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Introduction

The Center for Advanced Computation of the University of

Illinois at Urbana-Champaign is preparing a three year research plan to

develop network data management and resource sharing technology for

application in the World Wide Military Command and Control System (WWMCCS)

intercomputer network. This work is supported by the Joint Technical

Support Activity of the Defense Communications Agency.

In order to provide a better understanding of several research

areas of particular importance to WWMCCS, we have carried out four pre-

liminary research studies. These are in the areas of

1) automatic clustering and partitioning,

2) resilient protocols,

3) automated backups, and

4) intelligent terminals; i.e., terminal resident processing.

This report contains the working papers which describe the four studies

and their results.

In these preliminary studies, we have made a particular effort

to identify promising approaches, unpromising approaches, potential

difficulties, and technology interdependencies. The primary goal was to

provide input to the three year research plan rather than to perform the

research which will be a part of that plan. The short time available

did not allow us to pursue the research studies in the depth required to

answer questions definitively. Thus our conclusions are necessarily

tentative. We do, however, feel that we have achieved the better

understanding that was the goal of these studies.
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Dynamic Data Clustering and Partitioning

Summary

The Problem . Data base systems traditionally store records of

data in large physical blocks. Each I/O operation transfers a whole

block. Usually, only a few of the records in a block are actually used

to answer a query. Of the usable records, only a few of the fields may

be needed. As a result, very little of the data transferred by a given

I/O operation is utilized for the query (l%-5% utilization is common)

.

Furthermore, starting and terminating I/O operations is 50% of the CPU

load in the average ADP shop. The total effect of low data utilization

is to sharply increase response time (the DMS is I/O bound waiting for

useless data to be transferred) and also to increase CPU time (more I/O

operations are required because the usable data is sparse)

.

Substantial reductions can be made in response time, CPU load,

and costs if data are physically structured on the basis of actual usage

patterns for more efficient search and retrieval. In a rapidly changing

situation, a facility for automatic, dynamic restructuring would be

invaluable.

One technique of data organization that would play an im-

portant role in any such facility is data clustering or partitioning .

These two terms describe roughly the same idea - the grouping together

of related data items. The difference is that clustering is from the

point of view of combining individual items (or small groups of items)

,

while partitioning is from the point of view of subdividing a whole data

base (or large portion thereof). The important point is that large

gains may be made by subdividing the data base in such a way that the

system need only search some small portion of the data to answer a

particular query. In addition, an effective algorithm for subdivision
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Is a necessary preliminary to allocating portions of a large data base

among various memory storage devices or among various network sites.

Results of this Preliminary Study . Dynamic restructuring of

large data bases is feasible. We have examined existing algorithms for

clustering data on the basis of query patterns (i.e., grouping together

items which are frequently retrieved together) . There is a key difficulty

in applying existing algorithms to large data bases and in response to

changing query patterns. The collection of statistical data to determine

the query patterns can be overwhelming. We propose a solution to this

problem - a new technique which we call dynamic query clustering .

Although much work needs to be done on algorithmic details, guidelines

for parameter choices, etc., we feel that a foundation has been laid for

developing data clustering as an effective tool in the management of

large data bases.



Introduction

Although there have been a number of studies of techniques for

clustering data, none has been from the dynamic point of view; i.e., from

the point of view of how the data may be restructured in response to

changing usage patterns. The goal of this research study has been to

look at the currently available data clustering methods and to determine

whether it is feasible to design a dynamic approach to data clustering.

Before proceeding with a brief review of past work on data clustering,

it seems appropriate to provide the reader with at least an intuitive

idea of mathematical clustering terminology.

Clustering . Clustering is basically a geometric concept.

There is no problem in visualizing, for example, a cluster of houses.

One sees a group of houses, relatively close together, and probably

separated by some greater distance from isolated houses or other housing

clusters. This basic intuitive picture may be abstracted to a graph of

points in a plane, as shown below.
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Intuitively, the graph shows two clusters. For clarity, we have encircled'

these and labeled them A and B.

Now any algorithm for determining clusters begins simply with

the points, specified by their coordinates, and a definition of a metric

or distance measure (e.g., the usual Euclidean distance in the plane).

Points are then assigned iteratively to clusters until a static, con-

sistent picture emerges. For example, the nearest-centroid-type algorithm

run something like the following. An arbitrary number of clusters and

proposed cluster centroids (in the usual geometric sense) are chosen.

In the figure above, suppose we choose the points labeled '1' and '2' as

centroids. All points are then assigned to the cluster having the

nearest centroid. Notice that this assigns one or two points from

"obvious" cluster A to cluster B. But now the centroids of the clusters

thus far obtained are computed. The centroids for both clusters shift

left; a reassignment of the points will leave us with clusters A and B

as drawn. A repetition of the centroid computation and point assignment

cycle will show no change, and the algorithm terminates. Many variations

on this simple scheme are possible; for a readable, comprehensive discussia

of clustering algorithms, see [Anderberg, 1973].

Clustering for Document Retrieval . Much of the past work on

data clustering has been done in the context of document retrieval. In

this context, one usually wishes to retrieve a whole list of documents,

all those pertaining to a certain set of key words or otherwise having

some prescribed attributes. Ordinarily it is not required that the

retrieval set be perfect; i.e., a good system may overlook some relevant

documents while it retrieves other documents peripheral to the interests

of the person making the request. It is also reasonable that a document

retrieval system be static; that is, items and query types change sufficieti
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slowly that an optimal organization may be selected a. priori and changed

only at long time intervals, if ever.

The usual approach to document retrieval runs somewhat as

follows. (See, for example, [Jardine and van Rijsbergen, 1971], [van

Rijsbergen, 1971], and [van Rijsbergen, 1974].) Associated with each

document is a list of relevant keywords. A matrix M is constructed

which indicates which documents have which keywords. That is, element

M . of M is defined by

M. , = 1, if keyword i is associated with document j ;

M. . = 0, otherwise.

The jth column of this matrix is then a binary vector which in a sense

describes the content of document j . Documents with similar content are

then clustered together. (For a discussion of clustering metrics for

binary vectors, see [Anderberg, 1973].) A query, or retrieval request,

is then matched against cluster representatives (vectors describing a

typical, or average, member of each cluster), and the whole cluster or

clusters corresponding to the closest match are returned.

Clustering based on Query Data . Recently, suggestions have

been made that clustering be based not on a, priori data characteristics

but on observed queries. In this way items frequently retrieved to-

gether may be grouped together, irrespective of their content. Casey

[1973] defines a matrix Q as follows:

Q, . = 1, if query i retrieves item j;

Q. . = 0, otherwise.
11

The jth column of Q is a response pattern, or binary vector indicating

by which queries item j is retrieved. Items are now readily clustered

according to the closeness or similarity of their response patterns.



The algorithm used may be identical to one used for document clustering

on the basis of keywords; only the meaning of the binary vectors assoc-

iated with the data have been changed.

Clustering on the basis of response patterns has the potential

for being useful for dynamic structuring. Queries can be monitored over

some time period, and a matrix Q generated. The data can then be organ-

ized (or reorganized) on the basis of clusters obtained from an analysis

of Q. Such reorganization, if done periodically, should respond well to

changes in types of queries and retrieval requests.

The problem with using Casey's matrix Q for dynamic restructur-
,

a
ing is that Q is unmanageably large for even moderate-sized data bases

and a query set big enough to be statistically significant. In the

preliminary research effort, we have therefore concentrated on determin-

ing whether a more practical variation on this procedure can be devised.

The Research Study

Background Considerations . Careful consideration convinced us

that Casey's Q-matrix approach to data clustering is basically sound.

The problem is to accumulate equivalent information without storing and

handling the gigantic Q-matrix itself. We found the key to solving this

problem in a four-year-old paper [Denning and Eisenstein, 1971] that has

somehow not made nearly the impact on computer systems analysis that it

should have. Denning and Eisenstein propose that sequential statistical

estimation algorithms, well-known in other contexts, should be used for

computer performance monitoring problems. They consider a sequence of

observed events for which certain statistical properties are to be

deduced. They emphasize that "the estimates should be formed sequen-

tially and should involve as little storage and overhead as possible.

10



That way performance evaluation can be done on-line with little disrup-

tion of the main operation." In our case the observed events are the

queries and the items retrieved in response to them; essentially, the

rows of Q. We wish, therefore, to collect statistical information on

the queries as they arrive in the system.

Having discarded the computation of a single "average query"

as being relatively useless for our purposes, we hit on the idea of

dynamically clustering the queries on the basis of distances between

rows of Q. In this scheme, each query is added to the appropriate old

cluster (or used as the nucleus of a new cluster) as it is entered into

the system. In this way a good statistical summary of query data is

accumulated as the system is being used. The discussion below will

clarify the scheme.

The Dynamic Query Clustering Algorithm . Let q . be the i row

of Q; i.e., the binary vector indicating the set of items retrieved by

the query i. Our goal is to generate a set of query patterns p , p , .

. . . from the observed queries q , q , . . . . To do this we propose

that vectors q. be clustered and the cluster "centroids" used as query

patterns. One then does not need to store the cluster members them-

selves but only the patterns p. and the number (c, ) of queries which

have been incorporated into cluster i. The clustering scheme we suggest

is of the "nearest centroid" type, in which each vector in turn is added

to the cluster whose centroid is nearest. Following each addition, the

cluster centroid is recomputed.

For the distance ||q. -
q.|l between two vectors we propose

11



Notice that this is very efficient to compute; for binary vectors it

simply reduces to the familiar Hamming distance. Since clustering is to

be done dynamically, no patterns (centroids) are assumed a priori . Some

way to start new clusters is therefore needed. To do this, we suggest

choosing a parameter D and specifying that any query vector farther than

D from all previous centroids should begin a new cluster.

Monitoring the queries q , q , . . . .as they appear, one may

then proceed as follows:

1. Let p = q^ . Let the associated query count c = 1.

2. Compute
|

|q - p
|

1= d. If d^D, then add q- to the first

cluster. To do this, set c = 2, and recompute p = (q + q )/2.

If d>D, set P2 = q , c™ = 1.

3. For i = 3, 4, . . . : Compute d. e|| q. - p.|j, j = 1, 2,

. . . , n, where n is the number of query patterns in the current list.

If d.:^D for some j, add q. to cluster j, updating the listing of query

pattern j according to

p.' = (c.p. + q.)/(c. + 1)
J 2 3 1 J

(p.', c' replace p., c. in the listing.)

If more than one value of j qualifies, choose the cluster for

which d. is smallest. If d, > D for all j, then set p , -,
= q . ,

J J "^n + 1 ^1'

c
. T

= 1, and increase the pattern counter n by one.
n + 1

After a certain number of queries have been monitored, a list

of query patterns p , . . . , p and associated counts c , . . . , c will

have been generated. This information can then be used in any convenient

way to cluster the data items. It is important to notice that real

statistical information has been generated. Component k of query pattern

12



i Is the proportion of the time that a query of type i has retrieved

item k, and hence is the probability (or expected value) of retrieval of

item k by a query of type i in future.

Example . The following example should help to clarify the

process. Suppose that a file of ten records is to be subdivided into

clusters. Let D = 3, and suppose that the first query retrieves records

number 1 and 4. Then step 1 of the algorithm produces

V-^ = \ = (1> 0. 0, 1, 0, 0, 0, 0, 0, 0) and c^ = 1.

Now suppose that the next query retrieves records 1, 3, 4, 5, so that

q^ = (1, 0, 1, 1, 1, 0, 0, 0, 0, 0).

Then, following step 3,
|
|p^ - q

|

|
= 2, and q is added to the first

cluster. Thus

p^' = (1, 0, |, 1, |, 0, 0, 0, 0, 0) and c^' = 2.

At this point there is a single query pattern which has appeared twice,

and has expected value 1 of retrieving records 1, 4 and expected

value 1/2 of retrieving records 3, 5. Next, suppose ^r,
~ (1> 0> 0> 0>

1, 1, 1, 1, 0, 1). Computation yields
|

|p - Qo
|

| =6, and so p = q

and c„ = 1. If the next four queries observed are

q^ = (1, 1, 1, 1, 0, 0, 0, 0, 0, 1)

q^ = (0, 0, 0, 0, 1, 1, 1, 0, 0, 1)

q^ = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0)

q^ = (0, 1, 1, 1, 0, 0, 0, 0, 0, 0),

no additional patterns are generated and the query pattern list after

the first seven queries is:

3 13 1 1
V-^ = (4"' 2"' "4' ''4'' ^' ^' °' °' 4"^ ^^'^ ^1 " ^'

P2 = (|, 0, 0, 0, 1, 1, 1, ^, 0, |) and c^ = 3.

13



A Refinement; Cluster Merging . An obvious problem with the

basic clustering scheme described above is that the process may produce

too many clusters. For example, two clusters whose centers are origin-

ally far apart may grow by accretion towards one another, so that in any

overview they would appear to be a single cluster. This problem can be

readily taken care of. Simply introduce another parameter L and period-

ically compute the distances between query patterns, merging any pair

p . , p . for which lip. -p.|| ^L.

Making the Scheme Responsive: the Close-down Problem . For

dynamic clustering the query patterns should change with time. Unfor-

tunately, the statistical data collection procedure described above

closes down [Denning and Eisenstein, 1971]. This means, in our particular

case, that as the query counts c. become large the query patterns tend

to become static, since each new query is added in with weight l/c.

Periodic Initialization . One way to circumvent the close-down

problem would be to restart the data collection process occasionally

(e.g., after every T queries). Instead of starting from scratch, however,

one would probably want to save the old cluster centroids as initial

values for the new. This might be done as follows.

Choose two more parameters, a significance threshold t and a

minimal count c. For each i, compare c, with c. If c.<c, throw away

pattern p.. Otherwise save pattern p. but in binary form, with I's

replacing all components greater than t and O's replacing components

less than t. Such periodic initializing of the query pattern list will

cause the list to adapt readily to changing query patterns (e.g., in-

frequently used patterns disappear) and hence to provide a rational

basis for restructuring of the data.

14



Because of the truncations involved, this restart process must

be examined for statistical validity. We have done so and found that,

although the initialization introduces a statistical bias, the process

is asymptotically unbiased, in the sense that this bias damps out as

queries are added to the cluster.

Responsive Estimators . Denning and Eisenstein discuss several

so-called responsive estimators , or unbiased statistical estimators

which shed the effects of early observations and do not close down. The

simplest of these is the moving-window estimator , in which running

averages are computed over the preceding T observations. The parameter

T is chosen to be large enough to get good statistics, but small enough

so that the average is sensitive to expected changes. Unfortunately,

the method requires storage of the last T observations. The straight-

forward analog in our case would be a reclustering after every query

based on the last T queries. This is clearly impractical. Restarting

our dynamic clustering process from scratch every T queries would also

be a valid analog of the moving window process. We noted above, however,

that it seems to make better sense to restart with good a^ priori cluster

centers, even at the expense of introducing a small amount of bias into

the statistics.

Exponential Estimators . A type of responsive estimator known

as an exponential estimator is, however, worth careful consideration.

The idea is the following. Suppose the observations are x , x , . . . .

Our scheme for forming query patterns is equivalent to taking simple

averages of observations; i.e. computing

X, = (x + X2 + ... + X )/k.

15



Now if the expected value of each x. is x (E(x.) = x) , then E(x ) = x;

this verifies that the estimator is unbiased. Computed, as we have

suggested, recursively, the averaging process can be written:

^1 = ^1

\ = \^l
"•"

^\~\-i^^^'
for k = 2, 3,... .

This can be generalized to

^1 " ^1'

\ = K-1 -^ \(V\-1>' ^=2,3,....

An easy induction proof shows that this estimator is unbiased for any

choice of constants a^,a-,''' . (See [Denning and Eisenstein, 1971].)

An exponential estimator is one for which a, is constant; in particular,

a, = a, where 0<a<l, for all k. The exponential dropoff in the weighting

of old observations is readily seen by writing out x, :

2
X, = ax + (l-a)ax + (1-a) ax _ +• • •

= X (l-a)*^"^ + a Z (l-a)V . .

1 i=o k-i

Introduction of this type of estimator into our query clustering scheme

is straightforward. In step 3, the calculation of p! is replaced by

pi = (1-a) p. + aq. .

Choosing a is clearly a nontrivial problem. The choice must be adjusted

to the rate at which query patterns are expected to change. Too small

an a will prevent the patterns from responding well to important changes.

Too large an a will cause the patterns to change rapidly and erratically

in response to minor query fluctuations. It is important to keep in

mind that we want query patterns , which are by definition averages over

classes of individual queries. This implies that a must be kept relative]

small. Denning and Eisenstein discuss the tradeoffs involved in choosing

in some detail.

16



If an exponential estimator is used in collecting the query

data, no restart procedure is necessary and recent query counts are no

longer available for identifying patterns which should be deleted. On

the other hand, the counts c, no longer enter into the computation of

p!. It is therefore feasible to run counters which are restarted at

arbitrary regular intervals. Again, the length of time between re-

starting should depend upon how rapid the response to changing query

patterns should be.

Learning Estimators . Some of the problems which arise for an

exponential estimator can be solved by using a so-called learning

estimator . Such an estimator is defined by

^1 = ^1

(See [Denning and Eisenstein, 1971].)

The factors a may be chosen in various ways - e.g. a = a for an expo-
K. K.

nential-like estimator, or a = 1/k for an averaging estimator. The

factor p, is a learning factor defined by

P^ = a Pj^_^ + (l-a)Aj^, for k>0,

where

0<a<l, and

lo otherwise.

Notice that if successive observations are oscillating about the current

average, the factor p, grows smaller and has a damping effect on the
K.

corrections to the average. A reset procedure is necessary to keep p,

from eventually becoming so small that the estimator is no longer responsive.

17



The learning estimator is defined in the context of a sequence

of observations of a single variable. In query clustering, each ob-

servation is a vector, or set of variables. To use a learning estimator

effectively in query clustering might require that different factors p
k

be carried for each vector component, and this would probably be pro-

hibitively expensive.

Conclusions and Plans for Future Work

We feel that this preliminary research study has been highly

successful in that the query clustering technique looks very promising.

Query clustering should solve one of the key problems of data clustering;

namely, how to efficiently collect data on usage patterns on which to

base the actual clustering of the data.

Data Clustering . Notice that we have not discussed how the

data itself may be clustered or structured. How best to use the query

patterns is an obvious topic for future research. We mention in passing

that the query patterns themselves suggest an immediate clustering of

items. For each query pattern p. for which c. is sufficiently large,

one may form a cluster consisting of all those items for which the

corresponding component of p. is greater than some prescribed minimal

value. In this way sets of items which have a high probability of being

retrieved together may be physically clustered together. The clusters

formed in this way are likely to overlap. Ordinarily, redundancy is

avoided as being wasteful of space. In this case, however, the overall

efficiency of the system may be better served by occasional repetition

of items.

Other, more sophisticated, clustering techniques may also turn

out to be useful and we plan to look into the various clustering methods.

18



It is important to determine which ones are most promising for clustering

the data on the basis of query patterns. Clustering techniques are

abundant in the literature and it will require considerable investigation

to decide on the best way to proceed.

One aspect of data clustering that seems to be neglected in

the literature is the possibility of blocking the data vertically as

well as horizontally. That is, most clustering of data emphasizes the

grouping together of data items; it may be that one wants to group data

attributes as well. For example, in a personnel file, certain classes

of queries will call for salary and related financial information, while

others will call for job skills and experience. One should be able to

cluster queries on the basis of attributes retrieved as well as on the

basis of items retrieved. Queries clustered on the basis of attributes

retrieved should then provide the necessary information for vertical

blocking of the data base.

Refinement of the Query Clustering Technique . Our investiga-

tion into query clustering is only preliminary. Much needs to be done.

We have touched on several of the problems, such as how best to add

members to clusters dynamically while avoiding the statistical close-

down problem. It may also be that other clustering metrics or techniques

would work better. We have merely proposed a very simple, rapid approach,

Even if our clustering algorithm as specified turns out to be acceptable,

there remains the important question of choosing the many parameters in

the algorithm.

The values to be selected for the parameters will depend upon

a number of factors, including the use that one proposes to make of the

query data. Parameters D and L should clearly increase as the number of

19



items increases. In addition, as D and L increase (the number of items

being held constant) the number of query patterns will decrease and the

density of the query pattern vectors will increase. Whether or not this

effect is desirable depends upon the proposed application. On the other

hand, parameters c, t, and T could probably be selected without regard

to the number of items, but their effects are not independent of each

other. A relationship of the form t = rc/T, where r is a proportionality

factor in the neighborhood of unity, would seem reasonable. If a responsiv

estimator (such as the exponential estimator) is to be used, one must

decide on the parameters to be inserted into it. In short, careful

studies must be carried out to develop guidelines for precise algorithm

definition, including specification of parameters.

Tests and Simulations . Most of the questions raised above

cannot be answered without carrying out tests to determine the effects

of various parameter choices, algorithm variations, etc. Some of this

work may be done with fairly limited resources. That is, cursory con-

sideration of the obvious effects of certain choices may serve to

eliminate them from further consideration. Answering some questions '

will require simulation studies, making use of mathematical models of

the relevant processes and/or an experimental data-base simulation

system.

Cost Analyses . Clearly, extensive data restructuring will be

an expensive process. Guidelines for decisions on when to restructure,

as well as on how to restructure, will have to be developed from cost

analyses of models of the process. '

Such cost analyses can not be carried out for a clustering

algorithm in isolation but in the setting of an entire data base manage-

ment system. In a network, the data base may be assumed to be distribute'

20



The distribution of blocks of data will be based not only on the clustering

algorithm used to block the data but also on the file allocation algorithm

(including considerations such as security, data "ownership", etc.)*

The effect of any particular distribution is heavily dependent on the

entire data management system and its network environment. An overall

system model must be developed before valid cost effectiveness figures

can be generated and guidelines developed to determine when restructuring

is worthwhile.

One interesting aspect of data-structure cost that it will be

important to study is the tradeoff between retrieval cost and desired

accuracy of response. It may be that to guarantee a 100 percent accurate

response to a certain query the whole data base will need to be searched

to make sure that no relevant information has been overlooked. In other

cases, less accuracy is required and the search may be limited to a

small number of clusters. Notice that the data clustering scheme itself

enters in strongly here. For example, extensive overlapping of clusters

will allow most queries to be answered by a search of only a few clusters.

But this would be at the expense of more storage space and lengthier

searches in cases when the whole data base must be searched.

Interactions with Other Data Management Problems . As we

indicated above, data clustering can not be studied in isolation. It is

really only a small part of the whole data structuring and accessing

problem, which involves not only the problems of how to organize the

data and handle it rapidly (including the well-known tradeoff between

update and retrieval efficiency) , but also the problems of file allocation

(distribution of the data) . Most of these other problems have been more

extensively studied than has data clustering, although generally not in
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a distributed environment. It should be possible, nevertheless, to

investigate various clustering alternatives in the context of a general

data management system based on reasonably well understood principles.

If certain alternatives chosen for the data management system turn out

to have a severe effect on the guidelines for clustering, such instabil-

ities in overall system configuration will be noted for further study.

This study should, in turn, lead to improved insights into how best to

design an overall distributed data management system.
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Resilient Protocols for Computer Networks

Summary

The Problem . If large-scale computer networks are to realize

their potential usefulness to any user community, it will be necessary

for networks to be more reliable than traditional computer systems. The

reliability of the individual components (the communications processors,

the communication lines, and the hosts) is about as high as the state of

the art allows. Therefore, the burden of increasing the reliability of

the network as a whole falls on how these components are arranged and

how they communicate. Here we are concerned with the latter. Specifically

we are interested in how network communications protocols can be designed

and implemented so that they are resilient to failures and to abuse by

aberrant or malicious software. In addition, it is important that we

attempt to gauge the cost in manpower and machine resources necessary to

achieve a particular level of reliability, if solutions are to be of any

practical use. Network failures should not cause a user's data to be

corrupted or service to a user to be interrupted. Similarly, a network

application should be protected from malicious attempts by other users

to interfere with its operation. Communication protocols are at the

heart of any distributed network application. If such applications are

to be accessible and reliable to use, the protocols and their implementations

must be resilient.

Results of this Preliminary Study . Our investigations have

shown that there is little understanding of the scope of what affects

the resiliency of a protocol. There are limited techniques that can
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be used to solve some problems [Postel, 1974(b)] and others are being

explored [Sunshine, 1974]. The largest single difficulty with the prac-

tical application of these protocols is providing a lucid yet unambiguous

definition that can be used by a diverse group of people. It is argued

below that a technique for the formal specification of protocols is the

key to the ability to verify protocols (lack of deadlocks and other

conditions) and their implementations (i.e., prove the implementation

implements the protocol) . Such a technique could be used to avoid

errors of interpretation when the protocol is analyzed or implemented,

or an implementation is tested or verified. Preliminary indications

seem to imply that fairly resilient designs can be no more expensive (in

both manpower and machine resources) than a non-resilient protocol; but

retrofitting existing protocols to be resilient can be much more expensive

than the cost of the original protocol implementation. It also may be

possible to adapt present methodologies so that estimates of the manpower

and resource requirements needed to implement the protocol can be made

from a formal specification.
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Introduction

The Need for Resiliency . Protocols of a resource sharing

computer network are the mortar that binds computers and communications

media Into a cohesive whole capable of resource sharing. To most people,

a protocol Is a set of rules governing conversation. They are usually

used In formal situations where there are many people wishing to speak

(perhaps at once) and/or there Is a chance of misunderstanding. In a

computer network, communication protocols are used for these reasons and

also to provide a common ground for dialogue. Crocker et al. [1972]

define a computer network protocol as follows: "When we have two processes

facing each other across some communication link, the protocol Is the

set of their agreements on the format and relative timing of messages to

be exchanged."

The recent development of several large-scale computer net-

works has seen the design and Implementation of computer network proto-

cols of a fairly high degree of sophistication. This experience, primarily

In the ARPANET, has shown several areas where our knowledge Is lacking.

Among these areas are deadlock or race detection, logical consistency,

efficiency, and error control. As the ARPANET became more a user facility

and less a researcher's experiment it was quickly apparent that if the

network was to provide reliable service, withstand component failures

with minimum discomfort to the user community, and maintain availability,

the network protocols would have to be more resilient to failures than

previously expected. Furthermore, it is not sufficient that the protocol

be defined so that it is resilient to abuse, but it is also necessary

that the specific implementations of the protocol be resilient not only

to other protocol implementations, but also to the environment (i.e.

operating system) in which it exists. In order to get a better feel
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for what can happen if a protocol or its implementation is not resilient,

let us consider some of the less well-known pieces of ARPANET folklore.

Some ARPANET Folklore . When the new Telnet protocol was

defined in 1973, socket 23 was defined as the contact socket for testing

new Telnet implementations. When UCSD was ready to test its new imple-

mentation, it was told to try it out by using UCSB's new implementation.

UCSD connected to UCSB's socket 23 and was inundated by output from

Santa Barbara. Santa Barbara had a core dump program, not the new

Telnet, on socket 23. This example illustrates the lack of sufficient

authentication facilities in the ARPANET'S Initial Connection Protocol.

No real harm was done in the cited case, but a pirate process at UCSB,

acting like a Telnet, could have collected usercodes and passwords

[Bartelmess, 1974].

There was also a period when every time ANTS connected to

Multics, Multics crashed. The problem appeared to center around the

32
fact that ANTS sent allocates equal to 2 -1 bits. Multics tried to use

this number as a basis for local buffer allocation and a bug in the

memory allocation system caused it to die. As another example, at one

time tip's only stored the low order 16-bits of a 32-bit allocation.

This caused a deadlock situation when hosts (such as Multics) sent

1 fi

initial allocations greater than 2 -1 bits [Padlipsky, 1975]. For

16
example, if Multics sent an allocate of 2 bits the TIP would have

thought it was an allocate of zero bits and no data would be sent.

We could cite many, many more such pieces of folklore, but

these should serve to show what pitfalls confront the designer and

implementor of network protocols. As these examples illustrate, handling

various error cases in the definition of the protocol is only a first
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step in providing resiliency. It is also required that the protocol be

free of inconsistencies (there were some in FTP), that implementations

be defensively coded to avoid aberrant behavior when confronted with

"impossible" cases, and that implementations be shown to faithfully

implement the protocols.

We hope that the above discussion has left the reader with a

fairly good feel for what a resilient protocol might have to be. Let

us try to pin down the idea a little tighter.

Aspects of Resiliency . The situation can be pictured as shown

in Figure 1. Clearly we are interested in two main considerations, the

resiliency of the protocol itself and that of its implementation.

Considering the resiliency of one without the other would be a useless

exercise, since the reliable operation of the whole depends on the

measures taken in both to assure resiliency. There are essentially

three aspects of resiliency that must be considered. First is the

logical resiliency of the protocol. Is it free of deadlocks, races, and

logical inconsistencies? Is the protocol capable of supporting the

dialogue necessary to accomplish its purpose? A resilient protocol must

also address issues of communications resiliency . In most practical

situations, the dialogue between the two automata is carried through an

error-prone communications medium (such as a phone line) . Thus a protocol

must include rules for detecting and correcting messages damaged in

transmission. The techniques of error coding are fairly well understood

and will not be dealt with in any detail here. We simply note that any

level of reliability may be achieved at the cost of decreased bandwidth.

However, given that one will accept one error in every 10 messages or

allow a message with n errors to be undetected, the implementation must

consider what can happen when an error is not detected. This brings us

P
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to the more general problem of implementation resiliency . The implementa-

tion of a protocol must be able to detect, correct, or at least protect

itself from errors induced by the communications medium or by other

aberrant or malicious protocol implementations.

Some insight into the nature of a resilient protocol imple-

mentation can be gained by considering it as a translator translating

the common language of the protocol to the local representation. Figure

1 illustrates this situation. The input and output sets denoted in the

figure are the sets of all possible inputs and outputs that may be sent

on that channel. Typically only a subset of each of these constitutes

legal inputs or outputs of the protocol implementation. A sufficient

condition for an implementation to be resilient might be (by definition)

that it map any input into a legal output and next state. It is then

necessary to define what classes of next states and outputs illegal

inputs should be mapped to. More work on this sort of a characterization

may lead to a better understanding of the problems discussed here.

State of the Art . Some work has been done that may be applied

to the realization of resilient protocols. As mentioned above, most of

the problems of communications resiliency are well understood and any

degree of reliability may be attained as long as the price is acceptable.

The problems of logical resiliency are less well understood,

however. Postel [1974(b)] applied graph theoretic techniques to protocols

to detect deadlock and race conditions in them. He found that even a

simple but practical protocol had a graph of such complexity that analysis

was difficult and expensive. He then proposed the use of graph modules

to simplify these graphs and make them more tractable to analysis.

However, the gain in simplicity results in a loss of much of the parallel
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operation of the protocol. One must, therefore, assume, although Postel

does not mention it explicitly, that the process of applying the graph

module technique to simplify the analysis changes the definition of the

protocol. Nevertheless, within these restrictions, this technique could

be used to detect deadlocks and races .

Deadlocks and races do not, of course, cover all of the difficul-

ties that fall under the heading of logical resiliency. Another problem

is detecting lost or duplicate messages . Sunshine [1974] at Stanford

has recently begun working on this problem. He is investigating a class

of protocols known as Positive Acknowledgement/Retransmission (PAR) and

Sequencing PAR (SPAR) protocols. He shows that as long as the protocol

implementations are operating correctly a PAR or SPAR protocol can

detect lost or duplicate messages, but a failure at either end (say due

to a system crash) can cause messages to be lost or duplicates generated.

The major difficulty with problems of this kind is that the

domain in which these phenomena arise is not sufficiently understood for

prediction of what can happen. To date, identification of the pitfalls

and how they can arise has proceeded primarily by a process of enumeration.

This makes it very difficult to discern when the end of the list has «

been reached. Until a better understanding of the domain (or environment)

from which these pitfalls can be predicted is available, there is little

hope of being able to guarantee that the end of the list has been reached.

The techniques to aid in verifying implementation resiliency

are also in an early stage of development. There are several possi-

bilities in the offing. In the long term it may be possible to use

program proving systems to prove that an implementation really does

implement the protocol. (For a recent survey of the state of the art in
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program proving see [Elpas et al., 1972].) One of the primary difficulties

confronting the use of program provers is that they must be told what

the program is supposed to do. This description may actually be more

complicated (and therefore more prone to errors) than the program itself.

Another possibility that is practical in the short term and more pragmatic

in its approach is to develop a battery of tests and program exercisers

to be used to verify that an implementation works. Such tests could be

developed and applied by a network licensing service similar to the

Performance Measurement Laboratory described by Padlipsky et al. [1974].

Indeed there is a place for such a service in the long term in any large

computer network to provide testing and analysis functions for the net

and to ensure that protocols are obeyed.

The research areas relevant to resilient protocol development

are at a fairly early stage of investigation. However, it appears that

some of the major problem areas have been outlined and initial work has

been done that is applicable to the design of resilient communications

protocols.

Purpose of the Present Study . The purpose of the present

study is to gain a better understanding of what makes a protocol and its

implementation resilient and to determine what the major research problems

are and which problems can be solved to provide the greatest benefit.

Keeping these general goals in mind, we have analyzed an existing protocol

in an attempt to find out what general statements can be made about

resilient protocols and how research in other areas may facilitate the

development of resilient protocols. We have also considered, insofar as

possible, the relative cost of such protocols and the costs of retrofitting

existing protocols to make them resilient.
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The Research Study

Since there is no general understanding of what causes a

protocol to not be resilient, our first task was to try to gain a

better grasp of this aspect of the problem. Our approach has been to

take a protocol (in this case the ARPANET FTP) and carefully analyze it,

considering each part of it and how it could be made to fail. Clearly

this enumeration approach will not find all the ways the protocol or an

implementation can be made to fail, but it should provide sufficient

information on which generalizations can be based. The ARPANET File

Transfer Protocol (FTP) was chosen for this study because we believed it

to be sufficiently complex to show up most of the major kinds of problems

that can arise and yet small enough to be analyzed in the short amount

of time available to us. Also the kind of services that FTP performs

should make the discussion accessible to a larger audience and not

require our getting into the obscurities of communications theory to

illustrate a point. There are some problems that this analysis will not

address, because of the nature of FTP's; therefore, we feel that in

further research a careful analysis of host-host level protocols should

be made.

In what follows we will first discuss the assumptions we made,

why they are valid, and under what conditions they may be relaxed. We

will then give a brief overview of the ARPANET FTP for those who may not

be familar with it. The last part of this section contains a discussion

of a few of the more important resiliency problems found in the analysis.

A complete list of the possible problems uncovered by this work may be

found in Appendix 2 to this report.

Assumptions . In doing this analysis we assumed first of all

that all underlying protocols used by FTP (i.e., Telnet, host-host.
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etc.) were resilient. It was felt that without this assumption, the

complexity of the problem would increase immensely and perhaps tend to

blur major points. However, since one is often confronted with the

problem of not being able to change lower-level software that must be

built on, it is our feeling that the implications of relaxing this

assumption should be addressed in detail at a later time. But attacking

this problem will depend on a better formal understanding of the nature

of resilient protocols.

Our second assumption was that a particular implementation of

the protocol may assume that all errors that it may be confronted with

are due to the communications media or the remote implementation with

which it is corresponding - not to errors in itself. The only exception

to this rather solipsistic assumption is that the implementation may

wish to perform error checks on its internal tables to protect itself

from local memory or disk errors. Errors in the local implementation

can arise in two ways: bugs in the code or failure of the hardware.

Some extraordinary conditions can be detected by consistency checks on

operations. However, there is no guarantee that all errors can be

detected in this way. Detection of the second class of errors, except

possibly for the case previously mentioned, is not really the respon-

sibility of the protocol implementation, but of more basic fault detec-

tion parts of the host system. A recent paper by Kane and Yau [1975]

may provide a means for detecting software errors caused by either latent

bugs or hardware failure. Application of this technique to detecting

faults in a protocol implementation would require special hardware which,

without too much expense, could be attached to a minicomputer serving as

a front-end. (It is highly likely that adding such hardware to an exist-

ing medium-to-large scale machine would be rather expensive.) Kane and
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Yau show that a very high percentage of "errors" can be detected (greater

than 80%) with very little overhead (less than 15%). However, we feel

that these figures must be taken with a grain of salt. The class of

errors detected by this technique were introduced into a program at ran-

dom. It seems reasonable to assume that the kinds of errors that would

remain after normal debugging would not be randomly distributed through-

out the program and would not be caused by simple single error conditions.

Also, it is not clear if this model detects timing-dependent errors. This

approach to the problem of software fault detection holds promise, but more

work is needed for it to be applicable in a practical situation. A major

stumbling block raised by the detection of software faults, in the

context of a resilient protocol implementation, is what action should be

taken when a fault is detected. In most contexts, the program should

not be halted, since this could easily leave a user or users in a com-

promised state. There are as yet no clear solutions to this problem in

the general case.

An Overview of FTP . The File Transfer Protocol (FTP) for the

ARPANET is a protocol used to facilitate moving whole files between

hosts (including TIP's). (The discussion of FTP here is a very cursory

overview to give the reader sufficient background to understand the

results of this study. For a more detailed description see [Neigus,

1973] and [Postel, 1974a].) The requirement that FTP be usable from a

TIP has significantly affected the form of the protocol. Specifically,

it was necessary to make the protocol commands and replies both machine

and human readable. FTP is based on the concept of a Network Virtual

File System (NVFS) . It provides facilities for renaming and deleting

files and listing directories, as well as for moving files.
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An FTP session is started when the user Protocol Interpreter

(PI) initiates a Telnet connection to the FTP contact socket according

to the Initial Connection Protocol (see Figure 2). This Telnet connection

is the path used to send commands to the server and to send replies to

these commands from the server to the user PI. All of the data sent on

this connection conforms to the ARPA Telnet protocol. Basically this

means that the data is a string of ASCII characters terminated by a

carraige return-line feed (CRLF) sequence, and that the Telnet commands

(program interrupt, etc.) are implemented. After the connection is

established and the server sends a reply indicating it is ready to

accept commands from the user, the user (through the user PI) sends four

character command identifiers followed by a parameter to the server PI.

(The User Interface can provide a more sophisticated interface to the

human user and the FTP PI. Here we will speak of the actual FTP commands

that are sent on the net and not the host-specific interface.) When the

server PI receives the command it takes the action indicated by the

command and sends a reply back to the user to inform him of the success

or failure of the command. An FTP reply consists of a three digit

machine readable code which enumerates the replies and indicates the

relative success or failure of the previous command. The code is fol-

lowed by text specific to the server's system that can give more de-

tailed information for a human user. The user PI is not allowed to send

another command until the reply to the last one is received. (The one

exception to this will be detailed later.) Thus, the user and server

carry on a dialogue of commands and replies over the Telnet connection.

The FTP commands fall into three major categories; access

control, transfer parameter, and service commands. The access control
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commands enable the FTP user to log onto the remote host. The transfer

parameter commands are used prior to a data transfer command to specify

certain characteristics of the file and the mechanics of the transfer.

For instance, these commands are used to tell the server what format,

character set (if relevant), or file structure the file about to be

transferred has. These commands are also used to specify the byte size,

what "socket" the data is to be sent to and how the data is to be encoded

for transmission. The service commands allow the deletion and renaming

of files, file transfer operations (retrieve, store, and append), the

restarting of interrupted transfers, status queries, and the listing of

directories.

To do a data transfer, the necessary transfer parameter

commands are sent to the server, then, before sending the data transfer

command which specifies the file and the direction it is to be moved,

the user PI requests a listen on its data socket. The user PI then

sends the data transfer command. The server PI upon receipt of the

command requests a connection to the user's data socket and gives responsi-

bility to its Data Transfer Process (DTP) to move the file over the data

connection (see Fig. 2). During the transfer the server may receive

certain commands on the Telnet connection (status, quit, abort, etc.) to

which it must respond. Also, the server may, during the course of a

transfer, send restart replies to the user to tell the user what the

last received block of data was. This allows the transfer to be restarted

if the transfer is interrupted because of a network failure or system

crash.

The FTP also allows a user at one host to transfer a file be-

tween two other hosts, neither of which is the user's host. This is
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generally referred to as a server-server interaction and is illustrated

in Figure 3. This technique requires that the user PI open separate

Telnet connections to each of the server Pi's involved. A sequence of

commands are then exchanged to coordinate which sockets are to be used

and which server is to listen for the connection from the other. Those

interested in the details of how this feat is accomplished should consult

the protocol definition [Neigus, 1973].

Basic Findings of this Study . In this section we will discuss

a few of the resiliency problems we found in the File Transfer Protocol.

A more complete list may be found in Appendix 2. The findings presented

here are intended to serve as an illustration of what can happen.

Proper Termination . After the user PI sends a BYE or QUIT

command to the server, the user PI should be prepared to close all

network connections. Although the protocol specifies that the responsi-

bility of closing connections falls on the server, it may not do it.

For example, although the ARPANET Telnet requires that the server close

the connection after the user logs off, only a few in fact do it.

Format Inconsistencies . It is possible for many bugs to turn

up in the various formatting commands such as TYPE, BYTE, or MODE. Per-

haps the easiest to point out is that the protocol does not specify the

character set translation tables. It is very easy to generate several

different translate tables for character sets, all of which are equally

reasonable. For a more detailed discussion of these issues see Appendix

2. It may be fairly expensive to make a protocol resilient to these

kinds of errors. (Solutions would require a user and server to exchange

various test strings to convince themselves that the other was behaving

correctly.) However, for some environments these problems and others
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may be solved by more detailed specification of the protocol and/or by

having all implementations tested by a facility like the Performance

Measurement Laboratory [Padlipsky et al., 1974]. This solution requires

that the network be able to ensure that all implementations are tested

by the PML before being used with other implementations and that access

(i.e. the ability to connect) to servers is restricted to validated

processes

.

Restart . The FTP restart facility is probably the weakest

part of the entire protocol. Much of the definition of this facility is

left to the discretion of the implementors . This will undoubtedly

result in confusion over various points. Among the issues not addressed

are the security of the restart and the negotiation of the restart

point. The protocol does not specify how or even if the server is to

verify that a user attempting the restart is the same one that was

interrupted. There is also no way for the user to negotiate what the

last restart marker was in the event one end lost the last marker it was

supposed to have received. (See Appendix 2 for further discussion.)

Replies . The user PI should be prepared to receive a reply

even when it should not expect one. This event may appear to occur when

multi-line replies have format errors (see Appendix 2) . The user PI

should forward the text to the human user, if possible, and log the

event along with other relevant state information.

This gives a very brief idea of the kinds of problems that may

arise. It should be noted that the degree of resiliency and completeness

of a user implementation does not have to be as great as that of a

server implementation. A user community should be able to have a crude

implementation that provides minimal access as long as the users are
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aware of its limits and the implementation does not cause difficulties

for a server. On the other hand, a server implementation should provide

more complete facilities since it is supposed to be offering a service.

In the remainder of this paper, we will attempt to draw some meaning

from this enumeration of possible resilience problems discussed here and

in the Appendices and to indicate possible avenues of work that will

lead to a better understanding of the problems and to the ability to

develop resilient protocols.

Conclusions and Plans for Future Research

The purpose of this study has been to gain some insight into

the requirements for designing and verifying resilient protocols and

their implementations. A brief glance at the kinds of conditions (listed

above and in the Appendices) that a resilient protocol must be able to

handle will convince the reader of the great variety possible. As yet

there is very little one can do to characterize these conditions into

any sort of useful discipline. Initial attempts using automata models

lead to very general statements about which sets are mapped to which

other sets. Although these initial models help to clarify our understanding

of the problems they are of very little practical value. One point that

did seem common to many of the resiliency problems found in the analysis

was that many of the problems could have been avoided if a much more

detailed and rigorous definition of the protocol had been available.

The nature of the jargon used to describe computer operations makes

prose definitions of protocols highly susceptible to ambiguities and

misinterpretations

.

There is clearly a trade-off between cost and protocol resiliency.

The more resilient a protocol is, the more expensive in both manpower
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and computer resources it will be. As yet there are no real ideas of

exactly what the cost to resiliency ratio is. But designers are going

to have to determine what degree of resiliency is tolerable and determine

if the cost is reasonable. However, a word of caution and an argument

for overdesign is in order. Very preliminary investigations of the cost

of retrofitting protocols to make them resilient indicates that retrofitting

could require an increase in cost of at least a third over the original

protocol. This will depend, of course, on the resiliency of the original.

This estimate is based on size and manpower estimates for the proposed

solution [Kanodia, 1974] to the lost message problem in the present ARPA

Host-Host Protocol compared with estimates for the Inter-Net Protocol

[Cerf et al., 1974], which deals with the problem directly. The implementa-

tion of the Inter-Net Protocol, which handles problems of lost or duplicate

messages, appears to be no larger (and may be smaller for some hosts)

than the present Host-Host Protocol. However, retrofitting the Host-

Host Protocol to avoid this problem in any general way would require a

moderate amount of effort. The Inter-Net Protocol allows much more

efficient use of the NCP's buffering system than the extended Host-Host

Protocol. This implies that this solution would create a much greater

drain on computer resources for some systems and make full implementation

of the scheme unappealing.

Future work . This investigation has outlined several major

problem areas in the development of resilient protocols and has indicated

several avenues for future work. We will list these areas of future

work and then discuss them in greater detail:

1) analyze one or two lower level protocols
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2) develop a formal technique for specifying a protocol and a formal

system for characterizing protocols

3) investigate what general statements may be made about the action

to be taken when an error is detected

4) investigate in greater detail the problems of building resilient

protocols on top of unresilient protocols

5) investigate the possibility of using software physics techniques

[Halstead, 1972] to make estimates of manpower and computer

resource requirements for implementing protocols

6) investigate the role of a Performance Measurement Laboratory in

the testing and verification of protocol implementations

This research must be approached in some order. Clearly, 1)

and 2) must be done first and in that order, but after that the other

four items can be done in parallel or in any order an investigator

wishes to choose.

Further protocol analysis . As mentioned above many of the

more subtle resiliency problems are not found in FTP. Thus in order to

gain a better understanding of the scope of the problems involved, it is

advisable that a detailed analysis of one or two lower level protocols

(such as the Host-Host and Inter-Net) be undertaken. This analysis

would not only provide more data for characterizing resiliency problems,

but would also provide a chance for comparison of the resiliency of the

Inter Net Protocol with that of the Host-Host protocol with and without

the lost message detection extension. More detailed insight into cost

problems might thereby be gained.

Formal protocol specification . A pervading theme of this

paper has been the difficulty of concisely and unambiguously defining a
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protocol. A major source of confusion in previous protocol development

has been the inadequacy of a prose definition alone. It should be

possible to develop a rigorous protocol definition scheme that a human

can use as a basis for rigorous analysis. A major weakness with both

the graph theory analysis of protocols and present program verification

systems for proving protocol implementations correct is that errors may

be introduced when the definition of the protocol is transcribed to the

notation of the analytical model. It might be possible to avoid these

problems by using formal specification to define the protocol [Figure

4]. This would allow automata to be constructed to do the translation

to the other notations with much less chance of error. In fact, for

this very reason, the possibility of successfully applying program

proving techniques to protocol implementation is much greater than for

the more general program proving problem. Similarly, the formal speci-

fication could be used to automatically generate tests for protocol

implementation for a PML-like facility. For some systems it might be

possible to develop software systems to, at least in part (or with human

aid), transcribe directly from the definition to the implementation. In

addition to the formal definition of a protocol, it is very important to

consider the form a protocol document should take. For instance, the

prose definition, although ambiguous, is a necessary part of a protocol

document. It should provide the kind of narrative overview that makes

the formal definition easier to comprehend. Also, various cross-

reference aids, indices, testing and measurement criteria etc. may be

helpful.

The development of a rigorous protocol definition scheme will

provide both immediate and long term advantages. In the short term, it
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will provide designers and implementors with the kinds of rigorous

techniques needed for the development of protocol implementations by

diverse groups, and serve as a basis for immediate testing facilities.

In the longer term, it can be used to support various testing and verifica-

tion systems (for both protocols and their implementations) as these

technologies become available for practical use.

How does one arrive at such a formal specification scheme?

Some initial investigations into these problems have been done by Liskov

and Zilles [1975]. Many of their criteria apply to this problem. They

list criteria such as formality (lending itself to mathematical treatment)

,

constructability (capable of representing easily the major facets of the

domain being described) , comprehensibility (human readability) , minimality

(conciseness and lack of ambiguity), wide range of applicability, and

extensibility. The latter is especially important for protocol specifica-

tion, where objects are built on other objects, and readability is

significantly increased if lower level objects may be treated as atoms.

We hope that the analyses in this paper and similar work in the future

will help to characterize how these criteria may be incorporated into

precise definitions. Liskov and Zilles [1975] discuss several possible

techniques, ranging from state machine models to algebraic definitions.

Unfortunately none of these techniques are capable of describing concurrent

or parallel systems. Thus further work will be necessary to develop

schemes that can. It may be possible to adapt the Petri net to this

problem, but the Petri net does not, by itself, satisfy the criteria.

Also the work of Postel [1974b] and Sunshine [1974] may provide significant

insights into aspects of this problem. In addition to rigorously specifying

protocols, it is very important that further work along the lines of
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Post el and Sunshine be capable of being represented by the specification.

Much more work is needed to explore the properties of these protocols.

Error response . When a protocol implementation detects a

failure, it is the nature of the response to this failure that deter-

mines whether or not the implementation is resilient. At present there

is no clear way to characterize what constitutes a proper response.

More work on this problem would make the design of resilient protocols a

much easier task.

Layering of protocols . One of the assumptions made for the

above analysis was that underlying protocols were resilient. It is

necessary for pragmatic reasons to investigate how this assumption may

be relaxed and what affect this has on the protocol being described.

Initial considerations indicate that if a lower level protocol is not

resilient with respect to some condition or is resilient to the condition

to some degree, then a protocol built on this lower level one that is

satisfied (i.e. requires a degree of resiliency less than or equal to

the degree provided) with that degree of resiliency need not concern

itself with the condition. However, if the protocol wishes a greater

degree of resiliency, it must clearly handle it directly. It is not at

all clear whether this is possible all of the time.

Estimating resource requirements . An interesting development

in the area of computer science in recent years has been the software

physics techniques [Halstead, 1972] for quantifying programs and algorithms.

Among the results of this work has been a technique for estimating the

time required by a programmer to implement an algorithm, given that he

understands the algorithm to be implemented and the language to be used.
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Strangely enough, Halstead's calculations are remarkably good approxima-

tions. It might be plausible to apply this concept to a formal specifi-

cation to estimate manpower requirements for implementing a protocol.

However, the application of this technique will require some experimenta-

tion and will most likely be machine (or language) dependent unless ways

can be found to include machine or operating system properties in the

analysis. (For instance, Postel [1974c] found that ARPANET NCP's were

easier to write (and were smaller) on machines with good interprocess

communication systems.) As appealing as this possibility may be, it

must be considered a long shot.

The role of independent testing . Without the existence of

program proving systems (and there don't appear to be any available for

practical use in the near future) , the only technique left to verify

that protocol implementations are faithfully representing the protocol

is to develop testing procedures that determine if the implementation at

least appears to act correctly when given the tests. (This is a weak

form of "correctness".) Each network must solve these problems in the

context of its operating environment, but one idea that does have fairly

general application is the Performance Measurement Laboratory described

by Padlipsky et al. [1974]. The PML is the logical focal point for the

testing and verification of protocol implementations as well as the

measurement of their effectiveness. There are many very touchy policy

problems associated with the concept of a PML regardless of the intended

environment; however, we will only concern ourselves with the more

tractable issues here. The PML facility would be responsible for generating

tests to prove that the implementation worked and was resilient to the
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degree specified by the protocol. (It may be desirable to have these

tests made part of the specification.) In addition, it might be necessary

to generate batteries of tests that were machine specific, so that

machine dependent errors could be detected (e.g. those deriving from

mappings between incompatible word or byte boundaries).

In addition to these research areas, researchers working on

these problems must also keep abreast of new work in the areas of program

verification, automatic test generation, and software fault detection.

These areas can be of relevance to resiliency problems as they reach

higher degrees of development.

The problems of resilient protocol design are as yet only

barely understood. We have reviewed some of our initial findings and

feelings on the subject and have suggested some directions for future

research. Foremost among these has been the need for a formal specifi-

cation scheme for describing protocols. The solutions to all of these

problems are at the core of the successful operation of any distributed

network application.
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Appendix 1

Some ARPANET Folklore

This appendix contains some examples of the kinds of problems

that did arise on occasion in the ARPANET. The incidents listed here

and above in the text are not intended to reflect favorably or unfavor-

ably on any host or group. Everyone involved with the ARPANET effort

has made mistakes. The lessons that the reader should learn from this

appendix and the following one are: 1) how easy it is for a definition

to be interpreted differently by different groups no matter how careful

the author of the definition was, and 2) the importance of careful and

thorough testing of protocol implementations.

Acknowledgement . We wish to thank colleagues Gary Grossman

(CAC), Ken Pogran (MIT), and Mike Padlipsky (Mitre) for suggesting items

to be included in this list.

ICP hole . The ARPANET Initial Connection Protocol allows

network server facilities to have a known "address" for accepting initial

service requests. This initial request results in the server's telling

the user which sockets to use for actual service. Following this step,

user and server open connections on those sockets. On one occasion ANTS

could not open a Telnet connection to Multics because the 32-bit number

Multics sent to indicate where to expect a connection from did not agree

with the one in the actual request for connection. The interesting

point is that no other user hosts were having the same problem. Apparently

no one but ANTS was checking to make sure the numbers agreed I

Format problems of host-host protocol . The host-host protocol

defines certain fields of message headers to contain zeros. The ANTS
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NCP recorded many cases where this requirement was not fulfilled. This

may seem a small problem; however, note that a very easy check to ensure

that hardware is not dropping bits is to check whether these fields are

zero.

Incomplete transmission . Multics was the first to act on

incomplete transmission notification from the IMP and retransmit. A

Multics implementor assumed that the IMP would notify him when a host

was down and that it was futile to continue sending. However, one host

(Utah) had wired the ready line "on" so that it always appeared to the

IMP as if it were up.

Frequent queries . One host decided to probe all other hosts

with an echo command every minute, just to assure itself that they were

still there. This caused some hosts to experience large increases in

cost due to the increased traffic. Notice that no protocol requirements

were violated, and there was no malicious intent. This example indicates

how a foreign program could in the extreme case severely impair a server's

operation. Server implementations must protect themselves against such

occurrences.

Logical inconsistencies . The earlier ARPANET FTP contained a

logical inconsistency for sending mail. The protocol said that a host

can require usercode and password before allowing any other commands.

At another point it said that mail should be free and suggested that

login not be required. This inconsistency caused a tremendous amount of

discussion on the network as to what "free" meant.

Allocation deadlock . At one time the TIP only stored bit

allocates in 16 bits. This caused some deadlock problems with hosts

that sent larger allocates.
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Order of Telnet connections . One Telnet implementor decided

that only a fool would open one side of a connection and then wait for

the other, so he merely waited for both before sending replies for them.

Another implementor decided that only a fool would wait for both, so he

would send one and wait for the reply before sending the other. The

protocol itself did not address the issue at all.

Incorrect contact socket . When checking out a new Telnet

implementation for UCSD, the programmer at UCSD connected to the experimental

Telnet contact socket at UCSB and received a core dump from the other

side. Systems, that don't limit access to contact sockets for services

they don't provide, leave open the possibility of a pirate process'

listening on these sockets. Such a process might simulate the desired

service just long enough to compromise the unsuspecting user (for example,

by getting his usercode and password)

.

Queuing vs. rejecting RFC's . The fact that the host-host

protocol does not specify whether Requests for Connections from foreign

hosts for which there is no corresponding listen should be queued or

rejected has caused some implementation problems between hosts that

viewed the solution differently.

Translate tables . When the TIP was extended to support the

IBM 2741, the EBCDIC to ASCII translate tables used by the TIP were

incompatible with the Multics conventions or the ANSI standard conven-

tions, both of which had been in use for some time. This point comple-

ments well a similar point made in Appendix 2. There were as many

reasonable arguments for the TIP's mapping as any other; the problem was

that no standard had been agreed on.
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Appendix 2

Potential Resiliency Problems in the ARPANET FTP

This appendix contains a partial list of the kinds of resiliency

problems that appear in even a fairly successful protocol. The list

presented here does not pretend to be complete. Also, not all of the

items presented represent failures of the protocol itself. Many indicate

the kinds of errors that may turn up during development or honest misunder-

standing of the spirit of the protocol. The sections of the appendix

deal with difficulties in the following areas:

Commands

Replies

Data Transfer

Transfer Restarting

Server-Server Transfers

Interfaces to Other System Functions

Implementation Notes

Commands

Command Form . Most of the problems that might arise with

command format, such as an unrecognized command name, illegal sjmtax, or
I

bad parameter values, have been considered by FTP. However, some problems

still exist. It is possible that a parameter has a perfectly valid

form; but the semantics of the parameter is either illegal or unreasonable.

Examples are pathnames that refer to data not accessible to a particular

user, or file allocation sizes that can not be used literally. It is

also possible for the improper use of sets of dependent commands to

generate states which are not specifically covered by the protocol.

J
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Command Sequences . In FTP, there are several instances where

one command must be preceded by another particular command. For example,

RNTO (rename to) must be preceded by a RNFR (rename from) . If this is

not the case the server is to send a "503 Bad sequence of commands"

reply. However, the protocol expects this reply only for the rename and

log on sequences, according to the "Revised Reply Codes" [Postel, 1974(a)].

The reply is not listed for the PASV command which is supposed to be

preceded by a SOCK command [Neigus, 1973, p. 43]. Also, the reply

should be listed for the data transfer commands (e.g. RETR, STOR, LIST,

etc.), since this reply could be generated in response to a restart

operation (see section on restart) . These are clearly oversights on the

part of the authors that are easily fixed, but it does serve to illustrate

how easy such oversights may creep in even with the most conscientiously

prepared definitions.

Password Security . A recurring problem in ARPA protocols is

that raw passwords are sent over the network. This problem may be

solved by systems' having separate passwords for network users. Each

network host could store these passwords encrypted irreversibly by the

same well-publicized polynomial. (See [Purdy, 1974] or [Evans et al.,

1974] for a description of these techniques.) User protocol implementations

could send the encrypted passwords to the protocol servers. However,

this solution assumes that only "official" protocol processes may open

connections to protocol servers. This assumption may not be valid in

many networks.

Placing Bounds on Commands . It may be prudent in systems

capable of dynamically allocating file sizes or record lengths to consider

ALLOcate commands declaring files larger than some upper bound as "very

59



large" and either refusing to accept them or allocating space as the

data arrive rather than causing an excessive burden on system resources

by pre-allocating. This is especially true if the size is a wild guess

and the file is much smaller or the parameter has been corrupted and

represents a much larger number than intended.

Limits on FTP Environment . The SITE command allows the user

to send any site-specific command to the server and have the command

executed as part of the local command language. It is probably prudent

to suggest that implementors consider carefully what commands should be

accessible from the FTP environment. Also, the parameters should be

carefully scrutinized before being passed to the local command interpreter.

Duplicate File Conditions . When the user attempts to STORe or

rename a file using a pathname that already exists in the system, the

user should be given a 4xx reply, indicating that a file by that name

already exists. This forces the user to explicitly delete the previously

existing file (if he is allowed to) before performing the store or

rename and tends to confirm his intentions.

Replies

Basic Reply Difficulties . There are several occurrences that i

the user PI must be prepared to expect. '

1) A valid command that is damaged in transmission slips '^

t
i

through the lower-level error detecting mechanisms. ,

The most obvious solution is that the user should repeat ^

I'

the command a few times. If it continues to fail, an

error condition should be logged and the proper people

notified.

60



2) When the user suspects the server sent a wrong reply, he

should attempt to utilize the information that is given

and log the occurrence.

3) The server sends the correct reply but it is damaged

in transmission. This state is indistinguishable from

the previous one from the point of view of the user PI.

It might, for environments where this could happen

relatively frequently, be worthwhile to have a command

to repeat the last reply. If this fails then the PI

should log the event, and attempt to continue.

Unexpected Replies . It may occur that the user PI receives

what appears to be a legal reply, but is in a state that indicates that

no reply is expected. (See comment on multi-line replies.) The user PI

should forward any text to the user, log the occurrence along with

relevant state information, and continue. (It may be relevant in some

contexts to take other action, in addition to this)

.

Unassigned Reply Codes . A reply with an unassigned reply code

and thus unknown meaning should not, in general, be a big problem, since

as long as the first two digits are each less than six, a gross meaning

may be implied, and the text can be forwarded to the human user for any

necessary action. However, if the first two digits don't make sense,

the user PI or other automaton can not make any decision as to the

validity of the reply. In this case, the user PI should probably treat

it as an error, give the user the entire message including reply code,

and perhaps log the condition along with other relevant information.

Multi-Line Replies . The FTP specifies that the format for

multi-line replies should be the reply code followed by a hyphen followed
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by text. The last line will begin with the same reply code followed by

a space, which is followed by the text. All intervening text lines may

start at the leftmost character position unless they begin with a number,

in which case they are indented at least three spaces to avoid confusing

the number with the last line indication. For example:

123-First line

Second line

234 Line beginning with numbers

123 Last line

Consider a server that fails to indent lines that begin with

numbers. Specifically, consider that the number might be identical to

the reply code for this reply. For example:

123-First line

Second line

123 Line beginning with numbers

Fourth line

123 Last line.

How does a correctly operating user PI handle this? There is

no way for the user PI to distinguish which is the real last line. If

the third line is considered to be the last, the user PI will interpret

the fourth line (and any subsequent lines) as a spontaneous system

message and the last line as a standard (although unexpected) reply.

For the user PI to respond to this condition with the least impact to

the human user, it should forward all text to the user; it should not

delete reply codes from final lines since these may contain useful

information for the user; and it should have a state for handling an

unexpected reply (q.v.). The only problem this presents to a user Pi's
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correct operation is that it might be fooled into sending another command

before the server completed sending the reply, which might cause the

server to act in an aberrant manner. This danger is best avoided by

requiring servers to queue at least one command.

Data Transfer

Command Sequence . The "503 bad sequence of commands" should

be added to the data transfer commands. This covers the case of the

command after a RESTart not being the one expected by the server.

If the user has a restart point the server does not know, no

mechanism is provided for the user and server to negotiate a restart

marker they do know.

Incorrect Defaults . It may be possible for the user or server

PI to assume the wrong default values. This might easily occur after a

REINtialize command and could cause one side to grossly misinterpret the

form of a data transfer. The only sure way to protect against this

occurrence is for the user to send commands establishing what it thinks

the "defaults" are before attempting a transfer.

Damaged SOCK Commands . A SOCKet command may become garbled in

transmission in such a way that the lower-level error detecting routines

do not catch it and the message still appears to be a valid SOCK command.

A server might then attempt to open a connection to the wrong socket and

hang waiting for the other side. This predicament is best alleviated by

placing an appropriate time-limit on a response from the other system.

Since this event has a fairly low probability of occurrence, some designers

may choose to ignore this possibility without significantly endangering

the operation of the protocol.
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Data Transfer Completion . It seems prudent to suggest that

the user PI should wait for both the data transfer to complete and the

completion reply to arrive before sending the next command, thus avoiding

any timing problems that might turn up.

Data Error Detection . If lower-level protocols are not sufficient

trustworthy, it might be wise for data sent on the FTP data connection

to have error checks, such as CRC's, or to sequence number the data to

protect against lost messages.

Data Listen Races . The protocol requires that the user PI do

a listen on the data socket before sending the data transfer command

[Neigus, 1973, p. 17]. Some implementations will refuse requests for

connections to a socket if there is no listen on that socket. Thus if

the user does not listen on the socket first, the worst that can happen

is that the data connection will be refused. In this case the server is

completely protected, but the user PI has a bug that may be averted by

repeated attempts to out-race the server's connection attempt, or by

notifying the maintainers of the server.

Listen Time-Outs . The user Pi's data transfer process should

place a time limit on the listen for the data connection, since the

server may try to connect to the wrong socket. Similarly, the server

should time-out his attempted connection in case the user is listening

on the wrong socket.

Data Transfer Abort Conditions . If the user data transfer

receives data that appears to be garbled, then it should send an ABORt

command and close the data connection.

If the server data transfer process notices the same condition,

the server should close the data connection and send an error reply

(perhaps a 426; although it does not really apply).
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Data Format . There are several things that can go wrong with

the format of the data sent on the data connection. The solution to

most of these is to have a battery of tests run on each implementation

to certify that these problems do not exist. (See above.) Here we will

briefly mention some of the things that can go wrong.

Type . A host could have faulty translate tables between the

ASCII and EBCDIC character sets. This problem is not just a small bug

in a table; it is often not clear which ASCII codes should map to which

EBCDIC codes and vice versa. Furthermore, valid logical arguments can

be made for several possible mappings. In some cases, it might not even

be possible to retain the capability to perfectly invert the transformation.

Byte alignment problems may occur when transferring characters

with a transmission or logical byte size that is not equal to the character

frame size (i.e. eight bits) or the local word size. Tests for this

problem may be largely machine specific. (I.e., what sizes are most

likely to foul up this machine?)

Format . It is possible that the non-print form may not be

really transparent due to various reasons.

Systems that normally use ASA carriage control will have to

convert Telnet formatted files to ASCII before printing. It is possible

for this to be done incorrectly. Similarly, systems that normally use

ASCII format effectors for printing may err in converting ASA formatted

files for printing.

Depending on byte size and record length, some systems will

have to pad bytes or records or both with zeros in such a way that the

padding can be stripped off when the file is retrieved. This can of

course lead to errors that should be checked for.
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The local byte format lends itself to byte alignment problems,

especially if transmission byte size does not equal the local byte size.

It also must be verified that local byte formats are invertible . (This

again will require machine dependent tests)

.

Transmission Modes . The stream mode, the simplest of the

modes, is susceptible to improper escape convention encoding when record-

structured files are sent. The block mode can run into several other

problems: the descriptors can have illegal values; incorrect counts can

lead to a loss of synchrony; restart markers may be incorrectly packed;

and byte alignment problems can arise if the transmission byte size is

not convenient for either user or server. The compressed mode is also

susceptible to this last mentioned problem, as well as to the loss of

synchrony due to errors in the compression algorithm and the illegal use

of filler bytes.

Transfer Restarting .

State Information . Servers should also retain (across failures)

information on transfer parameters, command being acted on, etc., in

addition to restart markers. Thus when a user attempts to re-establish

the transfer, he should send the proper TYPE, BYTE, and MODE commands to

assure that both sides are using the same parameters.

The present FTP does not really allow for this. Presently the

REST command is sent with the proper marker followed by the interrupted

data transfer command. One might suggest that the server should then

compare its present transfer parameters with those stored with the

restart state to determine if the present operation is consistent with

the previous one.

I
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Additional Reply . There is no reply to indicate "restart

marker not found." Similarly, it might be worthwhile to define a method

for negotiating a restart point.

Possible Races Due to 10 Systems . Servers should try to

assure that restart markers have been written in a relatively safe place

before acknowledging the checkpoint (i.e., sending the I/O reply). In

other words, the server should make sure the marker has been written on

the disk and is not in a buffer before sending the restart marker reply

to the user.

Servers and users should probably keep at least the last two

restart markers to protect against a system failure while overwriting

the old marker.

Lifespan of an Interrupted Transfer . The state of an inter-

rupted FTP transfer should be saved for a period of several days before

being destroyed to give the user sufficient opportunity to complete the

task.

Semantics of Restart Markers . Consideration should be given

to the definition of the contents of the restart marker. For instance,

the marker could be defined to be the number of bytes or bits sent and a

session or process i.d. This is not unlike the message sequencing tech-

niques being proposed for other lower level protocols (e.g. Inter-Net

Protocol [Cerf et al., 1974]). This would allow either end to infer

various conditions about interrupted transfers and serve as a basis for

negotiation of a restart point. This would also allow restart with the

stream transmission mode in a crude form, since the server would only

have to count the bytes as they arrive, or look at the size of the file

after a failure to determine where things were.
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Restart Security . There is also the problem (not addressed by

the present protocol) of determining that the person requesting the

restart is indeed the same one that was transferring when the transfer

failed.

Server-Server Transfer

Data Connection Closing . There is a possibility of confusion

when the data connection is closed after a server-server transfer [Neigus,

1973] . It might be wise to make the following clarification: If the

active server intends to close the data connection it should be done

before the final reply (a 226) is sent to the user. '

Re-orienting the Server . The protocol should note that, after

a server-server transfer between host A and host B (see Figure 3) with B

the active server, the user will have to send a SOCK command to B before

attempting a transfer from B to C. In other words, the server must be

notified of the change in destination of the file.

Error Conditions . If one of the pathnames for the STORe or

RETR is invalid for one reason or another the user must back out of the

situation carefully. After the user receives the error reply he may try

to correct the error and re-send the command, or, if the user has sent a •

data transfer command to the other server, the user should send an ABORt

command to the server who sent the proper reply back to the user.

Interfaces to Other System Functions

Verifying Connections . It is necessary that the passive data

transfer process (or its NCP) be able to verify that the Request for

Connection on the data socket was issued by the correct FTP server. In

a typical case, if an FTP user was attempting to STORe a file and did

not verify who the connection was from, a pirate process might be able
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to open a connection to the data socket and steal a copy of the file.

The means of verifying the requestee exists within the host-host protocol,

but there is evidence (see Appendix 1) that the verification may not

always be done.

Bounds on Sessions . Servers should limit the number of simul-

taneous FTP sessions to some large but finite number. This is to protect

against malicious or aberrant remote programs looping on an ICP to

socket 3 and causing a significant drain on system resources. If the PI

faults, the NCP must be notified so that no connections are left hanging.

The NCP must verify that system calls for service to a socket actually

are requested by the process they are assigned to.

Handling Traffic on Both Connections Simultaneously . Some FTP

servers may not be able to monitor the Telnet and data connections

simultaneously, because of constraints imposed by operating system

architectures. Thus some special action is necessary to force the

server to service the Telnet connection. Such special action should be

studied carefully with respect to its effects in various systems.

Proper Termination . After the user PI sends a BYE or QUIT

command to the server, the user PI should be prepared to close all

network connections. Although the protocol specifies that the responsibility

of closing the connection falls on the server, it may not do it. For

example, although the ARPA Telnet requires that the server close the

connection after the user logs off, only a few hosts in fact do it

(UCLA-CCN, UCSD-CC, and Multics)

.

Implementation Notes

It may be wise in some environments for FTP processes to

perform a consistency check on its state tables. This would protect
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against spurious disk or memory failures and would be especially helpful

in recovering from system crashes. Generally this might be done by

check summing the tables. Check summing, of course, require re-

computing the check every time a new value is stored in the table and

also at frequent time-intervals when table modifications become infrequent.

Care must be taken that the table is not left in an inconsistent state

due to a system crash at an inappropriate time.

1
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Automated Backup

SuTnmary

The Problem . In a computer network, the need for reliable

and survivable access to a data base arises in many contexts . Important

examples are user authentication data, file catalog or directory data,

and accounting data. These examples are chosen because they emphasize

the fundamental nature of the requirement . Even if no application data

base ever needs to be available at a high level of reliability to

the network, the needs of the network for managing its own use and

resources justify, and in fact require, a high-reliability data base

maintenance facility. There are two obvious approaches to achieving

the necessary reliability. One is to use ultra-high-reliability com-

ponents. The other is to replicate the data base. Both approaches are

potentially expensive.

Multiple-copy technology has other uses besides providing relia-

bility. For example, each of several users located at different places in

a network may require extremely high access speeds to a data base (e.g.,

for searching) , and the data base may change often enough to make

simple periodic updating inadequate. Under these conditions, a scheme

that lets each user have his own copy of the data base and keeps the

copies (essentially) identical would provide powerful capabilities.

Similarly, only those parts of a data base most frequently accessed by

a user might be duplicated at his location, while the network provides

slightly slower access to the rest of the data base.

73



Results of this Preliminary Study . We have investigated the

problem of maintaining multiple copies of a data base in a network.

We conclude that it is feasible to design algorithms that will handle

the major difficulties that arise. The algorithms that we propose

(see below) do not solve all problems; further development is needed.

Nevertheless, we feel that our general approach is valid and that a good

start has been made.

i
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Introduction

The need for reliable, survlvable access to a data base occurs

frequently. In a single-computer system, the probability that a parti-

cular data base will be unavailable Is much smaller than the probability

of a complete operating system failure. A general system failure removes

not only the data base, but also Its potential users. In a multiple-

computer network. It Is no longer true that a system failure removes all

the potential users. Hence, failures of the data base proper and of the

system managing it are Indistinguishable from the standpoint of the out-

side user. Since operating systems do fall, we would like to exploit

the lack of correlation between failures of the systems In a network.

By maintaining copies of a data base on different systems, the probability

that at least one copy of a data base Is available at all times can be

made extremely high.

The Environment . Consider the following model (Fig. 1). M ,

M_, ..., M are data base managers. Each controls a data base local to
L m

Itself. These are named D^ , D-, ..., D , respectively. The m managers

are interconnected by a communication network which provides bi-directional

communication between all pairs of managers. U^ , U„, ..., U are data

base users . Each user can communicate with every manager. For simplicity,

we assume this communication takes place over the same communication

network (denoted by N) that the managers use.

The aim is to keep multiple copies of a data base and, in

particular, to keep those copies under the control of different managers.

For simplicity, we assume that all the D are to contain the same infor-

mation.
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The users of the D make two types of request upon the data

base: reading and modification . Reading is further divided into two

categories: critical and noncritlcal. Critical reading is required

to return the most recent Information recorded in any of the D and

must include any updates made previously by the user performing the

read. A noncritlcal read need not fulfill these requirements, though

it may. The noncritlcal read is included as a practical consideration,

since any method providing critical read service supplies noncritlcal

read service. Modification is any operation capable of changing the

response to a subsequent critical read. If modification can involve

access control and similar security devices, noncritlcal reading may

not be allowable, since reading and withdrawal of permission are not

guaranteed to execute in the order in which they were submitted.

Other models and definitions are possible. For example,

our choice of definition for "critical read" is a very strong one.

Some applications do not need this strength and hence would be unwilling

to pay an excessive price for the capability. We have chosen the stronger

definition since it is normally easier to remove capabilities than add

them later. Similarly, our definition of "modification" is quite general,

since we do not want to prematurely restrict the nature of the modifica-

tion.

Previous work . We have mentioned above the use of high-

reliability-components (often with replacement components standing by)

.

This approach is often seen in applications where outages or unavail-

ability are intolerable, such as airline reservation systems or space

flight control systems. Multiple-copy technology until recently has

been largely concerned with archival or backup copying of data bases.
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The main techniques have been periodic copying and journalization of

updates. However, interest has risen recently in the use of multiple

copies of data bases kept as nearly identical as possible at all times,

including times when the data base is being actively updated. This

interest is probably due primarily to the advent of multi-computer net-

works. For example, recent work on the RSEXEC and TIPSER systems at

Bolt, Beranek, and Newman, Inc., produced a need for distributed accounting

files; i.e., accounting files residing (in the form of multiple copies of

the files) on several of the computers in a distributed computer network.

In two papers [Johnson and Beeler, 1974], [Johnson and Thomas,

1975], the BBN researchers have described a method which provides the

necessary services. Their environment model is essentially the same as

ours. Each manager is responsible for updating his copy of the data base

on the basis of information received. The key feature of their approach

to maintaining consistency is to store a timestamp with each data item.

The timestamp includes both the time of the most recent change and the

site originating the change. The time is that when the change originated

and is in terms of the originating site's clock. Even though consistency

is maintained (all sites make the same decision as to which change is most

recent), lack of synchronization can cause important updates to be lost.

In addition, Johnson and his coworkers place severe restrictions on the

types of modifications allowed.

The Present Study . In our research on the problem, we have

tried to avoid an approach requiring clock synchronization. We have

also tried to avoid putting constraints on modifications. Our aim has

been to design a very general scheme for maintaining a distributed

data base in a network. We have emphasized generality in order to make

I
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our scheme applicable (with minor modifications) in a wide variety of

contexts.

A primary consideration has been that the algorithms be

designed to allow data base recovery from those types of failures that

occur most frequently. Cost has also been a consideration. We make

no claim to optimality in this regard, however. At this point in time,

we feel that it is appropriate to design systems which are cost competitive

(i.e., which are no more expensive than existing systems), while placing

fewer limitations on users of the system. Finally, it should be noted

that any procedure providing reliable data base maintenance in a network

is necessarily time-consuming. Although we have tried to design algorithms

which are efficient, it may not be feasible to use them for some applica-

tions in a high-delay network.

Research Study; The Model

System Components . In this section, we describe the components

used to implement the algorithm described in later sections. Detailed

descriptions of the functions and interactions of these components will

be described as they are introduced in the algorithm.

We define a user U (Fig. 1) to consist of the following

components (Fig. 2^).

1) An update generator UG :

This unit generates modification requests on the data base

2) A name assignment unit NA..

This unit assigns names to the updates generated by UG .

The requirements on names generated by NA are described

later.

3) A read generator RG .

This unit generates read requests on the data base.
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4) A controller UC..

This unit implements the algorithms used and controls the

rest of the components.

5) An update queue UQ , and

6) an update journal J,.

These are used by UC .

We define a data base manager M (Fig. 3) to contain at least

the following components:

1) A controller MC.

.

1

2) A name assigner MNA.,

We define the data base D, controlled by M, as an arbitrary-

sized collection of data. M. is the sole path to D . . Failures of the

two are considered indistinguishable. Problems with locking, consis-

tency, etc., which are also present in single-computer systems will not

be explicitly addressed except as they affect the algorithms described

here. M, is responsible for implementing the following two classes of

operation:

1) Read .

This operation is the standard data base read operation.

2) Modification .

Any operation or inseparable sequence of operations which

can change the results of a subsequent read is considered

a modification operation. This definition includes changes

to control information such as security and locks. Limita-

tions on the types of modification allowed are necessary

under some circiomstances to permit recovery from some types

of failure. These will be discussed as appropriate.

i
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The M. is also responsible for the function of serialization of com-

munications via the network. This point is discussed in detail later.

The network N is responsible for two classes of service.

These are:

1) Communication between all pairs of managers.

2) Communication between each user and all managers.

These services could be provided by two networks; however, since the

one network case is a more useful model at present, we have decided to

use it. (The two-network case is not uninteresting and should be con-

sidered at some point, but we will not do so here.) We do not preclude

the possibility that some, or all, of the network communications shown

in Fig. 1 may actually remain in a particular computer. In this case,

N can be thought of as including the interprocess communication facilities

of that computer.

Delays through N . It is a very important point that some

applications cannot operate under conditions of "low" (as measured by

the application) bandwidth and "high" (similarly measured) delay. We

have attempted to produce algorithms that do not greatly affect the

average bandwidth or delay of N experienced by a user, but the requirement

of multiple communications per transaction may introduce a substantial

delay into the processing of a particular transaction.

Research Study; Algorithms for Reading and Modification

In designing these algorithms, it was often necessary to

compromise among speed, cost, and services offered. The choices made

often need explanation, since the consequences of the different alter-

natives are not obvious. We will describe several algorithms which

could be used to perform operations besides recovery, then discuss
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their implications and alternatives. Recovery algorithms are discussed

in detail in the next section.

Primitive operations . We wish to provide the following

operations:

1) Critical read .

A critical read is a read operation which is required to return

the most recent data in any of the copies of the file. If a

user modifies a data base before doing a critical read and the

modification affects the results of that read, then the modifi-

cation must be completed before the read is performed.

2) Noncritical read .

A noncritical read is not bound by either of the above require-

ments. This operation provides a potentially less expensive

means of accessing the data base if the application does not

need guaranteed up-to-date information. Regardless of its

timeliness, data obtained from a noncritical read must be

as consistent as data returned by a critical read.

3) Modification .

Modification is any operation that can cause the response to

a subsequent critical read to change. Any changes made by

any modification operation are eventually reflected in all

copies of the data base. One desires that the changes be

made "as soon as possible", but no more stringent requirement

is imposed.

Algorithms for Reading

Algorithm 1 (critical read) . If appropriate update history

information, such as time or serial number of updates, is stored with

each datum, it is possible to examine copies of a datum and determine
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which is the most recent [Johnson & Beeler, 1974], [Johnson & Thomas,

1975]. This situation permits the following algorithm (ref. Figs. 1

and 2) :

Algorithm 1 (critical read)

1) RG generates a critical read request and submits it to UC

for processing.

2) UC guarantees that any updates it is currently processing

will not affect the result of the read. (This could simply

consist of waiting for all outstanding updates to be finished

if the time lag is acceptable.) Any updates that would must

be allowed to complete first. Note that the read must not

simply use the information in the interfering update - it

must wait for the update to complete.

3) UC sends a copy of the request to each currently active M.

4) Each M performs the requested operation and returns the

requested data to UC along with the associated update history

information.

5) UC examines the update history information and selects the

most recent data from all that returned. These data are then

returned to RG as the result of the read.

Discussion of Algorithm 1 . The selection in step 5 may be

a source of trouble. If only one datum is returned by each M, the

selection is simple. However, if a data set consisting of several

items is returned by each M, or if a different number of data is

returned by different M's, there may be no correct selection (under

our criterion that the most recent data available be returned for a

critical read). In the former case, it is possible for some of the

data returned by a manager M, to be more recent than corresponding
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data returned by another manager M., while the rest of the data from M.

is more recent than corresponding data from M, . Either of the above

problems can occur if no single copy is in possession of all updates at

all times. If either occurs, we cannot be assured of consistency if we

synthesize a reply from the most recent data from each M, even though

each M returns consistent data. Algorithm 1 must be rejected as a

general solution unless we make restrictions on the state of the copies,

the structure of the data base, or the amount of data returned by a read,

We could also modify step 4 of the algorithm to include communication

and synchronization among the copies. We will not discuss this alter-

native, as restricting the state of the copies as described later

offers other advantages; however, it should be investigated.

There are several strong points to algorithm 1. One is

that the amount of communications delay introduced into each trans-

action is minimal. Another is that the non-critical read function

is supplied at optimal speed simply by accepting the data from the

first M to reply. If the critical read function is not needed, or if

the data base structure and updating strategy are appropriately chosen,

this method represents a very simple approach to providing the read

function.

Algorithm 2 (critical read) . If the users of a data base

can be guaranteed that at least one of the copies D of the data

base is completely up to date (i.e., no other D has any more recent

information that D ) at all times, a simpler gorithm can be used

(ref . Figs. 1 and 2)

:

Algorithm 2 (critical read)

1) Same as step 1, algorithm 1.

2) Same as step 2, algorithm 1.
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3) UC sends a copy of the request to M , controller for D , the

known up-to-date ("correct") copy of the data base.

4) M perforins a read function and returns the result to UC.
V

5) UC returns the data received from M as the result of the
V

critical read operation.

Discussion of algorithm 2 . There are several problems

immediately apparent with this algorithm:

1) M represents a potential bottleneck, as all critical reads

use it.

This is true, but is just as true for every M in Algorithm 1.

It must be determined for a particular application whether the

number of critical read operations performed will saturate a

single M. This problem may be inherent in any similar scheme.

2) Knowledge of, and dependency upon, a distinguished M represents

a severe reliability problem.

Our philosophy is that as long as recovery is possible,

the algorithms should provide as much capability and performance

as at low a cost as possible during normal operation. The

question of recovery is discussed in detail later.

3) It has not been demonstrated that a particular copy of the data

base can be kept up to date.

We present algorithms to assist in performing this function

later.

4) M may not be "close" (in the sense of length of delays caused

by N) to all the users. Hence, some may experience "long"

communication delays

.

This consideration must be examined in the light of the

application and the alternatives. If the application can use
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noncrltical reads, it can use some closer copy. (See Algorithm

3.) If it must perform critical reads, this algorithm must be

compared to others which provide that function. It should be

noted that this algorithm is no worse than, and is usually better

than. Algorithm 1 with regard to delay.

On the plus side, the algorithm is extremely simple, and requires very

little communication to take place over N. It also causes virtually

no restrictions to be placed on the data base, since N simply introduces

a delay into the normal read operation performed by the M. If this delay

is acceptable, the data base need not be affected.

Algorithm 3 (non-critical read) . The simplest implementation

possible is very desirable for this operation, since many applications

can use it for the majority of their read operations (ref. Figs. 1 and 2);

Algorithm 3 (non-critical read)

1) RG generates a non-critical read request and submits it to UC

for processing.

2) UC chooses, using some unspecified metric, the "best" M (e.g.,

the M which it decides will give the fastest response) ; call

itM^.

3) UC sends a copy of the request to M .

fi

4) M performs a standard read operation on its copy of the data

base, D„, and returns the result to UC.

5) UC returns the data from M as the result of the read operation.

Discussion of algorithm 3 . This algorithm is quite straight-

forward, with the exception of step 2. A suitable implementation of

step 2 would probably take into account some or all of the points on

the following incomplete list:

1) Are UC and some M physically located on the same machine?
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2) What are the network delays at present?

3) What are the queuing delays in the M's?

4) Is there a monetary cost advantage to using a particular M?

5) Are there load sharing advantages to be gained by using a

particular M?

Algorithm for Modification

The following algorithm permits modification to the copies

of a data base to be performed in such a way that at least one of the

copies of the data base reflects every update made to all the other

copies; i.e., one copy is up-to-date or "correct". We will refer to

this copy as D ; it is controlled by M . An alternative approach is

examined in [Johnson & Beeler, 1974] and [Johnson & Thomas, 1975]. We

feel that the loss of generality incurred by their scheme neutralizes

the improvement in performance they achieve by allowing updates to

occur at any time to any of the copies of the data base. Our scheme

also provides a master copy of the data base, i.e., a copy which con-

tains the most up-to-date information available from any of the copies.

In many applications, this is a very important point. The advantages

of generality and the master copy are offset by the disadvantages that

the method may be difficult and/or expensive to implement in some

environments, and that it places great reliance on the master copy,

which then becomes a weak point. The former disadvantages must be

evaluated after considering the cost of alternative techniques, or

the cost of not having the facility. We feel that the effect of the

latter disadvantage can be reduced to an adequate level given an

adequate recovery technique and an environment sufficiently reliable

that recovery does not become a major activity. We describe a proposed

recovery scheme in the next section.

88

i



The algorithm for modification (or "update") is described

in several sections for ease of presentation.

Algorithm 4 (user modification submission) . This algorithm

is performed by the user as the first step in the modification operation

(ref . Figs. 1 and 2):

Algorithm 4 (user modification submission)

1) UG generates an update and submits it to NA for name assignment.

2) NA assigns the update a name from the name space it controls,

then submits the named update to UC for processing.

3) UC sends a copy of the request to M , the current controller

of the "correct" copy of the data base.

Discussion of algorithm 4 . Step 2, the name assigning, is

one of the most crucial steps in the modification algorithm. There

are several conditions on the name that must be fulfilled for recovery

to be possible:

1) The names must be capable of being ordered.

2) The names must be assigned in monotonic increasing or decreasing

order.

3) No name can be assigned which may be in use at any other point

in the entire network.

The name used by Johnson & Beeler [1975] and Johnson & Thomas [1975] is

the local time at the NA, concatenated with site name. This does fulfill

our requirements. Another simple scheme which makes some failures easier

to detect and recover from is to sequentially number each update, then

concatenating the site name. Thus, a lost or missed update can always be

easily detected. With either scheme, great care is necessary to insure

that the monotonicity and uniqueness requirements are never violated, as

recovery may become impossible.
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Algorithm 5 (UC recovery assurance) . This Is the algorithm

that UC uses In performing step 3 of algorithm 4 so that sufficient

Information Is retained to effect recovery In case M falls. The

recovery algorithms are discussed later. (Ref. Figs 1 and 2.)

Algorithm 5 (UC recovery assurance)

1) UC receives an update P from NA.

2) UC places a copy of P Into a local store UQ.

3) UC sends a copy of P to M .

4) M returns an acknowledgement of receipt of P, along with the

name It has assigned to P. (See step 2, Algorithm 6.)

5) UC places this name Into UQ with the previously stored Infor-

mation about P.

6) At some time later, UC receives a communication from M Indl-
V

eating that some or all of the copies are updated.

7) UC removes P from UQ. If all copies were updated, P Is discarded.

Otherwise, P Is journalized.

Discussion of Algorithm 5 . The mechanics of this algorithm

are simple, but the reasons behind the steps of the algorithm are not

always obvious. Most of these will become clear when recovery Is

discussed. Purposely omitted from this algorithm are timeout, retry,

and failure detection mechanisms. Such mechanisms can easily be fitted

Into this scheme, but a great variety of techniques could be used.

One function that must be provided by such schemes Is that of assessing

the correct functioning of M . (For example, If no acknowledgements

ever return from M , It may be assumed broken.) This problem overlaps

heavily with that of producing resilient protocols. (See Resilient

Protocol chapter of this report.)
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Algorithm 6 (D modification and distribution of updates) .

This is the algorithm executed by M . It handles name assignment,

update distribution, updating D , and interactions with U (ref . Figs. 1,

2, and 3).

Algorithm 6 (D modification and distribution of updates)

1) MC receives an update P from (some) UC.

2) MNA assigns a unique name to P and sends this name back to

UC. (See step 4, Algorithm 5.) This name is henceforth

considered an integral part of P.

3) MC applies P to D, the data base it controls.

4) MC journalizes P in MJ if one or more of the other M's is not

functioning. (In most environments, P would be journalized

in any event for local backup purposes.)

5) MC sends a copy of P to all other functioning M's and initializes

a counter to the number of M's it sent P to.

6) Eventually, each M returns a reply to MC indicating completion

of P. As each reply arrives, the counter is decremented.

When all M's have replied, the counter will be zero.

7) When the counter becomes zero, MC sends a message to UC indi-

cating that the processing of P is complete (see step 6,

Algorithm 5) , and whether the update was distributed to all

existing copies.

Discussion of Algorithm 6 . The name assignment operation

performed by MNA in step 2 must obey the same restrictions as NA

(ref. Algorithm 4 discussion). The assignment of names represents a

serialization of the incoming updates, one of the most important advan-

tages gained by using a central facility. Without this serialization
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of updates (e.g., in an environment in which updates are sent to an

arbitrary M, which then distributes them to the rest of the M's), restric-

tions on the types of modification operations which can be allowed are

necessary. If restrictions are not made, modifications applied to different

copies of the data base in a different order can yield differences in the

copies. Johnson and Beeler [1974] and Johnson and Thomas [1974] discuss

this approach. As we will see in the Recovery section, there are still

problems that are not solved by Algorithm 6. In some applications, these

problems will require restrictions on the operations which can be performed

during some failure situations.

This application of the update P to the data base D in step 3

may be a highly complex operation involving a great deal of work (e.g.,

searching). The effort required at each of the slave M's to perform

an update may be reduced by "pre-digesting" the update before the distri-

bution in step 5.

Algorithm 7 (slave M operation) . This is the controlling

algorithm obeyed by all M , where i is not equal to v. We refer to

such M's as "slave" M's because they perform modification operations

only at the direction of M .
•^ V

Algorithm 7 (slave M operation)

1) MC receives an update P from M .

2) Same as step 3, algorithm 6.

3) Same as step 4, algorithm 6.

4) MC sends a reply to M indicating completion of applying P.

Discussion of Algorithm 7 . This algorithm can be implemented

by performing those operations in Algorithm 6 which do not appear in

Algorithm 7 conditionally, depending upon whether the M executing it

is M or a slave.
V
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Discussion common to algorithms 6 and 7 . In order to be able

to recover from a failure of some M, several conditions must hold:

1) Any modification to a D which would leave the data base in an

unknown or inconsistent state if interrupted must be atomic or

recoverable (see below) . This requirement is also true of any

single-site data base application.

2) If the modification operation is not of an absolute assignment

and deletion nature (i.e., in case re-application will cause

an error) , the names of the latest updates from each user and

from M must be updated in the same atomic operation that applies

those updates to the data base. Otherwise, updates could be re-

applied during the recovery phase, causing errors that are

difficult to discover and recover from. Again, if it is not

possible to guarantee atomic updating, recoverability is suffi-

cient.

By "recoverable", we mean that a post-failure recovery mechanism can

discover the extent of the damage, and undo or complete the operation

in progress when the failure occurred. Such algorithms are relatively

easy to devise for specific applications, but generally cost several

extra references to a reliable secondary storage medium. We are

assuming that the atomic updating requirement can be met, for example,

by using a scheme such as that described by Chu and Ohlmacher [1974]

in connection with a different problem.

Research Study; Recovery from Failure

Causes of failure . The failures experienced by the complex

of data base managers and users can be usefully divided into two classes,

according to cause:
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1) Failures caused by the network N.

These failures fall into two categories:

a) Complete loss of communication by one or more com-

ponents .

b) Separation of the network into two or more operating

but non-connected networks. This is called parti-

tioning of the network.

Failures of both types may exist simultaneously at different

places in the network.

2) Failures caused by component failures.

These failures are generally uncorrelated and can occur at

any time. For our purposes, component failures can include

network failures that affect only one component.

There are several levels of difficulty in recovering from these failures

and combinations of them. An approximate ordering (beginning with the

simplest) of several of these is:

1) Single failures. (Usually component failure.)

2) Simultaneous failure of two or more components. (Usually, but

not necessarily, network failure.)

3) Sequential failure of two or more components.

4) Failures during recovery.

5) Partitioning of the network into two or more subnetworks, each

with at least one user and at least one copy of the data base.

We will describe the ramifications of some of these problems, and the

recovery techniques and requirements of each, after first describing

some underlying mechanisms

.

Detection of failure . There is a spectrum of particular

failures that falls under each of the broad categories outlined above.
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Some uniform methods of handling errors must be developed in order to

cope with any possible problem. We define two classes of failure.

1) Loss of bi-directional communication.

The use of resilient protocols (see the resilient protocol

chapter of this report), with timeouts, re-transmission,

and other error-control schemes, will detect this situation

if it arises. (Loss of communication in one direction only

can be similarly detected, though resilient procedures for

identifying the erring party must be carefully defined to

guarantee success.) The loss of bi-directional communica-

tion is a manifestation of any total failure of any component

involved in the exchange; hence, such failures form a class.

2) Violation of protocol or other incorrect operation.

This can include violation of a naming rule, failure to

reply or incorrect response to certain types of communica-

tion, or exceeding some timeout period. The important

point is that some component is performing its function

improperly. The decision as to whether the failing compo-

nent is the one which detected the supposed error or the

one that perpetrated it is a difficult and complex one

in many cases. In order to proceed, we assume that

the component which decides that another component is in

error is, in fact, correct in that assertion. In practice,

a second independent check should be made if possible to

reduce the likelihood of a wrong decision. This problem

is theoretically messy, but is relatively straightforward

to adequately solve in practice; more insight into this

problem will arise from an actual implementation.
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Once a component has been found to be failing, it must

be removed from service. The easiest mechanism to use is

to cause the component to simulate a genuine failure, thus

causing the failure recovery machinery to take over. If

the component will not commit suicide, it must be forcibly

i
removed from operation. This represents a significant pro- "

blem for several reasons:

a) Who will be given the power to remove whom?

b) What if the component does not realize, and cannot

be made to realize, that it is broken? It may

attempt to carry on normal operations while all

components are attempting to recover from its loss.

Worse, it may decide the recovering components are

broken and attempt to remove them.

These problems exist in any large system; they are not unique

to this application. Further treatment of this subject would

be facilitated by experimentation and modeling.

We will assume, for expediency, that component malfunction

is indistinguishable from total failure. This assumption is

known to be a gross over-simplification.

We must also make assumptions about the possession of knowledge

about failures:

1) All components know when they have failed.

This assumption is necessary so that a component can take

recovery actions.

2) M is responsible for collecting and distributing information

about components other than itself.
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Thus, since all users except those doing non-critical reads

communicate only with M , they can know about the loss of,

for example, one of the active M's as soon as it affects

them. Those users performing non-critical reads must dis-

cover for themselves when the M they are using breaks.

(They can then perform M a service by informing it of a

suspected failure.)

A very important problem is the agreement of all involved

components on the status of a given component. This is the rationale

behind assumption 2 above. Operation or recovery without this agree-

ment could cause non-uniform treatment of, for example, very-short-

duration failures.

We do not wish to rule out the use of human intervention

in failure detection and recovery. This is particularly true in types

of failure in which the data base managers simply lack the information

or logic to correctly resolve an ambiguity. We do not assume such

assistance, but feel it should be possible to obtain and use it.

Recovery from single failures . This is the easiest recovery.

There are three cases to consider:

1) Failure of a U.

Any operation begun before U failed will complete. No

recovery on the part of the M is necessary. The U itself,

however, must save some information for restarting and

recovery. At a minimum, this includes the previous state

of UQ, J, and NA. When U restarts, it must obey the recovery

algorithm used when M has failed (see below) since M may

have failed while the U was out of service. When a U begins
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recovery operations, it may be necessary for it to refer to

its journal to restore the current M to the state the old
V

M was in with respect to U when the failure occurred.

2) Failure of an M which is not M .

V

Such a failure is detected by M and sent to all M's.
V

Eventually, the M is revived. All working M's will have

been journalizing their updates; hence, any other M can

bring the failed M up to date from its journal. The minimum

information required for recovering is the data base (in

some consistent state) and the name assigned by M to the

latest update applied to that data base. This name suffices

to permit the journal of some M to be applied to the failed

M. (Ref. Fig. 3.)

Algorithm 8 (Non-M M recovery)

1) M selects an M, call it >L, to restore the failed M, M^,

from its journal. M could choose itself, i.e., R could equal

v. M^ is not yet considered to be working.

2) M^ sends M^ the name of the last update it applied.

3) M^ starts sending updates with names assigned later than the

name in step 2 to M^. M also sends M^ all updates it sends

4) M^ applies updates sent by M^ to D using Algorithm 7, and

saves only the name of updates sent by M . At some point,

M^ reaches the end of its journal. Any updates sent by >L

after this point will be the same as the updates being sent

by M .
^ v
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5) K_ eventually gets an update from M which is named later than

(or the same as) the ones from M^ . M^ then notifies M . M^,

begins using updates from M instead of M^.

6) M tells M^ to stop sending updates to M_ and changes the status

of I'L, to working. All U's and M's are notified of this change,

and may then stop journalizing.

This algorithm depends on several conditions for success:

a) The rate of updating of M^ must be fast enough to

eventually catch up.

b) In step 5, it is necessary for Mp, to receive some

update from M before it receives the same update

from M^ in order for the algorithm to terminate.

Fulfillment of the first condition depends upon the amount of

traffic experienced by M . It would be possible to slow down

the treatment of incoming traffic at M to give recovering M's

a chance to catch up. The second condition can be satisfied

if all updates distributed by M are first sent to the
V

recovering M's, then to the working M's. Alternatively, M

itself could be used as M^, solving the problem completely.

3) Failure of M .

V

The failure of the central controller is a potentially serious

problem. If no other components fail at the same time,

recovery is straightforward. The state information required

by other M's to replace M must include the following: the

state of the naming of updates (i.e., last name given out)

and the order in which other M's are selected to replace M .

V

The latter is distributed by M to the other M's in the form' V

of a successor list . The first item is the only one that
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causes any trouble, since the other information can be part

of the routine communication between M's. M may have been

in the process of sending out some newly-named updates when

it failed; hence, no other M may be aware of the correct last

name assigned. We can recover from this situation by using

the information possessed by U's as well as M's.

Algorithm 9 (Assignment of new M )

1) When an M notices that M failed, it consults its successor list
V

of M's. It sends a message to the next M on the list. The mes-

sage includes the time at which the successor list it used was

generated by M .

2) All M's which received messages send a message to all M's

asserting their position (i.e., asking to be acknowledged as

the new M ) and include the time at which the successor list
V

whose authority they are using was generated.

3) Each M replies yes or no to each of the messages sent in (2)

,

depending on whether or not that is the latest time it has

seen in any such message.

4) One M will receive nothing but "yes" votes. All others will

receive at least one no vote. The M which received all yes

votes declares itself to be the new M and initiates recovery

operations,

Algorithm 10 (M recovery)

1) The new M sends a message to all U's advising them of the

recovery in progress.

2) Each U sends M every update in UQ that was not signaled to

be complete.
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3) M orders these on the names and applies those it has not

seen before. Unnamed updates are queued for eventual pro-

cessing.

4) When all U's have replied, and all named updates have been

applied, the unnamed updates are processed by algorithm 6.

There is little to be discussed about these algorithms. Algorithm 9

is a typical robust decision algorithm, without allowances for erroneous

operation by its components. Algorithm 10 applies the same sequence

of updates to the new M as was applied to the old, which helps insure

consistent results from critical reads and makes recovery of the old

M easier.
V

Multiple-failure recovery . Because of the great variety

of failures that can arise, we will not attempt to describe precise

algorithms for recovery. Instead, we will describe major problems

which arise and how the recovery must be structured to take these

problems into account. The models and algorithms described above can-

not support all types of recovery in all applications. Significant

changes to those algorithms and models will be proposed in some cases

to increase the range of applicability of the techniques.

Failures during recovery . Since additional failures can

occur while recovery operations are in progress, two important require-

ments arise:

1) Several recovery operations can be in progress without affecting

each other.

2) Every step of all recovery operations must always leave compo-

nents in states indistinguishable from those arising from ordi-

nary failures.
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The latter requirement removes the need for special treatment of

failures during recovery. It also makes it possible to simply scrap

a recovery and start over at virtually any time a problem arises.

Missing updates . In the model shown, and with the algorithms

described, a serious problem arises in many failure situations. If M

and one or more U's fail at the same time, there may be updates known

only to those U's and M . When recovery takes place, names previously

assigned to updates now inaccessable get reassigned by the new M ,

and a violation of the naming rule has occurred. One solution to this

problem is for M to send all updates to the other M's as soon as the

names are assigned but before sending those names back to U or otherwise

processing them. Each M stores each update until M tells it to

proceed with that update. If M fails, the other M's have possession

of all updates that M was working on. Appropriate checks would have

to be made to ensure that the U did not resubmit updates, but this

simply involves using the U's own name for the update as identification.

Many details of this scheme remain to be worked out.

The scheme above has several shortcomings for implementation:

1) Preprocessing of updates is more complex.

2) More storage is needed at the M's to store updates. However,

U's no longer need to journalize.

3) More time elapses between submission and completion of an

update.

Additionally, it may be unnecessary in many cases. In a large number

of applications, the updates of each user affect other users very little,

and the loss of an update until the user can resubmit it may be accept-

able. In general, however, this cannot be assumed. Further study in

this area is needed.
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Reconciliation of copies . If the network partitions into

several noncommunicating, but still operable, networks, and at least

two of these have one or more M's and one or more U's, a serious pro-

blem can arise. If the U's in such a situation are allowed to perform

arbitrary operations, the various copies of the data base may become

irreconcilable, even if all M's keep complete journals of their updates.

This is because the serialization function of M has been lost. This
V

situation is very much like that discussed by Johnson and Beeler [1974]

and Johnson and Thomas [1975], and their analysis of the operations

allowable apply whenever it is suspected that a partition exists.

If limiting the operations allowed when partitions are

suspected is not an acceptable choice, or if software errors manifest

themselves, the data base copies may become irreconcilably different.

A practical reconciliation scheme to restore the integrity of the

copies must be available.

Conclusions and Plans for Future Work

A set of models and algorithms has been presented which begins

to address the problem of maintaining duplicate copies of data bases in a

network environment. The approach taken in this study has several pro-

blems, including:

1) The speed of the algorithms is low.

2) The cost to produce and to operate the scheme is high.

3) The missing update problem is not satisfactorily solved.

4) Unnoticed problems probably exist, since detailed analysis

and implementation have not been performed.

However, the approach seems to be viable, and further research and

development is appropriate.
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Several significant aspects of the problem have not been

investigated. These include, but are certainly not limited to, the

following:

1) Multiple networks.

This would have the effect of causing more frequent

correlated failures, and causing failures which would

be highly improbable in a single network to be routine.

2) Use of synchronization and coordination between managers to

reduce bandwidth requirements and simplify algorithms.

3) Module error detection and recovery.

How is a decision made as to who is broken when an

apparent error condition arises? More importantly, how

is the situation resolved so operations can continue?

This subject is closely linked to resilient protocol

technology, and a transfer of that technology would

probably help solve the problem.

4) Careful treatment of the missing update problem.

5) Analysis of deadlock situations.

Several opportunities for deadlock may have been added

to those already present in the M's.

We also believe that the implementation of the general scheme we have

described will indicate significant unanticipated areas of research

which should be investigated.

A practical implementation of this scheme requires computing

power to be associated with each user. The usual method of doing this

is to put the users on some large computer, often one also supporting

a copy of the data base. It appears that an intelligent terminal could
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provide more reliable, survivable, and cost-effective access to the

data base than the large-system approach. To take full advantage of the

lower complexity and subsequent higher reliability of an intelligent

terminal, the terminal would have to be able to connect directly to

the network, without an intervening large system.
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Terminal Resident Processing

Summary

The problem . Computer networks simultaneously facilitate

access to computer resources and place new demands on the users of these

resources. Each computer system has its own idiosyncrasies, its own

rituals that must be followed. These idiosyncrasies can range from

unintelligible user codes to alphabet soup for the names of application

programs. Perhaps the worst problem posed by the proliferation of

computer systems is the lack of uniformity in their human interfaces.

Each system, and usually each application package, has its own conven-

tions for input, output, and names. A user who is proficient in the use

of one system cannot be certain that his experience will be an asset

when he switches to a different system. It is hoped that a computer

terminal with a small dedicated processor and some local storage capa-

bility can substantially aid the user in his interactions with a large

computer system. The terminal, acting as an agent of the user, can

facilitate the two-way human-computer interface and handle those tasks

(e.g., login and job control languages) which are not directly related

to the user's mission.

In addition to relieving the user from the vagaries of com-

puter systems, there are preliminary indications that an intelligent

terminal can offer cost, performance, and survivability benefits. In a

Harvard study, some simple data management tasks were moved off of a

large IBM-370/168 on to several minicomputers which supported the

individual user terminals [1] . The combination of the large host data

management system cooperating with the minicomputer supported terminals
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was significantly more responsive and significantly less expensive than

the terminals supported only by the large host. If a modest amount of

local storage (e.g., floppy disk) is made available at the terminal

along with local processing capabilities, then a user would be able to

continue processing local data, albeit with reduced capabilities, if the

large host computer or communication link fails.

Results of this preliminary study . A PDP-11 supported terminal

was configured for this study. A simple software system was developed

to help understand the software environment and the difficulty of con-

figuring an "intelligent terminal".

The software required to support the experimental intelligent

terminal was much simpler and much smaller than anticipated. This soft-

ware was simplified because it was dedicated to serving a single user in

an exceedingly benign software environment.

Further investigation is appropriate in several areas. The

range of application of intelligent terminals in a computer network is

very broad. The kinds of processing which are appropriate to intelligent

terminals, network front-ends and large hosts and when and how processing

responsibilities are to be shifted between them are not clear. The

interface between intelligent terminals and existing data systems will

require much more work. New systems will have to be designed to exploit :

the symbiotic relationship between an intelligent terminal and a large

host

.

The potential of intelligent terminals to improve cost, performance,

reliability, and the human interface is impressive. The achievement of

this potential will require further research and development.

f
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Introduction

Human interface . The interface between computer systems and

their human users is notoriously poor. Far too few systems devoted

enough effort in this area when they were designed and implemented.

Retrofitting more satisfactory interfaces is prohibitively expensive.

An alternative solution to the problem is to employ intelligent terminals

as filters between a system and its users. This approach is at once

simpler and potentially more powerful than retrofitting a new interface

to an existing system. It is simpler since it does not require modify-

ing the existing system; more powerful since the terminal with its

dedicated CPU can provide capabilities (e.g., graphics) that would

consume too much of a major system's capacity. The next few paragraphs

describe some ways in which an intelligent terminal can improve the

human interface.

Graphic displays . There are many ways of presenting information

to a user. The most common method used by computer systems is some form

of tabular output. This is adequate for many applications, but tabular

output does not always provide the full impact of the data. Other

display styles, such as histograms, line graphs, and bar charts, can

provide a greater visual impact to the user, and effectively increase

the amount of information presented to him. However, most existing

application packages do not provide these display alternatives. There

are two major reasons for this. First, most user terminals do not have

graphic capabilities (with the exception of crude alphameric histograms).

Furthermore, most remote graphics terminals are so slow that presenting

a graphic display requires a full minute or more. Second, the conversion
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of numeric data into a displayable graphic format is costly in terms of

processor consumption. It simply is not cost-effective to devote a

significant fraction of a multi-million dollar computer system to pro-

ducing graphic output for a single user.

The use of an intelligent terminal eliminates both of these

barriers to graphics. Without modifying any existing system, the

terminal with an inexpensive embedded processor can intercept tabular

output and transform it into virtually any graphic format. This will

not further impact the host computer system, yet will provide the user

with the advantages of graphic output. Since display generation is

local and does not require remote communications, the speed of output to

the user's display device can be extremely high.

Touch panel . The input to virtually all interactive computer

systems is by means of some typewriter-like keyboard. There are two

drawbacks to this method of input. First, it is very prone to mistakes,

since most people are not competent typists. Second, the format of

input to an application system is typically fixed, and not always in a

fashion intuitively reasonable to the user. Since most application

systems are not tolerant of violations of their input format, the user

must be thoroughly familiar with each of the systems he uses. This

presents a problem to the casual user who might only use a system once

or twice a year, and also to the prolific user who uses so many different

systems that he can't remember the proper format for each individual

system.

By combining a touch-sensitive input mechanism overlayed on a

graphic display device, the intelligent terminal can address these

problems. Rather than forcing the user to type in some complicated

syntax, the terminal can display all the options that are currently
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available; the user selects the ones he wants by touching the option

with his finger. There is no problem of mistyping the input, and no

possibility of violating syntax since only syntactically correct options

are displayed. The user is thus relieved of the necessity to develop

the mechanical skill of typing, and he will not have to undergo the

period of training and frustration which typically accompanies an

attempt at learning (or relearning) a computer system.

Multiple displays . The terminal processor can support several

displays. For example, the primary display device can be located in the

user's normal line of vision, and provide the graphic and touch capability

described above. One or more secondary displays can be placed at the

side of his field of vision. These secondary displays can be used to

provide a constant flow of text and figures that explains the infor-

mation being shown on the main display. If the user is confused or

needs help at any point in the session, he looks to the help screen and

finds a "manual" open to the right page. His attention would not be

distracted by any "split-screen" techniques, or by having to hunt through

a system manual for the information he needs. Yet another display could

serve as a scratch pad, allowing the user to record notes, comments or

previous results in a convenient place. The secondary displays could

provide the same touch and graphics capabilities as the main display.

Cost and performance improvements . Intelligent terminals can

provide benefits other than the improvement of the human interface. It

is recognized that some common functions, most notably input and output,

are handled as well by small computers as large ones. If the inexpensive

terminal processor can relieve the larger host processor from such

tasks, then a greater portion of the expensive large system can be
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devoted to those functions which it handles best. This offloading of

the host will result in an increased capability to handle users; it will

perform like a larger system. Preliminary studies indicate that significant

improvements in system performance can be realized concurrently with a

reduction in the overall cost of using the system. The general applicability

of these results needs to be investigated, as do other symbiotic relation-

ships between an intelligent terminal and a large host.

Survivability . As was mentioned above, frequently used data

may be stored at the terminal. If the intelligent terminal is designed

so that all of its operation does not depend on the host, the user can

still work with local but reduced processing ability, when the host is

not available. Related functions which a stand-alone terminal might

provide include updating and displaying local data, entering new data,

and transmitting all changes in the data base to the remote host when it

is revived after host or communication failure.

Terminal hardware requirements . It is apparent that the CPU

of an intelligent terminal must provide both integer and floating point

hardware, and that it must be capable of handling medium sized blocks of

data. Whether hardware mechanisms to protect the intelligent terminal

software from user-supplied code should be provided and the advisability

of providing virtual memory is not known. The size, speed, and address

architecture requirements of terminal memories are open questions. The

type, capacity, and speed of mass storage devices will be dictated to

some extent by the intended use of the intelligent terminal. The number

and type of displays are also questions. Requirements for animation,

refresh rate, color, resolution, and interfacing must be evaluated.
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Terminal software requirements . The software required to

Implement the Intelligent terminal can be broken Into two categories.

The first Is a small-scale operating system that provides the low-level

support necessary to handle the various devices and interfaces of the

intelligent terminal. This operating system can be quite small, and

presents no conceptual or technological difficulties. The second is the

application software. This Includes the software to Interface with the

remote host system and forms the "intelligent" portion of the intelli-

gent terminal. This code will be highly Implementation dependent; its

size and configuration will be based on the Intended use of the intelli-

gent terminal.

Study goals . The purpose of this study was to Increase our

understanding of intelligent terminals for data management applications.

Specific goals included an understanding of memory size requirements,

design difficulties and implementation difficulties for both low-level

support and application level software. This was done by building a

demonstration system using borrowed hardware on short term loan, the

ARPA network and a Multlcs-resident data management as the large host

target.

The Research Study

Hardware base . The CPU used in the preliminary research study

is a Digital Equipment Corporation PDP-11 Model 10. This particular

PDP-11 is equipped with 20K words of core memory, a high-speed plasma

panel display with a touch-sensitive overlay, an ASCII keyboard, a dual

DECtape transport for local mass storage, and various communications

interfaces (figure 1). This particular configuration was assembled

primarily on the basis of component availability rather than suitability.
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Intelligent Terminal Hardware

Suitability of the hardware base . The PDP-11/ 10 is a medium-

speed minicomputer. However, it is not a particularly powerful one. It

has no capability to handle floating-point data, so all arithmetic

operations are performed on integers. This lack is not particularly

harmful in a demonstration environment, but a full-scale intelligent

terminal will require floating-point hardware to be of maximum utility.

A more serious flaw in the PDP-11/10 is its lack of integer multiply and

divide instructions. Consequently, these common operations must be

emulated by software routines. Aside from these two drawbacks, the PDP-

11 is an adequate base for the intelligent terminal. It is a flexible

machine, and it is extremely easy to interface special-purpose devices

to a PDP-11.
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The high-speed plasma display was developed at the University

of Illinois. The panel used was 512x512 dots at 60 dots/inch resolution.

Each dot on the 8 1/2" square screen can be written and erased independ-

ently. It is a high contrast display (orange dots on a black background),

and since it is a storage-type display that does not need to be constantly

refreshed, there is no flicker effect. When operating at top speed the

entire screen can be filled in about 1/3 second. These characteristics

make the plasma panel an excellent device for displaying textual and

graphic data.

The mass-storage device on the experimental intelligent terminal

consists of two DECtape drives. DECtape is a low-speed substitute for

magnetic tape, and has only moderate storage capacity. It is not well

suited to the task of mass storage; we used it because it was the only

device available to us. Any of the floppy disks or low-cost fixed-head

disks that are available coimnercially would be a far more appropriate

medium for mass storage in a full-scale intelligent terminal.

Software . There are three categories of software for the

intelligent terminal. The first is the operating system kernel. This

consists of device drivers, process creation and deletion primitives,

and process synchronization primitives. The second is support software.

This includes file management code, the input-output system, and application-

oriented programs such as graph routines and a general purpose picture

drawing routine. The last is the actual application software; this is

the "intelligent" portion of the intelligent terminal. The hierarchical

structure just outlined is completely conceptual, since there are no

hardware or software mechanisms to enforce such distinctions.
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Operating system kernel . The operating system used the disjoint

process as the basic functional unit. As Implemented by this operating

system, a process Is simply a procedure (called the process procedure)

which has Its own stack. The operating system provides a virgin stack

to the first procedure executed In each process. Any procedures Invoked

by the process procedure will use that stack for storing their local

data. A benefit of using this method for local storage Is that each ^
1

procedure Is reentrant ( I.e. , more than one Invocation of a procedure

may be active). Since each process has a separate stack, the address of 9|

the stack Is used to uniquely Identify each process. _

I
The entire operating system Is queue-driven. Each process has

an Input queue from which It reads Its commands, and there Is a queue of

processes which are ready to execute. Any process which Is not on the

ready queue Is blocked waiting for some event to occur, and Is on a

queue associated with that event. The mechanism for blocking processes

uses the generalized semaphores and P and V operations proposed by

Dljkstra [2]. Each semaphore consists of a queue of waiting processes

and a count of how many processes are waiting. When a process needs

access to some semaphore-controlled resource. It performs the P operation

on the semaphore. If the resource Is available, the process Is allowed

to proceed; If It is not available, the process Identifier Is added to

the semaphore's queue and another process Is selected for execution.

When the process that Is currently using the resource Is finished with

It, It must perform the V operation on the semaphore. If any processes

J
are queued on the semaphore, the first one Is removed and placed on the

queue of ready processes.

J
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The scheduler selects the next process to run. It removes a

process identifier from the ready queue, and makes the stack of that

process become the current stack. Since there is no priority ordering

of processes, the first one on the queue is selected. The operation of

the scheduler is interesting. It is invoked as an ordinary procedure;

so the most recent entry on the stack is the call to the scheduler.

After switching to the new stack, it merely performs a normal procedure

return. This returns to the calling procedure in the new process, which

then continues normally.

Creating a process is very straightforward. First, core for

the process stack is obtained from the dynamic memory allocator. This

block of core is then formatted to look like a stack, which entails

setting four words of control information. Then the stack is modified

to appear as if the process procedure had called the scheduler. Finally

the stack address is added to the ready queue. When the newly created

process is selected for execution, the scheduler "returns" to the first

instruction of the process procedure. Destroying a process is still

simpler. All that is required is to free the core occupied by the stack

and invoke the scheduler. The scheduler will select some other process

to execute, and the old process simply disappears. This mechanism works

because there is no way for one process to preempt another, which quarantees

the integrity of the old stack until the process has actually gone away.

A process can destroy itself either by intentionally calling the process

deletion procedure or by returning from the process procedure, which is

equivalent

.

The kernel of the operating system is extremely small. It

requires about 800 16-bit words. Table 1 shows the various modules of
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the kernel along with their sizes. It is worth mentioning that the

entire kernel, with the exception of the scheduler, is written in a

high-level language.

Table 1

Operating System Kernel Modules

Function # of Procedures
Code Size

(16-bit words)
Data Size

(16-bit words)

Dynamic memory
management

2 112 120

Scheduler 2 (1 Assembly
language)

58

Process creation
and deletion

2 47 (create)
20 (delete)

7

9

Queue
management
(includes

interprocess
communication)

4 115

Error handling
and recovery

1 117 17

Process
S3mchronization

2 51

Total 13 procedures 520 words 153 words
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Support software . The structure of the I/O system is somewhat

unorthodox. Associated with each device is a handler process. Any

process which wishes to use the device must request the handler process

to perform the actual operations on the device. The handler process

also communicates directly with the interrupt routines for the device.

The unorthodoxy of the I/O system stems from a design decision decreeing

that only one process may "own" a device. That is, if one process owns

a device, any other process wishing to use that device must wait until

the first process voluntarily relinquishes it. This decision eliminates

the need to multiplex the mass storage device and the communication line

to the remote host, but also forces these resources to be underutilized.

The I/O system maintains a table which shows the current owner

of each device and the handler process associated with the device. When

a process requests ownership of a device, this table is inspected to

determine if it is available. If so, the requesting process becomes the

owner, and requests from other processes are denied. If the device is

unavailable, the requesting process has the option of having the I/O

system block him until the device is available or of simply being denied

use of the device at this time.

The functions provided by the I/O system are very commonplace.

They include reading and writing the device and requesting special ser-

vices from the handler process as well as requesting and relinquishing

the device. Also included is a routine that indicates how much data the

handler process currently has. This is useful since all the other

functions of the I/O system are synchronous. That is, a read request

does not return until the data is actually returned. Although other

processes can execute during that period, the process that requested the

I/O service is constrained from running.
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Table 2

I/O System Modules

Function # of procedures
Code Size

(16-bit words)
Data Size

(16-bit words'

Request deuce
ownership

1 127 40

Relinquish
ownership

1 79

Initialize I/O

system
1 34

Read 1 74

Write 1 62

Special
functions

1 69

Peek at buffer
size

1 80

Process
termination
clean-up

1 58

Deuce handler
Process

3 1610 14

Total 11 2193 words 54 words

By far the largest portion of code falls into the category of

general support software. This includes several routines to operate on

the plasma panel, routines to provide formatted output, and routines

that allow the creation and display of arbitrarily complex pictures.

Also included here is the capability to create and display character

sets other than standard ASCII, so the user can display any pattern that

will fit in an 8 X 16 character position.
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Included in the support category is the largest procedure in

the entire system. This is a routine that emulates six hardware in-

structions, including multiply and divide. When one of the non-existent

instructions is executed on the PDP-11/10, it generates a fault which

invokes the emulator routine. When the emulator routine has finished it

returns from the trap in such a fashion that the interrupted procedure

can continue normal execution. The emulator is necessary because the

PDP-11/10 which was used for the study does not provide the six emulated

instructions. The bulk of the operating system was written in a high-

level language whose compiler runs on a larger PDP-11. The compiler

assumes that the code it generates will also run on that machine and so

uses the full instruction set.

Table 3

General Support Modules

Function # of Procedures
Code Size

(16-bit words)
Data Size

(16-bit words)

Plasma panel
management

6 500

Touch panel
management

5 524 2

Picture support 2 242 3

Formatted output 6 437 39

Special Character
output

1 45

Formatted input 1 71

Interrupt
dispatcher

1 (Assembly
language)

33 57

Instruction
emulator

1 (Assembly
language)

350 19

Total 23 2202 120
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The demonstration . The actual intelligent terminal demonstration

designed for the research study is a simple data management system

operating on Illinois land-use data. The bulk of the data resides on

MIT's Multics computer system, which is part of the ARPA network. The

intelligent terminal communicates with the UNIX system at the University

of Illinois; UNIX in turn communicates with Multics via the ARPA network.

For the purposes of the research study, the UNIX system is totally

transparent and may be ignored.

The data at Multics is operated on by a very sophisticated

data management system called Janus. There are over 1400 data items for

each of the 102 counties in Illinois, plus over 200 items for each of

approximately 500 municipalities. For the purposes of the demonstration,

the data base was restricted to 41 data items for each of 30 counties,

and 12 data items for each municipality in the 30 counties.

The demonstration uses the intelligent terminal as a cache

memory for Janus. The user can ask to see the values of 15 data items

for all 30 counties, or to see detailed data about the municipalities in

one county. If the data that the user has requested is already at the

terminal, then he is able to use it immediately. If the data is not

available locally, the terminal will automatically query Janus for it.

The user will then have to wait for the request to be transmitted to

Janus, for Janus to retrieve the data, and for the data to be transmitted

to the terminal before he can use it.

The user is able to display the data currently at the terminal

in a variety of formats, to create new data items that are simple transfor-

mations of the existing data, and to switch from using the current data

on counties to using the current municipality data and back again. The

display formats include a standard tabular report, a bar graph of the

4
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data, or a shaded map. Although the user can modify the data at the

terminal, and indeed create new data from that already existing at the

terminal, these changes are not reflected back to the Janus data base.

It is obviously possible to do so; we did not simply because of the time

constraints of the research study. If the communication line between

the intelligent terminal and Janus should fail for any reason, the user

can still operate on the data currently residing at the terminal.

It must be emphasized that the purpose of this research study

has been to investigate the concepts that underly intelligent terminals,

and not to implement a prototype version of an intelligent terminal.

The choice of a demonstration application is clearly independent of that

purpose; any other demonstration that investigated the intelligent

terminal concept would be equally appropriate.

Conclusions and Plans for Future Research

This research study was primarily concerned with the design

and implementation of an experimental single-user system to act as a

front-end to existing operating systems and data management systems. It

quickly became apparent that there was a wide variety of possible appli-

cations for the intelligent terminal. The assumptions of the benign

environment for the operating system were also questioned.

Benign environment . The operating system was designed assuming

a single user system, no user written programs, and correctly operating

application packages. Therefore, the operating system is not protected

from software errors nor does it have to resolve intra-user conflicts

over resources. If either of the two latter restrictions were relaxed,

(as may occur for large application packages), some mechanism such as

virtual memory or relocation and bounds registers would have to be used

to ensure the integrity of the operating system and system resources.
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Providing for multiple users adds another level of complexity

to the operating system. Intra-user conflicts, such as arise in resource

sharing and controlling access to data, must be resolved. Considerable

thought has to be given to the respective merits of a single user intelli-

gent terminal vs. a multi-user front-end.

Integration with existing systems . The intelligent terminal

described above presently serves as a single-user front-end to Janus, an

existing data management system. A data management system in the terminal

interacts with Janus to handle data and commands . Since Janus assumes

that it is interacting with a human, its error messages and prompts are

not easily understood by another computer. Also, since Janus does not

know that it is talking to an intelligent terminal, it cannot, of its

own initiative, take advantage of the local computing power.

For the purpose of the demonstration, a command has been added

to Janus to facilitate cooperation between the two systems. However,

extensive modifications to Janus would be required to take significant

advantage of the terminal.

Full integration with a host . The data management system on

the large host (and possibly the operating system) should know that it

is connected to an intelligent terminal. The host and terminal should

actively load share, each doing what it does best. Considerable effort

is needed to determine what functions the terminal and the host computer

should perform. At one extreme, the host just serves as a data computer -

the requests being formulated at the terminal. At the other extreme,

data of local significance is at the terminal with aggregation and

report functions occurring at the host.

Integration within a network . In an existing network like the

PWIN, powerful computers interact with simple terminals. The intelligent
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terminal is a special resource midway between these two. The proper

utilization of such a resource in harmony with existing applications,

protocols, and other processing and terminal resources is an area that

needs further study.

Need for modeling effort . In the above sections, several

variables have been introduced which complicate the design of an intelli-

gent terminal. They can be condensed into two problems. First, in a

heterogeneous network with large hosts, multi-user front-ends, and

intelligent terminals, how should responsibilities be distributed?

Second, what do the protocols for communication and decision making look

like when those entities attempt to share resources? It becomes clear

that a modeling effort is required to determine feasible solutions to

the first problem and to quantify the tradeoffs. Then protocols appro-

priate to the feasible and more desirable solutions can be defined.

Other aspects of intelligent terminals . There are other areas

of computer science which impact on intelligent terminal technology and

which were not covered by this study.

1) User authentication . Technology is just beginning to be

developed to allow a system to continuously verify that the user is who

he claims to be. These techniques will probably need local processing

to economically perform their functions.

2) Input . Touch panels have been superficially examined. This

technology and others such as voice input need examining.

3) Cryptography . It may be feasible to encode and decode data at

the terminal and to store it at the large host in ciphered form. The

terminal can assist in securing the communications link by cyphering and

decyphering communications and by generating artificial traffic.
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4) Compression . The feasibility of dynamic or static compression

schemes should be investigated. Compression should substantially reduce

bandwidth requirements

.
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