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Abstract

It is common in the organizational literature to recognize the

importance of both formal and informal organizational social structure.

Most investigations of social structure, however, have not been truly

structural in nature. This paper explores the applicability of multi-

dimensional scaling and clustering techniques to the representation of

social structure as a complex set of relations. Several methodological

issues concerning the use of these statistical techniques are reviewed

and illustrative data 1s presented. Finally, the potential relevance

of this methodology for organizational design is discussed.
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THE USE OF SCALING AND CLUSTER TECHNIQUES IN

INVESTIGATING THE SOCIAL STRUCTURE
OF ORGANIZATIONS

Bobby J. Calder, Kendrith M. Rowland,
and Huseyin Lebleblci

The design of organizations , as with the design of anything, from

bridges to poems, must focus on structure. Design is essentially the

activity of constructing and changing organizational structure to

achieve optimum effectiveness. An emphasis on structure, of course,

is not new to organizational thought. Classical theorists were highly

concerned with structural characteristics such as the division of

labor, line-staff relationships, and span of control. And the popu-

larity of the "systems" metaphor in modern organization theory con-

tinues to bring structure to the forefront. Much work remains, however,

in developing useful approaches to rganizational structure. The

present discussion deals with a methodology for investigating one facet

of this problem, the interpersonal structure of people in the organi-

zation. In describing this methodology, we will attempt (1) to place

it within the broader theoretical context of issues concerning organi-

zational structure, (2) to present the results of an empirical appli-

cation of the methodology, and (3) to examine critically the method-

ology and its implications for organizational design.

The Nature of Organizational Structure

Structural analysis proceeds from the recognition that the organi-

zation is a system, that is to say, a whole. The next step is to



spacify the elements of the system, or the parts of the whole. Such

elements are the basis of organization. The identiflration of elements

depends on the level of analysis and on, what we will call, perspective.

Levels of analysis are usually thought of in terms of a macro-micro

continuum. One level of analysis takes entire organizations as its

basic unit while another uses individuals in the organization. Per-

spective usually has implications for the level of analysis adapted

but is more general than this. Depending on the investigator's per-

spective, it is possible to have different structural interpretations

of the same thing. For most firms, for example, we can readily speak

of their financial structure, the structure of their work tasks, their

market structure, or even, between organizations, their industry struc-

ture. It 1s perhaps misleading, therefore, to refer to
" the structure

of an organization." All organizations possess structure, but a

particular characterization of structure always presumes some perspec-

tive and ".eve! of analysis.

Any st/ucture consists nut cnl. of elements but cf relations

between elements as wall. Relations are singly forms of interaction

or combination. They may be specified in many different ways, both

quantitatively and qualitatively. Logical properties such as transi-

tivity or symmetry may be attributed to them. However elaborated,

though s both relations ar.d elements are necessary for any strcctural

description of an organization.

The present discussion approaches organizational structure from

the perspective of the people in the organization. The unit of

analysis 1s the person and the relations are the social bonds between

people. While this perspective has been the dominant one 1n the



organizational literature, 1t should be realized that it is not the

only one, excluding as it does discissions of tecnnologlcal structure

(e.g. 8 Perrow, 1S67) and the like. Perhaps the bast term for our

perspective is ''the social structure of the organization." It is

easiest to visualize this structure as the place with respect to one

another of the people in the organization.

It is common to distinguish between two types of relations between

people in an organization. The formal organization^ symbolized by the

organizational chart, includes authority t work-related communication,

and succession relations. These relations are highly formalized and

official in nature, usually to the point of written documentation. The

informal organizations on the other hand, consists of interpersonal

relations such as liking or disliking, casual communication, power 9

trust s prestige, etc. 3oth types of relations have stimulated con-

siderable research. It may be useful to review some of this previous

work before proceeding.

Research en formal relations

This research has typically sought to develop measures of various

aspects of formal structure, attempting to relate these to each other,

to environmental factors, or to effectiveness. Work on formal structure

originated with Durkheim's (1947) concept of the "division of labor."

This notion, of course, refers to the functional division of task

activities between people in the organization. The relation is one of

overlap or similarity between people in the work they perform. The

relatiye completeness of the division of labor is thus one aspect of

formal structure. Current research has continued to emphasize the

importance of functional divisions. 81 au and Schoenherr (1971) used



the number of positions ir\d subunits ss a measure of structure. Hace

and Aiken's (1967) research on health and welfare organizations em-

ployed a measure of professional activity to reflect the extant of

each persons occupational specialisation. Along somewhat similar

lines, Pugh, Hickson, Minings* ^nd Turner {1968} have used a measure

of "functional specialization 1
' based on whether each of a set of

activities assumed to be common to all organizations is or Is not oer-

formed by one or more people full time.

Another structural dimension is given by the obvious hierarchical

structure of complex organizations. Traditional theorists have been

heavily concerned with the "span of control, ;( or the ratio between

supervisors and subordinates. In the same vein, most current research

has concentrated on the depth of the hierarchy (£van 9 1963). Pugh

et_ ajL (1563) simply counted the number of job positions between the

chief executive and employees working on production as a measure of

this vertical dimension, Tannenbaum et al. (1974) assigned scores to

individuals based on the number of arsons both above and below them

in the hierarchy. It is common to employ gross classifications of

organizations as having either "tail" or "flat" structures and as being

centralized or decentralized in terms of decision-making (Porter and

Lawler, 1965). The structural dimension being summarized is that of

authority between people.

A frequently neglected but clearly significant structural dimen-

sion is simply geographical location. The actual physical or func-

tional distances between people comprise a structure within which all

interaction must take place. The location of people's offices and

their furnishinas tend to reflect other dimensions of formal structure



but can take on effects of their own (cf« Steel, 1973), It also

appears that actual distances may be modified by psychological expec-

tations about the appropriateness of physical relations (Sommer, 1969),

Although functional specialization, hierarchical depth, and

pnysical location rave received the most attention, other aspects of

formal structure have been postulated. Hage and Aiken (1967) used the

notion of "formalization" to refer to the use of explicit rules in the

organization, Pugh et_ aU (1968) defines "standardization" as the ap-

plication of uniform procedures and "formalization" as the extent to

which procedures and rules are written. Such terms represent an

attempt to characterize the nature of the communication relation

between people.

The approach taken to research on the formal structure of organi-

zations is well reflected in Blau's (1970) statement that "The fact

that members of a collectivity are differentiated on the basis of

several independent dimensions is the foundation of the collectivity's

social structure." As already seen research has concentrated on the

dimensions of functional specialization, hierarchical depth, and

physical location, though some attempts have seen made to include more

psychological bases of differentiation (e.g., Lawrence and Lorsch,

1067). One point should bo made in concluding our comments on this

work. Although the structural dimensions are defined in terms of

people (or positions, which are people at a given point in time), the

level of analysis is usually that of the organization. Levels of

differentiation are compared across organizations. Clearly, however,

if one takes the individual as the unit of analysis, people are

related to each other along these same dimensions within the organization,

and this is the formal structure.



Research on informal relations

Since the human relations school of organizational thought and

the Hawthorne studies (Roethlisberger and Dickson, 1939), it has been

generally recognized that human interaction is not confined to the

bounds of the formal organization. The pattern formed by these addi-

tional, more socially determined Interpersonal relations is usually

called informal organizational structure. Much of psychology and

sociology, of course, has been an effort to understand just these

interpersonal relations, and organizational theorists have relied

heavily on this work. For our purpose, two lines of investigation are

most important.

The most common approach has been to rank the members of a group,

or simply to categorize them s en some dimension such as status, leader-

ship, control of resources, personality, ability, etc. Rank orders of

individuals or groups of individuals nn these dimensions may then be

related to other variables. Such differentiations along single dimen-

sions are not highly structural in ature though. They do not represent

the pattern of relations between individuals but rather, at most, are

summary measures based on this structure. Recent research may have

begun to recognize this difficulty. In the study of leadership, for

example, Hollander and Julian (1968) advocate a "transactional" approach

which emphasizes the exchange relations between leaders and followers.

Gibb (1969) sees leadership as a concept applied to the "interaction"

of two or more people. Unfortunately, such thinking has been generally

slow to replace the prevalence of the ranking approach in organizational

research.



A much smaller number of studies 9 mostly in the small groups area,

have viewed social structure in terns of interpersonal relations.

Cartwright and Zande- (1968) list fojy . ons which have

received thz most attention: (1) the re tooses B
s

n to which

we will return, (2) the relation "can communicate to
1
' (as In a commu-

nication network), (3) the relation ''has power over," and (4) the

relation of "task interdependence," There have been attempts both to

describe the pattern these relations form in ongoing groups and to

test the effects of experimentally creating different patterns. Most

of the work on the structure of existing groups has employed the first

type of relation, soci ©metric choice.

The relation "A chooses B
M

has been the subject of considerable

interest dating from Moreno's (1934) oioneering group studies in

institutional settings, Although measures of sodometric choice have

been operationalized in a variety of ways, typically each individual

in a group is asked to list persons in the group with whom he would

like to engage in some activity and ither people with whom he would

not like to engage in that activity (Lindzey and 3yrne, I960).

Usually 9 these choices concern various aspects of interpersonal

attraction, such as "friendship" or "liking." The date, from such

choices are presented as a "sociogram." which may be described as

follows:

The sociogram is a diagramic device for summarizing the

choices and rejections among members of a group. It employs
geometric figures to represent members of the group, and
various kinds of lines joining the figures to represent
choices and rejections. There is no single convention for
the drawing of diagrams but, rather, there are many alter-
natives available to the investigator (Lindzey ana Byrne,
1958, p. 460).



The sociogram thus presents a visual picture of the group. The problem

with sociograms is that they are arbitrary, from a given data set,

there are an -infinite number of pc i diagr -: any of which could

yield very different impressions of group structure.

Much of sociometric research , or sociometry, has been devoted to

developing better 6 less intuitive, methods of describing nroun structure,

The standard approach has been to view sociometric data in terms of

"linkages.'' As in the sociogram, people are represented as points which

either are or are not linked together depending on the existence of a

relation. There is no implication, however, about the distance between

points as is necessarily the case with the two-dimensional picture

given by the sociogram. This approach is amenable to two mathematical

tools, matrix theory and graph theory. Cast in matrix terms, the

existence of linkages is given by the elements of ^r\ N x N matrix.

Manipulation of such a matrix may reveal the existence of chains of

communication or cliques. Abstract graphs resemble the sociogram but

are defined only in terms of points (people) and lines (relations)

between points. Graphs have been useful in determining cliques as well

as in exploring questions concerning structural balance. The end

result of these analyses, it should be noted s
is still a structural

description based on one relation, that of interpersonal choice.

Stratecies for research on oraanizational social structure
--

Two distinctly different aspects of organizational structure have

aazn discussed. Formal structure arises from explicit efforts to

achieve a rational basis for organization; informal structure stems

from implicit, more purely social and psychological needs. Yet both

formal and informal structure obviously exist in any organization at



the same time. Originating perhaps with Barnard's (1938) work, the

thrust of most comparisons of formal and informal structure has it that

the formal exerts a dominant influence over the informal. In fact, the

informal is usually taken as something of a residual category , as all

relations not accounted for by the formal structure. Subordination of

the informal side in this manner,, however, or greater emphasis on either

the formal or informal for that matter, can be misleading. At any given

point in time, the formal structure does act to set constraints and

bounds on the types of informal relations present. But over time, it

is reasonable to assume that the informal structure will also influence

formal structure. Thus it is common for the formal structure to be

modified to take into account informal developments, as for example

with changes in reporting relationships to reflect previous lines of

personal communication or power. Moreover, if one focuses on criterion

variables, such as measures of job performance, the most tenable hypoth-

eses are clearly ones in which both formal and informal structure have

interactive effects.

It is our contention that the best characterization of organizational

structure is one which omits any rigid dichotomy between the formal and

the informal. Both refer to relations between people. Formal relations

are more visible in that they are planned and have both normative legit-

imacy and a deep historical basis in the concerns of modern organizational

life. Informal relations are less accessable, more emergent, and more

personal. Neither are really "types'* of organizational social structure,

but are rather descriptions of various aspects of that structure. The

application of the two terms as descriptors is quite clear for some

relations, e.g., reporting relations are formal, friendship patterns
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informal. Other relations are less clear. Mow dees one describe the

relation of formalization of communication between people (i.e., the

use of written communication, proper forms of address, etc.)? Some

researchers, as discussed earlier, have identified zuc'r, formalization

with formal structure since it is often prescribed by the organizaticn e

In many cases , though , formalization has more to do with the disposi-

tions of the people involved than with any prescriptions, and may be

more readily described as informal in nature. All of which means that,

although it is useful to employ the terms "formal" and "informal" to

refer to different structural relations, this usage does not imply the

existence of separate structures.

One further clarification must be added before continuing. Formal

structure has two different points of reference. One usage is asso-

ciated with the written or at least verbal documentation which is

imposed on the organization by the managerial function. This formal

structure, call it the codified formal structure » takes on an exis-

tence of its own separate from the perceptions of the individuals

involved. This formal structure may be more or lass extensive but

almost always has a pervasive influence. It can serve as a goal and a

guide for members of the organization and can be changed only through

deliberation. Quite apart from this legalistic specification of

formal structure, which will always be more restricted in scope, one

can examine the social structure which actually exists. In some cases,

there will probably be a high degree of congruence between the codified

formal structure and those aspects of the actual social structure which

may best be described as formal in nature. The codified formal struc-

ture, in other cases, may be a misrepresentation of actual social
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structure, either due to some factor such as timing (e.g., the recency

of formal documentation) or to deliberate deviations motivated by

other objectives within the organization,

Our conceptualization of organizational ^ocisl structure n^s dis-

tinguished between the codified formal structure and the actual social

structure, aspects of which may be described as either formal or

informal. The next question which naturally arises concerns the

measurement of social structure. Several possible research strategies

may be adopted. One important consideration concerns what is taken as

the object of the measurement process, If interest is in the codified

formal structure, research should be directed at relevant documents and

authoritative statements. Results should not, however, automatically

be assumed to apply to the actual social structure, as frequently

occurs in the comparative literature. Moreover, the locus of the

actual social structure can be taken differently. Social structure

exists both as the shared perceptions individuals have of people in

their organization and as patterns f interaction. In terms of research

strategy, this implies two possible sources of data, self-reports of

judgments which reflect relations between people or measures of

specific behaviors which indicate relations. For instance , reports of

who talks to whom yield data about the perception of communication

patterns while behavioral measures of actual cemmunl cation acts such

as phone calls are objective indicators of communication patterns.

Sometimes self-report measures will match those based on behavior,

sometimes they will not. Given our present level of knowledge, per-

ceptual or judgmental data 1s probably easier to interpret. The problem

with behavioral measures is that they are difficult to operational ize.
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Of all the behaviors we might observe t how do we know which ones should

be taken as an indicator of a given relatlc 'ere are many actions

which might indicate the relation c
;-' power. ithout better developed

theories, it is difficult to know wnich to measure within the context

of a particular organization, Research employing perceptual data may

be of more help in developing theory, which wouid in turn allow more

meaningful selection of behavioral measures.

There is also a second, more general consideration in research

strategy. Two approaches to the analysis of behavioral science data

can be distinguished (Shepard, 1969), The .bo re traditional approach

is oriented toward the detection and statistical evaluation of patterns

of a given hypothesized form. The other is oriented, in Shepard 's

terms, to the problem of discovery of new patterns. The discovery

problem is really one of pattern recognition. The aim is to uncover

structure in the data. Shepard (1969) even goes so far as to cast the

problem in human-engineering terms. He suggests that data analyses of

this sort should be matched to the human abilities needed to comprehend

them, arguing that a visual mode of representation of the results would

be most effective. Since we really have no firm theories of organiza-

tional structure to test, Weber's concept of bureaucracy aside, this

logic seems to us imminently applicable. What is needed is a method-

ology which allows us to detect and represent in a useable form the

information about social structure inherent in a given data set.

The class of statistical techniques of which such a methodology

might be composed are, of course, cluster analysis, factor analysis,

and scaling. We should perhaps recognize that factor analysis has

already seen considerable use in this area. Much of the research
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referred to earlier B
notably that patterned after the work of the Aston

group, employed factor analyses of ' set of d1mens1< ial ratings cbtalneci

for many organizations. But the question addressed by research of this

type is really the evaluation of ice of the a priori

dimensions for which ratings have been obtained rather than the dis-

covery of structure. Recent developments in multidimensional scaling

(MDS), the technique emphasized in the methodology to be presented

here 9 offer a greater possibility of truly reveal inn underlying social

structure.

An MDS Methodology For Organizational Social Structure

Our methodology for exploring organizational social structure

derives from a research strategy of attempting to discover structural

characteristics from perceptual data, The approach is similar in

spirit to that taken by Jones and Young (1972). They conceive of

social structure in the following terms:

Our concept of interpersonal perception implies that each
individual in a social field h s an internal representation
of the other members in the field

4
with the individual

positioned somewhere in the representation. This is his own

personal "social environment." We will use the term "social

structure" to refer to the pattern of this environment: the

systematic relationships amono the oersons composing the
structure (1972, p. 108).

Although this "definition of interpersonal perception" is conceptually

appealing, especially in its emphasis on social structure* one must be

very careful about references to "internal" representation. What we

are trying to do is represent how individuals represent those entities

in their social world which are certain people with whom they interact.

There must be some correspondence between the two representations, the

internal and the one achieved by our methodology, but the two need not



be of the same form. Specifically no claims are made about whether the

internal representation is digital or analogue (cf. Attneave, 1974) or

about the level cf awareness an other phenomenal aspects associated

with it. As previously discussed, an analogue, or man-like, representation

is desirable for our methodology because it "is better suited to our

ability to detect patterns. The question of internal representation

must remain largely a matter for further research.

Jones and Young (1971, 1972} employed Carroll and Chang's (1970)

individual differences multidimensional scaling (INDSCAL) model in

measuring the social structure of an academic department. While the

methodology described here does not employ the INDSCAL model, it is

quite similar to their overall approach. The data to be presented are

also from an academic department, thereby affording a useful comparison

with the results of .Jones and Young. In addition, our v.-ork has been

Influenced by the research of Fillenbaum and Rapoport (1971) on semantic

structure. They used nonmetric multidimensional scaling and cluster

analyses of subjects 8 judgments abc :t -words to construct subjective

representations of semantic structure. Aside- "rem its methodoloaical

sophistication, this research has also been of benefit in pointing out

the value of an independent source of reference for the structural

representation generated. In their research, subjective structure was

compared to that developed by formal linguistic theories. Thouoh the

analogy is not complete, what this suggests to us is to compare our

representation of social structure with the codified formal structure

of the organization, which is after all rationalistic in nature. Such

comparisons should make the results of our research more meaningful

both from a theoretical and a desion ooint cf view.
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Background and assumptions

In our earlier discussion of relevant research we noted two

principal ways in which social structure has been measured. One was

the linkage methods typified by much of the sociometric literature.

People either are or are not joined by a relation, as when the points

in an abstract graph are connected by a line, The most common method,

though, was the unidimensional scale. Individuals are placed along a

spatial continuum according to their possession of some attribute such

as authority. If this scale is at an interval, or metric, level of

measurement, the distance between any pair of people may be considered

the relation betv/een them. It is thus possible to say whether persons

A and B are more closely related than B and C. When the scale is

ordinal, or nonmetric, such comparisons are not possible. In this case

we do not knew the relation betv/een A and 3, and the measurement con-

veys limited structural information. The concept of distance is thus

critical to this type of structural representation.

Multidimensional scaling diffe ? from simple unidimensional scales

in that people may be located within a two-dimensional plane or even a

space of higher dimensionality. Clearly this simultaneous representa-

tion in more than one dimension offers a better chance of revealing

patterns of social structure. At the heart of this representation is

the concept of a metric space (Green and Carmone, 1970). A metric

space is one for which there exists a well-defined distance function.

Euclidean distances are most common and are qiven by

d. .

'J
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where the distance d between any two ooints 1 end j is equal to the

square root of the sum of the squared differences in the coordinates

on each of the k dimensions, k = 1, 2 ? ...r. Actually this function

is a special case of a more general function, the Minkowski r-metric,

so that there are several possible functions, including the so-called

city block metric in which distance is the su.n of the absolute differ-

ences in the coordinates on each dimension. Shepard {1969), however,

suggests that the Euclidean metric is quite robust. Whatever the

metric, structural relations are represented as spatial distances.

Although there are differences in the specific computational

algorithms employed, all MDS techniques proceed in a similar fashion

in achieving a representation in a metric space. The object is to

find a set of coordinate points for which the ratio-scaled interpomt

distances best fit the rank order of distances in the input data. (In

nonmetric MDS, the input data are assumed to bo scaled ordinally, so

that only the rank order of the Interpol nt input distances are used.)

These alqor'thms start with a confi jrat-icn of coints s either arbitrary

or supplied by another technique such as factor analysis, and itera-

tively attempt to find an arrangement as close to "his configuration

as possible subject to the constraint that the interpcint distances

preserve the ranks of the original data. It turns nut that any rank

order may be represented exactly if there is only en* more aoint than

the number of dimensions, A further goal therefore is to employ as low

a dimension?.! ity as ncssible. An important problem is to assess

departures ^rom perfect fit. Several measures of "stress" have been

proposed which measure goodness of fit, the extent to which the rela-

tionship between the final int^rpoint distances -ma the input ranks
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approach monotonia' ty. These measures of stress tend to yield similar

results (Shepard, 1S69). For a fuller exposition of multidimensional

scaling j Green and Carmona (1970) provide an introduction and the two

volumes by Shape rd, Romney 3 and fieri ove (1972) a convenient source of

theory and applications.

MDS procedures have been designed for the analysis of a two-way

matrix of numerical or ordinal data. In tarms of Coomb's (1964)

classification of types of data, they may be applied either to rela-

tions of dominance or ccnscnar.ee in which the relation 1s on pairs of

points and in which the points coma from either the same or different

sets. The type utilized in the present stuuy is known as proximity

data and involves the coirparison of pairs of people belonging to the

same set (members of an organization). Proximity data is given by

almost any measure of similarity^ associacion £ or substituted! ity. It

should be noted acain that the- level of ir.efcsursr.s.-t for nor.metric MDS

is that of the orde;:.* KStHc ccale, an ordinal ranking of interpoint

distances. The fir.?.l repressriatic is fully metric.

The specific form of the data is an -;r.tact 9 unconditional symmetric

matrix of proximities between all pairs of i/ecple. A valuable distinc-

tion is between direct aiid ceH'.nu ateasuras of proximity. A direct

measure is "one which osygis from aach ?y\r of ebjeecs under study as

a primitive datur.i about that pair (Shepard B 'i9S9, p. 10). " Derived

measures are calculated from a larger set of data. Tna product moment

correlation of each pair of person's answers to the items en a ques-

t1onnaira for example, v.^;ld yield e derived proximity matrix. We

employ a direct mecsar-e of proximity here bacause, as previously dis-

cussed, this ha', the advantage of not biasing individuals with response
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categories specified by the investigators. Respondents were asked to

judge the similarity between pairs of people. As noted by Fillenbaum

and Rapoport (1971), however, whan such measures are averaged over

people for aggregate analysis, they become a type of derived oroximity

measure.

Treatment of a particular matrix as nroximity data does not depend

solely on the properties of the data itself (Shepard* 1969). There is

also the question of the relation between the model and the data. In

the case of judged similarities 9 a spatial model is intuitively appealing

in that the concept of physical distance matches the psychological notion

of judged similarity. But the same set of data can be viewed in alter-

native ways and analyzed by other methods to reveal different aspects

of structure. Similarly, there is by no means any guarantee that a

model which assumes a continuous space of well-defined dimensionality

is an appropriate representation for a set of ordinal data. It may be,

as Miller (1969) has argued for semantic structure, that taxonomic or

typal structures based on the relation of class inclusion are more

suitable. Or it may be that both dimensional and taxonomic properties

are required for structural description.

It is advisable then to supplement MDS results with dimension free

analyses (Fillenbaum and Rapoport, 1971; Green and Rao, 1972). Cluster

analyses are typically used for this purpose , with the most common

method being Johnson's (1967) hierarchical clustering schemes (HCS).

When Johnson's procedure is applied to a symmetric proximity matrix, it

generates clusters hierarchically such that there is a range from a weak

clustering in which all objects (people in ou>* case) are represented as

separate clusters to a strong cluster in which all people are grouped
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in the same cluster. At each stage in between, the recursive algorithm

forms a new cluster by combining either two people, a person and a pre-

viously formed cluster, or two cl person cannot be removed

from a cluster once placed in it. The ^^^r combined at each stage is

the one with the smallest entry in the distance matrix. After they are

merged a new distance matrix is computed. l

% o distance between the new

cluster and another person or cluster may be taken as either the

smaller distance from the original two pairs (the connectedness method)

or the larqer distance (the diameter method). In practice the diameter

method usually yields better results (Fillenbaum and Rapoport, 1971;

Green and Rao, 1972) ? and is employed in our methodology, "he hier-

archical nature of the HCS representation would see?.* quite aporopriate

for many aspects of organizational social structure.

The methodology

Two types of raw data nre collected for our methodology. Subjects

are first asked to rank order a deck of cards containing all possible

pairs of people In the soda 1 structure. Each card contains one pair

of names. The cards are generated by a computer program (Calder and

Rowland, in press) which arranqes them according to a scheme developed

by Ross (1934) so that the initial order minimizes systematic repeti-

tions which might have suggestions effects and maximizes the space

between pairs having people in common. The cards are standard computer

cards which have been interpreted so that the names are printed at the

top.

Subjects are instructed to rank order the pairs of names in terms

of their "similarity." Without providing the subjects any cues on

which to base their iudgments, similarity is further defined as follows:



You will be given a card for each possible pair of
people who appear on the list arid asked to make a jucgment
about each pair. Based or, the way you normally view the
(name of organi zati on or uni t ,

in term? oQ'pur i --
>

-'^r
vd

-
5^-

activTties, vrv to ludca how simTTar"tne"twc people are to
i.iwh.|.«.«^>ihii.i * w «' i. 4i -

i

-
i i

-
i ii i

i
t in i i- i

-

each otner.

By similarity we mean the extent to which the two people
seem to "go together" as far as your actions are concerned.
This similarity or closeness judgment may be based on any
factors which seem important to you. However, try to maTn-
tain the point of view of your everyday life in the (name of
the organization or unit).

Subjects <\re then given written instructions for sorting the cards:

1. First sort the paired-name deck into six piles of cards,
ranging from most similar to least similar. The piles do

not need to contain an equal number of cards.

2. Then sort the cards within each pile from most similar to
least similar. Cards may be moved from one pile to
another.

3. Next merge the piles so that the pile with the most similar
paired-names is on too, the pile with the next most similar
paired-names is next, ana so forth until the pile with the

least similar paired-names is at the bottom or back of the

deck. This procedure should give you a general ranking of

all paired-names from most similar to least similar.

4. Finally, go through the merged deck again to check your
ranking of paired-names ar 1 make any changes you wish to
make *

5„ When you have completed sorting the decK in this manner,
please return the sorted deck.

Work si owl v and carefully: this is a difficult task; take

your time , it you have any questions aDout this task, pi ease

ask them now.

When the subject has completed the sorting task, he is then given

a questionnaire inquiring about various characteristics of the people

involved. Each question requires him to rate each person on a scale

of to 7. These rated attributes or properties are helpful in

interpreting the MDS results. Their limitation is that the questions

are based on the a priori hypotheses of the researchers.
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Once the stimulus decks have been sorted, they are resubmitted to

the seme program which generated them. Each card contains a punched

identification code which has not been interpreted and„ consequently,

is not noticed by the subjects. The output of this program is a lower

triangular matrix of stimulus pair ranks. The elements 1n the matrix

are simply the rank in the sorted deck of a particular pair of people.

Since each pair is ranked only once, the wi thin-pair ordering being

balanced over pairs, all entries may be placed below the diagonal of

the matrix. The higher the rank 9 the less the similarity between the

persons in that pair. The raw data thus take the form of a proximity

matrix, one for each subject.

The next step, as shown in the flow diagram of our methodology

presented in Figure 1, is to aggregate the raw data matricies. There

Insert Figure 1 about here

will, of course, be individual differences in the rankings provided by

different subjects. Now it 1s pess ble to treat each subject as an

independent replication and differences as error variance. The matricies

could then be averaged over subjects to produce grouped data. The

problem with this is that individual differences may not reflect only

errors but also genuine differences in perception. Grouped data in

this case may yield MDS solutions which are not representative. At the

other extreme, the data can be treated in a disaggregate manner with

MDS analyses performed for each subject. This has the disadvantage of

being difficult to interpret for large numbers of subjects and being

yery expensive. What is needed is a middle approach which provides
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for aggregation but somehow allows for individual differences. Several

proposals of this type have been ma*1e. Ti e rocedure adcDted here is

described below. It will be compared to other approaches in the next

section.

The present methodology attempts to take a \'ery straightforward

approach to aggregation, The question of Individual differences 1s

posed as the first step in the analysis of the data (see Figure 1):

Are there important differences in the rank orders in which different

subjects have sorted the paired-comparison stimuli? And s if so, can

subjects who have similar rank orders be identified? To answer these

questions , the lower triangular matrix for each subject is rearranged

as a column matrix, creating a list composed of the ranks of the

stimulus pairs, one ",ist for each subject. It is then possible to

compare a subject's ordering with any other subject's on the basis of

some index of matching. One such index, nropcsed by Johnson (1968),

compares subjects on the basis of the size of the intersection of their

sortings. The size of the intersection is given by the number of

paired stimuli on which the rankings agree, in the present context,

however* Johnson's index has the disadvantage of not being sensitive

to small discrepancies in the rankings. The intersection would be

empty if all of one subject's ranks were only once removed from

another's. A less restrictive index is required, and for this reason

the rank order correlation between each oair of subject's rankings was

selected. These rank order correlations can be arranged to form a

lower triangular matrix in which the rows and columns are subjects.

Once this association matrix has been computed, the question of

which subjects should be grouped together can be examined. A nonmetric



procedure which identifies the largest possible, mutually exclusive

groups is called for. Since the elements in the correlation matrix can

be treated as distances* Johnson's hierarchical clustering can be used

for this purpose. The rank order matricies for subjects who form

clusters are aggregated. Those for subjects not included in a cluster

must be analyzed individually,

Aggregation of the individual matricies is accomplished by com-

puting the square root of the mean of the squared individual entries

for each element of the matricies. The root mean square (RMS) method

of averaging , under some assumptions, appears to distort the grouped

configuration less than mean data (Horan s 1969). At this point one is

left with a set of either grouped RMS or individual similarity matricies.

These matricies may be submitted directly to the multidimensional

scaling and clustering procedures. The MDS computer orogram employed

was Young
5

s (1972) POLYGON program.

Since the reference axes of an obta IDS configuration are

arbitrary, it is necessary to rotat^ them to find a more meaningful

position. This reorientation is usually designed to produce "simple

structure." In our analyses a yarimax rotation is perforiTted to produce

coordinates which are either large or close to zero. This ensures that

the obtained axes maximally discriminate among the points.

Apart from the orientation of the reference axes, a more basic

problem concerns the number of these dimensions. There is no inherent

dimensionality in a data matrix. A best-fitting configuration can be

obtained in many dimensions. Goodness of fit does Increase with the

number of dimensions, but this is not the only consideration. Shepard

(1972) lists three criteria in addition to goodness of fit. The
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representation should be statistically reliable. That is ? one should

be aole to '-*ep!icate the data. It ~nould tnterpretable. If

the configuration makes senss, 5uld seem more likely that the

dimensions are real. Finally, Shepard (1969, 1972} puts great impor-

tance on how visual izable the representation is. The last three

criteria all argue for low dimensionality, With a higher number of

dimensions, the representation will be more susceptible to error and

therefore less reliable and interpretable. Moreover, a configuration

cannot be visualized in over three dimensions. In view of the obvious

importance of the latter criteria for design 8 a space of either two or

three dimensions seems most appropriate for the present work.

Once the number of dimensions has been selected ana these axes

rotated, other techniques may aid in further -interpretation. The

results of the hierarchical clustering, for one, can provide valuable

information about local and typal structure when compared with the

dimensional representation. Second, the relation between the con-

figuration and external data can be assessed. The external data in

this case, as noted before, are questions which reflect the researchers

hypotheses about important aspects of the social structure being inves-

tigated. Subjects are asked to rate each cerson including themselves

on each of these properties. The average rating of each stimulus per-

son becomes the values of an external property variable. New axes for

the configuration nay then be obtained such that the projection of

points in the configuration on a new axis has maximum correlation with

the values of an external property variable. These new axes are best

thought of as a vector which uniquely corresconds to the outside variable.

Property vectors need not be orthogonal and there may be more or fewer

than the number of dimensions.



A multiple regression procedure may be. used to fit each property

yector to the configuration. The external jerty values are the

criterion variable and the ns on tference axes are the

predictors,, The multiple correlation coefficient reveals the extent

to which the property variable is linearly related to the dimensions

of the configuration, 2nd is invariant with respect to the rotation of

the axes. The normalized regression weights are the direction cosines

of the fitted property vector, The higher the weight, the smaller the

angle between the fitted vector and an axis.

It must be remembered that this multiple regression analysis is

only useful for the specific interpretation of a given representation.

We do not wish to label dimensions 1n the same sense as this is done

in factor analysis, A similar orientation of a property vector and a

reference axis guides the interpretation of that axis but does not explain

an underlying dimension per se.

The axis is not uniquely oriented and might correspond to another

vector if the reference axes were rotated. Moreover, not all potentially

important properties have been measured, and the mere association of a

property and an axis certainly does not provide a causal explanation.

Thus, the spatial representations presented to illustrate the results

of this methodology are interpreted only in terms of the reference axes

shown, not in terms of the latent nature of the dimensions.

Illustrative data

As a first application of this methodology, we chose the Depart-

ment of Business Administration at the University of Illinois. It was

felt that our experience in this organization (the first two authors

were faculty members and the last a graduate student) would facilitate
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interpretation of the results, especially in this first application.

Although we have subsequently employed the methodology in a number of

field settings, the University data still provides a convenient illus-

tration. A more detailed presentation of the results of this study is

given in Calder, Rowland, leblebici, and Harlow (in preparation). As

with most academic departments, this organization has a "flat" formal

structure. Fioure 2 provides a chart of the codified formal structure.

Insert Figure 2 about here

The principal aspects relate to academic specialization and rank. The

letters shown on this chart stand for the individuals serving as

stimuli. The same set of people participated as subjects. Approximately

ten percent of the people in the department were randomly excluded from

the study in order to reduce the number of stimulus comparisons.

Hierarchical clustering o~ the rank order correlation matrix

giving the assocation between each pair of subjects' rankings was per-

formed to determine which subjects ould be grouped together. The two

largest clusters found were the following:

Group 1 contained individuals 8, C, E, H, J, K, L. M, N, 0,

Q, R, and 5.

Group 2 contained individuals F and G.

(Individuals A, D, I, P, and T were not included in the

clusters selected.)

The RMS aggregate similarity matricies for the Total Group, Group 1, and

Group 2 as well as the five nonaggregated matricies for the individuals

not entering clusters served as the basis for further analyses. For

clarity of presentation, the results for only the aggregate data will

be discussed.
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Consideration of the stress values of the M.DS solutions in two,

three, four, and five dimensions , : well as the other criteria des-

cribed above, led to a decision to employ a three dimensional repre-

sentation of the University data. Figure 3 displays this representation

for the data aggregated over all of the subjects (Total Group), It is

included for purposes of comparison,. Figures 4 and 5 contain the

representations for Group 1 and Group 2 respectively. (These graphs

were produced by a computer procedure due to R. Ray of the University

of Illinois' Center for Advanced Computation.)

Insert Figures 3, 4, and 5 about here

Inspection of the three configurations reveals that they are

clearly different. The Total Group is similar to Group 1, not sur-

prisingly, since it is based to a large extent on common data. There

are, however,, differences , indicating the value of clustering subjects.

The two subjects comprising Group II seem, to be much less differentiated

in their perceptions than those in roup 1. Indeed, vihen the same

scale is used for both graphs, the representation shown in Figure 5

seems to collapse around the origin of the space. Since a uniform

stretching of this scale is permissible, it is possible to redraw this

representation to reveal the distances between stimuli (see Figure 6).

Insert Figure 6 about here

Focusing first on Group 1, compare the structure shown in Figure

4 with the codified formal structure in Figure 2. Notice that the four

areas of academic specialization seem to be ordered along the second

dimension. The external property variables listed in Table 1 provide
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Insert Table 1 about her*

an additional source of interpretation. The multiple correlation

between each property variable and projections on the three dimensions

indicates the maximum correlation between a fitted property vector and

values of the property variable. Table 1 reveals that only two of

these correlations are nonsignificant, familiarity with a stimulus

person and the orthodoxy of his life style. The hiahest correlation

is with a question regarding a person's interest in behavioral research,

ranging from none to extremely behavioral. Other high correlations

were obtained for a conservative-liberal continuum, career potential,

interest in quantitative research, etc.

These correlations demonstrate that the obtained space does predict

certain unidimensiona't judgments made by the subjects. Along with the

direction cosines given in Table 1, they also help with the Interpre-

tation of the reference axes shown in Figure 4, The first dimension

is very similar in orientation to the fitted property of power and, to

a lesser extent, professional status and activity. Interpretation of

the second dimension is less clear. Conservative vs. liberal views,

amount of social contact, and interest in research all appear relevant.

These properties are consistent with our earlier observation that the

four functional units of the codified formal structure are ordered

along this axis. Organizational behavior faculty are perceived as

more research oriented than marketing faculty, and marketing faculty

more so than management science faculty. The same ordering would seem

to apply to social contact and conservative vs. liberal views, with

management science faculty being perceived as more conservative and
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having less social contact. The third dimension is most similar in

orientation to perceived interest in teaching and,, to a lesser extent,

with quantitative focus, faculty at the too of figure 4 being more

interested in teaching and less quantitative.

The results of a hierarchical clustering analysis for Group 1 is

presented in Figure 7. The people connected by X's at each level form

Insert Fioure 7 about here

clusters. Significant clusters (p < .05) have a line drawn through

the X's. One significant cluster contains [G, I, L, M] and is part of

the larger cluster [D, G, I, L, M]. This cluster includes all but one

of the management science group. Interestingly enough, members of this

group would probably dispute the inclusion of K in their group. Another

significant cluster contains [A, H, J, 0, R, 7] which is cart of the

larger cluster [E, P, Q, A, H, J, S R s T] 9 and this is part of [F, N,

S, E, P, Q, A, H, J, S R, T], Although the meaning of these hier-

archical levels is not readily apparent, the fact that they can easily

be embedded in the dimensional space is encouraging. The largest

cluster contains all but one of the organizational behavior and mar-

keting faculty. This analysis reinforces our interpretation of the

second dimension as reflecting perceived differences in the subunits

of the organization.

In completing our examination of Group I, some attention should

be given to property vectors which have high multiple correlations

but are not aligned with a reference axis. Career potential is similar

in orientation to the first and second axes, with individual being

high on this property. Likeability is more oriented toward the second



and third axes, with individual J being high on this property. The best

fitting property vector, perceived emphasis on behavioral research, runs

diagonally through the configuration with organizational behavior and

marketing faculty being more behavioral than management science. There

is a diagonal orientation for applied interests too, with individual K

being high on this property.

The same multiple regression analyses were performed for Group 2

(see Figure 6). For the external property variables, only two signi-

ficant multiple correlations were obtained. These were for quantiative

focus and interest in behavioral research. The resulting property

vectors were not aligned closely with any of the reference axes. In

addition, the hierarchical clustering analysis gave a similar pattern

of results. Only one significant cluster was obtained and this in-

cluded sixteen individuals. Only D, G, L, and T were excluded from

the cluster, these individuals having extreme values in the MDS con-

figuration too. This supports our earlier conclusion that the two

individuals in Group 2 (F and G) are relatively less differentiated in

their perceptions than those in Group 1.

The representations of organizational social structure developed

in these analyses lead directly to substantive implications. From a

theoretical point of view, the mirrowing of the functional areas of

specialization in the representation for Group 1 is intriguing. The

codified formal structure is clearly reflected in individuals' per-

ceptions of each other. Of relevance, too, are teaching Interest,

quantitative focus, and other more formal characteristics relating to

the work performed. The importance of power and status is also apparent

as well as other informal characteristics such as social contact. These
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results bear out our argument that both formal and Informal factors are

integrated Into the social structure. Moreover, the structure obtained

is similar to the one generated for the L. L. Thurstone Psychometric

Laboratory by Jones and Young (1971, 1972). Since the reference axes

yielded by their method were unique, they sought to label the dimen-

sions obtained, calling them status, professional interests, and

political persuasion. These characteristics correspond to several of

the properties found to be important in the present study.

From a design point of view, our results suggest that the codified

formal structure may have some unintended effects in this organization.

There seems to be something of a gap between the organizational

behavior and marketing faculty and the management science faulty.

There are two other Immediate observations. One is that several In-

dividuals are perceived by Group 1 as different from most people in

their unit or even in the organization. The second is that the In-

dividuals in Group 2 are clearly somewhat out of touch with the

majority's view of the department. All three of these could have im-

plications for the performance of the organization. Our purpose here

is not to pursue such an analysis, but hopefully to suggest the rich-

ness of the kind of information yielded by the methodology.

Some Methodological Issues

In completing our overview of this MDS methodology, we should

return to a few Issues for more careful attention. It should be empha-

sized that there are many far from settled questions, and these need

to be explored by further research.
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The task for subjects

One vital issue concerns the task posed to subjects for the collec-

tion of data. This problem must be addressed in terms of the meaning-

fulness of the task for subjects and its efficiency as a data collection

device. As previously discussed, the main advantage of simply asking

subjects to make overall similarity judgments is that subjects are not

biased toward any specific criteria. Instructions to judge "similarity,"

however, inevitably entail some ambiguity. Subjects typically request

clarification, and may be frustrated by evasive answers. Even the con-

cept of similarity is not as clear as it might first appear. It is

possible, for instance, for two individuals to be so different that

they are similar. They may be similar in that both are deviates, but

perhaps different kinds of deviates. How does a subject judge their

similarity? We can argue, of course, that he makes his judgment

according to how he perceived people, and that this is precisely what

we wish. But such ambiguity is still a potential source of error

variance.

There are other ways of collecting similarity data besides requiring

judgments of similarity. There are various construction methods in

which the subject is asked to do something, such as draw a graph

(Fillenbaum and Rapoport, 1971), from which rankings of the proximity

of people can be obtained. Plus there is always the possibility of

deriving similarity measures from ether data. Uhile similarity judg-

ments are appealing in their lack of bias, it would be useful to compare

the results of different methods.

In terms of efficiency „ the method of paired-comparisons has

severe limitations, requiring each subject to make some N(N-l)/2



judgments. Subjects in our faculty study made 190 comoarlsonSj which

is probably approaching the upper limit sot by boredom or fatigue.

Other techniques, using derived measures 9 offer the possibility of

sidestepping this limitation.

Selection of stimulus people

Care is required in selecting the domain of people under study,

There are practical limitations on the number of pairs of people for

which similarity judgments can be obtained, and limits on the number

of stimuli which can be scaled by existing procedures. The stimulus

domain is constrained by the boundaries of the organization, but this

often includes more people than can be handled as stimuli. Our solu-

tion to this in the faculty study was simply to eliminate a few indi-

viduals on a random basis. The assumption being that the obtained

representations would be so overdetermined as no^; to be highly sensi-

tive to these omissions. The appropriateness of this assumption depends

heavily on the organization being studied and the purpose of the study.

Some organizations may be so complex that even leaving out one or two

people would yield a different picture of social structure.

Aside from sheer size, the most important factor In selecting a

domain of people is whether they form a coherent set. By coherent set

we mean there should be some reason for believing that a structural

pattern exists in the relationships between the people. The reason

underlying our selection of domains has been the codified formal struc-

ture. Since our methodology is going to yield a_ structural represen-

tation, no matter what, we must have a basis for believing that one

exists and an idea of what it involves.
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Where the stimulus domain exceeds, say, twenty-five people, the

present methodology is just not applicable. This is not as restrictive

as it may sound, The methodology is not limited to small groups con-

fined to one part of the organization. For instance, in investigating

a very large organization, we used department heads and assistant

department heads as stimuli. These individuals formed a coherent set

in terms of the codified formal structure, and yet spanned the entire

organization.

Individual differences

Two general approaches can be taken to individual differences in

the application of MDS procedures. Subjects may be partitioned into

groups for separate analyses, or an attempt may be made to incorporate

the individual differences directly into the scaling model. The INDSCAL

model developed by Carroll and Chang (1970), and used by Jones and

Young (1971, 1972) in the study discussed earlier, is an example of

the latter approach. This model assumes that a common stimulus space

of r_ dimensions underlies the judgments of subjects. Individual

differences are accounted for by differential weighting of the common

dimensions by subjects. The problem with this method is that it may

require a solution in too many dimensions in order to be sure of cap-

turing important individual differences. Unless there is some reason

to suspect a high degree of commonality in the dimensions employed, the

approach of partitioning subjects before scaling seems to us more

appropriate.

Perhaps the most widely used technique for partitioning subjects

is the "points of view" analysis developed by Tucker and Messick (1963).

A matrix of stimulus pairs and subjects serves as input to this



procedure. Factor analysis of this matrix yields groups of people who

are similar in their judgment of the stimulus pairs, who, in other words,

have similar points of view. The method of dealing with individual

differences employed in our studies is obviously similar. Instead of

factor analyzing the matrix of rank order correlations, however, a

cluster analysis was performed. The cluster analysis seems preferable

in view of certain criticisms of the points of view analysis (Ross,

1966) and because it is, unlike points of view analysis, a nonmetric

procedure.

The fact remains that our procedure of clustering the rank order

correlation matrix is not very powerful. Techniques are needed for

determining which dimensions subjects have in common and which they

do not in terms of a croup representation.

Dimensions and properties

As previously discussed, the number of dimensions chosen for a

representation of social structure has more to do with the techniques

employed and our ability to comprehend the results than with any

intrinsic dimensionality. Our methodology does not provide evidence

about all of the many social relations possible in a setting. The

objective is to discover only the most important relations. The

advance over previous research lies in the ability to detect structural

patterns other than ranking or grouping people along a single con-

tinuum.

No attempt as such has been made to label the dimensions obtained,

since they are not unique. Perhaps it is best to think of dimensionality

as the degree to which the data have been compressed. The search for

structure takes place within a given set of dimensions. Through the
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use of external property variables, visual inspection, and clustering,

one attempts to find patterns. The reference axes are of particular

interest since they are oriented so as to provide maximum interpreta-

bility, in the particular sense of a varimax rotation. But the

direction of other vectors in the space is important too.

It is possible, of course, to pass anv number of vectors through

the space, A crucial problem which must be addressed by further work

has to do with the causality of these outside variables. The inter-

correlation between the variables is such that a general direction in

the space may be associated with many variables. This association will

be spurious for some though. In Figure 4, for instance, the axis

denoting the second dimension is similar in orientation to conserva-

tive vs. liberal views, social contact, and interest in research.

But one suspects that what is being represented is simply the functional

divisions of specialization in the organization. This specialization

in turn happens to be correlated with many other things, from aspects

of that specialization (e.g,, interest in research) to ecological

covariates (e.g., social contact). Likewise, the second dimension

axis is associated with interest in teaching and a quantitative focus.

The latter is probably due to the perception that quantitative faculty

are poorer teachers. If true, the structural pattern should be inter-

preted in terms of teaching interest, not quantitative focus.

A simple demonstration of predictive ability between a multi-

dimensional space and a unidimensional property judgment is not enough.

Attention must be given to the underlying causality for correct inter-

pretation. The application of causal models night be a fruitful

approach.
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MPS representati ons as structural inscriptions

At the outset of this paper, v nted out that any structure

consists not only of elements but relations between elements. We feel

that one of the chief advantages of an MDS representation lies in its

treatment of relations. At least for interpersonal perception, it is

probably best to think in terns of a single relation between people.

There are not separate relations of task specialization, likinq, status,

and so on. People are perceived to be more or less related, this

relation being affected by many factors such as likinq, etc.

Although this treatment of relations is conceptually appealing,

we must exercise some caution with the present methodology. Since the

dimensions themselves are not interpreted, the evaluation of the imoor-

tance of various factors for a relation becomes more difficult.

Conclusions

The methodology discussed in this paper has two main strengths as

a tool for organizational design. One is that it attempts to detect

structure without the potentially biasing effects of a priori hypotheses.

Patterns are revealed by subjects' own judgments. The other is that

it provides a visual source of comparison (if three or fewer dimensions

are used). A representation of a given social structure can thus

serve as a point of reference. It can be compared to the codified

formal structure or with representations of other organizations.

Repeated applications can be used to monitor the effects of change

programs over time. Finally, a representation might even be used as

an agent of change by showing it to the individuals in the organiza-

tion.
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Table 1

Results of the Multiple Regression
Analysis for Group 1

Multiple
Correlation F

Direction Cosines

Property Variable Axis I Axis II Axis III

1. Familiarity .39 < 1 -.31 -.35 .88

2. Professional status .81 10.34** -.89 .07 -.43

3. Power .76 7.19** -.96 .23 -.12

4. Active .62 3.40* -.93 .04 .36

5. Interest in teaching .76 7.12** .22 .25 .94

6. Interest in research .89 20.87** -.28 -.85 -.45

7. Quantitative .86 14.79** .41 -.34 -.84

8. Behavioral ly oriented .95 52.94** -.53 -.65 .54

9. Applied .86 15.85** -.42 .56 .70

10. Social contact .69 4.97* -.37 -.92 -.12

11. Orthodox life style .57 2.62 -.25 .55 .79

12. Conservative-liberal .91 25.06** -.08 -.98 -.20

13. Likeable .68 4.72* -.15 -.64 .75

14. Career potential .90 21.84** -.77 -.60 -.23

*p < .05, df = 3/16.

**p < .01, df = 3/16.



Figure Captions

Figure 1. A flow diagram of the methodology.

Figure 2. The codified formal structure (each letter represents a

faculty member).

Figure 3. MDS representation for the Total Group.

Figure 4. MDS representation for Group 1.

Figure 5. MDS representation for Group 2.

Figure 6. MDS representation for Group 2 with expanded scale.

Figure 7. Cluster analysis for Group 1 (HCS, diameter method).
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Figure 1. Flow diagram of methodology.
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Figure 3. MDS representation for the Total Group,



Figure 4. MDS representation for Group 1.



Figure 5. MDS representation for Group 2,



Figure 6. MDS representation for Group 2 with expanded scale.
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Figure 7. Cluster Analysis for Group 1

(HCS, diameter method).
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