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ABSTRACT

This study addresses the design of a serial manufacturing system with multiple parallel lines. Such

systems manufacture a variety of products in medium to large volumes with stable demand rates

and similar processing requirements. Each line comprises multiple identical machines which perform

a set of predetermined, product-specific tasks on the products assigned to that line. Given the fixed

cost of providing a line, and the fixed cost of each machine, the objective of the flexible multiline

design problem is to determine the product-to-line assignment that minimizes the total investment

in lines and workcenters. We consider the special case of a single-stage system in which a product

can be assigned to multiple lines. While this case arises as an important subproblem in the general

multi-stage problem, it merits independent consideration in many systems in which the same stage

is the bottleneck for all products. We develop important characteristics of the optimal solution; in

particular, we show that it must satisfy the sequential assignment property which renders it solvable

in polynomial time. We develop an efficient enumerative solution method that makes effective use

of an imbedded greedy algorithm.





This study considers the problem of designing a flexible multi-line in a serial manufacturing system.

Such systems process a variety of products in medium to large volumes with stable demand rates.

These products have similar processing requirements in that they visit the various manufacturing

stages in the same sequence. Each stage on any line comprises multiple identical machines which

perform a set of predetermined tasks on the products assigned to that line. While these tasks

require similar processing capabilities, the actual tasks done and their processing times are product-

specific. The flexible machines can switch from one product to another with negligible changeover

time. The adjacent stages are tightly coupled with minimal buffer storage space in between. Each

line is paced, and therefore, its cycle time is constrained by the maximum processing time across

all stages required by any product assigned to it.

Given the fixed cost of providing a line, and the fixed cost of each workcenter at each stage, the

objective of the flexible multiline design (FMD) problem is to partition the set of products such

that each subset is assigned to exactly one line, and the total investment in lines and workcenters

is minimized. The FMD problem arises in several manufacturing environments. Consider, for

example, the manufacturing facility of a Midwestern company in heavy engineering industry. In this

facility, large parts are painted on several parallel paint lines. The parts are suspended on overhead

conveyors and transported through pretreatment, painting and drying stages. The time required

at each stage varies for different products depending upon their size and shape but the conveyors

are paced. In another instance, a manufacturing company in the auto industry that produces

fuel-supply systems, requires different components to go through a series of forming operations

at the fabrication stage. These components are processed on parallel lines that are paced by the

longest processing time of any product on that line. The FMD problem is also encountered in

printed circuit board manufacture (Farber, Hanan and Luss 1988). Indeed, this problem arises

naturally in many systems in the context of implementing a just-in-time approach within cellular

manufacture. Given a set of products with their individual demands and processing requirements,

FMD determines the optimal set of families, as well as the optimal configuration of the various

cells that need to be formed. Additionally, it can be used at periodic intervals to evaluate the need

for a system redesign in the face of changing product demands and processing needs.

The problem most closely related to the FMD problem is the mixed-model line balancing problem

(Wester and Kilbridge 1964; Thomopolous 1967, 1970; MacAskill 1972; Dar-El 1978; Okamura

and Yamashita 1979; and Yano and Rachamadugu 1991). Much of the previous work on mixed-



model line balancing problem addresses the assignment of tasks required for assembling a number

of products to operators stationed along an assembly line. In the basic model, the operators are

considered to be multiskilled so that the tasks can be assigned to any operator on the line as long

as the precedence relations among them are satisfied. It is easy to see that in such tandem systems,

the cycle time and the overall output are constrained by the total processing time required at

the bottleneck station. Consequently, the bulk of the research on this problem has considered the

objective of smoothing workload assignments across all stations. Because of the variety of products

assembled on this line, the amount of processing required at any station varies from one cycle to

another, and workload balancing is based on the average processing time per cycle at each station.

Work overloads are relieved by permitting limited operator movement upstream and downstream

of the assigned station (Dar-El and Cucuy 1977, Dar-El 1978), or through the use of utility workers

(Yano and Rachamadugu 1991). One of the major thrusts of this research is on determining the

appropriate sequence in which the various models should be processed at each station in order

to minimize such overloads. Okamura and Yamashita (1979) address the objective of minimizing

the maximum distance that any worker will have to move away from his workstation in order to

complete all tasks assigned to him; as Yano and Rachamadugu (1991) note, this objective is similar

to minimizing the maximum work overload at any station. Yano and Rachamadugu deal with the

objective of minimizing the average work overload given that the overload at any station can be

met through the use of utility workers.

An alternative line of research involving mixed-model lines addresses sequencing the various prod-

ucts with the objective of smoothing the rate of parts usage in assembling the final products. This

problem was proposed by Monden (1983) in the context of just-in-time manufacture. Miltenberg

(1989) considers the problem in which all final products require the same number and mix of parts.

Under this assumption, smoothing part usage rate reduces to minimizing the sum of differences

between the cumulative actual production and cumulative actual demands across all products.

Miltenberg proposes nonlinear integer programming formulations, and proposes heuristic solution

methods. Kubiak and Sethi (1991) relax Miltenberg's assumption, and also consider a more gen-

eral form of the objective function; more importantly, they show that the resulting problem can be

formulated as an assignment problem. Similar problems are studied by Miltenberg and Sinnamon

(1989) and Inman and Bulfin (1991).

The FMD problem is similar to mixed- model line balancing in that it considers a paced flow line



producing multiple products. In addition, the objective of minimizing total investment in lines

and workcenters leads to workload balancing. However, these two problems differ in significant

ways. First, the assignment of tasks to stations (stages) is not an issue here because any given

task can be done only at a predetermined stage. Second, the stages are "manned" by stationary

CNC machines. Consequently, there can be no variation in the time spent at any station from one

cycle to another, and the sequence in which the different models are run is immaterial. Workload

balance in our context is achieved purely by the formation of parallel lines and grouping products

with similar processing times on a line. While there are economic incentives in having multiple

lines in order to reduce idle time, the benefits of doing so need to be traded off against the fixed

cost of providing the lines.

Another problem related to the multiline design problem is the line segmentation problem (LSP)

considered by Ahmadi and Matsuo (1991). For a given number of machines at each stage, and a

given partition of products .into families such that each family is assigned to one line, the objective

of LSP is to allocate machines at each stage to individual lines such that the overall makespan is

minimized. Ahmadi and Matsuo present several heuristics for solving LSP and show their efficacy

with respect to valid lower bounds. The FMD problem differs from LSP in two important ways.

First, LSP considers a multi-model situation in which the entire (daily) demand of any product is

produced in one batch before the line changes over to produce the next product. In our mixed-model

approach, each product is allowed to be produced as often as desired subject to the overall demand

constraints. Second, FMD addresses a problem in which product-to-line allocation is done jointly

with the determination of the number of lines and the number of workstations required at each

stage for each line.

This paper is the first of two papers that together address our research on the FMD problem. In

both papers, we consider the special case in which there is only one stage. This special case arises

as an important subproblem while solving the general multi-stage problem. However, this case

merits independent consideration for many systems in which the same stage is the bottleneck for

all products; for such systems, the multi-stage FMD problem reduces to a single-stage problem.

Furthermore, there are several systems that have only one stage. The two papers differ in that

this paper considers overlapping product partitions; the demand of any product can then be spread

across several lines. In the companion paper (Palekar and Raman 1993), we address the case in

which each product is constrained to be produced on only one line.



This paper is organized as follows. The problem formulation is given in §1. We develop some

dominance properties in §2 that result in an efficient graph representation of the FMD problem.

This representation is used in §3 to generate the optimal solution based on a dynamic programming

approach. We also develop an alternative polynomial-time algorithm that makes repeated use of a

greedy heuristic algorithm. We conclude in §4 with a summary of the main results of this paper.

1 Problem Description

In this section, we present a mixed integer programming formulation of the flexible multiline design

problem. However, first we give the notation used in the paper.

Af — the set of products, and |jV| = N

F\ = fixed cost of opening a line

F2 — fixed cost per machine

Pj = processing time of product j, j £ Af

Ji = set of products with processing times greater than or equal to i, {j\pj > Pi, j £ Af}

dj = per period demand of product j, j £ Af

A = available time per period on any machine

T[ = cycle time of line /

Ci = the set of products assigned to line /

In any feasible solution, the cycle time 77 of line / equals the processing time of its pivot product 7r(/),

i.e., the product with the longest processing time that is assigned to that line. Also, for any pivot

j, let X(j) denote the index of the corresponding line, and rij denote the number of workcenters

required at this line A(j). Then, the cycle time of any line / with pivot 7r(/) = j is 77 = pj and its

capacity is Arij/pj. We assume that A > pj, Vj £ Af so that [A/pj\ « A/pj. We also assume

that the fixed costs F\ and F2 are nonnegative integers.

The flexible multiline design problem is stated as

FMD1
N

Minimize Z = ^(^iJ/j; + ^nj) (1)



subject to

y^ Xji = 1, i G M

Pj I H rf
«
XJi I < An

3 ) J^
Xji <yj, i,j G jV

a?ii > 0, z',j G A/
-

</_, G {0, 1}; n, > 0, integer, j e Af

(2)

(3)

(4)

(5)

(6)

where

Vi = \

1, if a line is opened with pivot j

0, otherwise

and Xji is the fraction of product fs demand assigned to line \(j) if such a line exists, otherwise,

it is zero. Equation (2) insures that the demand of each product is fully assigned, and a product is

assigned only to lines with cycle times no less than the processing time of the product. Constraint

(3) requires that all product-to-line assignments be capacity feasible. Constraint (4) insures that

the fixed cost of opening a line is accounted for. Finally, constraints (5) and (6) specify the nature

of the variables.

The total number of machines required on any line / with pivot j is

_ _ I'
HtgJv/'^iSjiPj

J
~

A

where ["/] is the smallest integer greater than or equal to /. The total idle time on line / is

An
j
~ Pj

[ Yl diXJ* )

Clearly the idle time on this line is reduced by assigning to it products which have processing times

close to pj, and therefore, FMD1 aims at balancing processing times. On the other hand, the

mixed-model line balancing problem aims at balancing workloads. Furthermore, the idle time on

any line in FMD1 is unaffected by the sequence in which the various products are processed.



2 Problem Representation

In this section, we develop dominance properties, and construct an efficient graph representation

of problem FMD1.

Proposition 1. There exists an optimal solution to FMD1 with pivot set V = {j\j E Af, yj = 1}

such that pk 7^ pi for k,l £V, k ^ I.

Proof: For any optimal solution a to FMD1 that does not have the above property, we construct

an alternative solution a' from a by merging line \{k) with line A(/) while the assignments on other

lines remain unchanged. Then

Z{a)-Z{(j') = 2Fl
-r F2

— F\ - F2

> 0,

Pi 52teAT dtxu +
PkT,t£Af dtXtk

A

Pi (EteAT dtxti + EteAf dtxtk)

where the inequality follows from F\ > 0, pk = pi, and the inequality

[a + 6] < \a] + \b].

Hence, if a is optimal, then so is a' and the proof is complete.

(7)

Proposition 2. There exists an optimal solution to FMDl with pivot set V = {j\j E Af, yj = 1}

such that

i) if i is not a pivot product, then it is assigned to exactly one line, i.e., xu { E {0, 1} for all

i eAf\V and ueVnJi.

ii) if i is a pivot product, then it is assigned to at most two lines.

Proof: As before, we show that any solution a that is optimal to FMDl and that does not have

the stated property can be modified to yield an alternative optimal solution that does so. Without

loss of generality, we assume that a satisfies Proposition 1. Let L be the total number of lines in

a, and let C\ denote the set of products assigned to line /, / = 1, 2, . .
.

, L. Renumber these lines so

that

7-j > r2 > ...> tl . (8)
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Let D[ = J2i€A'diX 7r(i)i denote the total quantity assigned to line /, / = 1,2, ...,L. Construct

another solution a' from a in the following manner. Rank all products in Af in nonincreasing order

of their processing times. Starting from line 1, assign products from the top of this list, such that

the total quantity assigned to line / is D/. If this results in any product being partially assigned

to a line, then allocate the remaining quantity to the subsequent line. Let rf and C'
(

, respectively,

denote the cycle time of line / and the set of products assigned to line /, / = 1, 2, . .
.

, L in a'.

Note that a' satisfies condition i) in that any product which is not a pivot is assigned to exactly

one line. Also note that

r[ = rl . (9)

Lemma 1. r[ < t\, V/.

Proof: Consider the following disjunctive cases:

Case a) minieCi{pi} < r/+1 , / = 1,2, . . ., L — 1: From the construction of cr', it can be seen that

r/+i < m*ni€£'{Pi} ^ Ti+ii for / = 1,2, . . ., L — 1. The result follows from (9).

Case b) min ie£i{pi} > r/+ i, for some /G {1,2,...,//- 1}: Because 77 = max
q^c t {Pq} for any line

/, it follows from (8) that

L

n+i > vu Vt g |J c k .

Jt=/+1

Furthermore, since mm,-e
£f{p,-} is strictly larger than 77+1, and the total quantity allocated to each

line is the same in both a and a', it follows that

U Ck = U ^-
k=\ fc=l

This implies that r/+1 = r/+1 to yield the desired result.

Now

Z(a') - Z(a) =ZE WAM1 - E E fa4Ml < (10)

i£Af 1=1 i£Af 1=1

and a' is optimal. If it satisfies property ii) as well, the proof is complete. Otherwise, merge all

those lines that have the same pivot to construct another solution a" that satisfies both i) and ii)

and, from Proposition 1, is optimal as well.



In the rest of this paper, we assume without any loss of generality that the products are numbered

such that if i < j, then pt
> pj, for any i,j 6 M. Furthermore, since F\ > 0, they satisfy Proposition

1 which can now be restated as

Remark 1. In any optimal solution, pk > pi for any k,l G V such that k > I.

Proposition 3. (Sequential Assignment Property) There exists an optimal solution to FMD1

with the property that if Xj, > 0, then Xj
q
= 1 for q = j

; + 1,
j

' + 2, . .
.

, i — 1.

Proof: Let a be an optimal solution to FMD1 that does not have this property. Then there

exists at least one product t,j < t < i — 1 that is produced on line A(A;), k ^ j. Note that k < t < i.

If k < j, then construct a' from a by shifting S = dtXkt units of product t from line X(k) to line

X(j). Replace these units on line X(k) by products, considered in the increasing order of their index

starting with j, that are currently assigned to line X(j). If 6 < djXjj, then j continues to remain a

pivot, otherwise its entire demand is absorbed by line \(k) and j is replaced as a pivot by some q,

with pq
< pj. In either case, Z(a') < Z(a), and therefore, a' is optimal.

If k > j, then construct a' by shifting S = Ylq=t+i dq units of demand corresponding to products

t + 1 through i from line X(j) to line \(k), and replace these units on line X(j) with products

currently assigned to line X(k) considered in the increasing order of their index starting with k. As

before, it follows that Z(a') < Z(a), and therefore, a' is optimal. Repeating these steps whenever

required yields the solution a' that is optimal to FMD1 and that satisfies the condition stated in

the proposition.

Hereafter, we deal only with those solutions that satisfy the sequential assignment property. An

immediate consequence of the above propositions is that in an optimal solution, if j is a pivot in an

optimal solution, then it is assigned to at most two lines, namely X(j) — 1 and A(j), i.e., x
qj > 0,

only if q £ {^(A(j) - l),j}. Furthermore, Xju = 1 for all w, u = j
" + l,j + 2, . .

.
, 7r( A(j) -j- 1) - 1.

In addition, an optimal solution is completely characterized by the set of pivot products in the

solution.

Problem FMD1 can be represented on graph Q — (V,£) shown in Figure 1. In this graph, node

Vij, which is depicted as ij in the figure, represents an assignment in which product j is produced

on line with pivot i. Note that node Vij is feasible only if pj < p,; hence, the upper triangular

8



nature of this graph. Let E?f denote the arc leading from Vij to Vuv . The arcs in Q connect only

contiguous nodes, i.e., an arc E™ exists only if v = j
' + 1. [We will show later that each arc joining

two nodes in Figure 1 actually represents a set of arcs.] We append a dummy source node S and a

dummy sink node T. The optimal solution to FMD1 corresponds to the shortest path from S to

T.

INSERT FIGURE 1 HERE

We partition arc-set S into disjoint subsets H, B and T where H is the set of horizontal arcs (h-

arcs), B is the set of backward arcs (b-arcs), and T comprises the forward arcs (f-arcs). Consider

an arc Efi E S. Eff is an h-arc if u = i; a b-arc if u < i: and an f-arc otherwise. Without

any loss of generality, we assume that the dummy arcs leading to S and T are f-arcs.

From the sequential assignment property (SAP), it follows that any path that includes a b-arc is

not dominant. Furthermore, in an optimal solution, a pivot must be assigned to its own line, since

otherwise, the products assigned to this line are being produced at a higher than required cycle time.

Consequently, if Vij lies in an optimal path, then so must Vu. Together with SAP, this implies that

Vij is reachable only via node Vu along the path comprising the h-arcs E\^ 1 - -£'-'-^
1
— ... — E\3

j_v

Therefore, while searching for an optimal solution, we need consider only those f-arcs that are

incident on a pivot, i.e., arcs of the form Ejj
J+

. Notice that Figure 1 does not have any other

f-arcs.

Clearly, product 1 must be the pivot for line 1 in any feasible solution. Consider a path Q that passes

through Vu, . . ., Vi^-i,— Corresponding to node V^, let Mjk denote the number of machines

required on line X(j) for producing products j, j + 1, . .
.

, k. Then the number of machines required

at line 1 in fi is

„ - M \
Pl ^~= l

du

The capacity remaining, hereafter the remnant, at line 1 after this assignment is

AMU. X £i
T\,i-\ = > du .

It is clearly optimal to use ri
t
,_i for (partially) meeting the demand of product i. More generally,

the remnant available at any line will be used for producing the pivot product of the next line.

Consequently, if i and j are adjacent pivots in 17, j > i, then



Mjk =
Pj (eU-^-^-i)

and

Tjk -
AMjk

Pj

- 1^2 du - r;j_]

(11)

(12)

.U=J

Note that Tjk < A/pj, hence, it is strictly less than one machine's capacity on line A(j). Since

Pj > Pk, for k > j, it is less than one machine's capacity on subsequent lines as well.

We now determine the cost of each arc in Q. First note that the cost of f-arc E;£ +1
leading to

node Vfc+U+1 , k = 0, 1, . .
.

, N - 1 is

Pk+i (djt+i - rjk
)'

k+l,k+l _Cjk = Fi + ^Afjfc+i^+i = Fi + F2

where k = denotes the source node S. The remnant at Vfc+i,Jb+i is

AMjb+i fjb+i

(13)

rjfe+i.Jb+i =
Pfc+i

- dfc+1 + Tj k . (14)

From (12), it follows that Tjk and therefore, cf '
+ and r^+i^+i as well, depend upon i, the pivot

for the line that immediately precedes A(j>). By induction this implies that they depend upon the

path selected to reach Vjk- We assume that the cost of dummy f-arcs leading to T is zero.

Now consider h-arc E3A +
. The marginal increase in the number of machines required on line X(j)

for producing (k + 1), given that products j + l,j + 2, . . . ,fc are assigned to this line, is

Mjjt+i - Mjk =
Pj (Ejij du - rij-x)

Pj (4+1 - rjfc)

Pj (Eu=j ^ - r{j _i)

J,k+lwhere i is the pivot for the line immediately preceding A(j). The cost of h-arc Ejk is

c^+1 = F,
-jk

Pj (4+1 - rj k )
(15)

Arguments similar to those used above show that (£'£
+

, and the remnant r
Jtk+i as well, depends

upon the path selected to reach Vjj.

However, an exponential growth in the number of paths to be considered for reaching any node

is avoided because of cost- and remnant-dominance. Consider two paths Q\ and Q 2 from Vn to

10



Vjk- Let the resulting remnant at Vjk following Q,i and Q2 be rj
k
and rjk , respectively, and let C(-)

denote the cost of path (•). Then

Remark 2. Q.\ dominates 0.2 if either

i) f}k ^ r]k andC(£li) < C(f*2)> or

ii)C{Sl x ) <C{Q2)- F2 .

Proof: Consider i) first. The optimal completion of Q\ solves a subproblem of FMD1 that

considers products k + 1» k + 2, . . .,N with demands dk+i — rk, dfc+2, • • • > ^at, respectively. On the

other hand, the optimal completion of Q 2 considers a subproblem in which the demand of product

k + 1 is dk+i — r
2
jk

> dk+\ - rk, demands of other products and other parameters remaining

unchanged. Clearly, the optimal completion of f^ is at least as expensive as the optimal completion

of path Qi, an(i follows from the principle of optimality. Now consider ii). Note that rjk ,rjk <

A/pj. Hence, from (13) and (15), the remnant difference rk - r2
]k

cannot result in saving more

than one machine, ii) follows immediately.

From Remark 2, it follows that the set of undominated paths reaching Vjt+i.jt+i from Vjk comprises

only those paths whose costs are within F2 of each other. Furthermore, these paths must have

distinct rjk values. Because there can be mo more than A/pj such values, it follows that the

cardinality of this set is no more than A/pj.

Similar arguments show that when all paths reaching Vjt+i,jk+i from V^, / = 1,2, ...,Ar - 1, are

considered, then the set of undominated paths ^+1^+1 reaching Vjt+ijt+i comprises only those

paths that are within F2 of each other in cost but have distinct rk+\,k+i values. Because there can

be no more that A/p^+i such values, ^t+i^+i = |^A;+i,A:+i| < A/pk+\. More generally, for any

node Vjj
, j £ A/", we have

_A d
tf« = l*;;l<—

—

ttt =*'

In summary,

Lemma 2. Each f-arc and h-arc shown in Figure 1 represents a set of arcs whose cardinality is

less than or equal to tft and whose costs differ by less than F2 .

In view of the above result, wherever appropriate, we will use the notation c
u
_'
k

(s) to denote the

cost of arc Ej
k

given that r
3j
= s, s = 1,2,..., 0.

11



3 Heuristic and Exact Solution Algorithms

FMDl can be formulated as a dynamic program in which the stages are the consecutively numbered

products. The states at a given stage i are given by the combination of the pivots, j, j < i, to

which product i can be assigned, and the remnant s available at the pivot. Let g*(k) be the

minimum cost of reaching stage /:, k = 1,2, ...,T, and gjk{$) be the minimum cost of reaching

node Vjk given that the Tj
3
— s. The resulting shortest path problem is stated as

DPI

Z* — min g*(T)

subject to

g
m
(k) = min^k {gjk(s)} (16)

s<ip

9jk(s) = <
J

(17)

( 9i„k-i +c?
a ,jb-u

ifj = k

goo(s) = s = 1,2,. ..,V (18)

i' s = ar^ min , <fc {^.j + cJ
5

J_ 1 |T-jbjfc = -s| • (19)

Equation (19) insures that among all paths leading to a pivot node Vj^, k = 1, 2, . .
.

, N that result

in the same remnant at Vfcjt, the path that is selected is one with the lowest cost.

DPI requires evaluating 0(^N) arcs at each stage, resulting in an overall computational effort of

0(ipN 2
). We now present an alternative, enumerative solution approach for solving FMDl. This is

done for two reasons. First, it is likely to be more efficient computationally for most real problems.

Note that while DPI solves FMDl in polynomial time, can be a large number. Second, the

proposed algorithm makes use of a greedy method that we use extensively in the companion paper

for solving the related problem FMD2 in which demand splitting is not permitted. We now present

this heuristic method.

3.1 A Greedy Algorithm

Consider a greedy policy in which the path leading to any pivot node Vjj is selected myopically

on the basis of the total cost incurred in reaching that node. Remnant differences are used only

to break ties in favor of the path that results in the largest remnant at Vjj. Clearly, because of

12



its Markovian property, this policy considers only a subgraph QG of Q in which a pair of adjacent

nodes is connected by only one h-arc or f-arc. Suppressing all references to remnants, we can state

the resulting shortest path problem under the greedy policy as

DP2

ZG = min g
G{T)

subject to

,Gu\ .« („G
g
G
{t) = min

3 < t {g%} (20)

g
a = i -"— —

(21)

^ t_ 1) ,t-i
+ < t _ 1) ,t-i'

if i = *

fe(t_i) = ar# ma2, <( |rj
ft-i|^t-,t-i + cj*#-1 = mtn/<f {fl^-i + ^-i}} •

(
22

)

Equation (22) implements the tie breaking rule. Following (14), the f-arc selected to reach node

Vt t is from node Vh,t-i),t-i tnat nas tne largest remnant among all nodes at stage t — 1 which are

on the shortest path from Vu to V«. DP2 can be solved in 0(N 2
) computation time. Hereafter,

we refer to this solution method as Greedy. Because QG considers only a subset of arcs in £, the

Greedy solution value is only an upper bound on the optimal solution value of FMD1. However,

the following result indicates that these two solution values differ by no more than the cost of one

machine.

Proposition 4. Let Z* be the optimal solution value to FMD1, and let ZG denote the solution

value of Greedy. Then, ZG < Z* + Fi-

Proof: Let Q* be an optimal path between Vu and T, and let V* — {tt(1), tt(2), . .
.

, x{L)} denote

the set of pivots on Q,*. Without any loss of generality, we assume that Q* satisfies the sequential

assignment property. Let g*
t
denote the cost of reaching any node VJt on Q." from Vu . Then,

Lemma 3. gfk < g*
k + F2 , for all k £ £a(j)> and j € V"

.

Proof: In order to distinguish the variables under QG and 1)*, we use [Q
G

] and [ft*], and wherever

it does not result in any confusion, superscripts 'G' and '*', respectively. Let ft
G denote the path

followed by the Greedy solution in QG . For expositional simplicity, we assume that ft
G

is unique.
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If ft* is included in QG', then ft* and ft
G are identical, and the result follows trivially. Otherwise,

there must exist a pivot q G V* such that the f-arc leading to node Vqq differs from the f-arc selected

in QG according to the greedy policy. Furthermore, since there is only one f-arc leading to node

V22 in Q, it must be true that q > 3. Let Vtt be the first pivot node where the f-arcs differ. Then

9?t=9jt, l<j<t-l, teC x{j) (23)

and the result holds for j < t — 1. From (21) and (22), we have

9?t < 9w (24)

As shown in Figure 2, let the f-arc selected for reaching Vtt in QG be E t

^ t _ l
that results in a remnant

of r°L at Vt t. Similarly, let the f-arc selected for reaching Vtt in ft* be E t

J t_ l , resulting in a remnant

of r*
t
at Vt t- If r

tt < r
tt >

tnen we can construct another path Q' from Vn to T that is identical to ft*

except in that the path segment selected for reaching node Vtt from V\\ is replaced by the segment

used in ft
G

. From Remark 2, it follows that if ft' is optimal. If r*
q
< rG

q
for all pivot nodes Vqq

on ft*, the repeating the above substitution eventually shows that ft
G

is optimal, and the lemma

is proved.

INSERT FIGURE 2 HERE

Now suppose that r*
t
> rG . From the sequential assignment property, ft* must next visit either

Vt+1^+1 or V
tft+i. In the following, we consider the case in which ft* passes through Vt+i tt+i- The

proof for the other case is similar and it is, therefore, omitted. First note that the result holds for

j = t. Now,

A/'pt+t > r* > ifg. (25)

From (11) and (25), it follows that either

Jfl+i.t+1 = tf&Wi " 1> (26)

or it) M?+u+1 = MG
+U+V (27)

In i) a machine is saved at Vf+i^+i following ft* relative to QG . Hence,

c
«+u+i [qG] = c

t+i,t+i
[fi .j + F2 (28)

From (24), and (28), it follows that

14



*g.i,t+i < 9u + c«
U+l

IG
G

) < 9u + 4+U+1 m + ^2 = *{+i,t+i + F2 (29)

and from (14), (25) and (26), that

rt+i,*+i > r*+i,*+i* (30)

12* must next visit VWft+2 where w = t + 1, or w = £ + 2. In either case, from (13), (15) and (30),

we have

Therefore, from (29) and (31)

*S,t+2 < £ f
t+2 + ** (32)

It follows that if r^ > r* for any node Vt(? on 12*, i > w, then flr^L+1 < 9j >q+i + ^2 where either

i = j, or i and j are consecutive pivots. If this condition holds for all nodes on 1)*, then the lemma

is true by induction. But rf < r* at any node V
jq is possible only if a machine is saved at that

node in QG with respect to 12*. In that case, gf*
< g*

' and again the result holds.

Now suppose that a machine is not saved at Vj+i^+i as in case ii). In this case, we have

4t
U+1

IS
G

)
= ^''<+1

[IT].

Hence,

&+l,t+l < 0« + c« l^ J < 0« + c
tt I" J

= &+U+1

and r^.j <+1 < r*+lt+l . As above, it spawns two cases at node Vwj+2, and using similar arguments,

it can be shown that (32) holds in this case as well. If the remnant difference r*+1 t+l
— rf+l t+l

does not save a machine at any subsequent node on 12*, then the result is true by induction once

again. On the other hand, if a machine is saved at a subsequent node, then considering cases i)

and ii) at that node and repeating the arguments made above completes the proof of the lemma.

D

The result stated in the proposition follows immediately from Lemma 3 by substituting j = 7r(Z),

and k = N , and noting that the cost of any f-arc leading to node T is zero.

3.2 An Exact Algorithm

We construct an exact algorithm for FMD1 that combines Lemma 3 with the Greedy solution.

This method is based on an enumerative approach that considers QG initially, and augments it

15



with additional arcs from Q whenever necessary. Suppose that the optimal solution to FMD1 is

represented by path fi* having pivots Ji,j%, . .
. , jjr,, with solution value Z*. The proposed algorithm

identifies j£ at level 1, and generates the lower numbered pivots in the nondecreasing order of their

indices at the succeeding levels in the enumeration tree.

In the following, Tj = -j Vij\g
G < 9

G
(j) + F2 } denotes the set of nodes at stage j, j = 1, 2, . .

.
, JV,

that can be reached from V\ i at a cost within F2 of the minimum cost of reaching stage j in QG . Also,

let rrijk denote the (possibly fractional) number of machines required at line X(j) corresponding to

node Vjk] i.e.,

mjk = —
j

and (33)

Mj k = \mjk \
. (34)

Let rrijk = ajk + bjk where ajk is the integer part of mjk- bjk = rrijk —
|_
mjfcJ ^ s ^ne purely fractional

part of rrijk, where [/J is the largest integer less than or equal to /. Also, let otj and (3j denote,

respectively, the integer and the purely fractional part of the number of machines required at line

A(j), i.e., rij = \olj + f\. Then, corresponding to node Vjk, otj = ajk and (3j = bjk.

The proposed algorithm is formally stated below.

Algorithm Exact

Step 1 : Initial Solution and Pre-Processing

i) Solve FMD1 using Greedy with solution value ZG . Set the current upper bound UB — ZG .

Record the root vertex as the current incumbent. For j = 2, 3, . .
.

, N, and 1 < j, determine r,j and

compute

Aij = r^ - rhj3 - and K tJ
=

gfj
- g

G
}J

where hj is defined by (22). Determine T^. Go to Step 2.

Step 2 : Branching, Updating and Fathoming

Construct a search tree S rooted at T by generating a vertex at level 1 in S corresponding to each

node in IV • For each such vertex w that corresponds to (say) node Vjn in QG', set

#v = bjN, Sv = Pj/A, and 4>v = g
G
N .
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Determine r,_i and generate vertices at the second level corresponding to nodes in Tj, and similarly

generate vertices at other levels in S such that the descendants of any unfathomed vertex w, which

corresponds to (say) node Vfc+i,/, are vertices corresponding to nodes in IV For any vertex v, which

is a descendant of vertex u and corresponds to (say) node V,^ in QG , set 8V = 6U , and zv — AikSv .

If zv > U , then set <f>v = g
G
kk + «,* — F2 . If <f>v = ZG — F2 + 1, then record v as the incumbent,

and go to Step 3. Else if 4>v < UB, then record v as the incumbent. Compute 6V = 1 — (zv — 9U ).

Otherwise, if zv < $u , then set 4>v = g
G

k + k,^. Fathom v if 4>v > UB + -^2- Else, set V = ^u — zv .

If no further vertex can be generated, go to Step 3.

Step 3: Generation of the Optimal Solution

Let v be the incumbent vertex, which corresponds to (say) node V{q . Trace the path leading from

v to the root vertex in S, and find the nodes in G corresponding to each vertex in this path. These

nodes determine the corresponding path in QG from V{
q
to T. Find the shortest path from V\\ to

V{
q
using Greedy to complete the solution.

Proposition 5. Algorithm Exact solves FMDl.

Proof: Note that in order to determine Q,*, it is sufficient to find the pivots jf , J2 ' • • >Jl- Alter-

natively, it suffices to identify the f-arcs leading to these pivots. Algorithm Exact generates these

f-arcs in reverse starting with the f-arc leading to pivot j£. We first show that the Q" is included

in 5, and then show the validity of the costs determined for each vertex in *5.

Lemma 4. There exists an optimal solution Q' to FMDl with pivots j[,j'2 , • • • , j'n, such that i)

9?' N < 9
G(N) + F2, and ii) g

G
k < g

G (k) + F2, where i and k + 1 are two consecutive pivots in Q'.

Proof: From Lemma 3, we have

Z* < ZG = g
G(N) < 9

G
qN < Z* + F2 . (35)

i) follows immediately. We will show that if Q' does not also satisfy ii), then it can be modified to

yield another optimal solution that does so. Clearly, if ii) does not hold, then there must be a node

Vt k such that

17



9?k>9
G
(k) + F2 = gg + F2 . (36)

Modify Ct' by substituting pivot t for i; this may result in changing all pivots that precede i as well.

Keep pivots fc+ 1 through j'q unchanged. Then, it follows from (36), and the fact that the segment

from Ffc+ijfc+i to Vy ^ is unchanged, that the modified solution is optimal as well. Repeating this

step whenever ii) is violated eventually results in an optimal solution that satisfies ii).

We assume in the following that Q* satisfies Lemma 4. Because we enumerate all nodes in T^ at

level 1, Lemma 4i) implies that V^n is considered at this level. Furthermore, in the general case,

since the algorithm generates vertices corresponding to all nodes in I\ after having generated a

pivot k + 1, from Lemma 4ii) it follows that Q" in included in S.

Next we address the costs determined at each vertex. Consider the general case described in Step

2 of the algorithm and depicted in Figures 3a and 3b. For any two consecutive pivots, i and k + 1

on any path Q, let v denote the vertex in S corresponding to node Kit 6 Tfc, w be the parent of v,

and w be the vertex at level 1 from which u and v are generated. Let u and w correspond to nodes

Vjt+i,/ and Vjn in QG , respectively.

INSERT FIGURES 3a AND 3b HERE

Consider the descendants generated corresponding to T^. From Equation (22), the minimum cost

path leading from V\\ to Vjt+i,fc+i passes through Vh k k- Then, K,)t = gfl
— g^.k is the cost penalty

incurred if f-arc E^ 1, +1
, instead of E

h
*£' +1

, is selected for reaching l4+i,jfe+l- However, such a

substitution in the f-arc can lead to the saving of a machine if the remnant difference A,-* = r,jt —r^

absorbs the purely fractional part of a machine required at line A(j), i.e., the last line on Q. To

see this, let a denote the value of the purely fractional machine to be eliminated from the last line

corresponding to vertex a. Corresponding to w at the first level of the tree, we have 6W = /3j = bjjy.

If we select the f-arc from Vt,j-\ to reach Vjj, instead of the f-arc from V^^j-i selected in GG ,

then a cost penalty of Ktj _i = g
G
j_i

— g
G
_ J _ l

is incurred.

Let r denote the vertex in tree S corresponding to Vtj-i, and let the variable values modified

because of this f-arc switch be denoted by a 'prime'. If the remnant difference At,j-i — rt,j-i
—

rhj-ij—i is such that

A
t<J
_^>bjN , (37)
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then from (33) and (34), M'.N = Mjn — 1, and a machine is saved at line \(j). At vertex r, we then

have a solution value 4>T = gjfo + Ktj-i — F2, and the modified value of the purely fractional machine

at \(j) of T = flj = 1 — (Atj-iPj/A — fjiv). On the other hand, if A t,j-i does not satisfy (37),

then no machine is saved at \(j). The f-arc switch results in a solution value </>T = g
G
N + Ht,j-i,

and T = 0'j = fjN - (Atj-iPj/A.

[Note that even if a machine saving is realized at r, additional savings may still be possible at any of

its descendants at succeeding levels.] It is easily seen that in the general case considered in Step 2 of

the algorithm, if A tkPj/A > 9U at vertex v, then
<J>V = g

G
k + «,-* — F2, and 9V = 1 — (AikPj/A — 9U ).

On the other hand, if AikPj/A < 9U , then 4>v = gfi k + K{k, and 9V = 6U — Ai^Pj/A.

Finally, from Lemma 3, it follows that a vertex v is fathomed if its solution value (f)v > UB + F2

since any completion of v can be no better than the incumbent solution. Furthermore, because F\

and F2 are integers, LB = ZG — F2 + 1 is a lower bound on Z* . Therefore, if
<f>v = LB at any node

v, then search can be terminated.

3.3 An Example Problem

We illustrate the above algorithm with the following 5-product example F\ = 50; F2 = 100; A =

800; d x = 60; d2 = 280; d3 = 180; d4 = 1000; d5 = 1900; p x = 5.0; p2 = 2.5;p3 = 2.0; p4 = 1.0; p5 =

0.45. At the end of step 1, the Greedy solution is V\\ - V22 - V23 - V44 - V55 with a value ZG = 800.

The gjt and Kj< values are shown in Table 1, while the rJt and the Aj t
values are given in Table 2.

INSERT TABLES 1 AND 2 HERE

From Table 1, it can be seen that T 5 = {V^V^};^ = {V^};^ = {V13, 1^3,^33} ;T 2 =

{Vii,V5B};ri = {Vii}.

The enumeration tree is shown in Figure 4, and the details for this tree are given in Table 3. Paths

corresponding to the Greedy and the optimal solutions are shown on graph QG in Figure 5. The

optimal path is Vn - V22 _ V33 - V44 - V55 with a value Z* = 750. The arcs shared by both paths

are shown with double lines while the arcs exclusive to the optimal path are shown in thin bold

lines.

INSERT TABLE 3, AND FIGURES 4 AND 5 HERE

19



4 Conclusion

This paper addresses the flexible multi-line design problem in a single-stage manufacturing system.

For a given fixed cost of providing a line, and the fixed cost of each workcenter, the objective of the

flexible multi-line design problem is to simultaneously determine the number of lines required as

well as find the product-to-line allocation such that the total investment in lines and workcenters

is minimized.

In this paper, we consider the case in which a product can be assigned to multiple lines. We show

that in this case, the optimal solution must satisfy the sequential assignment property, i.e., the

products assigned to any line must be consecutively ordered in their processing times. We give

a dynamic programming algorithm that solves the problem in polynomial time. We develop an

efficient enumerative solution method that makes effective use of an imbedded greedy algorithm.
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TABLE 1

Values of gft and Kj t in the Example Problem

j

1

9ft
at t = fv

y £ <xt Z —

1 2 3 4 5 1 2 3 4 5

150 350 450 1050 2250 50 50 500 1450

2 - 300 400 700 1300 - 150 500

3 - - 450 650 1150 - - 50 100 350

4 - - - 550 850 - - - 50

5 - - - - 800 - - - -

9
G
{t) 150 300 400 550 800

h
t

1 2 2 4 5

TABLE 2

Values of r
J(

and AJt in the Example Problem

i

l

ry( at t — Ajt at t =

/ 2 3 4 5 1 2 3 4 5

100 140 120 80 100 -160 -1634

2 - 140 280 240 260 - 160 -1474

3 - - 360 160 260 - - 80 80 -1474

4 - - - 80 580 - - - -1154

5 - - - - 1734 - - - -
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TABLE 3

Details of the Enumeration Tree

Vertex v Corresponding

Node in QG

^ bv 4>v Zv Remarks

T

1 ^45 0.275 0.001250 850

2 ^55 0.025 0.000562 800 Incumbent, UB = 800

3 ^44 0.025 0.000562 800 0.000

4 Vl3 0.475 0.001250 900 -0.200 Fathomed,
<f>v > UB + F2

5 V23 0.275 0.001250 850 0.000

6 V33 0.175 0.001250 900 0.100 Fathomed, <f>v > UB + F2

7 Vl3 0.115 0.000562 850 -0.090

8 v23 0.025 0.000562 800 0.000

9 V33 0.980 0.000562 750 0.045 Current incumbent

Revised UB = 750

10 V11 0.275 0.001250 850 0.000

11 Vii 0.025 0.000562 800 0.000

12 Via 0.980 0.000562 800 0.000

13 K22 0.980 0.000562 750 0.000

14 F22 0.980 0.000562 750 0.000
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Figure 5 - Paths fi
G and Q," in the Example Problem
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