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ABSTRACT

Numerical methods are given for finding unknown functions contained

in ordinary differential equations when a solution of the equation is known.

These are iterative methods giving a best fit to the £_ norm to the known

solution, which may contain random errors. A stability requirement on the

numerical methods is proved.
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1. Introduction

This paper considers an inverse problem in differential equations,

that of identifying ordinary differential equations given their solution.

Such a procedure may be of use as an aid in building mathematical models

to describe observed phenomena.

Since many different equations may have the same solution, the

problem is ill posed and cannot be solved in this generality. It is

therefore necessary to restrict the problem to cases where the form of

the equation is given but it contains arbitrary functions. The goal is

then to identify these functions. This puts the problem in a form concrete

enough to be amenable to solution by numerical methods. For example, an

attempt to verify the inverse square law of gravitation might start with

the equation (in one dimension)

x" (t) = f[x(t)]

and using suitable data for x would identify the function f numerically to

give tabular values of the function

f(x) = k/x
2

.

In order to simplify the problem, it is assumed that each unknown

function is a function only of the dependent variable or one of its

derivatives. This avoids the more difficult problem of identifying functions

of two or more variables.

If f represents the unknown functions to be determined, let

E(f) =
J

|x
f

- x|
|

, where x
f

is the solution to the equations (the initial

conditions are ignored for the moment) and x the observed data. Iterative



methods are used to minimize E over all f for which the solution x exists.

In general only a local minimum can be found but by adding a "regularization"

? 9

term, of the form [c f + c. f 1, to the error functional this
o ' '

,.
' ' 1 '

' _ ' '
.

problem is overcome. If the observed solution x contains random errors,

this also has the effect of smoothing f.

To solve the problem numerically, each f must be replaced by a

n
finitie element approximation f(x)~f (x) = Y q d>. (x) where the {<b. }

n .
L

- i
T i,n T i,n

i=l
are a given, linearly independent set (in the examples given they are

splines). It is shown that, under certain conditions, the f giving the

optimal value of E approaches that obtained by minimizing over all f as

n increases.

The stability of multi-step methods for solving differential

equations is considered from the point of view of estimating not the

difference between the computed and the exact solutions for a given equation,

x and X respectively, but between equations which have x and X as their

solutions.



2. Solution Methods

Linear problems can be reduced immediately to a corresponding

system of linear algebraic equations. For example, a system of n variables

dx— = Ax has the solution
dt

x(t) = e
At

x(0) = (eVx(O)

= $
t

x(0) (say)
(1)

if x = x(i) then

x.
+1

= * x.. (2)

Taking a set of n of these equations yields the matrix equation

[x , x , ..., x ] = $[x , x , ..., x ], (3)
1 Z n o i n-l

from which $, and hence A, may be found, provided the last matrix is non-

singular. $ can only be found to within a similarity transformation. For

the case where the observed x's certain random errors, this problem has

been extensively studied (Lee [6]).

For the remainder of this paper only nonlinear equations will be

discussed. For simplicity only a single equation containing one unknown

function is considered, although the results may be extended to systems.

Usually it will be sufficient to consider the special equation

|f
= f(x(t)) (4)

The problem may be solved by minimizing the error functional

E(f) = ||x
f

- x||
2

(5)



where x(t) is the observed solution and

x
f
(t), o<t<T, is the solution of

f -f(x(t» (6)

x(0) = x

for all pairs f, x for which a unique solution is obtained. (x^ should
o n

f

be written, more precisely, as x,
f

* but no confusion is caused by
o

dropping the x ) . The norm used is given by

|y||
2

= L ^y(t)}
2

dt (7)

In order to solve the problem numerically, it must be para-

meterized in the form

n

f(x) = I q, <fr.(x)

1-1
(8)

where {<}>.}._, is a fixed linearly independent set.

n
Let some set of n parameters {q. K ,, with n fixed, together

with the initial condition x(0) = x form the set over which otimization
o

is to take place. If x is equated with q , a set of n + 1 parametersr o ^o

{q.}._ must be found. The discrete problem may be stated as

minimize E(q) =
|

|x - x|
|

I I I
1 2 rT 2,^ N ,where

] |y | =
J y (t) dt

(9)

r
dx

i=l

x(0) = q^

(10)

V.



If the function E is convex then its minimum can be found by solving the

set of equations

VE(q) = 0.

Lack of convexity may cause convergence to a local minimum, also, if the

solution is not unique, difficulty may be experienced in obtaining

convergence from the iterative method used. To avoid these difficulties,

a regularization term of the form aW[f] may be added to E, where

W[f] =ci|f|| 2
+c,||f'||

2
, c , c > (11)

i i i i 1 1 i ii »
Q

> i _

c and c. not both being zero and a>0. Norms on the function f are
° 1 k

i i i
2 r 2

given by i|g|| =
J

(g(x)} dx,I = [a, b] . The effect of this is twofold,
a.

- 2
n

if a is large enough, E (q) = x - x + aW[T q. d>.] is a convex
a q j i i i

~ i=l
functional and secondly if the data x contain random errors, it will have

a smoothing effect on the solution.

To obtain the derivatives of E with respect to q ,

H . I

1

[x(t) . ; (t)1
n<« dt (12)

i i

The quantities — satisfy a differential equation obtained from the
i

original equation by differentiating it with respect to q .

.

(f(x(t))

(13)

3x 9q . 9q tn i n i

9 /dx,

9q. Mt j

l

d

dq
t

9f 9x
- +

9f

Assuming the order of differentiation can be changed, and setting

9x _ .

9q~ = 6
i



and

ff(*) -|j K +j(x) = I q *'(x) (15)
3=1 J J j=l J J

9f 9
n

(x ) " TT~ I q, <Mx) " f,(x) (16)
9 q. 3q. . i j j i

i i j=i *

The initial condition being 6.(0) = 0.

For q , the initial condition at t = 0,no '

dt ^9q ;
3x 3q 3q » (17)

o o no

9f
but /9q =0 since q is simply the initial condition x . The initial

o ^o o

9x
9x

condition — at t = is j^- = 1. If ~- e 6 , equations (14) and (17)
o o ^o °

may be combined as

ft
- 6

i
(t) = H 6

i
(t) + *±<*w> ( i8 >

where d> (x) =

with initial conditions

6 (0) = 1
o

6.(0) = i = 1, 2, .. ., n

The simplest minimization algorithm is the "steepest descent"

method,

k+1 k
,

k
q - q + c

k
P ,

where p = - VE(q )



The scalar c, being chosen so that
k

k k
E(q + cp ) is minimized over all c>0,

Since E is assumed convex, at c = c,
k

|| (q
k
+ cp

k
) = (19)

Since we are minimizing a function of only one parameter, Newton's

method may be used

3E. .. CD
(i+1)

r
(1) 3c

|C

c = c

3
2
E, .„ (D

c = c

3c
2

3E
To calculate /3c, we have

T

E(q + cp) =
Jo

(x
q + cp

- x)
2

dt (20)

So, assuming the order of integration and differentiation can be interchanged

f(, + cp) - 2 % (x
q + cp

- h ff
dt (21)

3x
The quantity /3c may be obtained as the solution to a differential

n n
equation, in the case where x' = f(x), f(x) =

J q. cj) . (x) + c £ p. cf).(x),

i=l i=l

therefore

d_ , 3Xv 3f 3x 3f

dt Sc 3x 3c 3c

(22)
n

3f
and

"3c"

m
l P

i *i
(x)

i=l

3x,„ ...... . 3x
n

Thus "/3c satisfies the same equation as /gq. except ^ p <j> . (x) replaces
1 • -i X J-

3x.
1=

tj).(x). The initial condition is — = p .

l 3c t = o o



For the second derivative,

2 T
3 E / n of / 8x\ 2 J4.-

2
(, + c P ) - 2 /o

(_, at
(h)

T A 2

+ 2 / (x ,
- x) ^-f- dt

oc

a
2
x 2

An equation for /3c may be found or the assumption made that

x
,

is close to x and the second term ignored. Thus only one or two
q+cp

differential equations need be solved at each iteration of the calculation

of c.

Other algorithms may be obtained using different choices for

p . For instance Newton's method

p
k

= - {H
k

}

_1
VE(q

k
)

(24)

where H is a matrix with components

H -£
Id 3q

± 9qj

2 / ¥ ¥ dt < 25 >
'o 3q . 3q.

i J

T A 2

+ 2 f (x - x) ^ dt.
J o 8q

i
3q

3
2
x

The equation for /3q. 3q .
, for the case x' = f(x) is

i J

d x 2 3 2f x x—— o . = —— . .

dt U 3x
2 1 J

3x ij

(26)

+ f- *.(x) 6.

+
fc*j (x) {

i



, . _ 3x s 2 9 x
where o. - — , 6.. = 7—

.

1 dq
±

' ij 3q
±
3q

;j

2
This however requires the solution of about n /2 equations, if x - x can

be assumed small the second term may be neglected. This latter method

(the Newton-Gauss method), works well in cases where x contains very little

random error and a closely approximating x can be found.

A comparison of gradient methods for parameter estimation problems

is given by Bard [2]

.
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3. Stability Analysis

Consider our test equation dx/dt = f(x) and suppose some

numerical solution {X }, i = 0, 1, 2, . .
.

, n is obtained where X is the1 i

solution at t = ih. Let X(t) be any function taking the values X at
i

t = ih and suppose F(X) is some function satisfying dX/dt = F(X). Let

x. = x(ih).
l

The usual stability analysis is concerned with the behaviour of

*
L

- x
i

for increasing i (here called "stability in x") . Since we

are concerned with the inverse problem it is necessary to find

numerical methods for solving equations for which it can be shown that F

is close to f. As the functions are evaluated only at the points {x.}, the

behaviour of F(x.) - f(x.) is analyzed for increasing i. Roughly speaking,

a method may be said to be "stable in f" if F(x.) - f(x.) remains bounded.

Our analysis is restricted to multistep methods.

The general k-step method of order q may be expressed in the form

k

T [a. x. . + he. f(x. .)] = S. (27)

where S. = C h
q+1

x.
(q+1) + 0(h

q+2
)

i l

and
k

( n\1 ( \\^~x

siQ
q! 3 (q-D! j

k
Let p(C) = I a r J

(28)

j=o

k
a(0 = I 6 C J

(29)

j=o

The condition that the method be weakly stable in x is that the roots of

the equation

P(0 - (30)
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lie within the unit circle or are on the unit circle (see Gear [4] §8.3.

(The method is strongly stable (in x) if the roots lie within the unit

circle except for the root £ = 1) . We show that a similar condition on the

roots of a(£) = is required to ensure stability on f.

Assuming that equation (27) is used as a corrector and that

sufficient iterations of the corrector are made then this equation holds

for the computed X except that the truncation term is replaced by zero

and some roundoff error is incurred.

k

y [a. X. . + h 3. f(X. .)] = R. (31)

j=o J 1_J J 1_J x

Equation (27) also holds for the solution X of X' = F(X).

k

y [a. X. . + h 3. F(X. .)] = T\ (32)

J=°

where T. =(h
q+1

X.
(q+1) + 0(h

q+2
).

If we define AF. = AF(X.) = F(X.) - f(X.), subtracting equation (31) from

equation (32) gives

k

I h 6. AF. . = T. - R. (33)

3 =
l-l-i

This equation determines the difference between F and f at the

solution points {X.}. The analysis must be restricted to the set

{AF(X.)}. A method will therefore be said to be stable in f if a
i

perturbation AF will produce subsequent changes which do not increase

step to step.

The general solution of the difference equation (33) may be

found by taking any particular solution and adding to it any linear

combination of solutions of the corresponding homogeneous equation
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) h B. AF. .
= 0. (34)

A particular solution of (33) is

i (T. - Rj
AF. = 7 —i—-—^— y.

where y. satisfies (Henrici [5] §5.2-1)
i

y. = o<i<k-l,J l

X h 3. y. .
= [

h for i=k

j=o 3 X J So for i>k

The general solution of equation (33) is therefore

(35)

k i (T. - R.)

af. = y c. z. . + y —

i

-,=1 j »j -|=k

J -y, 4 , (36)
h 'i-j

where the sequences {z. . } (j = 1, 2, . .
.

, k) are the set of linearly
i» 3

independent solutions of the homogeneous equations, given by

z. .
= r. , (37)

i.J 3

where r. is a root of the equation
J

k .

a(r) -J 6. r J = 0, (38)

j=o J

or, in the case where a(r) = has a root of multiplicity m then

i . i . 2 i . m—1 i ,,, . .. _

,

, r-

,

,

r , lr , i r , ..., i r wxll be solutions. Since y. satisfies the

homogeneous difference equation for i>k, y is a linear combination of

the z. . for i>k. This proves the following result.
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Theorem

A multi-step method is stable in f if and only if the roots of

the equation

o-U) =

lie within the unit circle or are simple on the unit circle.

A method may be said to be strongly stable in f if all the roots

of o(0 = lie within the unit circle and weakly stable if any simple

root lies on it.

The well known result of Dalquist [3] that a k-step method

which is strongly stable (in x) is of order at most k+1 (for k even a

weakly stable method of order k+2 is possible) may be extended to cover

the case where stability in f is also required.

Theorem

A k-step method which is stable both in x and in f has order

at most

k if k is even

k+1 if k is odd

Further if the method is of order k+1, it is weakly stable in both x and f

,

Proof

The proof is similar to that used to obtain Dalquist 's original

result. The condition that the method be of order r is

f^-(0
+ o(0 = (U-l)

r
). (39)
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Making the transformation

r = 2±£ z = ill
* 1-z » 5+1

The interior of the unit circle in the £-plane maps into the left

half of the z-plane

Let R(z) + (^) k
p(^f)

and S(z) = (^)
k

a(±±§-)
z 1-z

(40)

These are both polynomials of degree k in z. Except at z = 1 and E, = -1

the roots of R and p, and of S and a correspond. Since p and a are stable,

£ such that z = 1 is not a root of p(0 = or o(0 = 0. The roots corres-

ponding to E, = -1 in the z-plane are at infinity and so decrease the order

of R or S.

Equation (39) maps into

+ S(z) = 0(z
r
). (41)

log {(l+z)/(l-z)}

Following Gear [4] 10.2, let R(z) = a + a z + ... + a z .

Since E, = 1 is a simple root of p(£) =0, z = is a simple root of R(z) = 0.

Therefore, a = and a ^ 0.

Since p, and hence R, is a real polynomial, the roots of R(z) =

are either real, x , or occur in conjugate pairs, x ± iy with non-positive

real parts. Hence

R(z) = air (z-x )tt (z - x - iy ) (z - x + iy )
\i yv vv v v

o 9 2
= a7T (z+|x)tt (z +2z|x|+x'''y ).

y ' y V v

'

v v
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Therefore the signs of the non-zero a. are all the same. Without loss of

generality, take a >0, then a.>0, i>2.

Similarly if

S(z) =b + b- z +'...+ b.z , (42)
o 1 k

then all the b. have the same sign since the roots of S(z) = also have

non-positive real parts.

Tf ?. y c z
2 ^

Lt
log {(l+z)/(l-z)}

y£Q
°2y

it may be shown that (Gear [4] §10.2)

(43)

C
o

=
\ '

C
2y

K °' y^-

Then Ml) = y a z™-
1

y c z
2y

Then
log {(l+z)/(l-z)} I a

m
Z

* °2y
Z '

m=l y=o

00

=
I r

n
z , say

n=o

(44)

In order for the method to be of order p,

00 If

y r z
n
+ I b z

n
= 0(zP ), (45)

^ n L n
n=o n=o

so that r = -b for n = 0, 1, 2, .... p-1
n n ' ' r

and hence the coefficients r must all have the same sign for up to p-1.

Equating coefficients in equation (44)
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r = c a n
o ol

r = c a
1 o 2

r = c a„ + c„ a,
2 o 3 2 1

r.= c a, + c a
3 o 4 2 2

r
k

c a. + c. a, _+...+ c
1

a. + c. a. k even
2 k-1 4 k-3 k-2 3 k 1

c a, .. + c. a. _+...+ c, „ a, + c, . a„ k odd
2 k-1 4 k-3 k-3 4 k-1 2

Since c and a, are both > 0, r > 0. Therefore r, >0 for r = 1, 2, .... p-1
o 1 o 1— r

However, since a, 0, a.>0 for i>2 and c„ <0 for y>l, r <0 for k even and
1 l— — 2y — k

r < for k odd. Therefore for k even, the method has maximum order k,
K,

and for k odd the method is limited to order k+1 by the requirement for

stability in x .

When the method is of order k+1, (and k is odd), r must be
K.

zero and so a = a, . . . = a,
n

= 0. Since a is also zero, R(z) is an
Z H R—

1

O

odd polynomial. Further r.. = r_ = ... = r, = 0, so b. = b„ = ... = b =

and consequently S(z) is an even polynomial. Therefore if x + iy is a

root of either R(z) = or S(z) = then so is -x-iy, but the roots of

these equations must have non-positive real parts to satisfy the stability

requirements and so all the roots lie on the imaginary axis. The root

of both p(0 = and o(0 = therefore all lie on the unit circle.

Example: If B = 1, 3 = $ = 3 = B, = 0, then all the roots of o(0 =

are zero, and (directly from equation (33)),

T
i

- R
i
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This yields the fourth order four-step method,

j

>

1 2 3 4

J
-25/12 4 -3 4/3 -1/4

3

j
1

for which the roots of p(£) = are 1, 0.3815, 0.2693 ± 0.04920i.

method is therefore strongly stable both in x and in f.

The
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4. Test Problems

In the first example, an additional test was made in which the

observed data were perturbed by adding random "noise". This was mainly

to test the effect on the convergence rate.

Example 1

This is the simplest possible example, taking

dx cr \

dT
= f (x)

and input data of the form

-1
x(t) =

t+2

specified on the interval [0>10] at discrete points distance .05 apart

This will give the solution

f(x) = x
2

on the interval (determined from the range of the observed data) [- /2, - /12]

A smoothing factor

i i i i2 ii i i2
a [c

:
|f

1

1 + c
1

:

|f '
1

1 ]

-2
was introduced with c = 0, c = 1 and a initially set to 10 and reduced

-9
by a factor of 10 at each iteration until a minimum of 10 was reached.

The function f was approximated on the interval [- /2, 0] by a natural

spline with 8 equally spaced knots. (Natural splines are discussed in

Ahlberg, Nilson and Walsh [1]).

At each iteration the value of the error functional and the
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% norm of its gradient were produced. The programs were rerun after

applying a random noise with zero mean and a variance of .01 to the input

data. It may be noted that in all cases the function was better identified

in the middle of the range where more data points were avilable than on

the edges

.

Table 1. x' = f(x) - no noise added to the observed x.

Iteration
|

| VE
| |

E

1 6.77E-00 9.99E 02

2 5.56E-00 5.14E-02
3 4.91E-00 2.60E-02
4 1.04E-01 1.22E-04
5 7.09E-02 8.09E-06
6 2.54E-03 6.00E-08
7 7.76E-05 2.38E-09
8 6.89E-06 3.33E-11

X

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00 0.00017

computed exac

0.24993 0.25
0.20250 0.2015
0.16000 0.16
0.12250 0.1225
0.09000 0.09

0.06250 0.0625
0.04000 0.04
0.02250 0.0225
0.01000 0.01
0.00252 0.0025
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Table 2. x' = f(x) - with noise adde

Iteration |ve|

1 6.86E-00 1.01E-01
2 5.53E-00 5.87E-02
3 4.29E-00 2.72E-02
4 2.11E-00 5.18E-03
5 1.64E-01 1.21E-03
6 2.41E-01 9.90E-04
7 4.32E-02 9.38E-04
8 6.52E-03 9.32E-04
9 1.69E-03 9.32E-04

X f(x)

computed ex

0.50 3.93796E-01 0.25

0.45 1.89431E-01 0.2015
0.40 1.84711E-01 0.16
0.35 1.03462E-01 0.1225
0.30 8.22265E-02 0.09

0.25 7.12669E-02 0.0625
0.20 4.00412E-02 0.04
0.15 2.53864E-02 0.0225
0.10 1.01355E-02 0.01
0.05 -5.73504E-02 0.0025

0.00 -8.29363E-01

Example 2

This example uses a system of two equations with two unknown

functions. Starting with the vector equation

d
2
x

dt'

= f(x),

and splitting it into horizontal and vertical components x
1

and x~,
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we try the equations

d x
l 2 2

-I"
= f

l
(x

l
} f

2
(X

1
+ X

2
)

at

d x
? 2 2

-T - f
l

(X
2

} f
2

(X
1

+ X
2

>

at

If the original equation represents an inverse square law then we should

obtain for the functions f.. and f

f^x) = -kx

f ( n 1 "3/2
f
2
(x) = ^ x

where k is an arbitrary constant.

The non-uniqueness of f and f„ is handled by introducing a

smoothing term

a t c I I l

f
• I I

2
+ c

i I I l

f *l |]l q L ll-.ll L II ||J

i=l,2
X L

i-1,2

into the error functional, with c = c =1. Again a was allowed to vary
o 1

-2 -9
from 10 down to 10 when noise was not added to the data and down to

- fi

10 when it was. The exact solution is scaled so that the mean value

for f„(x) is the same as the computed one.
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Table 3.

Iteration

1 5.72E2 7.19E-1

2 5.66E-1 1.70E-2

3 1.96E-1 9.77E-4

4 1.24E-2 1.91E-4

5 3.29E-2 1.3 7E-4

6 3.73E-2 1.01E-4

7 3.74E-2 6.66E-5

8 3.29E-2 4.00E-5

9 2.33E-4 1.02E-7

f
x
(x)

computed exact
f
2
(x)

computed exact

-0.23

-0.06
0.12

0.29
0.47

0.65
0.82
1.00
1.17
1.35

0.1375
0.0457

-0.0965
-0.2453
-0.3923

-0.5396
-0.6868
-0.8340
-0.9837
-1.1113

0.1924
0.0477

-0.0971
-0.2418
-0.3865

-0.5313
-0.6760
-0.8207
-0.9655
-1.1102

1.00 1.2006 1.2153
1.14 0.9870 1.0098
1.28 0.8302 0.8430
1.41 0.7111 0.7226
1.55 0.6170 0.6284

1.69 0.5426 0.5530
1.83 0.4848 0.4407
1.97 0.4414 0.4407
2.10 0.4097 0.3981
2.24 0.3859 0.3619

1.53 -1.1137 -1.2549 2.38 0.3763 0.3309



23

REFERENCES

[1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh, The Theory of Splines and
their Applications, Academic Press, 1967.

[2] Y. Bard, Comparison of Gradient Methods for the Solution of Nonlinear
Parameter Estimation Problems, SIAM J. Numer. Anal. 7 (1970),

pp. 157 - 186.

[3] G. Dalquist, Numerical Integration of Ordinary Differential Equations,
Math. Scand. 4 (1956), pp. 33 - 50.

[4] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, 1971.

[5] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations,
Wiley, 1962.

[6] R. C. K. Lee, Optimal Estimation, Identification, and Control, M. I.T.,
1964, Ch. 4.





UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fWTicn Dhib Fntered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER
CAC Document No. 86

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

NUMERICAL METHODS FOR THE IDENTIFICATION OF
DIFFERENTIAL EQUATIONS

5. TYPE OF REPORT & PERIOD COVERED

Research Report
October 1973

6. PERFORMING ORG. REPORT NUM3ER

7. AUTHORfs;

R. Jonathan Lermit

B. CONTRACT OR GRANT NUMBERfs;

DAHCO4-72-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. PROGRAM ELEMENT, PRO IECT, TASK
AREA & WORK UNIT NUMBERS

ARPA Order 1899

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
October 3, 1973

13. NUMBER OF PAGES
23

14. MONITORING AGENCY NAME ft ADDRESSfif dllterent trom Controlling Ol(ice)

U.S. Army Research Office-Durham
Duke Station
Durham, North Carolina

15. SECURITY CLASS, (ol this report)

15a. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION ST AT EMEN T (ol this Report)

Copies may be obtained from National Technical Information Service,

Springfield, Va. 22151

17. DISTRIBUTION STATEMENT (ol the ebstract entered In Block 20, II dllterent trom Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide it necessary and identity by block number)

20. ABSTRACT (Continue on reverse side It necessary end identify by block number)

Numerical methods are given for finding unknown functions contained in
ordinary differential equations when a solution of the equation is known.
These are iterative methods giving a best fit to the % norm to the known
solution, which may contain random errors. A stability requirement on the
numerical methods is proved.

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (V,nen Dr,te Entered)





BIBLIOGRAPHIC DATA
SHEET

1. Report No.

UIUC-CAC-DN-73-86
3. Recipient's Accession No.

4. Title and Subtitle

NUMERICAL METHODS FOR THE IDENTIFICATION OF

DIFFERENTIAL EQUATIONS

5. Report Date

October 3, 1973

7. Author(s)
R. Jonathan Lermit

8. Performing Organization Rept.
No

- cac-86
9. Performing Organization Name and Address

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. Project/Task/Work Unit No.

11. Contract /Grant No.

DAHCO^-72-C-OOOl

12. Sponsoring Organization Name and Address

U.S. Army Research Office
Duke Station
Durham, North Carolina

13. Type of Report & Period
Covered

Research-interim
14,

15. Supplementary Notes

16. Abstracts
Numerical methods are given for finding unknown functions contained in

ordinary differential equations when a solution of the equation is known.

These are iterative methods giving a best fit to the I norm to the known

solution, which may contain random errors. A stability requirement on the

numerical methods is proved.

17. Key Words and Document Analysis. 17a. Descriptors

Differential equations

17b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement
No restriction on distribution.

Available from National Technical
Information Service, Springfield, Va. 22151

FORM NTIS-35 (REV. 3-72)

19. Security Class (This
Report)

-n UNCLASSIFIED
20. Security Class (This

Page
UNCLASSIFIED

21. No. of Pages
23

22. Price

USCOMM-DC 14952-P72
















