluations are also most difficult, and the

number of experiments range from inexpensive breakeven analysis to ex-

pensive market-testing. The high rate of failure among new products

indicates that some products should have undergone more extensive ex-

perimentation prior to experimentation. The large number of products

that are abandoned after market testing causes one to question whether

these products could have been screened out prior to expensive experi-

mentation. Finally, one must wonder about the possibly larger number

of products that would have been successful but were abandoned when

firms faced the high cost of further testing; this statistic will never

be known.

Solutions to the problem of new product evaluation has been pro-

posed [2,5], Unfortunately, these provide only a "rule of thumb" for

the scheduling of the steps (see Figure 1) , or methodology for perform-

ing each experiment. In general, the steps scheduled earliest are

those which are least expensive; one might also expect the earlier

steps to be very efficient in eliminating poor ideas. Nevertheless,
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the assumption of this prior work is that all steps will be followed until

rejection and that the order specified will be rigidly adhered to.

An Example

To continue the new product evaluation example , assume that a new

product development team formulated the following objective function for

its new product idea:

T
(1) Z - il -A—_ pS [D (50 - C ) - FC ]} - K

t-0 (1 + i)
u

where,

PS « probability of technological success (i.e., prob-

ability of developing a manufacturable prototype)

D = demand for new product (if developed) in year t

C =» unit variable cost associated with the production

of the new product in year t

FC = fixed costs associated with new product in year t

i cost of capital

K = a minimum return or cost of implementing the new

product

Thus we see that the new product team faces uncertainty about the new

product idea which, if developed, would sell for $50 per unit. It is

also apparent that the timing of cash flows is critical (this is util-

ized in present value calculations) and that some expenditures may vary

over the years. For example, fixed cost expenditures are typically very

heavy in year zero (e.g., purchase of capital equipment) while demand

and manufacturing costs are incurred over the life of the product.





The objective function featured in the example is indicative of why

analytical solutions to problems of this nature may not be feasible. Ex-

pansion of equation (1) yields a term which is the interaction of three

parameters, PS«D «C . The value of reducing uncertainty for C , for

example, is dependent upon the parameter estimates and uncertainty about

PS and D . Although variables may clearly interact in the objective func-

tion, the assumption is made that experimental outcomes for different

parameters are independent. This assumption is made to simplify the sim-

ulations presented in a later section; it is by no means limited to the

general method of solution and the program could be easily modified to

handle the condition of dependence.

The Programming Approach

To expand on the proposed approach to the multiparameter sequential

information collection problem, consider a decision situation with four

unknown parameters, X. , X-, X„, and X, . Let us introduce the following

notation and decision Inputs: If the alternative is accepted, our

profit will be

P (X„ , X„ . . . X )

where X. , X_, X_, X, . . . are the actual (unknown) values

of the parameters

We assume that the following data can be determined:

(a) c., the cost of performing an experiment on the i

parameter

(b) fjfajJ, the prior density function of the i

parameter





(c) h, j
(x.), the conditional density function of the

outcome of the experiment on parameter i, x, , given

the true value of the parameter is x ,

.

Then (b) and (c) above can be used with Bayes theorem to compute,

g . i
* (x,), the conditional density function on parameter i given the ex-

perimental outcome x ,

.

Next we develop the dynamic programming recursion to determine the

optimal order [4]. First consider the situation when our objective func-

tion has four parameters and all experiments have been completed with

A A A A

experimental outcomes x. , x
? , x„, x,. Since we must now reach a terminal

decision, we would calculate expected profit with acceptance as:

(2) E (P|xlfx2
,x

3
,x

4 ) -

P(xn x x x, ) g, i- (x, ) . . . g, i

~ (x, ) dx, . . . dx.
•Ix.^xJx.Jx, 12 3 4 °1 x,

v 1 a 4 x. 4 1 412 3 4 '1 '4

The value associated with rejection is 0. Thus the decision with the

greater expected value would be selected.

Working back one step, consider the case where only three experi-

ments, 1, 3, and 4, have been completed with experimental outcomes

x , x~, x,; three options are available: we can accept, reject (with

expected value of 0) or perform experiment 2. The expected value of

immediately accepting is,

(3) A - E (P|xr x
3

, x
4
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or utilizing equation (2) we can rewrite equation (3) as,
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The above is merely performing the integration over a different variable

and the quantity in brackets represents the pre-posterior distribution

of x_. In addition to the terminal act options, we may elect to perform

experiment 2, thereby delaying our terminal act, but also incurring the

cost of the second experiment, c
?

:

(5) C - -c
2
+ Jj max [E(P jx^.x^) , 0] [Jx

h
2

|

x
(x

2
)f

2
(x

2
)dx

2
] dx

2

It is apparent that the cost of c« must be weighed against the advantage

of choosing the better terminal decision after observing x_.

To simplify future expansion, let us introduce the following

notation:

Let K represent the set of indices of all possible experiments

K - {1, . . . , n}

Let J represent the set of experiments which have been performed
x ) k j in

J . . m
= K - {i,k,m} (i.e., all but i, k, m have been performed)

i.e. , for n * 4

K - {1,2,3,4}

J
2

,
s K - {2 S 4} {1,3} (i.e., experiments 2 and 4 have

' not been performed)

Let Y„ - {x. . . . x }Kin
And Y_ « {x.

|
ieJ

? ,} - (x. ,x~} (i.e., the experimental outcomes
2,4 for the experiments performed)

Let Ay the expected value associated with termination by acceptance

given experimental outcomes Y

Then

\ * JxixJx ix
A

P(X
1
X
2
X
3
X
4> *1 1

*.<*!> f
2

(X2>
J
2,4

12 3 4 '1
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3

(x
3

) f
4 (V <^i^2

dx
3
dx
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For ieJ let

C the expected value associated with continuing with
i,Yj

experiment i.

Thus,

C
4,Y

T
"

"C
4
+ &» (A

Y. »
R

>
€
2 9Y T

}

J
2 S

4
J
2 2

[ h.
|

(x.) f/Cx,) dx.] dx,J x, 4 x. 4 4 %
4 4J 4

4 ' 4

where

R =»

Intuitively the above integral considers the expected value of the best

decision associated with each experimental outcome x, , and weights the

expected value by the probability of the x. outcome. These are then

summed over all possible xy
outcomes to yield the expected value of

continuing with the fourth experiment.

The general form of the dynamic programming recursion can now be

written for the n parameter case:

1. start with J = K~{1, ...n> and

compute A, for all possible Y
\J

J

Compute EV » max {^ ,R}

J J

2, Let J = {K} - {i}. Then for all i

compute A,^ , C , and let
Y
J.

1?1
J,

EV
Y

- max {Ay , R, C
± Y }

i x i

This represents the case where only one experiment remains to

be done,





3. Let J, . - J, - {k} » J, - {i}. For all k * i
i,k i k

we then compute A^ , C

J * JJ
i,k

J
i,k

Then EV - max {A , R, C }

T I
x

' TJ
i,k

J
i,k

J
i,k

4. Continue to recursion to and including the case J
1

. This

represents the case when none of the experiments has been per-

formed and the decision maker has selected the best option:

either accept, reject, or continue (and the best experiment to

perform first)

.

It should be noted that, in the foregoing, we have assumed all density

functions are for continuous random, variables. Clearly, if this is not the

case, then we merely replace the appropriate integral with the corresponding

summation. From a computational point of view, however, we must assume

that we have discrete density functions, at least for all but the most

trivial situations. Thus to perform the actual computations outlined

above, we would approximate all density functions by discrete density func-

tions .

Sample Runs of Experimental Scheduling

To explore the impact and provide a qualitative feel for the model's

scheduling algorithm, eight runs of the model are presented in Table 1.

These runs embody a number of input parameters from which generalizations

will be discussed. To conform to the previous example as well as the program-

ming notation, we considered a four experiment case in which the decision

maker must determine whether to obtain information regarding the probability

of technological success, demand, unit cost, or fixed cost for a potential

new product. Thus we have the following objective function:
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10
1

2 = E i__^ PS [D (50-C ) - FC ] - 5000

t-0 (l+i)
C t

where all variables are defined as before and

i - .10

PS a discretely distributed random variable

D C = normally distributed random variables,

equal to in period and constant

over time periods 1 to 10.

FC = uniformly distributed random variable in

period and equal to in periods 1 to 10.

The computations were performed by dividing the range of the density

function into intervals and then massing the total probability in each

interval at the midpoint of the interval. The conditional distributions

h.i (x. ) were approximated by massing all the probability in an interval
i|X^ 1

at the midpoint. In particular, the range for D was divided into deciles

and the ranges for FC and C were divided into quint iles. Obviously, as

we use finer intervals, we will get a better approximation, but our cost

of computation will also rise. In practice, we would have to check that

the discrete distributions reasonably reflect our initial data. No trans-

formations were necessary in the case of PS as this variable was initially

a discrete variable.

Table 1 provides a summary of the input and output of the computer

runs. For experiment 1, the cost of the experiment and prior probability

of success is indicated (the probability of failure is simply 1 minus this

value) as well as the probability of ultimate success given a successful

outcome of the experiment and the probability of ultimate failure given

an unsuccessful outcome of the experiment. The latter two values capture
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the reliability of experiment 1 in predicting ultimate technological

success. For the remaining three experiments, input parameters are the

cost of the experiment, the prior mean, the prior standard deviation,

and the posterior standard deviation. For the sake of simplicity, it

was assumed that the posterior distribution was from the same family as

the prior distribution and that the experiment was unbiased (e.g.,

E (XJx) =* x, where X is the basic parameter and x is the experimental

outcome)

.

Run 1 represents the base run from which generalizations regarding

the other simulations will emerge. As indicated in the summary table,

experiment 1 is the first experiment scheduled; depending on the experi-

mental outcome, experiments 2 and 4 have probabilities of being scheduled

second of .525 and .475 respectively. Figure 2 is an abbreviated version

of the entire decision-experimentation tree for the base run. This de-

cision tree is indicative of the infeasibility of analytical solutions

or anything but broad generalizations to this method of problem solving.

For example, experiment 1 is scheduled first because of the reliability

of the experiment in predicting success or failure as well as the com-

paratively low cost. If a failure is predicted, then we continue with

experiment 4 which leads to terminal acts of either acceptance or re-

jection. If the outcome of experiment 1 points to success, then we

continue with experiment 2. If demand is estimated to be very low

(first or second decile) or very high (tenth decile), we terminate.

The decision tree also provides a visual presentation of the non-

monotonic relationship between outcomes of experiment 2 and the optimal

third experiment. If the experiment 2 outcome is In the 3rd, 4th, 8th,

or 9th deciles, we perform experiment 4; outcomes in the 5th, 6th, or





Figure 2

Partial Decision Tree of Base Run (Run 1)

Accept

Do exp 1

x, * F I Do exp 4

Accept

3 . Reject

ill Do exp 2

Expected Values

This procedure: 53439.1
All tests run: 49224.2
No tests run: 9453.3

I i

I

Decision

Reject

Reject

Reject

Reject

*
4
»1 Do exp 3

3 i
Do exp 4

Reject

Reject

x
4

- 4 Reject

Reject

Do exp 3

Do exp 4

Do exp 3

*4 = 3 Do exp 3

Reject

Reject

Accept

x
2

= 5 Do exp 3

Accept

Do exp 4

Reject

Reject

x
2

- 6

x
2

- 7

Do exp 3

Do exp 3

Do exp 4

Accept

Do exp 4

Accept

Accept

Do exp 3

5 i Do exp 3

10 Accept

Exp.

Outcome
Decision l Exp.

I Outcome
Decision Exp.

Outcome
Decision Exp.

Outcome

I I

Numbers represent quintile or decile outcomes resulting from experimentation





14

7th deciles warrant experiment 3. Thus analytical solutions or guesswork

are likely to yield non-optimal decision procedures. A comparison of ex-

pected values of the alternative decision rules indicates that, for this

set of parameters, an approximately 10 per cent gain can be expected from

using the algorithm as compared with running all tests and then choosing

the best course of action. The algorithm results in an even more sub-

stantial gain when compared with the simple decision rule to do no ex-

perimentation.

A comparison of runs 1 and 2 Indicates the eftect of experimental

cost. As the cost of experiment 2 is increased, the scheduling moves

the experiment from a likely second step to a possible third step.

In runs 3 and 4, the prior standard deviation of the parameter 2

value has been decreased from 1667 to 1250 and 625 respectively. In

this fashion, as the prior standard deviation approaches the posterior

standard deviation, the experiment has either a low probability of taking

place or, in the case of run 4, no chance at all of being completed. Sim-

ilarly when experimental reliability is decreased (I.e., posterior standard

deviation is increased) as in run 5, the probability of the experiment

being done diminishes.

The previous runs have shown how experimental costs and value of

information have moved experiment 2 from a likely second step to an im-

probable third step. In a similar manner, experiment 1 (which was sched-

uled first in the base run) can be shifted out of the first scheduling

position. In run 6, the cost of experiment 1 has been increased so that

experiment 1 Is a possible second step. Run 7 illustrates the effect of

the prior parameter of experiment 1; in this case, the likelihood of a

success has been increased from .5 to .75 and experiment 1 has only a
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a very small probability of occurring before the fourth step. Run 8 in-

dicates the effect of decreased information reliability. In this case,

experiment 1 has no chance of being within the first three experimental

steps.

Conclusion

The dynamic programming Bayesian approach is a flexible technique

that may be applied to a number of decision-information acquisition prob-

lems that involve multiple testing of several parameters. One obvious

use is in the area of new product evaluations which must consider a number

of relevant parameters to the overall profit function. Extensions to the

areas of research and development or medical testing may yield additional

promise. The nature of the objective function is quite flexible and the

independence of tests/parameter estimation is by no means limiting.

The value of the organized problem solution is threefold:

1. Management /researchers must translate qualitative judg-

ments about the quality of information, prior information,

and cost of information into quantitative parameter inputs.

Where high uncertainty exists, sensitivity analysis is

available to detect parameters that greatly affect the

scheduling outcome.

2. The nature of possible complex objective functions suggest

that analytical or rules of thumb solutions to this prob-

lem will result in less than optimal decision rules. (See

[8] for a description of subjects' inabilities to make

judgments of this nature for a simple problem.)
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3. The process only schedules information that will have a

bearing on the final decision and the ambiguity or poten-

tial source of conflict in test evaluation is thereby

eliminated. . \
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