

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

510.84

T£63c
no. I- 10

AUG 51976

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

I |
. i nsfc

s

CONFER

JUL OVfFflJ

w,r
CD

lib

nuUiYl

L161— 0-10%

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/informationmanagOOschu

enter for Advanced Computation
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA. ILLINOIS 61801

CAC Document No. 1

AN INFORMATION MANAGEMENT

,g, AND
1 ANALYSIS SYSTEM FOR ILLIAC IV

*y

Stewart A. Schuster

December 11, 1970

CAC Document No. 1

AW INFORMATION MANAGEMENT

AND

ANALYSIS SYSTEM FOR ILLIAC IV

by

Stewart A. Schuster

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

December 11, I97O

1NGINEERING U8RAW

no. |-/0

ABSTRACT

Tills document presents the preliminary specifications for the design

and implementation of an Information Management System, capable of being in-

tegrated with an extensive Mathematical Analysis System to be implemented on

the ILLEAC IV computer. The system would provide multiple keyed access to

several large data bases and the capability of receiving instructions and

questions expressed in a simple inquiry language. Mathematical and statis-

tical routines will be interfaced through the Analysis System. There will also

be a report generator which displays the responses to questions in forms

easily interpretable by researchers.

ACKNOWLEDGEMENTS

I would like to thank Professor Daniel Slotnick for sponsoring and

encouraging my work in this area.

I would especially like to express my gratitude to Dr. James L. Parker

of the University of British Columbia whose many ideas were germinal to the

design of this system. Also, I wish to express appreciation for the careful

and patient analysis and suggestions pertaining to this work by Professor

Michael Sher, Peter Alsberg and Thomas Mason, who are members of the Center

for Advanced Computation. Michael Randal and Jeffrey Serage, members of the

I LTiTAC IV Project, also made valuable contributions to the presentation of

this document. Finally, my thanks to the entire secretarial staff and

especially to Mrs. Shirley Brown, Mrs. Coni Allen, and Mrs. Kay Flessner for

outstanding clerical assistance.

TABLE OF CONTENTS

Page

I. The Information Management System as an Information Management
Machine 1

A. Introduction 1

B. Design Goals 3

II. ILLIAC IV Computer System Characteristics that Influence
Information Retrieval 7

A. Hardware 7
B. Software 8
C. Languages 9

III. Specifications for the ILLIAC IV Information Management System . . 10

A. Introduction 10
B. The Data Management System (DMS) 10
C. The Symbolic Data Structuring System (SDSS) 12

D. The Information Retrieval System (IRS) 13
E. The Mathematical Computation System (MCS) Ik
F. Using the Information Management System Ik

IV. List of Tasks 16

V. The Use of an Existing Data Base for Testing and Evaluating the
IMS 17

A. Introduction 17
B. A Description of the Rockland State Hospital Data Base 17

Appendix A

Appendix B

Appendix C

References 20

A Glossary of Terms 21

A Suggested Design for the Data Management System (DMS) . 23

C.l Responsibilities of the DMS 23
C.2 The DMS Information Elements 2k
C.3 Data Management on the Information Elements 28

C.3.1 Specifying the i/o Scheme to the i/o Subsystem of the
Operating System

C.3. 2 Using the DMS 32
C.3.3 Garbage Collection 3k
C.3.^ Comments on Direct Accessing 35
C.3.5 Comments on the DMS 36

Page

Appendix D: A Suggested Design for the Symbolic Data Structuring
System (SDSS) 38

D.l Responsibilities of the SDSS 38
D.2 The Entities of Data Structuring 38
D.3 The Data Item Symbol Tables kk
D.k Data Types and Attributes and Characteristic Definitions ... 58

Appendix E: A Suggested Design for the Information Retrieval
System (IRS) 62

E.l Responsibilities of the IRS 62
E.2 The IRS Description 62

E.3 Interaction with the Mathematical Computation System (MCS) . . 6U

LIST OF FIGUEES

Page

1. Conventional Micro-Programmable Computer vs. An Information
Management Machine

2. ILLIAC IV Hardware Relevant to Information Retrieval 7

3. Diagram of a DMS Information Element 2k

k. The Three Types of Information Elements 25

5- The Syntax that Governs the Occurrence of Hole, Key, and
Record Elements 27

6. A Typical Information Element Distribution within a Buffer 29

7- A Beginning Quadrant 31

8. Garbage Collection 3^-

9- The DMS vs. Direct Access Systems Performances on Processing Batches
of Elementary Questions 36

10. The Control and Information Flow Between the Various Modules of the
DMS 37

11. Example of the Tree Structure of a Record 39

12. Lattice-Tree Data Structure of the IMS kl

13. Example Key and Format Declaration k-3

lk. Example of Entries in the IMS Symbol Table k&

15. The Data Structure Defined by the IMS Symbol Table k$

16. Example File and Record Format for the X-HOSPITAL_DATA_BASE ... 50

17a. Example of the Symbol Table for the X_HOSPITAL_DATA_BASE 51

17b. Example of the Symbol Table for the X_HOSPITAL_DATA_BASE 52

18. The Data Structure Defined by the Symbol Table 53

19. Key and Record Element Formats for the PATIENT_FILE 5^

20. Key and Record Element Formats for the INSURANCE_FILE 55

21. Control and Information Flow of the SDSS Modules 6l

22. The Control and Information Flow for the IRS 63

23. A Language Hierarchy Established for High Level Language
Compilation 65

2k. Hierarchy Language Control of Subsystems 66

25. The Language Subsystem Approach Applied to the IMS and MCS
Systems 67

I. The Information Management System as an Information Management Machine

A. Introduction

This is a proposal for providing an Information Management System

on the ILLIAC IV computer. The system will interpret programmable queries

to determine which records of which files must be retrieved. From these

records, data will be extracted and operated upon by statistical or other

mathematical routines according to the researcher's request. The responses

to these requests will then be translated and output to the user in an

easily readable form. The user can interpret the results and formulate new

questions to be asked of the system. All the conventional data management

functions such as sorting, merging, and building files will also be provided.

It may be instructive to the reader to view this system as a con-

ventional special purpose micro -programmable computer designed only to per-

form the tasks of information management and processing. Whereas, a con-

ventional computer operates on words of data, this "machine", referred to as

the Information Management Machine (IMM), will operate on values of elemen-

tary data items. An elementary data item is an alpha-numeric name of a non-

divisible piece of data, e.g., SOIL_IYPE or EMPLOYEE_NO. An additional dif-

ference is that conventional machines use words of fixed size, but the IMM

uses variable length elementary data items. The analogy is diagrammed in

Figure 1. The IMM will be simulated on the ILLIAC IV computer system and

will be known as the ILLIAC IV Information Management System (IMS).

The IMS is composed of four main interacting modules: the Data

Management System (DMS), the Symbolic Data Structuring System (SDSS), the

Information Retrieval System (IRS), and the Mathematical Computation System

(MCS). Figure 1 is also a diagram of the control and information flow be-

tween these various modules of the IMS. Each module essentially performs

the same functions as its counter -part in the conventional machine. Note

that the micro-programmable computer can change its programming semantics

without changing the instruction stream. Similarly, the Information Manage-

ment Machine can change its function without altering the languages used

between the modules. This allows the various modules to .develop simulta-

neously and relatively independent of each other. It also reduces complex

interactions between the various design groups which speeds up implementation

and allows easier debugging.

User Requests

Compiler

T
Machine Instructions

I
Control Unit

(Micro-Programmed)

I

I

i

Processor

I
Memory

I
I/O

peripherals

User Renuests!P

Compiler

I
Machine Instructions

I—

i

Words

Information
Retrieval

System

Mathematical
Computation

System

I—

>

Symbolic Data

Structuring
Sv^tern

Data',

Items

L-*.
Data Management

System

Conventional Micro -Programmable

C mputer

[Information Management Machine

nformation Flow

^_ direction of contrc

rentional Micro-Programmable Computer

An Information Management. Machine

Figure 1

Also, the "micro -programming" facility of the Information Manage-

ment Machine provides the capability for the system to respond to individual

users so that user dependent optimization of searching times may easily be

implemented.

At this point, a brief examination of the glossary of terms in

Appendix B, page 21, would facilitate further reading.

B. Design Goals

The rationale of any information management system can only be

understood in the light of the type of data to be handled and the operations

to be performed on the data. A system that handles only one data base, which

expands, but never changes structure, and is only concerned with routine re-

trievals, can be designed to be very efficient due to the lack of generality

required by the users. Since the designers know a great deal about this

system, many short cuts may be taken; however, the more assumptions made and

the more short cuts taken, which do improve system speed, the greater the

chance that the system could be rendered useless under production stresses -

the data base could grow too large or queries could begin to get so complex

that serial searches are constantly performed (serial searches are very slow

on serial machines). Since the system was "hard" coded to take advantage of

short cuts, changes to the system are more likely to require the entire re-

trieval and data structuring subsystems to be rewritten. Therefore, before

suggesting a design, we must define, as closely as possible, the classes of

data to be manipulated, the types of processing most likely to be desired,

and the response times needed.

Since the IMS will be used by a wide variety of researchers in the

social, physical, and life sciences, it is apparent that the system must

truly be a generalized information management and modeling system. With such

diverse users, no assumptions can be made about the operations that will be

performed on data records, files, and data bases. The system must also be

amenable to changes— some of which may be anticipated.

It is apparent that this system will be a query - as opposed to a

transaction system—that is, it will in general process complex requests

instead of simple data item retrievals. It is more likely to answer queries

of the form, "is there a significant difference between blacks and whites in

attending health facilities in integrated slums?" rather than "What was the

temperature in Champaign, Illinois on December 1, 1970?"

For a system to be truly a research tool, it must provide an effec-

tive computational facility. It must provide statistical and other modeling

and simulation capabilities; these systems must be integrated into the over-

all information management process. This is to avoid having researchers

spend months manipulating data from one system to analyze it on another.

The speed of such a system is important if interactive graphic

monitoring becomes desirable. There is a growing need to be able to create

experimental files during simulations and display the results as they are

found. If a researcher does not like what he sees, he would like to be able

to call a file which maintains a program of the model or the input data and

make immediate changes and rerun the model. He wants to think about models

not about the data or the computer. If he approves of what is developing on

the terminal, he could save the results for later uses. The requirement of

speed, which is ILLIAC IV s major asset, becomes as important as the flexi-

bility of the system.

The design goals are listed as follows: Terms and concepts will be

explained in the referenced sections. The system must:

1) Be a modular system which may be easily changed, allows incre-

mental implementation, and expandability as experience is gairj

A subset of the system must be specified which can be imple-

mented to begin processing data without having to wait for a

complete system. (Section III).

2) Make efficient use of ILLIAC IV s parallelism. (Section III).

3) Provide the ability to dynamically maintain system measure-

ments which will be used to suggest system "tuning" to improrl

i. he performance of the system or measure the structural char-|

acteristics of different data bases to detect inefficiencies!

ber and size of C/0 rs are some elementary but. ver,

Influential parameters that great i.v affect performance of btai

systemst (Append^ C).

k) Provide the ability to view the data "base record structure as

a tree whose nodes correspond to data items , "but also allow

freely generated cross links between different nodes of the

trees in different records. (Appendix D).

5) Allow the user to easily retrieve records by selecting any

data items to be utilized as keys upon which to search for a

subset of records within a file. (Appendix D).

6) Provide multiple keyed access to large data bases that would

exist in arbitrarily constructed and dynamically formed disk-
ed .

sized blocks of less than 10 bits (initial system size of the

disk). Each variable disk block would be made up of several
o

files, each being on the order of 10 bits in size (the approx-

imate size of a tape file). (Appendix D).

7) Provide the user the capability of using alpha-numeric names as

a means of identifying data at any level. (Appendix D).

8) Provide complete flexibility for entering, deleting, structur-

ing, and naming data bases, files, records and data items that

could contain information in any processable form. (Appendix D)

9) Provide the capability to protect data from misuses by unautho-

rized system users. (Appendix D).

10) Provide for the general alteration of data structures.

(Appendix D)

.

11) Provide conditional control in the query programs. This will

allow different actions to be involved depending on values of

retrieval data items or the outcomes of the computational

routines. (Appendix E).

12) Provide the capability to use the system through one uniform

language. (Appendix E).

13) Provide a basic and expandable source of mathematical and

statistical routines to operate on researcher's data bases.

(Section III and Appendix E).

Ik) Allow other systems (e.g., the Linear Programming System or the

Statistical System) to use the information management facilities

of the IMS for temporary file maintenance, system program over-

laying, and data definitions. (Appendix E)

.

15) Provide comprehensive report generation facilities.

(Appendix E).

16) Provide the capability for simulated "time-shared interactive"

use. (Appendix E)

.

II. ILLIAC IV Computer System Characteristics that Influence Information

Retrieval

A. Hardware

ILLIAC W
Keyboard

Card

Reader

Tapes

ARPA
Network

*->>

B6500

u ,

5x10 bits/sec

CU ' Global Control And

Processing

Row = longword

Col = IPEM

Longword /

Addresses »

I0
12

bit

Laser

Memory

^2047

Local
Processor

PE63

LONGWORD = 64 Words

(I WORD/PE) \

I WORD =64blts

Local
Memory

PE + PEM =

Processing Unit =

PU

I0 9 bits/sec

Ave. Access Rate
20 m Mil sees

ILLIAC IV Hardware Relevant to Information Retrieval

Figure 2

Figiire 2 is a sketch of relevant ILLIAC IV hardware to aid in the

discussion. The ILLIAC IV computer can process 6k memory blocks (FEM's)

simultaneously by executing the same instruction stream (modified locally)

in each processor (PE). Each FE has uninhibited access to its own PE memory

(with access time of 200 ns) but may only access other FE memories indirectly

(with access times ranging from 300-900 ns) by loading the data into a FE

and then routing it to the demanding FE. Therefore , indirect FE addressing

is to be avoided, if possible. Consequently, it appears more fruitful to

process a logical block of data, such as a record, within one FE instead of

across FE's. Memory is, therefore, viewed as 6k independent data streams

composed of concatenated, variable length, logical blocks of data.

Each FE is about twice as fast as a CDC 6600 processor; at full

efficiency (i.e., all FE's working) the ILLIAC IV is two orders of magnitude

faster than the CDC 6600. The ILLIAC IV system maintains a direct access 10 -

bit-head-per-track disk file system (expansion facilities could provide up to

9 \ 9 /

20 X 10 bits) with a transfer rate of 10 bits/ sec and an average access

time of 20 ms. The disk file is actually composed of 13 disks called Storage
7 12

Units (SU) - each contains 8 x 10 bits. A 10 -bit laser memory, accessible

9by file names, can transfer a complete ILLIAC IV disk load of 10 bits, i.e.,

approximately 10 magnetic tape files, in 2 minutes or a tape equivalent in

12 sec.

The ILLIAC IV processors have been estimated to be slightly i/o

bound. Based on an average ILLIAC IV instruction time, the processors can

each execute 16 instructions in the time it takes a load 1 long word

(6k words —1 word/PEM) . Although I/O bound, as are most of the large scale

computers while engaged in information processing, the i/o rate is extremely

fast --about ^00 times faster than the IBM 23lU disk system. With the lCr

bit/sec transfer rate from disk to core, the ILLIAC IV can search a complete

9disk load, i.e., 10 bits or about 10 magnetic tapes full of data, in 1 second.

B. Software

A most influential characteristic of the i/O operating system is

that i/o proceeds across rows with a minimum transfer of 16 words (l/k of a

longword). This means that to access single records on the disk they must

"be stored into memory across rows. To process records stored across rows

presents many complex programming problems. Thus, another approach would be

to transpose each record from across rows into a single column PE memory.

This process is slow due to routing requirements. However, the IMS could

preprocess records into a transposed form on the B6500 or ILLIAC IV before

they enter the laser memory. This approach is discussed further in Section

III B and Appendix C.

C Languages

Presently, the ILLIAC IV system is supporting two languages, ASK

and GLYPNIR. ASK is an assembly language with macro facilities and GLYPNIR

is an ALGOL-like list processing language. Since GLYPNIR can call ASK sub-

routines, it will be used as the major language to implement the IMS. For

routines that rely on the most efficient processing available, assembler sub-

routines would be invoked.

A FORTRAN-like language has been specified, and is in the implemen-

tation stage. It will possess all the special facilities of GLYPNIR.

10

III. Specifications for the ILUAC IV Information Management System

A. Introduction

The functions of the Information Management System (IMS) may "be

separated into three areas: file handling, computational facilities, and

query analysis with report generation. File handling capabilities are pro-

vided "by the Data Management System (DMS) in conjunction with the Symbolic

Data Structuring System (SDSS). The Mathematical Computation System (MCS)

provides an extensive source of mathematical and statistical routines that

can operate on specific or random samples of data items from files. Incoming

queries are analyzed by the IRS, which controls the actions of the other sub-

systems and causes reports to be generated to answer the queries.

The functions of each of the modules will be discussed in the

following sections. The emphasis has been placed on specifying their respon-

sibilities. Suggestions for each module's design will be found in Appendices

C, D, and E. Research is required to determine the performance of these de-

signs and whether new approaches should be proposed.

B. The Data Management System (DMS)

Present information management systems spend most of their time in

bookkeeping overhead. Systems that do not provide direct access facilities

spend large amounts of processing time in sorting, matching and merging files',

before any productive processing can be done. This is a result of having to !

use magnetic tapes (a tape is usually larger than most disks) for bulk storag^

There are systems that provide some direct access facilities on subpages of

files that have been placed on disks ; however, these systems are plagued by

extensive tables that point to each record (e.g., the TDMS system developed

by System Development Corporation). These systems are clogged by the queue- >

ing of I/O requests. This is especially true in time-sharing facilities whe*

many data sets of widely varying characteristics must be kept and maintained!

for variable lengths of time. Also, many systems are forced to have compli-|

cated and costly garbage collection penalties. As a system grows, the amount

of code generated by these overhead routines may easily reach the critical

point where it becomes necessary to overlay system programs. For many systel

this paging becomes so costly that the system must be rewritten.

.

n

To avoid these problems, we would like to create a simple data

management system (DMS) which has a high access rate to data and is desi

to minimize queueing problems. The proposal of such a design and its details

are given in Appendix C.

Ihe DMS provides the lowest level support for the Information Man-

agement System. It has been designed to provide an easily useable general

purpose file acquisition system to bring files from the laser memory to the

ILLIAC IV disk, farther retrieval structures called key elements provide

search arguments which are matched against other key elements in order to

retrieve a subset of records from a file residing on the disk. These records

are then passed to the SDSS in ILLIAC IV memory for analysis.

A separate module is available in the DMS to transfer card and tape

files to the laser memory and provide any necessary reformatting so that these

files can be directly fed to disk memory upon request. File reformatting is

required by the DMS because it is designed to handle a very simple form of

data structure called the information element. The reformatting process need

only be done once; restrictions are placed on the flexibility of the file

structure.

There are three types of information elements: key, record, and

hole elements. Key elements contain data items upon which searches can be

made to find collections of related data items. A collection of related data

item values is called a record. Records are maintained in record elements.

Whenever a record is deleted, a space is left in the data stream. This space

is identified by a hole element. The DMS will provide a complete set of oper-

ations to form, maintain, or delete these elements.

The system may periodically scan the disk to consolidate all the

hole elements whenever efficient performance is threatened by not having

available hole elements that are large enough to accept new records. This

will be handled by separate routines that will be invoked, unknowingly by

users, whenever the performance monitor senses the need.

The performance monitor is a module that maintains all the DMS

parameters and can suggest changes to designers or users when the system en-

counters inefficiencies due to unusual data base characteristics or if the

12

original design was faulty. These parameters could Toe the number of i/o

"buffers and buffer sizes.

The DMS will receive requests from the SDSS and must translate their

into a sequence of simple DMS commands. The DMS will notify the SDSS when

the commands have been finished.

C. The Symbolic Data Structuring Systems (SPSS)

To utilize the DMS directly as a comprehensive information retrieva

system would force the user to code and decode all of his file names and data

structures. This is because no system exists to handle record element decod-

ing. A user would have to know all the details of his data and how it re-

lated to other data. Therefore, the DMS is not a significant tool by itself

but requires a second level of software support, the SDSS, which treats the

DMS as an interface to the ILLIAC IV Operating System. The responsibility

of the DMS will be to maintain the gross aspects of information management

such as file-record maintenance, retrieval and dissemination. It will be the

responsibility of the SDSS to record in a set of tables, called Symbol Tables

the particular structuring of all files, records and data elements throughout

the system. The details for a suggested design of the SDSS may "be found in

Appendix D.

The SDSS will be designed to provide any. level of accessing to a
i

file contained within the system. It uses the DMS to perform its retrieval

operations. It will give the user the ability to locate an arbitrary field

or subfield, i.e., a location within a record where data items are stored, in
;

order to locate a data itemfe value and provide that value to the user in

ILLIAC IV core. It also recognizes the subfields of keys and can enter the

identification file codes (a code which identifies the file which the asso-

ciated record belongs to at the beginning of a key).

The SDSS will use a set of Symbol Tables to define the tree struc-j

ture of data items in records. There exists one Symbol Table that defines

the structure of all the other Tables. This is called the IMS Symbol Table.
1

1

Each class of users for each data base, will have a Symbol Table that is con]

sidered to be part of the IMS Symbol Table. The first entries in the tables

are a list of alpha-numeric names for all the different data items available:

13

in a data base. By maintaining information, such as, what level in the tree

1

a data item resides, the data item's parent and sisters, whether or not it

is a key, etc. , the structure of each file is uniquely defined. Whenever the

DMS retrieves a record to be examined, the SDSS looks at the keys to determine

to which file this record belongs. Data may be accessed at any level by fol-

lowing pointers through the Symbol Table.

The SDSS will note any changes made to the entries in the Symbol

Table and will invoke the proper routines to restructure the files containing

these entries. Once this scheme has been debugged, complicated file dependent

routines cannot cause information losses due to incorrect file recopying.

The attributes of all data items will also be specified in the

Symbol Tables. Any system designed to handle arbitrary data bases must be

able to process data in any form, e.g., vectors, matrices, symbolic coding,

English text, etc. To allow complete flexibility for cross-referencing data,

the data type "relational link" will be utilized. It is essentially a pointer

that identifies a relation held between two nodes of the same or different

data item trees. Algorithms will be developed to take advantage of such link-

ing schemes to reduce the times to process certain queries. Appendix D.3

describes a proposed design for the Symbol Tables.

Any data items that require further semantic definitions will have

pointers to a descriptor file. The descriptor file maintains several levels

of English text that may be used to explain the meaning and uses of an item

in a data base.

D. The Information Retrieval System (IRS)

The previous two subsystems, the DMS and the SDSS, have been de-

signed to isolate the housekeeping functions of information retrieval from

the users and designers of the IMS. These systems will provide languages

to control their functions. The function of the DMS will be to supply in

core to the SDSS a set of qualifying records for a request. The SDSS will

then supply the specific data items in question to the IRS. It will be the

function of the IRS to translate user queries, call upon the required math-

ematical and statistical routines to operate on the retrieved data, and answer

the queries in various report forms. The details for an initial approach to

the system design are found in Appendix E.

ll*

A general search and control language will be provided. The IRS

will interpret the instruction stream and invoke the SDSS and Mathematical

Computation System when necessary. The SDSS must be requested to save any

intermediate files generated through the interactive mode. This is necessary

because of the simplified nature of the first version of the operating system.

Appendix E contains further details.

E. The Mathematical Computation System (MCS)

The IMS will allow researchers to retrieve data and, without addi-

tional intermediate steps, call mathematical and statistical computation

routines to perform analyses on the data. The Mathematical Computation Systei

(MCS) is made up of several subsystems: the Statistical System, the Linear

Programming System, and the Modeling and Simulation System. Appendix E

suggests an overall interface design between these systems which would allow

their development to proceed independently but which will allow easy

integration into the IMS so that they may form a highly interactive system.

F. Using the Information Management System

The ease with which researchers could use the IMS should be empha-

sized. A hypothetical example will be used to demonstrate this system's

ability to be used for research.
i

Suppose that an urban sociologist has recorded data on several

hundred variables relating to the social and economic factors of a large citj

Perhaps he wishes to create a model which predicts the growth of crime as th«j

city expands. He may begin his study by reading his data into the IMS. Witl

the aid of a data manager, he would determine an efficient way to structure

the data based on his proposed research requirements. Later he may want to

change this structure. The change could easily be implemented by a few shorl

commands to the IMS.

Once his data is stored he may wish to perform a correlation study

to determine the most promising predictors. He would produce a set of in-

structions directing the IMS to retrieve all data to be studied and to form

15

a new file in the form of a matrix. The command to perform a correlation

analysis and output the results on his remote terminal would be in the same

instruction stream. Based on the results, he could select the data associated

with the variable he would like to study further and reduce the original

matrix to a smaller one as input to a regression program. Based on the equa-

tion returned and the standard errors, the sociologist may select several

variables to be multiplied together to create a nonlinear model. Commands

to the system will combine these observations and resubmit the new matrix to

the regression program.

If an equation is found to his liking, he may wish to randomly

generate data to test out his model. All intermediate generated files could

be saved for future comparisons.

It should be noted that this entire exploration could have been

done with one set of instructions utilizing the conditional branching commands.

Complex operations like these could be accomplished in a short turn-around

time because of the computational speed of the IT.hTAC IV. Research could pro-

ceed at an accelerated rate and the researcher would not have to worry about

the details of data handling and computer methodology.

16

IV. List of Tasks

The following list is a brief outline of the tasks to be performed

to implement the IMS. Once task (3) has been completed, we will have a basic

information retrieval system which can begin processing data, although the

full power of the system lies in the completion of the IRS and the MCS.

1) Study and simulate methods of accessing data through ILLIAC IV,

2) Define the DMS and SDSS according to the findings of (l).

3) Implement the DMS and SDSS.

1, 2, and 3 provide the first level of implementation for the MS.

k) Define the IRS.

5) Concurrently define the MCS.

6) Implement the IRS and MCS as one system (i.e., the IMS)

7) Test and evaluate the IMS on an existing data base.

IT

I ^g Use of an Existing Data Base for Testing and Evaluating the IMS

A. Introduction

Before establishing a production mode, the system should be thor-

oughly debugged and evaluated. Most systems will use or simulate some sub-

set of a data base to test the system. Under such contrived situations, it

is impossible to actually determine the areas of the system that need more

work until real data bases are used. This is highly undesirable to the user

and causes anxiety for the system designers.

For these reasons, an existing production data base has been sought.

Dr. R. Cancro of the University of Connecticut, in cooperation with Dr. E. laska

and Dr E. W. Logeman of the Information Science Division Research Center of

the Rockland State Hospital, has secured permission to transfer the current

state of the Rockland data base to the ILITAC IV computer. This will provxde

a practical test of the design and implementation of the system as well as

providing a valuable service to mental health researchers.

B. A Description of the Rockland State Hospital Data Base

The Rockland State Hospital data base is a file of information on

the admittance and treatment of mental patients of six states in the north-

eastern U.S. This data base currently contains records on 120,000 patients.

There are between 500 and 1,000 records of new admissions added to this data

base every week. The data is a two-file data base with the master file being

the patient record filed by location. The other, auxiliary file, is a file

keyed only by patient number which is used to find the current location of a

patient-either in one of the buildings of one of the hospitals or at his

home. There are many different information segments within the master file.

Some of these are the admission segments, the treatment segments, drug treat-

ment and response segments, transfer segments, termination segments, and

psychiatric evaluation segments. The basic structure of the file also changes

periodically with the addition of new segments.

There are, on the average, approximately 500 characters per patient

record in this file. This produces an active patient data- base of approxi-

mately 5 X 10
8

bits. This is 50* of the capacity of the ILHIAC IV disk.

18

This data base is expected to expand by a factor of 10 over the next five

years. The present Rockland Information System is not capable of searching

the entire data base for research purposes. With the complexity and rich-

ness of the patient file, it is clear that there is a considerable amount

of valuable information buried in this data base on the effectiveness of

various drug treatments on different diseases and the effectiveness of other

treatments on mental illnesses. It is desirable for researchers to be able

to access this data base in a highly general way for the purposes of study-

ing treatments. Currently, it is prohibitively expensive to determine the

effects of drugs on a patient population over a short period of time. The

only way in which this can be done is to take a small sample of patients and

trace their histories. With these small samples, there are certain variatior

which simply cannot be noted. This is because the current Rockland System

does not have direct access to the entire patient population. For example,

if there is a particular mental disease which responds particularly well to

applications of special drugs, unless one asks this question in advance of

structuring the data, this piece of information would be too costly to obtaii

The ILTiIAC IV Information Management System would allow data bases

on the order of the Rockland State base to be extensively explored by pro-

fessional researchers. This would allow doctors and other professionals to

study the data base on the basis of "hunches"; that is, they could ask a

single question about a given drug across a whole population of 120,000

patients. If they suspected that the drug has a particular set of charac-

teristics and if the response indicated that their hunch was true, but might

be true for a particular mental illness only, they could then follow this up-

with additional questions and find out exactly what the effect of this drug
,

was on a particular patient population. They could also make tests which

would differentiate between the effectiveness of the drugs between different

treatment patterns, such as given in the morning or night. This type of

research must generally be done on an evolutionary basis. A professional

man's hunch in this case, if it can be followed up with a reasonable set of

questions which can be formulated and answered in a fairly short amount of

time, greatly enhances the ability to extract knowledge from these large

-

ale data bases.

19

A current problem in the research area is that the form of the

question has to be highly specific and coded in a machine -dependent way.

The researcher is forced to learn in detail the nature of the particular

machine he is working with. He is also exposed to a tremendous amount of

frustration when errors are made in coding the problem for the machine.

Usually, only the most mundane questions may be asked and generally the

studies require months to perform.

20

Appendix A: References

1. Parker, James L. "Data Management on ILLIAC IV," ILLIAC IV Document

No. 206. Urbana, Illinois: ILLIAC IV Project, University of

Illinois at Urbana-Champaign, (January 21, 1970).

2. Parker, James L. "A Logic Per Track Disk System Utilized for Information

Retrieval," Ph.D. Thesis. Urbana, Illinois: Department of Com-

puter Science, University of Illinois at Urbana-Champaign .
(in

progress as of October 1970).

3. Schuster, Stewart A. "A Statistical System for ILLIAC IV," CAC Document

No. 2. Urbana, Illinois: Center for Advanced Computation,

University of Illinois at Urb ana-Champaign, (December 11, 1970).

h. Parker, James L. "The ILLIAC IV Statistical System," Proposal submitted

to the Graduate College by the ILLIAC IV Project, University of

Illinois at Urbana-Champaign, (February 1970).

5. Sameh, A. "Mathematical Programming System," Proposal submitted to the

'National Science Foundation by the Center for Advanced Computation

University of Illinois at Urbana-Champaign, (December 1970).

6. Sameh, A. "Automatic Solution of Large Systems of Ordinary Differential

Equations," Proposal submitted to the National Science Foundation,

by the Center for Advanced Computation, University of Illinois atj

Urbana-Champaign, (December 1970).

21

Appendix B: A Glossary of Terms

The following is a list of terms and their definitions which have

been referred to in the course of this document. The list has been inserted

because the uses of many data management terms are not standardized and they

may be used here in a different sense than that in which the reviewer is

accustomed.

IMS

DMS

SDSS

IRS

MCS

elementary data item

group data item

data item

record

key

value

name

file

data base

hole element

key element

record element

data element

sub field

Information Management System

Data Management System

Symbolic Data Structuring System

Information Retrieval System

Mathematical Computation System

a name of an atomic piece of data

a name associated with several closely
related elementary data item or sev-
eral other group data items

an elementary or group data item

any group of related data items

any data item which is used to identify
a record

the actual data associated with a data
item, i.e., characters, numbers, logi-
cal values

alpha-numeric string of characters

all the records that correspond to a

single set of associated keys

any set of files

a bit string that contains no informa-
tion, sometimes used by the DMS where
data elements have been deleted

a bit string that contains a key, used
by the DMS

a bit string that contains a record,
used by the DMS

several key elements and the asso-
ciated record element

refers to the actual bit location of

an elementary data item value in a

record element

22

field

Information element

garbage collection

Symbol Table

query

elementary question

key mask

i/O buffer

processing buffer

characteristic

SCL

format

a collection of subfields or other

fields

a hole, key, or record element

the grouping of smaller hole elements

into larger ones

a table that defines the structure of

data items within records of a user's

data base

any sequence of instructions to the

IMS

given the value of a data item, which

identifies a subset of records of a^

file, what are the values of an arbi-

trary subset of data items from the

identified records?

defines the relationships necessary to

fulfill a match for a key

one of a set of cyclic buffers in core

used to receive incoming streams of

data

a buffer used to save records as they

are found during a general search

a name associated with a specific

boolean combination of data items

and other characteristics whose value;

are restricted by some relation

the Search and Control Lanaguage for

the IMS

the information that defines the

structure of .data element fields

23

Appendix C: A Suggested Design for the Data Management System (DMS)

C.l Responsibilities of the DMS

The DMS provides the lowest level support for the IMS. The follow-

ing is a list of responsibilities assumed by the DMS.

1) It must have a preprocessing module to transfer card,

tape, and other peripheral files to the laser memory.

2) It must transfer requested files between the laser

memory and the disk and requested records between the

disk and ILLIAC IV memory.

3) It must provide the capability of creating and inter-

preting key elements from specified key formats, and

record elements from specified record formats, and

associate them to create data elements for disk and

laser dissemination.

h) It must provide the necessary set of operations to be

performed on record, key, and hole elements, files,

and data bases, e.g., reformatting, deletion, Inser-

tion, searching.

5) It must provide automatic disk maintenance, i.e.,

hole element collection that is periodically invoked

by the performance monitor module. (The user has

no need to know of the existence of such a routine
.

)

6) It must provide a simple language to specify the

operations to be performed by the DMS.

2k

C.2 The DMS Information Elements

To obtain efficiency and ease of data handling, the DMS requires

that all of the data it processes exist in a highly simplified form. It will

"be apparent that any data structure can be represented this way. An infor-

mation element consists of a bit string in which there are two fixed length

fields and one variable length field. The first field is a two-bit indica-

tor of the type of information that exists in the third field. The second

field specifies the length of the variable length third field. To the DMS,

the third field is an arbitrary bit pattern. Figures 3 and k are diagrams

of Information elements.

BIT STRING

1 2 3 . k k+1 • • • n

fi r 1 ri ° —
. fi r 1 c\ ?

1 field 1

field 1: two indicator bits; specifying to DMS the 3 types of information

elements, see Figure h.

field 2: binary integer indication of number of bits in field 3

field 3'. arbitrary bit pattern

Diagram of a DMS Information Element

Figure 3

1. hole elements

Length Bit pattern

The hit pattern contains no information and is,

therefore, called garbage. It indicates that this

information element is available for key or record

elements.

2. key elements

1 Length Bit pattern

This pattern represents a key and its value. A key

is any data item used to identify a class of related

data items called a record.

3. record elements

1 1 Length Bit pattern

This bit pattern represents a record which is a

collection of structured data items.

25

The Three Types of Information Elements

Figure k

26

Several key elements and a single related record element make

up a single data element. Since a data element is composed of an arbitrary

number of concatenated key elements, there exists a multiple keying poten-

tial for accessing any record.

The "bit patterns in data elements are interpreted to be fields

of data item values by the Symbolic Data Structuring System (SDSS) de-

scribed in Appendix D. There are special fields in a key element's third

field that identify, through a table, the key and record formats for the

associated data element.

The syntax that governs the occurrence of hole, key, and data

elements on the disk is shown in Figure 5«

27

<global bit string> ::= <data base segment> <">...<">, there will be 6 of

these

<data base segment> ::= <quadrant bit string>. .
.
,<">, there will be h of

these

<quadrant bit string> ::= <parallel bit string> <">...<">, there will be 6U

of these

<parallel bit string> :: = <parallel bit string>(<hole string>/<data element>)/NULL

<hole string>

<hole eleraent>

<data element>

= <hole string> <hole element>/MJLL

:= <ZERO BIT> <ZERO BIT> <length> <bit pattern>

:= <key string> <record element>

<key string> : : = <k.ej string> <key element>/<key element>

<key element> ::= <ONE BIT> <ZERO BIT> <length> <bit pattern>

<record element> : := <0NE BIT> <ONE BIT> <length> <bit pattern>

<length> ::= <bit pattern>, fixed length string that represents a positive

binary integer

<bit pattern> ::= <bit pattern> (<ZERO BIT>/<OKE BIT>)/MJLL

The Syntax that Governs the Occurrence

of Hole, Key, and Record Elements

Figure 5

9This syntax implies that the 10 -bit disk will be broken into

6 segments (2 SU's per segment, see Section II. A), each of which may con-

tain one or more files from one data base --depending, on the size of the files.

Each of these segments is further broken into four starting locations where

referencing can begin.

It is the physical association of keys and records to make data

elements residing on the disk, along with a total disregard of actual record

addresses, that eliminates large amounts of overhead experienced by other

systems. Yet there is an average retrieval time of only 1/2 second to find

an arbitrary record among a 10 -bit data base or just l/20 second on the
o

average to find an arbitrary record among a 10 -bit file (about the size of

a tape).

28

C3 Data Management on the Information Elements

C.3.1 Specifying the i/o Scheme to the i/o Subsystem of the Operating

System

To specify an i/o scheme to the operating system, the data base

segments (see syntax in Figure 5 of Section C.2) are broken at equal-length

points to form disk blocks. Each block has been declared as a fixed-length

record to the ILLIAC IV operating system and, as such, it is addressable.

Each data base segment is declared as a fixed-length file; therefore, it is

addressable by name. The DMS will issue an almost continuous sequence of ii

requests in order to stream hole and data elements of a data base segment ini

jt.t.tah IV PE memories [one parallel bit string (see syntax in Figure 5 of

Section C.2) in each FE memory] to be processed.

For simplicity, all hole, key, and record elements could be arrang

to begin on word boundaries and exist in multiple word lengths. However, th

information element lengths will still be specified in bits to determine the

garbage bits in the last word of each element.

Figure 6 shows a typical information element distribution within i

buffer after it has been read into ILLIAC IV memory. ILLIAC IV buffers cor

respond to disk blocks. The preprocessing module could reformat all incomj

files before they are entered on the laser memory. This would avoid any r<

to column transpositions by the ILLIAC IV which is time consuming, as state<

in II. B. It must be understood that a record's data no longer remains con-;

tiguous on the disk as in other schemes. This is because records are writ!

"down" FE's while i/o proceeds across rows. Records, therefore, can only 1

referenced by the buffers in which they reside and entire buffers must be

read to find a particular record (also, 63 other parallel bit strings are

brought in).

Blocks of rows (i.e., longwords) of ILLIAC IV memory are treated

a set of I/O buffers which accept the quadrant bit string buffers. This me

that the operating system reads or writes one i/O buffer while the DMS is

ceasing other i/O previously filled buffers.

This system is penalized by disk latency as well as the fact tha

all searches must be started at the beginning of a parallel bit string. W

must have a known starting point to pick up the system elements where ther

29

longwords

i

i+1

i+2

i+3

i+m-1

. , —m—** >

•

ANOTHER BUFFER

•

FE FE 1 FE 63

h [KEY] [HOLE

[HOLE [DATA]

[KEY]

ILLIAC IV

MEMORY

[KEY V]
}
1]

[D

[Di

51]

MA
1

[DA

1,

TA

[HOLE

1] (

[KEY

1
'

1
'

r

•

!/
t

ANOTHER BUFFER
•

Parallel Bit Strings

ONE BUFFER

LOAD

(m longwords)

A Typical Information Element Distribution within a Buffer

Figure 6

30

is a beginning of a hole, key, or record element in each parallel bit string;

otherwise, we cannot tell what the bits represent. Thus, there would be an

average disk latency of 1/2 rotation to get to a starting point. The latency

is reduced by introducing four starting points, i.e., quadrant bit strings,

which divides each SU of the disk into four sections. The expected starting

latency is now only l/8 rotation (5 ms.). Only buffers that begin on quad-

rant boundaries will have the beginning of an information element in each word

of the first longword. An example of such a buffer follows in Figure 7-

longword 1

m

(0 < 3 < 63)

[key

hole or

record

element]

A Beginning Quadrant

Figure 7

31

One Buffer - at the

beginning of a

quadrant

The end of a quadrant must have at least k bits, (unless an element runs to

the end of the last buffer) see Figure 3; in each parallel bit string in order

to declare a length hole. We cannot "write" information elements across quad-

rant boundaries.

i/o status is to be synchronized by the control unit (CU) via the

i/o monitor. If i/o buffer processing exceeds a critical time, i/o must be

stopped - an entire disk revolution (i+0 millisec.) is lost until processing

can begin at the same point. Such systems parameters as buffer size, buffer

phasing on the disk, and the number of processable elementary questions per

batch could be varied according to the particular query or user class in order

to avoid i/o catastrophic s, i.e., stopping i/o.

Each FE maintains the status of i/o buffer processing, i.e., current

bit counts, information element type, keys on which the search is being con-

ducted, and status on key comparisons being made. Searches and comparisons

are executed on groups of 6k or less bits (word size) at a time.

32

C.3-2 Using the DMS

All requests processed by the DMS Involve keys and files. These are

specified by name to the SDSS which must check a Symbol Table to determine

protection requirements, validity, structure, and location. If the location

of a key is determined to be within a file that is not presently on the disk,

the off-disk file maintenance module must locate it in the laser memory and

pass it to the disk. This assumes that the files are formatted so that they

can be directly fed into holed-out (available) buffers on the disk. It may be

necessary to collect garbage within a data base segment before such a file re-

quest is made. This would create room for the file. New files should be pre-

processed so that they will be compatible with the rest of the DMS file struc-

tures before being entered on the laser memory. This could be done by B6500

routines so that the ILLIAC IV processors are not wasting valuable time with

mundane housekeeping - although some cannot be avoided.

Another system parameter is the maximun number of keys (in a boolean

combination of keys) on which any single search may be conducted. Boolean

combinations of different keys will be allowed as search arguments. Searching

may be done on part of keys, e.g., the last name in a full name key or can be

one of many relational forms. For example, equal to, greater than, not equal

to and boolean combinations of these are possible searching conditions. Partial

pattern matches could be performed on alphanumeric data. These conditions

will be represented by a key mask to accompany each key element being used as

a search argument.

Requests to the DMS will be translated into sequences of DMS instruc-

tions. The requests are viewed as a high-level language program that must be

compiled into "DMS machine code" (i.e., DMS instructions) to drive the "DMS

machine", that is, a "machine" which is simulated by ILLIAC IV code. The re-

quests will come in some form of key element, key mask, and command triples.

Some samples are:

1. INSERT KEY = X_DATA_ELEMENTS WITH A KEY = X AND MASK = (...)

2. READ RECORDS WITH KEY - AND MASK =(...) OR KEY = Z AND

MASK = (...)

33

3. FIND HOLE WITH LENGTH = <102h BITS

k. WRITE FILE - HOSPITAL FROM DISK TO LASER

5. COLLECT GARBAGE

When a match is located on a read request, for example, the record

is moved from the l/o buffer into a processing buffer in the same PE, if pos-

sible If a FE finds more records than it can accommodate, the I/O monitor

is responsible for any necessary packing or routing. Pointers are returned

to the calling modules to indicate where retrieved records are located.

A curious result of this system is that, after some processing,

files that are currently residing on the dish no longer have any physical

resemblance to the general file concept of concatenated records since their

records are scattered randomly throughout their residing data base segment.

This happens when records are retrieved, processed (causing an expansion, c

traction, or update), and then rewritten on the dish. The write request has

issued a search for the first hole larger than the record which could be any-

where in the segment. This shuffling of records from files of the same data

base would he advantageous for simultaneous multiple file processing. Search-

ing time for finding two complementing records from different files would, on

the average, be reduced.

Although records from different files from the same data base are

completely shuffled in a data base segment, there is no deterioration expe-

rienced by the system and there are no additional routines required to un-

scramble records since the DMS is not concerned with where, who, or what is

on the disk between off-file requests. Thus, two or more users may he simul-

f . la v.11+ nan he completely unconcerned with the
taneously accessing the same file, hut can oe (.ompx x

increased file activity and complexity heing experienced hy the DMS.

When a file is to he returned to the laser memory, if a change has

a i« +v,a+ filp are brought together in consecutive disk
taken place, records in that me are uiuu&uu &

3 -p^v, -f-vno isqpr file. A file write from
hlocks. The blocks become records for the laser ine.

ILLIAC IV disk to laser is then requested.

3^

C3-3 Garbage Collection

Disk information element maintenance will primarily be in the form

of garbage collection--the collapsing of small hole elements into larger ones.

It is desirable to collect garbage, often without the user's knowledge. This

avoids deteriorating performance because of a lack of usable disk space due to

the existence of several hole elements too small to be of use. This condition

happens because whenever a write -a-record-element request is executed, the

system finds the first hole equal to or larger than the record within the cor-

responding data base segment. If the hole is larger, a new hole is created

at the end of the record that is smaller by the length of the record. Even-

tually, smaller and smaller holes become randomly distributed along the seg-

ment. (The garbage collection process is shown in Figure 8.)

Begin reading a set of i/o blocks

into buffer from data base segment

Recopy a buffer, leaving out holes,

into another i/o buffer

Output a set of i/O buffers.

Garbage Collection

Figure 8

This tends to push holes to the "end" of the data base segments on the disk

which suggests a good place to start looking for holes. The entire process

can be completed in one pass over the segment.

35

C.3«^ Comments on Direct Accessing

If a direct access system would greatly increase efficiency for some

special problem, then in one pass over the disk (one second or less) a temporary

inverted file can be created. This file would tell what records are stored in

each block by saving the key values of the records in a table along with all

the corresponding addresses to these records. Addresses are denoted by the

block number, PE number, and displacement from beginning of the block.

The main arguments against the general use of the direct access fac-

ility described above is that tables can grow very fast for large data bases.

These tables must be paged in and out adding to the general queue of I/O

requests. Furthermore, single direct access i/O requests are seldom experi-

enced in any real query processing since we are generally concerned with a

set of records.

It is not efficient to process single elementary questions that re-

quire the location of only one record. Elementary questions are of the form:

Given a data item and Its value (which identifies a record out of a set of

records) what is the value of another data item in this set of records? In-

stead, it is to our advantage to batch the many elementary questions which are

needed to answer any translated query, and retrieve all the required records

on one data base segment pass. The system will not deteriorate continuously

as the number of elementary questions increases. This is because the time to

process one batch is roughly the time it takes to pass over the data base seg-

ment -- l/lO second or less (which is adequate for interactive purposes). At

some threshold sized batch, there is a discrete jump requiring two passes.

However, for a Table driven system, the performance is approximately continu-

ously related to the complexity of the query, i.e., the number of elementary

questions generated. This is partly due to overhead costs for table mainte-

nance due to repeated accesses to tables, searches through the tables, table

maintenance routines, and i/O requests associated with table swapping and

paging. This is not a linear relationship; procedure times increase faster

than the increasing number of records they are processing. Also, the restricted

queueing of I/O requests for individual records allows only a few accesses to be

performed on a single rotation of the disk. Therefore, we can reasonably ex-

pect the following relationships shown in Figure 9-

36

ther systems

Time to find

all information

to satisfy a

conjunction of

elementary
questions

ON W 2N 3N UN

Number of elementary
questions per query

The DMS vs. Direct Access Systems Performances on Processing Batches of

Elementary Questions

Figure 9

For most hatching, the system would he expected to operate at some

number of questions just below a multiple of N to optimize query answer times.

C.3.5 Comments on the DMS

Figure 10 is a diagram of the data flow and control between various

modules of the DMS. Further analysis is required to determine which modules

can be executed efficiently on the ILLIAC IV or should run on the B6500.

The system performance monitor module exists for two purposes.

Firstly, it allows simplified system development by localizing the control ove?

system parameters. Secondly, it provides for constant system evaluation on a .

production level and can suggest parameter value changes for different user

requirements.

37

i«fe/ Monitor

DMS
Requests

Interpreter
and/or

Compiler

3a£es^X

| Cards

Preprocessing
Module

Off disk file ,
<~ Maintenance

Ik
Laser
Memory

£
i7o

J Subsystem

Performance Monitor

DMS
Control

Information flow-

Direction of control

The Control and Information Flow Between

The Various Modules of the DMS

Figure 10

Some general statements can be made about the advantages of this

system in comparison to other schemes. Garbage collection is not time con-

suming nor is the associated code long. It does not expose files to loss due

to recopying -- associated with varying types of file maintenance routines.

There is no need to segment large records into overflow areas. The perfor-

mance does not deterioriate continuously as data activity increases. Vast

assortments of large tables are not needed nor are the many different asso-

ciated table maintenance routines. The system is conceptually simple which

eliminates anxiety for users as well as for design implementors. Most important

is that it provides a conceptually solid, yet simple foundation for more sophis-

ticated levels of software to be built into the system.

38

Appendix D: A Suggested Design for the Symbolic Data Structuring System (SPSS)

D.l Responsibilities of the SPSS

The following responsibilities are assumed by the SDSS:

1. The creation and maintenance of the structure of each record, i.e.,

the record format.

2. The input, retrieval, deletion, and testing of arbitrary data items

within records.

3. The specification of any data items as keys.

k. Provide file security.

5. Provide minimum risk for information loss when restructuring or recopying

files.

6. Allow for all forms of data and their various attributes.

7. Maintain sufficiently descriptive information on all data.

8. Allow for naming and retention of user defined "data characteristics"

as boolean combinations of relational conditions on data items.

D.2 The Entities of Data Structuring

This system is designed to deal with the following entities:

1. Fields

2. Sub fields

3. Elementary Data Items
,

h. Group Data Items ,

5. Records

6. Record Formats

7. Keys

8. Key Formats

9. Files

10. Data Bases

At the lowest level are elementary data items which are names of the

least divisible pieces of data, such as EMPLOYEE NO, MONTH OF EMPLOYMENT, and

DAY OF EMPLOYMENT. A group data item is a name associated with several ele-

mentary data items. Group data items may also be names for a collection of

other group data items. For example, DATE OF EMPLOYMENT is a name for the

39

.roup of elementary data items MONTH OF EMPLOYMENT, DAY OF EMPLOYMENT, and

fEAR OF EMPLOYMENT. EMPLOYEE RECORD is a group data item which includes sev-

3ral other group data items. When it is not necessary to distinguish between

elementary and group data items, the term data items will be used. A record

is any group of related data items that is structured in a hierarchical fashion,

This structuring yields a tree data structure for records where each node rep-

resents a data item; the leaves represent elementary data items. Figure 11

is an example of the tree structure of a record.

EMPLOYEE -RECORD

EMPLOYEE
NO.

NAME SOC.SEC.
NO. 1

DATE

EMEL.

FIRST
NAME

LAST
NAME

SALARY CAREER

MO. YEAR JOB
CODE

JOB
CODE

TASK
CODE

DATE

Example of the Tree Structure of a Record

Figure 11

ko

Any data item may be used as a key. A key in this context is any

data item which is used to identify other data items. The value of a key

identifies a particular subset of records out of a set of records. The DMS

structured the input data so that each record can be accessed by an arbitrary

number of keys as decided upon by the people who are generating the data base.

For example, a man's patient number may identify a whole group of information

about him. This group could include name, address, insurance policies, drug

types, and others. There may be several keys by which one wants to find his

data. One would certainly want to find it by the man's name. It is also

possible that this data might be located by his illness (but perhaps he has

several). This last example is indicative of a more general form of key, i.e.,

a key which has several values per record in contrast with a key that has only

one— such as the man's name. This general type of key presents no additional

burdens on the IMS.

It will not be required for the user to know which data elements are

keys. He will be able to specify any data element as a search argument when

looking for the value of an associated data item. However, in structuring the

original records, the user should choose keys in a manner which he feels would

be the most efficient structure for his data with respect to searching. For

frequent users, it would be beneficial for them to be aware that a generalized

search on a data item which is not indicated to be a key could be relatively
j

expensive. This is true because every record in every file containing this

data item would have to be examined to determine the match. The DMS will per-;

mit several keys to be associated with a record. A file is then defined as

all the data item values of all the records that correspond to a single set of;

associated keys.

A data base is defined as an associated set of files. Each class of

users can maintain one data base. The IMS then can maintain several data base

for different classes of users. The lattice-tree structure of the IMS is shown

in Figure 12. Any further cross referencing of nodes is accomplished through

elementary data items whose values have the data item-type link. This is

elaborated on in Appendix E.

In

FILE

ARBITRARY

3L ^ ARBITRARY

KEY " - ' KEY

RECORD

y / ARBITRARY

KEY

s
... RECORD RECORD RECORD RECORD • • • RECORD RECORD

KEY OR RECORD

GROUP DATA ITEM

ELEMENTARY DATA ITEM ELEMENTARY DATA ITEM

Lattice-!Eree Data Structure of the IMS

Figure 12

k2

Physically, the data structure of group and elementary data items

are represented by fields and subfields, respectively. These are the actual

groups of "bits that contain the values of data items. The slicing of the key

elements and record elements into fields and subfields is specified "by key and

record formats. An example of a key and record format is shown in Figure 13-

k3

00 FILE_NAME IS PATTENT_FILE

01 PATIENT_RECORD

02 NAME KEY

03 FIRST_NAME CHARACTER (VARIABLE)

03 LASTJTAME CHARACTER (VARIABLE)

02 PATIENT_N0 INTEGER (9) KEY

02 LOCATION

03 BUILDING_NO INTEGER (2)

03 ROOM_NO INTEGER (3)

02 ILLNESS REPETITIVE

03 ILLNESS_NAME CHARACTER (15) KEY

03 DRUG REPETITIVE

Ok DRUG_NAME CHARACTER (15)

Ok DRUG_FREQUENCY CHARACTER (l)

Example Key and Format Declaration

Figure 13

Note the use of the data item types, REPETITIVE and VARIABLE.

Repetitive data items are those that exist in a variable number for each

record but each repetition has the same structure. Variable data items are

those that have variable lengths. Included as variable length data are those

items that don't always have values for each record. Notice also, that any

element containing a variable or repetitive element is, in turn, variable.

These features allow for efficient packing of data into records by avoiding

many null entries caused by allowing only fixed formatting of records.

ILLIAC IV processing speed easily warrants this flexibility. There is plenty

of time to pack, unpack, and pack again.

kh

D.3 The Data Item Symbol Tables

The structure and names of all data bases, files, keys records, and

data items will be found in a group of Symbol Tables. The IMS has a Symbol

Table that names all the data bases and each data base in turn has a Symbol

Table (i.e., each class of users has a Symbol Table). The IMS Symbol Table

location is always known to the IMS system. It allows for the boot -strap

location of a users' Symbol Table which is then placed in core. Each user

Symbol Table is a manageable file and thus can be manipulated by the EMS,

i.e., it can be modified with the same set of instructions as those used to

modify other files. The structure of the Symbol Tables is known to the system

by referencing the IMS Symbol Table while the structure of user data is known

by referencing a Symbol Table.

An important feature of the system is that a modification of the

Symbol Table implies that the structure of a file in the system has been

changed. Changes in a Symbol Table force file modifications to take place.

This means the Control Module of the SDSS will detect the changes to the

Symbol Table, i.e., entries, deletions, corrections, updatings, etc., and will

call the proper algorithms to carry out the implied modifications.

Every subfield (data item) of a user's data is described in a Symbol

Table. Some of the entries indicate the length of the subfield, position in

the data tree, type and attributes. Among other things, the character (alpha-

betic) name of the data item is present so that once a data item's subfield

has been recorded it can thereafter be referenced by name. In this fashion,

the user will never have to become "bogged down" with the computer jargon for

field locations.

The table also allows the system to be aware of keys and data items

which are associated with more than one file. For example, an EMPLOYEE NO.

might be a key for an insurance file as well as a salary file. If one wanted

to find the average insurance premium for persons of a certain salary, one

would search the salary file for the salary range, extract the associated

employee number, and then search the insurance file with the employee number

to find the premium. Notice, that since the information is present in the

symbol table, the system can make this cross file matching without the users

h5

having to specify which files are needed. There was no need to mention an

explicit sort and the related recopying which can monopolize time. This is

because there is no need to order records on the disk.

Since a Symbol Table controls all structuring, easy and accurate

file structure manipulations can be coded. Some changes require only the

update of the pointers within each record and need no recopying. If a copy

is required, it will be forced by a system call to the proper set of algo-

rithms which, once debugged, will reduce risks of incorrect copying and losses

of information for all users. Structuring of a new file will be done by in-

dicating to the Symbol Table which data items are to be filled from old data

and which from new data.

Since the Symbol Table is, itself, a managed file, it must also

have a tree structure. Its structure is defined explicitly in the IMS Symbol

Table. To change the structure of the Symbol Table, one only has to change

the IMS Symbol Table. For example, perhaps a new subfield would be useful in

the Symbol tables. It would be entered by name into the IMS Symbol Table

which forces a change in the other Symbol Tables. Such a change in the Symbol

Table may cause changes in the record structures. These changes should be

carefully thought out, since every record in the IMS might be changed to carry

out the restructuring. Although it's not a conceptually difficult problem, it

could be very expensive in terms of time. The following is a list of the

effects of changing various Symbol Tables.

1) The structure of the IMS Symbol Table never changes

because it is fixed by the designer of the IMS.

2) Changes to, or additions of, entries to the IMS Symbol

Table cause changes to the structure of the user Symbol

Tables.

3) Changes or additions to entries of a user Symbol Table

cause changes to the structures of the records in

respective files of that user's data base.

h) If type (2) changes cause type (3) changes, then every

record in every file of every data base in the IMS is

changed.

k6

The following is a description of each of the subfields in the IMS

Symbol Table:

Name

This is a reference number for each table subfield which represents

a column definition for user Symbol Tables or is the alphabetic name of a

data base that exists in the IMS.

Entry Number

This is a reference number for each table entry which is actually

the subscript displacement from the beginning of the table.

Size

This reserves a certain number of bytes for column definitions. If

the name is a data base name, the current number of entries in that data base's

Symbol Table are "sized". If the name is IMS, the size is the number of cur-

rent data bases in the system. If the name is SYMBOL_TABIE, size is the num-

ber of columns in a Symbol Table. If the name is IMS_SYMBOL_TABLE, size is

the number of entries in the IMS Symbol Table.

Parent, Level, Rank Among Sisters

All define the structural relationship of the column definition

entries for the user Symbol Tables which then allow the SDSS routines to be

used to restructure and make entries or deletions to the user Symbol Tables,

as if they were files like any other files.

Base Address

If the name is a data base name, then this is the address of the

base of the Symbol Table for this data base if it is in the ILLIAC IV memory,

otherwise it is zero.
1

Figures Ik through 20 show examples of Symbol Tables, resulting key

and record element formats, and associated data structures.

A packing scheme is used to reduce the number of pointers in a

record format from having a pointer for every field. At each node of the tree

the first entries are pointers to each variable length daughter node and the

^7

"beginning daughter node of each sequence of repetitive nodes; next follow all

the fixed length items followed by the variable and repetitive items. Terminal

nodes have no pointers since they would be null. In this scheme, there is one

pointer for each occurrence of a variable or repetitive node.

The author understands that the packing scheme used in the examples

as defined by the Symbol Table field definitions is not the most efficient --

with respect to the number of pointers required per record format. There

exist trade-offs between adding more descriptor fields to the Symbol Tables,

the number of pointers required in record formats, and the complexity of the

tree climbing and record format packing algorithms.

The following is a description of each of the subfields in the Symbol

Table that has been established by the IMS Symbol Table.

Name

The alphabetic name of the data item whose structural

relationship with other data items is being described.

In our examples, some of these have been PATIENT_NO,

ILINESS, and INSURANCE.

Entry Number

Size

Repeat

The reference number for each table entry is the actual

subscript displacement from the beginning of the table.

The length (in bits or bytes) for a fixed-length item.

If the data items in question are variable length, such

as a description, or if it is a repetitive data item,

this entry is zero. Notice, any field which has a

repetitive or variable length subfield is, therefore,

itself, of variable length.

A one bit indication as to whether the entry is a

repetitive data item.

1+8

Rank
Among Base

Name Entry No. Size Parent Level Sisters Address

NAME 13 k 1

SIZE 1 13 k 3

REPEAT 2 13 k k

LEVEL 3 13 k 5

PARENT k 13 k 6

ACCESS 5 13 k 7

VARIABIE 6 13 k 8

THREAD 7 13 k 9

SORTED 8 13 k 10

DISPLACEMENT 9 13 k n
NO_OF_POINTERS 10 13 k 12

RANK_AMONG_SIS TERS 11 13 k 13

ENTRY_NO 12 13 k 2

SYMBOL_TABLE 13 20 16 3 1

X_HOSPITAL_DATA_BASE Ik 17 17 2 1

Y_EMPLOYEE_DATA_BASE 15 17 2 2

IMS_SYMBOL_TABLE 16 25 17 2 3

IMS 17 2 1 1

PACKING_ORDER 18 13 1+ Ik

DISK_PRESENCE 19 13 k 15

CROSS_REFERENCE 20 13 k 16

UNITS 21 13 k 17

KEY 22 13 k 18

TYPE 23 13 k 19

ATTRIBUTE 2k ' 13

_

k 20

Example of Entries in the IMS Symbol Table

Figure lk

k9

IMS

DATA
BASE NAME

DATA
BASE NAME

IMS
IYMBOL TABLE

SYMBOL
TABLE

NAME ENTRY NO, ATTRIBUTE

The Data Structure Defined by the IMS Symbol Table

Figure 15

50

00 FILEJJAME IS PATIENT_FILE

01 PAT1ENT_REC0RD

02 NAME

03 LAST_NAME CHARACTER (15

)

03 FTRSTNAME CHARACTER (15

)

02 PATIENT_N0 INTEGER (7) KEY

02 ILLNESS REPETITIVE

03 ILLNESS_NAME

03 DRUG_NAME CHARACTER (15

)

00 FILE_NAME IS INSURANCE_FILE

01 PATIENT_RECORD

02 PATIENT_N0 INTEGER (7) KEY

02 INSURANCE

03 POLICIES REPETITIVE

OU INSTITUTION_NAME CHARACTER (15)

04 COVERAGE_TZPE INTEGER (2)

02 TOTAL_PREMIUMS DECIMAL (7,2)

Example File and Record Format for the X_HOSPITAL_DATA_BASE

Figure 16

51

1

CD

o
crj -PH C
Qi 0) o O CM o UA CM O CM 0- O O CM CM O CM t- On
w g H OO rH H
•H
n

d
CD

-P
^H

o
CO

d
nj

o> o CM oo -=f LT\ vD r- CO H O H CM OO -H/ LT\ VD O
^H

S
H H rH H H rH i—

i

CD

H
rQ
crjH H H rH H H
fn
ctf

>

ra

ra

CD

o
o
<

-p
c
CD J- O H CM OJ H H VD VD -d- CA O O CM OO OO CMH H H H H H H H

H
CD

>

31

O H CM CO CO CAJ CAJ oo OO o H CM CM OO -3" J- CM

-P
d
CD

ft H H H rH
CD

rt

CD

N O O O UA LTA C— O UA UA O O O- O [A- UA CM t—
•H oo rH rH oo rH H H rH
CO

6
a
>s
rH o H C\J OO -Hr LT\ VD t- CO OA O H CM OO -=f UA VD
"P H H H H H rH H

a O a g 1 B
CO

H O 63 H O g| H o O iy] CO a. ^
s« § M n § *l CO a, 1 *l

o
*l y H *' £ B

CD Eh _l ^j £ S. EH CO
8

rp EH <p u O | s
9

H
a a EH

1

EH
1 £h

jg
CO
CO

B
i EH

1 a
p a e1 Ks h CO CO j—

)

M CS 3 a Eo o <j"
|

25 H <
1-1

H 3 § P <: H
Ph «

Ph <: Ph Ph r-H Q CO EH s >> EH
Ph H H Ph g

R
oo O

EH

Example of the Symbol Table for the X_HOSPITAL_DATA_BASE

Figure 17a

52

CD w
ft CD

>3
CD H

-P
•H

(1)

O
w £

O SH

O <fH

0)

K

OH H
H

cu

o

W 0)

•H W

£

•H 0)

ra

M in

^ £ d)

G O -P
cd g to

cn ^ -h
CO

o H O H CM OJ cn CM o H cn H H

o O CM CM cn H CM H CM H

CM

CM

CM

cn

, -P

s o a
o H O O O ,-H O O O H O O H O O O

O

>>

-P

H CM 0O U^ VD r- co o\ oH H £1 H -=f LT\

H H

(D

ss

oO

EH EH
CO

EH
CO

o
a.

ss

CO
CO

CO
CO

1-1

O
O

S

o

Ph

CO

Ho

o
Ph

o

CO

e

oo

Example of the Symbol Table for the X_HOSPITAL_DATA_BASE

Figure 17b

p

53

X HOSPITAL DATA BASE

PATIENT_FILE

KEY^PATIENT NO KEY=ILLNESS NAME

INSURANCE FILE

KEY'ILLNESS NAME KEY=PATIENT NO

PATIENT Rl

NAME

NSTITUTION NAME COVERAGE TYPE

The Data Structure Defined "by the Symbol Table

Figure 18

5h

\s\

IS

o

<1>

ON

C5

o

H

CD >5
W CO

CO

D—

s

c—

-d-

t-

a

o

H

m

PM

H

ON

0)

B

•H
&4

W

55

-p
as

a

O

a;

W

oo

o

OJ H
rH

H
H

o\

II

o

H

m
on

oo
CO

H roo oo

o
CM

a\
rH

COH

H

VO
H

C^

OO

CM

P
a3

O

u
o
o

rt

oo

o

Ph

Ph

1

°°

I

1

O
II

Ph

ll

\qO

OO
s
Ph

o
CvJ

(D

pi

fctO

•H

56

Level

Parent

Access

Variable

Thread

Sorted

The level of this data item in the tree structure.

The entry number in the table of the parent data item

for this entry. If the entry is a file name, this points

to his parent (the data base name in the IMS Symbol Table)

Contains security code information to protect the data

from misuse by unauthorized users.

A one -bit indication that tell whether the entry is a

variable data item.

The entry number in the table of the first daughter of

the data item. If there are no daughters for this entry,

the pointer will point to the next sister at the same

level. If there are no sisters, it points to the next

sister of the parent. If there is no such item, it will

point to the next sister up another level. This entry

allows simple traversal of the data tree.

A one bit indication as to whether or not the repetitive

data item is sorted.

Displacement

The byte displacement from the base of the parent field

in the record format for a fixed-length entry or the dis-

placement from the base of the parent field for the entry

if this is a variable-length • or repetitive entry.

57

Number of Pointers

The number of pointers at the beginning of this entry's

record format field. There are pointers to each variable

or repetitive subfields. The list of pointers is the first

thing to appear in the field. All pointers are fixed-length.

Rank Among Sisters

A number which indicates how many sisters are to the left

of this data item. The purpose again is for touring the

tree.

Packing Order

The rank among sisters as they appear in the second formats,

i.e., fixed-length items are shifted forward in their fields.

Disk Presence

A one-bit indication that tells, if the item is a file,

whether it is now, presently on the ILLIAC IV disk.

Cross Reference

A circular linked list by entry number if this data

item has the same name as another. These data items

may be distinguished by their parents.

A code representing the physical units of the stored data,

e.g., feet, miles, or years.

A one bit code that indicates if a data item is being

used as a key.

Units

Key

Type

A code representing the data type, e.g., integer, real,

symbolic, link, vector, matrix, or contextual.

58

Attribute

A code representing more information about the data type,

e.g., matrix may be diagonal or real. Decimals may have

the decimal point in a specific location.

D.k Data Types and Attributes and Characteristic Definitions

The system will be able to process any form of data. Along with

the usual numeric and character types, the system will provide for the fol-

lowing data types of data items:

1) vectors

2) matrices

3) symbolic coded

k) English text

5) relational links

Those data items requiring further explanations will be used as keys to ref-

erence a descriptor file. This file will contain detailed English text de-

scriptions of the data item's semantic definition. Also entered in the descr:

tor file are the descriptions of various attributes of the data item. For

example, in the NARIS system, the data item SOIL_TYFE may have the value, A,

which certainly requires further explanation. There may exist several levels'

of detail for these descriptions since the descriptor file is a hierarchical

file like any other. The report generator may use this file to generate its

reports at several levels of detail. Explanations of data items may condi-

tionally be put out with the report. New users of a data base may interactiv

use and learn the system while at the same time becoming familiar with the

various data items.

The relational link data type is used to cross-reference different

nodes within a tree, between trees of the same file or across files. This

allows complete flexibility for performing complicated searches on a data ba £

For instance, in a natural resource data base, such as NARIS, which maintain;

data on a ko acre tract basis, it would greatly aid search and trace routine:

to link together all the tracts through which a river flows. Tag bits can b<

59

declared to identify the type of link being made -- to differentiate it from

other links -- and the descriptor file can maintain an English explanation of

the relation associated with a particular link.

It has been found that ILLIAC IV is an efficient tool for contextual

pattern matching. This may allow simple content analysis to be performed on

English textual data for limited document retrieval purposes, although this

'system is not explicitly designed for such activities. Pattern matching also

allows the use of a thesaurus file so that equivalent data item names and values

may be used in place of each other. For example, WHITE could be used equiva-

lent ly as CAUCASIAN for the value of a RACE data item. A search on either key

value would return the same records.

Another use of efficient pattern matching is the ability to allow

partial pattern matches as a valid data item value identification. For example,

suppose an inquirer of a mental health data base wants to ask a question about

the distribution of patients among ethnic groups. The ethnic group of a patient

nay be stored as SPANISH AMERICAN. Suppose the researcher wanted to ask a ques-

tion about SPANISH patients. He could then use a pattern matching operator if

ie wanted to admit the information contained in records that had the word

3PANISH as any part of the ethnic group. -He would not have to know all the

different combinations of SPANISH heritage to specify his query.

In order to avoid writing the same specification for a frequently

ised boolean combination of relations on data, the notion of a data charac-

teristic will be incorporated. A characteristic is a name associated with a

'specific boolean combination of data items and other characteristics whose

j/alues have been restricted. For example, the characteristics FERTILE and

:ORN-LAND may be defined as follows:

DEFINE THE CHARACTERISTIC FERTILE TO BE SOILJJTPE A AND SOIL_DEPTH

10 INCHES OR S0IL_TYPE B AND SOIL SLOPE LESS THAN 10 DEGREES.

DEFINE THE CHARACTERISTIC C0RN_LAND TO BE FERTILE AND S0IL_ACREAGE

GREATER THAN OR EQUAL TO 10 ACRES.

Researchers may build up very complicated characteristics and never have to
i

be concerned with the details of the definitions again. The library file will

Maintain these definitions so that they can be used wherever data item names

ire employed. Further information on these characteristics can be found by

lame in the descriptor file.

6o

The user should also be allowed to match names to questions that he

would like to ask again -- hut would not like to remember the entire language

body of the request. These named routines may also be kept in the library

file.

Any generalized information management system cannot foresee all

the idiosyncracies of several users and their different data bases. It would

be very valuable to provide the ability for users to program, in a high-level

programming language (e.g., GLYPMR or FORTRAN), routines tailored for their

own purposes to operate on retrieved data. These routines can be named and

stored in the library file for future reference.

Figure 21 is a diagram of the control and information flow for the

SDSS.

61

Hole, Key,

and Record
Element

Maintenance

Structuring

Algorithms

T

• •;:• -

Tree

Searching
Algorithms

T

Optimization

Interpretor
and/or

Compiler

e -4

SDSS

Control

SDSS language
requests

I

i

i

i
IMS

Symbol

Table

Information flow

DMS

Thesaurus

File

Library

File

Descriptor

File

Symbol

Tables

Direction of Control

Control and Information Flow of the SDSS Modules

Figure 21

62

Appendix E: A Suggested Design for the Information Retrieval System (IRS)

E.l Responsibilities of the IRS

1) Provide a general search and control language (SCL)

into which a set of data-base -dependent question-

answering languages (QAL) can be compiled.

2) Provide, as part of each data-base -dependent QAL,

a report generation facility.

3) Allow SCL to communicate with and control the Mathe-

matical Computation System (MCS)

.

10 Provide for multi-user simultaneous query processing

allowing an interactive mode.

E.2 The IRS Description

Figure 22 is a diagram of the control and information flow for the

IRS. Several discrete languages have been suggested for conceptual purposes,

The main language will be the SCL language; each QAL could be procedure names

and associated parameters attached to segments of SCL code. Each class of

users could then build his own language. The reason for the separation is

that question-answering languages for different data bases would inherent^ be,

different. A QAL for a natural resource inventory system would be geograph-

ically oriented; questions would have a two-dimensional quality. However, the

QAL for a mental patient system would be inclined to look for statistical re-

i

lationships between the effects of several data items (variables) on other

data items. The same philosophy is employed for the implementation of user

oriented report generators. However, the emphasis would be upon the subset o:

report structures that would exist for all users.

The language must allow for conditional forms of instructions so
.

that different actions may be taken, depending on the outcome of some mathe-

matical routine or the value of a data item. Boolean combinations of charac-

teristics could be used to define the scope (i.e., the subset of records) ove

which verb declarations can act. Verb forms would exist in classes that coin

cide with their subsystem purposes. For example , GRAPH pertains to the repor

63

q O : USERS

: USER CLASSES (ONE DATA BASE/CLASS)

Batcher
and

Queue

r

QA Language

Compilers

Mathematical

Computation

System

REPORTS

Report

Generators

^ Information flow

Direction of Control

The Control and Information Flow for the IRS

Figure 22

Gh

generator; FIND relates to the IRS; CORRELATE is associated with the Statis-

tical System. The syntax for the languages in under study. Our direct link

to ARPA-network members with experience in this area, such as Stanford Univer-

sity, MIT, and BM, should be of great help. We can experiment with their

languages to determine a useful syntax.

The time-sharing and interactive capabilities are limited by the

first version of the operating system. The first version of the ILLIAC IV IMS

will have to provide these facilities in a round-about way. The sequence of

events will be as follows:

1) Load the IMS;

2) Batch and queue several independent queries;

3) Process each query to their first report stage;

k) Report results, but save all intermediate files

and variable values;

5) Release the IMS for other uses;

6) After a short time (on the order of a few seconds)

return to step 1.

The batching facility and re-initiaticn of the system en a cyclic basis will

simulate a time sharing system; the retention of all intermediate results wil.

provide an interactive capability. The entire sequence, (l) through (6),
|

should only be on the order of a few seconds.

E .3 interaction with the Mathemat ical Computation System (MCS)

The essence of the MS is its ability to mathematically operate on

several large independent data bases. The ILLTAC IV computer provides the

capability for direct high speed processing of several files located simulta-

neously on its disk. Very intricate cross file searches can retrieve data arl

pass it to extensive computation systems residing in the MCS. In a matter of

seconds, signified results can be reported to researchers where such opera-

tions would normally take hours (if they were economically feasible at all.)

References to these computational systems will be embedded within

the SCL language, providing consistent accessibility to widely different

systems. An hierarchical "language-machine" approach for complex subsystems

65

design is suggested to provide this systematic interactive ability. A by-

product of this design is the ability for the computation systems to use the

facilities of the IMS to maintain intermediate files. Thus, these systems

nay be developed without being concerned with details of complex data manage-

ment. This considerably lessens development costs for the individual sub-

systems.

This approach is just an extension of the methods behind the phi-

losophy of designing high level languages to run "high level language ma-

chines". These "machine" are then simulated by machine instructions on the

computer doing the simulation. This allows programmers, for example, to

/iew a PL1 program as code written for a "PL1 machine". An hierarchy is

sstablished because the PL1 program may be compiled into an assembly language

tfhich views its machine as an "assembly language machine". This code is then

assembled into hard machine code. Figure 23 illustrates the process.

PL1 Program
(Level 2 Lan-

guage)

Controls PL1

"Machine

"

Compiler

Assembly Language
Program (Level 1

Language

)

Controls Assembly
"Machine

"

Compiler

I
Machine Code Program
(Level Language)

Controls Actual
Machine

A Language Hierarchy Established for

High Level Language Compilation

Figure 23

66

This structure applied to subsystem design is shown in the next

diagram, Figure 2k. Essentially it is exactly the same as the previous

example except that "machines" are considered to be relevant subsystems and

that any subsystem can generate programs for other subsystems.

A Subsystem

Language Program

Controls the

A, Subsystem

Compiler

Controls
the

\^
-1

Sub-
system

A^"
1

Sub-

system Lan-

guage Pro-

gram

Compiler

f etc.
*

A^"
1

Sub-

system Lan-

guage Pro-

gram

Controls
the

A^"
1

Sub-
system

v

Compiler

\ etc. f

Hierarchy Language Control of Subsystems

Figure 2k

Essentially, each program- system is a collection of subroutines wit

in a driver subroutine which accepts long sequences of parameters (i.e., a

language), executes them, and can generate requests to other subsystems. The*

is no reason why a lower level system cannot call a higher system as long as

the action does not cause an infinite loop.

67

The following diagram, Figure 25, shows how the language -sub system

approach applies to the IMS and MCS subsystems.

IMS

Query

IRS
(SCL
Language

)

SDSS MCS

DMS
STATISTICAL

SYSTEM
MODELING AM)

SIMULATION SYSTEM

LINEAR
PROGRAMMING

SYSTEM

The Language Subsystem Approach Applied to the IMS and MCS Systems

Figure 25

An arrow implies a compilation step which is simply a conditional

call of the subroutines in the next system.

68

Reiterating, this modular approach allows simple coordination of

the total system with a uniform language development. It provides for inde-

pendent (as far as the user is concerned) use of the different subsystems.

Changes may be made to a subsystem without necessarily causing code changes

in other systems. There is a disadvantage of having several compiler inter-

pretation steps, but this is offset by the processing power of the ILUAC TV

system. Besides, the design is conceptually very simple, allowing easier

development, implementation, and debugging.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA R&D
(Security claattllcatlon el title, mmajy ol abatmel and Inefewhtg annotation muat ha tnltrxf ajtjn jftg overall report It claaaltled)

RIGINATING ACTIVITY fCorporal* author)

enter for Advanced Computation

niversity of Illinois at Urbana-Champaign
rbana, Illinois 6l801

2*. «£PO«T ItCUBITY CL»tjlFIC/lTIOt

UNCLASSIFIED
2b. GROUP

epcrt TJTl F

n Information Management and Analysis System for ILLIAC IV

ESCRIPTIVE notii (Type el t%pmt and rncluelr* daft)

search Report
UTHOR(S) (Flrat MM, middle Initial, laat nam*)

tewart A. Schuster

EPORT DATE

3 cember 11, 1970

7a. TOTAL NO. OF PACE*

76

7b. NO. OF FIEFS

6
CONTRACT OR GRANT NO.

3AF 30-(602)-UlM+
PROJEC T NO.

RPA Order 788

•a. ORIGINATOR'S REPORT NUMSER(S)

CAC Document No. 1

Be. OTHER REPORT NOI5I (Any other numbera that may be atalgned
thla report)

DISTRIBUTION STATEMENT

spies may be requested from the address given in (l) above,

JUPPLEMENT ARY NOTES

jne

12. SPONSORING MILITARY ACTIVITY

Rome Air Development Center
Griffiss Air Force Base
Rome. New York l^M+O

IBSTRACT

This document presents the preliminary specifications for the design

and implementation of an Information Management System, capable of being in-

tegrated -with an extensive Mathematical Analysis System to be implemented on

the ILLIAC IV computer. The system would provide multiple keyed access to

several large data bases and the capability of receiving instructions and

questions expressed in a simple inquiry language. Mathematical and statis-

tical routines will be interfaced through the Analysis System. There will also

be a report generator which displays the responses to questions in forms

easily interpretable by researchers.

"
» NOV • I "# / W UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification

KEY WORDS

Information Retrieval (General)

File Maintenance

Searching

Data Structures

LINK A

RbLE

UNCLASSIFIED
Security Classification

UNCLASSIFIED

Security CU«»iflc«tion

KEY WORDS

Information Retrieval (General)

File Maintenance

Searching

Data Structures

ROLE WT

LINK

ROLE *T | R6LE
I J^

LINK J

UNCLASSIFIED
Security Classification

