
PARTIAL PERSISTENT SEQUENCES AND THEIR
APPLICATIONS TO COLLABORATIVE TEXT
DOCUMENT EDITING AND PROCESSING

A Thesis
Presented to

The Academic Faculty

by

Qinyi Wu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2011

PARTIAL PERSISTENT SEQUENCES AND THEIR
APPLICATIONS TO COLLABORATIVE TEXT
DOCUMENT EDITING AND PROCESSING

Approved by:

Professor Calton Pu, Committee Chair
School of Computer Science
Georgia Institute of Technology

Professor Leo Mark
School of Computer Science
Georgia Institute of Technology

Professor Calton Pu, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Shamkant B. Navathe
School of Computer Science
Georgia Institute of Technology

Professor Ling Liu
School of Computer Science
Georgia Institute of Technology

Professor Lakshmish Ramaswamy
Department of Computer Science
University of Georgia

Date Approved: June 30, 2011

To my family

iii

ACKNOWLEDGEMENTS

If I am asked to name a few number of people that has changed and shaped me,

my advisor, Prof. Calton Pu, immediately comes to mind. I sincerely appreciate his

guidance both as a researcher and as a mentor. As a researcher, Calton respects me

as a young researcher by giving me independent thinking space and time to explore

new things. As a mentor, Calton helps me grow in terms of professional maturity

through his advice on my long-term career goals. I fully respect his advice because

he always wants the best for his students. With this level of trust and understanding,

I value the time we worked together during those tense moments when my research

got stalled and the future looked unclear. His underlying gentleness and dedication

to research will continue to have a significant impact on my future.

Thanks to members of my thesis committee: Ling Liu, Leo Mark, Shamkant B.

Navathe, and Lakshmish Ramaswamy. I would like to thank Ling for her organization

on DISL meetings. Through this supporting group and her advice, I have significantly

broadened my knowledge scope and have become more comfortable and confident in

doing research presentations. I would like to thank Sham for his consistent encour-

agement and recognition of my research. Thanks to Leo for watching each milestone

of my pursuit of the Ph.D. degree. I felt very happy upon receiving his congratulation

email for my award on the College of Computing Research Day. Doing a Ph.D. is long

and sometimes lonely journey. Such an encouragement makes a difference. I would

like to thank Lakshmish for his sharp and insightful suggestion for my research, which

led to our successful collaboration on a new topic.

The friendship, companionship, and support of my colleagues at Gatech would

be hard to replace. Special thanks to Bhuvan Bamba, Rocky Dunlap, Binh Han,

iv

Danesh Irani and Qingyang Wang for being around in the lab. Bhuvan brought so

much energy into the lab. Rocky is my best English tutor. Binh were my study

buddy. Danesh is a valuable colleague to work with. Qingyang is such a good friend

to hang around and discuss about research.

More importantly, I would like to acknowledge the unconditional love and sup-

port from my mom, my husband, my daughter, my sister, my grandmother, and my

parents-in-law for their affection and wisdom. Finally, thanks to my dad. Even if you

are in another world, your perseverance and dedication to your dream are always on

the way of my life journey and lighting the road forward.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Dissertation Contributions . 2

1.3 Organization of the Dissertation . 4

II RELATED WORK . 5

2.1 Persistent Data Structures . 5

2.2 Data Consistency Control in Collaborative Document Editing Systems 7

2.3 Document Provenance . 10

2.4 Text Documents Labeling Schemes 11

2.5 Transaction Time Management in Temporal Databases 11

III PARTIAL PERSISTENT SEQUENCES 15

3.1 Definition of PPSs . 15

3.2 Two Levels of View on Collaborative Text Documents 17

3.2.1 Mapping from Physical View to Logical View 18

3.2.2 Mapping from Logical View to Physical View 19

3.3 Representing the Revision History of Documents Based on PPSs . . 21

3.3.1 Different Design Options . 21

3.3.2 A Hybrid Approach . 24

3.3.3 Properties of Delta Change Operator 2 26

3.3.4 Operations on a PPS View Range 30

vi

3.4 Summary . 35

IV DATA CONSISTENCY CONTROL IN REAL-TIME COLLABO-
RATIVE TEXT DOCUMENT EDITING SYSTEMS 37

4.1 Motivation . 37

4.2 DDP Consistency Model and View Synchronization Strategy 40

4.2.1 DDP Consistency Model . 40

4.2.2 View Synchronization Strategy 41

4.3 System Implementation Based on PPSs 43

4.3.1 System Architecture Overview 43

4.3.2 PPS Update . 45

4.3.3 Global Uniqueness of Position Stamps 47

4.3.4 PPS Re-initialization . 48

4.4 Experiments . 50

4.4.1 Experiment Setup . 50

4.4.2 Disk Space Consumption . 51

4.4.3 Updating Cost From Logical View to Physical View 53

4.4.4 Updating Cost From Physical View to Logical View 54

4.4.5 PPS Scalability . 54

4.4.6 PPS Re-initialization . 56

4.5 Summary . 57

V MODELING AND IMPLEMENTING COLLABORATIVE TEXT
DOCUMENT EDITING SYSTEMS WITH TRANSACTIONAL
TECHNIQUES . 59

5.1 Motivation . 59

5.2 Overview of Collaborative Document Editing Systems 61

5.2.1 Existing Collaborative Editing Systems 61

5.2.2 Commentary of Existing Collaborative Editing Systems . . . 63

5.3 A Transactional Framework for collaborative editing Systems 64

5.3.1 Programming Interfaces . 65

vii

5.3.2 Synchronization Protocol Between Client and Server 67

5.4 Specifying Collaborative Editing Systems 69

5.5 Implementing the Synchronization Protocol Based On PPSs 71

5.5.1 Enforcement of the Synchronization Protocol 72

5.5.2 Revert Handling . 74

5.5.3 Implementation Issues for PPSs 75

5.6 Collaborative Editing System Prototype 76

5.6.1 Oracle Berkeley DB High Availability Infrastructure 76

5.6.2 System Architecture . 76

5.6.3 Implementation Modules . 77

5.7 Summary . 79

VI FINE-GRAINEDDOCUMENT PROVENANCEMANAGEMENT
ON COLLABORATIVE TEXT DOCUMENTS 81

6.1 Motivation . 81

6.2 Fine-grained Document Provenance Queries 83

6.2.1 Classifying Fine-grained Document Provenance Queries from
the perspective of the temporal dimension 83

6.2.2 Processing Fine-grained Document Provenance Queries based
on PPSs . 84

6.3 System Implementation . 86

6.4 Performance Impact due to Size of PPS View Ranges 88

6.5 Experiments . 91

6.5.1 Experiment Setup . 91

6.5.2 Evaluating a Snapshot Document Provenance Query: Getting
Authorship of Text at Selected Versions 92

6.5.3 Evaluating a Delta-change Document Provenance Query: Get-
ting Who Modified Whose Work at Selected Versions 93

6.5.4 Evaluating Document Provenance Queries for Entire Revision
History of Documents . 95

6.5.5 Disk Space Usage . 95

6.5.6 Document Loading Time . 96

viii

6.6 Summary . 97

VII CONCLUSIONS AND FUTURE WORK 99

7.1 Dissertation Conclusion . 99

7.2 Future Work . 101

7.2.1 Partial Persistent Sequences 101

7.2.2 Data Consistency Control in Collaborative Text Document
Editing Systems . 102

7.2.3 Fine-grained Document Provenance Queries 103

VITA . 105

REFERENCES . 106

ix

LIST OF TABLES

1 Statistics of sampled Wikipedia data set for evaluating the performance
of the PPS-based real-time collaborative editor 51

2 Edit length distribution in the sampled Wikipedia data set 55

3 Statistics of three Wikipedia articles 92

x

LIST OF FIGURES

1 A simple PPS example . 15

2 Mapping between two levels of view 19

3 Organize the revision history of a document based on PPSs 22

4 Organize the revision history of a document based on PPSs by consid-
ering the REVERT operation . 23

5 Store the full list of visible position stamps for every version of a doc-
ument . 23

6 Represent the revision history of a PPS in a hybrid form 25

7 A real-time collaborative editing scenario 38

8 System Architecture for the PPS-based real-time collaborative docu-
ment editing system . 43

9 An example of splitting a compact record after an insert 48

10 Total disk space consumption for the sampled data set 52

11 Updating cost from logical view to physical view for a given number
of edits . 52

12 Updating cost from logical view to physical view for edits at different
length . 52

13 Updating cost from physical view to logical view for PPSs at different
length . 52

14 Throughput measure at the server site in the PPS-based real-time col-
laborative editing system . 56

15 Re-initialization cost for the PPSs . 57

16 Examples of synthesized code. a)Check-in/check-out; b)Block-exclusive;
c)Update-anywhere-anytime; d)Read-from 69

17 The algorithm for validating Acceptθ for transaction t 73

18 System architecture . 77

19 Organize the revision history of a versioned document based on delta
changes . 82

20 System Architecture . 86

xi

21 Disk space usage under different configurations for the size of PPS view
ranges . 88

22 Impact of the size of PPS view ranges 89

23 Query processing cost due to the size of PPS view ranges 91

24 Compare querying cost for a snapshot document provenance query for
three Wikipedia articles . 93

25 Compare querying cost for a delta-change document provenance query
on three Wikipedia articles . 94

26 Compare querying cost on three Wikipedia articles 94

27 Disk space usage for Wikipedia articles with different number of ver-
sions: a) disk space usage; b) ratio 96

28 Document loading time for Wikipedia articles with different number
of versions . 97

xii

SUMMARY

In a variety of text document editing and processing applications, it is nec-

essary to keep track of the revision history of text documents by recording changes

and the metadata of those changes (e.g., user names and modification timestamps).

The recent Web 2.0 document editing and processing applications, such as real-time

collaborative note taking and wikis, require fine-grained shared access to collabora-

tive text documents as well as efficient retrieval of metadata associated with different

parts of collaborative text documents. Current revision control techniques only sup-

port coarse-grained shared access and are inefficient to retrieve metadata of changes

at the sub-document granularity.

In this dissertation, we design and implement partial persistent sequences (PPSs)

to support real-time collaborations and manage metadata of changes at fine gran-

ularities for collaborative text document editing and processing applications. As a

persistent data structure, PPSs have two important features. First, items in the data

structure are never removed. We maintain necessary timestamp information to keep

track of both inserted and deleted items and use the timestamp information to re-

construct the state of a document at any point in time. Second, PPSs create unique,

persistent, and ordered identifiers for items of a document at fine granularities (e.g.,

a word or a sentence). As a result, we are able to support consistent and fine-grained

shared access to collaborative text documents by detecting and resolving editing con-

flicts based on the revision history as well as to efficiently index and retrieve metadata

associated with different parts of collaborative text documents.

xiii

We demonstrate the capabilities of PPSs through two important problems in col-

laborative text document editing and processing applications: data consistency con-

trol and fine-grained document provenance management. The first problem studies

how to detect and resolve editing conflicts in collaborative text document editing

systems. We approach this problem in two steps. In the first step, we use PPSs to

capture data dependencies between different editing operations and define a consis-

tency model more suitable for real-time collaborative editing systems. In the sec-

ond step, we extend our work to the entire spectrum of collaborations and adapt

transactional techniques to build a flexible framework for the development of various

collaborative editing systems. The generality of this framework is demonstrated by

its capabilities to specify three different types of collaborations as exemplified in the

systems of RCS, MediaWiki, and Google Docs respectively. We precisely specify the

programming interfaces of this framework and describe a prototype implementation

over Oracle Berkeley DB High Availability, a replicated database management engine.

The second problem of fine-grained document provenance management studies how to

efficiently index and retrieve fine-grained metadata for different parts of collaborative

text documents. We use PPSs to design both disk-economic and computation-efficient

techniques to index provenance data for millions of Wikipedia articles. Our approach

is disk economic because we only save a few full versions of a document and only

keep delta changes between those full versions. Our approach is also computation-

efficient because we avoid the necessity of parsing the revision history of collaborative

documents to retrieve fine-grained metadata. Compared to MediaWiki, the revi-

sion control system for Wikipedia, our system uses less than 10% of disk space and

achieves at least an order of magnitude speed-up to retrieve fine-grained metadata

for documents with thousands of revisions.

xiv

CHAPTER I

INTRODUCTION

1.1 Motivation

Collaborative text documents are modified by multiple users over time. To handle

data consistency issue and obtain precise knowledge about their evolution, it is neces-

sary to keep track of the revision history of collaborative text documents by recording

changes of content and the metadata of those changes (e.g., username and timestamp).

For instance, source control systems maintain delta changes in source code files in or-

der to undo accidental edits. In another example, the revision history of Wikipedia

pages is maintained and analyzed to combat vandalism [125, 126] or to recognize

contributions of Wikipedia authors [27]. In fact, the requirement of tracking changes

and their metadata for collaborative documents can be found in a variety of text doc-

ument editing and processing applications such as version control systems [12, 43],

wikis [19, 21], real-time collaborative editing systems [58, 87, 113], document-driven

workflows [69], and deep document knowledge discovery applications [27, 67, 121].

Revision control is the only technique that has been developed to track changes

and metadata of these changes for text documents [43]. Current revision control sys-

tems (e.g., RCS [117], CVS [12], Subversion [24]) manage changes of documents by

maintaining a list of chronologically ordered versions. For each of these versions, these

systems record necessary metadata such as user name and modification timestamp.

During collaboration, these systems use some kind of locking mechanisms to detect

editing conflicts of users. Revision control systems have two limitations when applied

to collaborative text document editing and processing. First, they are not suitable

for the recent Web 2.0 collaborative applications in which users can simultaneously

1

modify different parts of a shared document. The centralized locking mechanism im-

poses serious performance limitations for those applications. Second, revision control

systems track metadata for changes at the document level. As a result, it is efficient

to retrieve metadata (e.g. who committed which version at what time), but not effi-

cient to query metadata at a sub-document granularity. In the latter case, we have

to develop tools to parse the revision history of collaborative text documents and

analyze their delta changes in order to collect fine-grained metadata. For documents

with a long revision history, the parsing and analyzing cost becomes expensive.

1.2 Dissertation Contributions

To address the problems described in the previous section, this dissertation makes

the following contributions:

In the first contribution, we design partial persistent sequences (PPSs) to track

changes and the metadata of changes for collaborative text document editing and

processing applications. We precisely define PPSs and establish the mapping be-

tween traditional documents editing operations and PPS editing operations. With

the mapping, we are able to accurately record changes of a document for its revision

history. In addition, we develop a hybrid approach to balance the tradeoff between

disk space usage and efficiency of accessing the revision history of collaborative text

documents.

In the second contribution, we use PPSs to track data dependencies between docu-

ment editing operations and design a relaxed consistency model suitable for real-time

collaborative editing systems. Compared to existing consistency models, our consis-

tency model is more flexible in that it allows users to simultaneously work on different

parts of a shared document without being constrained by causal dependencies [57].

We also introduce a view synchronization strategy for the relaxed consistency model

2

and prove its correctness. To demonstrate the practicality of our approach, we im-

plement a prototype system and evaluate the performance of our system in terms of

both disk space usage and access time for document updates and retrievals.

In the third contribution, we design a flexible transactional framework for the de-

velopment of various collaborative editing systems. Our framework combines trans-

actional techniques from the database technologies and the capabilities of PPSs in

tracking data dependencies between editing operations. The generality of our frame-

work is tested by its capabilities of specifying three types of collaborative editing

systems RCS [117], MediaWiki [17], and Google Docs [15]. We further test its gener-

ality by using this framework to specify the behavior of a new type collaboration that

is derived by combining features of Google Docs and the acceptance test in handling

conflict reconciliation in replicated database management systems [64]. In addition,

our framework has the advantage of saving the cost for infrastructure development

because it can be implemented on the top of replicated database management sys-

tems, as demonstrated by a prototype implementation over Oracle Berkeley DB High

Availability [18].

In the fourth contribution, we design both disk-economic and computation-efficient

techniques to index document provenance information at fine granularities. Our ap-

proach is disk efficient because we only store a few full versions of a document and

store the delta changes for the rest of the versions. Our approach is also computation-

efficient because we avoid the necessity of parsing the revision history of collaborative

text documents. We have built a system to manage document provenance informa-

tion for millions of Wikipedia articles and compare its performance with MediaWiki,

the database engine for Wikipedia. The experiments show that our system uses less

than 10 percent of the disk space used by MediaWiki and achieves at least an order

of magnitude speedup for common provenance queries.

3

1.3 Organization of the Dissertation

This dissertation first reviews the related work in Chapter 2. It provides background

knowledge for persistent data structures, data consistency control in collaborative

editing systems, document provenance, document labeling schemes, and transaction

time management in temporal databases.

In Chapter 3, we define PPSs and establish the mapping between document edit-

ing operations and PPSs editing operations. We then introduce a hybrid approach

that balances disk space usage and the efficiency of accessing the revision history of

collaborative text documents.

In Chapter 4, we explain the challenges of data consistency control in real-time

collaborative editing systems and define a relaxed consistency model to support more

flexible real-time collaborative editing scenarios. We explain how to use PPSs to

represent data dependencies between different editing operations and design a view

synchronization strategy to resolve editing conflicts in real-time collaborations.

In Chapter 5, we give an overview of existing collaborative systems and discuss

their potential improvements. We then describe the programming interfaces of a

transactional framework and its synchronization protocol for data consistency en-

forcement based on PPSs. After that we illustrate the flexibility of our framework

by modeling several representative collaborative models. Finally, we describe a pro-

totype implementation over Oracle Berkeley DB High Availability and evaluate the

performance of our prototype.

In Chapter 6, we explain the limitations of current revision control systems to

handle fine-grained document provenance queries. We classify common document

provenance queries based on the temporal dimension and provide the rule of thumb to

organize the revision history of collaborative text documents based on PPSs. Finally,

we describe the implementation of our system and evaluate its performance on disk

space usage and query processing cost.

4

CHAPTER II

RELATED WORK

2.1 Persistent Data Structures

The concept of persistent data structure was first systematically analyzed by Driscoll

et. al. [55]. According to their definition, “A data structure is persistent if it supports

access to multiple versions. The structure is partially persistent if all versions can

be accessed but only the newest version can be modified, and fully persistent if every

version can be accessed and modified”.

In order to access the revision history of a text document, we design the partially

persistent form of the sequence data structure [46] because a text document is natu-

rally represented as a sequence. Each element in the sequence may be a character, a

word, or a line. The choice of granularities depends on different application domains.

In revision control systems, the granularity is a line. In wikis, the granularity is a

word [62]. In real-time collaborative editing systems, the granularity is a character.

To facilitate our discussion about accessing the revision history of text documents

without being distracted by the choice of element granularities, we treat a text doc-

ument as a sequence of items. Each item is the smallest indivisible unit when we

track the changes in the document. For example, an author fixed the typo error by

changing “Compliment” to “Complement”. If the indivisible unit is at the word level,

we say the word “Compliment” was deleted; a new word “Complement” was inserted.

If the indivisible unit is at the character level, we say the character “i” was deleted;

a new character “e” was inserted. When we give examples for sequences, we use the

Greek letters to represent their items such as [α, β, γ, ...].

A sequence is ephemeral in the sense that any modification always destroys the

5

previous version. For instance, if we modify the sequence from [α, β] to [β, γ], we

lose the information for the deleted item α. In order to access the previous versions

of a sequence, we design the partially persistent form of the sequence data structure

named partial persistent sequence(PPS). The PPS data structure is partially persis-

tent because it always preserves the previous version of a modified sequence and only

the latest version of the sequence can be modified. This dissertation does not address

fully persistent sequences and leave them as our future work.

Various persistent data structures have been proposed in the literature, including

stacks, queues, and search trees [55, 81]. There are two major techniques for making

a data structure partially persistent: fat node method and node-copy method. The

idea of fat node method is to keep all changes happening to a node in an array of

timestamp/value pairs without erasing old values. These timestamp/value pairs are

sorted by their timestamps. To retrieve the value of the node at a particular time,

a binary search is used to locate the right value. As a node may save an arbitrarily

number of pairs, it can become very “fat”, which would slow down the performance

of access time by O(log(n)) where n is the number of pairs in a node. The node-

copy method is introduced to solve this problem by controlling the number of pairs

in a node. When a node becomes too fat, the node is copied to contain the latest

value. All predecessors of the copied node also store pointers to the new node. The

node-copy method has an O(1) amortized bound on the number of nodes copied and

update cost. Theoretically, we could reuse these early techniques to make sequences

partially persistent because a sequence can be represented as a search tree. Items

are ordered according to their offsets in the sequence. Each item in the sequence

corresponds to a node in the tree. Insert and delete operations on sequences could

be mapped to node insert and delete operations in the search tree. However, these

early techniques are memory-based in that they require the entire revision history

of a search tree represented in memory in order to update pointers to maintain the

6

tree structure. For text documents with long revision histories, we have to seek

disk-resident techniques for making sequences partially persistent.

To design disk-resident techniques for partially persistent sequences, we have three

options. The first option, called the full-version approaches used in MediaWiki [17],

stores the full content of a sequence for every version. This option uses significant

amount of disk space since it keeps the same number of copies of an item as the

number of versions containing the item. This option performs inefficiently for large

documents with only minor changes between consecutive versions. The second option

is called delta-change approach as used in RCS [117]. It keeps all the changes in a

log and chains them in their chronological order. To retrieve a particular version, we

start with the first version and apply those delta changes until we reach the requested

version. This option solves the problem of the full-version approach, but at the cost

of applying delta changes on a long delta-change list. The third option is called

the hybrid approach used by Subversion [42]. In this option, we store multiple full

versions of a sequence at different points. For versions between these points, only

delta changes are saved. Our design on PPSs use the hybrid approach to balance the

tradeoff between disk space usage and access cost.

2.2 Data Consistency Control in Collaborative Document
Editing Systems

Collaborative editing systems support geographically distributed users to work on

a shared document. We have observed a wide spectrum of collaborations among

these systems. At one end of the spectrum are version control systems that sup-

port only restricted collaboration, such as CVS [12], RCS [117], and Subversion [42].

At the other end of the spectrum are those “liberal” collaborative editing systems

that support highly interactive collaboration, such as Gobby [2], Google Docs [15],

SubEthaEdit [8], and Coword [133].

The implementation of current collaborative document editing systems are ad

7

hoc in the sense that they only cover a subset of interactions found in collaborative

environments. We aim to design a unifying framework to specify and reason the

entire spectrum of collaborations. Our work borrows ideas from advanced transaction

models and their unifying frameworks. Our work is also influenced by the research

on data consistency control in real-time collaborative editing systems. Below we

overview each of them.

Advanced Transaction Models The classical transaction model guarantees the

ACID properties (i.e., atomicity, consistency, isolation, and durability). This model

is mainly used in OLTP applications. More and more nontraditional applications such

as CAD/CAM, business processes have found that the classical transaction model is

too rigid. As a result, many extended transaction models were developed to establish

a theoretical foundation for specifying correctness in cooperative applications [31, 38,

68, 88, 102] to model open-ended and long-running activities. Our work makes it one

step further to adapt advanced transaction models to collaborative document editing

systems because PPSs make it possible to define transaction boundaries and editing

conflicts in collaborative document editing systems. Especially, our work on data

consistency control adopts two techniques from the earlier work. First, the handling

of revert follows the compensation technique in Sagas [63]. Second, the introduction of

a pivot-point to define an irreversible reference point follows the technique of handling

backward recovery of transaction processing proposed by Mehrotra et.al. [89].

Our work also benefits from ACTA, the first formalizable framework developed to

characterize the whole spectrum of collaborations [38]. Within the framework, two

primitives to specify commit/abort dependencies between transactions were proposed

as well as the interplays between read and write set of transactions. ACTA demon-

strates its capabilities by specifying several advanced transaction models such as

Nested Transaction [90] and Split-Join Transactions [102]. Our transactional frame-

work for collaborative document editing systems follows the same observation as

8

ACTA that it is possible to specify and reason different kinds of collaborations by

using primitives to specify the interaction between collaborative editing transactions.

Compared to ACTA, our transactional framework is specialized for document editing

applications to handle editing operations such as release of user changes, local undo,

and global undo.

Data Consistency Control in Real-time Collaborative Editing Systems Sev-

eral consistency models have been proposed in the literature of computer supported

collaborative work. The first well-accepted consistency model for collaborative edit-

ing systems consists of two properties convergence and precedence preservation [57].

After its proposal, people realized that an editing system could still produce an ex-

ecution history leading to a document state not intended by any of the users. The

reason is that the definition of the convergence property does not specify correctness

criteria for the transformation between successive document states. To disallow these

abnormal execution histories, Sun et. al. [113] added an additional property intention

preservation to the earlier consistency model. This property states that the execu-

tion effect of an operation is preserved at all collaboration sites. This consistency

model receives wide recognition because of its first attempt to define a consistency

criterion for the intermediate document states of a co-authored document. Follow-

ing this work, two other consistency models were proposed to clarify the intention

preservation property. The CSM consistency model [85] defines the intention preser-

vation effect in terms of a total order of characters based on their insertion positions.

The WOOT consistency model [99] has a similar idea. In parallel to the develop-

ment of data consistency models, many data consistency control algorithms have

been proposed [57, 98, 99, 103, 113, 114]. Most of them are a variant of operational

transformation [57], an optimistic distributed concurrency control algorithm.

None of the above algorithms adopt transactional techniques because of the gen-

eral concern that serializability is too restricted to be the correctness criteria for

9

cooperative applications; the performance of synchronized distributed concurrency

control algorithms such as two-phase commit are slow for human-centered editing ap-

plications. However, RDBMSs are going through fundamental changes in recent ten

years [111]. Several famous replicated RDBMSs such as Dynamo [50] or PNUTS [44]

all support relaxed consistency models in order to satisfy the availability and the

performance of their applications. Based on PPSs, we adapt transactional techniques

from databases to building a framework to model a variety of collaborations including

real-time collaborative editing systems.

2.3 Document Provenance

Data provenance in its most general form describes the derivation history of data

from its original source [71]. The research on managing data provenance has been

conducted extensively in scientific workflows where the primary focus is on how to

develop efficient techniques to manage metadata related to process of experiment

workflows, such annotations, programs, and notes [35, 110]. For this dissertation,

we particularly focus on data provenance management for editing processes of doc-

uments. We use the term document provenance to describe how a document was

updated over time. In multi-user editing systems, the importance of document prove-

nance was recognized two decades ago in improving the awareness of group activi-

ties [54]. Nowadays, enterprise have started the efforts of improving wiki sustainability

by using document provenance to recognize contributions of employees [48, 66]. In

general, applications exploits provenance in tasks ranging from document processing

in business processes [69] to deep knowledge discovery for text documents [27, 49].

Although fine-grained document provenance is valuable, storing and querying prove-

nance can be expensive. Current revision control systems manage provenance data at

the document level, which is too coarse-grained to retrieve provenance data at a finer

granularity such as a word or a sentence. The focus of this dissertation is to design

10

efficient techniques to track provenance information at the sub-document granularity.

2.4 Text Documents Labeling Schemes

Our work on PPSs is closely related to the literature of text document labeling

schemes in the sense that both PPSs and the early work focus on how to create

unique and persistent identifiers for the items of a text document. Treedoc [100] and

Logoot [124] use path-based labeling scheme to assign unique identifiers for items of a

document. For the path-based labeling schemes, the space and computation overhead

are always major concerns, especially when we need to create identifiers for items at

a very small granularity (e.g., a word). TeNDax [84] is another work that assigns

unique identifiers for items in a document. The difference is that TeNDax uses a

monotonically increased counter to assign identifiers for new items. As a result, the

identifiers are not ordered. To determine the right position of an item, the identifier

of its previous item and the identifier of its next item need to be explicitly maintained

in a linked-list-like data structure. Text document labeling schemes by themselves

do not address how to access previous versions of documents. We choose rational

numbers as our labeling domain due to its space and computation efficiency.

2.5 Transaction Time Management in Temporal Databases

Temporal database management is an active field of research on managing time-

varying data in applications that are temporal in nature such as accounting, banking,

and scheduling [74]. In general, temporal databases consider three types of time:

valid time, transaction time, and user-defined time. According to the glossary of

temporal database concepts [72], “Valid time of a fact is the time when the fact is

true in the modeled reality. Transaction time of a database fact is the time when

the fact is current in the database. User-defined time is an un-interpreted attribute

domain of date and time. Different temporal data models were proposed to address

these time dimensions [104]. We particularly review the DM/T data model [73, 75]

11

that was proposed to address the type of transaction time in temporal databases be-

cause this dissertation manages transaction time for document editing and processing

applications. Even though our work targets the unstructured data model, which is

different from the relational data model in the early work, we face similar research

issues including change history representation, differential computing, and timeslice

computing over change histories.

The DM/T data model organizes the updating history of an ordinary database

relation in an append-only relation, called the base relation. Each tuple in the base

relation corresponds to an insert, a delete, or an update database operation. The tuple

records the type of the operation, the transaction timestamp, and the changes. The

base relation can be queries using a special timeslice operator to compute any previous

state of the original database relation. To guarantee the efficiency of computing

both the past and recent timeslices, an I-tree data structure is designed to index the

transaction time attribute in the base relation. An I-tree is a sparse B+-tree designed

for append-only relations. Given a transaction timestamp, we can use an I-tree to

quickly locate the disk page containing the transaction record within logarithmic

cost. The cost of the timeslice operator can be further reduced if we cache previously

computed timeslices and apply either an incremental or a decremental computation

to the cached timeslices depending on the number of pages that must be read to

process a request.

Similar to the DM/D model, we have a timeslice-like operator to compute a pre-

vious state of a document. We also maintain differential changes to conduct either

incremental or decremental computation to calculate timeslices. However, we face

the new challenge of creating unique, persistent, and ordered identifiers for the items

of a text document. In a relational database, tuples are either indexed by a given pri-

mary key or are treated the same if they are equal pair-wise on all the attributes. In

addition, tuples in a relational database are defined over bags and therefore there are

12

no ordering relationships between tuples. However, all these characteristics are not

available in documents, which are defined over the unstructured data model. First,

there is no given primary key for items of documents. This creates problems in dif-

ferential computing because we need to associate update operations for a particular

item. Second, we could not depend on the content of an item to create a unique

key because two items with the same content but located at different offsets of a

document are treated as different items. Finally, items of a document have spatial

relationships conforming to the sequential structure of the document. This ordering

is required for many document queries, e.g., we want to create a range locking on

a paragraph to keep other users from simultaneously modifying the same area in a

multi-user concurrent editing scenario. Part of the contribution of this dissertation

is to create unique, persistent, and ordered identifiers over the domain of rational

numbers. Note that we could not choose the common solutions of using a counter or

creation timestamps of items because identifiers created this way are not ordered. By

using rational numbers, we essentially translate an unstructured document into a list

of key/value pairs and open the door of bringing temporal database technologies for

document editing and processing.

Compared to the DM/T data model, this dissertation focuses on a narrower scope

in that our techniques are specialized for key/value based data model, not the rela-

tional data model. As a result, our techniques are applicable to retrieve metadata

of a particular item, but not support advance queries such as selection, projection,

and join on data related to different items. Another difference is that we use a static

approach to materialize the timeslices of a document at strategic points of the re-

vision history in order to reconstruct the state of the document at about constant

time. In our static approach, we maintain an array of key/value pairs with the key

being the timestamp of a timeslice and the key being a pointer to the materialized

data on disk. To construct the state of the document at a particular time, we do

13

a binary search on the array based on the keys to choose the closest timeslice for

the requested document state. Based on our experiments, our current design suffices

the requirements of document versioning systems that manage documents with tens

of thousands of revisions and support key/value based metadata lookup. More so-

phisticated techniques are required if we want to index very large document revision

histories and support rich metadata document queries. We will study the strength

of different advanced data structures to improve transaction record indexing such as

I-trees, MB-trees [60] and the AP trees [107] and query processing and optimization

techniques such as state transition network [75] as our future work.

14

CHAPTER III

PARTIAL PERSISTENT SEQUENCES

3.1 Definition of PPSs

Conceptually, a PPS contains a list of items indexed by rational numbers. Since

rational numbers are defined over a dense domain, we are able to index the items

with unique, persistent, and ordered indexes. We call these rational indexes as position

stamps. Figure 1 shows a simple PPS example. At Step 1, the PPS has four items

whose position stamps are 0, 0.2, 0.8, and 1 respectively. φ is a special item used to

mark the beginning and the end of a PPS. It is invisible to the represented document

(as indicated by the gray color). At Step 2, an insert happens between α and γ. As

a result, a new item β is inserted with a new position stamp 0.5. At Step 3, a delete

happens on item α. The PPS handles the delete by marking the item invisible instead

of physically removing it from the data structure.

Precisely a PPS is defined by a pair (S,M), where

• S: a set of unique rational numbers, which are called position stamps. S =

{si ∈ Q, 1 ≤ i ≤ n, n ∈ N}.

• M : a mapping function M : S 7→ Σ, where Σ is a finite set of items. Σ contains

a null item φ that is different from any other items allowed in user applications.

Let Σc = Σ− φ.

step1 step2 step3

Figure 1: A simple PPS example

15

The position stamps in S are totally ordered by less than < defined on Q. For

si ∈ S, we use si+1 to denote the next position stamp in S such that si < si+1 and

¬(∃sx ∈ S, si < sx < si+1). Similarly, we use si−1 to denote the previous position

stamp of si in S. We use S[si, sj] = {sx|sx ∈ S, si ≤ sx ≤ sj} to denote the set of

position stamps that fall within the range of si and sj (inclusive).

The editing history of a PPS is defined by a set of revisions {(Sk,Mk), 0 ≤ k ≤

n}. When a document is first created, its initial revision is an empty PPS S0 =

{0, 1}, M0 = {0 7→ φ, 1 7→ φ}. The PPS is updated by a sequence of parameterized

operations that take form in one of the kinds: ADD and HIDE. An ADD operation

adds a new position stamp into Sk and a new mapping into Mk. A HIDE operation

changes the mapping in Mk. Each ADD and HIDE operation transforms (Sk,Mk) to

(Sk+1,Mk+1). These two operations are defined as follows:

• ADD(si, si+1, x): si, si+1 ∈ Sk, x ∈ Σc. It adds the item x between the item in-

dexed by si and the item indexed by si+1. Let snew ∈ Q be a position stamp that

satisfies the constraint of si < snew < si+1. It updates (Sk,Mk) to (Sk+1,Mk+1),

where

Sk+1 = Sk

⋃
{snew}

Mk+1 = Mk

⋃
{snew 7→ x}

• HIDE(si): si ∈ Sk. It changes the mapping of si from its old value x to the

null item φ. It updates (Sk,Mk) to (Sk+1,Mk+1), where

Sk+1 = Sk

Mk+1 = Mk − {si 7→ x}
⋃
{si 7→ φ}.

A HIDE operation does not change the set of position stamps in a PPS. But

an ADD operation will add a new element, snew, into the set. The value of snew

must fall within the range between sk and sk+1 defined in Sk. This is important in

16

order to maintain the uniqueness of each position stamp and the right position of

the newly inserted item in Sk+1. The algorithm that computes the value of snew is

called an labeling scheme. Partial persistent sequences leave the freedom of choosing

a particular labeling scheme. For example, we can compute snew in dyadic rational

numbers, which halving the interval between si and si+1 into two, or in Farey rational

numbers, which choose mediant of si and si+1 [119].

3.2 Two Levels of View on Collaborative Text Documents

From a user’s perspective, a document consists of a sequence of items. If a new item is

inserted, a portion of the sequence will be shifted right to vacate the space for the new

item. Correspondingly, if a item is deleted, a portion of the sequence will be shifted

left to reclaim the space. On the other hand, the underlying editing system keeps

the items of the document in a selected data structure, such as an array and a linked

list [13]. We call the sequence data structure from the user’s perspective logical view

and the implementation data structure from the editing system’s perspective physical

view. Characters in the logical view are identified by their offsets to the first item.

These offset-based identifiers are volatile in that they keep changing with new edits.

To create persistent identifiers for items, we need to maintain their identities in the

physical view and make them persistent on disk. In this section, we define precisely

how we do the mapping between the two views.

At the logical view, a document is defined by a sequence of items E = 〈ci ∈

2Σ
c

, 1 ≤ i ≤ n, n ∈ N〉, where Σc is the alphabet of the document. 〈〉 denotes an

empty sequence, E[i] the i-th element of E, E[i, j] the subsequence 〈ci, ci+1, ..., cj〉,

|E| the length of E.

When a document is first created, it is initialized to an empty sequence of items

E0 = 〈〉. Each INSERT or DELETE operation transforms the document from Ei

to Ei+1. We use Ek to denote the revision of E as transformed by a sequence of

17

INSERT and DELETE operations of cardinality k. An INSERT operation adds a

new item into the sequence. A DELETE operation removes a item from the sequence.

These two operations are defined as follows:

• INSERT (p, x): p ∈ N, x ∈ Σc. It adds the item x at the p-th position in Ei.

This operation updates Ei to Ei+1 such that

Ei+1 = Ei[1, p− 1] ◦ x ◦ Ei[p, n], where n = |Ei|. ◦ denotes concatenation of

sequence.

• DELETE(p): p ∈ N. It removes the item at the p-th position in Ei. This

operation updates Ei to Ei+1 such that

Ei+1 = Ei[0, p− 1] ◦ Ei[p+ 1, n], where n = |Ei|.

3.2.1 Mapping from Physical View to Logical View

The mapping from the physical view to the logical view is defined by a PIECE

operation that returns the sequence of items whose position stamps are not mapped to

φ. We call the items returned by PIECE visible items of the PPS. The concatenation

of an item sequence seq with φ is still a item sequence such that seq ◦ φ = seq. The

concatenation of two null items is still the null item such that φ ◦ φ = φ. PIECE is

defined as below:

• PIECE(Sk[si, sj],Mk) = Mk(si) ◦Mk(si+1)◦, ..., ◦

Mk(sj), where si, si+1..., sj ∈ Sk.

PIECE(Sk[si, sj],Mk) returns the sequence of visible items whose position stamps

falls with the range of si and sj (inclusive). PIECE(Sk[s1, sn],Mk), where n = |Sk|,

returns the sequence that contains all visible items. For brevity, we use PIECE(Sk,Mk)

to denote PIECE(Sk[s1, sn],Mk) without writing the range explicitly. If PIECE(Sk

[si, sj],Mk) = φ, then it denote the empty sequence 〈〉 from a user’s point of view.

18

Logical view

Physical view

Insert(2,)

Figure 2: Mapping between two levels of view

3.2.2 Mapping from Logical View to Physical View

Next we show how to map the logical view to the physical view. As discussed in

Section 3.2, users edit a document by issuing editing operations defined at its logical

view, which need to be mapped into the forms on its physical view. The mapping

rules are defined below:

• Rule 1: an INSERT (p, x) on Ek is mapped to

ADD(si−1, si, x) on (Sk,Mk), where si is the smallest position stamp satisfying

p = |PIECE(Sk[s1, si] ,Mk)| if Ek 6= 〈〉 or si = 1 if Ek = 〈〉.

• Rule 2: a DELETE(p) on Ek is mapped to

HIDE(si) on (Sk,Mk), where si is the smallest position stamp satisfying p =

|PIECE(Sk[s1, si],Mk)|.

Figure 2 gives an example for Rule 1. When a user issues an operation at offset p,

Rule 1 locates the smallest position stamp si that satisfies p = |PIECE(Sk[s1, si],Mk)|.

In this example, it is the position between 0.6 and 0.8. This constraint establishes

the correspondence between the item indexed by si in the physical view and its coun-

terpart indexed at p on the logical view. An exception is when Ek = 〈〉. In this case,

we require si to be the rightmost position stamp, which is 1.

Lemma 1. Given the initial document version E0 = 〈〉 and the initial physical docu-

ment version S0 = {0, 1}, M0 = {0 7→ φ, 1 7→ φ}, let H = o0o1...on be the logical-view

19

editing history and H̃ = õ0õ1...õn be the physical-view editing history, obtained by

applying Rule 1 and Rule 2. We have En = PIECE(Sn,Mn).

Proof by induction:

1. Upon initialization, E0 = 〈〉, PIECE(S0,M0) = M(0) ◦M(1) = φ ◦ φ = φ.

2. Assume the lemma holds for the k-th update ok, such that Ek = PIECE(Sk,Mk)

3. For the k + 1-th update,

• suppose ok+1 = INSERT (p, x) and its mapped form õk+1 = ADD(si−1, si, x)

by applying Rule 1. Based on the definition of INSERT in Section 3.2, we have

Ek+1 = Ek[0, p−1]◦x◦Ek[p, n], where n = |Ek|. On the other hand, after apply-

ing ADD(si−1, si, x) to the physical view (Sk,Mk), we have PIECE(Sk+1,Mk+1) =

Mk+1(s1) ◦ ... ◦Mk+1(si−1) ◦Mk+1(snew) ◦Mk+1(si) ◦ ... ◦Mk+1(sm), where m =

|Sk|. Based on the definition of ADD in Section 3.1, we know that õk+1 does

not change the mappings in Mk. Therefore, we get PIECE(Sk+1, Mk+1) =

Mk(s1) ◦ ... ◦ Mk(si−1) ◦ Mk(snew) ◦ Mk(si) ◦ ... ◦ Mk(sm). Based on the as-

sumption of Ek = PIECE (Sk,Mk) and p = |PIECE(s1, si)|, we know that

E[1, p−1] = Mk(s1)◦...◦Mk(si−1) and E[p, n] = Mk(si)◦...◦Mk(sm). Therefore,

PIECE(Sk+1, Mk+1) = E[1, p− 1] ◦ x ◦ E[p, n] = Ek+1.

• suppose ok+1 = DELETE(p) and its mapped form õk+1 = HIDE(si) by

applying Rule 2. Based on the definition of DELETE in Section 3.2, we have

Ek+1 = Ek[0, p−1]◦Ek[p+1, n], where n = |Ek|. On the other hand, after apply-

ing HIDE(si) to the physical view (Sk,Mk), we have PIECE(Sk+1,Mk+1) =

Mk+1(s1)◦...◦Mk+1(si−1) ◦Mk+1(si)◦Mk+1(si+1)◦...◦Mk+1(sm), where m = |Sk|.

Based on the definition of HIDE in Section 3.1, we know that õk+1 does not

change the mapping of any position stamp in Mk except si. Therefore, we get

PIECE(Sk+1,Mk+1) = Mk(s1) ◦ ... ◦Mk(si−1) ◦ φ ◦Mk(si+1) ◦ ... ◦Mk(sm) =

Mk(s1) ◦ ... ◦Mk(si−1) ◦Mk(si+1) ◦ ... ◦Mk(sm). Since Ek = PIECE(Sk,Mk)

20

and p = |PIECE(s1, si)|, we know that E[1, p − 1] = Mk(s1) ◦ ... ◦Mk(si−1)

and E[p+ 1, n] = Mk(si+1) ◦ ... ◦Mk(sm). Therefore, PIECE(Sk+1, Mk+1) =

E[1, p− 1] ◦ x ◦ E[p+ 1, n] = Ek+1.

The above lemma guarantees that whenever the document is updated by a history

defined on its logical view, the mapping rules will correctly map the operations to

their physical forms such that the version of the persistent sequence produced by the

mapped history will maintain the same view as the one from users’ perspective.

3.3 Representing the Revision History of Documents Based
on PPSs

3.3.1 Different Design Options

In this section, we look at different design options to represent the revision history

of a document based on PPSs. The revision history of a document is represents as

a list of versions. Each version represents the state of the document at a particular

time. In order to retrieve any of these versions, we use PPSs to track all the inserted

and deleted items in a sequence and keep adequate timestamp information in order

to tell whether an item belongs to a particular version.

Specifically, we maintain two timestamps for each position stamp: one for ADD

timestamp and one for HIDE timestamp. For position stamps that are visible, the

value of their HIDE timestamps is empty. These timestamps can be organized in

any of the search tree data structures by using position stamps as keys. Figure 3

illustrate the organization. For simplicity, we draw the search tree as a sorted array

with each element pointing to their timestamps. The first version of the PPS has two

items with the timestamp being t1 (We do not keep the timestamp for the position

stamps 0 and 1 since they are not considered in any version.). In the second version

of the PPS, α was deleted and its HIDE timestamp is updated. In the third version,

γ was inserted with the timestamp being t3. To construct a particular version of the

21

document, we traverse the array and examine the timestamp field of each position

stamp to determine whether it belongs to a particular version. For example, to

retrieve version2 of the document, we find the item indexed by 0.2 does not belong to

version2 because its HIDE timestamp is equal to t2. The item indexed by 0.5 belongs

to version2 because its ADD timestamp is smaller than t2 and its HIDE timestamp

is empty. The item indexed by 0.8 does not belong to version2 because its ADD

timestamp is larger than t2. This organization, though simple, has a performance

penalty for documents with a large number of items because all of them need to be

examined.

0.2 0.5

PPS

Search tree

for organizing

timestamps
t1

delete Insert

Document

t1

0.2 0.5

t1
t2

t1

0.2 0.5

t1
t2

t1

0.8

t3

version1 version2 version3

Figure 3: Organize the revision history of a document based on PPSs

Another issue of the above organization arises when we consider the REVERT

operation. A REVERT operation restores the latest state of a document to one of the

previous versions in its revision history. The introduction of REVERT is necessary

because we cannot simply treat it as a DELETE followed by an INSERT. If that

were the case, we would lose the correct insert timestamp of all restored items, which

causes a problem when we come to the problem of metadata management discussed

in Chapter 6. PPSs handle REVERT by comparing the position stamps between the

latest version and the position stamps in the version that are reverted to. For items

that are restored, their position stamps are marked visible again. For items that are

22

deleted, their position stamps are marked invisible. The REVERT operation adds

new challenges to maintain timestamp information because we need to maintain a list

of timestamps for each item. The visibility of an item could switch between the state

of visible and invisible multiple times. The situation is illustrated in Figure 4. Now

the item α has three timestamps. For documents that were reverted many times, we

end up with a long list of timestamps for some of these items.

0.2 0.5

PPS

Search tree

for organizing

timestamps
t1

delete Insert

Document

t1

0.2 0.5

t1
t2

t1

0.2 0.5

t1
t2

t1

0.8

t3

version1 version2 version3

0.2 0.5

t1
t2

t1

0.8

t3
t4

version4

Revert to

version1

t4

Figure 4: Organize the revision history of a document based on PPSs by considering
the REVERT operation

An alternative way to organize the revision history of a document is to store all

visible position stamps of the PPS for each version of the document as shown in

Figure 5. In this way, we can retrieve a version directly without traversing the search

tree. However, this approach uses up disk space quickly, especially in the situation

that only minor changes happened between consecutive versions.

0.2 0.5

PPS

delete Insert

Document

0.5 0.5 0.8 0.2 0.5

Revert to

version1

PPS View

version1 version2 version3 version4

Figure 5: Store the full list of visible position stamps for every version of a document

23

3.3.2 A Hybrid Approach

We use a hybrid approach to represent the revision history of a PPS. The approach is

hybrid because we maintain the full list of visible position stamps at multiple points.

Between those points, only delta changes are maintained. The advantage of a hybrid

approach is that it allows us to balance the tradeoff between disk space usage and ac-

cess time. In the rest of this section, we first give an overview of our hybrid approach.

Then, we introduce a delta-change applying operator and its properties. After that

we describe several algorithms used to access the revision history of a document both

at a particular time and for the delta changes between different versions.

The revision history of a PPS consists of as a list of PPS views V1, V2, ..., Vn. Each

PPS view Vi consists of the full list of visible positions stamps in the PPS at ti. We use

∆i,i+1 = (Xi,i+1, Yi,i+1) to denote the delta changes between the two PPS views Vi and

Vi+1, where Xi,i+1 denotes all the position stamps that were marked visible and Yi,i+1

that were marked invisible. For example, given three views of a PPS V1 = (0.1, 0.3),

V2 = (0.1, 0.4), and V3 = (0.1, 0.3, 0.4), we have ∆1,2 = (X1,2, Y1,2) = ({0.4}, {0.3})

and ∆2,3 = (X2,3, Y2,3) = ({0.3}, ∅)

The hybrid form for the revision history of a PPS consists of a mixed sequence

of PPS views and delta changes V1,∆1,2,∆2,3, ..., Vi,∆i,i+1,∆i+1,i+2, ...Vj . We call the

sub-list starting from a PPS view (inclusive) to the next PPS view (exclusive) a PPS

view range, each of which covers parts of the revision history. In order to locate

the PPS view range that a PPS view belongs to, we additional maintain an array

structure, called view pivot array, containing the version identifiers for all PPS views

in the hybrid form. The whole structure is illustrated in Figure 6.

To represent a PPS view range in a compact form as well as quickly locate the

delta changes between any two PPS views, we use the technique of Compressed Sparse

Row (CSR), a standard technique to save sparse matrices. The basic idea of CSR is

to use three one-dimensional arrays [val, col, row] to save the content of a matrix.

24

ti tjt1

Vi, i,i+1, i,i+1, ... j-1,j

view pivot array ... tn

a PPS view range

Figure 6: Represent the revision history of a PPS in a hybrid form

val saves the elements in the matrix from left to right and top to bottom. col saves

the column indexes of the elements in the same order. row saves the last column

index of each row. Let us look at an example to understand how we use CSR to store

a PPS view range. Given the three views mentioned at the beginning of this section,

we can represent their delta changes in a matrix-like structure as following:






0 0.1 0.3 0.4 1

∆(1, 2) 0 1

∆(2, 3) 1






In general, each row contains the information for the delta changes between two

consecutive views. For example, if the PPS view is V1, the first row contains the

delta changes between V1 and V2, the second row the delta changes between V2 and

V3 and so on. The indexes of columns are rational numbers corresponding to position

stamps. The values in the matrix-like structure are Booleans. If a position stamp su

was marked invisible in Vi+1, the cell at (i, su) has value 0. Otherwise, the cell has

value 1. So the CSR form for the above matrix is

val = [0, 1, 1]

col = [0.3, 0.4, 0.3]

row = [1, 2]

To retrieve the delta changes between Vi+j and Vi+j+1 in a PPS view range with

the first view being Vi, we follow three steps: 1) locate the starting point of the delta

25

changes with row[j − 1]; 2) calculate the length of the delta changes by |∆j,j+1| =

row[j] − row[j − 1]; 3) obtain the delta changes val[row[j − 1] + 1, row[j − 1] +

2, ..., row[j] + |∆j,j+1| and col[row[j − 1] + 1, row[j − 1] + 2, ..., row[j] + |∆j,j+1|]

3.3.3 Properties of Delta Change Operator 2

Due to the uniqueness property of position stamps, we are able to calculate delta

changes between two PPS views by using the classical set operators. Vice versa,

we are also able to calculate a PPS view if we know its delta changes to another

PPS view. Given the delta change ∆1,2 between V1 and V2, we use X1,2 to denote

position stamps that newly become visible in V2 and Y1,2 to denote position stamps

that are visible in V1, but newly become invisible in V2. For example, given two PPS

views V1 = (0.1, 0.3) and V2 = (0.1, 0.4). The delta changes between V1 and V2 are

X1,2 = V2 \ V1 = {0.4} and Y1,2 = V1 \ V2 = {0.3}. On the other hand, we have

V2 = V1 ∪X1,2 \ Y1,2 = (0.1, 0, 3) \ {0.3} ∪ {0.4}. Here we overload the set operators

for sorted sequences. Their definitions are almost identical to set operators except

that the elements in the set are sorted.

We use 2 to denote the functional composition of applying some delta changes to

a view and define it below:

Definition 1. V1 = V22(X1,2, Y1,2) = (V1 ∪X1,2) \ Y1,2

2 has several properties important to calculate PPS views and delta changes

between two PPS views in a PPS view range. Next we first introduce these properties

and prove their correctness and then explain the usage of these properties in the next

section.

Lemma 2. (Properties of 2) Let V1, V2, and V3 are three consecutive views, 2

has the following properties:

1. V2 = V12(X1,2, Y1,2) =⇒ X1,2 6⊂ V1 ∧ Y1,2 ⊆ V1 ∧X1,2 ∩ Y1,2 = ∅

26

2. V2 = V12(X1,2, Y1,2) ⇐⇒ V1 = V22(Y1,2, X1,2)

3. V2 = V12(X1,2, Y1,2) ∧ V3 = V22(X2,3, Y2,3) =⇒ V3 = V12(X1,3, Y1,3), where

X = (X1,2 \ Y2,3) ∪ (X2,3 \ Y1,2) and Y = (Y1,2 \X2,3) ∪ (Y2,3 \X1,2)

Proof. 1. The first property can be directly inferred from the definition of 2.

2. For the second property, we show the proof “ =⇒ ” only. The proof of “⇐=”

is similar.

V22(Y1,2, X1,2) = V2 ∪ Y1,2 \X1,2 (1)

= (V12(X1,2, Y1,2)) ∪ Y1,2 \X1,2 (2)

= (V1 ∪X1,2 − Y1,2) ∪ Y1,2 \X1,2 (3)

= (V1 ∪X1,2 ∪ Y1,2) \ (Y1,2 \ Y1,2) \X1,2 (4)

= (V1 ∪X1,2 ∪ Y1,2) \X1,2 (5)

= (V1 ∪ Y1,2) (6)

= V1 (7)

Step(1) and (3) are based on the definition of 2. Step(2) is based on the

given precondition. Step(4) is based on the standard set complement preposi-

tion (B \ A) ∩ C = (B ∪ C) \ (A \ C). Step(6) holds because X1,2 6⊂ V1 and

X1,2 ∩ Y1,3 = ∅ based on the first property. Step(7) holds because Y1,2 ∈ V1

based on the first property.

3. We prove V3 = V12(X1,3, Y1,3) by proving two implications:

(a) u ∈ V3 =⇒ u ∈ V12(X1,3, Y1,3), and

(b) u /∈ V3 =⇒ u /∈ V12(X1,3, Y1,3)

27

We prove (a) by showing that u ∈ V1∪X and u /∈ Y . Based on the precondition

and the first property, we know that if u ∈ V3, then

u ∈ (V12(X1,2, Y1,2))2(X2,3, Y2,3) (1)

∈ (((V1 ∪X1,2) \ Y1,2) ∪X2,3) \ Y2,3 (2)

∈ (V1 ∪X1,2 ∪X2,3) \ (Y1,2 \X2,3) \ Y2,3 (3)

Since u ∈ V1∪X1,2∪X2,3 must hold, we know that u /∈ (Y1,2\X2,3) and u /∈ Y2,3.

Therefore,

u /∈ (Y1,2 \X2,3) ∪ Y2,3 (4)

/∈ (Y1,2 \X2,3) ∪ (Y2,3 \X1,2) = Y1,3 (5)

This finishes our proof for u /∈ Y . We prove u ∈ V1 ∪ X by contradiction.

Assume u /∈ V1 ∪X , then

u /∈ V1 ∪ (X1,2 \ Y2,3) ∪ (X2,3 \ Y1,2) =⇒ (6)

u /∈ V1 ∧ u /∈ (X1,2 \ Y2,3) ∧ u /∈ (X2,3 \ Y1,2) (7)

Since we know that u ∈ V1 ∪ X1,2 ∪ X2,3, we know that u ∈ X1,2 ∪ X2,3 must

hold. We consider two cases:

• If u ∈ X1,2, then u ∈ Y2,3 must hold based on the assumption u /∈

(X1,2 \ Y2,3). This contradicts with the conclusion (4) drawn from the

precondition. If u ∈ X2,3, then u ∈ Y2,3 must hold. However, we know

that Y2,3 ∈ V1 based on the first property. This leads to the conclusion

that u ∈ V1, which contradicts with our assumption. Therefore, u ∈ V1∪X

holds.

• If u ∈ X2,3, based on u /∈ (X2,3 \ Y1,2), we have u ∈ Y1,2. Based on the

first property, we know Y1,2 ∈ V1, which contradicts with our assumption.

Therefore, u ∈ V3.

28

Now we prove (b). Based on the precondition, we know that if u /∈ V3, then

u /∈ (V1 ∪X1,2 ∪X2,3) \ (Y1,2 \X2,3) \ Y2,3. Since we know u ∈ V1 ∪X1,2 ∪X2,3,

then we get u ∈ (Y1,2 \X2,3) ∪ Y2,3. We consider two situations:

• If u /∈ X1,2, then we get u ∈ ((Y1,2 \X2,3) ∪ (Y2,3 \X2,3)) = Y . Therefore,

u /∈ (V1 ∪X1,3) \ Y .

• If u ∈ X1,2, then we have u 6∈ Y2,3 based on the first property. Therefore,

u ∈ Y2,3 must hold. Therefore u /∈ X1,2 \ Y2,3. Furthermore, based on the

first property, we know that if u ∈ X1,2, then u /∈ V1. Also if u ∈ Y2,3, then

u /∈ X2,3. Therefore, we have u /∈ V1 ∧ (X1,2 \ Y2,3) ∧ (X2,3 \ Y1,2) = X ,

which leads to the conclusion that u /∈ (V1 ∪X1,3) \ Y .

This finishes our proof for both (a) and (b). Finally, we need to show that X

and Y satisfy the first property. That is X 6⊂ V1, Y ⊆ V1, and X ∩ Y1,3 = ∅.

• Based on the preconditions the first property, we know

X2,3 6⊂ V2 = (V1 ∪X1,2) \ Y1,2 =⇒

X2,3 6⊂ (V1 \ Y1,2) ∪X1,2 =⇒

X2,3 6⊂ (V1 \ Y1,2)

Since X2,3 \ Y1,2 6⊂ Y1,2 holds trivially, we have

X2,3 ∩ (X2,3 \ Y1,2) 6⊂ (V1 \ Y1,2) ∪ Y1,2 =⇒ (X2,3 \ Y1,2) 6⊂ V1

Furthermore, since X1,2 6⊂ V1, we have X1,2 \ Y2,3 6⊂ V1. Therefore

X1,3 = (X2,3 \ Y1,2) ∪ (X1,2 \ Y2,3) 6⊂ V1

• Based on the first property, we have

Y2,3 ⊆ V2 = (V1 ∪X2,3) \ Y2,3 =⇒

Y2,3 ⊆ (V1 ∪X2,3) =⇒

Y2,3 \X2,3 ⊆ V1

29

Since Y1,2 ⊆ V1 holds based on the first property, Y1,2 \ X2,3 ⊆ V1 holds

trivially. Therefore,

Y1,3 = (Y2,3 \X2,3) ∪ (Y1,2 \X2,3) ⊆ V1

• We have

X ∩ Y1,3 = ((X1,2 \ Y2,3) ∪ (X2,3 \ Y1,2)) ∩ (Y1,2 \X2,3) ∪ (Y2,3 \X1,2)

= (X1,2 \ Y2,3) ∩ (Y1,2 \X2,3)
︸ ︷︷ ︸

(1)

∪ (X2,3 \ Y1,2) ∩ (Y1,2 \X2,3)
︸ ︷︷ ︸

(2)

∪ (Y1,2 \X2,3) ∩ (Y2,3 \X1,2)
︸ ︷︷ ︸

(3)

∪ (X2,3 \ Y1,2) ∩ (Y2,3 \X1,2)
︸ ︷︷ ︸

(4)

It is easy to show that each of the items (1)-(4) is empty based on the

properties of X1,2 ∩ Y1,2 = ∅ and X2,3 ∩ Y2,3 = ∅.

3.3.4 Operations on a PPS View Range

We describe how to compute either a view or delta changes between two views in a

PPS view range based on the three properties of 2 introduced in the previous section.

3.3.4.1 Applying Delta Changes to a View

Given a view V1 and its delta changes ∆1,2 to V2, we explain how to compute the

view V2. Based on Property 1 in Lemma 2, we know that a position stamp s ∈ ∆1,2

will be added into V2 if s is not in V1 and a position stamp s ∈ ∆1,2 will be removed

from V1 if it is in V1. Based on this observation, we can use the algorithm APPLY-

DELTA-TO-VIEW to apply delta changes to a view in O(n + m) where n is the

number of position stamps in V1 and m the number of position stamps in ∆1,2. The

algorithm APPLY-DELTA-TO-VIEW takes two parameters. V is a sorted double

30

Algorithm 1 APPLY-DELTA-TO-VIEW(V , S)

1: i← 0
2: j ← 0
3: k ← 0
4: A← an empty array
5: while i < length[V] and j < length[S] do
6: if S[i] < S[j] then
7: k ← k + 1
8: A[k]← V [i]
9: i← i+ 1
10: else if S[i] = S[j] then
11: i← i+ 1
12: j ← j + 1
13: else

14: k ← k + 1
15: A[k]← S[i]
16: j ← j + 1
17: end if

18: end while

19: while i < length[V] do
20: k ← k + 1
21: A[k]← V [i]
22: i← i+ 1
23: end while

24: while j < length[S] do
25: k ← k + 1
26: A[k]← S[i]
27: j ← j + 1
28: end while

29: return A

array containing position stamps in V1. S is a sorted double array containing position

stamps in ∆1,2. This algorithm merges the two sorted array into a single sorted array,

which is the same as the merge step of a merge-sort algorithm [45] except that it

drops elements that exist in both arrays. The code maintains two indexes pointing

to the next elements to compare in each array. The main loop in line 5-18 compares

the elements in the two arrays from left to right. For elements that exist in both

arrays (line 10-12), they are not copied into the output array A. For the elements

that only exist in V , they are copied into the output array A (line 7-8) and the

index i is updated to pointing to the next element in V . The elements that only

exist in S is processed similarly (line 14-16). At the end of the execution, APPLY-

DELTACHANGE-TO-VIEW returns a sorted double array A containing the position

stamps in V2.

31

3.3.4.2 Calculating Transitive Delta Changes

Algorithm 2 CALCULATE-TRANSITIVE-DELTA(S1, F1, S2, F2)

1: i← 0
2: j ← 0
3: k ← 0
4: S ← an empty double array
5: F ← an empty boolean array
6: while i < length[S1] and j < length[S2] do
7: if S1[i] < S2[j] then
8: k ← k + 1
9: S[k]← S1[i]
10: F [k]← F1[i]
11: i← i+ 1
12: else if S1[i] = S2[j] then
13: i← i+ 1
14: j ← j + 1
15: else

16: k ← k + 1
17: S1[k]← S2[i]
18: F [k]← F2[i]
19: j ← j + 1
20: end if

21: end while

22: while i < length[S1] do
23: k ← k + 1
24: S[k]← S1[i]
25: F [k]← F1[i]
26: i← i+ 1
27: end while

28: while j < length[S2] do
29: k ← k + 1
30: S[k]← S2[i]
31: F [k]← F2[i]
32: j ← j + 1
33: end while

34: return (S, F)

Given the delta changes ∆1,2 between V1 and V2 and the delta changes ∆2,3 be-

tween V2 and V3, the algorithm CALCULATE-TRANSITIVE-DELTA calculate the

delta changes between V1 and V3 in O(n + m) where n is the number of position

stamps in ∆1,2 and m the number of position stamps in ∆2,3. Based on the Property

3 in Lemma 2, we know that a position stamp s ∈ ∆1,2∪∆2,3 will not belong to either

∆1,3 if it exists in both arrays. For position stamps that exist in only one of the

arrays will have the same boolean values as in their original delta change arrays. The

CALCULATE-TRANSITIVE-DELTA algorithm takes four parameters. S1 and S2

are sorted arrays containing position stamps in ∆1,2 and ∆2,3 respectively. F1 and F2

32

are two boolean arrays. F1 stores the visibility information for the position stamps

in ∆1,2 while F2 stores visibility information for the position stamps in ∆2,3 Simi-

lar to APPLY-DELTA-TO-VIEW, the code in CALCULATE-TRANSITIVE-DELTA

merges the two sorted arrays into a single sorted array and drops all the elements

that exist in both arrays. In addition, the algorithm copies the values in both boolean

arrays into the new boolean array F .

3.3.4.3 Calculating Delta Changes between Two PPS Views Within A PPS View
Range

Algorithm 3 CALCULATE-DELTA-WITHIN-RANGE(val, col, row, u, v)

1: i← row[u − 1] + 1
2: j ← row[u] − row[u − 1]
3: S1 ← col[i, ...j]
4: F1 ← val[i, ...j]
5: for k = u+ 1→ v do

6: i← row[k − 1] + 1
7: j ← row[k] − row[k − 1]
8: S2 ← col[i, ...j]
9: F2 ← val[i, ...j]
10: (S1, F1)← CALCULATE-TRANSITIVE-DELTA(S1, F1, S2, F2)
11: end for

12: return (S1, F1)

We describe how to compute delta changes between any two views within a PPS

view range. Based on Property 3 in Lemma 2, we can calculate the delta changes

between any two views by the composition of 2 for all the delta changes between two

PPS views. The algorithm is described in CALCULATE-DELTA-WITHIN-RANGE.

Let n = j − i+ 1, the complexity of this algorithm is lower bound by

cost(CALCULATE-DELTA-WITHIN-RANGE)

= (n− 1)|∆i,i+1|+ (n− 2)|∆i+1,i+2|+ ...|∆j−1,j|

≥
(n− 1) ∗ n

2
min(|∆i,i+1|,∆i+1,i+2|, ...,∆j−1,j|)

= O(n2∆min)

Therefore, the complexity of CALCULATE-DELTA-WITHIN-RANGE will be pro-

portional to n2.

33

3.3.4.4 Calculating a PPS view

Given a PPS view range, we have two options to calculate a PPS view. We can

start with the full PPS view in the PPS view range and repeatedly apply the delta

changes by calling APPLY-DELTA-TO-VIEW to produce the requested PPS view.

The complexity of this approach is (n − 1)|V | + (n − 2)|∆i,i+1| + ... + |∆j−1,j|. An

alternative is to calculate the composite delta changes between the full PPS view

and the request PPS view by calling CALCULATE-DELTA-WITHIN-RANGE and

then call APPLY-DELTA-TO-VIEW to obtain the requested view. The complexity

of this approach is |V |+(n−1)|∆i,i+1|+ ...+ |∆j−1,j|. Since the size of V is normally

much larger than a delta change, the second option is much better. The algorithm

CALCULATE-VIEW takes five parameters. The V is the full PPS view in a PPS

view range. val, col, and row are the delta changes. u is the version identifier for the

requested PPS view.

Algorithm 4 CALCULATE-VIEW(V, val, col, row, u)

1: (S, F)← CALCULATE-DELTA-WITHIN-RANGE(val, col, row, 1, u)
2: return APPLY-DELTA-TO-VIEW(V , S)

3.3.4.5 Calculating Delta Changes between Any Two PPS Views

To calculate the delta changes between any two PPS views, we first check whether

the two views are within the same PPS view range based on the pivot array. The

BINARY-SEARCH function takes an integer array and a search key and returns the

index of the key that is largest among all the keys smaller than the search key. If

the answer is yes (line 3), we can call CALCULATE-DELTA-WITHIN-RANGE to

get the result. Otherwise, we use CALCULATE-VIEW to obtain the two PPS views

first and then calculate their delta changes by CALCULATE-TRANSITIVE-DELTA.

34

Algorithm 5 CALCULATE-DELTA(R, p, u, v)

1: i← BINARY-SEARCH(R.pivot, u)
2: j ← BINARY-SEARCH(R.pivot, v)
3: if i=j then
4: return

5: CALCULATE-DELTA-WITHIN-RANGE(R.range[i].val, R.range[i].col, R.range[i].row, u, v)
6: else

7: V1 ← CALCULATE-VIEW(R.range[i].V, u)
8: V2 ← CALCULATE-VIEW(R.range[j].V, v)
9: F1 ← allocate a boolean array with size length[V1]
10: F2 ← allocate a boolean array with size length[V2]
11: for k = 1→ length(V1) do
12: F1[k]← FALSE
13: end for

14: for k = 1→ length(V2) do
15: F2[k]← TRUE
16: end for

17: return CALCULATE-TRANSITIVE-DELTA(V1, F1, V2, F2)
18: end if

Given two PPS views V1 and V2, based on the definition of 2, we can write them as:

V1 = V02(V1, ∅)

V2 = V02(V2, ∅)

where V0 is an empty PPS view. Based on Property 2 in Lemma 2, we have V0 =

V12(∅, V1). Then we can calculate the delta changes between V1 and V2 based on

Property 3 in Lemma 2. The algorithm CALCULATE-DELTA takes three parame-

ters. R is a PPS view range. We use R.pivot to denote its pivot array and R.range

to denote its PPS view range array. u and v are version identifiers for the two PPS

views.

3.4 Summary

In this chapter, we introduce partial persistent sequences, the partially persistent form

of the sequence data structure. Conceptually, a PPS consists of a list of items indexed

by rational numbers, called position stamps. PPSs have two important features. First,

items are never removed from the data structure. Deleted items are only marked

invisible to editing applications. By keeping necessary timestamp information for the

35

items, we are able to access the revision history of a document at any time. Second,

PPSs create unique, persistent, and ordered identifiers for all the items. These three

properties make it easy to track changes of items as documents get modified. In order

to balance the tradeoff between disk space usage and access time for previous versions,

we design a hybrid approach to represent and access the revision history of documents

based on PPSs. In the hybrid approach, each version of a document is represented by

the position stamps of the containing items. We only maintain the full list of position

stamps for a few versions at different points of the revision history. For versions

between these points, only their delta changes are maintained. In addition, we define

a delta-change operator to operate over position stamps in different versions. This

delta-change operator has several important properties, which makes it possible to

access the revision history of documents by using the classical set operators. Based

on the delta-change operator, we design efficient algorithms to reconstruct a version

at any time as well as computing the delta changes between any two versions.

36

CHAPTER IV

DATA CONSISTENCY CONTROL IN REAL-TIME

COLLABORATIVE TEXT DOCUMENT EDITING

SYSTEMS

4.1 Motivation

With the technological advance in collaborative editing tools, more and more docu-

ments are co-authored. We have observed a proliferation of collaboration tools in-

cluding Gobby [2], Google Docs [15], SubEthaEdit [8], and Coword [133]. To provide

quick response time for the edits of local users and timely updates for the edits of

remote users, most collaborative tools adopt the architecture that a shared document

is replicated at multiple sites connected by communication networks. The user at

each site can update his/her local replica by insertions and deletions anytime and

anywhere. Local edits are executed immediately for quick response time. The un-

derlying editing system is responsible for view synchronization among all replicas by

propagating local updates (i.e. delta changes) to other sites either through a dedi-

cated central server [15] or in a peer-to-peer fashion [133]. One site acts as a server

that manages user membership in the editing session and keeps the document durable

for future access. To recover from damaging edits, the server site also maintains the

editing history as a sequence of revisions. A collaborative editing example is shown

in Figure 7. Three users work on a shared document with initial content “abcd”. The

vertical lines represent the elapse of time. Circles represent locally generated oper-

ations, which are executed immediately. Arrows represent the propagation of local

operations to other sites. In this scenario, user1 inserts ‘e’ at offset 0. Simultaneously

user2 inserts ‘f ’ at offset 2. After executing o1 and o2’s updates, user3’s document

37

replica is modified to “eabfcd”. Then o3 deletes ‘c’ at offset 4. In this example, the

three operations are executed in different orders at the three sites. Communication

between users must be carefully coordinated due to concurrent editing conflicts.

o1

site1 site2 site3

o3

o2

abcd abcdabcd

o1: insert ‘e’ at offset 0

o2: insert ‘f’ at offset 2

o3: delete ‘c’ at offset 4

Figure 7: A real-time collaborative editing scenario

The requirement of maintaining data consistency in collaborative editing scenarios

has been well-studied in the literature. Several consistency models have been pro-

posed [57, 87, 98, 113]. Essentially, they require the following two properties: 1) all

document replicas eventually converge to the same state; 2) execution of editing op-

erations conforms to the happen-before precedent order defined by Lamport’s Clock

Condition [82]. These earlier consistency models can be unnecessarily restricted in

editing scenarios in which users want to edit different parts of the document without

interference and synchronize only when they edits the same area. For example, two

accountants work together on a financial report for different departments. There is

no overlap between their edits when they work on different departments. The second

issue we address in this chapter is how to relax the current consistency models and

make it suitable for the targeted scenarios. Our contributions in this chapter are

summarized below:

• Proposal of a relaxed data consistency model. Our data consistency model

has two properties: eventual consistency and data-dependency precedent order

preservation. Concretely, a data dependency is defined on a pair of operations if

they modify overlapped or contiguous characters. Edits happening on different

parts of a document are not data-dependency related and can be executed

38

concurrently without synchronization. The second property is more relaxed

than the property of happen-before precedent order preservation. Therefore,

we expect that it can be enforced more efficiently. We will explain how we use

the PPS data structure to track data-dependencies between editing operations

to guarantee the relaxed data consistency model.

• An experimental evaluation on performance of PPSs in terms of both disk space

consumption and access time for document update and retrieval. We choose a

Wikipedia data dump [5] as our experimental data set to generate real world

collaborative editing traces. Experimental results show that PPSs can be up-

dated within several seconds for thousands of edits and kilobytes of charac-

ters. We also compare the disk space consumption of PPSs with two kinds of

content management systems to store documents and their corresponding revi-

sions. The first system stores revisions of documents as individual files with-

out compressing overlapped content between consecutive revisions. The second

system is RCS [117], which only stores delta differences between consecutive

revisions. Our experimental result shows that our PPS-based collaborative sys-

tem achieves a compression ratio much closer to RCS as compared to the first

system.

Roadmap. In the rest of the chapter, we first define a data consistency model

based on the PPS data structure and describe its corresponding synchronization strat-

egy in Section 4.2. We then give technical details for a prototype implementation of

a collaborative editor in Section 4.3. Experimental results are presented in Section

4.4.

39

4.2 DDP Consistency Model and View Synchronization Strat-
egy

4.2.1 DDP Consistency Model

A data consistency model defines correctness criteria in collaborative editing sys-

tems (CESs). We propose a data-dependency preservation (DDP) consistency model

consisting of two properties:

• convergence property : it states that the replicas of a shared document converge

to the same logical view after executing all updates if no new update arrives, and

if all nodes are connected. The resulting view contains all generated updates.

• data-dependency precedence preservation property : it states that if one operation

oj data-depends on oi, then oi should be executed before oj at all the sites. We

say oj data-depends on oi, denoted as oi → oj , if

– oj deletes the character inserted by oi.

– oj inserts a character contiguous to the character inserted by oi.

The convergence property requires that all document replicas converge to the

same value. This is different from semantic consistency, which demands that the

converged value is also meaningful in the application context [53]. Semantic consis-

tency requires domain specific knowledge, which is hard to verify by relying on pure

system approaches. An example is two users trying to fix a grammar error in the

sentence “There should be student” at the same time [113]. One inserts ‘a’ after “be”

while the other inserts a ‘s’ after “student”. After the modification, the sentence

becomes “There should be a students”, which is not semantically correct. Current

CESs enforces converged views and leave semantic consistency to the interpretation

of end users.

The data-dependency precedence preservation property guarantees that editing

operations are executed within their surrounding context. For example, if a user

40

writes “a day”, then inserts a “nice” between these two words, he expects the execu-

tion of the insertion for the phrase “a day” is executed first, the insertion for the word

“nice” second. Here the phrase “a day” is the context for the word “nice”. Another

example is if the user inserts a word first, then deletes it, he also expects the execution

of the insertion first and the deletion second at all the sites. Editing operations not

data-dependency related are allowed to be executed in any order. Therefore, users

working on different portions of the document can collaborate efficiently without any

interference. In the next section, we will precisely define the data-dependency in

terms of position stamps.

4.2.2 View Synchronization Strategy

A view synchronization strategy resolves editing conflicts when users simultaneously

edit the overlapped or contiguous characters. A CES is defined by a triple CES =<

U,D, Õ >, where

• U : a set of unique site identifiers. U = {ui, 1 ≤ i ≤ n, si ∈ N, n ∈ N}

• D: a set of PPSs. D = {psi, 1 ≤ i ≤ n, n = |U |}. psi is the PPS at ui.

• Ṽ : a set of parameterized editing operations. Ṽ = {ṽi, 1 ≤ i ≤ N}, where ṽi is

one of the kinds

– (ADD(si, si+1, x), uk): an ADD generated by uk.

– (HIDE(si), uk): a HIDE generated by uk.

An execution of a CES at a particular site is modeled by an editing history H =

ṽ1ṽ2...ṽn. We use op(H) to denote the set of operations in H and <H to denote their

ordering. Starting with the initial version (S0,M0), we use (SH ,MH) to denote the

version produced by history H .

Next we show that if every site executes the same set of operations in an order

that preserves their data-dependencies, the PPS at each site will converge to the same

41

value. We first define data-depends relationships, and then define data-dependency

preserving histories.

Definition 2. Data Depends Relation →. Given two operations ṽp and ṽq, we say ṽq

depends on ṽp, denoted as ṽp → ṽq, if one of the following conditions is satisfied:

1. ṽp = (ADD(si, si+1, x), um) and ṽq = (HIDE(sj), un). Let snew be the position

stamp generated for x by ṽp. We have snew = sj . In other words, ṽq maps the

character inserted by ṽp to φ.

2. ṽp = (ADD(si, si+1, x), um) and ṽq = (ADD(sj, sj+1, y), un). Let snew be the

position stamp generated for x by ṽp. We have either snew = sj or snew = sj+1.

In other words, ṽq inserts a character next to the one inserted by ṽp.

3. ∃ṽx, ṽp → ṽx and ṽx → ṽq.

Definition 3. Data-dependency-preserving History. A history H = ṽ1ṽ2...ṽn is said

to be data-dependency-preserving if ṽi → ṽj then ṽi <H ṽj.

Definition 4. Data-dependency Equivalence. Let H and H ′ be two histories. H and

H ′ are called data-dependency equivalent, denoted as H ≈d H
′, if the following holds:

1. op(H) = op(H ′), and

2. H and H ′ are data-dependency preserving.

Theorem 1. If H and H ′ are data-dependency equivalent, then starting with the

same initial empty PPS, we have SH = SH′ and MH = MH′.

Theorem 1 guarantees that if each site executes all updates (both local and remote)

in their data-dependency precedent order, the final versions of PPSs at each site will

converge to the same value. Since data dependencies between edits can be precisely

captured by position stamps encoded in editing operations, a view synchronization

strategy can easily check them and maintain their precedent orders when executing

edits at each user site.

42

4.3 System Implementation Based on PPSs

4.3.1 System Architecture Overview

previous_logical_view variable
previous_position_stamps variable

diff utility

insert, delete, ...

add, hide, ...

LEQ

REQ

to

JMS

server from

JMS

server

Logical view

Physical view

JTextArea buffer

h a v e a n i c e d a y

PPS

Mapping

Disk
local edit update

remote edit update

1
2

3

4

5 6

7

8

Figure 8: System Architecture for the PPS-based real-time collaborative document
editing system

We have prototyped a collaborative editor based on the PPS data structure. Figure 8

illustrates the system architecture for a local editor. It communicates with other sites

through a Java Message Service (JMS) server [1]. JMS is a messaging standard that

allows application to send and receive messages in a loosely coupled environment.

We use the publish/subscribe feature of the JMS sever in which each document is

published as a topic. Users involved in an editing session all subscribe to this topic.

Each site publishes their local edits to the JMS server, which will relay them to all

other sites.

The logical view of a document is implemented by the javax.swing package [4]. We

use an instance of JTextArea class to handle text display and screen scrolling. When

edits (i.e. insert and delete) occur, the JTextArea instance updates the document

content in its own buffer and refreshes the logical view instantly. This guarantees

quick response time for the local user. There are two queues: local edit queue (LEQ)

and remote edit queue (REQ). LEQ stores local edits to be sent to the JMS server.

REQ stores remote edits sent from the JMS server.

A background thread, called edit processing thread (EPT), is responsible for both

processing local edits and refreshing the logical view with remote edits. EPT runs at

43

a configurable interval or user specified moments, e.g. clicking a save button. Note

that EPT never blocks a local user from editing the logical view. The frequency of its

execution will only impact how fast local edits will be propagated to other user sites.

EPT maintains two variables in memory: previous logical view (prev lv) variable and

previous position stamps (prev ps) variable. The first variable stores the logical view

seen in its previous check. The second variable stores the position stamps of characters

in the logical view. During its execution, EPT first checks the occurrence of new local

edits since its last check. If new local edits are detected, it updates the underlying

PPS following the steps of (1)-(5) in Figure 8. These steps are to: 1) get the current

logical view from the JTextArea instance buffer; 2) compute the changes between the

previous logical view and the current logical view; 3) compute update operations on

the PPS based on the position stamps of the previous logical view; 4) put update

operations into LEQ; 5) update the PPS on disk. If no local edits are detected, it

proceeds to check REQ for the existence of any remote edits. If REQ is not empty,

it processes remote edits following the steps of (6)-(8) in Figure 8. These steps are

to: 1) de-queue remote edits from REQ and apply them to the PPS; 2) compute

the visible character sequence and their corresponding position stamps to update

prev lv and prev ps respectively. The new character sequence is the result of the

PIECE function defined in Section 3.2; 3) reset the logical view to the new character

sequence containing the recent remote updates. When EPT executes remote edits,

it also needs to enforce their execution order consistent to their data dependencies.

This can be easily done by a lookup in the PPS. If the position stamp an edit depends

on already exists, the edit will be executed as usual. Otherwise, it will be temporarily

put in a waiting queue, which will be checked again after executing new edits.

Special attention needs to be paid for processing remote edits. Even though the

procedure for remote updates runs very fast (it takes less than a second for a hundred

edits based on our experiment results in Section 4.4), there is a small chance that

44

the user issues new local edits during the time EPT processes remote edits. In this

situation, EPT would update the PPS in a way independent of the logical view, which

creates inconsistency between the logical view and the physical view. EPT handles

this situation in a simple way. Before it sets the logical view with the new character

sequence, it first checks the existence of new local edits. If no local edits are detected,

it resets the logical view as described in the above steps. If new local edits exist,

it gets the current logical view from the JTextArea buffer, merges it with the new

character sequence, and finally updates the logical view. The merge can be correctly

handled based on the values of prev lv and prev ps. We omit the detail here due to

its simplicity.

4.3.2 PPS Update

It is necessary that EPT finishes both local and remote updates within a short interval.

In some real-time collaborative editors, the interval can be as short as a few seconds.

Furthermore, it is important that the PPS data structure is stored economically on

disk, especially for the server site that maintains revisions of documents.

To meet the above requirements, the PPS data structure needs to support efficient

insertions and deletions. Instead, they An insertion adds new position stamps between

two existing ones. It looks up the PPS to locate the position where after insertion the

sorted order of the data structure is still maintained. A deletion hides some existing

position stamps. It starts with looking up the PPS to locate these position stamps

and then mark them invisible. The data structure also needs to support efficient

sequential retrieval for refreshing the logical view with remote updates.

Our first optimization technique is to represent PPSs in search tree data structures

with keys being position stamps and values being the characters. In the concrete

implementation, we use Berkeley DB [95] to store PPSs on disk with the access

method B+tree. Berkeley DB is an embeddable database providing high performance

45

for managing key/value data structures. The PPS data structure inherits the cost

of B+tree, which is O(tlogtn) for lookup, insertion and deletion of records, where t

is the upper bound on the number of keys in a B-tree node and n the number of

position stamps. We choose the default page size for a B-tree node, which is 4096

bytes. Each position stamp takes 4 bytes. If we assume that a node holds m 4-byte

search-key values and (m+ 1) 4-byte pointers, it can hold m ≤ 511 key-pointer pair

at maximum according to 4 ∗m+4 ∗ (m+1) ≤ 4096. If we further assume that each

node has occupancy halfway between the minimum and the maximum key-pointer

pair, it holds 384 key-pointer pairs on average. For a two-level B+-tree, it can hold

up to 3842 = 147, 456 position stamps. For a three-level B+tree, it can hold up

to 3843 = 56, 623, 104 position stamps, which is adequate for representing megabyte

documents. The level of B+-tree will be 2 ∼ 3 for most documents. Therefore,

updates to the PPS data structure can be implemented efficiently since the number

of disk I/O operations will be restricted to a small number.

Storing PPSs in B+trees itself is inadequate to achieve our goals. Storing all

position stamps individually would incur lots of small disk I/Os because a sequential

retrieval of all visible characters needs to access many small leaf nodes in the B+tree.

Furthermore, in our implementation, a position stamp is a 4-byte integer. We use

all 32 bits to represent the significant precision of a rational number with an implicit

integral part being 0. If we represent a document by storing all the position stamps

for the characters it contains, it would take four times larger disk space than storing

it in characters.

Our second optimization technique is to represent both PPSs and the position

stamps in the prevps variable in compact records with the help of a simple labeling

scheme. In our implementation, we group consecutively inserted or deleted characters

as one edit. Given two position stamp si and sj , if we insert m characters c1c2...cm

between them, the m characters will evenly distribute the space dij = sj − si under

46

the condition of dij ≥ (m + 1). (We address in Section 4.3.4 when the condition

is not satisfied.). Based on this labeling scheme, the m characters will be assigned

position stamps si + gap, si + 2 ∗ gap, si + m ∗ gap respectively, where gap =
dij
m+1

.

Instead of maintaining each of them individually, we represent them in a compact

record < si + gap, gap,m >, where si + gap is the position stamp of the left-most

character, gap the distance between consecutive characters, and m the length of the

character sequence. Since each field in the record is a 4-byte integer, we only need

3*4 = 12 bytes to represent the position stamps of m characters. Correspondingly,

we will insert only one entry into the B+tree with the key being si + gap and the

value being c1c2...cm. This compact representation helps save disk space and speed

up the update and lookup performance because it processes position stamps in batch.

The compact representation needs to consider situations when old records are

updated. For example, a user inserts characters x1x2...xu into the above m characters

or deletes parts of them. In this case, we need to split the old record into sub-records.

Let us assume that x1x2...xu is inserted after ck. The record < si + gap, gap,m > is

split into two records as < si+gap, gap, k > and < si+(k+1)∗gap, gap,m−k >. For

the character sequence c1c2...ckx1x2...xuck+1...cm, its position stamps are represented

as < si+gap, gap, k >, < si+k∗gap+gap1, gap1, u >, and < si+(k+1)∗gap, gap,m−

k >, where gap1 =
gap

u+1
. Correspondingly, in the PPS the entry < si+gap, c1c2...cm >

is updated to < si + gap, c1c2...ck > and < si + (k + 1) ∗ gap, ck+1c2...cm >. Figure 9

illustrates the state of prevps and the PPS after the insertion. Processing of deletes

is similar.

4.3.3 Global Uniqueness of Position Stamps

Based on the way we assign position stamps for newly added characters, each of them

will obtain a unique position stamp unless several users simultaneously modify the

same position.

47

si+gap gap k... si+k*gap+gap1 gap1 u si+(k+1)*gap gap m-k ...

...

...

c1c2...ckm

...
...

...

... ...

...

...

...

... si+gap si+k*gap+gap1

x1x2...xuu

si+(k+1)*gap

ck+1ck+2...cmm-k

...

compact records for representing a sequence of position stamps

PPS

record1 record2 record3

Figure 9: An example of splitting a compact record after an insert

Example 1. Given a PPS with P0 = {0, 1} and M0 = {0 7→ φ, 1 7→ φ} at two sites,

site1 executes ADD(0, 1, a), while site2 executes ADD(0, 1, b) simultaneously. If we

use dyadic fraction labeling scheme by halving the interval, both ‘a’ and ‘b’ would be

assigned 0.5.

The global uniqueness of position stamps can be resumed if we allocate the dis-

tance between two position stamps for each user in advance. Suppose n sites are

involved in an editing session. Given the distance di,i+1 between two position stamps

si and si+1, it is pre-divided into n sub-ranges (si, si+
di,i+1

n
), (si +

di,i+1

n
, si +

2∗di,i+1

n
),

..., (si +
(n−1)∗di,i+1

n
, sj). For site sitep, it assigns new position stamps for its local

characters within the range of (si +
(p−1)∗di,i+1

n
, si +

p∗di,i+1

n
). Taking the above ex-

ample, site1 will use the space in the range (0, 0.5). site2 will use the space in the

range (0.5, 1). As a result, the position stamps for ‘a’ and ‘b’ become 0.25 and 0.75

respectively. This approach essentially uses site identifier to break ties for simultane-

ous edits happening at the same location. This modified labeling scheme is the one

we are currently considering. There may be other options as well. In the rest of the

paper, we assume the global uniqueness of position stamps without repeating this

property.

4.3.4 PPS Re-initialization

Since users can insert infinite length of character sequence between two characters,

a PPS can run out of precision bits if its position stamps are represented in native

48

machine word. It is established that an immutable labeling scheme, in which iden-

tifiers never change over document modification, will take Ω(N) bits per identifier,

where N is the document length [40]. Such long identifiers incur high computation

cost and disk space consumption, which is unacceptable in collaborative editing sce-

narios. Many labeling schemes [109] handle this problem by reassigning identifiers

when running out of precision bits. The identifiers assigned for the same item will be

associated with a unique and immutable identifier. We employ the similar idea for

the PPS data structure through a re-initialization procedure.

Essentially, there are two sets of identifiers. The first set contains the position

stamps that help us support efficient document update and retrieval and maintain the

structural information for characters. The second set contains immutable identifiers

that help us associate position stamps for the same character. In a distributed setting,

we can use site id and an incremental counter at each site as a pair to create a

unique identifier. Each time a character is inserted, it is assigned both a position

stamp and an immutable identifier. When re-initialization procedure happens, it first

reassigns position stamps for all the characters that have not been deleted from the

logical view. The visible characters will re-distribute the space in the range of [0, 1].

The procedure also maintains the mappings both the pre-initialization position and

after-initialization position stamp of a character with its immutable identifier. The

mapping table in Figure 8 stores this information. Immutable identifiers are used to

associate meta-information. When users ask queries on editing histories, we first use

the position stamps of a document to find their immutable identifiers and finally look

up their meta-information.

The re-initialization procedure can be triggered at several moments: 1) when

the editing session is over; 2) when no editing is detected; 3) when running out of

precision bits. The handling of case 1) can be simply handled by the server site. The

practicality of start re-initialization in case 2) and case 3) is based on three conditions.

49

First, quiescent moments are common in editing scenarios. This is confirmed by

various empirical studies [94, 115] showing that collaborative editing scenarios involve

a large amount of time for coordination, discussion, and thoughts organization, and

it normally happens within a small group of people. The second condition is that

re-initialization procedure completes quickly. The third condition is that the re-

initialization procedure does not occur frequently in an editing session, and therefore

it is likely for the system to detect a quiescent moment before a PPS runs out of

precision bits.

4.4 Experiments

4.4.1 Experiment Setup

Hardware configuration All experiments are conducted on a 32-bit GNU/Linux

machine with Intel Pentium 4 CPU 2.80GHz and 1GB RAM.

Data set To precisely evaluate the performance of PPSs at various metrics, it

requires the availability of real-world collaborative editing traces because the mea-

surements will be impacted by many factors such as the distribution of edit locations

and the length of edits. However, we are unaware of any published editing traces.

Alternatively, we construct realistic traces by using real-world co-authored documents

and their revision histories. The content of a co-authored document is contributed

by many users at different points in time. A new revision is created when a user save

his edits. With its full revision history, we can compute delta changes between con-

secutive revisions and replay these changes in their chronological order. We expect

the editing traces are able to approximate user editing patterns in reality. We choose

co-authored documents from Wikipedia as our data source. All Wikipedia web pages

and their revision histories can be downloaded from their website [5]. We used the

data dump taken snapshot on March 14, 2008. There are around 200 thousands doc-

uments. We do a simple random sampling on a subset of the documents to analyze

50

their editing traces. Their statistics are shown in Table 1.

Table 1: Statistics of sampled Wikipedia data set for evaluating the
performance of the PPS-based real-time collaborative editor

number of documents 1,941
average document size (byte) 8,536
number of revisions 273,587
average revisions per document 141
total number of edits 2,005,468
total edit lengtha 178,339,776
average edits per revision 7
average length per edit 10
a edit length means the number of characters modified by an edit.

4.4.2 Disk Space Consumption

In this experiment, we measure the disk space consumption of representing documents

and their revision histories in the PPS data structure. We compare PPS with two

other systems. The first system, named “File”, represents document revisions as

individual files disregarding knowledge of any overlapped content. This gives us a

measure of the total amount of disk space to manage all document revisions. The

other is to represent document revisions in RCS [117]. RCS is a content management

system that only stores the delta difference between consecutive revisions to compress

data. For each document, we calculate the total number of revisions and the amount

of disk space taken by each systems.

Figure 10 shows the result. The x-axis represents the documents with different

number of revisions. Each line represents the disk space consumption for a particular

system. A point is the disk space used (y-axis) to store a document with a particular

number of revisions (x-axis) at that system. It can be seen that “File” system uses

several times larger disk space than the two other systems because it does not con-

sider the overlapped content between consecutive revisions. The ratio becomes larger

as the number of revision increases. This is because the contents of documents have

the tendency of getting stabilized after certain amount of revisions. RCS achieves a

51

0 2000 4000 6000 8000 10000
0

200

400

600

800

document with different length of revision history

S
iz

e
[m

eg
ab

yt
es

]

File
RCS
PPS

Figure 10: Total disk space consumption
for the sampled data set

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

Number of edits

R
es

po
ns

e
tim

e
[s

ec
on

ds
]

Figure 11: Updating cost from logical
view to physical view for a given num-
ber of edits

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

Edit length [bytes]

R
es

po
ns

e
tim

e
[s

ec
on

ds
]

Figure 12: Updating cost from logical
view to physical view for edits at different
length

0 50,000 100,000 150,000 200,000
50

55

60

65

70

75

80

85

Length of PPS

R
es

po
ns

e
tim

e
[m

ill
is

ec
on

d]

Figure 13: Updating cost from physical
view to logical view for PPSs at different
length

higher compression ratio because the percentage of overlapped content between con-

secutive revisions becomes higher. PPS can also benefit from the increased percentage

in overlapped content because a majority of edits will be minor or small refining edits

and decrease the chance of doing re-initialization. Overall, PPS achieves a compres-

sion ratio close to that of RCS with the additional benefit of persistently identifying

characters across different revisions.

52

4.4.3 Updating Cost From Logical View to Physical View

Local edits update a physical view, represented in a PPS, based on a user’ edits at the

logical view. We use two experiments to measure the performance of this updating

cost. The first experiment measures the total amount of time to process a given

number of edits (both insert and delete). The total amount of time includes three

parts: 1) the time to compare the difference between two consecutive revisions. We

use the diff utility [3], which implements Myer’s diff algorithm [91]; 2) the time to

compute update operations on the PPS; and 3) the time to update the PPS on disk.

We collect the experiment data through two steps.

• For a given document, we get all its revisions from our data set and use them to

update the PPS in the chronological order of the revisions. For each revision,

we measure the number of edits between the current revision and the previous

revision and how much time it takes to update its PPS.

• We repeat the first step for all the documents in our sampled data set.

The experiment result is shown in Figure 11. The total processing time increases

almost linearly as the number of edits increase. This is because a larger number

of edits result in more modifications to their underlying PPSs and also cause more

records to be split. It can be seen that the mapping cost is small. Even for hundreds

of edits, it takes less than a few second to complete. The processing time is more

than sufficient to cope with the speed of human edits.

The first experiment does not consider the factor of edit length. For an insertion,

the edit length means the length of inserted character sequence. For a deletion, the

edit length means the length of deleted character sequence. The higher the edit

length, the longer it will take to process the edit because it involves more I/O and

more record processing. The second experiment measures the total amount of time

to process edits at certain edit length. The experimental data is collected in a way

53

similar to the first experiment. The difference is in step 1. For each revision, we

measure the edit length of each insert or delete operation and sum them together to

calculate the total edit length for each revision update. Figure 12 shows the result.

Again the processing time is small. Even for edit length larger than a few kilobytes,

it takes around several second to finish. The small processing time on large edit

length is important, which means that the editor performs well in the situations that

users insert large segment of text through copy&paste or delete a big portion of the

document.

4.4.4 Updating Cost From Physical View to Logical View

At each user site, the EPT thread described in Section 4.3.1 periodically refreshes

the logical view with remote edits. During its execution, it needs to do a sequential

traversal of the PPS and concatenates all visible characters. We measure this updating

cost by evaluating total processing time for traversing a given length of PPS. The

length of a PPS is the number of position stamps it contains. The traversing cost

is equal to that of traversing all leaf nodes in its B+tree. The result is shown in

Figure 13. We can see that the updating cost is at around tens of milliseconds and

does not change much as the length of PPS increases. Based on our experiment

data, a typical PPS contains hundreds of thousands of position stamps, but has only

hundreds of key-point pairs in general in its B+tree due to the optimization technique

of compact records described in Section 4.3.2. Therefore, a large PPS can be traversed

very quickly. We also observe that the cost is dominated by disk seek time, not the

number of visited leaf nodes because the sizes of B+trees are small. That explains

why the cost does not change too much as the length of PPS increases.

4.4.5 PPS Scalability

In collaborative editing scenarios, scalability of PPSs does not raise a concern because

updating speed of users is inherently constrained by the users’ typing speed, which

54

on average is around 19 words per minute for composition [77]. The experiments

in Section 4.4.3 show that PPSs are by far adequate to process both local and

remote updates. However, this may not be the case for the server site in charge of

administrative role of an editing session. In realistic settings, we expect the existence

of a server site in charge of administrative roles of many collaborative editing sessions

running simultaneously. The server site will accept updates from different editing

sessions and apply them to their corresponding documents. It is therefore important

that the server site can scale up to large workloads. We prototype a text document

management system (TDMS) for the server site. TDMS uses a thread pool to process

simultaneous edits. Each edit is either an insertion or a deletion, updating one of the

co-authored documents. Based on the analysis of our data set in Section 4.4.1, the

length of an edit follows a zipf distribution. In other words, the majority of edits

modify a few characters. The distribution of edit length in our experiment is shown

in Table 2. For each insertion, we use the dummy text generated from Lorem Ipsum

[7] to construct a character sequence at a given length. We also implement a workload

generator that sends update requests at a configurable rate (i.e. number of requests

per second).

Table 2: Edit length distribution in the sampled Wikipedia data set

edit length [byte] percentage edit length [byte] percentage
[1, 10] 53% [11, 50] 22%
[51, 200] 12.8 % [201, 1000] 6.6%
[1001, 5000] 3.4% [5001, 10000] 0.4%
[10001, 20000] 0.05%

We evaluate the throughput of PPSs by simulation. We configure TDMS to main-

tain 500 documents simultaneously. Each document starts with an initial size of one

kilobytes. The simulation runs in cycles. In each cycle, the workload generator sends

edits at a gradually increasing rate. We run the workload generator for two minutes

and collect the processing time of the requests in the second minute to compute the

55

0 50 100 150 200 250 300
0

50

100

150

Rate [#]
T

hr
ou

gh
pu

t [
ed

its
/s

]

Figure 14: Throughput measure at the server site in the PPS-based real-time collab-
orative editing system

throughput at a given rate. Figure 14 is the measurement of throughput. TDMS

gets saturated at around 125 edits/second. The bottleneck of the system is disk I/O.

Berkeley DB stores its tables as flat files on disk. In our implementation, the PPS

of each document is stored as an individual file on disk. Berkeley DB has a limited

cache size. A higher frequency of workload causes more pages flushed back to disk,

which causes more disk head movement. Currently, we use the default cache size at

256KB per PPS. If we assume that all 500 editing sessions are active and update the

documents at similar frequencies, it can accommodate the update frequency at every

4 = 500
125

seconds per editing session, which should be fast enough to handle many

realistic settings.

4.4.6 PPS Re-initialization

A PPS needs to be re-initialized for recycling position stamps. There are two major

steps: 1) obtain the global unique identifiers of all the characters from disk; 2) reassign

new position stamps for all the visible characters; 3) store the mapping between their

global unique identifiers and their new position stamps on disk. The experiments in

this section evaluate the cost of this procedure. To collect the data, we follow similar

steps in Section 4.4.3. Each time when a re-initialization procedure happens, we

56

0 10 20 30 40 50 60
0

2

4

6

8

Document size [kilobytes]
R

e−
ba

la
nc

in
g

tim
e

[s
ec

on
ds

]

Figure 15: Re-initialization cost for the PPSs

measure the size of the PPS and the total amount of time for finishing the procedure.

The result is shown in Figure 15. The re-initialization cost is linear to the length

of documents. This is not a problem for documents that are smaller than tens of

kilobytes because it takes a few seconds to finish the procedure. However, for large

documents, better techniques are required to shorten the re-initialization time, which

will be the direction of future work.

4.5 Summary

In this chapter, we address the problem of how to use PPSs to enforce data consistency

in real-time collaborative editing systems. A PPS represents a document by creating

an order-based index structure for all the characters occurring in its entire editing

history. We apply two techniques to make a PPS both disk-space economic and

computation efficient. The first technique is to represent the PPS data structure in

a B+tree to support efficient random update and sequential retrieval. The second

technique is to represent PPSs and their revision histories in compact records. We

choose to represent position stamps in native machine words because long position

identifiers can have a big impact on system performance. When a PPS runs out of

precision bits for newly inserted characters, we re-initialize the whole data structure

and reassign position stamps for characters that have not been deleted by users. The

57

re-initialization procedure can happen at several moments such as the end of editing

session or system quiescent time. We conduct a set of experiments to demonstrate

the performance of PPSs and the practicality of doing PPS re-initialization based on

real-world collaborative editing traces from Wikipedia.

58

CHAPTER V

MODELING AND IMPLEMENTING COLLABORATIVE

TEXT DOCUMENT EDITING SYSTEMS WITH

TRANSACTIONAL TECHNIQUES

5.1 Motivation

Collaborative editing systems support geographically distributed users to work on

a shared document. They are responsible for coordinating edits of users to guar-

antee data consistency because users may simultaneously update a replica of the

shared documents anywhere and anytime. These systems in general have specialized

implementations and only cover a subset of interactions found in collaborative en-

vironments. While it is tempting to develop new algorithms and infrastructures to

cover the missing points in the full spectrum of collaborations, any such work will

lead to ad hoc implementations and substantial investment of resources.

We have developed a transactional framework to model and implement the whole

spectrum of collaborations. This new framework has two advantages. First, it pro-

vides primitives to program common editing actions (e.g., insert and delete) as well

as to specify permissible interactions between users (e.g., cancel the effect of another

user). These primitives allow us to conceptually specify different types of collab-

orations and reason about their behaviors in terms of granularity of sharing, time

to release of individual edits to public, notification of editing conflicts, and conflict

reconciliation strategy. The generality of our framework is tested by its capability of

specifying three types of collaborative editing systems RCS [117], MediaWiki [17], and

Google Docs [15]. We further test its generality by using this framework to specify

the behavior of a new type of collaboration that is derived by combining features of

59

Google Docs and the approach of acceptance test in handling conflict reconciliation

in replicated database management systems (DBMS) [64].

In the second advantage, the framework can be entirely layered on the top of a

modern database management system to reuse its transaction processing capabilities

for data consistency control in both centralized and replicated editing systems. In

centralized collaborative systems, a document is stored at a central server. Users take

turns to modify the document [58]. In more recent collaborative editing systems,

a document is replicated at geographically distributed sites. Each site is used by

one user to modify its local copy. Users can simultaneously modify the document

and read the changes of others. Due to network latency, users may modify different

versions of the shared document. An important role of replicated editing systems is to

bring all divergent document copies into a convergent and consistent state [57, 113].

Though successful, these early techniques require specialized implementations and

only handle a subset of collaborations. Our framework supports the entire spectrum

of collaborations by reusing the built-in database techniques in concurrency control,

crash recovery, and automatic replica synchronization.

Within our framework, we use PPSs to represent documents and manage them

within a database management system. With the help of PPSs, we take the first ini-

tiative to define editing conflicts and establish a correctness criterion for collaborative

editing systems based on the theory of serializability and the approach of acceptance

test for data reconciliation. We also explain the usage of PPSs to support document

processing and their implementation issues. We demonstrate the practicality of our

framework by building it over Oracle Berkeley DB High Availability [18], a replicated

transactional data management system.

In the rest of this chapter, we start with an overview of existing collaborative

systems and discuss their potential improvements in Section 5.2. We describe the

programming interfaces of the proposed framework and its synchronization protocol

60

for data consistency guarantees in Section 5.3. In Section 5.4, we illustrate the flexibil-

ity of our framework by modeling a variety of collaborative models. Then we explain

the application of PPSs to data consistency guarantees in Section 5.5. After that, we

describe a prototype implementation over Oracle Berkeley DB High Availability in

Section 5.6. The related work is discussed in Section 2.2.

5.2 Overview of Collaborative Document Editing Systems

We observe a wide spectrum of collaborative editing systems. At one end of the

spectrum are version control systems that support only restricted collaboration [43].

At the other end of the spectrum are those “liberal” collaborative editing systems that

support highly interactive collaboration [57]. In this section, we first describe three

collaborative editing systems to give a brief coverage for the type of collaboration

available in practice in Section 5.2.1. For each system, we characterize it in terms

of granularity of sharing, time to release of individual edits to public, notification of

editing conflicts, and conflict reconciliation strategy. After that, we suggest potential

improvements to these systems in Section 5.2.2.

5.2.1 Existing Collaborative Editing Systems

Existing collaborative editing systems unanimously adopt the client-server architec-

ture. The server node holds a persistent copy of a shared document. Each client

node stores a copy of the shared document. A user at a client node updates the

shared document through the local copy. All updates are synchronized to other users

through the server node. Below, we describe three collaborative editing systems in

the order of their restrictiveness on collaboration.

RCS. It is a version control system. In RCS, a user modifies a document through an

explicit check-out step. The document can be checked out by multiple users. Editing

conflicts occur if a user attempts to check in a new version whose modifications are

61

based on a stale version. The granularity of sharing is the whole document. A user

releases her edits through an explicit check-in step. RCS uses a locking mechanism

to detect editing conflicts and notifies impacted users through diagnostic messages.

Even though traditionally being used to handle source code in software development,

RCS has been recently used to support wiki applications, e.g., Twiki [19].

MediaWiki. It supports fine-grained collaboration among a group of users who

simultaneously edit a shared document. Users edit different parts of a document

without interference. Editing conflicts occur if more than one user simultaneously

edits the same paragraph. A user releases her edits by manually clicking a save but-

ton. MediaWiki automatically merges users’ changes by diff3 [11], provided that

changes happened in different parts of the document. Otherwise, impacted users are

notified with diagnostic messages. MediaWiki is the underlying engine for the largest

online encyclopedia, Wikipedia [21].

Google Docs. It supports fine-grained collaboration among a group of users who

may simultaneously edit a shared document and at the same time read updates made

by other users. Editing conflict occurs if more than one user simultaneously updates

the same sentence. A user’s updates are automatically synchronized to other users

at a fixed time interval (about tens of seconds). Google Docs uses the differential-

synchronization algorithm [14] to automatically merge changes from different users.

The basic idea is similar to diff3, but in a streaming fashion. If an automatic merge

fails, Google Docs notifies impacted users through diagnostic messages.

In the rest of this section, we refer the collaboration type supported by RCS as

the check-in/checkout model and the collaboration type supported by MediaWiki the

block-exclusive model. Finally, we refer to the collaboration type supported by Google

62

Docs as the update-anywhere-anytime model.

5.2.2 Commentary of Existing Collaborative Editing Systems

We comment on existing systems from five aspects. We make it clear if an aspect is

only pertinent to certain types of collaborative editing systems. The aspect list is by

no means complete. Other aspects such as access control are not addressed in this

paper since they are orthogonal to the problem of data consistency.

Atomicity of grouped operations. There are many cases that a user wants to re-

lease a sequence of changes in an atomic step, e.g., a cut operation followed by a paste

operation. Current collaborative editing systems have already included or planned to

include this feature in some form of block edits that allow users to release her edits

in a batch. For example, the next release of Google Docs will enhance the current

keystroke-by-keystroke synchronization mode with a block-edit mode. However, the

block-edit mode is not atomic in the real sense in that it simply buffers a user’s edits

and sends them to other users in a batch. It is still possible that the buffered edits are

only partially executed at remote sites due to system crash or network intermittence.

Undo An undo operation allows a user to go back to a previously edited document

state. In a single-user setting, the implementation of undo can be done by logging

adequate information for the pre-image and post-image of a document transformed

by each editing operation. In a multi-user setting, two problems arise. First, the

choice of which operation to undo becomes ambiguous. When a user issues an undo,

it is unclear whether the user intends to undo the last operation or undo the last

operation received from other users. The problem becomes more difficult if the user

wants to undo a sequence of changes which may be interleaved with operations from

different users. Second, no standard techniques exist to evaluate and inform users of

63

the impact of undo. In some situations, an undo may produce dangling text that was

inserted into a paragraph which would disappear later on. In some other situations,

undo can lead to loss of data. We cannot emphasize more in a collaborative environ-

ment the importance of making undo predictable and recoverable. For example, in

Wikipedia, if a user replaces the current version of an article with one of its previous

versions, some edits between these two versions may get lost.

Infrastructure development The three collaborative editing systems described

previously differ a lot in the level of restrictiveness on collaboration. Therefore, it

is not surprising that each of them uses different implementation techniques. For

example, RCS uses a locking mechanism, while Google Docs uses operational trans-

formation [57] for data consistency guarantees. However, it is important to avoid

re-investing new resources each time a new type of collaboration comes out.

Automatic merging in a controlled manner. Collaborative editing systems that

fall at the update-anywhere-anytime end of the collaboration spectrum normally do

automatic merging of updates at best efforts. Even though this can minimize manual

reconciliation from users, automatic merging may produce unintended results which

may not get noticed immediately. It is therefore important for the system to be able

to limit the amount of inconsistency introduced during a merging procedure.

5.3 A Transactional Framework for collaborative editing

Systems

We describe a transactional framework for modeling and implementing collaborative

editing systems. Our framework is based on standard transaction services in database

management systems such as two-phase locking concurrency control, predicate lock-

ing, and write-ahead logging. This framework is applicable to documents consisting

64

of a sequence of data objects. These objects can be instantiated to suit the require-

ment of a particular application domain. For example, a data object can be a word

in a text document or be a XML element in a serialized XML document. Hence-

forth, we choose text documents to explain our ideas due to its commonality. But

the presented ideas and techniques are applicable to all kinds of documents that bear

sequential structures. We first describe the programming interfaces of our framework

in Section 5.3.1 and then describe the synchronization protocol for the replicas of a

shared document in Section 5.3.2.

5.3.1 Programming Interfaces

There are two sets of programming interfaces for implementing a certain type of

collaboration. The interfaces in the first set are used for interacting with a shared

document, as described below:

• Insert(pos, x): it inserts a new item ‘x’ at position pos.

• Delete(pos): it deletes the item at position pos.

• Read(posx, posy): it reads a range of text between the two items indexed at

posx and posy respectively.

Insert and Delete are standard editing operations. Sometimes we call them write

operation without differentiation. The Read operation is new since a user may not

explicitly tell the underlying collaborative editing system the dependent data items

of new changes. However, the knowledge of the data items in a read operation can be

obtained either automatically or manually. In an automatic approach, a collaborative

editing system either infers the dependent data items based on application-specific

knowledge or uses the standard technique implicit locking [92] to locate the area

where the user’s most recent editing activities took place. For example, in the check-

in/check-out model, the read set is the whole document. In the block-exclusive model,

65

the read set is the paragraph that contains the modified text. In the manual approach,

a user selects a block of text and marks them as being read through a Graphical User

Interface (GUI) menu entry.

The programming interfaces in the second set are used to instruct our framework

to take transaction-related actions, as described below:

• Release: it releases a user’s changes to other users since the last release point.

All the changes are bracketed within a transaction whose execution is guaran-

teed with the ACID properties.

• Save: it saves the current state of the document and returns with a save-point

identifier for later references. The Save operation triggers the execution of a

Release as well.

• SavePivot : it saves the current state of the document and returns with a pivot-

point identifier for later references. The SaveP ivot operation triggers the exe-

cution of a Release as well.

• Cancel : it cancels the last write operation (i.e., insert or delete) that has not

been released to other users.

• Revert : it changes the current state of the document to a state identified by

either a save-point or a pivot-point identifier.

A Release operation is useful in controlling the frequency of synchronization with

other users. For example, Google Docs may issue a Release command each time a

timeout event happens for starting the next round of synchronization with the server.

Both a Save and a SaveP ivot operation force the framework to save a persistent

state of the shared document. These persistent states serve as reference points for a

user to undo her changes. They are also useful to reduce the amount of work that a

user has to redo during a collaborative editing system failure or a system crash. The

66

difference is that SaveP ivot sends the framework an additional message that all edits

occurring before this point will not be undone by this user. Usually, Save is used to

commit intermediate edits while SaveP ivot is used to commit milestone edits.

Our framework explicitly differentiates two types of Undo operations. A Cancel

undoes the last operation by the local user. Since it has not been released to other

users, the last operation can be simply removed from the messaging sending queue of

the client. However, a Revert operation requires synchronizations with other users

since it may undo the changes on which other users’ edits depend. The save-points

and pivot-points created by a user are globally visible, which means a user can bring

the state of a shared document back to a point saved by other users as well. However,

any save-point before the last pivot-point of a user becomes unavailable.

5.3.2 Synchronization Protocol Between Client and Server

Our framework uses an optimistic synchronization protocol based on the two-tier

replication scheme in [64]. The server hosts the master copy of a shared document.

Each client node hosts a copy of the shared document. The master copy reflects the

most recent committed updates from all the users. The client copy may be the latest

or an old version of the master copy. All transactions committed at the client nodes

are tentative. They are sent to the server and executed under single-copy serializability

in the order in which they are committed at the client node. A tentative transaction

becomes a base transaction if it is committed at the server node and its effects are

integrated into the master copy. The write set of all base transactions are sent to

the client nodes and update their replicas in the order they are committed. Since

the server node determines a global serializable order for all tentative transactions,

document replicas converge to the same state and each of them has a consistent view

of the document state.

67

Regarding the choice of concurrency control algorithm for enforcing the single-

copy serializability at the server node, we choose the approach of acceptance criterion

test in [64] instead of multiversion concurrency control algorithms. Under the two-

tier replication scheme, it is possible for a tentative transaction to see a very stale

version of the shared document. For example, a user may exit an editing session,

edit offline, and re-join days later. During the user’s absence, the shared document

has gone through many rounds of revisions and many tentative transactions have

already committed. To determine serializability for the tentative transactions the user

committed offline, a multi-version scheme needs to check both active and committed

transactions. The examination cannot simply be done by usual lock conflict check

because these committed transactions no longer hold their locks.

The idea of acceptance criterion test is to check whether the result produced by a

tentative transaction based on the version at the server node is within an acceptable

threshold. We take the first initiative to define such a criterion for collaborative

editing systems. In our acceptance criterion, a tentative transaction is considered

to be acceptable if the difference between the set of data items that it reads at the

client node and the set of data items that it reads at the server node is within a

configurable threshold θ. We assume that a write operation is always proceeded by a

read operation. There are no blind writes. Therefore, we can use the read set of data

items to quantify the divergence between these two versions. A quantitative definition

of Acceptθ is given in Section 5.5.1 after introducing the PPS data structure.

We use Acceptθ to mean the acceptance criterion is passed if the difference is

within θ. Accept0 means that a tentative transaction must read exactly the same set

of data items at the server node. Accept∞ means a tentative transaction can tolerate

arbitrary divergence between the data items read at the client node and those at the

server node. Of course, there are cases that a write operation totally lost its context

and cannot be applied at all. For example, a delete operation attempts to remove

68

an already deleted item. We will come to this issue in Section 5.5 and show that all

write operations can be precisely defined with the help of PPSs.

Read(the whole document)

…

Insert

Delete

…

...

Delete

...

…

Release

(a)

Read(bounding block)

Insert

delete

…

Release

Read(bounding block)

Delete

…

Release

...

(b)

Read(two neighboring characters)

Insert

Release

…

...

Read(to-be-deleted character)

Delete

Release

…

...

(c)

Read(block1)

Read(block2)

…

Insert

Delete

Release

…

Read(block3)

Insert

Release

(d)

Figure 16: Examples of synthesized code. a)Check-in/check-out; b)Block-exclusive;
c)Update-anywhere-anytime; d)Read-from

5.4 Specifying Collaborative Editing Systems

In this section, we demonstrate the usage of our framework in modeling three editing

models described in Section 5.2.1. To demonstrate the flexibility of our framework,

the modeling of an artificial editing model is also described.

Check-in/Check-out Model. In this model, a user modifies a shared document

through a sequence of editing operations and releases new changes through a check-in

step. We synthesize this model as in Figure 16a. The acceptance criterion of the

server node is configured to be Accept0. Therefore, if someone modifies the shared

document and creates a new version, this transaction will be aborted. In the synthe-

sized code, there is only one Release operation, which is the last operation within

an editing session. In a standard check-in/check-out model, a user may save multiple

versions before issuing the Release command. These intermediate versions are not

visible to other users. They are different from those versions created through Save

and SaveP ivot operations. We assume that these intermediate versions are created

in a private space of the user and are handled completely by a standard text editor.

69

Block-exclusive Model In this model, a user’s edits are sent to the server either

at a fixed time interval or through a manual click of a “send” button. Both events

cause the execution of a Release command. Users do not interfere unless they work

on the same part of a document. We synthesize this model as in Figure 16b. A Read

operation is followed by a sequence of write operations that updated the text within

the range of the Read operation. A bounding block consists of the read text. Its

content is application specific. For example, in MediaWiki it is the paragraph where

these write operations took place. In Google Docs, it is the sentence. The acceptance

criterion is set to be Accept0.

Update-anywhere-anytime Model. In this model, users update the shared doc-

ument without any restriction. All editing conflicts are automatically reconciled. We

synthesize this model as in Figure 16c. Every write operation is followed by a Release

to synchronize the document replica at the frequency of every keystroke. Each trans-

action is essentially reduced to a read operation followed by a write operation. For an

Insert, its read set contains only the two characters neighboring the insertion point.

For a Delete, its read set is exactly the character to be deleted. The acceptance cri-

terion is configured to be Accept∞. Since θ is set to be ∞, the framework essentially

enforces read-committed isolation [123] because each tentative transaction only reads

the data written by committed transactions based on our synchronization protocol

described in Section 5.3.2. Under read-committed isolation, transactions are suscep-

tible to lost updates and phantom problems. More specifically, it is possible that

two users simultaneously delete the same data item or insert new items at the same

location. In Section 5.5.1, we explain in detail how our framework is able to produce

the same result as that of operational transformation when θ = ∞. Since all docu-

ment replicas are updated in a global serializable order and all tentative transactions

are applied in the order they committed at the client nodes, both the convergence

property and the causality preservation property are preserved.

70

Read-from Model. We introduce a new editing model to demonstrate the flexi-

bility of our transactional framework. In this model, a user can select blocks of text

by the mouse in different parts of a shared document and notify the system that the

follow-up changes depend on them. The user releases new changes at a fixed time

interval or the click of a “send” button. This model is synthesized as in Figure 16d.

When the server merges the user’s new edits, the user is willing to accept the result

if the text the user read is only slightly different from the original. In this case, the

θ is set to be a small positive integer. This model has two distinct features. First, a

user can monitor the changes in other parts of the document without blocking other

users from editing. Second, the model is able to quantify the discrepancy between

what a user has viewed and what is actually produced. This feature is useful because

it creates a smoother editing environment since the user will not be asked for manual

reconciliation if other users only did minor changes to the text such as grammar or

spelling corrections. Meanwhile, the user has the assurance of being notified for big

changes.

5.5 Implementing the Synchronization Protocol Based On
PPSs

Partial persistent sequence (PPS) is a data structure that always preserves the pre-

vious version of a sequence when it is modified, but only the latest version can be

modified [128]. We start by a background introduction for PPSs and then explain

how to use it for document processing. After that we explain the usage of PPSs to

realize the synchronization protocol of replicated collaborative editing systems and

the handling of reverts. Finally, we discuss the implementation issues of PPSs.

71

5.5.1 Enforcement of the Synchronization Protocol

The PPS data structure has two important properties which make it an attractive

candidate for enforcing data consistency in collaborative editing systems. First, po-

sition stamps are unique and consistent to the sequential structure of a document.

Therefore, they can be used as primary keys to store a document in a DBMS. All edit-

ing operations can be represented as standard database operations and executed by

the DBMS in a conventional way. Second, a PPS never deletes any data items. This

property makes it possible to reconstruct any version of the PPS to detect editing

conflicts in a replicated setting. In this section, we explain how to efficiently validate

the acceptance criterion mentioned in Section 5.3.2 based on PPSs.

Given a tentative transaction t defined on the version (Su,Mu) of a document

replica, let the version of the master copy at the server be (Sv,Mv). The acceptance

criterion test checks whether the editing distance between the data items read on

(Su,Mu) and the data items read on (Sv,Mv) exceeds the threshold θ, as defined

below:

Definition 5. Acceptance criterion Acceptθ. Given a transaction t defined on

(Su,Mu), we say that t passes the acceptance criterion of Acceptθ on (Sv,Mv) if

∑

read(si,sj)∈t
Diff(LV ([si, sj]u), LV ([si, sj]v)) ≤ θ,

where Diff is a difference algorithm.

Since each Read(si, sj) only contains the position stamps at the two end points

for the range of text a transaction read, it does not provide adequate information for

correct validation. For example, in Figure 1 the logical view of PPS1 is “ab” and

the logical view of PPS2 is “abc”. They have different views between [0.3, 0.6]. With

only Read(0.3, 0.6), it is unsure whether they have the same set of visible data items.

However, it turns out we can design a correct validation algorithm by introducing

some version information.

72

2 FOR each Read(si, sj) t DO

3 A read all position stamps between si and sj

1 diverge 0

FOR each sx A DO

IF Vserver(sx) > Vclient THEN

diverge diverge+1

IF diverge > THEN

abort

5

6

4

8

9

7

FOR each write operation o t DO

execute o10

AcceptTest(t, Vclient,)

Figure 17: The algorithm for validating Acceptθ for transaction t

In the client-server synchronization protocol, the server maintains a version counter

Vserver. We use Vserver(sx) to represent the version that sx was last written by a com-

mitted transaction. Each client maintains a local version counter Vclient. When a

tentative transaction is sent to the server node, it includes the value of Vclient as

well. The server validates all tentative transactions by the algorithm AcceptTest in

Figure 17. The AcceptTest checks whether any position stamps within [si, sj] are

updated by transactions committed after Vclient. Each time it detects a new update,

it increases the variable diverge (line 5-6). If diverge exceeds θ, the whole transac-

tion is aborted (line 7-8). Otherwise, the transaction will be executed as normal (line

9-10).

AcceptTest is executed as a standard transaction by the DBMS. In the prototype

of our framework, position stamps are implemented by the access method B+-tree

within the DBMS. Therefore, the range scan procedure (line 3-8) can be done atom-

ically, which guarantees that the correctness of the acceptance criterion test is not

compromised.

AcceptTest provides a sufficient, but not necessary condition for validating Acceptθ.

It is possible that AcceptTest aborts a transaction, which turns out to be accept-

able by Acceptθ. As shown in Figure 1, PPS1 and PPS3 have the same view, but

AcceptTest will abort a transaction if it reads Read(0.3, 0.6) under Accept0. However,

73

AcceptTest provides a practical solution because it adds negligible network commu-

nication overhead for Read operations.

When θ 6= 0, the editing system admits non-serializable interleaving of transac-

tions. For example, a transaction tries to delete data items that have been deleted or

do an insert at a position containing unseen items inserted by previously committed

transactions. Our framework handles these situations as follows. For a Delete, it will

be executed as normal because a Delete operation is mapped to SetState(sx, false).

In the PPS, it is mapped to write the state of sx to false multiple times. From a

user’s perspective, the data item is deleted exactly once. When it is an Insert, the

server first checks whether there are any items between si and si+1. If no new position

stamps are present, it does the ADD(si, si+1, x) by inserting a new position stamp

snew as usual. Otherwise, the server will query the DBMS to get the next position

stamp sk greater than si and does ADD(si, sk, x) instead.

5.5.2 Revert Handling

A Revert operation reverts the state of a shared document to a previous save-point

or pivot-point. When the server receives a Revert operation, it checks its log entries

and locates all the transactions committed after that point. If the revert point is

located before the most recent pivot-point in the server’s log, the server will abort

this transaction and respond back to the client along with the identifier for the most

recent pivot-point. The client can optionally resubmit the revert request with this new

reference point. Let o1o2...on be the sequence of operations that need to be reverted.

The compensating transaction is constructed as on on−1...o1 based on the following

rules:

• if oi is a Read, its compensating operation is oi = φ, which is simply ignored.

• if oi is a SetState(sx, state), its compensating operation is oi = SetState(sx, state);

74

The compensating transaction undoes, from the user’s perspective, any operations

that are performed by the transactions committed after the reverted point. A big ad-

vantage of handling Revert based on PPSs is that the construction of a compensating

transaction is completely operational.

5.5.3 Implementation Issues for PPSs

The previous discussion for PPS assumes that data items are never removed and a

machine has unbounded precision bits for representing position stamps. While this is

valid from a theoretical point of view, which enables us to explain the framework in

a concise way, it is rare in practice that collaborative editing systems allow its data

to grow unbounded. Therefore, a garbage collection algorithm is used to periodically

rebalance the PPS data structure and reassign visible data items with new position

stamps.

The server starts the garbage collection process when any of the three events

happens: 1) the data storage for the PPS exceeds a threshold; 2) the PPS runs out

of precision bits; 3) all users exit an editing session. The server starts a distributed

consensus algorithm such as two-phase commit to coordinate the garbage collection

process. The server maintains the pre-image and post-image of a PPS at the end

of the process and maintains the mapping between the old position stamps and the

new position stamps for visible data items. Therefore, if a client node submits a

transaction based on an old PPS, the server can use the mapping to determine the

right data items to update. Each rebalanced PPS is uniquely identified by a rebalance-

identifier. All document replicas maintain the rebalance-identifier for its local PPS

and will include it in all the transactions sent to the server.

Even though the garbage collection process uses a distributed synchronization

algorithm, we do not expect it to raise much concern. A user is able to continue her

regular edits since all transactions are tentatively committed on its local copy. The

75

garbage collection only delays the time of synchronizing new changes to the replicas

of other users.

5.6 Collaborative Editing System Prototype

We have implemented our transactional framework over Oracle Berkeley DB High

Availability. In this section, we first provide a background description for this repli-

cated DBMS in Section 5.6.1 and give an overview of our system architecture in

Section 5.6.2. We then explain different modules of our framework in Section 5.6.3.

5.6.1 Oracle Berkeley DB High Availability Infrastructure

Oracle Berkeley DB High Availability enables replication of a database across a col-

lection of nodes. These nodes form a replication group. Within the group, one node

is elected to be the master, while the rest of the nodes are referred to as replica.

The master node accepts both read and write transactions, while the replica nodes

accept read-only transactions. A replica node communicates with the master node

through a logical replication stream that contains a description of the logical changes

of the master node. The stream is replayed at the replica using an internal replay

mechanism. In our implementation, a client node maintains the state of the shared

document in a replica node, while the server node maintains the state of the shared

document in a master node.

5.6.2 System Architecture

In our implementation, a shared document is replicated across a collection of client

nodes and one server node. Each client node is used by one user to modify the

shared document. The server node is responsible for integrating changes from all

client nodes and replay these changes to all replicas. Figure 18 shows the system

architecture between a client node and a server node. When a user issues new edits,

the user sees their effect immediately. Meanwhile, these edits are wrapped in the

76

form of transactions and forwarded to the server node. The server node processes

each transaction in two steps: 1) run it against an acceptance test; and 2) execute

the transaction in the master node if it passes the acceptance test, otherwise abort

the transaction. Meanwhile, the changes at the master node streams to all replica

nodes. Each client node periodically refreshes its document copy based on the latest

state of its replica.

Oracle Berkeley DB High Availability provides several benefits for developing col-

laborative editing systems. First, atomicity is a given-in property in transactions.

Second, our synchronization protocol can be completely implemented based on the

available concurrency control algorithm. Third, the replicated DBMS simplifies re-

covery. If a client node restarts after a crash, its replica is automatically brought to

the latest state of the master node. Finally, the DBMS handles durability automat-

ically for a collaborative editing system. The update of a user is guaranteed to be

persistent as soon as it commits at the master node.

5.6.3 Implementation Modules

Oracle Berkeley

DB High

Availability

InfrastructureReplay replication

stream

Collaborative

Editing

System
Forward update

requests

Server

Server Transaction Manager

Transaction Monitor

Log
Manager

Master

Client Activity
Manager

Client

Client Transaction Manager

Transaction Monitor

Log
Manager

Replica

User

Interface

Figure 18: System architecture

We have implemented a transactional monitor at both the client side and the server

side to synchronize distributed editing activities. The interaction of these modules is

illustrated in Figure 18. Below we describe each of them.

77

Client Activity Manager (CAM). It receives a sequence of operations from the

text editor. When it sees an operation of Insert, Delete or Read, CAM appends it

to a buffer. Otherwise, it takes the following actions:

• For a Release, CAM wraps all the operations in the buffer and brackets them

within the two control operations Begin-transaction and End-transaction and

sends it to the underlying transaction manager. Then CAM empties the buffer.

The Begin-transaction and End-transaction are used to indicate the beginning

and the end of a classic transaction.

• For a Save or a SaveP ivot, CAM takes an action similar to the handling of

Release, except that it additionally includes a Save or SaveP ivot as the last

operation within the transaction.

• For a Cancel, CAM removes the last entry from its buffer.

• For a Revert, CAM brackets this operation parameterized with its Save or

SaveP ivot within Begin-transaction and End-transaction and sends the trans-

action to its underlying module.

Client Transaction Manager (CTM). It is responsible for forwarding transactions

received from CAM to the server and monitoring their progress. CTM maintains all

pending transactions in a queue and waits for responses from the server. CTM as-

sumes that the server responds to pending transactions in the order they are sent.

On receiving a response from the server, it removes the transaction from the head of

the queue. If the response is a commit, it takes no action since the transaction has

committed at the master node and is going to be replayed at its local replica. If the

response is an abort, it generates a diagnostic message to the user. The abort a trans-

action may cause the abort of subsequent pending transactions that read the results

78

of the aborted transaction. If a cascading abort happens, all the aborted transactions

are removed from the queue and their states will be included in the diagnostic message.

Server Transaction Manager (STM). It is responsible for processing all client

transactions under single-copy serializability. Upon receiving a transaction, STM for-

wards the Begin-transaction and End-transaction as well as the document editing op-

erations to its underlying DBMS where the transaction is processed in a conventional

way. Due to simultaneous editing, a client transaction may see a different version of

the shared document and produces different results. To quantitatively measure the

divergent distance, STM runs all client transactions against the acceptance criterion

test introduced in Section 5.5.1. If passed, the transaction is committed, otherwise

get aborted. STM then returns its state to its corresponding client node.

Log Manager (LM). It maintains log entries for the execution history of trans-

actions. Each log entry contains the read and write set of a transaction. To support

Cancel, the log entries of a transaction are backward chained to identify operations

within a transaction. LM also maintains a special save-point or pivot-point log entry

as a marker in its log for handling Revert operations.

5.7 Summary

We propose a transactional framework for modeling and implementing collaborative

editing systems. Our framework demonstrates its advantages in two ways. First,

it provides a conceptual framework to specify the entire spectrum of collaborations

for document editing systems. We demonstrate its generality and flexibility through

its capabilities of specifying three types of collaborative editing systems and a new

collaboration model. In the second advantage, our framework can be layered on

the top of a database management system to reuse its transactional techniques for

79

data consistency guarantee in both centralized and replicated collaborative editing

systems. This is demonstrated through a prototype implementation over Berkeley

DB High Availability, a replicated database management system.

80

CHAPTER VI

FINE-GRAINED DOCUMENT PROVENANCE

MANAGEMENT ON COLLABORATIVE TEXT

DOCUMENTS

6.1 Motivation

Document provenance describes how a document was updated over time. Current

revision control systems manage provenance data at the document level, which is

too coarse-grained to retrieve provenance information at a finer granularity such as

a word or a sentence. An example of fine-grained provenance query is ‘Return who

contributed which part of a document”. This query is useful when we want to know

the authorship of a collaborative document such as a Wikipedia article or a source

code file. More sophisticated fine-grained provenance queries are “Return all the text

that has even been contributed from John” or “Find who deleted the text that John

inserted on last Monday”. In general, fine-grained document provenance describes

how a portion of a document was updated over time, which is the focus of this

chapter.

Fine-grained document provenance is valuable for many applications ranging from

document processing in business processes [69] to deep knowledge discovery for text

documents [27, 49]. Although fine-grained document provenance is valuable, storing

and querying provenance can be expensive. Current revision control systems keep

track of the revision history for every committed version in terms of its content, its

creation timestamp, and its creation author. Some systems choose sequential files and

only store the delta changes in a new version, e.g., Subversion [24]. Some systems use

a database to save the full content of every version, e.g., MediaWiki [17]. Regardless of

81

Delta(vi 1, vi)Delta(vi 2, vi 1)

vi

Delta(v1, v2) …… ……

Useri, tsiUseri 1, tsi 1Useri 2, tsi 2User1, ts1

Vi 1Vi 2v1

The latest version

Figure 19: Organize the revision history of a versioned document based on delta
changes

their implementations, these systems unanimously track provenance at the document

level as shown in Figure 19. To answer any fine-grained document provenance query

with such an organization of provenance data, we have to parse the revision history

of documents and analyze delta changes of consecutive versions, which could become

expensive for documents with a large number of versions. Take the Wikipedia article

titled “iPod” as an example. The article was around 52 kilobytes by January, 2010

and had more than 13000 versions.

To avoid the cost of parsing long revision histories, we may choose to store prove-

nance data side by side with different pieces of text for every version of a document.

In this way, we can quickly retrieve document provenance for every version. How-

ever, we face the problem of overuse of disk space due to the redundancy of saving

provenance information for the same piece of text multiple times in different versions

of a document. Obviously there is a trade-off between disk space usage and query

processing cost. It is always tempting to trade disk space for the performance of query

processing. After all, hard drives are cheap and text documents are usually small.

However, the trade-off becomes less obvious when we have to deal with millions of

documents, some of which have thousands of versions.

We use PPSs to design both disk-economic and computation-efficient techniques

to manage fine-grained document provenance. Our approach is disk-economic because

we only save a few number of PPS views at different points in the revision history

82

of documents. For versions between those points, only their delta changes are saved.

Our approach is also computation efficient because we build indexes for provenance

data at the content-level and avoid the necessity of parsing the revision history of

documents. Based on PPSs, we build a system to manage document provenance

for millions of Wikipedia articles and evaluate both disk space usage and querying

cost for several common document provenance queries. Our experiments show that

our system uses less than 10% of the disk space compared to MediaWiki [17], the

database engine for Wikipedia. For query processing, we compare our approach with

the on-the-fly approach which read and analyze revision histories into main memory in

order to answer fine-grained document provenance queries. Experiments show that

our approach outperforms the on-the-fly approach on documents with more than

hundreds of versions. For documents with more than thousands of versions, our PPS-

based approach is able to achieve at least an order of magnitude speed-up on common

document provenance queries.

In the rest of this chapter, we first describe fine-grained document queries and

explain how to process these queries based on PPSs in Section 6.2 and then describe

our system implementation in Section 6.3. In Section 6.4, we evaluate the impact of

the size of a PPS view range to disk space cost and query processing cost. Finally we

present the experiment results in Section 6.5.

6.2 Fine-grained Document Provenance Queries

6.2.1 Classifying Fine-grained Document Provenance Queries from the
perspective of the temporal dimension

Basic document provenance data include what type of a change was (e.g., an insert or

a delete), who made the change, and when was the change made. Some applications

need to consider additional provenance data. For example, Wikipedia records IP

addresses of authors as well. In mobile applications, geographical locations of users

may be considered. There are two different kinds of document provenance queries to

83

retrieve these provenance data.

• Snapshot Document Provenance Queries: they produce provenance in-

formation for a document at a particular time. An example of this type is to

”Return the text authorship of a document in the i-th version.

• Delta-change Document Provenance Queries: they produce provenance

information for a document related to the state change of any two versions. An

example of this type is “Return the author name for the text that was deleted

in the newly committed version”. Sometimes we may want to examine delta

changes for non-contiguous versions as well. For instance, in software products,

we want to evaluate the changes of source code files at different milestones.

With the above two types of provenance queries, we are able to answer different

kinds of composite provenance queries. For example, Halfaker et. al. [67] uses the

provenance data related to the delta changes of every consecutive versions to analyze

the neutrality of peer review in Wikipedia. In this example, we repeatedly issue a

delta-change document provenance query to get the information. In some situations,

we need to further process the result through aggregation and filtering. For example,

Adler et. al. [27] evaluate user reputation evaluation based on their past contributions.

In this example, we first obtain provenance data for all those items that are modified

within the interested period and then aggregate the provenance by the user attribute.

6.2.2 Processing Fine-grained Document Provenance Queries based on
PPSs

PPSs play two important roles in processing fine-grained document provenance queries.

First, we use PPSs to represent the revision history of documents. Second, we use

position stamps to index provenance information of items, which contains a list of

data such as author identifier, insert timestamp, and delete timestamp. Correspond-

ingly, there are two steps to process a fine-grained document provenance query. In

84

the first step, we use PPSs to locate relevant position stamps by using the algorithms

described in Section 3.3 . In the second step, we use the identified position stamps to

look up provenance information for these items. For snapshot document provenance

queries, we use the algorithm CALCULATE-VIEW to retrieve all position stamps

visible at a particular time. For delta-change document provenance queries, we use

CALCULATE-DELTA to retrieve all position stamps related to the delta changes

between two versions.

Depending on the length of a document’s revision history, the PPS view range

array can become too large to fit into the available memory. As a result, we have to

store PPS view ranges on disk and read them into memory as needed. In our design,

the revision history a document is represented as an array of fixed size PPS view

ranges. Within each PPS view range, we put as many delta changes as we can. If

no adequate space to save new delta changes, a new PPS view range is created and

the view pivot array is updated to store a pointer to this new PPS view range. For

each PPS, only its view pivot array is kept in memory to speed up locating the right

PPS view range. The size of PPS view pivot array is normally small. Based on our

experiences with Wikipedia articles, for documents with hundreds of versions, their

view pivot arrays have about several tens of entries. For documents with thousands

of versions, their view pivot arrays have about a few hundreds of entries. Therefore,

we are able to keep view pivot arrays for a large number of PPSs. After identifying

the right PPS view range, the entire PPS view range is read from disk into memory

for further processing. PPS view range is always read from disk and write to disk as

one unit. Therefore, we need to be very careful in choosing its size. If its size is too

small, only a few number of delta changes can be put into it. We end up with saving

too many PPS views, which cause the problem of overuse of disk space. If its size is

very large, we end up with saving a long list of delta changes within a single PPS view

range, whose size could become too big to fit into the available memory. In addition,

85

the computation cost for some of these algorithms described in Section 3.3.4 could

become too expensive. As we have already shown in Section 3.3.4.3, the computation

cost on delta changes takes processor time proportional to O(n2l), which could exceed

disk I/O for a large n.

6.3 System Implementation

To efficiently process the fine-grained document provenance queries, we face three

challenges. First, we need to quickly reconstruct the state of a document as well as

the change of states at any time. Second, we need to quickly locate the provenance

data related to the state or the change of states. Third, we need to aggregate or filter

the provenance data efficiently. Corresponding to these three challenges, we design

three modules to process fine-grained document provenance queries as illustrated in

Figure 20.

Revision History

Manager

(represented in PPSs)

Provenance

Manager

Query Manager

provenance update

retrieve position

stamps

look up provenance by

using position stamps

Figure 20: System Architecture
.

Revision History Manager (RHM) It manages the revision history of documents

with two responsibilities. The first responsibility of RHM is to store revision histories

of documents in PPSs. Given a new version of document, RHM uses diff utilities

to identify the changes and represent them in a PPS. These changes are indexed by

position stamps and sent to Provenance Manager for further processing. The second

responsibility of RHM is to query PPSs to return all those position stamps relevant

to provenance queries. In order to lower the querying cost on revision histories, we

design an auxiliary data structure based on PPS to speed up the querying process,

which will be detailed in the next section.

86

Provenance Manager It manages provenance of documents. For each document,

it uses the position stamps of items to index provenance data in the form <position

stamp, [data1, data2, ...datan]>. Since a document may contain many number of

items and large set of provenance data, we create several buckets to store a subset

of these pairs. Each bucket stores its assigned pairs in a hash table that is serialized

or de-serialized between memory and disk to feed provenance data. After receiving

all the identified position stamps from the previous module, MM load corresponding

hash tables into memory, look up the required provenance by using these position

stamps as keys and output the result to the next module.

Query Manager It interacts with RHM and MM in steps and processes provenance

data to transform them into required forms. If all provenance data can be processed

in memory, we use common main-memory data structures such as hash tables or

balanced tree to do aggregation and filtering. Otherwise, we have to rely on on-disk

algorithms to process large data set.

When designing these modules, one important design decision we made is to man-

age metadata by ourselves instead of using a general database engine. The reason

is that documents generate many items especially at very fine granularity such as a

word. Use Wikipedia as an example, a regular size of a Wikipedia article currently has

more than ten thousands of words. If we put all of these words into a database and

index their provenance data by position stamps, for tens of millions of documents, we

end up with billions of records in database, which cause serious performance problem

especially when we attempted to build multiple secondary indexes over the meta-

data. Another problem we faced when using a database is to the maintenance of the

schema. Since the provenance data have unfixed number of entries, managing the

schema will become a problem if we are going to handle document provenance from

different application domains.

87

9.1k 9.6k 9.7k 10.7k 13.8k 25.2k 35.6k
0

50

100

150

PPS−RANGE node size [byte]

A
ve

ra
ge

 n
um

be
r

of
 v

er
si

on
s

in
a

P
P

S
−

R
A

N
G

E
 n

od
e

[#
]

Batman: The Animated Series

(a) Number of delta changes in a PPS range
view

9.1k 9.6k 9.7k 10.7k 13.8k 25.2k 35.6k
0

2

4

6

8

10

12

14

16

PPS−RANGE node size [byte]

D
is

k
sp

ac
e

us
ag

e
[m

eg
ab

yt
e]

Batman: The Animated Series

(b) Disk space usage

Figure 21: Disk space usage under different configurations for the size of PPS view
ranges

6.4 Performance Impact due to Size of PPS View Ranges

In this section, we study the impact of the size of PPS view ranges to disk space usage

and query processing cost. We first look at the disk space usage and processing cost

for a regular Wikipedia article and draw some rule of thumb for setting size of PPS

view ranges based on the case study.

We choose the Wikipedia article titled “Batman: The Animated Series” because

many Wikipedia articles have similar characteristics. This article had about 2000

version by January 31, 2010. On average, each version has around 2200 items. The

delta changes between consecutive versions are about 45 items.

Figure 21(a) shows the number of PPS views we are able to put into a PPS

range view under different configurations for the size of PPS view ranges. It shows

that when the size is less than 10 kilobyte, the number of delta changes that can be

put in a PPS view range are very small. The reason is that the article “Batman:

The Animated Series” has about 2200 items at round 9 kilobyte. Therefore, we

are able to put only a few number of delta changes in a PPS view range. As we

increase the size configuration to up to 36 kilobytes, the number of delta changes

88

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

τ

σ

2l

L
=0.005

2l

L
=0.01

2l

L
=0.05

(a) The relationship between τ and σ

1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

τ

 n

2l

L
=0.005

2l

L
=0.01

2l

L
=0.05

(b) The relationship between τ and n

Figure 22: Impact of the size of PPS view ranges

increase significantly. Figure 21(b) shows the disk space usage under different size

configurations. As expected, as the number of delta changes in a PPS view range get

increased, the amount of disk space usage drops significantly. From these two figures,

we conclude that we should always set the size of a PPS view range large enough to

put one full PPS view and at least tens of delta changes. For example, when we set

the size of PPS view range to 13 kilobyte, we already save 90 percent of disk space

compared to the approach of saving each PPS view individually.

Next let us derive some general guidance for setting the size of PPS view ranges.

Let N be the total number of PPS views, L the average number of position stamps

per PPS view and l the average number of position stamps in the delta changes of

two consecutive versions. Let M be the size of a PPS view range and n the number of

delta changes within the PPS view range. The disk space used to store the N number

of PPS views in PPS view ranges is NM
n

. Let σ be the ratio between the disk space

used by all PPS view ranges and the disk space used by all PPS views and τ = M
L

be

the ratio between M and L, we have

σ =
NM

nNL
=

M

nL
=

τ

n
=⇒ n =

τ

σ

89

Also We have

M = L+ 2n ∗ l =⇒ n =
M − L

2l
=

(τ − 1)L

2l

By putting above two equations together, we get

σ =
2l

L
·

τ

τ − 1

n =
L

2l
· (τ − 1)

Figure 22(a) shows the relationship between τ and σ under three different values

2l
L
. When 2l

L
is small, by setting the size of PPS view ranges to be 1.5 ∼ 2 more

than the average size of PPS views, we are able to save more than 95% of disk space

already. For larger 2l
L
, the saving is less significant as the smaller 2l

L
, but still very

impressive at 80% with τ = 1.5. Another important observation is that the most

significant saving happens at the beginning as we increase the value of τ . After that,

we still save more disk space, but at a much lower rate. On the other hand, an

increase in τ will lead to more delta changes put into a PPS view range. Figure 22(b)

shows the relationship between τ and n. It shows that the smaller the ratio 2l
L
is, the

more delta changes we can put into a PPS view range. When the ratio is between

1.5 ∼ 2, the value of n is at about a hundred. With such a small n, even though the

querying cost is proportion to O(n2l), we are not going to see a significant increase on

the performance. However, when τ increases to a few hundred, we will start to see an

impact on the querying cost. For instance, for l = 10, the cost would be about O(106),

which is at the same magnitude for the ratio between disk I/O and CPU processor

time for arithmetic operations. Figure 23 confirms our observation by showing the

query costs for a snapshot document provenance query and a delta-change document

provenance query. The query cost is the amount of time to retrieve the requested

position stamps from a PPS. From both figures, we can see that the query costs get

increases as we increase the size of PPS view ranges due to the computation on delta

changes. In addition, the increases become more significant when the size of PPS

90

9.1k 9.6k 9.7k 10.7k 13.8k 25.2k 35.6k
0

2

4

6

8

10

12

PPS−RANGE node size [byte]

S
na

ps
ho

t d
oc

um
en

t p
ro

ve
na

nc
e

qu
er

y
co

st
 [m

ill
is

ec
on

d]

Batman: The Animated Series

(a) Snapshot document provenance queries

9.1k 9.6k 9.7k 10.7k 13.8k 25.2k 35.6k
0

1

2

3

4

5

6

7

8

9

PPS−RANGE node size [byte]

D
el

ta
−

ch
an

ge
 d

oc
um

en
t p

ro
ve

na
nc

e
qu

er
y

co
st

 [m
ill

is
ec

on
d]

Batman: The Animated Series

(b) Delta-change document provenance queries

Figure 23: Query processing cost due to the size of PPS view ranges

view ranges get larger. Based on the case study on the Wikipedia article Batman:

The Animated Series, we can obtain a rule of thumb regarding the setting for PPS

view range size based on the following observation. We obtain the most significant

disk space saving by setting the size of PPS view ranges to be 1.5 ∼ 2 for a wide

range of ratio between 2l
L
. In addition, the query processing cost does not increase

too much because with such a small increase in the size of PPS view ranges, we can

only put at most a few hundreds of delta changes into a PPS view range, which is

going to have an unnoticeable impact on query processing cost due to the dominance

of disk I/O. Since most Wikipedia have the ratio between 0.005 ∼ 0.01, we choose

τ = 2 for the experiments in Section 6.5.

6.5 Experiments

6.5.1 Experiment Setup

Hardware configuration All experiments are conducted on a 32-bit GNU/Linux

machine with Intel Pentium 4 CPU 2.80GHz and 8GB RAM.

Data set We use Wikipedia data dump timestamped on Jan 30, 2010 to evaluate

the performance our system. The data dump contains around 19376810 articles and

more than three hundreds millions of revisions. To provide an in-depth investigation

91

for the performance of our system, we choose three Wikipedia articles different in the

length of their revision histories: Elementary algebra, Devil May Cry (video game),

and IPod. Some related statistics for them are shown in Table 3.

Table 3: Statistics of three Wikipedia articles

Article Name
versions [#] Average items Average items

per version [#] in delta changes [#]
Elementary algebra 504 2882 36

Devil May Cry
1560 1395 27

(video game)
IPod 13097 2801 3

The article titled Elementary algebra represents articles with a short revision his-

tory. The article titled Devil May Cry (video game) represents middle-sized articles,

while the article IPod represents articles with long revision histories. For the experi-

ments in the next section, we compare the querying cost for each of these articles to

analyze the impact of length of revision histories on fine-grained document provenance

queries.

6.5.2 Evaluating a Snapshot Document Provenance Query: Getting Au-
thorship of Text at Selected Versions

We compare the querying time between the approaches PPS-Based and On-the-Fly

on three Wikipedia articles to retrieve authorship of text at selected versions. Let us

first look at the querying time for the On-the-Fly approach in Figure 24(a-c). In both

articles, it is clear that the querying time increases monotonically as we process more

recent versions. This is expected as the On-the-Fly approach has to do three tasks to

retrieve the metadata: 1) read all the previous versions up to a given version; 2) reason

the delta differences between all consecutive versions; and 3) associate the authorship

metadata with different parts of the text. As the number of versions increase, so the

querying time. By comparison, the querying cost for the PPS-based approach is not

sensitive to the position of a version in the revision history. For example, the querying

92

time for the PPS-Delta approach (the black bars) in Figure 24(a) varies marginally

at different versions. The same observation can be observed in Figure 24(b) as well,

but less obvious due to the scale of Y-axis. The reason is that the major cost for the

PPS-based approach is the time to load the PPS data structure and metadata into the

memory. Once this step is done, there is no much difference to look up the metadata

for different versions since the look-up costs for different versions are similar.

126 252 378 504
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 i−th version

Q
ue

ry
 ti

m
e

[s
ec

]

Obtain authorship of text in a given version

PPS−Based
On−the−Fly

(a) Elementary algebra

390 780 1170 1560
0

1

2

3

4

5

 i−th version

Q
ue

ry
 ti

m
e

[s
ec

]

Obtain authorship of text in a given version

PPS−Based
On−the−Fly

(b) Devil May Cry (video
game)

3274 6548 9822 13096
0

10

20

30

40

50

60

70

80

 i−th version

Q
ue

ry
 ti

m
e

[s
ec

]

Obtain authorship of text in a given version

PPS−Based
On−the−Fly

(c) IPod

Figure 24: Compare querying cost for a snapshot document provenance query for
three Wikipedia articles

The second observation is that the PPS-based approach outperforms the On-the-

Fly approach for articles with more than thousands of versions. For articles with

only a few hundreds of versions, the PPS-based approach performs slightly worse

due to the overhead in de-serializing the PPS view ranges from disk and looking up

provenance information in hash tables. The overhead becomes less significant as we

progress articles with longer revision histories because the querying cost is dominated

by disk I/O and the reasoning for the delta changes between the consecutive versions.

In Figure 24(c), the difference between the PPS-based approach and the On-the-Fly

approach are almost two orders of magnitude faster.

6.5.3 Evaluating a Delta-change Document Provenance Query: Getting
Who Modified Whose Work at Selected Versions

For delta-change document provenance queries, we evaluate the query ”Who modified

whose work at selected versions”. We collect the querying time for the three Wikipedia

93

articles at different points in their revision histories. From Figure 25, we get the same

observation as the snapshot document provenance query ”Get authorship of text at

selected versions”. The most important observation we have from both type of queries

is that the PPS-based approach is insensitive to the length of revision histories. We

are able to query provenance information at any point with stable response time,

which is a significant improvement over the current revision control systems.

126 252 378 503
0

0.2

0.4

0.6

0.8

1

 i−th version

Q
ue

ry
 ti

m
e

[s
ec

]

Find who modified whose edits
in a given version

PPS−Based
On−the−Fly

(a) Elementary algebra

390 780 1170 1559
0

1

2

3

4

5

 i−th version

Q
ue

ry
 ti

m
e

[s
ec

]

Find who modified whose edits
in a given version

PPS−Based
On−the−Fly

(b) Devil May Cry (video
game)

3274 6548 9822 13096
0

10

20

30

40

50

60

70

80

 i−th version

Q
ue

ry
 ti

m
e

[s
ec

]

Find who modified whose edits
in a given version

PPS−Based
On−the−Fly

(c) IPod

Figure 25: Compare querying cost for a delta-change document provenance query on
three Wikipedia articles

0

10

20

30

40

50

60

70

80

Q
ue

ry
 ti

m
e

[s
ec

]

Obtain authorship of text for all versions

Elementary algebra
Devil May Cry (video game)

IPod

PPS−Based
On−the−Fly

(a) Getting authorship of text for all versions

0

10

20

30

40

50

60

70

80

Q
ue

ry
 ti

m
e

[s
ec

]

Find who modified whose work for all versions

Elementary algebra
Devil May Cry (video game)

IPod

PPS−Based
On−the−Fly

(b) Get who modified whose work for all ver-
sions

Figure 26: Compare querying cost on three Wikipedia articles

94

6.5.4 Evaluating Document Provenance Queries for Entire Revision His-
tory of Documents

For many data analytics applications, it is critical to obtain provenance information

for the entire revision history of documents. we use two experiments to compare our

PPS-based approach and the On-the-Fly approach. The first experiment evaluates

the query ”Getting Authorship of Text for All Versions”, which retrieves authorship

of text for all PPS views. For each PPS view, it looks up the author name and output

the results. For the On-the-Fly approach, we read all the versions one by one. For

each version, we use a diff utility to locate the changes and output the results. We

see that for the article with a short revision history, the PPS-based performs slightly

worse than the On-the-Fly approach, but outperforms On-the-Fly for articles with

long revision histories. The performance gain becomes more significant as the length

of revision histories gets longer.

The second experiment evaluates the query ”Getting Who Modified Whose Work

for All Versions”. Figure 26(b) shows the amount of time to get the provenance in-

formation for who modified whose work for all the versions on the three Wikipedia

articles. We obtain similar observation as the snapshot-range provenance query eval-

uated in the previous section except that delta-change-range query takes less time

to process. This matches our expectation because it does not involve any computa-

tion on delta changes. As a result, the PPS-based approach performs as well as the

On-the-Fly approach even on articles with short revision histories.

6.5.5 Disk Space Usage

To measure the disk space usage, we compare our PPS-based approach with the

Flat-file approach, which stores all the versions of a document in a flat file one after

another. To evaluate the impact of revision history length to both approaches, we

put articles into different buckets. Each bucket holds articles whose revision length is

within a certain range. For articles falling within the same bucket, we make an average

95

on the amount of disk space they use. The result is collected over 5000 Wikipedia

articles, randomly sampled from the Wikipedia data dump. From Figure 27(a), we

see that the PPS-based approach uses much less disk space compare to the Flat File

approach. For articles with thousands of versions, the Flat-File approach uses almost

two orders of magnitude more disk space than the PPS-based. This is an indication

that Wikipedia articles have lots of overlapped content between consecutive versions.

The decision of saving these overlapped content in every individual version to speed

up version retrieval should really be revisited. Figure 27(b) shows the ratio between

these two approaches. we can see that as the length of revision histories increase, the

PPS-based approach save more than 95% of disk space.

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of versions per article [#]

A
ve

ra
ge

 a
m

ou
nt

 o
f d

is
k

sp
ac

e
[k

ilo
by

te
]

PPS−Delta
Flat File

(a)

0 1000 2000 3000 4000 5000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of versions per article [#]

R
at

io

ratio =
disk space usage using PPSs

disk space usage using flat files

(b)

Figure 27: Disk space usage for Wikipedia articles with different number of versions:
a) disk space usage; b) ratio

6.5.6 Document Loading Time

The time to represent a document in a PPS includes six parts: 1) the time to read

all the versions from the disk; 2) the time to compute the delta changes between

consecutive versions; 3) the time to represent these delta changes in PPS view ranges;

4) the time to associate provenance information with different position stamps; 5) the

time to write these PPS view ranges to disk; and 6) the time to write provenance data

to disk. From Figure 28, we see that for documents with short revision histories (less

96

than 1000), it takes a few seconds to load the document into its PPS representation.

For documents with long revision histories, it takes tens of seconds to finish at about

10 millisecond per version. Therefore, it is practical to use PPSs for large scale

document processing.

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

40

45

50

Number of versions per article [#]

A
ve

ra
ge

 d
oc

ue
nt

 lo
ad

in
g

tim
e

[s
ec

]

Figure 28: Document loading time for Wikipedia articles with different number of
versions

.

6.6 Summary

Fine-grained document provenance describes how a portion of a document was mod-

ified over time, which enables us to obtain precise knowledge for documents at the

content-level. Current revision control systems track provenance information at the

document level. As a result, we have to parse revision histories and analyze delta

changes between consecutive versions in order to collect provenance information at

the content-level, which is inefficient especially for documents with long revision his-

tories. We use PPSs to represent the revision history of documents and use position

stamps to index provenance at fine granularities. Since PPSs represents revision his-

tories by saving only a few full versions and delta changes for the rest, our approach

is disk economic. Our experiments on processing Wikipedia articles show that our

approach saves more than 90% of disk space for Wikipedia articles with thousands

of versions on average. In addition, we are able to quickly reconstruct the state of

97

a document at any time as well as the delta changes between any two versions with

stable response time. In addition, due to the uniqueness and persistent properties of

PPSs, we can easily associate provenance data at arbitrary dimensions to each item

and look up these data quickly. We compare the performance of our system with the

On-the-Fly approach which parses revision histories at run time to process document

provenance queries. The experiments show that for documents with short revision

histories, our PPS-based approach performs slightly worse than the On-the-Fly ap-

proach due to the overhead in managing the data structure. But for documents with

thousands of versions, the PPS-based approach outperforms the On-the-Fly approach

and achieves at least an order of magnitude speedup on fine-grained metadata query

processing.

98

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Dissertation Conclusion

We describe PPSs, a partial persistent data structure, to track changes and metadata

of changes for collaborative document editing and processing applications. PPSs have

two distinct features. First, they never remove any items from the data structure.

By keep necessary timestamp information, we are able to access any previous version

in the revision history of a document. In the second unique feature, PPSs create

unique, ordered, and persistent identifiers for all the items. These identifiers are

called position stamps, which can be used to index various metadata associated with

each item. In order to balance the tradeoff between disk space and access cost to

revision histories, we have developed a hybrid approach to represent revision history

of collaborative documents. In the hybrid approach, all the document versions are

represented by the position stamps of their items. The approach is hybrid because we

only keep the full list of position stamps at a few points in the revision history. For

versions between those points, only their delta changes are maintained. We further

show that after representing the revision history of a collaborative document in our

PPS data structure, we are able to access its revision history by executing classical

set operators such as union, intersect, and minus. Based on this observation, we have

designed efficient algorithms to access not only any previous version but also the delta

changes between any two versions.

We demonstrate the capabilities of PPSs by applying them to the problem of

data consistency control in collaborative editing systems. We approach this problem

in two steps. In the first step, we have defined a relaxed consistency model more

99

suitable for real-time collaborative editing applications. By using PPSs to capture

data dependencies between editing operations, a view synchronization strategy for

the relaxed consistency model has been implemented and evaluated for its practical-

ity. In the second step, we extend our scope to the entire spectrum of collaborative

editing applications and design a transactional framework to specify different kinds

of collaborations. Our framework is expressive as demonstrated by its capabilities to

specify several representative collaborative editing systems such as CVS, MediaWiki,

Google Docs. Within our transactional framework, we use PPSs to track dependen-

cies between editing operations and quantify the amount of inconsistency in edit-

ing transactions. By varying transaction boundaries and inconsistency a transaction

could import, we are able to design a general data consistency control algorithm for

collaborative editing systems. We demonstrate the practicality of our framework by

a prototype implementation over Berkey DB High Availability, a replicated database

management engine.

We further demonstrate the capability of PPSs by using them to track and in-

dex document provenance information at fine granularities. Current revision control

systems maintain document provenance at the document level, which is too coarse-

grained to answer provenance queries at the content level. PPSs are a natural can-

didate data structure to solve this problem. By representing the revision history of

documents in PPSs, we can efficiently access any previous version as well as the delta

changes between any two versions in the revision history. In addition, the uniqueness

and persistence properties of position stamps allow us to index various provenance

data for a particular item. To process a fine-grained document provenance query, we

first query the PPS structure to obtain relevant position stamps and then use these

position stamps to look up requested provenance information. We have built a sys-

tem and apply it to manage provenance information for millions of Wikipedia article.

We compare the performance of our system with MediaWiki, the database engine for

100

Wikipedia. Our experiments show that our system uses less than 10% of disk space

compared to MediaWiki. In addition, we show that PPSs are most useful to handle

collaborative documents with a long revision history. For documents with thousands

of versions, PPSs are capable of achieving stable response time for both snapshot

and delta-change document provenance queries and at least an order of magnitude

speedup for documents with tens and thousands of versions.

7.2 Future Work

7.2.1 Partial Persistent Sequences

PPSs use a labeling scheme to assign position stamps for new items. The choice

of labeling schemes has a significant impact on the rebalancing frequency of PPSs.

Since rebalancing is an expensive operation, we want a labeling scheme to be conscious

about on-going editing activities such that it will reserve more space for areas that

are under intensive modification and less space for areas that have relatively stable

content. Currently, we use the dyadic labeling scheme that halves the space between

two rational numbers. A better approach is to collect statistics for editing intensity

on different areas of a document. During the rebalancing stage, these statistics are

used to determine the ratio of space for different areas in the document. However,

we need to be careful for the over fitting problem. It is possible that an inactive area

suddenly becomes active or vice versa. As a result, we end up with inadequate space

for to-be-active areas and wasted space for areas not active any more, which could

quickly trigger another round of rebalancing. We will consider knowledge of past

editing activities and uncertainty of future activities for the design of new labeling

schemes.

Some applications require fully persistent form of sequences. In software config-

uration systems, a source code is branched or forked because it may be necessary to

develop two versions of the file concurrently. PPSs are partially persistent form of

101

sequences. To extend PPSs to its fully persistent form, we need to maintain a tree

structure to handle branching versions. The tree has a main trunk, which contains

the major revision history of a document. A branch in the tree represents the revision

history of a new copy of the document from the branching point forward. Maintain-

ing the tree structure does not introduce new technical challenges because we could

use a PPS to maintain the revision history for each copy of a document. However,

a challenge arises when we want to merge a branch into the trunk. Using a PPS for

each branch means that items in a branch will be assigned position stamps indepen-

dent of the items on the main truck. As a result, during the merge, we could have

items that have the same position stamps, but actually represent different objects.

In this case, we have to use the position stamps in the first version of the branch to

determine the right merging points. However, this only solves half of the problem

because the PPS for the trunk may get re-balanced and reassigned its position stamps

completely. To handle this problem, we need to maintain a mapping that records the

before-rebalancing and after-rebalancing position stamps of items at each rebalancing

stage, which could introduce lots of maintenance work and computation overhead for

the merge operation. We will use the above idea as a starting point for designing fully

persistent form of sequences and explore different techniques to address the efficiency

of the merge operation.

7.2.2 Data Consistency Control in Collaborative Text Document Editing
Systems

Our work on data consistency control opens the door of using transactional techniques

for collaborative text document editing systems. To push this direction forward, we

look forward to delve into the following two topics. The first topic is to continue our

work on designing new type of collaborations that are more suitable for fine-grained

shared access on large documents. At the current stage, collaborative editing systems

either postpone the detection of conflicts at the time of merging different copies of

102

documents or leave the detection of conflicts to end users. The former could result in

divergence of different copies too big to be resolved easily, while the latter requires

that users be aware of on-going activities at all time, which is unrealistic due to

the limited focus zone of users. A more suitable type of collaboration is to allow

users to establish dependencies between different parts of documents or set the scope

of exclusive editing at fine granularities. In this way, users would receive alarms

when dependent data get modified or have exclusive write access to a portion of

document without being worried about being blind to simultaneous edits. Our work

on using PPSs to track data dependencies and transactions to detect editing conflicts

are concrete steps towards this direction. The second topic is mobile collaborative

editing systems. Mobile applications face the conditions of network intermittence by

default. Our approach can use recovery techniques from the database technologies

to design robust solutions for this issue. On the other hand, transactions techniques

may be too heavy weight for mobile applications where computation resources are

limited. How to balance the tradeoff between performance and robustness of system

for mobile applications will be one of our future directions.

7.2.3 Fine-grained Document Provenance Queries

Document provenance management will become increasingly important as collabo-

rations becomes more open-ended and large-scale. This dissertation is the first step

towards the goal of providing a general solution for indexing, storing, and querying

document provenance at fine granularities. To achieve this goal, the following two

problems need to be addressed. First, we need a high-level provenance query lan-

guage for unstructured text documents. A desirable query language should be in

many ways similar to SQL that provides a suitable level of abstraction to allow users

to query provenance data without the knowledge of underlying data structures. As

103

the amount of provenance information increases, we need suitable programming in-

terfaces for users to manage various dimension of provenance and their relationships.

Besides suitable abstraction, the query language should take into consideration the

spatial dimension corresponding to the sequential structure of text documents. Along

with the temporal dimension which has been considered in this dissertation, the spa-

tial dimension should be considered as another basic dimension in the query language

such that users are able to zoom into provenance at selected areas. Second, we need

an efficient approach to manage large amount of document provenance data. Based

on our experiences with Wikipedia articles, document provenance can create a large

number of records as we manage provenance at fine granularities. A single docu-

ment can easily create tens of thousands of entries. Managing all these entries for

millions of documents can impose non-trivial performance challenges for any rela-

tional or key/value based databases. More practical solutions are needed to manage

multi-dimensional provenance data efficiently.

Besides addressing the above two problems, we have started the work on deep

document knowledge discovery based on document provenance information. We have

made concrete progress towards this direction by designing new techniques for van-

dalism detection in Wikipedia [126]. In the future, we are going to study editing

behaviors of users based on their editing histories. We foresee that our progress on

this topic will provide valuable insights into several applications including design of

incentive strategies to improve sustainability of wikis and the quality of information

based on degrees of persistence in users’ contributions.

104

VITA

Qinyi Wu was born and brought up in Guiyang, the capital city of Guizhou. She re-
ceived her bachelor’s degree in Computer Science with outstanding honor fromWuhan
University, Hubei, China in 1999. She continued her master’s degree in Computer
Science from Beijing Institute of Technology, Hebei, China in 2002. After that, she
moved to Atlanta to pursue a Ph.D. in Computer Science at the College of Computing
at Georgia Institute of Technology. Qinyi pursued her dissertation research in the area
of data management in collaborative text document editing and processing systems
under the guidance of Prof. Calton Pu in the Distributed Data Intensive Systems
Lab. She contributed to a multitude of projects including data consistency control in
realtime collaborative document editing systems, fine-grained metadata management
for text documents, vandalism detection in wikis, and dependency management in
workflows.

105

REFERENCES

[1] “Activemq: A JMS server.” http://activemq.apache.org/

jms-to-jms-bridge.html.

[2] “Gobby: a collaborative text editor.” http://gobby.0x539.de/trac/.

[3] “Google code: google-diff-match-patch.” http://code.google.com/p/

google-diff-match-patch/.

[4] “Package javax.swing.” http://java.sun.com/javase/6/docs/api/javax/

swing/package-summary.html.

[5] “Wikipedia data dump download.” http://download.wikimedia.org/

enwiki/.

[6] “7 things you should know about collaborative editing.” http:

//connect.educause.edu/Library/ELI/7ThingsYouShouldKnowAbout/

39386?time=1202527547, 2005. Educause Connect.

[7] “Lorem Ipsum.” http://www.lipsum.com/, 2009.

[8] “SubEthaEdit.” http://www.codingmonkeys.de/subethaedit/, 2009.

[9] “Alexa traffic rankings.” http://www.alexa.com/siteinfo/wikipedia.org+

sina.com.cn+orkut.com+live.com+youtube.com, 2010.

[10] “Bpm and social software.” http://www.bpm2010.org/conference-program/

workshops/bpms210/, 2010.

[11] “Comparing and merging files.” http://www.gnu.org/software/diffutils/

manual/html_mono/diff.html, 2010.

[12] “Cvs - concurrent versions systems.” http://www.nongnu.org/cvs/, 2010.

[13] “Data structures for text sequences.” http://www.cs.unm.edu/~crowley/

papers/sds/sds.html, 2010. Charles Crowley.

[14] “Differential synchronization overview.” http://neil.fraser.name/writing/
sync/, 2010.

[15] “Google docs basics.” http://docs.google.com/support/bin/static.py?

hl=en&page=guide.cs&guide=20322, 2010.

[16] “Googlewave white paper.” http://www.waveprotocol.org/whitepapers/

operational-transform, 2010.

106

[17] “Mediawiki 1.15.1.” http://www.mediawiki.org/wiki/MediaWiki, 2010.

[18] “Oracle berkeley db java edition high availability.” http://www.oracle.com/

technology/products/berkeley-db/pdf/berkeleydb-je-ha-whitepaper.

pdf, 2010.

[19] “Twiki system requirements.” http://twiki.org/cgi-bin/view/TWiki/

TWikiSystemRequirements, 2010.

[20] “vandalism.” http://en.wikipedia.org/wiki/Wikipedia:Vandalism, 2010.

[21] “Wikipedia: a free, web-based, collaborative, multilingual encyclopedia.” http:
//en.wikipedia.org/wiki/Wikipedia, 2010.

[22] “Wikitrust.” http://wikitrust.soe.ucsc.edu/, 2010.

[23] “Postgresql 7.2 user’s guide.” www.postgresql.org/files/documentation/

pdf/7.2/user-7.2-US.pdf, 2011.

[24] “Fsfs: Subversion filesystem implementation note.” http://svn.apache.org/

repos/asf/subversion/trunk/notes/fsfs, March 25, 2011.

[25] “Wd caviar green / gp product specifications.” http://support.wdc.com/

product/install.asp?wdc_lang=en&fid=wdsfCaviar_Green, May, 2011. Ed-
ucause Connect.

[26] Abowd, G. D. and Dix, A. J., “Giving undo attention,” Interact. Comput.,
vol. 4, no. 3, pp. 317–342, 1992.

[27] Adler, B. T. and de Alfaro, L., “A content-driven reputation system for
the wikipedia,” in WWW ’07: Proceedings of the 16th international conference
on World Wide Web, (New York, NY, USA), pp. 261–270, ACM, 2007.

[28] Adya, A., Liskov, B., and O’Neil, P., “Generalized isolation level defini-
tions,” pp. 67 –78, 2000.

[29] Alevizou, P. and Forte, A., “Engaging with open education,” in WikiSym
’10: Proceedings of the 6th International Symposium on Wikis and Open Col-
laboration, (New York, NY, USA), pp. 1–2, ACM, 2010.

[30] Amagasa, T., Yoshikawa, M., and Uemura, S., “Qrs: A robust numbering
scheme for xml documents,” Data Engineering, International Conference on,
vol. 0, p. 705, 2003.

[31] Bancilhon, F., Kim, W., andKorth, H. F., “A model of cad transactions,”
in VLDB ’1985: Proceedings of the 11th international conference on Very Large
Data Bases, pp. 25–33, VLDB Endowment, 1985.

107

[32] Barga, R. S. and Pu, C., “A practical and modular implementation of ex-
tended transaction models,” in VLDB ’95: Proceedings of the 21th International
Conference on Very Large Data Bases, (San Francisco, CA, USA), pp. 206–217,
Morgan Kaufmann Publishers Inc., 1995.

[33] Bentley, J. L. and Saxe, J. B., “Decomposable searching problems i. static-
to-dynamic transformation,” Journal of Algorithms, vol. 1, no. 4, pp. 301 – 358,
1980.

[34] Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., and
O’Neil, P., “A critique of ansi sql isolation levels,” in SIGMOD ’95: Proceed-
ings of the 1995 ACM SIGMOD international conference on Management of
data, (New York, NY, USA), pp. 1–10, ACM, 1995.

[35] Bose, R. and Frew, J., “Lineage retrieval for scientific data processing: a
survey,” ACM Comput. Surv., vol. 37, pp. 1–28, March 2005.

[36] Chazelle, B. and Guibas, L., “Fractional cascading: A data structuring
technique with geometric applications,” in Automata, Languages and Program-
ming (Brauer, W., ed.), vol. 194 of Lecture Notes in Computer Science,
pp. 90–100, Springer Berlin / Heidelberg, 1985. 10.1007/BFb0015734.

[37] Chen, D. and Sun, C., “Undoing any operation in collaborative graphics
editing systems,” in GROUP ’01: Proceedings of the 2001 International ACM
SIGGROUP Conference on Supporting Group Work, (New York, NY, USA),
pp. 197–206, ACM, 2001.

[38] Chrysanthis, P. K. and Ramamritham, K., “Acta: a framework for speci-
fying and reasoning about transaction structure and behavior,” SIGMOD Rec.,
vol. 19, no. 2, pp. 194–203, 1990.

[39] Clifton, C. andGarcie-Molina, H., “The design of a document database,”
in DOCPROCS ’88: Proceedings of the ACM conference on Document process-
ing systems, (New York, NY, USA), pp. 125–134, ACM, 1988.

[40] Cohen, E., Kaplan, H., and Milo, T., “Labeling dynamic xml trees,” in
PODS ’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, (New York, NY, USA), pp. 271–
281, ACM, 2002.

[41] Cohen, W. W. and Singer, Y., “Context-sensitive learning methods for text
categorization,” in SIGIR ’96: Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information retrieval,
(New York, NY, USA), pp. 307–315, ACM, 1996.

[42] Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M., Version
Control with Subversion. San Francisco, CA, USA: O’Reilly Media, 2004.

108

[43] Conradi, R. and Westfechtel, B., “Version models for software configu-
ration management,” ACM Comput. Surv., vol. 30, no. 2, pp. 232–282, 1998.

[44] Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A.,
Bohannon, P., Jacobsen, H.-A., Puz, N., Weaver, D., and Yerneni,

R., “Pnuts: Yahoo!’s hosted data serving platform,” Proc. VLDB Endow.,
vol. 1, no. 2, pp. 1277–1288, 2008.

[45] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E., Intro-
duction to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[46] Dale, N. and Walker, H. M., Abstract data types: specifications, implemen-
tations, and applications. Lexington, MA, USA: D. C. Heath and Company,
1996.

[47] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., and Sama-

rati, P., “A fine-grained access control system for xml documents,” ACM
Trans. Inf. Syst. Secur., vol. 5, no. 2, pp. 169–202, 2002.

[48] Danis, C. and Singer, D., “A wiki instance in the enterprise: opportunities,
concerns and reality,” in Proceedings of the 2008 ACM conference on Computer
supported cooperative work, CSCW ’08, (New York, NY, USA), pp. 495–504,
ACM, 2008.

[49] De la Calzada, G. and Dekhtyar, A., “On measuring the quality of
wikipedia articles,” in Proceedings of the 4th workshop on Information cred-
ibility, WICOW ’10, (New York, NY, USA), pp. 11–18, ACM, 2010.

[50] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-
man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels,

W., “Dynamo: amazon’s highly available key-value store,” SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, pp. 205–220, 2007.

[51] Demaine, E. D., Langerman, S., and Price, E., “Confluently persistent
tries for efficient version control,” in SWAT ’08: Proceedings of the 11th Scan-
dinavian workshop on Algorithm Theory, (Berlin, Heidelberg), pp. 160–172,
Springer-Verlag, 2008.

[52] Demartini, G., “Finding experts using wikipedia,” FEWS 2007: Finding Ex-
perts on the Web with Semantics Workshop at ISWC 2007 + ASWC 2007,
November 2007.

[53] Dourish, P., “Consistency guarantees: exploiting application semantics for
consistency management in a collaboration toolkit,” in CSCW ’96: Proceedings
of the 1996 ACM conference on Computer supported cooperative work, (New
York, NY, USA), pp. 268–277, ACM, 1996.

109

[54] Dourish, P. and Bellotti, V., “Awareness and coordination in shared
workspaces,” in Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, CSCW ’92, (New York, NY, USA), pp. 107–114,
ACM, 1992.

[55] Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E., “Mak-
ing data structures persistent,” in STOC ’86: Proceedings of the eighteenth an-
nual ACM symposium on Theory of computing, (New York, NY, USA), pp. 109–
121, ACM, 1986.

[56] Du, F., Amer-Yahia, S., and Freire, J., “Shrex: managing xml documents
in relational databases,” in VLDB ’04: Proceedings of the Thirtieth interna-
tional conference on Very large data bases, pp. 1297–1300, VLDB Endowment,
2004.

[57] Ellis, C. A. and Gibbs, S. J., “Concurrency control in groupware systems,”
SIGMOD Rec., vol. 18, no. 2, pp. 399–407, 1989.

[58] Ellis, C. A., Gibbs, S. J., and Rein, G., “Groupware: some issues and
experiences,” Commun. ACM, vol. 34, no. 1, pp. 39–58, 1991.

[59] Elmagarmid, A. K., ed., Database transaction models for advanced applica-
tions. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992.

[60] Elmasri, R., Wuu, G. T. J., and Kouramajian, V., “The time index and
the monotonic b+-tree,” 1993.

[61] Flor, N. V., “Globally distributed software development and pair program-
ming,” Commun. ACM, vol. 49, no. 10, pp. 57–58, 2006.

[62] Fong, P. K.-F. and Biuk-Aghai, R. P., “What did they do? deriving high-
level edit histories in wikis,” in Proceedings of the 6th International Symposium
on Wikis and Open Collaboration, WikiSym ’10, (New York, NY, USA), pp. 2:1–
2:10, ACM, 2010.

[63] Garcia-Molina, H. and Salem, K., “Sagas,” in SIGMOD ’87: Proceedings
of the 1987 ACM SIGMOD international conference on Management of data,
(New York, NY, USA), pp. 249–259, ACM, 1987.

[64] Gray, J., Helland, P., O’Neil, P., and Shasha, D., “The dangers of
replication and a solution,” in SIGMOD ’96: Proceedings of the 1996 ACM
SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 173–182, ACM, 1996.

[65] Gropengieβer, F., Hose, K., and Sattler, K.-U., “An extended transac-
tion model for cooperative authoring of xml data,” Computer Science - Research
and Development, vol. 24, no. 1, pp. 85–100, 2009.

110

[66] Grudin, J. and Poole, E. S., “Wikis at work: success factors and challenges
for sustainability of enterprise wikis,” in Proceedings of the 6th International
Symposium on Wikis and Open Collaboration, WikiSym ’10, (New York, NY,
USA), pp. 5:1–5:8, ACM, 2010.

[67] Halfaker, A., Kittur, A., Kraut, R., and Riedl, J., “A jury of your
peers: quality, experience and ownership in wikipedia,” in WikiSym ’09: Pro-
ceedings of the 5th International Symposium on Wikis and Open Collaboration,
(New York, NY, USA), pp. 1–10, ACM, 2009.

[68] Heineman, G. T., “A transaction manager component for cooperative transac-
tion models,” in CASCON ’93: Proceedings of the 1993 conference of the Centre
for Advanced Studies on Collaborative research, pp. 910–918, IBM Press, 1993.

[69] Hodel-Widmer, T. B. and Dittrich, K. R., “Concept and prototype of
a collaborative business process environment for document processing,” Data
Knowl. Eng., vol. 52, pp. 61–120, January 2005.

[70] Holtzblatt, L. J., Damianos, L. E., and Weiss, D., “Factors impeding
wiki use in the enterprise: a case study,” in Proceedings of the 28th of the inter-
national conference extended abstracts on Human factors in computing systems,
CHI EA ’10, (New York, NY, USA), pp. 4661–4676, ACM, 2010.

[71] Ikeda, R. and Widom, J., “Data lineage: A survey,” technical report, Stan-
ford University, 2009.

[72] Jensen, C. S., Clifford, J., Gadia, S. K., Segev, A., and Snodgrass,

R. T., “A glossary of temporal database concepts,” vol. 21, (New York, NY,
USA), pp. 35–43, ACM, September 1992.

[73] Jensen, C. S., Mark, L., and Roussopoulos, N., “Incremental implemen-
tation model for relational databases with transaction time,” IEEE Trans. on
Knowl. and Data Eng., vol. 3, pp. 461–473, December 1991.

[74] Jensen, C. S., “Introduction to temporal database research.”
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.

4534&rep=rep1&type=pdf, 2000.

[75] Jensen, C. S.,Mark, L., Roussopoulos, N., and Sellis, T., “Using differ-
ential techniques to efficiently support transaction time,” The VLDB Journal,
vol. 2, pp. 75–116, January 1993.

[76] Jensen, C. S., Mark, L., Roussopoulos, N., and Sellis, T., “Using
caching, cache indexing and differential techniques to efficiently support trans-
action time,” tech. rep., College Park, MD, USA, 1999.

[77] Karat, C.-M., Halverson, C., Horn, D., and Karat, J., “Patterns of en-
try and correction in large vocabulary continuous speech recognition systems,”

111

in CHI ’99: Proceedings of the SIGCHI conference on Human factors in com-
puting systems, (New York, NY, USA), pp. 568–575, ACM, 1999.

[78] Kindler, E., Rubin, V., and Schäfer, W., “Incremental workflow mining
for process flexibility,” in Proceedings of the CAISE’06 Workshop on Business
Process Modelling, Development, and Support (BPMDS ’06), (Luxemburg),
June 5-9 2006.

[79] Kittur, A., Chi, E. H., Pendleton, B. A., Suh, B., and Mytkowicz,

T., “Power of the few vs. wisdom of the crowd: Wikipedia and the rise of the
bourgeoisie,” 2007.

[80] Krikellas, K., Elnikety, S., Vagena, Z., and Hodson, O., “Strongly
consistent replication for a bargain,” in ICDE, 2010.

[81] Lagogiannis, G., Panagis, Y., Sioutas, S., and Tsakalidis, A., “A
survey of persistent data structures,” in ICCOMP’05: Proceedings of the
9th WSEAS International Conference on Computers, (Stevens Point, Wiscon-
sin, USA), pp. 1–6, World Scientific and Engineering Academy and Society
(WSEAS), 2005.

[82] Lamport, L., “Time, clocks, and the ordering of events in a distributed sys-
tem,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[83] Laurent, A. M. S., Understanding Open Source and Free Software Licensing.
O’Reilly Media, Inc., 2004.

[84] Leone, S., Hodel-Widmer, T. B., Böhlen, M. H., and Dittrich, K. R.,
“Tendax, a collaborative database-based real-time editor system,” in EDBT,
pp. 1135–1138, 2006.

[85] Li, D. and Li, R., “Preserving operation effects relation in group editors,” in
CSCW ’04: Proceedings of the 2004 ACM conference on Computer supported
cooperative work, (New York, NY, USA), pp. 457–466, ACM, 2004.

[86] Li, D. and Li, R., “An operational transformation algorithm and performance
evaluation,” Comput. Supported Coop. Work, vol. 17, no. 5-6, pp. 469–508,
2008.

[87] Li, R. and Li, D., “A new operational transformation framework for real-time
group editors,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3, pp. 307–319,
2007.

[88] Mancini, L. V., Ray, I., Jajodia, S., and Bertino, E., “Flexible trans-
action dependencies in database systems,” Distrib. Parallel Databases, vol. 8,
no. 4, pp. 399–446, 2000.

[89] Mehrotra, S., Rastogi, R., Silberschatz, A., andKorth, H., “A trans-
action model for multidatabase systems,” pp. 56 –63, jun 1992.

112

[90] Moss, J. E. B., “Nested transactions: An approach to reliable distributed
computing,” in International Conference on Management of Data, 1981.

[91] Myers, E. W., “An o(nd) difference algorithm and its variations,” Algorith-
mica, vol. 1, pp. 251–266, 1986.

[92] Newman-Wolfe, R. E., Webb, M. L., and Montes, M., “Implicit lock-
ing in the ensemble concurrent object-oriented graphics editor,” in CSCW ’92:
Proceedings of the 1992 ACM conference on Computer-supported cooperative
work, (New York, NY, USA), pp. 265–272, ACM, 1992.

[93] Nichols, D. A., Curtis, P., Dixon, M., and Lamping, J., “High-latency,
low-bandwidth windowing in the jupiter collaboration system,” in UIST ’95:
Proceedings of the 8th annual ACM symposium on User interface and software
technology, (New York, NY, USA), pp. 111–120, ACM, 1995.

[94] Noël, S. and Robert, J.-M., “Empirical study on collaborative writing:
What do co-authors do, use, and like?,” Comput. Supported Coop. Work, vol. 13,
no. 1, pp. 63–89, 2004.

[95] Olson, M. A., Bostic, K., and Seltzer, M., “Berkeley db,” in ATEC ’99:
Proceedings of the annual conference on USENIX Annual Technical Conference,
(Berkeley, CA, USA), pp. 43–43, USENIX Association, 1999.

[96] Ortega, F. and Gonzalez Barahona, J. M., “Quantitative analysis of
thewikipedia community of users,” in Proceedings of the 2007 international
symposium on Wikis, WikiSym ’07, (New York, NY, USA), pp. 75–86, ACM,
2007.

[97] Oster, G., Urso, P., Molli, P., and Imine, A., “Data consistency for p2p
collaborative editing,” in CSCW ’06: Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, (New York, NY, USA),
pp. 259–268, ACM, 2006.

[98] Oster, G., Molli, P.,Urso, P., and Imine, A., “Tombstone transformation
functions for ensuring consistency in collaborative editing systems,” pp. 1 –10,
nov. 2006.

[99] Oster, G., Urso, P., Molli, P., and Imine, A., “Data Consistency for P2P
Collaborative Editing,” in Proceedings of the ACM Conference on Computer-
Supported Cooperative Work - CSCW 2006, (Banff, Alberta, Canada), pp. 259–
267, ACM Press, nov 2006.

[100] Preguica, N., Marques, J. M., Shapiro, M., and Letia, M., “A com-
mutative replicated data type for cooperative editing,” Distributed Computing
Systems, International Conference on, vol. 0, pp. 395–403, 2009.

113

[101] Priedhorsky, R., Chen, J., Lam, S. T. K., Panciera, K., Terveen,

L., and Riedl, J., “Creating, destroying, and restoring value in wikipedia,” in
GROUP ’07: Proceedings of the 2007 international ACM conference on Sup-
porting group work, (New York, NY, USA), pp. 259–268, ACM, 2007.

[102] Pu, C., Kaiser, G. E., and Hutchinson, N. C., “Split-transactions for
open-ended activities,” in VLDB ’88: Proceedings of the 14th International
Conference on Very Large Data Bases, (San Francisco, CA, USA), pp. 26–37,
Morgan Kaufmann Publishers Inc., 1988.

[103] Ressel, M., Nitsche-Ruhland, D., and Gunzenhäuser, R., “An inte-
grating, transformation-oriented approach to concurrency control and undo in
group editors,” in CSCW ’96: Proceedings of the 1996 ACM conference on Com-
puter supported cooperative work, (New York, NY, USA), pp. 288–297, ACM,
1996.

[104] Roddick, J. F. and Patrick, J. D., “Temporal semantics in information
systems: a survey,” Inf. Syst., vol. 17, pp. 249–267, May 1992.

[105] Saad, Y., SPARSKIT: a basic tool kit for sparse matrix computations - Version
2. 1994.

[106] Schwartz, A., “Who writes wikipedia?.” http://www.aaronsw.com/weblog/
whowriteswikipedia, 2006.

[107] Segev, A. and Gunadhi, H., “Efficient indexing methods for temporal re-
lations,” IEEE Trans. on Knowl. and Data Eng., vol. 5, pp. 496–509, June
1993.

[108] Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J.,
and Naughton, J. F., “Relational databases for querying xml documents:
Limitations and opportunities,” in VLDB ’99: Proceedings of the 25th Inter-
national Conference on Very Large Data Bases, (San Francisco, CA, USA),
pp. 302–314, Morgan Kaufmann Publishers Inc., 1999.

[109] Silberstein, A., He, H., Yi, K., and Yang, J., “Boxes: Efficient mainte-
nance of order-based labeling for dynamic xml data,” in ICDE ’05: Proceedings
of the 21st International Conference on Data Engineering, (Washington, DC,
USA), pp. 285–296, IEEE Computer Society, 2005.

[110] Simmhan, Y. L., Plale, B., and Gannon, D., “A survey of data provenance
in e-science,” SIGMOD Rec., vol. 34, pp. 31–36, September 2005.

[111] Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S.,
Hachem, N., and Helland, P., “The end of an architectural era: (it’s time
for a complete rewrite),” in VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pp. 1150–1160, VLDB Endowment, 2007.

114

[112] Stonebraker, M., Stettner, H., Lynn, N., Kalash, J., and Guttman,

A., “Document processing in a relational database system,” ACM Trans. Inf.
Syst., vol. 1, no. 2, pp. 143–158, 1983.

[113] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D., “Achieving con-
vergence, causality preservation, and intention preservation in real-time coop-
erative editing systems,” ACM Trans. Comput.-Hum. Interact., vol. 5, no. 1,
pp. 63–108, 1998.

[114] Sun, D. and Sun, C., “Context-based operational transformation in dis-
tributed collaborative editing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, pp. 1454–1470, 2009.

[115] Tammaro, S. G., Mosier, J. N., Goodwin, N. C., and Spitz, G., “Col-
laborative writing is hard to support: A field study of collaborative writing,”
Comput. Supported Coop. Work, vol. 6, no. 1, pp. 19–51, 1997.

[116] Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J.,
Shekita, E., and Zhang, C., “Storing and querying ordered xml using a
relational database system,” in SIGMOD ’02: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 204–215, ACM, 2002.

[117] Tichy, W. F., “Rcs—a system for version control,” Softw. Pract. Exper.,
vol. 15, no. 7, pp. 637–654, 1985.

[118] Tolone, W., Ahn, G.-J., Pai, T., and Hong, S.-P., “Access control in
collaborative systems,” ACM Comput. Surv., vol. 37, no. 1, pp. 29–41, 2005.

[119] Tropashko, V., “Nested intervals tree encoding in sql,” SIGMOD Rec.,
vol. 34, no. 2, pp. 47–52, 2005.

[120] van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster,

L., Schimm, G., and Weijters, A. J. M. M., “Workflow mining: a survey
of issues and approaches,” Data Knowlwdge Engineering, vol. 47, pp. 237–267,
November 2003.

[121] Viégas, F. B., Wattenberg, M., andDave, K., “Studying cooperation and
conflict between authors with history flow visualizations,” in CHI ’04: Proceed-
ings of the SIGCHI conference on Human factors in computing systems, (New
York, NY, USA), pp. 575–582, ACM, 2004.

[122] Voss, J., “Measuring wikipedia,” in Proceedings of the International Confer-
ence of the International Society for Scientometrics and Informetrics (ISSI),
no. 10, (Stockholm), 2005.

[123] Weikum, G. and Vossen, G., Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001.

115

[124] Weiss, S., Urso, P., and Molli, P., “Logoot: A scalable optimistic repli-
cation algorithm for collaborative editing on p2p networks,” in ICDCS ’09:
Proceedings of the 2009 29th IEEE International Conference on Distributed
Computing Systems, (Washington, DC, USA), pp. 404–412, IEEE Computer
Society, 2009.

[125] West, A. G., Kannan, S., and Lee, I., “Detecting wikipedia vandalism via
spatio-temporal analysis of revision metadata?,” in Proceedings of the Third
European Workshop on System Security, EUROSEC ’10, (New York, NY, USA),
pp. 22–28, ACM, 2010.

[126] Wu, Q., Irani, D., Pu, C., and Ramaswamy, L., “Elusive vandalism de-
tection at wikipedia: A text stability-based approach,” in Proceeding of the
19th ACM conference on Information and knowledge management (CIKM ’10),
2010.

[127] Wu, Q. and Pu, C., “Modeling and implementing collaborative text editing
systems with transactional techniques,” International Conference on Collab-
orative Computing: Networking, Applications and Worksharing (Collaborate-
Com’10), 2010.

[128] Wu, Q., Pu, C., and Ferreira, J. E., “A partial persistent data structure to
support consistent shared access in collaborative editing applications,” in 26th
IEEE International Conference on Data Engineering (ICDE’10), 2010.

[129] Wu, Q., Pu, C., and Irani, D., “Cosmos: a wiki data management sys-
tem,” in Proceedings of the 5th International Symposium on Wikis and Open
Collaboration (WikiSym ’09), (New York, NY, USA), pp. 1–2, ACM, 2009.

[130] Wu, Q., Pu, C., Sahai, A., Barga, R., and Jung, G., “Dscweaver:
Synchronization-constraint aspect extension to procedural process specification
languages,” in Journal of Web Service Research, pp. 320–330, 2008.

[131] Wu, Q., Pu, C., Sahai, A., and Barga, R. S., “Categorization and opti-
mization of synchronization dependencies in business processes,” in Proceedings
of the 23rd International Conference on Data Engineering (ICDE’07), pp. 306–
315, 2007.

[132] Wu, Q. and Sahai, A., “Dag synchronization constraint language for busi-
ness processes,” in Proceedings of the The 8th IEEE International Conference
on E-Commerce Technology and The 3rd IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services (CEC’06), (Washington,
DC, USA), IEEE Computer Society, 2006.

[133] Xia, S., Sun, D., Sun, C., Chen, D., and Shen, H., “Leveraging single-user
applications for multi-user collaboration: the coword approach,” in CSCW ’04:
Proceedings of the 2004 ACM conference on Computer supported cooperative
work, pp. 162–171, 2004.

116

[134] Xu, L., Ling, T. W., Wu, H., and Bao, Z., “Dde: from dewey to a fully
dynamic xml labeling scheme,” in SIGMOD ’09: Proceedings of the 35th SIG-
MOD international conference on Management of data, (New York, NY, USA),
pp. 719–730, ACM, 2009.

[135] Zobel, J. and Moffat, A., “Inverted files for text search engines,” ACM
Comput. Surv., vol. 38, no. 2, p. 6, 2006.

117

