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Executive Summary

The problem . The availability of a data base may be simply

defined as the fraction of time that the data is available to users.

Many things can cause a data base to become unavailable in a network,

setting. If the data base is stored at the same location as the user,

the system through which the data must be accessed may fail, or the device

on which the data base is resident may crash. If the data base is located

at a remote site on the network, the remote site or system may fail, the

network may partition so that the remote site cannot be reached, or some

local failure may make the network inaccessible to the user.

In most of these cases, availability can be considerably improved

if a backup copy of the data base exists. If copies of the data base

exist at two sites in the network, the danger of losing access because

of network partitioning or site failure is reduced. Furthermore, if a

local device holding all or part of the data base crashes, data may be

destroyed. It is likely to be much faster (as well as more reliable) to

ready a locally archived backup copy of the data for usage than to try to

recover the lost or degraded data from audit trails, etc.

How much the existence of a backup copy improves availability

depends on a number of factors. For example:

1) How available is the backup copy? (Is it stored on disk for

immediate access? If it is stored on tapes, a sizeable delay

may be incurred while the tapes are located, mounted, and loaded onto a

rapid-access device.)

2) How up-to-date is the backup copy? (Are all updates

applied to the backup copy as rapidly as possible? Is there a long

backlog of updates that must be processed before the data base is really

ready for use?)





3) How often is the site (or device) holding the data base

likely to fail? (If failures are infrequent, the backup copy may provide

little improvement in availability.)

Even small improvements in availability can, of course, be

important. Availability can be over 0.99 and still be disastrously low

if, say, the data is unavailable for one 24-hour period during a year

and that period happens to be during a crisis. It is important, therefore,

to understand thoroughly how availability is affected by the factors

discussed in the preceding paragraph, and hence by the strategy used for

backing up a data base.

The model . We have developed simple algebraic formulas for

availability as a function of the factors listed above. Additional

parameters are incorporated to model the delay incurred in initiating

the process of readying the backup copy, the rate at which updates are

generated, and the rate at which updates are processed. We have assumed

the existence of a single backup copy, and have studied the improvement

in availability that the existence of a backup provides over single-copy

availability. The formulas are kept simple by using average values for

parameters that are actually random variables. For example, we use the

"mean time between failures" in the availability formula, while system

failure is actually a random process. In appendix 2, we look into the

validity of this simplification and conclude that its affect on computed

availabilities is, in most realistic situations, to make them appear

only slightly larger than they actually would be.

Conclusions . One main conclusion from studying the model is

that a backup copy can improve the availability of a data base by as

much as 5 to 10 per cent. To put this result into more concrete terms,





suppose that a single copy is likely to be down for two hours per day

(availability = .917). A 5 percent improvement would produce an availa-

bility of .963, or a reduction of probable down time to about 54 minutes.

A second important conclusion is that if the backup copy is

readily accessible and kept reasonably up to date, the availability is

very close to 1. On the other hand, if the backup copy is stored on

tape, so that it is relatively out of date and locating it is a time-

consuming process, availability may be little better than was provided

by a single copy. (This is because one can probably repair the original

system about as rapidly as one can ready the backup.) Indeed, a backup

of this sort tends to be mainly useful for recovery from some accident

which destroys data in the original data base.

In this study, we have necessarily restricted ourselves to

trying to answer a few specific questions and to computing availabil-

ities for only a limited number, or range, of parameter values. However,

the formulas we have developed - and, even more, the simple, straight-

forward approach which yielded those formulas - have applicability in a

wide variety of settings. The most important aspect of this work is

not the particular numbers or formulas obtained but the tools developed

for studying availability in general. With little additional effort,

these tools can be used to provide answers to other questions regarding

the effect of backup strategy on availability.





Introduction

We here use the terra availability to mean the fraction of time

that a data base is available to respond to user requests or queries.

In any setting, and particularly in a network, availability is a function

of the reliability (or availability) of many components - host computers,

network communications lines, etc. - as well as of strategies for backup

and recovery. In this section we first discuss some of the past modeling

research that has yielded results relevant to database availability, and

then introduce the line of work which we have pursued.

File allocation . One of the factors to be taken into account

in distributing copies of a file to various network sites is the number

of copies needed for an acceptable degree of availability. Chu [1973]

takes account of this factor in the following way. First, he defines

the availability of a piece of equipment (e.g., communication line or

computer) as

F
Availability =

p + x ,

where F is the mean time between failures and X is the mean time to

repair. Then, assuming

1) all computers in the network have identical availability A,

2) all communication channels have identical availability c, and

3) the network is completely connected;

Chu obtains the following formula for the availability of the j th file:

r

.

A(l - (1 - Ac) J
),

where r is the number of copies of the jth file in the network. Once A

and c are known, it is a simple matter to choose r. so as to bring the

availability of a remote copy up to a satisfactory level. Overall avail-

ability, however, is bounded by the factor A, the availability of the





requesting computer, which is apparently assumed not to possess a copy

of the file.

Although Chu's model, with its assumption of complete homo-

geneity of network components, may seem oversimplified, an analogous

analysis can be readily carried out in the heterogeneous case to yield

only slightly more complex expressions. (See appendix 1.) Notice,

however, that this model presents another problem. It implicitly assumes

that the files are static, or are simultaneously kept up to date by some

trouble-free process. In fact, the development of algorithms to keep

segments of a data base identical (or nearly so) is a topic of current

research. (See the chapter on Automated Backup in CAC Doc. No. 162,

JTSA Doc. No. 5509.)

Network reliability modeling . Another simplification in Chu's

model is the assumption that a direct communication line connects every

pair of sites. This assumption allows Chu to use a single parameter to

describe availability of a link from one site to another. In a general

network, this availability will depend in a complex way upon network

topology. Several alternate paths may exist between two given sites.

Each of these paths may involve more than one "hop" and so more than one

piece of subnet hardware. Indeed, in the ARPA network it has been found

that the failure rate for IMP's is about the same as that for communica-

tion channels, and that IMP failures therefore have the more drastic

effect on communications reliability [Frank, Kahn, and Kleinrock, 1972].

Graph theoretical techniques for computing availability from component

reliabilities are, however, well known. The paper by Frank et al. con-

tains a brief review of these techniques. No great difficulty is envi-

sioned in applying them to any given network (such as the WIN) to obtain





host availabilities. These may then be used in the formula given in

appendix 1 to obtain rough estimates of file (or data base) availability.

Modeling computer system reliability . Another parameter in

Chu's model that requires more detailed analysis for complete understanding

is computer availability. One source of information on computer avail-

ability is direct system measurement. On a lower level, however,

failures can be modeled to yield, in addition to overall figures on

expected system reliability, useful insights into repair and backup

strategies.

Borgerson and Freitas [1975] recently published a fairly

detailed stochastic model for computer system failure. Their model is

based on four distinct causes of crashes and their interrelationships.

Their ultimate result is a formula giving the probability density for

the event that the system crashes due to a failure. For our availability

analysis, however, there seems to be little need to include this level

of detail; we are simply concerned with failure rate - a measurable

quantity.

Modeling backup and recovery strategies . The discussion above

has been limited to availability questions involving network and site

reliabilities. On a lower level, the data base itself may "crash" or

may acquire errors. It is important that strategies for returning a

data base to its correct state be devised and studied.

A recent paper [Chandy et al., 1975] provides models for

rollback and recovery strategies. These strategies run as follows,

certain points in time ( checkpoints ) , a copy of the data is made and

stored. A listing of subsequent data updates (i.e., an audit trail ) is

then kept. When the master data base fails, it may then be recovered by

beginning with the old copy from the checkpoint and using the audit

trail to bring it up to date. Chandy et al. use queueing theory to
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model the processing of the audit trail. From the expected time to

complete this process, they can compute the total recovery time. The

length of the audit trail, and hence the time to recover, is a function

of the time interval between checkpoints. Optimization of availability

with respect to intercheckpoint time can then be carried out. Models of

some complexity are developed which take into consideration the possi-

bility of errors during recovery and the possibility of a transaction

arrival rate which varies in a cyclic manner (as opposed to being con-

stant) . The results appear to be very useful for developing insights

into recovery strategies, particularly for single-site systems. In a

network environment, however, it may be reasonable to assume that the

backup copy is stored remotely. In this case it does not make sense to

assume that the data is always restored from the backup, because of the

long time required to transfer a data base through the network. The

strategy then is to transfer the queries to the available copy.

The present work . In this note we attempt to quantify the

improvement in data base availability which can be achieved by storing a

backup copy at one (or more) remote sites in a network and transferring

usage to the backup when the master fails. We also discuss the practi-

cality of certain alternative management strategies.

To simplify the analysis, we will not consider various possible

causes of data base failure, but will assume that the data is available

when the host computer is running and is available (if remote) by way of

the network. We will therefore not be considering a detailed analysis of

the type of Borgerson and Freitas, nor will we be concerned with network

reliability modeling. Host failures are so much more common than communi-

cations link failures that the latter can be neglected in our simple model,





Furthermore, we will not take into account scheduled down

time of the host computer, on the assumption that if down time is scheduled,

transfer to a backup copy is automatic and immediate, and leads to no loss

in availability. The very existence of a backup copy at an alternate

network site will of course improve availability considerably over the

case where only one site has a copy. Indeed, Chu's model (or a simple

modification of it) can be used to determine the improvement in availability

due to multiple copies when all copies are equally usable. Since some

readers may find this question of interest, we have included a discussion

of it in appendix 1.





The Model

Overview . The process we are modeling may be described as

follows. Several sites in a network possess copies of a data base. One

of these copies is designated as the master copy . The others are re-

ferred to as spares or backups . All queries for the data base are sent

to the master site (i.e., the site holding the master copy). Updates are

applied to the master copy as soon as possible after they are generated,

so that the master copy is kept up to date. Two basic strategies for

updating the spares are encompassed by our model:

1) Running spares . Spares are updated almost as rapidly as

the master.

2) Remote journaling . Up-to-date copies of the data base are

periodically sent to the backup sites for storage. In be-

tween this periodic journaling, updates are logged in an

audit trail for application to a spare if and when one is

needed

.

Occasionally the master copy becomes unavailable. We assume

this is caused by a failure of the host possessing the master copy and

not by, say, communication line failure. When the master site fails,

some sort of communication among sites takes place to determine which of

the spares should take over the responsibility of being the new master.

The length of the time interval from when the old master fails to when the new

master is decided upon is assumed to be a fixed constant.

Once a new master site has been selected, the spare copy at

that site must be readied to receive queries. This process of getting the

backup ready may involve time-consuming operations such as loading the data

from tape and processing the audit trail of updates which have not yet





been applied to the backup copy. How close to "ready" the backups should

be kept is another strategy question which may be studied by our model.

As soon as the old master fails, the process of repairing it

begins. After the host has been repaired, the data base itself must be

readied. A backlog of updates has been accumulating while the master

was being repaired, and these updates must be applied to the data.

Thus, after a certain time lapse, the old master (i.e., the primary master)

is again ready to receive queries. The question is, should we immediately

reinstate the old master, or should we continue to send queries to the

new master until it fails? With our model we can study the impact on

availability of how we answer this question. There may, however, be

other issues involved. For example, most of the queries to the data base

may originate at the primary master site. In this case there are cost

and/or response advantages to be gained by transferring usage back to the

primary site as soon as possible.

For simplicity, we have described the process we are modeling in

fairly specific terms. It should be noted, however, that little change is

needed to model other, similar processes. For example, the backup and

master copies may be located at the same site. And the failures we are

concerned with may be the crashing (with accompanying data destruction)

of the device holding the master copy. In this case there are no network

messages to transfer usage to a remote site, nor need we worry about

repairing the host. But the need to get the backup ready by loading the

copy and then bringing it up to date remains the same. Only trivial

changes in the availability formulas we have derived will allow us to

study this sort of closely related process.
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Parameters . The parameters in our model are as follows:

F = mean time between computer failures, assumed to be the same

for all host computers.

X = expected time to repair computer.

L = expected time to load the data base copy at the remote site.

Y = time that the audit trail of updates has been growing (i.e.,

time since the copy was correct)

.

k = the ratio of update arrival rate to update processing rate.*

D = time delay between when the master fails and when the remote

site determines this fact and starts to get its copy ready

for use.

Single-copy availability . First, consider the case where there

is a single copy of the data base. The availability of this copy is then

A =
F

o F + X + kX

This is the usual formula for availability (mean time between failures

divided by mean time between failures plus mean time to recover) . The

mean time to recover includes repair time X plus the time kX to process

the updates accumulated while repairs were made. (This formula for

recovery time is that used by Chandy et al. [1975].) There is a

question as to whether the term kX should be included here, since the

site is technically "up" after time X. But in a network setting, it

does seem appropriate to assume that updates initiated at remote sites

The parameter k is referred to in the literature as a "compression

factor [Chandy et al., 1975]. This is not to be confused with the

usual data compression factor which indicates by how much data is com-

pressed for storage or transfer.

11





are being logged somewhere, so that there does exist an update list to

be processed. In addition, we are interested primarily in comparing A
q

with availabilities computed for multi-copy strategies, where the copies

are assumed to be up to date.

Discussion of the parameter k . The rationale for using the

formula kY for the time to process an audit trail that has been accumul-

ating for a time period of length Y is as follows. Suppose u is the

rate of arrival of updates, and b is the rate of processing them. Then

during time Y a total of uY updates have accumulated and it takes time

uY/b=kY to process these. (We have defined k = u/b.) However, the

system can not really be said to be caught up after this much time,

since more updates were accumulating while the backlog was being processed.

Let us define T as the catch-up time, or time for the system to catch

up after a backlog of updates has accumulated. The determination of an

appropriate expression for T turns out to be a nontrivial problem.

This problem is examined in detail in appendix 3. We find there that

for a reasonable range of values of k, 2kY may be a more appropriate

expression for T than is kY.

In the remainder of this note, however, we will consider k as

an effective proportionality constant, defined by the assumption that kY

is the time to catch up after updates have been accumulating for time Y.

The reader should keep in mind that then k is not equal to u/b but is

somewhat larger, perhaps by as much as a factor of 2 or more. It is,

of course, possible for a site to obtain an effective k by measurement.

A T can be measured as the length of time between the time when processing

of the update backlog begins and when the update queue is first noted to

be empty. An average over several observations of T /Y should yield an

acceptable value for the effective k.

12





Availabilities for two backup strategies . We shall consider

two strategies for transferring usage back and forth between master

copy and backup copy. Strategy 1 runs as follows. After the master copy

is determined to have failed, the remote copy is then brought up (after

a time lapse of D + L + kY) and usage is transferred to it. Meanwhile

the old master is being repaired. Queries and updates are sent to the

new master, however, until it fails, at which time the process repeats:

another "new" master is identified and activated. (This may or may not be

the "old" master.) Since the remote site may have been up for some time

since its last failure, one might think that, after the new master site is

identified, time until failure is only F/2. This is only true, however,

if the time between failures is always precisely F. If, as we are assuming,

failures form a Poisson process (i.e., occur randomly) it may be shown

that the expected time until failure is not F/2 but F. (See, for example,

[Kleinrock, 1975, pp. 169-174].) This result, known in renewal theory

as the "paradox of residual life", may be explained intuitively as occurring

because the old master has a higher probability of failing during a rel-

atively long inter-failure period at the new site.

Strategy 1 is diagrammed in figure 1. Looking at the diagram

and ignoring the initial time period, one can see that the fraction of

time some copy of the data base is available is

A
1

= (F - L - kY)/(F + D).

The quantity A is then the data base availability under strategy 1.

Notice also that an obvious built-in assumption can be read from

the figure.

(1) D + L + kY < X + kX

If this inequality is not satisfied, it theoretically does not pay to

13





X + kX

Ho

MASTER UP

+ kY
-H D + L U-

+ kY
COPY
(NEW

MASTER)
UP

TIME

Figure 1

Diagram of strategy 1.

X + kX -K-

^ V b Hil j. LV L-_«
I-

V U + L + KY r

MASTER UP
COPY
UP

MASTER UP

TIME

Figure 2

Diagram of strategy 2,
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store a remote copy, since the master is expected to be repaired and

updated before the remote copy can be activated.

Strategy 2 is to immediately replace the copy by the old

master as soon as the latter has been brought back up. This scheme is

diagrammed in figure 2. Again, inequality (1) must hold in order for

the diagram to be meaningful, and the availability formula can be read

from the diagram:

D + L + kY
A
2 F + X + kX*

By looking at the ratio A /A , one can easily show that as long as D is

small compared to the other parameters (a realistic assumption) A~ is

always greater than A . That is, strategy 2 is the better strategy, as

one might intuitively infer from comparison of figures 1 and 2. In the

following sections we will therefore restrict consideration to strategy 2.

There are two additional assumptions which must be made in

order for our model of either strategy to be valid. One assumption is

that D + L + kY is sufficiently small compared to F that there is

little likelihood of a failure of the remote host during the recovery pro-

cess. In addition, we assume that there is a negligible probability that

the copy may fail before the master is again ready. If either of these

assumptions is false, availability will generally be less than what

we compute from our model. A probabilistic analysis of these assumptions

is contained in appendix 2. Notice that strategy 2 is a two-copy

strategy. Transfer of usage back and forth between the primary site and a

single backup is specifically modeled. In strategy 1, however, after

the backup fails, usage may be transferred to a third copy instead of to the

copy at the primary site. Thus in this strategy, even if the new master

15





is likely to fail before the old one is again ready, the model is not

invalidated as long as a second backup is available.

In the experiments to be discussed in the next section, we

have ignored probabilistic considerations. The reader should simply

keep in mind that availabilities are always slightly less than we compute

there. The quantities that we investigate are:

1) A„, the availability under strategy 2, and

2) I, the improvement in availability due to the existence of a

backup copy.

That is,

A2~Ao .. X - D - L + k(X - Y) .

A F
o

16





Experiments and Discussion

Remote journaling . In order to model a remote journaling

process, we assume that the parameter Y is large; for simplicity we

assume that it is equal to F. Thus we are essentially assuming that,

whenever the master comes up after a failure, a copy of the up-to-date

data base is shipped off to any remote site which contains a copy of the

data base. (Or that the remote data base, having been used as a master

copy while the master was down, already possesses an up-to-date copy at

this time.)

It is interesting to note that journaling remotely by shipping

the data base over the network is not feasible on a regular basis. For

example, consider a data base of 4 x 10 bytes (roughly FORSTAT size).

At a network throughput of 15 kilobits per second (faster than normal

for the ARPANET) , it would take approximately 6 hours to ship a data

base of this size. Daily backup by, say, sending tapes by courier

would, however, be feasible in many situations.

The data copy at the remote site will be generally assumed to

be on tape. The value L = 0.5 hr. has been assumed in the computations

since it is approximately the time to read two to three tapes. The

parameter D is probably on the order of one or two seconds, but we have

taken it to be .01 hr. as an absolute upper bound. X = 1 hr. seems to

be a reasonable value for repair time. With these parameters, we get

the following formula for improvement I in availability as a function of

F and k.

A - A
2 ° 0.49 + k(l - F)

1 =
A " F
o

It is difficult to estimate what a reasonable value of k should be. In

a similar analysis, Chandy et al. [1975] suggest that k should be 0.1 or

17





less. Clearly the value will depend on the usage pattern for the data

base; we have already discussed how it may be measured for a real system.

However, notice that, with k = 0.1, inequality (1) states that

.51 + 0.1F < 1.1.

Hence for this large a k the time to process the audit trail is so long

that, without taking into account stochastic considerations, the master

is able to get ready before the backup copy whenever F > 5.9 hrs. This

is an unreasonably low value. Furthermore, we show in appendix 2 that

for these values of D, L and k, and for all values of F (with Y=F) , there

is a better than 10 percent chance that the backup site fails before its

copy can be gotten ready. In short, we are unlikely to adopt a remote

journaling strategy in these circumstances.

To get a feel for the value of remote journaling in a case when

it may be practical, we therefore take k = .01; i.e., we assume that there

are few updates. Inequality (1) then restricts the model to F < 50. A

graph of I vs. F in this case may be seen in figure 3. Values of A

have also been plotted in the figure for reference. Notice that for

reasonable values of F the improvement in availability is less than 5

percent. If A is low, this may not be enough to make remote journaling

worthwhile. Throughout most of the range of F values, however, A is

very close to 1. One then cannot look at the improvement I independently

of the associated value of A , since a small I may lead to a sizable

decrease in the total time the data base will be unavailable . For

example, consider the situation when F = 20 hours. I is only .015, but

A
q

is .9519, which means that A is .9662. Thus, the fraction of the

time that the data base is unavailable decreases from 0.048 to 0.034.

This translates into a nonnegligible decrease in downtime from 35 hrs. /month

to about 24 hrs. /month.

18
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Figure 3

Single-site availability A and fractional

improvement I through use of strategy 2.

Parameters are k = 0.01, D = 0.01 hr., X = 1 hr.,

L = 0.5 hr., and Y - F.
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As a final comment on the remote journaling strategy described

here, we note that availability may actually decrease as F increases.

For example, suppose X - 2, k = 0.25, L = 0.5 and D = 0. Then A
2

= .7692

for F = 4 and A - .7647 when F = 6. Differentiating k^ (for Y = F)

with respect to F shows that this decrease will occur whenever

k(k + 1)X > D + L.

Intuitively, this phenomenon occurs because for large k the effect of

the lengthening audit trail to be processed outweighs that of the

increasing reliability of the host computer.

Frequently updated remote journal . Clearly, there may be

problems with the remote journaling strategy described in the last

section because of the need to process an extremely long audit trail.

Suppose, then, that we drop the assumption that Y = F and assume instead

that the remote copy is periodically brought up to date. As an example,

we might assume this updating to take place every two hours. Thus on

the average the audit trail has been growing for 1 hour when the remote

copy is activated. With all other parameters as specified for figure 3,

but with Y = 1,

I = .49/F.

This result is independent of k (because of the cancelling of the kX and

kY terms), as long as k and F are such that the model is valid. The

improvement is little different from what it was in the Y = F case.

However, in appendix 2 we show that by decreasing Y we can considerably

reduce the likelihood that the backup site fails before its copy is

readied. Hence true availability will improve more than our simple

formula indicates.
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We do not include a graph of the result for Y = 1, since it

would be almost identical to figure 3. To see why this should be so,

consider more closely the formula for I.

A2~ A
o X + kX-D-L-kY

1
A F
o

As long as k is small (or when X = Y as above) it is clear that

I %
f\, X L.

Running spares . Here we assume that the backup copy is stored

on disk for virtually instantaneous access and is kept almost up to

date. Reasonable parameters for this case might be L = 0, Y = .1 hr
.

,

and (for comparison with the results above) X = 1 hr
.

, k = .01. Then we

have

0.999 .

F

We will not bother to graph this; this curve is again similar to that in

figure 3, only now the values of I are approximately doubled . In this case,

improvements of 5 to 10 percent are seen for F between 10 and 20 -

certainly enough to make the strategy worthwhile. In fact, what happens

in this case is that, under our assumptions, availabilities are brought

up to very nearly unity. To see this, note that

.01 + kY
A„ = 1 -
2 F + (1 + k)X

and for our example kY = 0.001. Increasing k will cause somewhat smaller

values of A
2

, but A„ will be over 99 percent for a wide range of reasonable

parameter values.
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Effect of varying Y . We have looked at three separate cases

which differ from one another in large part in the widely differing

values for the parameter Y. To better understand the effect of this

parameter, we select typical values of the other parameters (X = 1,

L = 0.5, D = 0.01, F = 20) and consider A_ as a function of Y for

several different values of k. When k = .01, we have

0.51 + 0.01Y .

2
'"

' 21.01

The small coefficient of Y in this case makes the effect of Y minimal.

As Y ranges between and 20, A- decreases linearly from 0.976 to 0.966,

Now suppose that k is increased to 0.05. In this case as Y goes from

to 20, A„ decreases from 0.976 to 0.953. These are not very dramatic

changes, although they will (as we noted above) be more impressive when

translated into decreases in downtime. To a large extent, therefore,

what makes the "running-spares" approach particularly worthwhile is not

the small value of Y but the instantaneous access (L % 0)

.
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Conclusions

We have presented here a model for data availability which,

while superficial, does seem to reflect the realities of various strate-

gies for backup. We have seen that remote journaling, in the sense of

storing a copy in archival storage (e.g. tape) at a remote site, leads

to availability improvement of at best 5 percent, which may be inadequate

if single-copy availability is low. On the other hand, the running

spares strategy, in which the remote copy is nearly up to date and

almost immediately accessible, brings availability up to over 99 percent

and appears to be worthwhile. It should be noted, however, that the

running spares strategy is bound to be relatively expensive. Furthermore,

before this strategy can be effectively used, many of the problems of

multi-copy management must be solved. For example, updating must be

synchronized in order to maintain consistency between the master and

backup copies.

One final point should be made. In a sense, the gross availability

of a data base is too vague a statistic. Suppose the availability is,

say, 23/24. This might mean that approximately every 12 hours the data

becomes unavailable for about a half hour. Or it might mean that once a

month the data base disappears for more than a day. In a crisis, a

half-hour delay in obtaining data might be tolerable but a one-day delay

would not. The availability, then, must be looked at in conjunction

with F, the mean time between failures.
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Appendix 1

Extension of Chu's Formula

In this appendix, we take up the question posed earlier as to

data base availability when no time is lost in transferring usage (e.g.,

when downtime is scheduled at one site and transfer of usage to another

site is prearranged). As we remarked earlier, a good way to study this

problem would be through an extension of Chu's model [Chu, 1973].

Suppose n sites (all remote) have a copy of the data base, and that the

availability of the ith site is a.. (In general, this availability

can be computed as the product of the availability of the ith host system

times the availability of a communication link from the local site

to site i.) Then the probability that site i is not available is

(1 - a.)> and the probability that none of the n sites is available is

U = (1 - ai )(l - a
2
)(l - a

3
)...(l - a

n
).

Hence the probability that at least one site is available is given by

A = 1 - U.
s

(Unlike Chu, we assume that we have no problem getting access to the

network and so do not include Chu's factor for local host availability.)

To see how this gross availability is increased by the existence

of multiple copies, consider the following examples.

1. Suppose all of the a.'s are equal to 0.8. Then for n = 1,

A = 0.8; but for n = 2, A = 0.96; and for n = 3, A = 0.992.
53 s s

2. Suppose that the data base is at site 1 where its availability

is only 0.5. By placing a copy at a second site with avail-

ability 0.7, the overall availability becomes A =0.85.
s

25





Finally, notice that if a copy of the data base is held locally,

the formulas for A and U need not be changed at all. If we label the

local site 1, then the value to be used for a., is the availability of

the data base through the local system. The fact that a does not

involve network reliability as do the other a.'s means that a., may be

slightly larger, but otherwise the formulation is unaffected.
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Appendix 2

Stochastic Considerations

Basic assumptions . In the text of this paper we have been

working exclusively with mean (or expected) values of parameters such

as the time between site failures. As we indicated, however, site failure

is a random process; not all questions can be answered by looking just at

the mean time between failures. In particular, we have noted that our

simplistic approach will predict too high an availability if, for example,

hosts are likely to fail while the data base is being readied. In

this appendix, then, we deal with some of these probabilistic questions

in order to get a better understanding of the validity of the results

we have computed.

First, recall that we are assuming the occurrence of failure

to be a Poisson process. Essentially, this means that we assume that

the probability that a failure occurs in any time interval from t to t

is proportional to t. - t . Notice that if the constant of proportionality

(which is just the failure rate) is 1/F, then the mean time between

failures is F, as we assumed earlier. The basic Poisson hypothesis

also implies that the process is memoryless. That is, the probability

of a failure in any time interval is independent of whether or when any

failures occurred in the past.

One can then introduce a random variable Z giving the "time

to failure" from an arbitrary starting point t = 0. The probability

P{Z <_ t} that the machine fails before time t (i.e. in the time interval

[0,t]) can be shown to be

(Al) P{Z •: t } = 1 - exp (-t/F) .
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Then the probability that the machine has not yet failed at time t is

(A2) P{Z > t} = exp (-t/F).

These simple formulas are adequate for computing most of the probabilities

we are interested in.

Probability that backup fails before master is ready for use .

First, consider the following problem. What is the probability P_ that

the backup may fail before the master site is again ready? We will first

assume that X + kX is a constant. (The case where repair is also treated

as a probabilistic process will be discussed below.) P is then calculated

from equation (Al) with t = X + kX, the time required to repair and

update the old master. We find that

(A3) P
f

= 1 - exp (-(X +kX)/F).

For example, suppose that X = 2 hours and k = 0.1. Then

P
f

= 1 - exp (-2.2/F).

Some values of this function are tabulated below. Values of F are given

in hours. (Since only ratios are involved, the time units used do not

matter as long as one is consistent.).

F 8 12 16 24 32 40 48

P
f

.24 .17 .13 .09 .07 .05 .04

The reader may well be dismayed that even for F (the mean time between

failures) as large as 48 hours, there is still a 4% chance that the

backup will fail before the old master is ready. This would leave

a gap in availability which is not accounted for in our simplistic

model. On the other hand, if the expected time to ready the master

is considerably smaller - say X = 1 hr
. , k = 0.1 - then P is only

0.09 for F = 12, 0.04 for F = 24, and 0.02 for F = 48. (Notice that
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if (X + kX)/F is small, P is conveniently approximated by P
f
% (X + kX)/F.)

If the P computed in any situation is large enough to seriously degrade

availability, the solution is to provide a second backup, so that usage

may be transferred to it if the first backup fails and the old master is

not yet ready. This would, of course, not be worthwhile if the second

backup requires so long to get ready that the old master will almost

certainly be ready first.

We have investigated how these conclusions are affected by

making the more realistic assumption that repair time is not a constant

but also obeys some probability distribution. With this assumption, the

probability P
f

can be shown to be given by

(A4) P = 7 exp [-(1 + k)t/F]W(t)dt,
t=o

where W(t) is the assumed probability density function for repair time.

The only real difficulty in making this assumption is the

apparent lack of the raw data which is needed before one can choose

(and statistically validate) a W. From personal reports and from one

study in the literature [Reynolds and Van Kinsbergen, 1975], we have put

together the following general description of how repair time is distributed,

at least for some systems.

1. The probability of repair within 15 minutes is essentially

negligible.

2. The probability of repair within a half hour is something like

0.3 to 0.4.

3. In the vicinity of t = 0.5 hr. the probability density curve

rises sharply to its peak, so that the likelihood of repair

within 45 minutes is between 0.8 and 0.9.
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Notice that it should be relatively simple to obtain a good description

of this sort for any particular system. All that is needed is a log of

repair times.

There are two known probability distributions which have the

right sort of shape to fit our general description of repair time.

These are the Beta distribution [Abramowitz and Stegun, 1964; p. 930]

and the Weibull distribution [Barlow and Proschan, 1965; ch. 2]. Both

of these have two parameters - (a, 3) in standard notation - which can be

used to adjust their precise shape. They differ in that the Beta distri-

bution has W(t) = for t >_ 1, while for the Weibull distribution W(t)

approaches zero exponentially as t ->• °°. Graphs of three such density

functions which seem to describe repair time well are shown in figures 4

and 5. Figure 4 shows the density function for the Beta distribution

with a = 7, 3=5. Figure 5 shows two Weibull distributions; the solid

curve corresponds to (a, 3) = (6, 4) and the dashed curve to (a, 3) = (4,3)

Note that the scale on the horizontal axis can be adjusted to fit longer

(or shorter) expected repair times; i.e., "1" can be assumed an arbitrary

time unit.

P
f
was computed from equation (A4) for 80 different combinations

of distribution type (Beta or Weibull) and values of the parameters

a, 3, F, and k. We observed that in no case did the value calculated

-4
differ by more than 6 x 10 from that calculated (using the appropriate

mean value X) from equation (A3) . Since this discrepancy is of roughly

the same magnitude as the truncation error in numerically computing the

integral in (A4) , we actually did not discover any difference between

results computed from the two formulas. We conclude, therefore, that it

is probably valid for all practical purposes to ignore the distribution

of repair times and simply use the mean repair time X in equation (A3)

to compute P r
f *
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Probability that backup site fails before its copy is ready

Next, what is the probability P that the backup site fails even before

the backup copy can be gotten ready? This probability is given by

P = 1 - exp (-(D + L + kY)/F).
r

(Again we assume that D + L + kY is a constant.) In our analysis of

the remote journaling strategy, we assumed that Y = F, the mean time between

failures. Let us also assume the nominal values L = 0.5 hr. D = 0.01 hr.

and k = 0.1. With these values,

P = 1 - exp (-(0.51 + 0.1F)/F).

Sample values are tabulated below.

F 12 16 24 36 48

P
r

.13 .12 .11 .11 .10

Notice that as F becomes large, P approaches k. Unless k is very small,

P is certainly not negligible. And the effect of a failure before the

copy is readied could be serious. Again, the existence of a second backup

would help, since it will seldom happen that both backup sites will fail

before their copies can be readied.

In the discussion contained in the body of this report, we in

fact concluded that for values of k as large as 0.1, a remote journaling

strategy with no journaling taking place between failures is not worthwhile.

We looked at the possibility that updating the remote journal more frequently

might produce a more practical strategy. As the time, Y, that updates have

been accumulating decreases, P will also decrease. Suppose that F = 24 hrs.,

L = 0.5 hr., D = 0.01 hr. and k = 0.1. Then P , as a function of Y, behaves

as follows:

Y 1 2 4 8 12 16 24

P
r

.025 .029 .037 .053 .069 .084 .114
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Thus when Y is small compared to F, the likelihood that the backup site

fails before its copy can be readied is probably within acceptable limits.

Finally, consider the running spares strategy. In that case we

assumed L = and Y = 0.1. If we again take k = 0.1, we find that

P = 1 - exp (-0.02/F).

Here the probability that the backup site fails before the copy is ready is

less than 0.2 percent as long as F is greater than ten hours. This small a

figure will have a practically negligible effect on calculated availabilities
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Appendix 3

Time to Process the Audit Trail

Elementary analysis . In this appendix we consider the question

of how long it really takes to "catch up" when a backlog of updates has

accumulated during the time a site is down. In the text, we have used

Chandy's expression kY [Chandy et al., 1975], where Y is the length of

time the updates have been accumulating, and k = u/b, u being the rate

of arrival of updates and b being the average rate at which updates are

processed. (We assume that k < 1.) However, it is clear that during the

time interval kY more updates are accumulating, and it takes an additional

2
time k Y to process these. Continuing to add on these correction terms,

we generate the infinite series

(k + k
2
+ k

3
+ .. .)Y

as a better formula for the catch-up time T . Computing the sum, we get

T : kY/(l - k).

This is a slightly larger number than the first estimate kY, but the

difference is a small percentage for the expected range of k values.

(Chandy et al. state that "values of k of order 1/10 or less are to be

expected.")

Analysis using queueing theory . Even this analysis, however,

appears to be too simplistic. The arrival and processing of updates

should really be modeled by a single-server queueing system. If the

arrivals form a Poisson process (arrival rate u) and processing time is

exponentially distributed (with mean processing rate b) , the queueing

system is one which can be analyzed. In queueing theory, the quantities

of interest are p
n
(t), the probability that there are n items (updates,
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in our case) in the queue at time t. After the system has been running

for a while, the probabilities P (t) will approach equilibrium (or steady

state) values p . Of course, equilibrium is never actually reached if
n

the initial distribution is not the equilibrium one. But it does make

sense to describe the catch-up time T as the time to reach approximate

equilibrium.

Fortunately, both the time-dependent and the equilibrium

distributions that we need are available in the literature [Kleinrock,

1975] , so that we have at hand the information we need to investigate

the approach to equilibrium.

The equilibrium distribution is given by

pn
= (1 - k)k

n
.

The time-dependent distribution we are interested in corresponds to having

some number i of updates in the queue at time t = 0. That is, we have

the initial conditions

P (0) - 1 for n = i;
n '

P (0) = for n ± i.
n

Kleinrock [1975; p. 77] gives the solution of this problem as

P
n
(t) = exp(-(u + b)t)[k

(n~i)/2
I
n
_.(at)

k
(n- i-1)/2

i
n+1+1 (")

+ (1 - k)k
n

Z k~
j/2

I.(at)],

j = n+i+2 J

1/2where a - 2uk
, and I (standard notation) is the modified Bessel function

of the first kind of order j

.

In order to study the approach to equilibrium, the following

formulas for Bessel functions are needed:

1) As z + -, i (z) . {e
Z
/(2TT Z )

1/2
}{l - 4 J

2
- 1 .

}O • • • JJ 8z
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2) E k
j/2 I.(z) = exp[(z/2)(k

1/2
+ k"

1/2
)].

j—
3) I (z) = I (z)

4) e
Z = I (z) + 21-^z) + 2I

2
(z) + ...

[Abramowitz and Stegun, 1964; p. 374 ff.]

Using 2) and 3), we find that

00

E k"
j/2 I.(at) = exp(t(u + b)).

j = -co ^

Noting that the infinite summation in the expression for P (t) contains

only a portion of these terms, we use 4) to show that the summation over

the negative powers is negligible, and use 1) to estimate the finite

number of missing positive powers. That is, for large t we make the

approximation

00

Z k"
j/2I.(at) : exp(t(u + b)) -

j=n+i+2 J

/ ^ \ n+i+1 .

/

, . 2
exp(at) „ -ill, _ 4.1 - L

(2iTat) j=0

2
(The j term in the asymptotic expression is needed since unfortunately

the constant terms cancel in the ultimate expression for P (t) - p .)
o o

Furthermore, we notice that, when we substitute the asymptotic formulas

for I. (at) into P (t), we obtain products of exponentials

exp(-(u + b)t) exp(at)

which simplify to

t , 1/2 ,1/2,2 ,exp(-(u - b ) t)

.

After considerable algebraic manipulation, we obtain

P (t) - p ~
exPl v u - b ) t)ik

° °
n I—TT 3/2 /n . -1/2,
2ViT v/ub t (1 - k )
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Recall that we have said that the catch-up time T should be the time
c

at which the P (t), and in particular P (t) , are "close" to their
n o

equilibrium values. This would mean that the right side of the above

expression should be small. However, notice that the exponential factor

* / 9
decreases rapidly with t, while the factor ik is very large if the

queue is long at time t = 0. To a good approximation, then, we can

assume that equilibrium is reached when these factors approximately

cancel; that is, when

,,, 1/2 ,1/2,2 . „ -i/2
exp(+(u - b ) t) „ ik

Taking logarithms, we obtain the following formula for T :

c

T = -ilnk + 2lni
c -, 1/2 ,1/2,2

2(u - b )

If the term 2ln± is neglected, this expression simplifies in an interesting

way. Suppose updates have been accumulating for a time period of length Y.

Then i = uY, and

-uY£nk
T =
C

2b(k
1/2

- l)
2

= kY{(-£nk)/2(l - k
1/2

)

2
}.

The quantity in brackets has the curious property of lying very close to

2.5 for k between 0.04 and 0.15. (For k = 0.01 it is still 2.84; although

it grows rapidly thereafter as k decreases.) Notice also that adding on

the term 2ln± will serve to increase the effective T . On the other hand.
c '

taking account of the terms in the denominator of the approximate expression
o In

for P
Q
(t) - p

Q
(in particular the factor t ) will serve to decrease

it. It seems not unreasonable, then, to claim as we did early in the paper,

that T : 2kY.
c
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It should be emphasized that the queueing theory analysis above

depends strongly upon the assumption that updates are arriving randomly

- i.e., that the arrivals form a Poisson process. If arrivals are instead

bunched up during certain time periods, results may be quite different.

For example, if a number of updates uY have accumulated and must be

processed during a time when no new updates are arriving, then clearly

uY/b = kY will be the correct expression for T . On the other hand,—

—

c

if the backlog of updates must be processed during a time period when a

particularly large number of new updates are being entered, then T will
c

be greater than the queueing analysis has indicated.
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Appendix 4

Sensitivity to Parameter Values

In any model, it is useful to determine how sensitive the output

values are to changes in the inputs. Obviously, the inputs are only

known approximately or are statistical averages. If the output changes

drastically for a small change in an input value, the model is rather

useless for predictive or decision purposes. Chandy et al. [1975] use

the elasticity E(f,y), essentially the "percentage change in f caused

by a percentage change in y", to investigate the sensitivity of a

function f with respect to a parameter y. Formally, E is defined by

E(f,y) = 3f_y_

3y f

We have investigated the elasticity of U = 1 - A. with respect

to all of the input variables. (Working with U instead of A
?
simplifies

the algebra without changing the conclusion.) We find that for all

parameters

1^*1 < 1.

For example, taking y = k,

iH = FY + XY - DX - LX
3k

(F + X + kX)
2

, and

,_9U ki I k(FY + XY - DX - LX) i

lak'U 1 I (F + X + kX)(D + L + kY)

'

I kFY + kXY -
. . .

|

1 kFY + kXY + . . .
I

< 1 '

And for y = Y,

|M II = kY
. F + X + kX _ kY

'aY'U 1 F + X + kX D + L + kY D + L + kY
<:L -

Similar computations show that the elasticities of U with respect to D,

L, X, and F are all less than one. Elasticities of U are connected to

those of A through
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1 3y A
2

! '3y'A
2

' 3y 'u'

as long as A_ > U. We may conclude therefore that our model is stable,

being relatively insensitive to small changes in parameter values.
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