UNIVERSITY OF
ILLINO!S 'IRTARY
AJ UPBANA-L: UVPAIGN
ENGINEERINIS

NOTICE: Return or renew all Library Materialsi The Minimum Fee for each Lost Book is $\$ \mathbf{5 0 . 0 0}$.
The person charging this matemal $7 / 9080$ sisible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.
Theft, mutilation, and underlining of books ate reasons for disciplinary actión, and may reault in gisnissal from in Uinlversity.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

NOV 251005

NOV 22 RECT

ENGINEERING LIBRARY UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

Center for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA. ILLINOIS 61801

UIUCDCS-R-73-610
 CAC Document No. 91

ON THE INTERMEDIATE EIGENVALUES OF SYMMETRIC SPARSE MATRICES

By
A. Sameh, J. Lermit, and K. Noh

October 1973
(Revised February 1974)

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

UIUCDCS-R-73-610

CAC Document No. 91

ON THE INTERMEDIATE EIGENVALUES OF SYMMETRIC SPARSE MATRICES

By

A. Sameh, J. Lermit, K. Noh

Center for Advanced Computation University of Illinois at Urbana-Champaign Urbana, Illinois 61801

February, 1974
(Revised)

This work was supported in part by the Advanced Research Projects Agency of the Department of Defense and was monitored by the U.S. Army Research Office-Durham under Contract No. DAHCO4-72-C-0001.

ABSTRACT

An algorithm has been developed for finding the eigenvalues of a symmetric matrix A in a given interval [a, b] and the corresponding eigenvectors using a modification of the method of simultaneous iterations with the same favorable convergence properties. The technique is most suitable for large sparse matrices and can be effectively implemented on a parallel computer such as the ILLIAC IV.

ACKNOWL EDGEMENT

We thank Professor Geneva Belford for her constructive comments and discussions. We also thank Lois Pelczar for typing the manuscript.

Introduction

Consider the eigenvalue problem $A u=\lambda u$ where A is a real symmetric matrix of order n. If n is large and A is sparse, then an iterative method for finding the eigenvalues and eigenvectors which uses A only as an operator may be superior to a method which reduces A to a condensed form (e.g., tridiagonal) using orthogonal transformations resulting in a far denser matrix exceeding storage capacity. This superiority is quite demonstrable if only a few of the eigenvalues and the corresponding eigenvectors are required. Bauer's method of Simultaneous Iterations [1, 2] for finding a few of the leading eigenvalues and eigenvectors is one of such methods. In this paper we modify his method to find the eigenvalues of A in some interval [a, b]. Without loss of generality we assume that A is positive-definite. The problem is therefore to find the q eigenvalues $\lambda_{p}, \lambda_{p+1}, \ldots, \lambda_{p+q-1}$, where

$$
c_{2} \geq \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p-1} \geq b>\lambda_{p} \geq \lambda_{p+1} \geq \cdots \geq \lambda_{p+q-1}>a \geq \lambda_{p+q} \geq \cdots \geq \lambda_{n} \geq c_{1}>0
$$

and the corresponding eigenvectors.

The Algorithm

Similar to the method of "Simultaneous Iterations" [2], we propose the following iterative scheme:
(i) Choose an $n \times g$ matrix X_{0} such that

$$
\begin{equation*}
x_{o}^{t} x_{o}=I_{q} \tag{1}
\end{equation*}
$$

(ii) $\tilde{X}_{m+k}=T_{m}(B) X_{k} \quad k=0,1,2, \ldots$
where B is a polynomial of A to be defined later, and $T_{m}(B)$ is the Chebyshev polynomial of B of degree m.
(iii) Using Gram-Schmidt orthonormalization process we decompose \tilde{X}_{j} as

$$
\begin{equation*}
\tilde{X}_{j}=U_{j} R_{j}, \tag{2}
\end{equation*}
$$

where $U_{j}^{t_{j}}=I_{q}$ and R_{j} is an upper triangular matrix of order q.
(iv) Let

$$
\begin{equation*}
Z_{j}=A U_{j} \tag{3}
\end{equation*}
$$

Then form the positive-definite $q \times q$ matrix

$$
\begin{equation*}
G_{j}=z_{j}^{t_{j}} \tag{4}
\end{equation*}
$$

and solve for its eigenvectors Q_{3}.
(v) Thus,

$$
\begin{equation*}
X_{j+1}=U_{j} Q_{j} . \tag{5}
\end{equation*}
$$

Go back to (ii) and so on until $X_{\ell}^{t} A X_{\ell}$ approaches a diagonal matrix whose elements are the eigenvalues of A in $[a, b]$; this occurs when Q_{ℓ} approaches the identity matrix.

The matrix B in (l) may be obtained as follows:
Let

$$
\begin{equation*}
\tilde{A}=[2 A-(a+b) I] /(b-a) ; \tag{6}
\end{equation*}
$$

then an eigenvalue of \tilde{A} is given by

$$
\begin{equation*}
\tilde{\lambda}=[2 \lambda-(a+b)] /(b-a) \tag{7}
\end{equation*}
$$

and those eigenvalues of \tilde{A} in $[-1,1]$ correspond to the eigenvalues of A in $[a, b]$. The interval $[-c, c]$ that contains all the eigenvalues of \tilde{A} is given by,

$$
\begin{equation*}
c=\max \left\{d_{1}, d_{2}\right\} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{1}=\left|2 c_{1}-(a+b)\right| /(b-a) \tag{9}\\
& d_{2}=\left|2 c_{2}-(a+b)\right| /(b-a)
\end{align*}
$$

If some mapping $y=f(x)$ can be found such that $f(\tilde{\lambda})$ is outside the interval $[-1,1]$ for $\tilde{\lambda}$ in $[-1,1]$ and $|f(\tilde{\lambda})| \leq 1$ for $\tilde{\lambda}$ outside [-1, 1], then the algorithm described above (i)-(v) will yield the eigenvalues of A in
[a, b] and the corresponding eigenvectors.
Let us therefore map the interval [-1, l] on the subintervals [$-\mathrm{c},-1$] and $[1, c]$, one such mapping may be taken as,

$$
\begin{align*}
& y= \pm \sqrt{\alpha x+\beta} \\
\text { or } \quad & x=\left(y^{2}-\beta\right) / \alpha .
\end{align*}
$$

$x=-1$ corresponds to $y= \pm 1$, thus

$$
1=-\alpha+\beta ;
$$

and $x=+1$ corresponds to $y= \pm c$, thus

$$
c^{2}=\alpha+\beta
$$

Therefore

$$
\begin{align*}
& \alpha=\frac{1}{2}\left(c^{2}-1\right) \\
& \beta=\frac{1}{2}\left(c^{2}+1\right) \tag{11}
\end{align*}
$$

Hence the matrix B is taken as

$$
\begin{equation*}
B=\left[2 \tilde{A}^{2}-\left(c^{2}+1\right) I\right] /\left(c^{2}-1\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{aligned}
& \mu=\lambda(B)=\left[2 \tilde{\lambda}^{2}-\left(c^{2}+1\right)\right] /\left(c^{2}-1\right) \\
& \text { i.e., } \quad-\left(\frac{\beta}{\alpha}\right)<\mu<-1 .
\end{aligned}
$$

We now introduce the following theorems.

Theorem 1:

Let E_{0} be the linear space spanning the columns of X_{0}. In case of stable convergence (no reordering of the eigenvalues if the LR-Cholesky decomposition is applied to G_{j}), the angle $\phi_{i}(j)$ between the i-th eigenvector u_{i} and the linear space $E_{j}=\left\{x \mid x=T_{m}(B) y, y \in E_{j-1}\right\}$, spanning the columns of X_{j}, is asymptotically for $j \rightarrow \infty$ of order $O\left(q_{i}^{j}\right)$ in which

$$
\begin{equation*}
q_{i}=\max _{k \notin P}\left\{\left|T_{m}\left(\mu_{k}\right)\right| /\left|T_{m}\left(\mu_{i}\right)\right|\right\} \tag{14}
\end{equation*}
$$

$i \varepsilon P$, where $P=\{p, p+l, \ldots, p+q-1\}$. The proof is quite similar
to that of Theorem 2 in [2] and hence will be omitted here (see Appendix I).

Theorem 2:

The columns of the matrices X_{j} as generated by (i)-(v) are such that

$$
\begin{equation*}
\left\|u_{i}-x_{i}^{(j)}\right\|=0\left(q_{i}^{j}\right) \tag{15}
\end{equation*}
$$

where q_{i} is as given by (14). The proof is again similar to that of Theorem (3) in [2] (see Appendix I).

A proper order of the Chebyshev polynomial, m, can be obtained, as in [2], by stipulating that the parallelization of the columns of \tilde{X}_{k+m} should not go further than that at most one decimal digit is cancelled out when these columns are orthonormalized, i.e.,

$$
\left|T_{m-1}\left(\mu_{\ell}\right)\right|<10
$$

where

$$
\begin{equation*}
\left|\mu_{\ell}\right|=\max _{i \in P}\left|\mu_{i}\right| \tag{16}
\end{equation*}
$$

An approximation of μ_{ℓ} is obtained from (13) by replacing $\tilde{\lambda}$ by $\left[2 \lambda_{\ell}^{\frac{1}{2}}\left(G_{j}\right)-(a+b)\right] /(b-a)$ where $\lambda_{\ell}\left(G_{g}\right)$ is the maximum eigenvalue of G_{g}. Thus,

$$
\begin{align*}
& \cosh \left[(m-1) \cosh ^{-1}\left|\mu_{\ell}\right|\right]<10, \text { and } \\
& m-1<\frac{\cosh ^{-1} 10}{\cosh ^{-1}\left|\mu_{\ell}\right|} \simeq \frac{3}{\cosh ^{-1}\left|\mu_{\ell}\right|} \tag{17}
\end{align*}
$$

As soon as one of the eigenvalues of G_{j} stagnates, the corresponding eigenvalue of A can be found within computer accuracy. Once this happens we can test for acceptance of the corresponding eigenvector. The acceptance test is that of [3] except that the discounting rule is given by

$$
\begin{equation*}
f_{i}:=f_{i} \times \frac{T_{m}\left(\sigma_{h+p}\right)}{T_{m}\left(\sigma_{i}\right)} \tag{18}
\end{equation*}
$$

where σ_{i} is an approximation to μ_{i} obtained as explained above, and h is the number of eigenvalues already accepted.

Some Numerical Results

The algorithm described above has been implemented in Fortran on UCLA's IBM $360 / 91$ computer. The flow chart is slightly different from that of Rutishauser [3],

To demonstrate the numerical behavior of the algorithm we tested three symmetric matrices A_{1}, A_{2}, and A_{3} (shown in Appendix II). In all three examples we obtained the required eigenvalues correct to 14 decimal places and the eigenvectors correct to at least 7 decimal places.

Example 1

The Gerschgorin disks of the 64×64 matrix A_{1} show that we have 16 eigenvalues in the interval (1.4, 3.6), 8 eigenvalues in the interval ($5.4,6.6$), and 40 eigenvalues in the interval (8.4, 16.0). We seek to
obtain the 8 intermediate eigenvalues and eigenvectors. Two different intervals [a, b] have been tested [4.0, 8.0], and [5.3, 6.7] with $x_{0}=\left[e_{41}, e_{42}, \ldots, e_{48}\right]$.

TABLE I

$[\mathrm{a}, \mathrm{b}]$	M	zl	ks
$[4.0,8.0]$	16	7	114
$[5.3,6.7]$	32	15	488
M: maximum degree of Chebyshev			
polynomials			

Table I shows that, for the same acceptance test, the number of iteration steps required (ks) is smaller when a and b are as far as possible from the eigenvalues to be evaluated ($\lambda_{p}, \lambda_{p+1}, \ldots, \lambda_{p+q-1}$), which is clear from relation (14) and the preceeding interval transformation.

If we choose $X_{0}=\left[e_{40}, e_{41}, \ldots, e_{49}\right]$, however, and $[a, b] \equiv[5.3,6.7]$ the process converges to the required 8 eigenvalues and eigenvectors in only 265 iteration steps $(\mathrm{ks}=265), \mathrm{zl}=10$, but $\mathrm{M}=58$.

Example 2

The 6×6 positive-definite matrix A_{2} has the simple roots $1,5,25$, and a triple root at 15 . If we seek the triple root 15 and take the interval [a, b] as [7, 24] we require 62 iteration steps, $z l=5$, and the maximum degree M of the Chebyshev polynomials is 6 . Here we only obtain an invariant subspace that corresponds to $\lambda\left(A_{2}\right)=15$.

If, however, we seek the four eigenvalues in the interval [2, 24] we require only 20 iteration steps with the degree of Chebyshev polynomials not exceeding 2, and $z l=3$. Again we obtain an invariant subspace corre-
sponding to $\lambda\left(A_{2}\right)=15$ and the correct eigenvector corresponding to $\lambda\left(A_{2}\right)=5$. Example 3

The positive-definite matrix A_{3} has the eigenvalues $\lambda_{k}=16 \sin ^{4}\left[\frac{\mathrm{k} \pi}{2(\mathrm{n}+1)}\right]$, $k=1,2, \ldots, n$, where $n=64$. There are 26 eigenvalues in $(0,2), 6$ in $(2,4)$, and 32 in (4,16). Here we would like to evaluate the eigenvalues in the interval [2, 4] and the corresponding eigenvectors. Table II shows the effect of our assumption regarding the distribution of eigenvalues on the number of iteration steps (ks) required for convergence to the eigenvalues and eigenvectors in the interval [2, 4], and degrees of the Chebyshev polynomials.

TABLE II

X_{0}	M	zl	ks
(i) $\left[e_{33}, \ldots, e_{38}\right]$	52	9	290
(ii) $\left[e_{31}, \ldots, e_{40}\right]$	52	8	237
(iii) $\left[e_{35}, \ldots, e_{37}\right]$	52	21	1312
(iv) $\left[e_{17}, \ldots, e_{28}\right]$	52	10	343

Experiment (iii) indicates that using fewer columns in X_{0} than the actual number of eigenvalues in [2, 4] led to a large number of iteration steps $\mathrm{ks}=1312$, and $\mathrm{zl}=21$ to converge to the assumed 3 eigenvalues. While experiment (iv) shows that if we use more columns in X_{0} than the actual number of eigenvalues, even if we completely misjudge the distribution of the eigenvalues in the intervals $(0,2),(2,4),(4,16)$, the number of iteration steps (ks) and the number of QL steps (zl) required for convergence to the 6 eigenvalues and eigenvectors in [2, 4] are only slightly more than those in experiment (i) where we used the true distribution of
the eigenvalues. Since the number of iterations required appears to be largely independent of the choice of columns of the initial matrix X_{0}, a random number generator could be used to generate these.

We notice that the above algorithm is quite suitable for parallel computations since the major operation here is multiplying a matrix by a vector, which can be handled rather efficiently on a parallel computer such as the ILLIAC IV.
[I] Bauer, F. L., "Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme," ZAMP, 8 (1957), pp. 214-235.
[2] Rutishauser, Heinz, "Computational Aspects of F. L. Bauer's Simultaneous Iteration Method," Num. Math., 13 (1969), pp. 4-13.
[3] \qquad "Simultaneous Iteration Method for Symmetric Matrices," Num. Math., 16 (1970), pp. 205-223.
[4] Wilkinson, J. H., and Reinsch, C., Handbook for Automatic Computation, Vol. II, Linear Algebra, Contributions II/2, II/3. New York: Springer-Verlag, 1971.

Appendix I

Proof of Theorem 1

The iterations (i)-(v) are orthogonally invariant, i.e., replacing A by $H^{t} A H=\Lambda$ (where $H^{t} H=I, \Lambda=\operatorname{diag}\left(\lambda_{i}\right)$) and X_{o} by $H^{t} X_{o}$ has the effect that all \tilde{X}_{j} are replaced by $H^{t} \tilde{X}_{j}$, while the G_{j} and X_{j} are not changed. Therefore we can assume, without loss of generality, that

$$
A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

In case of stable convergence E_{o} can be spanned by q vectors

According to (I), E_{j} is spanned by

For example, the angle between e_{p} and the first column of (A.2) is given by

$$
\cos ^{2} \Psi_{p}=\frac{T_{m}^{2 j}\left(\mu_{p}\right)}{\sum_{k \tilde{f} \tilde{P}}\left(T_{m}^{j}\left(\mu_{k}\right) x_{k, 1}\right)^{2}}, \quad \tilde{P}=\{p+1, p+2, \ldots, \underline{p}+q-1\}
$$

hence,

$$
\sin ^{2} \Psi_{p}=\sum_{k \notin P}^{n}\left(T_{m}^{j}\left(\mu_{k}\right) x_{k, 1}\right)^{2} / \sum_{k \neq \tilde{P}}^{n}\left(T_{m}^{j}\left(\mu_{k}\right) x_{\mu, 1}\right)^{2}, \quad P=\{p, \tilde{P}\}
$$

or

$$
\psi_{p} \text { is of order } 0\left(q_{p}{ }^{j}\right)
$$

where

$$
q_{p}=\max _{k}\left\{\left|T_{m}\left(\mu_{k}\right)\right| /\left|T_{m}\left(\mu_{p}\right)\right|\right\}
$$

$$
\mathrm{k} \notin \mathrm{P}
$$

Therefore,

$$
\phi_{i}^{(j)} \text { is at most of order } 0\left(q_{i}^{j}\right)
$$

Proof of Theorem 2

Taking the q vectors (A.l) each divided by $T_{m}^{j}\left(\mu_{\ell}\right), \ell=p, p+l$, $\ldots, p+q-l$, as coordinate vectors $W=\left[w_{p}, w_{p+l}, \ldots, w_{p+q-l}\right]$ in E_{j}, the eigendirections of the projected operator A^{-2} are the $n \times q$ matrix $Y=W S$ where

$$
\begin{equation*}
Y^{t} A^{-2} Y=D_{j}^{-2} \tag{A.3}
\end{equation*}
$$

in which,

$$
\begin{aligned}
& D_{j}=\operatorname{diag}\left(d_{p}^{(j)}, d_{p+1}(j), \ldots, d_{p+q-1}(j)\right), \\
& Y^{t} Y=I_{q}
\end{aligned}
$$

and S is a $q \times q$ orthogonal matrix. Thus

$$
S^{t}\left(W^{t} A^{-2} W\right) S=D_{j}^{-2}
$$

or

$$
\begin{equation*}
\left(W^{t} A^{-2} W\right) S=S D_{j}^{-2} ; \tag{A.4}
\end{equation*}
$$

i.e., S is the eigenvector matrix of $W^{t} A^{-2} W$, which can be written as

$$
\begin{equation*}
W^{t} A^{-2} W=\Lambda^{-2}+K, \tag{A.5}
\end{equation*}
$$

where the elements of K are of order $O(\tau)$, i.e., $O\left[\left|T_{m}\left(\mu_{i}\right)\right| /\left|T_{m}\left(\mu_{\ell}\right)\right|\right]^{2 j}$
i $\notin P$. Assume now $\lambda_{i}=\lambda_{i+1}=\ldots=\lambda_{h}$ is an $h-i+l$ fold eigenvalue of A; then as $j \rightarrow \infty$, $h-i+1$ independent eigensolutions of (A.4) with $d \rightarrow \lambda_{i}$ exist. Everyone of these is described by q values $s_{p}, s_{p+1}, \ldots, s_{p+q-1}$, and we assume that these solutions are normalized such that $s_{i}^{2}+s_{i+1}{ }^{2}+\ldots+s_{h}^{2}=1$. Then the s_{ℓ} with $\ell \neq i, i+l, \ldots, h$ are of order $O(\tau)$. This means the angle between $\sum_{i}^{h} s_{\ell}{ }^{w}{ }_{\ell}$ and $\sum_{\ell=P}^{p+q-l} s_{\ell} w_{\ell}$ is also of order $O(\tau)$, while according to Theorem 1 the angle between $\sum_{i}^{h} s_{\ell}{ }^{w_{\ell}}$ and the eigenspace of $\lambda_{i}, \lambda_{i+1}, \ldots, \lambda_{h}$ of A is of order $0\left(a_{i}^{j}\right)^{i}$. This establishes the theorem.

Appendix II

$$
A_{1}=\left[\begin{array}{cccc}
\mathrm{B}_{1} & & & c \\
& B_{2} & & C \\
& \ddots_{1} & \\
& & B_{7} & C \\
C & C---C & B_{8}
\end{array}\right]
$$

where B_{k} and C are matrices of order 8 ,

$$
B_{k}=\left[\begin{array}{lllll}
\alpha_{k} & 0.1 & & \\
0.1 & \alpha_{k} & 0.1 & \\
& 0.1 & & \\
& & 0.1 \\
& & 0.1 & \alpha_{k}
\end{array}\right], C=\operatorname{diag}(0.4, \ldots, 0.4)
$$

and the centres of the Gerschgorin discs $\left\{\alpha_{k}\right\}$ are given by $(2,3,6,9,10,11,12,13)$.

$$
\begin{aligned}
& A_{2}=\left[\begin{array}{rrrrrr}
16.778 & -4.889 & -4.889 & -4.889 & -1.556 & -0.222 \\
-4.889 & 13.444 & -1.556 & -1.556 & 1.778 & 3.111 \\
-4.889 & -1.556 & 13.444 & -1.556 & 1.778 & 3.111 \\
-4.889 & -1.556 & -1.556 & 13.444 & 1.778 & 3.111 \\
-1.556 & 1.778 & 1.778 & 1.778 & 10.111 & 6.444 \\
-0.222 & 3.111 & 3.111 & 3.111 & 6.444 & 8.778
\end{array}\right] \\
& A_{3}=\left[\begin{array}{rrrrrr}
5 & -4 & 1 & & 1 & \\
-4 & 6 & -4 & 1 & & \\
1 & -4 & 6 & -4 & 1 & \\
------------------------1 \\
1 & -4 & 6 & -4 & 1
\end{array}\right], n=64
\end{aligned}
$$

BIBLIOGRAPHIC DATA SHEET	1. Report No. UIUC-CAC-DN-73-91	2.	3. Recipient's Accession No.
4. Title and Subritle ON THE INTERMEDIATE EIGENVALUES OF SYMMETRI SPARSE MATRICES			5. Report Date October 1973
			6.
7. Author(s) Ahmed Sameh, Jonathan Lermit, and Killion Noh			8. Performing Oyganization Rept. No. CAC-91
9. Performing Organization Name and Address Center for Advanced Computation University of Illinois at Urbana-Champaign Urbana, Illinois 61801			10. Project/Task/Work Unit No.
			$\begin{aligned} & \text { 11. Contract/Grant No } \\ & \text { DAHCO4-72-C }-0001 \end{aligned}$
12. Sponsoring Organization Name and Address U.S. Army Research Office Duke Station Durham, North Carolina			13. Type of Report \& Period Covered Research-interim
			14.
15. Supplementary Notes			
16. Abstracts An algorithm has been developed for finding the eigenvalues of a symmetric matrix A in a given interval [$\mathrm{a}, \mathrm{b}]$ and the corresponding eigenvectors using a modification of the method of simultaneous iterations with the same favorable convergence properties. The technique is most suitable for large sparse matrices and can be effec implemented on a parallel computer such as the ILLIAC IV.			

17. Key Words and Document Analysis. 17a. Descriptors

Eigenvalues and Eigenvectors
Chebyshev Polynomials
Simultaneous Iterations

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group
18. Availability Statement No restriction on distribution.
Available from National Technical
Information Service, Springfield, Va.

USCOMM-DC 14952-P72

