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ABSTRACT

An algorithm has been developed for finding the eigenvalues of a

symmetric matrix A in a given interval [a, b] and the corresponding
eigenvectors using a modification of the method of simultaneous itera-

tions with the same favorable convergence properties. The technique
is most suitable for large sparse matrices and can be effectively im-
plemented on a parallel computer such as the ILLIAC IV.
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Introduction

Consider the eigenvalue protlem Au = Xu where A is a real symmetric

matrix of order n. If n is large and A is sparse, then an iterative

method for finding the eigenvalues and eigenvectors which uses A only as

an operator may be superior to a method which reduces A to a condensed

form (e.g., tridiagonal) using orthogonal transformations resulting in a

far denser matrix exceeding storage capacity. This superiority is quite

demonstrable if only a few of the eigenvalues and the corresponding

eigenvectors are required. Bauer's method of Simultaneous Iterations

[l, 2] for finding a few of the leading eigenvalues and eigenvectors is

one of such methods. In this paper we modify his method to find the

eigenvalues of A in some interval [a, b]. Without loss of generality we

assume that A is positive-definite. The problem is therefore to find the

q eigenvalues X,Ajt,...,X, ^, where
p p+1 p+q-1

c„>X >A^> . . . >X >b>X >X ^ > ... >X , >a>X .
> ... >X >c >02— 1— 2— — p-1— p— p+1— — p+q-l — p+q— — n— 1

and the corresponding eigenvectors

.

The Algorithm

Similar to the method of "Simultaneous Iterations" [2], we propose

the following iterative scheme:

(i) Choose an nxq matrix X such that
o

X^ X = I
o o q

^ii) \+k = V^)\ k= 0, 1, 2, ... (1)

where B is a polynomial of A to be defined later, and T (B) is the
m

Chebyshev polynomial of B of degree m.

(iii) Using Gram-Schmidt orthonormalization process we decompose X as
J



where U.U. = I and R. is an upper triancxilar matrix of order q.

(iv) Let

Z^=AU^. (3)

Then form the positive-definite qxq matrix

and solve for its eigenvectors Q .

J

(v) Thus,

Go back to (ii) and so on until X AX approaches a diagonal matrix whose

elements are the eigenvalues of A in [a, b]; this occurs when Q ap-

proaches the identity matrix.

The matrix B in (l) may be obtained as follows:

Let

A = [2A - (a+b)l]/(b-a); (6)

then an eigenvalue of A is given by

X = [2A - (a+b)]/(b-a) (?)

and those eigenvalues of A in [-1, l] correspond to the eigenvalues of

A in [a, b]. The interval [-c, c] that contains all the eigenvalues of

A is given by,

c = max{d , d } (8)

where

^1 "
l^^i

" (a+b)|/(b-a)

d^ = |2c2 - (a+b)|/(b-a)

If some mapping y = f(x) can be found such that f{\) is outside the inter-

val [-1, l] for X in [-1, l] and |f(X)|<_l for X outside [-1, l], then the

algorithm described above (i)-(v) will yield the eigenvalues of A in

(9)



[a, b] and the corresponding eigenvectors.

Let us therefore map the interval [-1, l] on the subintervals [-c, -l]

and [l, c], one such mapping may be taken as,

y = ±/ax+3

or X = (y^-6)/a. (lO)

X = -1 corresponds to y = ±1, thus

1 = -a+3;

and X = +1 corresponds to y = ±c, thus

2
c = a+3.

Therefore

and

(11)

a = |(c2-l) •

3 = |(c2+l)

Hence the matrix B is taken as

B = [2A^ - (c^+l)l]/(c^-l) (12)

y = A(B) = [2X^ - (c^+l)]/(c^-l) (l3)

i.e., -(^) < y < -1.
a

We now introduce the following theorems.

Theorem 1 :

Let E be the linear space spanning the columns of X . In case of

stable convergence (no reordering of the eigenvalues if the LR-Cholesky de-

composition is applied to G ), the angle 4). between the i-th eigenvector

u. and the linear space E = {x|x=T (B)y, yeE }, spanning the columns of
-L

fj
111 (J ""-L

X 5 is asymptotically for j-x» of order 0(q, ) in which
J -^

q. = max { |T (y )|/|T (y )|} (ll;)
1

k?fP
"^ k I I m 1

I

ieP, where P = {p, p+1, ..., p+q-l}. The proof is quite similar



to that of Theorem 2 in [2] and hence will be omitted here (see Appendix

I).

Theorem 2:

The columns of the matrices X as generated by (i)-(v) are such that

l|u. - x.^-^^ll = O(q.J) (15)

where q. is as given by (lU). The proof is again similar to that of

Theorem (3) in [2] (see Appendix l).

A proper order of the Chebyshev polynomial, m, can be obtained, as

in [2], by stipulating that the parallelization of the columns of X,
k+m

should not go further than that at most one decimal digit is cancelled

out when these columns are orthonormalized, i.e.,

l\-i '^^>l '^°'

where

|y^| = max |y^|

.

(l6)

ieP

An approximation of y is obtained from (13) by replacing A by

1

[2A (G ) - (a+b)]/(b-a) where A (G ) is the maximum eigenvalue of G .

^ J ^ J J

Thus,

cosh [(m-l) cosh IPpI] < 10 > and

T ^ cosh" 10 „ 3 /,„>,
m-l < — = — (ITJ

cosh |y^| cosh" |y^|

As soon as one of the eigenvalues of G stagnates, the corresponding
J

eigenvalue of A can be found within computer accuracy. Once this happens

we can test for acceptance of the corresponding eigenvector. The accep-

tance test is that of [3] except that the discoTinting rule is given by

f. := f. X /p^tP (18)
1 1 T (a. )m 1



where a. is an approximation to y, obtained as explained above, and h is

the number of eigenvalues already accepted.

Some Numerical Results .

The algorithm described above has been implemented in Fortran on

UCLA's IBM 360/91 computer. The flow chart is slightly different from that

of Rutishauser [3],

zl:=z2:=ks:=0
m:=2

Perform m steps with
Chebyshev iterations

ks: =ks+m

z2:=z2-m

Yes

zl:=zl+l
z2:=Uxzl
m: =2xni

TRED2, IMTQL2 [h]

ks:=ks+l

i
Acceptance tests, reduce m if needed

To demonstrate the numerical behavior of the algorithm we tested three

symmetric matrices A , A , and A (shown in Appendix II). In all three

examples we obtained the required eigenvalues correct to lU decimal places

and the eigenvectors correct to at least 7 decimal places.

Example 1

The Gerschgorin disks of the Sh'xSk matrix A show that we have 16

eigenvalues in the interval (l.i+, 3.6), 8 eigenvalues in the interval

(5.^, ^'6)i and i+0 eigenvalues in the interval (8.^, 16.O). We seek to



obtain the 8 intermediate eigenvalues and eigenvectors. Two different

intervals [a, b] have been tested [U.O, 8.0], and [5-3, 6.7] with

^o " ^^kV %2' •••' %8^-

TABLE I

[a, b] M zl ks

[i+.O, 8.0] l6 T lli+

[5.3, 6.7] 32 15 U88

M: maximum degree of Chebyshev
polynomials

zl: niomber of QL steps

ks: nximber of iteration steps

Table I shows that, for the same acceptance test, the number of itera-

tion steps required (ks ) is smaller when a and b are as far as possible

from the eigenvalues to be evaluated (X , A ,_, .... A .), which is
p p+1 P+q-1

clear from relation (l^) and the preceeding interval transformation.

If we choose X = [e,^, e, , ..., e, ] , however, and [a, b]E[5.3, 6.7]

the process converges to the required 8 eigenvalues and eigenvectors in

only 265 iteration steps (ks = 265), zl = 10, but M = 58.

Example 2

The 6'x6 positive-definite matrix A has the simple roots 1, 5, 25,

and a triple root at 15. If we seek the triple root 15 and take the in-

terval [a, b] as [7, 2k] we require 62 iteration steps, zl = 5, and the

maximum degree M of the Chebyshev polynomials is 6. Here we only obtain an

invariant subspace that corresponds to X(A ) = 15

.

If, however, we seek the four eigenvalues in the interval [2, 2k]

we require only 20 iteration steps with the degree of Chebyshev polynomials

not exceeding 2, and zl = 3. Again we obtain an invariant subspace corre-



spending to X(A ) = 15 and the correct eigenvector corresponding to X(A ) = 5.

Example 3

i+r kTT
The positive-definite matrix A has the eigenvalues X = l6 sin [ / . - \ ]

,

k = 1, 2, ..., n, where n = 6h. There are 26 eigenvalues in (0, 2), 6 in

(2, h)y and 32 in (U, l6). Here we woiold like to evaluate the eigenvalues

in the interval [2, h] and the corresponding eigenvectors. Table II shows

the effect of our ass\unption regarding the distribution of eigenvalues on

the number of iteration steps (ks ) required for convergence to the eigen-

values and eigenvectors in the interval [2, i+], and degrees of the Chebyshev

polynomials

.

TABLE II

X
o

M zl ks

(i) [633, ..•' ^38^ 52 9 290

(ii) [e^-|_> •••- ^0^ 52 8 237

(iii) [e^^, ..••' "37^ 52 21 1312

(iv) [e^^, ..'•' ^28^ 52 10 3U3

Experiment (iii) indicates that using fewer columns in X than the actual
o

number of eigenvalues in [2, h] led to a large ntimber of iteration steps

ks = 1312, and zl = 21 to converge to the assumed 3 eigenvalues. While

experiment (iv) shows that if we use more columns in X than the actual

number of eigenvalues, even if we completely misjudge the distribution of

the eigenvalues in the intervals (O, 2), (2, k), (k^ 16), the n\amber of

iteration steps (ks) and the number of QL steps (zl) required for conver-

gence to the 6 eigenvalues and eigenvectors in [2, h] are only slightly

more than those in experiment (i) where we used the true distribution of



the eigenvalues. Since the nvimber of iterations required appears to be

largely independent of the choice of coliomns of the initial matrix X , a

random number generator could be used to generate these.

We notice that the above algorithm is quite suitable for parallel

computations since the major operation here is multiplying a matrix by a

vector, which can be handled rather efficiently on a parallel computer

such as the ILLIAC IV.
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Appendix I

Proof of Theorem 1

The iterations (i)-(v) are orthogonally invariant, i.e., replacing

A by h''^AH = A (where h''^H = I, A = diag (A.)) and X by h"'^X has the ef-
•^

1 o o

feet that all X are replaced by H X , while the G and X are not
J J J J

changed. Therefore we can ass\ime, without loss of generality, that

A = diag (A^, A^, ..., A^).

In case of stable convergence E can be spanned by q vectors

^1

p-1,1

n,l

^2' "l,.

p-1,2 p-l,q

n,2'

••1

^p+q,l .p+q,2 .p+q,q

n,q

row p

(A.l)

row p+q-1

10



According to (l), E. is spanned by
J

\^^^l) -11

m p-1 p-1,1

m p

T "^(y
_^ ) X ^ nm . p+q P+q,l

T "^(y
) X .

m n n,l

\^[^1^ \2 \^^) ^,,

Tj(y ) x^
,

_
m p-1 p-l>2

m p+1

J

T "^(y J X ,m p-1 p-l,q

m p+q-1

T "^
(y ) X ... T "^ (y ) xm . P+q P+q,

2

m . p+q p+q,q

T "^(y
) X ^ T hv ) Xmnn,2 mnn,q

(A. 2)

For example, the angle between e and the first column of (A. 2) is given
XT

cos m =
^P

T '^hv )m

I, K'K^ ^,.y

P = {p+l, p+2, . .. , p+q-1}

hence.

. 2
=^" *p =

Jp <V(\) \,i>^Jp 'Vf\' %,i' • ^ ' 'P- ^'

or

where

'i' is of order 0(q_'^)
P T>

q^ = max ( |

T (y )
| / |

T (y ) | }, k ?f P^ ^ ' m k ' ' m p '

11



Therefore,

<t>.^ is at most of order OCq.*^) |

Proof of Theorem 2

Taking the q vectors (A.l) each divided byT"^(vi), £ = p, p+1,

.... p+q-1, as coordinate vectors W = [w , w ,^ , . .
.

, w
. .] in E,, the

p p+1 P+q-i J

-2
eigendirections of the projected operator A are the nxq matrix Y = WS

where

in which.

y"^ A"2 Y = Dj"^ (A. 3)

D. = diagld » d , ..., d . ^ j,
J P P+1 P+q-1

Y^ Y = I ,

q

and S is a qxq orthogonal matrix. Thus

S*(wV^W)S = D."^,
J

or

(¥V^W)S = SD "^; (A.1+)

t -2
i.e., S is the eigenvector matrix of W A W, which can he written as

W^A"^W = A"^ + K, (a. 5)

where the elements of K are of order 0(t), i.e., 0[|t (y.)I/|T (y„)|]m 1 m X,

2j

i ^ P. Assume now A . = X. ^ = . . . = A, is an h-i+1 fold eigenvalue of
1 1+1 h

A; then as j-*^, h-i+1 independent eigensolutions of (A.i+) with d->X
1

exist. Everyone of these is described by q values s , s ,^, ..., s
. ^,"

p p+1 p+q-1

and we assume that these solutions are normalized such that

2 2 2
s. +s., +...+S, =1. Then the s„ with £ ^ i, i+1, ..., h are of
1 1+1 h Z

h P'^g"!
order 0(t). This means the angle between

2, ^o ^o ^-"^^ I ^o "^o
^^ also

i ^ ^ ii=p ^
:
h

of order 0(t), while according to Theorem 1 the angle between
J s w

and the eigenspace of X., ^..-,> •••» X of A is of order 0(q. ). This

establishes the theorem. |

12



Appendix II

h =

C C
^8 J

where B and C are matrices of order 8,
K.

\ =

a, 0.1
k

0.1 a, 0.1

0.1 0.1

0.1 ^Na,

, C = diag(0.1+, . .. , O.U)

and the centres of the Gerschgorin discs (a } are given "by

(2, 3, 6, 9, 10, 11, 12, 13).

^2
=

16.778
-U.889
-1+.889

-i;.889

-1.556
-0.222

-li.889

13.i+i+i^

-1.556
-1.556
1.778
3.111

-1+.889

-1.556
13.i+i+i+

-1.556

1.778
3.111

-I1.889

-1.556
-1.556
13.i+i+i+

1.778
3.111

-1.556
1.778
1.778
1.778

10.111
6Mh

-0.222
3.111
3.111
3.111
6.1+1+1+

8.778

S-

5 -h

.1+ 6

1 -1+

1

1+ 1

6 -1+

-1+

1

6

-1+

1

, n = 61+

13
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