
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/10199236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF
ILLINO'S ' l^RARY

AT URBANA-Ci .vlFAIGN

ENGINEERING

NOTICE: Return or renew all Library Materials! The Minimum Fee for

each Lost Book is $50.00. II 111 *»

The person charging this rnateml Is rfl^T^sible for

its return to the library from which it was withdrawn
on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for discipli-

nary actio%and may result in dismissal from the Untversity.

To renew Qall 1

L161—O-1096

5io. nh
I£63c
no. 92

MmREHCE BOflM

ENGINEERING LIBRA
UNIVERSITY OF ILUNC

URBANA, ILLINOIS

iced Gompi
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA. ILLINOIS 61801

CAC Document No. 92

A DIFFERENTIAL CORRECTION ALGORITHM
FOR EXPONENTIAL CURVE FITTING

by

Geneva G. Belford
John. F. Burkhalter

November 1, 1973

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/differentialcorr92belf

CAC Document No. 92

A DIFFERENTIAL CORRECTION ALGORITHM
FOR EXPONENTIAL CURVE FITTING

By

Geneva G. Bel ford

John F. Burkhalter

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

November 1, 1973

This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the U.S.
Army Research Office-Durham under Contract No. DAHC0U-72-C-0001.

1. INTRODUCTION

Recently algorithms have "been developed for the simultaneous fitting

of several exponential decay curves with common exponential factor [l, 2].

In many physical situations, however, the curves need to be fitted by

, n , .

multi-term (£ a.exp(b.tj) exponential sums instead of by a single expo-
i=l x x

nential (n=l). Before simultaneous curve fitting can be done, good al-

gorithms must exist for the approximation of a single curve by the func-

tional form under consideration. Uniform curve fitting by sums of expo-

nentials has been studied to some extent [3, *+], but there remains a need

for further development of efficient, reliable algorithms.

A method which has been quite useful for the construction of best

rational approximations is the differential correction method. This

method has been studied in some detail [5] and has recently been success-

fully combined with linear programming to form an efficient algorithm [6].

The combination would also appear to be promising for exponential ap-

proximation. Indeed Braess [k] has discussed a differential correction

approach to approximation by exponential sums; he does not, however, seem

to combine the method with linear programming.

In this paper we report on a combined differential-correction plus

linear-programming algorithm for approximation by sums of exponentials.

The next sections contain a brief discussion of the algorithm, while in

Section k we report on some computer tests.

2. SOME THEORETICAL CONSIDERATIONS

The problem to be solved is the following. Let g(t) be a given

function defined on a finite point set T = {t.}. _ CT [0,°°). Let F be
1 i=0 ' n

the family of n-term exponential sums with nonnegative coefficients:

n

F = { T a.exp(b.t) : a. > 0, b.e R}.
n .

ii_ i l l—i
i=l

We wish to determine a best approximation f from F to g on T, where

"best" is defined by the uniform (or Chebyshev) norm. That is, with

|f|| = maXrJf (t)
|

, a best approximation f satisfies

|

|f-g| |
= inf

|
|h-g| |.

heFn
+

On a compact interval best approximations to continuous functions

from F are guaranteed to exist and to be unique by a theorem due to

Braess [3]. On a finite point set, however, the situation is more compli-

cated. Consider the following example. Suppose we wish to find a best

+
approximation from F to f given by:

t f(t)

1

1 -0.2

2 0.1

A best approximation should be characterized by a 3-point alternant. That

is, we want to find a, b, d satisfying the system

a exp (bt.) + (-l)
1
d = f(t.)

1 X
i = 1, 2, 3.

Adding together the first two and the last two equations, we get

a{exp(bt
1

) + exp(bt
2
)} = fO^) + f(t

g
)

a{exp(bt
2

) + exp(bt
3
)} = f(t

g
) + f(%

3
),

or

a exp(bt){1 + exp(b)} = f(t) + f(t
2

)

a exp(bt
2
){l + exp(b)} = f(t

g
) + fftg).

Division of the second of these by the first yields

exp(b) = (f(t
2

) + f(t
3
)}/{f(t

1
) + f(t

2
)}.

The left side of this equality is positive, but the right side is nega-

tive for the given data; hence a best approximation can not be constructed.

Indeed, what happens is that as b-*--°°,
|
f-exp(bt)

|

|-MD.2, but this limit

+
is never attained by any member of F .

This difficulty may be gotten around [3] by redefining F to in-

clude a boundedness condition |b.|<M. In computational work, there is an

automatic bound imposed by the computer; i.e. one would expect that an

attempt to compute a best approximation in the example above would lead

to an overflow. It is preferable, of course, to build a smaller bound

into the computer program.

Keeping in mind this theoretical difficulty, we shall henceforth

assume that the particular best approximations that we wish to compute

exist and are unique.

3. THE ALGORITHM
n

Let f (an , . . . , a , b_ , ..., b ; t) = / a.exp(b.t) and for simplic-
1 n 1 n .

L
^ 11 ^

1=1

ity write this as f(A; t), where A denotes the parameter vector:

A = (a , ..., a , b , ..., b). Let Vf represent the gradient of f with

respect to A, i.e.

1
' ^9a '

••'» 9a ' 9b » '•' 9b
; *

1 n 1 n

Then, if the parameters are changed by a small amount 6A, to a good ap-

proximation one has

(1) f(A + 6A; t) : f(A; t) + (Vf(A; t), 5A),

where the argument A in the gradient indicates that the partial deriva-

tives are evaluated at A. Let

E(A; t) E max |g(t) - f(A; t)|,

teT

the error of approximating g by f(A). Then the error of approximating

g by f(A+6A) can be estimated as follows:

E(A+6A; t) E max |g(t) - f(A + 6A; t)|

teT

= max |g(t) - f(A; t) + f(A; t) - f(A + 6A; t)|

teT

: max |E(A; t) - (Vf(A; t), 5A)|.

teT

The algorithm then proceeds as follows:

1. Begin with an initial approximation f(A
n ; t). Then for

k = 0, 1, ... :

2. Minimize max |E(A^; t) - (Vf(A ; t), 6A)

|

teT
K K

= e(A; 6A)

over all vectors 6A e R . (This step will be discussed in detail later.)

-I
3. Using the minimizing 6A from Step 2, form A = A + 2 6A,

where I is the smallest nonnegative integer such that

l|E(A
k+1)|| 1 |

lE(A^)
I

|

- i-2-*{||E(A
k)|| - e(A^; 6A)}.

This condition, or something like it, is needed in order to guard against

making such large changes in the parameter vector that the approximation

(l) is invalid. (Using this condition, Braess [h] is able to prove a

limited sort of convergence theorem for the basic scheme outlined here.

)

k. If
I

|e(A)
I I

-
I

|e(A^)
I I

<_ r
|

|e(A)
I I

, where r is some small

number (10 ' in the present implementation), terminate the program and

return A as the "best" approximation parameter vector. Otherwise, con-

tinue to iterate. (Go back to Step 2.

)

As noted by Braess [h] 9 Step 2 is a linear approximation problem

(i.e. approximation from the linear subspace spanned by the components of

the gradient of f), and therefore it is generally solvable by standard

techniques. Presumably Braess uses some technique along the lines of the

Remez algorithm, which works by making successive approximations to the

extremal points, since he mentions difficulties with extremal points. To

avoid such difficulties, our algorithm uses linear programming for Step 2.

The programming problem is set up as follows. First, we get rid of the

absolute value by doubling the number of expressions; i.e. we minimize

max{E(A
k

; t) - (Vf(A ; t), 6A), - E(A
fc

; t) + (Vf(A ; t), 6A)>.

L> c -L

This is readily converted to the standard linear programming formulation:

Maximize -M over all 6A, M such that

(Vf(A
k

; t), 6A) - M < E(A^- t) (teT)

-(Vf(A
k

; t), 6A) - M < -E(A
fc

; t) (teT)

and -M <_ .

If L, the number of points in T, is large, this appears to be a very large

LP problem. We notice, however, that this problem is identical to the

"dual" problem of the standard form pair [T, p. ^T]» so we convert to the

primal (dual of the dual) problem:

L

Minimize J (E(A^; t.)X - E(A^; t
±)\+±)

i=l

with constraints

L

J=i
([Vf(A

k ; t.)]^.- [Vf(A
k ; t.)]^.) = 0,

j = 1, 2, ... 2n,

2L

I
i=l
-I X

i
" X

2L+1 " -1 "

and X. > for all i.
l —

(The notation []. denotes the j component of the vector.)
J

Notice that by dualizing we transform from a problem involving 2n+l

variables (M plus the components of 6A) and 2L+1 constraints to one with

2L+1 variables (X , ..., X) and 2n+l constraints. It is advantageous
X CLJ-I+J-

to have the number of constraints be the smaller number. No extra work

was required to obtain the desired values of M and 6A, since in the linear

programming algorithm used the dual solution automatically is generated

in the course of the computation.

The linear programming routine used was an implementation of a

version of the simplex method based on Cholesky factorization (where the

basis is expressed as a product of a lower triangular and an orthogonal

matrix). This factorization is more stable than the commonly used "pro-

duct form of the inverse". Details of the method may be found in [8, 9].

+
Notice that although approximation is to be from the set F , the

algorithm contains no provision for restricting the coefficients a. to

positive values. Braess suggests doing this by increasing the integer £

(see Step 3) if necessary. We have opted to keep the computer program

more general, allowing the coefficients to become negative. A theoretical

difficulty with respect to existence, even for approximation on compact

intervals, occurs in this case. But it is interesting to see how the

algorithm handles such troublesome situations, and the coefficients should

automatically remain positive for curves which are reasonably fitted by

+
members of F

n

k. COMPUTER TESTS

To see that the algorithm was working properly, and also to get an

idea of its efficiency, we first did a number of one-term (n=l) exponen-

tial fits, using as data the same simple polynomials which were previously

fitted using a Remez-type algorithm [l]. Runs were made in Fortran G on

the University of Illinois' 366/75 computer. Convergence was fairly rapid

in all cases. Generally five or six iterations were required before the

stop test was met. It should be noted, however, that the parameters were

initially taken to be zero (A = (0, 0)). On the first iteration, a best

constant approximation was obtained; the second iteration produced a non-

zero exponential factor. Thus had we started with a good initial guess

we probably could have cut down the number of iterations by two. In com-

paring the timing (see Table l) this fact should be kept in mind. The

Remez algorithm did start with a good initial approximation; hence some

8 to 10 cs. should be subtracted from the LP times for a valid comparison.

(The time for each iteration step averaged just under 6 cs.; however the

first two steps were faster, being never more than 5 cs.) The stopping

criteria were also not precisely the same; the effect of this is felt to

be in the direction of again adding time to the LP runs. Looking at

Table I we see that even when these effects are allowed for the LP method

generally takes four or five times as long as the Remez method. An in-

2
teresting anomalous case was that of the function x -x+3, where the times

were roughly comparable — unusually long among the Remez runs and un-

usually short among the LP runs. (This example demonstrates rather well

the futility of trying to make tight a priori timing estimates for such

iterative processes.) We wish to emphasize that the time differential was

TABLE I

Efficiency Comparison. Curve fitting by aexp(bt). Func-
tions defined at 20 equally-spaced points on [0, l]. Times
are given in centiseconds

.

Function Remez Times LP Times [No. of iterations

]

-3x + 5 9 kk [5]

-3x + k 5 33 [5]

-3x2 + h 7 Uo [6]

-3x3 + 5 10 U6 [6]

-2x + T 8 32 [5]

-3x + 6 5 1+1 [5]

7 2 111 [2]

x2-x + 2 5 15 [2]

x2-5x + 2 5 111 [5]

x2-x + 3 10 19 [2]

2x2-3x + 2 6 36 [5]

-x + 2 7 32 [5]

Ux2-7x + U 8 35 [6]

x2-2x + 2 7 31 [5]

not unexpected. Remez-type algorithms are known to be highly efficient,

converging quadrat ically. The fact that the time differential was no

greater than it was is quite encouraging, since it indicates that the LP

approach should not be hopelessly time-consuming when applied to multi-

term exponential approximation.

One further comparison was made with the results of [l]. The pre-

vious report [l] dealt basically with a problem of simultaneous approxima-

tion — specifically the problem of minimizing;

max max |g.(t) - a.exp(bt)|
i teT

X X

where g , g , ..., g are a given set of curves to be fitted by exponen-

tials with a common exponential factor b. Obviously, this problem can be

set up just as the single-curve approximation problem, differing only in

that the LP step on each iteration is now m times as large as for a single

curve. Instead of two unknowns we have m+1 (the parameters a., , ..., a ,

1 m

b), while the number of constraints has increased essentially to m. * L (L

points of evaluation for each of the m curves).

In [l] the method proposed for handling this problem involved con-

struction of a best approximation to each curve individually, followed by

construction of a best simultaneous approximation to each pair of curves.

These constructions were done by Remez-type methods. It was suggested in

[l] that, even though many separate iterations were required, the require-

ment that no more than two curves be handles at once should effect some

savings over any scheme which handles all data simultaneously. To look

further into this question, we generalized our program to handle simul-

taneous curve fitting as described in the prececeding paragraph. The set

of functions fitted consisted of the first seven functions from Table I.

10

The method described in [l] was about three times as fast as that of iter-

atively solving large linear programming problems — even though only five

such iterations were required! (Specifically the times were 338 vs_. 983

cs.) In addition, the Remez approach supplies a good bit of extra useful

information, such as all of the individual best approximations and which

individual curve or pair of curves is critical in the sense of character-

izing the best value of b. Also, after the best b is identified, the best

coefficients (for that b) are computed for each curve. (The simultaneous

linear programming method does not change coefficients which have no ef-

fect on the maximum error.

)

The factor of three difference in times depends not only on the

particular functions fitted but also on their number (m). Most of the

work in the Remez method for m individual curves consists of identifica-

tion of extremal points, which requires effort proportional to m. But

pairwise comparisons and computation of best pairwise approximations must

also be carried out, making the overall work more nearly proportional to

the number of pairs (m(m-l)). Even though the number of pairs for which

a simultaneous approximation must be computed is generally less than

m(m-l) (e.g. l6 instead of 1+2 for the T-curve example), the work is essen-

tially 0(m). On the other hand, the work to solve the comparable linear

programming problem with (m+l) unknowns is 0(m+l) . Hence as m increases

it would seem increasingly advantageous to use the Remez approach. The

number L of points in the set T (the grid points) is also, of course, an

important factor; the necessity of continually sweeping the grid for ex-

tremal points should cause the Remez method to be more severely affected

by increasing L than is the LP method.

11

Only a limited number of tests of the program for multi-term (n>l)

fitting have "been run to date. We have used as test data the function

g(t) = l/(l+t) on [0, l]. This example has previously been used "by Braess

[h] and is well-behaved in the sense that Braess seemed to have no diffi-

culty in computing best approximations for n<5 and all of these turn out

to have all positive coefficients and all negative exponential factors,

without any sign restrictions having been imposed a_ priori .

The program worked well for n=2. Beginning with initial values

a =a =b =b =0, it required twelve iterations to obtain a "best" approxima-

tion comparable to Braess' (||e| < 2.07 x 10). As in single-term fit-

ting, the first few iterations were needed to develop a nonzero initial

approximation. When the more realistic values a =a =3/8; b =b =0 were

used as initial data, only six iterations were required to reach the same

degree of approximation. (This choice of initial values was inspired by

the fact that then a +a =3A, "the best constant approximation to l/(l+t)

on [0, 1].)

Convergence is, as expected, sensitive to the choice of initial

values. Starting with the poor values a=a =1; b =b =0, after 25 itera-

tions the program had reached (rounded) values of a =1.06, b =-.05,

a =-.09, b =-.63, ||e||=.32. (CF. correct values: a =.7lk t
a =.286,

b =-.U07, b =-2. Ui+3.) Changes appeared to be more or less in the correct

direction, but very slow (£=12 or 13 in Step 3). The problem seemed to be

that the program quickly jumped to a small negative a on the first iter-

ation and was unable to recover from this false step.

Braess [h] chooses his initial values as follows. Let a., , ..., a n ,

J 1' n-1

'

b , ..., b tie the parameters for the best (n-l)-term approximation.

12

Then choose as initial values for the n-term approximation a.=a., b.=b.

(i = 1, 2, ..., n-l): a =0, h some value other than the b.'s. Several
n n l

different values for h may need to be tried before convergence is ob-

tained. Braess suggests trying in turn the values

then

(b. + t>

i+1
)/2, i = 1, 2, ..., n-2,

b., -b and b ,+b, where b =
1 n-l

max{T} - min{T}

In this example, b=3, and the best one-term approximation is 0.977exp(-0. 71 5t

)

Thus Braess would have made (at most) two runs starting from the following

sets of initial values.

Run a
i

a^
2 \ b

2

I 0.977 -0.715 -3.715

II 0.977 -0.715 2.285

Using these initial values, we obtained convergence (i.e. |E| <

2.07 x 10) in 7 iterations for Run I — more than were required when we

started with reasonable constant approximations (zero exponential factors).'

Predictably, Run II did not converge — at least not in a reasonable

length of time. After 28 iterations the unrealistic positive value of b

had slowly but steadily decreased to 1.1. It is interesting that, from

the output to Step 2 on each iteration, a large change to negative b was

-7
indicated, but this change was cut down by 2 by the condition invoked

in Step 3. It may be that this condition, though appearing theoretically

desirable, is antiproductive in some cases. Braess, by the way, does not

provide computational details, but only indicates that he got convergence

to the best approximation for some run.

13

In order to investigate whether the test in Step 3 may indeed some-

times cause trouble, we computed the values of the parameters in Run II

which would have resulted after the third iteration, if the full correc-

tions had been made. These values were a = 0.891, a = 0.1073,

b = -1.1708, and b = -2.ll+2l+. We then restarted the program with these

values as initial values. As we had hoped, convergence did occur, al-

though 22 iterations were required. How one can recognize when a large

jump (to a larger |E| |) may be advisable is a problem needing further

study.

For the three-term best approximation Braes s obtains

f(t) = O.Ol+59exp(-U.507t) + 0. 3 1+9exp(-1.601t) + . 560exp(-0 .287t
)

,

-6
with |e|| = 1.83 x 10 . Notice that the exponential factors change

drastically from step to step. This not only makes the choice of initial

values difficult, but also makes one wonder about the validity of applying

such curve fitting to experimental data unless n is known a priori .

We first tried the 3-term approximation using initial data analogous

to a set that worked well in the 2-term case; namely a.. = ap
= a,. = 0.25,

b = b = b = 0. Convergence was not obtained in this case, however;

nor was it obtained when we tried to bootstrap up from all zero parameters.

It seems clear that as the number of terms increases it becomes increas-

ingly important to begin with reasonable values for the exponential fac-

tors b.. Braess' procedure for choosing initial values leads to the

following three sets.

Run a
l

a
2

a
3

b
l

b
2

b
3

I 0.71** 0.286 -0.1+07 -2.1+1+3 -1.1+25

II 0.71^ 0.286 -0.1+07 -2.1+1+3 -3.1+07

III O.'Jlk 0.286 -0.1+07 -2.1+1+3 +0.557

11+

Run I converged in 6 iterations to |e|
|
= 1.775 x 10 . This is smaller

than Braess' value of 1.83 * 10 . Our final parameter values also dif-

fered from his, as shown in Tahle II.

Table II

Final parameter values. Fit of l/(l+t) by a 3-term exponen-
tial.

a
l

a
2

a
3 \ b

2
b
3

Braess [h]

Present work

0.01*59 0.3^9 0.560 -U. 507 -1.601 -0.287

O.OI160 0.39^ O.560 -U.50U -I.60U -0.287

The only substantial difference is in a , and it looks suspiciously like

Braess' value contains a typographical error. The small differences in

|e| and in the other parameters are probably due to differences in the

discrete grids used.

Rather surprisingly, Run II failed to converge. The successive

iterates seemed to be tending towards the two-term approximation, with a

spurious third term having small negative coefficients and large positive

exponential factors — ultimately causing an exponent overflow error.

Run III, which contained a positive exponential factor among the

initial values, behaved very similarly to the analogous run (il) in the

2-term case. Changes in the parameters seemed in the correct direction,

but were constrained to be too small (l = 6 or 7) for convergence in any

reasonable length of time.

It should be noted that, with the minimum
|

|e| — hence also the

-6
minimum found by the LP routine — so small (-10), obtaining conver-

gence for the three-term fit required some careful adjustment in the

tolerances contained within the LP routine. If too large a tolerance is

15

used in choosing pivots, the LP routine does not run to the minimum. On

the other hand, if too small a tolerance is used in the feasibility test,

the program decides that the problem is infeasible. A scheme for auto-

matic adjustment of tolerances to avoid these problems would be a highly-

desirable feature for the LP routine.

A limited amount of experimentation has been done on cases for which

best approximations do not exist. (The set of multi-term exponentials is

not closed but has as limit points polynomials and polynomials multiplied

by exponentials.) For example, the function 1-t is the limit of a se-

quence of two-term exponentials

(- j)exp(6t) + (l+|-)

as S^K) . One would therefore expect the program to generate large, almost

cancelling, coefficients, and exponential factors approaching zero. Large

-I
changes in the parameters, however, are avoided because of the 2 " factor

in Step 3. Thus what tends to happen is that I becomes large and the

actual parameter changes become small and ineffectual. Details of two

runs, as described below, show, however, that the behavior is in some re-

spects difficult to predict.

Since the best one-term approximation to 1-t is 1 .128exp(-2.177t)

,

following Braess' scheme we made two runs from the following initial

values.

Run a a b b

I

II

1.128 0.0 -2. ITT -5. ITT

1.128 0.0 -2. ITT 0.823

In Run I, on the first iteration only small changes were produced by the

linear programming step. But on the next iteration the LP output was

16

Aa = 156, Aa = -156, Ab = -27, Ab = 65. Note that the coefficient

changes are as predicted — large and of opposite signs. The changes in

the exponential factors seem a spurious result of the linearization. Also

predictably, the £ became large — so large that the |E| changed so

little that the program decided that the convergence test was satisfied!

In Run II, I never became greater than five, and the program seemed to

be making slow but steady progress in the right direction. After 63 iter-

ations the approximation was

39.91exp(-0.0125t) - 38.91exp(0.012Ut)

.

A program set up to recognize when the exponential factors were approaching

each other and switch to the proper limiting form would clearly be use-

ful for handling such cases.

17

5. CONCLUSIONS

We feel that the experiments described here are very encouraging.

At the same time we have noticed several problems requiring further study-

before the program will be attractive for widespread use. These problems

include the following.

i. As noted in the previous section, some adjustment of tolerances

had to be made before a 3-term exponential fit was successfully accomplished,

For different data or more terms, further adjustments might be needed.

It is essential that the tolerances within the linear programming routine

should automatically adjust to the requirements of the particular problem

being run.

ii. On successive iterations the linear programming routine seems

to spend a considerable amount of time repeating the same basis changes.

Shortcutting this process by carrying over some information from one iter-

ation to the next should lead to a large increase in efficiency.

iii. Further study needs to be made of the role of the parameter I.

A "large" I may be a useful indicator of nonconvergence — but the defi-

nition of "large" is difficult when convergent runs reached I values as

large as 9 and in some "nonconvergent" runs £ never was larger than 7^

Also, as previously discussed, a large jump to a different region of the

parameter space is occasionally helpful even if the test in Step 3 is

violated.

Finally, it should be emphasized that the method of construction of

best approximations discussed here whould be applicable to curve fitting

by a wide variety of functional forms. In fact, essentially all that

need be done in the present program to alter the functional form is to

18

write a subroutine to compute that function and its gradient components,

But the need for studying the three problems listed above becomes even

more acute if we hope to produce a reliable, efficient, general-purpose

curve- fitting program.

19

6. ACKNOWLEDGEMENTS

We wish to thank Dr. Jonathan Lermit for his invaluable aid in

getting the linear programming routine to work properly and Mr. Richard

Pestien for running a number of the computer tests.

20

REFERENCES

[l] Belford, G. G., "Simultaneous Fitting of Exponential Decay Curves,"
CAC Document No. 6l, Center for Advanced Computation, University of
Illinois at Urbana-Champaign, 1973.

[2] Belford, G. G., "Vector-valued Approximation and its Application to
Fitting Exponential Decay Curves," Math. Comp. , to appear.

[3] Braess, D., "Approximation mit Exponentialsummen, " Computing, Vol. 2

(1967), pp. 309-321.

[h] Braess, D., "Die Konstruktion der Tschebyscheff-Approximierenden
bei der Anpassung mit Exponentialsummen," J. Approx. Theory, Vol. 3

(1970), pp. 261-273.

[5] Cheney, E. W. , and Loeb, H. L. , "Two New Algorithms for Rational
Approximation," Number. Math., Vol. 3 (l96l), pp. 72-75-

[6] Kaufman, E. H., Jr., and Taylor, G. D., "Uniform Rational Approxi-
mation of Functions of Several Variables," preprint.

[7] Lasdon, L. S., "Optimization Theory for Large Systems," Macmillan,
New York, 1970.

[8] Lermit , J., "A Linear Programming Implementation," CAC Document
No. U6, Center for Advanced Computation, University of Illinois at

Urbana-Champaign, 1973.

[9] Saunders, M. A., "Large-scale Linear Programming using the Cholesky
Factorization," Tech. Rep. No. STAN-CS-72-252, Computer Science
Dept. , Stanford University, 1972.

21

UNCLASSTFTTO
SECURITY CLASSIFICATION OF THIS PAGE (Hner, Date Fi-ter'd)

REPORT DOCUMENTATION PAGE RKAD INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

CAC Document No. 92

2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBtH

4. TITLE (and Subtitle)

A DIFFERENTIAL CORRECTION ALGORITHM FOR
EXPONENTIAL CURVE FITTING

5. TYPE OF REPORT & PERIOO COVERED
Research Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf*;

Geneva G. Bel ford and John F. Burkhalter

8. CONTRACT OR GRANT NUMBERfa)

DAHC01+-72-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 6l801

10. PROGRAM ELEMENT. PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

ARPA Order No. 1899

II. CONTROLLING OFFICE NAME AND ADDRESS

U.S. Army Research Office
Duke Station
Durham, North Carolina

12. REPORT DATE

November 1, 1973
13. NUMBER OF RAGES

14. MONITORING AGENCY NAME 4 ADDR ESSf/f dillerent from Controlling Ollice) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION 'DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thin Report)

Copies may be obtained from :

National Technical Information Service
Springfield, Virginia 22151

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report)

18. SUPPLEMENTARY NOTES

None

19 KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Curve Fitting
Exponential Approximations
Linear Programming

20. ABSTRACT (Continue on reverse side if neressary and identify by block number)

This report discusses a new approach to the construction of best uniform
approximations of multi-term exponential form. The method used is a combina-
tion of differential corrections and linear programming. Results of a number
of computer tests are discussed in detail.

DD 1 jan 73 1473 EDITION OF 1 NOV S5 IS OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

BIBLIOGRAPHIC DATA
SHEET

Report No.
lJIUC-CAC-73-92

3. Recipient's Accession No.

4. Title and Subtitle

A DIFFERENTIAL CORRECTION ALGORITHM FOR EXPONENTIAL
CURVE FITTING

5. Report Date

November 1, 1973

7. Author(s)

Geneva G. Belford and John F. Burkhalter
8. Performing Organization Rept.

No. CAC-92

9. Performing Organization Name and Address

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. Project/Task/Work Unit No.

ARPA Order No. 1899
11. Contract /Grant No.

DAHC01+-72-C-0001

12. Sponsoring Organization Name and Address

U.S. Army Research Office
Duke Station
Durham, North Carolina

13. Type of Report & Period
Covered

Research
14.

15. Supplementary Notes

16. Abstracts

This report discusses a new approach to the construction of best uniform
approximations of multi-term exponential form. The method used is a combination
of differential corrections and linear programming. Results of a number of
computer tests are discussed in detail.

17. Key Words and Document Analysis. 17a. Descriptors

Curve Fitting
Exponential Approximation
Linear Programming

17b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement Nq restriction On distribution.
Available from National Technical Information
Service, Springfield, Va. 22151

FORM NTIS-35 (REV. 3-72)

19. Security Class (This
Report)

UNCLASSIFIED
20. Security Class (This

Page
UNCLASSIFIED

21. No. of Pages

26
22. Price

USCOMM-DC 14952-P72

