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SUMMARY

Sketching techniques are widely adopted in network applications. Sketching algorithms

“encode” data into succinct data structures that can later be accessed and “decoded” for

various purposes, such as network measurement, accounting, anomaly detection and etc.

Bloom filters and counter braids are two well-known representatives in this category. Those

sketching algorithms usually need to strike a tradeoff between performance (how much in-

formation can be revealed and how fast) and cost (storage, transmission and computation).

This dissertation is dedicated to the research and development of several sketching tech-

niques including improved forms of stateful Bloom Filters, Statistical Counter Arrays and

Error Estimating Codes.

Bloom filter is a space-efficient randomized data structure for approximately represent-

ing a set in order to support membership queries. Bloom filter and its variants have found

widespread use in many networking applications, where it is important to minimize the cost

of storing and communicating network data. In this thesis, we propose a family of Bloom

Filter variants augmented by rank-indexing method. We will show such augmentation can

bring a significant reduction of space and also the number of memory accesses, especially

when deletions of set elements from the Bloom Filter need to be supported.

Exact active counter array is another important building block in many sketching al-

gorithms, where storage cost of the array is of paramount concern. Previous approaches

reduce the storage costs while either losing accuracy or supporting only passive measure-

ments. In this thesis, we propose an exact statistics counter array architecture that can

support active measurements (real-time read and write). It also leverages the aforemen-

tioned rank-indexing method and exploits statistical multiplexing to minimize the storage
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costs of the counter array.

Error estimating coding (EEC) has recently been established as an important tool to es-

timate bit error rates in the transmission of packets over wireless links. In essence, the EEC

problem is also a sketching problem, since the EEC codes can be viewed as a sketch of the

packet sent, which is decoded by the receiver to estimate bit error rate. In this thesis, we will

first investigate the asymptotic bound of error estimating coding by viewing the problem

from two-party computation perspective and then investigate its coding/decoding efficiency

using Fisher information analysis. Further, we develop several sketching techniques includ-

ing Enhanced tug-of-war(EToW) sketch and the generalized EEC (gEEC)sketch family

which can achieve around 70% reduction of sketch size with similar estimation accuracies.

For all solutions proposed above, we will use theoretical tools such as information the-

ory and communication complexity to investigate how far our proposed solutions are away

from the theoretical optimal. We will show that the proposed techniques are asymptotically

or empirically very close to the theoretical bounds.

xiv



CHAPTER I

INTRODUCTION

In this dissertation research, we will focus on analyzing and improving several “sketching”

algorithms which are important in a wide variety of network applications. Those sketching

algorithms “encode” the information of packets into some succinct data structures which

will be later accessed and “decoded” for various purposes, such as network measurement,

accounting and anomaly detection. Bloom Filter, statistics counter array and error estimat-

ing codes are three such sketch data structures, which will be the focus of this dissertation

research. Bloom Filter[5] is a data structure which approximately encodes the information

of a set for set membership queries. Applications which employs the Bloom Filter can

query the Bloom Filter to “decode” whether an arbitrary item belongs to the Bloom Filter.

Statistics counter array (such as counter braids [46]) is a data structure that encodes the

values of an array of statistics counters approximately or accurately. Applications which

employ this data structure need to “decode” the counter value(s) either online or offline.

Error estimating code [13] is a data structure which partially encodes the information of

a packet, in such a way that if certain number of bits in the packet are flipped later on,

this number can be estimated from the code. In summary, those sketching algorithms all

succinctly encodes certain information about packets for later accesses.

Those sketching algorithms play an fundamentally important role in overcoming major

resource bottlenecks in networking applications. The most typical bottleneck in high-speed

router applications is the limited amount of expensive on-chip memory (SRAM), the lim-

ited bandwidth and high latency between on-chip processors and off-chip memory, and

the limited off-chip memory size. In web caching and network measurement [9, 22, 10],

Bloom Filters[5] are therefore employed to filter out invalid lookups to the slower external

1



or remote memories or disks, which will greatly save the bandwidth to the slower storage

devices. As for the statistics counter array problem, since it is too costly to naı̈vely im-

plement the counter array on the scale of millions of flows, several different algorithms,

such as counter braids [46], approximate counting[17] , have been proposed to make more

efficient utilizations of the precious on-chip resources.The last problem we will visit in this

thesis is the error estimating code problem[13], which was proposed to enable the receiver

to directly infer bit error rate from the received packet and codes, overcomes the limita-

tion that the MAC layer can only infer the bit error rate from either indirect sources such

as packet loss ratio or S/N ratio or from some special hardware such as the SoftPHY in

[64, 36].

Due to such resource limitations, the implementation of those sketching algorithms

need to strike a tradeoff between performance (how much information can be revealed and

how fast) and cost (storage, transmission and computation). Although the three sketching

problems listed above, Bloom Filter, counter array and error estimating code, look different

from the perspective of either design or application area, and the limitations/bottlenecks

faced by those three applications are also not identical, they share similar characteristics

from an algorithmic perspective: smaller sketching size is important (with the same or

better functionalities) for saving either the precious on-chip resources or the transmission

overhead.

Although the sketching algorithms mentioned above are motivated and proposed al-

ready with better space efficiency in mind, we found that they are far from the optimal,

especially when some additional functionalities need to be supported. The theme of this

dissertation research is not to propose new sketching problems, but to explore the space-

saving and performance-improving spaces for those established important sketching prob-

lems from a practical algorithmic perspective. In short, we aim to design space-efficient

solutions for the three problems listed above.

In general, for all three problems listed above, we will follow the same methodology.

2



First, we will thoroughly analyze the existing solution(s) and identify some promising

directions. Second, we will design new solution(s) often with intuitions and techniques

brought in from some other areas. We will see that although the underlying problems are

very different from one another, they share some key ideas and techniques such as “statis-

tical multiplexing” and rank-indexing.

Third, we will rigourously analyze the average or statistically worst-cases of the scheme

and will optimize and evaluate our proposed solutions based on these analysis results. Fi-

nally, we will explore the question of how far the proposed solutions are from the optimal

in theory, which might shed light on further innovations.

In the next three subsections, we will highlight our storylines on the three aforemen-

tioned sketching problems followed by organization of the thesis.

1.1 Highlights of this thesis
1.1.1 Bloom Filter Alternative

We first apply the methodology presented above on the Bloom filter problem. Bloom Filter

is a space-efficient randomized data structure for approximating a set in order to support

membership queries. Bloom filter and its variants have found widespread use in many net-

working applications [9]. The most classical and typical application scenario of Bloom

Filter serves as pre-lookup filter before a lookup into a large table in slower memory/disk.

Bloom filter can filter out most of the invalid requests (requests for items that are not in

the table) and hence be able to greatly reduce the traffic into slower memory/disk. Bloom

Filter is also widely employed in many newly proposed designs, including web caching,

packet/resource routing, P2P collaborating, network measurement, deep packet inspection,

etc. Whenever and wherever a succinct data sketch is needed and approximation is al-

lowed, usually Bloom Filter will be a good candidate, while how much improvement in

performance can be achieved depends on the particular application scenario. In most ap-

plications scenarios of Bloom Filter, it is important to reduce space cost.

3



The original design of Bloom Filter is just a binary array with k hash functions and

supports insertion only. Due to its wide applicabilities, many variants, such as counting

Bloom filter (CBF) [22], Spectral Bloom Filter [14], the Approximate Concurrent State

Machine [6] (also called a stateful Bloom filter), the Bloomier filter [11], etc, have been

proposed to support versatile additional functionalities and can be optimized for different

application scenarios.

Due to the fundamental importance of Bloom Filter, we start this dissertation work by

re-visiting the Bloom Filter design and find that the Bloom Filter problem should have

the potential to be further improved from the memory-saving perspective. We start with an

alternative approach to Bloom filter design, namely the fingerprint hash-table, and augment

it with a special bit-operation trick called rank-indexed hashing. We will show this family

of constructions result in a significant reduction in space and less memory accesses and

better memory access locality, especially when deletions need to be supported. We will also

employ some large-deviation techniques to perform a tail-bound analysis of the proposed

scheme.

1.1.2 Exact Active Counter Array

The next problem we will visit is the design of exact active counter array. Statistical counter

array is another important building block in many sketching applications, where is also im-

portant to save storage cost. Large-scale array of counters (millions or more) are needed in

schemes ranging from the basic packet counting features of core network devices to some

advanced network data streaming algorithms for network measurement and troubleshoot-

ing. Previous approaches can reduce the storage cost in cost of either losing accuracy or

only supporting passive measurements[56, 53, 55, 70, 49, 17, 58].

In Chapter 3, we will propose an exact and active solution. Similar to the Bloom filter

built through rank-indexed hashing, our proposed solution also leverages the rank-indexing

method and exploits statistical multiplexing to save the storage costs of counter values. A
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tail-bound analysis of the worst case scenarios is provided. Different from the Bloom Filter

case, the information theory limit of the counter array problem is non-trivial and hence we

will research this limit from a few different angles.

1.1.3 Error Estimating Coding

The third problem we will visit in this dissertation is the design and analysis of error es-

timating coding. Error estimating coding (EEC) [13] has recently been established as

an important tool to estimate bit error rates in the transmission of packets over wireless

links. The concept of EEC breaks the long-held design philosophy that only wants to deal

with fully correct data, through the correction capability provided by error correcting code

(ECC). In contrast of ECC, EEC aims to use much smaller overhead to only estimate the

number of errors while not correct them. It was shown in [13] that, if the BER in pack-

ets can be accurately estimated, important operations in wireless networks such as packet

re-scheduling, routing, and carrier selection can all be performed with greater efficiency.

In essence, the EEC codeword is a sketch of the packet. The receiver will decode the

binary error rate from the packet received by “comparing” the received data part and sketch

part. Following the same methodology as the previous problems we have visited, it’s nat-

ural to ask how good is the existing solution proposed in [13] and whether possible to

improve it. In Chapter 4, we visit the EEC problem from a few different angles. Firstly, we

cast this BER estimation problem into the rich theoretical framework of two-party compu-

tation. This perspective will bring us a proof of the asymptotic optimality of the original

scheme and also intuitions in designing new sketch. We found that a classical solution to

the two-party computation of hamming distance, tug-of-war sketch, although not directly

applicable, can be leveraged to build a new sketching scheme, which we called Enhanced

tug-of-war (EToW) sketch. EToW sketch can deliver similar performance with around

60% reduction of size, along with some additional benefits such as simpler estimator and

numerically predictable performance.
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Secondly, we follow up with a deeper and more important question whether EEC has

achieved the desired optimal space-accuracy tradeoff. We leveraged the Fisher informa-

tion analysis tool to analyze the potential of the original EEC design and find that actually

the variance achieved by the original EEC’s estimator is much larger than the Cramer-Rao

lower bound, which means there’s a lot of inefficiency inside the original EEC’s estima-

tor. We hence proposed a new estimator which is close to Cramer-Rao bound empirically.

Moreover, we further find that the EToW sketch newly proposed by us and the original EEC

sketch can subsumed into a generalized family of sketches, which we call generalized-EEC

(gEEC) family. We developed an analysis framework and estimator for gEEC, which shed

light on deeper understanding of the problem. Through the unified framework of gEEC,

we found that some parameterizations of gEEC (similar to EToW, but not needing the ex-

tra sketch error detection bits) can further improve the estimation efficiency by another

25-35 % under certain circumstances. Moreover, gEEC can be flexibly configured for dif-

ferent scenarios than its two “degenerate” cases (EEC and EToW).

1.2 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we will present our

rank-index hashing construction of Bloom Filter. We will first overview the problem in

Section 2.1. Section 2.2 summarizes background material on Bloom filters and fingerprint

hash table constructions. Section 2.3 describes our rank-indexed hashing method, which

will be also the foundation of the BRICK scheme to be presented in Section 3.3. Sec-

tion 2.4 establishes tail bound probabilities that allow us to bound and optimize the storage

cost. Section 2.5 evaluates our scheme by presenting numerical results under various pa-

rameter settings, including results for both standard and counting Bloom filters. Section 2.6

combines the rank-indexing with the d-left hashing to obtain more savings in memory cost.

Chapter 3 presents our rank-indexing-based statistics counter architecture. We firstly

overviews the problem in Section 3.1 . In Section 3.3, we describe the design of our scheme
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in detail. In Section 3.4, we establish the tail probabilities that allow us to bound and opti-

mize the SRAM requirement. In Section 3.5, we derive several lower bounds on memory

usage for counters to help us understand how far we are from the optimal. In Section 3.6,

we evaluate our scheme by presenting numerical results on memory costs and tail proba-

bilities under various parameter settings, including those extracted from real-world traffic

traces.

Chapter 4 presents our approaches and results on error estimating coding. The EEC

problem and our approaches are firstly overviewed in Section 4.1.Problem statement, no-

tations, some background presentation and the related work most pertinent to this disser-

tation work are presented in Section 4.2. In section 4.3 we analyze the asymptotic lower

bounds of error estimating codes, in terms of the number of overhead bits needed. Sec-

tion 4.4 describes the tug-of-war sketch, and gives a simple analysis to show that it can

accurately computes BER if the sketch is not corrupted by errors. In Section 4.5, we pro-

pose our enhanced tug-of-war sketch that removes the assumption of integrity of the sketch

and substantially improves its performance. In Section 4.6, we move on to use the Fisher

information tool to analyze the original EEC algorithm. In Section 4.7, we propose the

generalized EEC scheme and provide the corresponding analysis, estimator design and nu-

merical results. We evaluate the performance experimentally in Section 4.8.

We conclude the thesis and discuss possible directions of future work in Chapter 5.
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CHAPTER II

RANK-INDEXED HASHING: COMPACT CONSTRUCTION AND

ENHANCEMENT OF BLOOM FILTER

2.1 Problem Overview

A Bloom filter [5] is a space-efficient randomized data structure for approximating a set in

order to support membership queries. Although a Bloom filter may yield false positives,

saying an element is in the set when it is not, it provides a very compact representation that

can be configured to achieve sufficient accuracies for many applications. For a false posi-

tive probability of ε, an optimal configuration only requires 1.44(log 1/ε) bits per element,

independent of the number of elements in the set. For example, to achieve a false positive

probability of ε = 1%, only 10 bits of storage per element is required.

In recent years, there has been a huge surge in the popularity of Bloom filters and

variants, especially for network applications [9]. One variant is the counting Bloom filter

(CBF) [22], which allows the set to change dynamically via insertions and deletions of ele-

ments. Other generalizations of Bloom filters include Spectral Bloom Filter [14], which can

encode approximate counts, the Approximate Concurrent State Machine [6] (also called a

stateful Bloom filter), which can encode state information, and the Bloomier filter [11],

which can encode arbitrary functions by allowing one to associate values with a subset of

the domain elements. In general, many Bloom filter variants that permit the association

of values to elements mainly differ in the way how they encode and interpret the values

associated.

Although a standard Bloom filter construction is very space-efficient for simple mem-

bership queries, it is actually rather inefficient when generalized to support deletions or the

encoding of information. In particular, in the standard Bloom filter construction, an array
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of m bits is used to represent a set S of n elements, where m is chosen to be sufficiently

large to ensure a small false positive probability. For example, for a false positive probabil-

ity of ε = 1%, m is chosen to be 10 times n, resulting in an amortized storage cost of 10 bits

per element. When this standard construction is generalized to encode additional informa-

tion, an array of m locations is used instead of bits. For example, in the counting Bloom

filter application where a counter is associated with each location to support insertions and

deletions, four counter bits are often used to provide a sufficient level of accuracy [22].

However, this blows up the storage requirement by a factor of four over a standard Bloom

filter.

Alternatively, it is well-known that a hash table construction with fingerprints can be

used to provide the same functionality as a Bloom filter [9]. In particular, if the set S is

static and a perfect hash function can be constructed for a hash table with n locations, then

storing a fingerprint with only dlog 1/εe bits for each element at the corresponding loca-

tion would suffice to achieve a false positive probability of ε. Moreover, for Bloom filter

generalizations that support values associations, the encoding of the additional information

only needs to be stored once at the corresponding hash table location rather than requiring

the encoding of information across multiple locations as required in a standard Bloom fil-

ter construction, resulting in substantial savings in space. However, unfortunately, perfect

hashing is very difficult to construct and does not support dynamically changing sets.

In this thesis, we propose a new fingerprint hash table construction called Rank-Indexed

Hashing that provides a compact replacement for Bloom filters, counting Bloom filters,

and other Bloom filter variants. Conceptually, our starting point is a conventional chaining-

based hash table scheme. However, our proposed solution avoids the costly overhead of

pointer storage by employing an efficient indexing scheme called rank-indexing. Actually

rank-indexing is not a brand-new technique and has been employed by [18] and [59] to

construct compact data structures. The name “rank-indexing” here is from [4], which sum-

marizes this kind of operation as rank operation. Using rank-indexed hashing construction,
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we show that it is possible to outperform a standard Bloom filter construction in storage

cost for false positive probabilities at or below just 0.1%, which is significant since a stan-

dard Bloom filter construction is widely regarded as a very space-efficient data structure for

approximate membership query problems, and it is often desirable to have a false positive

probability smaller than 0.1% in many applications.

For the counting Bloom filter application, the rank-indexed hashing construction is able

to outperform a standard counting Bloom filter construction in storage cost by a factor of

three for a false positive probability of just 1%, and it is able to outperform a recently

proposed fingerprint hash table construction called d-left hashing [7] in storage cost by 27%

at the same false positive probability. Similar storage cost benefits are expected for other

Bloom filter variants. Especially for network applications, smaller storage requirement is a

central design metric because Bloom filters are often implemented using relatively scarce

and expensive (on-chip) SRAM. Although SRAM capacity continues to increase, the rate

of traffic growth continues to outpace transistor density, leading to an ever increasing need

to reduce storage requirements.

Since rank-indexing is a technique almost orthodox to d-left hashing, we could combine

those two techniques together to get even more memory savings. However, the memory

accesses are slightly increased and the performance guarantee is also not as strict as that of

the pure rank indexed hashing.

Rank-indexed hashing also has advantages against the well-known Compressed Bloom

Filter[47]. When used for transferring purpose, Bloom Filters constructed by rank-indexed

hashing could be transferred even more compactly. If using Compressed Bloom Filter, it

would need a very large original data array to achieve the same size for transferring.
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2.2 Background and Related Works
2.2.1 Bloom Filters, Counting Bloom Filter and Compressed Bloom Filter

A Bloom filter represents a set S of n elements from a universe U using an array of m

bits, denoted by φ[1], . . . , φ[m]. Initially, all positions φ[i] are set to 0. A Bloom filter

uses a group of k independent hash functions h1, . . . , hk with range [m] = {1, . . . ,m}. Each

hash function independently maps each element in the universe to a random number chosen

uniformly over the range. For each element x ∈ S , the bits φ[hi(x)] are set to 1 for 1 ≤ i ≤ k.

To check if an item x is in S , we check whether all hi(x) are set to 1. If not, then by

construction, x is not a member of S . If all hi(x) are set to 1, then x is assumed to be in S ,

which may yield a false positive.

The false positive probability for an element not in the set can be computed as

ε =
(
1 − (1 − 1/m)kn

)k
≈

(
1 − e−kn/m

)k
.

The storage requirement to satisfy a given false positive probability ε is minimized when

m =
1

ln 2
kn ≈ 1.44kn.

For example, when m/n = 10 and k = 7, the false positive probability is about 2−7 ≈ 0.008.

A Bloom filter allows for easy insertion, but not deletion. Deleting an element from a

Bloom filter cannot be done simply by reverting the corresponding ones back to zeros since

each bit may correspond to multiple elements. Deletion can be handled by using a counting

Bloom filter (CBF) [22], which uses an array of m counters instead of bits. Counters are

incremented on an insertion and decremented on a deletion. The counters are used to track

approximately the number of elements currently hashed to the corresponding locations.

To avoid overflow, counters must be chosen to be large enough. For most applications, 4

bits per counter have been shown to suffice [22]. However, the obvious disadvantage of

counting Bloom filters is that they appear to be quite wasteful of space. Using counters of

4 bits blows up the storage requirement by a factor of four over a standard Bloom filter,
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even though most counters will be zero. For example, with k = 7, 4m/n = 40 bits per

element are needed to achieve a false positive probability of about 2−7 ≈ 0.008.

Compressed Bloom Filter [47] is in fact a special application of standard Bloom Filter,

rather than a new data structure. It is discovered in [47] that, when the space of standard

Bloom Filter is minimized to 1.44kn, its compressed size, i.e. its information entropy, is

also maximized at the same time. In another word, if the space of standard Bloom Filter is

not optimized to the minimum, i.e. greater than 1.44kn, its size after compression would be

smaller than 1.44kn. The larger uncompressed size, the smaller compressed size. When the

original uncompressed space is infinitely large, the compressed size would reach the limit

kn. Hence, we could sacrifice the original space for smaller compressed size. This property

is favored for some online applications such as P2P sharing where the transferring cost is

much more important.

2.2.2 Fingerprint Hash Table Construction

An alternative construction of Bloom filters and counting Bloom filters is to use a hash

table with fingerprints. It is well known that if the set S is static, then one can achieve

essentially optimal performance by using a perfect hash function and fingerprints [9]. That

is, we can find a perfect hash function

P : U → [n]

that maps each element x ∈ S to a unique location in an array of size n, where [n] de-

notes the range {1, . . . , n}. Then, we simply need to store at each location a fingerprint with

dlog 1/εe bits that is computed according to some hash function F. A query on x requires

computing P(x) and F(x), and checking whether the fingerprint stored at P(x) matches

F(x). When x ∈ S , a correct response is given. But when x < S , a false positive occurs

with probability at most ε. This perfect hashing approach achieves the optimal space re-

quirement of dlog 1/εe bits per element. However, the problem with this approach is that

it does not allow the set S to change dynamically, and perfect hash functions are generally
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Figure 1: Hash table with chaining.

very difficult to compute for most applications.

An alternative to perfect hashing is to use an imperfect hash function. Suppose we use a

single (imperfect) hash function H : U → [B]×[R] to hash the elements in S to a hash table

with B buckets. For each element x ∈ S , H(x) returns two parts. The first part in the range

[B] corresponds to the bucket index in which the element should be placed. The second part

in the range of [R], referred to as the remainder, corresponds to a compressed fingerprint

that gets stored in the corresponding bucket. Using a single hash function, it is possible

(and likely) that two different elements x and y are mapped to the same bucket, resulting in

a collision. One way to resolve collisions is to allocate a fixed number of cells per bucket so

that the maximum load per bucket is no more than this fixed number with high probability.

However, the distribution of load using a single hash function can fluctuate dramatically

across buckets, leading to a lot of wasted space.

Another way to resolve collisions is to maintain a dynamically allocated linked list of

fingerprints that have been hashed to the same bucket, as shown in Figure 1. However, this
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conventional chained hashing approach is also rather inefficient in that the extra pointer

storage (required for each fingerprint) is very expensive. For n = 1 million elements and

a desired false positive probability of ε = 2−7, 7 bits per element would suffice assuming

perfect hashing, but another dlog ne = 20 bits would be required on average per element to

implement pointers, or another 40 bits per element to implement doubly linked list pointers

to support deletion, increasing the storage requirement by nearly seven-fold.

A third way that has been recently proposed [7] is to use a balanced allocation ap-

proach due to Vöcking [62, 63] called d-left hashing. By splitting a hash table into multi-

ple equally-sized subtables, and placing elements in the least-loaded subtable, d-left hash

tables can be dimensioned statically so that the average load per bucket is close to the

maximum load. A good configuration suggested in [7] is to use 4 subtables with a fixed

allocation corresponding to an expected maximum load of 8 fingerprints per bucket, with

an expected average load of 6 fingerprints per bucket. To check if x is in S , d-left hashing

requires checking x against all fingerprints stored in the corresponding buckets across all

the subtables, requiring the retrieval of 4 · 8 = 32 fingerprints, with matching on average

against 4 · 6 = 24 fingerprints expected. To achieve a desired false positive probability

of ε = 2−7, each cell must store a fingerprint with dlog 24/εe = dlog 24/2−7e = 12 bits,

adding 5 more bits per element to the “ideal” case of dlog 1/εe = 7 bits, which is signif-

icant. Further accounting for the expected fraction of unused cells corresponding to the

ratio of expected maximum load over average load, (8/6) · 12 = 16 bits per element would

be required, increasing over the ideal storage requirement of 7 bits by over two-fold.

2.3 Rank-Indexed Hashing
2.3.1 Basic Idea

In this section, we describe our proposed rank-indexed hashing approach. Conceptually,

our starting point is a conventional chaining-based hash table scheme. However, we employ

a two-level indexing scheme by using a single hash function H : U → [B] × [L] × [R] that
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Figure 2: Buckets and hash chain locations.

hashes each element in S into three parts; i.e., for each element x ∈ S , H(x) = (b, `, r).

As before, the first part b in the range of [B] corresponds to the bucket index in which the

element should be placed. The second part ` in the range of [L] corresponds to a hash

chain location within a bucket. This is conceptually depicted in Figure 2. The third part

r in the range of [R] corresponds to the (compressed) fingerprint that gets stored in the

corresponding hash chain location. In general, the number of buckets B times the number

of hash chain locations per bucket L can be different than the number of elements n. We

use

λ =
n

BL

to denote the expected average load per hash chain location. If λ = 1, then a fingerprint

with dlog 1/εe bits suffices to achieve a false positive probability of ε. In general, dlog λ/εe

bits are needed to achieve a false positive probability of ε.
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Given λ, the expected average load per bucket is simply λ ·L. Intuitively, each bucket is

dimensioned to store a fixed number of Z > (λ · L) fingerprints such that the actual load per

bucket is less than or equal to Z in a large fraction of buckets. We defer to Section 2.3.3 to

discuss the handling of cases when the actual load exceeds Z fingerprints. For the moment,

we will assume Z is chosen to ensure that actual load is less than or equal to Z with high

probability.

A key innovation in our proposed approach is an indexing method that allows us to

efficiently realize dynamic chaining at each hash chain location without the costly overhead

of pointer storage. We call this method rank-indexing, and this method is illustrated in

Figure 3. Consider a bucket with L = 8 hash chain locations, as shown in Figure 3(a).

In this example, suppose the longest chain has three fingerprints. We can conceptually

partition the fingerprints into three levels, in accordance to the depths of the fingerprints

in the corresponding chains. We then pack the fingerprints at each level together in a

corresponding contiguous subarray of fingerprints.

To locate fingerprints in a bucket, we maintain an index bitmap I. Conceptually, I is

divided into multiple parts I0, I1, . . . , Id, one part for each level of subarray. Suppose we

want to query for the fingerprint “1010101” at the hash chain location ` = 7. We first check

I0[7] to determine if there are fingerprints stored at ` = 7. If I0[7] is set to 1, as shown in a

shaded box in Figure 3(b), then it means there is a non-empty chain at ` = 7. If there are

no fingerprints at location `, then the corresponding I0[`] would be set to 0, which is shown

as a clear box.

In the example shown in Figure 3(b), the first fingerprint at ` = 7 is located at A1[3].

Rather than expending costly memory to store an explicit pointer from I0[7] to A1[3], we

dynamically compute the location by using an operator called rank(s, i), which returns the

number of ones in the range s[1] . . . s[i] in the bit-string s. Our proposed method exploits

the fact that the rank operator can be efficiently implemented using hardware-optimized

instructions that are increasingly available in modern processors. In particular, the rank
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Figure 3: Rank-indexed hashing.

17



operator can be efficiently implemented by combining a bitwise-AND instruction with an-

other operation called popcount(s), which returns the number of ones in the bit-string

s. Fortunately, the popcount instruction is becoming increasingly common in modern

microprocessors and network processors. For example, current generations of 64-bit x86

processors have this popcount instruction built-in [1, 2]. As we shall see in the evaluation

section, very compact constructions can be achieved by setting L ≤ 64. Since |I0| = L, we

can directly compute rank(I0, `) using hardwired 64-bit instructions.

Continuing with the example shown in Figure 3(b), we can compute the location of the

first fingerprint at location ` = 7 in A1 by invoking a1 = rank(I0, 7), which will return

a1 = 3. We can then match against the fingerprint stored at A1[a1] = A1[3]. Similarly, we

can check if the chain has ended by checking I1[3]. If I1[3] = 1, then we can locate the

next fingerprint in A2 by computing a2 = rank(I1, 3) = 2. Given that I2[2] = 1, we can

locate the next fingerprint in the chain in A3 by computing a3 = rank(I2, 2) = 1. We see

that the fingerprint “1010101” is found at A3[1]. Further, we see that the chain has ended

since I3[1] = 0. In general, if a chain has extended beyond level j (i.e., I j[a j] = 1), then

the index location to the next subarray A j+1 can be simply computed as a j+1 = rank(I j, a j).

Observe that |I0| ≥ |I1| ≥ · · · ≥ |Id|. Therefore, if we use L ≤ 64, then all rank operations

can be directly performed using 64-bit instructions.

2.3.2 Packed Bucket Organization

Thus far above, we provided a high-level description of the idea of rank-indexed hashing.

In practice, different buckets will have varying load distributions at the different hash chain

locations, which means the number of fingerprints at each level will also fluctuate across

buckets. To take advantage of statistical multiplexing, our bucket organization packs the

subarrays of fingerprints together into a contiguous array A. This is depicted in Figure 3(c).

This way, we can dimension a bucket to store a fixed number of Z fingerprints. The Z

fingerprint locations can be shared by all the fingerprints in a bucket regardless of their
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hash chain location (i.e., regardless of which chain a fingerprint is located). We can also fix

the size of the bitmap I = I0IH to L + Z bits with L bits set aside for I0 and Z bits set aside

for IH = I1I2 . . . Id. I0 is referred to as the base index, and IH is referred to as the higher

index. In the example shown in Figure 3(c), L is fixed at 8 and Z is fixed at 12.

Using this packed bucket organization, the size of a subarray A j and the corresponding

bitmap I j may dynamically change. The current size of a subarray can be readily computed

using the popcount operator. For example, the size of A1 and I1 shown in Figure 3(c) can

be computed as popcount(I0). In general, the size of A j+1 and I j+1 can be computed as

popcount(I j).

On insertion or deletion, a fingerprint may be added or removed, respectively (e.g., in

the case of a counting Bloom filter, a fingerprint is only removed when the correspond-

ing counter has been decremented to zero). The addition or removal of a fingerprint can

increase or decrease the size of a subarray by one. To maintain the packed bucket represen-

tation, up to Z −1 fingerprints may have to be shifted in the worst-case. Here again, we can

exploit available 64-bit instructions in modern processors to expedite this shifting process.

For example, if 8 bits are used to store a remainder, then a 64-bit instruction can shift eight

fingerprints at a time. Similarly, for the bitmap IH, up to Z − 1 bits may have to be shifted

in the worst-case, but 64 bits can be shifted at a time using 64-bit instructions.

2.3.3 Quasi-Dynamic Bucket Sizing

So far, we have assumed that the fixed number of Z fingerprints allocated to each bucket

is chosen to ensure that the actual load of a bucket is less than or equal to Z with high

probability. In Table 2.3.3, we consider an example configuration in which each bucket

has L = 64 hash chain locations and λ = 0.875. In this case, λ · L = 56 is also the

expected average load. Each table entry indicates the fraction of buckets that are expected

to have actual loads greater than the corresponding specified threshold. We see that if we

set Z = 64, then only 13% of the buckets are expected to overflow. If we set Z = 74, then
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Table 1: Table entries give the fraction of buckets with actual load greater than some
threshold for a bucket with L = 64 hash chain locations and λ = 0.875. Asymptotic tail
bounds are provided for three example thresholds.

Threshold Fraction
Load > 64 0.13
Load > 74 0.01
Load > 128 8e-17

just 1% of the buckets are expected to overflow. And if we set Z = 128, then no buckets is

expected to overflow with high probability.

Suppose we set Z = 64 fingerprint cells. This means that the expected fraction of un-

used fingerprint cells is just (64/56) = 1.14, providing a high degree of space efficiency.

However, in this example, we need a way to accommodate the possibility that 13% of buck-

ets might overflow. Conceptually, when a bucket overflows, meaning that all Z fingerprint

slots are already occupied on a new insertion, we dynamically extend the bucket size by dy-

namically linking another “chunk” of memory to it. We refer to these chunks of memories

as bucket extensions. This is illustrated in Figure 4.

To make the example more concrete, suppose B = 1000. Then we can statically allocate

memory for J2 = 0.13B = 130 second-level buckets. However, these second-level buckets

are much smaller than the first-level buckets (and there are fewer number of them). In

particular, referring to Table 2.3.3, we see that just 1% of the buckets are expected to have

actual loads greater than 74. Suppose we dimension these second-level buckets to hold

Z2 = 10 fingerprints. Here, we will use Z1 rather than Z to indicate the dimensioning of the

first-level buckets: i.e., Z1 = 64. Then, for buckets that have been extended to the second-

level, Z = Z1 + Z2 = 64 + 10 = 74 fingerprints are available. In addition, the second-level

buckets will provide an additional Z2 = 10 bits for extending the higher index IH. Only the

first-level bucket needs to store the base index I0. The linkage from a first-level bucket to a

second-level bucket can be implemented simply as a memory pointer, which is affordable
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Figure 4: Quasi-dynamic bucket sizing via bucket extensions.

since they are small relative to the size of the buckets, and bucket extensions only occur

with a small fraction of buckets. An extension flag can be used to indicate that a bucket has

been extended.

With the availability of second-level buckets, with Z = Z1 + Z2 = 74 fingerprints, then

just 1% of buckets are expected to have loads greater than two bucket levels. To accom-

modate these cases, we can statically allocate memory for J3 = 0.01B = 10 third-level

buckets. Suppose we dimension these third-level buckets to provide Z3 = 54 additional fin-

gerprints. Then, for buckets that have been extended to the third-level, Z = Z1 + Z2 + Z3 =

64 + 10 + 54 = 128 fingerprints are available. Third-level buckets will also provide an

additional Z3 = 54 bits for extending IH as well. For the parameters shown in Table 2.3.3,

as well as in practice, three bucket levels are sufficient, and each bucket level can be di-

mensioned differently.
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Once a bucket has been extended, access to the extended fingerprint array A requires

only a small modification. For example, suppose we want to access the fingerprint array

location A[Z1 + 1]. Then we simply just use the memory pointer as an offset in computing

the memory location.

2.4 Tail Bound Analysis

In this section, we establish a strict tail bound to bound the probability Po that the bucket

extensions for the overflowed buckets are insufficient.

Let random variable X(n)
i , 1 ≤ i ≤ B, denote the number of fingerprints inserted in the

i-th bucket. Let O2 denote the total number of buckets overflowed into the 2nd level bucket

extension array, i.e. O2 ≡
∑B

i=1 1
{X(n)

i >Z1}
. We want to bound the probability that O2 exceeds

the number of 2nd level bucket extensions, i.e. Pr[O2 > J2].

In general, we want to bound Pr[Ol > Jl], l = 2, 3, 4. Let W1 = Z1, W2 = Z1 + Z2 and

W3 = Z1 + Z2 + Z3. Then Ol =
∑B

i=1 1
{X(n)

i >Wl−1}
. Here we define J4 ≡ 0, and Pr[O4 > J4]

captures the event that the buckets expand out of the 3rd extension. So Po is bound by

Pr[Po] ≤
4∑

l=2

Pr[Ol > Jl]

In the following we show how to bound Pr[Ol > Jl], and we will use O,W, J instead of

Ol,Wl, Jl.

For an analogy, the statistical model for hashing n elements into B buckets is the same

as the classical balls-and-bins problem: n balls are thrown independently and uniformly at

random into B bins. Then random variable X(n)
i could be translated as the number of balls

ended up in the i-th bin after n balls are thrown.

Therefore, (X(n)
1 , . . . , X(n)

B ) follows the multinomial distribution. The marginal distribu-

tion for any X(n)
i is Binomial(n, 1

B), where Binomial(N, P) denotes the binomial distribution

resulting from N trials with success probability P. Since n is large and 1
B is small, X(n)

i can

be approximated by Poisson( n
B), where Poisson(λ) denotes the Poisson distribution with
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parameter λ.

A naive approach to calculating the probability Pr[O > J] is to regard X(n)
i as mutually

independent. In this case, the sum of the indicator of the events X(n)
i > Z would be under

binomial distribution and hence could be easily bounded. However, those random variable

X(n)
i are not totally independent since they are conditioned by

∑B
i=1 X(n)

i = n.

Fortunately, we have the following theorem to decouple the weak correlation among

(X(n)
1 , . . . , X(n)

B ) and bound our targeted probability.

Theorem 1. Let (X(n)
1 , . . . , X(n)

m ) follow the multinomial distribution of throwing n balls into

m bins. Let (Y (n)
1 , . . . ,Y (n)

m ) be independent and identically distributed random variables

with distribution Poisson( n
m ). Let f (x1, . . . , xm) be a nonnegative function which is increas-

ing in each argument separately. Then

E[ f (X(n)
1 , . . . , X(n)

m )] ≤ 2E[ f (Y (n)
1 , . . . ,Y (n)

m )]

.

Theorem 1 is derived from [48, Theorem 5.10] using stochastic ordering, which we

quote below.

Lemma 1. Let (X(n)
1 , . . . , X(n)

m ) and (Y (n)
1 , . . . ,Y (n)

m ) be the same as defined in Theorem 1.

Let f (x1, . . . , xm) be a nonnegative function such that E[ f (X(n)
1 , . . . , X(n)

m )] is monotonically

increasing in n. Then

E[ f (X(n)
1 , . . . , X(n)

m )] ≤ 2E[ f (Y (n)
1 , . . . ,Y (n)

m )]

.

In practice, we are concerned with the probability of some event A, whose indicator ran-

dom variable is f (X(n)
1 , . . . , X(n)

m ), where n is some parameter. So Pr[A] = E[ f (X(n)
1 , . . . , X(n)

m )].

In most cases it is usually intuitive to say that Pr[A] increases as n increases, for example

when A is some overflowing event, but it may not be trivial to prove so. On the other hand,
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it is usually trivial to see that f is an increasing function. Therefore we introduced the

easier-to-use Theorem 1, and we will prove it using stochastic ordering.

Stochastic ordering is a way to compare two random variables. Random variable X is

stochastically less than or equal to random variable Y , written X ≤st Y , iff Eφ(X) ≤ Eφ(Y)

for all increasing functions φ such that the expectations exits. An equivalent definition of

X ≤st Y is that Pr[X > t] ≤ Pr[Y > t],−∞ < t < ∞. The definition involving increasing

functions also applies to random vectors X = (X1, ..., Xh) and Y = (Y1, ...,Yh): X ≤st Y

iff Eφ(X) ≤ Eφ(Y) for all increasing functions φ such that the expectations exits. Here φ

is increasing means that it is increasing in each argument separately with other arguments

being fixed. This is equivalent to φ(X) ≤st φ(Y). Note this definition is a much stronger

condition than Pr[X1 > t1, ..., Xh > th] ≤ Pr[Y1 > t1, ...,Yh > th] for all t = (t1, ..., th) ∈ Rn.

Now we state without proof a fact that will be used to prove Proposition 5. Its proof

can be found in all books that deal with stochastic ordering [51].

Proposition 1. Let X and Y be two random variables (or vectors). X ≤st Y iff there exists

X′ and Y ′ such that µ(X′) = µ(X), µ(Y ′) = µ(Y), and Pr[X′ ≤ Y ′] = 1. Here µ(X) means

the distribution for X.

Now we are ready to prove the following proposition.

Proposition 2. Let (X(n)
1 , X(n)

2 , . . . , X(n)
m ) be the same as defined in Theorem 1. For any

0 ≤ n < n′, we have

(X(n)
1 , X(n)

2 , . . . , X(n)
m ) ≤st (X(n′)

1 , X(n′)
2 , . . . , X(n′)

m ).

Proof. It suffices to prove it for n′ = n + 1. Our idea is to find random variables Z and W

such that Z has the same distribution as (X(n)
1 , X(n)

2 , . . . , X(n)
m ), W has the same distribution

as (X(n+1)
1 , X(n+1)

2 , . . . , X(n+1)
m ), and Pr[Z ≤ W] = 1. We will use the probability model that

is generated by the “throwing n + 1 balls into m bins one-by-one” random process. Now

given any outcome ω in the probability space Ω, let Z(ω) = (Z1(ω),Z2(ω), ...,Zm(ω)), where

Z j(ω) is the number of balls in the jth bucket after we throw n balls into these m bins one by
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one. Now with all these n balls there, we throw the (n + 1)th ball uniformly randomly into

one of the bins. We define W(ω) as (W1(ω),W2(ω), ...,Wm(ω)), where W j(ω) is the number

of balls in the jth bin after we throw in the (n + 1)th ball. Clearly we have Z(ω) ≤ W(ω)

for any ω ∈ Ω and therefore Pr[Z ≤ W] = 1. Finally, we know from the property of the

“throwing n + 1 balls into m bin one-by-one” random process that Z and W have the same

distribution as (X(n)
1 , X(n)

2 , . . . , X(n)
m ) and (X(n+1)

1 , X(n+1)
2 , . . . , X(n+1)

m ) respectively. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let f (x1, . . . , xm) be an increasing function. For any 0 ≤ n < n′, we

have

(X(n)
1 , X(n)

2 , . . . , X(n)
m ) ≤st (X(n′)

1 , X(n′)
2 , . . . , X(n′)

m ) by Proposition 5. By definition of stochastic

ordering, we have E[ f (X(n)
1 , . . . , X(n)

m )] ≤ E[ f (X(n′)
1 , . . . , X(n′)

m )]. Therefore E[ f (X(n)
1 , . . . , X(n)

m )]

is monotonically increasing in n, and the theorem follows from Lemma 1.

�

Considering the following function

f (x1, . . . , xB) = 1{(∑B
i=1 1xi>W)>J}

The targeted probability we want to bound, Pr[O > J], could be regarded as the expec-

tation of f (X(n)
1 , . . . , X(n)

B ), i.e.

Pr[O > J] = E[ f (X(n)
1 , . . . , X(n)

B )].

f (x1, . . . , xB) is obviously an increasing function. Therefore E[ f (X1, . . . , XB)] ≤ 2E[ f (Y1, . . . ,YB)],

thanks to Theorem 1.

Yi’s are distributed as Poisson( n
B). Therefore Pr[Yi > W] = Poissontail( n

B ,W), where

Poissontail(λ,K) denotes the tail probability Pr[Y > K] where Y has distribution Poisson(λ).

E[ f (Y1, . . . ,YB)] denotes the probability that more than J of the events Yi > W happen.

Since these events are mutually independent, the probability is Binotail(B, Poissontail( n
B ,W), J),
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where Binotail(N, P,K) denotes the tail probability Pr[Z > K] where Z has distribution

Binomial(N, P).

So we get

Pr[O > J] ≤ 2Binotail(B, Poissontail(
n
B
,W), J). (1)

Pr[O4 > J4] is a special case since J4 = 0. We do not need theorem 1, and we have a

better bound

Pr[O4 > 0] = Pr[(max
i

X(n)
i ) > W3]

≤

B∑
i=1

Pr[X(n)
i > W3]

= B × Binotail(n,
1
B
,W3)

2.5 Evaluation

In this section, we present a set of numerical results computed from the tail bound theorems

that are derived in Section 2.4 and the appendix. For any targeted false positive probabil-

ity ε, we apply the tail bound theorems to derive optimal configurations under different

constraints.

One constraint we impose is on the parameter L. Ideally, larger buckets would lead to

better statistical multiplexing and better space savings. However, we constrain L to be at

most 64 to ensure that the rank and popcount operations described in Section 2.3 can be

directly implemented using hardware-optimized 64-bit instructions that are readily avail-

able in modern microprocessors and network processors. For example, current generations

of 64-bit x86 processors support such operations very efficiently [1, 2].

In Table 2, we present representative sizing results for rank-indexed hashing under dif-

ferent false positive probabilities. These sizing results assume n = 100, 000 elements and

a probability of Po = 10−10 that the bucket sizing is not enough to store new fingerprints.
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Table 2: Representative results for rank-indexed hashing under various parameter settings
(Po = 10−10, n = 105).

ε λ R L Z1 Z2 Z3 J2/B J3/B
1% 0.64 6 bits 60 45 8 45 17.9% 2.7%

0.1% 0.92 10 bits 64 63 17 50 36.0% 1.7%
0.01% 0.86 13 bits 61 59 13 48 23.3% 1.8%

In particular, the results presented are for false positive probabilities of ε = 1%, 0.1%, and

0.01%. Given the different parameter settings, we apply our tail bounds to optimize the

configurations to minimize storage cost. The derived configurations are in terms of the

load factor λ, the number of hash chain locations per bucket L, and the number of allocated

entries in the bucket and bucket extensions Z1, Z2, Z3.

For a configuration of these parameters, the amount of memory required is determined

as follows:

S1 = (L + Z1) + Z1r + (1 + blog J2c)

S2 = 1 + Z2 + Z2r + (1 + blog J3c)

S3 = 1 + Z3 + Z3r

S = BS1 + J2S2 + J3S3

Here, S1 is the storage requirement of one normal (first-level) bucket. The three additive

components correspond to the bitmap index, the fingerprints, and the pointer to bucket

extensions. (J2 is the number of pre-allocated second-level bucket extensions). S2 and

S3 are the size of the second-level and third-level bucket extensions. The one bit is for

indicating occupancy. Then the total memory cost S would be the sum of the storage

requirements for the B normal buckets, J2 second-level bucket extensions and J3 third-

level bucket extensions. Then the amortized storage cost per element can be computed as

S

n .

In Table 3 and Table 4, we compare results for the standard Bloom filter function [5]
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and for the counting Bloom filter function [22]. In addition to comparing with the standard

Bloom filter constructions, we also compare with a recently proposed fingerprint hash ta-

ble construction called d-left hashing [7, 6]. The standard Bloom filter functionality results

are shown in Table 3. In comparison to the d-left hashing construction, our rank-indexed

hashing results outperform it in storage cost by 23.2% to 29.5%. In comparison to the

standard Bloom filter construction, our rank-indexed hashing construction is able to out-

perform a standard Bloom filter construction in storage cost for false positive probabilities

at or below just 0.1%. This is significant since a standard Bloom filter construction is

widely regarded as a very space-efficient data structure for approximate membership query

problems, and it is often desirable to have a false positive probability smaller than 0.1% in

many applications.

Table 4 present the counting Bloom filter functionality results. In comparison to a

standard counting Bloom filter construction, our rank-indexed hashing construction is able

to outperform in storage cost by a factor of three for a false positive probability of just 1%,

and it is able to outperform the d-left hashing construction 22% to 27% at the same false

positive probabilities.

In table 5, we present another advantage of Rank-Indexed Bloom Filter, which could

save more space after “compression”. When used for transferring, there is no need to send

the vacant entries at the end of the higher index array and the fingerprint array in each

bucket. After removing all these vacant entries, the trimmed size is only S p = 1/λ + (r +

1) bits per item. It is sufficient to transfer these trimmed buckets without any additional

information, since the boundary of each array could be determined by counting the index

bitmaps. The trimmed size is smaller than the optimized standard Bloom Filter size. To

use Compressed Bloom Filter to achieve the same compression effect, much larger original

Bloom Filter size will be needed. In table 5, we could see that our Rank-Indexed scheme

could easily achieve very compact trimmed size, while a much larger original array is

needed for a Compressed Bloom Filter to achieve the same compression ratio.
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Table 3: Comparisons of storage cost (in bits) per element to achieve the same false posi-
tive probability ε for the standard Bloom filter function.

ε standard d-left Rank Comparison
vs. standard vs. d-left

1% 9.6 15.0 10.6 +10.1% −29.5%
0.1% 14.6 18.0 14.4 −1.1% −26.3%

0.01% 19.1 22.2 18.2 −4.4% −23.2%

Table 4: Comparisons of storage cost (in bits) per element to achieve the same false posi-
tive probability ε for the counting Bloom filter (CBF) function.

ε standard d-left Rank Comparison
CBF CBF CBF vs. standard vs. d-left

1% 38.3 17.6 13.0 −66% −27%
0.1% 58.4 22.3 16.8 −71% −24%

0.01% 76.3 26.4 20.6 −73% −22%

Since d-left Bloom Filter is also fingerprint hash-table based, it could also be “com-

pressed” similarly. However, its compression effect is much weaker, as also presented in

table 5.

Finally, storage cost comparisons are presented in Figure 5 and Figure 6 for false pos-

itive probabilities ranging from 10−1 to 10−7. As shown in these plots, the proposed rank-

indexing approach performs very competitively over this entire range.

2.6 Combination with d-left Hashing

As briefly introduced in Section 2.2.2, d-left hashing [63] is an efficient way to construct

Hash Table. It has been proposed to use d-left hashing to construct fingerprint-hash-table-

based Bloom Filter, called d-left Counting Bloom Filter [6]. However, in Section 2.2.2

we have provided a typical construction of d-left Bloom Filter and shown that it needs

considerable extra space. In this section, we will first generalize the analysis of memory

utilization of d-left Bloom Filter in Section 2.6.1, which will help readers to understand

the motivation of combining our rank-indexing with d-left Hashing. Then we will present

the Rank-Indexed d-left Bloom Filter in Section 2.6.2, and the evaluations of the combined
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Table 5: Comparison of transferring cost (in bits) per element against Compressed Bloom
Filter and d-left Bloom Filter

Packed Uncompressed Compression
ε Scheme Size Compression BF1 ratio2

1% Rank 8.6 30 89%
1% d-left 11.7 −−3 122%

0.1% Rank 12.1 150 83%
0.1% d-left 15.2 −−3 104%
0.01% Rank 15.2 1.3 × 103 79%
0.01% d-left 18.3 27 96%

1 “Uncompressed Compression BF” is the size of the uncompressed original array of a
Compressed Bloom Filter to achieve the same compression ratio.
2 “Compression ratio” is the ratio of the trimmed size of a Rank-Indexed or d-left scheme
vs. the size of an optimized standard Bloom Filter, under the same false positive rate.
3 Omitted since the trimmed size is still larger than the size of a corresponding optimized
standard Bloom Filter under the same false positive rate.

scheme in Section 2.6.3.

2.6.1 Analysis of Memory Utilization of d-left Bloom Filter

The typical construction of d-left Bloom Filter given in Section 2.2.2 and also in [6] is by 4

tables of buckets, 8 fingerprints per bucket and an average load of 6 fingerprints per bucket.

Suppose each fingerprint has x bits, the false positive probability would be:

ε = 4 × 6 × 2−x

The total storage per inserted item would be

8
6
× x

In short, 8
6 (log2(1/ε) + log2(4 × 6)) bits of storage per inserted item would be needed

by this typical construction. Would other settings of parameters improve the efficiency

of storage? The paper [6] doesn’t provide any reason for selecting the parameters above.

However we could calculate by ourselves.

Suppose we have d tables, average load of m items per bucket , n items to be inserted

in total, we need m + δ(d,m, n) per bucket to guarantee an extremely small probability of
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Figure 5: Graphical plot of storage cost (in bits) per element to achieve the different false
positive probabilities ε for the standard Bloom filter function.

bucket overflow, since there is no backup mechanism for bucket overflow in d-left Bloom

Filter. The memory needed per inserted item would be

(1 +
δ(d,m, n)

m
)(log2(1/ε) + log2 md) (2)

Unfortunately, there hasn’t been found any way to provide a solid and precise statistical

guarantee for δ(d,m, n).

In [8] Broder et al provides a fluid-model based method to numerically approximately

calculate the overflow probability. The nature of the method is to use differentiate equations

to “simulate” the process of insertion and get the expected fraction of buckets that have

more than an arbitrary number of elements inserted. In detail, it is to solve the following

equations
dxi, j

dt
= (xi−1, j − xi, j)

d∏
k= j+1

xi−1,k

j−1∏
k=1

xi,k
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with boundary conditions:

x0, j(t) = 1, for j = 1, ..., d

xk, j(0) = 0, for j = 1, ..., d; k > 0

The solution xi, j(t) would be the expected fraction of buckets in the jth table that have

at least i items , when Bt items have been inserted into a d-left hash table of B buckets in

each table.

We solve the equations above and summarize the results as the following: if we use

two choices (two tables), no matter how large m is, δ needs to be 4 to achieve an overflow

fraction lower than 10−20, i.e. we need 4 more entries per bucket to overcome fluctuation.

If we use three choices, δ is 3 . If we use four choices,δ is 2 . This result coincides with

Vocking’s asymptotical bound δ(d,m, n) = ln ln n
dφd

[63], where is asymptotically unrelated to

the particular value of m, which means buckets need almost the same size of extra space to

overcome fluctuations, when only the bucket size is different.

Intuitively, since δ(d,m, n) is almost a constant on m, it would benefit the memory

efficiency a lot if we enlarge the bucket size in d-left Bloom Filter. However, this intuition

is wrong.

In Figure 7, we summarize the relationship between the expected load per bucket and

the memory efficiency. We could observe that increasing bucket size from 8 items to 10

items could help a little bit and save around 0.5 bits per item, while still around 5 bits more

compared to the standard Bloom Filter (which is 11.5 bits per item for the false probability

of 0.4%). However, increasing the average load per bucket even more would help very

little. The reason is that, although large bucket would lead to relatively small extra space

per bucket, it would also increase the log2 md term in (2). In another word, larger bucket

size would not only increase the cost to access each fingerprint, but also contribute to more

false positives. Hence the 4-table-8-items-per-bucket design is almost the best for d-left

Bloom Filter. In one word, enlarging bucket size in d-left Bloom Filter could only improve

memory efficiency very little. For this reason, we resort to combining rank-indexing into
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Figure 7: memory savings through adjusting the size of bucket in d-left Bloom Filter, when
targeted false positive rate is 0.4%

d-left Bloom Filter.

2.6.2 Rank-Indexed d-left Bloom Filter

Although larger bucket might be a bad idea for a pure d-left Bloom Filter, rank-indexed

hashing would make some difference. The key idea of Rank-Indexed d-left Bloom Filter is

to use relatively larger bucket (say, 64) and then uses rank-indexing inside the bucket.

An illustration of Rank-Indexed d-left Bloom Filter is presented in Figure 8. Now we

have two tables. Each table has B buckets and hence 2B buckets in total. The structure

inside each bucket is the same as the rank-indexed bucket presented in Section 2.3. Thanks

to d-left hashing, here we no longer need the second and third level of bucket arrays since

the d-left hashing already guarantees a small overflow probability (although the guarantee

is theoretically less precise). Also thanks to rank-indexed hashing, we could have a larger

bucket that could easily support query and insertion and we also only need two tables
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Figure 8: An illustration of d-left Bloom Filter
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instead of four tables, which would reduce false positives and memory accesses.

The insertion and deletion procedures are multi-inherited from the original d-left Bloom

Filter and the original rank-indexed Bloom Filter. The procedure of selecting buckets to be

inserted or scanned is the same as the original d-left Bloom Filter, while the the operations

inside one bucket is the same as the original rank-indexed Bloom Filter.

The insertion procedure is as follows. For each element to be inserted, we still use a

single hash function H : U → [B] × [L] × [R] that hashes the element in S into three

parts H(x) = (b, `, r). Due to the d-left structure, we also need another random permutation

function H : [B] × [L] × [R] → [B] × [L] × [R] to map H(x) to another value Hp(H(x)) =

(bp, `p, rp). (please refer to [7] for the reason of this random permutation.) The next step

is to check two buckets, the bth bucket in the first table and bth
p bucket in the second table,

and select the one with the least occupancy to be inserted in. If two buckets have the same

total number of fingerprints inserted, select the one in the first table. In the end, insert the

fingerprints into the `th (or `pth if the second table is selected) chain within the selected

bucket. The d-left hashing principle guarantees that the probability that the bucket has no

place to be inserted would be extremely small.

The query and deletion procedures are very similar, and hence omitted to save space.

2.6.3 Evaluation and Discussion of Rank-Indexed d-left Bloom Filter

According to the result calculated based on the procedures presented in [8] and summarized

in Section 2.6.1, if we plan to have x fingerprints on average in one bucket, we only need x+

4 pre-allocated locations of fingerprints. Hence we could have the following representative

results presented in Table 6. In those representative results, we choose to select the same Z

as L, since this would enhance memory alignment.

In Table 6, S1 denotes the number of bits per bucket, S/n denotes the average number

of bits needed per inserted item. Those two are calculated based on the following formulas.
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Table 6: Representative results for rank-indexed d-left hashing Bloom Filter .
ε λ r L Z λL S1 S/n

1.5% 0.94 6 bits 64 64 60 512 8.5
1.4% 0.88 6 bits 32 32 28 256 9.1

0.09% 0.94 10 bits 64 64 60 768 12.8
0.09% 0.88 10 bits 32 32 28 384 13.7

0.011% 0.94 13 bits 64 64 60 960 16
0.011% 0.88 13 bits 64 32 60 480 17.1

Table 7: Comparisons of storage cost (in bits) per element to achieve the same false posi-
tive probability ε for the standard Bloom filter function.

ε d-left Rank Ranked Comparison
d-left vs. d-left vs. rank

1.5% 14.2 9.8 8.5 -40% -11%
0.09% 19.6 15.5 12.8 -34% -17%

0.011% 23.6 19.2 16 -32% -17%

We also compare the results of the rank-indexed d-left Bloom Filter against to the orig-

inal rank-indexed hashing Bloom Filter and the original d-left hashing Bloom Filter in

Table 8 and Table 7.

We could see that, after combining both rank-indexed hashing and d-left hashing to-

gether, we could even greatly save the memory usage. However, we should keep in mind

that d-left hashing is saving memory cost in cost of less memory locality (lookup at least

two buckets instead of one) and increased amortized access cost.

Table 8: Comparisons of storage cost (in bits) per element to achieve the same false posi-
tive probability ε for the counting Bloom filter (CBF) function.

ε d-left Rank Ranked d-left Comparison
CBF CBF CBF vs. d-left vs. rank

1% 17.7 13.2 10.7 − 49 % − 19 %
0.09% 24.5 18.3 14.9 − 39% − 19 %

0.011% 29.5 23.0 18.1 − 39 % − 21 %
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2.7 Conclusion

In this chapter, we have described a new fingerprint hash table construction that can achieve

the same functionalities as Bloom filters, counting Bloom filters, and other variants. The

construction is based on a new method called Rank-Indexed Hashing that can achieve very

compact representations. We have provided analysis and numerical evaluations to show

the storage performance of the proposed approach. In particular, a rank-indexed hashing

construction that offers the same functionality as a counting Bloom filter can be achieved

with a factor of three or more in space savings even for a false positive probability of just

1%. Even for a basic Bloom filter function that only supports membership queries, a rank-

indexed hashing construction requires less space for a false positive probability as high as

0.1%, which is significant since a standard Bloom filter construction is widely regarded as

extremely space-efficient for approximate membership problems.
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CHAPTER III

BRICK: RANK-INDEXING TECHNIQUE FOR EXACT ACTIVE

STATISTICS COUNTER ARRAY ARCHITECTURE

3.1 Problem Overview

It is widely accepted that network measurement is essential for the monitoring and con-

trol of large networks. For implementing various network measurement, router manage-

ment, and data streaming algorithms, there is often a need to maintain very large arrays

of statistics counters at wirespeeds (e.g., million counters for per-flow measurements). For

example, on a 40 Gb/s OC-768 link, a new packet can arrive every 8 ns and the correspond-

ing counter updates need to be completed within this time. While implementing large

counter arrays in SRAM can satisfy performance needs, the amount of SRAM required for

worst-case counter sizes is often both infeasible and impractical. Therefore, researchers

have actively sought alternative ways to realize large arrays of statistics counters at wire-

speeds [56, 53, 55, 70].

In particular, several SRAM-efficient designs of large counter arrays based on hybrid

SRAM/DRAM counter architectures have been proposed. Their baseline idea is to store

some lower order bits (e.g., 9 bits) of each counter in SRAM, and all its bits (e.g., 64 bits)

in DRAM. The increments are made only to these SRAM counters, and when the values of

SRAM counters become close to overflow, they will be scheduled to be “committed” back

to the corresponding DRAM counter. These schemes all significantly reduce the SRAM

cost. For example, the scheme by Zhao et al. [70] achieves the theoretically minimum

SRAM cost of between 4 to 6 bits per counter, when the speed difference between SRAM

and DRAM ranges between 10 (50ns/5ns) and 50 (100ns/2ns). However, in these schemes,

while writes can be done as fast as on-chip SRAM latencies (2 to 5ns), read accesses can
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only be done as slowly as DRAM latencies (e.g., 60 to 100ns). Therefore, such schemes

only solve the problem of so-called passive counters in which full counter values in general

do not need to be read out frequently (not until the end of a measurement epoch). Besides

the problem of slow reads, hybrid architectures also suffer from the problem of significantly

increasing the amount of traffic between SRAM (usually on-chip) and DRAM (usually

off-chip) across the system bus. This may become a serious concern in today’s network

processors, where system bus and DRAM bandwidth are already heavily utilized for other

packet processing functions [70].

While passive counters are good enough for many network monitoring applications,

a number of other applications require the maintenance of active counters, in which the

values of counters may need to be read out as frequently as they are incremented, typically

on a per packet basis. In many network data streaming algorithms [15, 21, 39, 40, 28, 67,

69], upon the arrival of each packet, values need to be read out from some counters to

decide on actions that need to be taken. For example, if Count-Min sketch [15] is used for

elephant detection, we need to read the counter values on a per packet basis because such

readings will decide whether a flow needs to be inserted into a priority queue (implemented

as a heap) that stores “candidate elephants”. A prior work on approximate active counters

[58] identifies several other data streaming algorithms that need to maintain active counters,

including multistage filters for elephant detection [21] and online hierarchical heavy hitter

identification [67]. Currently, all existing algorithms that use active counters implement

them as full-size SRAM counters. An efficient solution for exact active counters clearly

will save memory cost for all such applications.

3.1.1 Our approach and contributions

In this dissertation work, we propose the first solution to the open problem of how to

efficiently maintain exact active counters. Our objective is to design an exact counter array

scheme that allows for extremely fast read and write accesses (at on-chip SRAM speeds).
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However, these goals will clearly push us back to the origins of using an array of full-size

counters in SRAM if we do not impose any additional constraint on the counter values. Fast

read access demands that the counters reside entirely in SRAM and we can make the values

of each counter large enough (and random enough) so that each of them needs the worst-

case (full-size) counter size. Therefore we will solve our problem under a very natural and

reasonable constraint. We assume that the total number of increments, which is exactly the

sum of counter values in the array, is bounded by a constant M during the measurement

interval.

This constraint is a reasonable constraint for several reasons. First, this constraint is

natural since the number of increments is bounded by the maximum packet arrival rate

times the length of the measurement epoch. We can easily enforce an overall count sum

limit by limiting the length of the measurement epoch. Moreover, this constraint has been

assumed in designing other memory-efficient data structures such as Spectral Bloom Fil-

ters [14]. Furthermore, our scheme will work for arbitrarily large M values, although its

relative memory savings compared to full-size counters get gradually lower with larger M

values.

Let N be the total number of counters in the array. Then the ratio M
N corresponds to the

(worst-case) average value of a counter, which is indeed a more relevant parameter than

M for evaluation purposes, as it corresponds to the “per-counter workload”. We observe

that small M
N ratio is dictated by many real-world applications. For example, if we use a

Count-Min [15] sketch with ln 1
δ

arrays of e
ε

(e ≈ 2.718) counters each, for estimating the

sizes of TCP/UDP flows, then with probability at least 1 − δ, the CM-sketch overcounts (it

never under-counts) by at most Mε. Suppose we set δ to 0.1 and ε to 10−5 so that we use a

total of ln( 1
0.1 )× e

10−5 ≈ 6.259×105 counters. When the total number of increments M is set

to 108 and correspondingly the average counts per counter M
N is approximately 160, we can

guarantee that the error is no more than 1,000 (= 108×10−5) with probability at least 0.9.

However, 1,000 are considered very large errors and hence for practice we always want M
N
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Figure 9: BRICK wall (conceptual baseline scheme)

to be much smaller.

We emphasize that even when the ratio M
N is small, it is still important to figure out ways

to save memory, as naive implementations can be grossly wasteful. For example, let the to-

tal counts be M = 16 million and the number of counters be N = 1 million. In other words,

the average counter value M
N is 16. Since all increments can go to the same counter, fixed-

counter-size design would require a conservative counter size of lg(16 × 106) = 24 bits.

However, as we will show, our scheme can significantly reduce the SRAM requirement,

which is very important for ASIC implementations where SRAM cost is among the pri-

mary costs.

In this chapter, we present an exact active counter architecture called Bucketized (B)

Rank (R) Indexed (I) Counter (CK), or BRICK. It is built entirely in SRAM so that both

read and increment accesses can be processed at tens to hundreds of millions of packets per

second. In addition, since it is stored entirely in SRAM, it will not introduce traffic between

SRAM and DRAM. This makes it also a very attractive solution for passive counting appli-

cations in which the aforementioned problem of increased traffic over system bus caused

by the hybrid SRAM/DRAM architecture becomes a serious concern.

The basic idea of our scheme is intuitive and is based on a very familiar networking

concept: statistical multiplexing. Our idea is to bundle groups of a fixed number (let it

be 64 in this case) of counters, which is randomly selected from the array, into buckets.

We allocate just enough bits to each counter in the sense that if its current value is Ci, we

allocate blog2 Cic + 1 bits to it. Therefore, counters inside a bucket have variable widths.

Suppose the mean width of a counter averaged over the entire array is γ. By the law of
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large numbers, the total widths of counters in most of the buckets will be fairly close to

γ multiplied by the number of counters per bucket. Depicting each counter as a “brick”,

as shown in Figure 9, a section of the “brick wall” illustrates the effect of statistical multi-

plexing, where each horizontal layer of bricks (consisting of 64 of them) corresponds to a

bucket and the length of bricks corresponds to the real counter widths encoding flow sizes

in a real-world Internet packet trace (the USC trace in Section 3.6.2).

As we see in this figure, when we set the bucket size to be slightly longer than 64γ

(the vertical dashed line), the probability of the total widths of the bricks overflowing this

line is quite small; among the 20 buckets shown, only 1 of them has an overflow. Although

overflowed buckets need to be handled separately and will cost more memory, we can make

this probability small and the overall overflow cost is small and bounded. Therefore, our

memory consumption only needs to be slightly larger than 64γ per bucket.

This baseline approach is hard to implement in hardware in practice for two reasons.

First, we need to be able to randomly access (i.e., jump to) any counter with ease. Since

counters are of variable sizes, we still need to spend several bits per counter for the indexing

within the bucket. Note that being able to randomly access is different from being able

to delimit all these counters. The latter can be solved with by prefix-free coding (e.g.,

Huffman coding [16]) of the counter values. Those coding techniques would replace the

counter values with variable-length symbols, which could make the size of storage much

smaller while the overhead of accessing and modifying data much larger.

BRICK addresses these two difficulties with a little more overall SRAM cost. It allows

for very efficient read and expansion (for increments that increase the width of a counter

such as from 15 to 16). A key technique in our data structure is an indexing scheme

called rank indexing, borrowed from the compression techniques in [35, 18, 59, 33]. The

operations involved in reading and updating this data structure are not only simple for ASIC

implementations, but are also supported in modern processors through built-in instructions

such as “shift” and “popcount” so that software implementation is efficient (as the involved
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basic operations such as shift and popcount are supported by modern processors [1, 2]).

Therefore our scheme can be implemented efficiently both in hardware or software.

3.2 Background and Related works

In this section, we compare and contrast our work with previous approaches. One category

of approaches is based on the idea of a SRAM/DRAM hybrid architecture [56, 53, 55, 70].

The state of art scheme [70] only requires log2 µ bits per counter where µ is the speed

different between SRAM and DRAM. This translates into between 4 to 6 SRAM bits per

SRAM counter. However, the read can take quite long (say at least 100ns). Therefore,

these approaches only solve the passive counting problem.

Another category of approaches is existing active counter solutions [49, 17, 58], which

are all based on the approximate counting idea invented by Morris [49]. The idea is to

probabilistically increment a counter based on the current counter value. However, approx-

imate counting in general has a very large error margin when the number of bits used is

small because the possible estimation values are very sparsely distributed in the range of

possible counts. Therefore, when the counter values are small (say 5), its estimation can

have a very high relative error (well over 100%). This is not acceptable in network ac-

counting and data streaming applications where small counter values can be important for

overall measurement accuracy. In fact, when the (worst-case) average counter value M
N is

no more than 128, the SRAM cost of our BRICK scheme (about 12 bits) is no more than

that of [58], which is approximate.

Recently, another counter architecture called counter braids [45] has been proposed,

which is inspired by the construction of LDPC codes [26] and can keep track of exact

counts of all flows without remembering the association between flows and counters. At

each packet arrival, counter increments can be performed quickly by hashing the flow label

to several counters and incrementing them. The counter values can be viewed as a linear

transformation of flow counts, where the transformation matrix is the result of hashing all
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flow labels during a measurement epoch. However, counter braids are not active and are in

fact “more passive” than the SRAM/DRAM hybrid architectures. To find out the size of a

single flow, one needs to decode all the flow counts through a fairly long iterative decoding

procedure. 1.

Finally, Spectral Bloom Filter [14] has been proposed, which provides an internal data

structure for storing variable width counters. It uses a hierarchical indexing structure to

locate counters that are packed next to each other, which allows for fast random accesses

(reads). However, an update that causes the width of the counter i to grow will cause a shift

to counters i + 1, i + 2, ..., which can have a global cascading effect even with some slack

bits provided in between, making it prohibitively expensive when there can be millions

of counters. As acknowledged in [14], although the expected amortized cost per update

remains constant, and the global cascading effect is small in the average case, the worst-

case cannot be tightly bounded. Therefore, SBF with variable width encoding is not an

active counter solution as it cannot ensure fast per-packet write accesses at every packet

arrival, forcing it to become a mostly-read-only data structure in the sense that updates

should be orders of magnitude less frequent than queries.

3.3 Design of BRICK

In this section, we describe the proposed BRICK counter architecture. The objective of

BRICK is to efficiently encode a set of N exact active counters C1, C2, . . ., CN , under

the constraint that throughout a network measurement epoch the total counts2 across all

counters
∑N

i=1 Ci is no more than a pre-determined threshold M, which is carefully justified

in Section 3.1. As we explained earlier, since all increments can go to the same counter,

the value of a counter can be as large as M, and hence the worst-case counter width is

L = blog2 Mc+ 1. However, it is unnecessarily expensive to allocate L bits to every counter

1In [45], they need 25 seconds on a 2.6GHz computer to decode the flow counts inside a 6-minute-long
traffic trace.

2Here with an abuse of notation, we will use Ci to denote both the counter and its current count (value).
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since only a tiny number of them will have counts large enough to require this worst-case

width while most others need significantly fewer bits. Therefore, BRICK adopts a sophis-

ticated variable width encoding of counters and can statistically multiplex these variable

width counters through a bucketing scheme to achieve a much more compact representa-

tion. However, unlike the aforementioned baseline bucketing scheme, BRICK is extremely

SRAM-efficient yet allows for very fast counter lookup and increment operations.

In the following, we will first present an overview of our proposed design in Sec-

tion 3.3.1, followed by how it handles lookups, increments, and bucket overflows in Sec-

tions 3.3.2 to 3.3.4, respectively.

3.3.1 Overview

The basic idea of BRICK is to randomly bundle N counters into h buckets, B1, B2, . . ., Bh,

where each bucket holds k counters (e.g. k = 64 in practice) and N = hk. In each bucket,

some counters will be long (possibly L bits in the worst-case) and some will be short, de-

pending on the values they contain. As discussed earlier, the objective of bundling is to

“statistically multiplex” the variable counter widths in a bucket so that each bucket only

needs to be allocated memory space that is slightly larger than k times the average counter

width (across N counters). Note that since we do not know the actual average width of a

counter in advance, we need to instead use the average width in the following adversar-

ial context. Imagine that an adversary chooses C1,C2, . . .CN values under the constraint∑N
i=1 Ci ≤ M that maximizes the metrics (e.g., average counter width). We emphasize that

such an adversary is defined entirely in the well-established context of randomized online

algorithm design [50] and has nothing to do with its connotation in security and cryptogra-

phy.

Fig. 10 depicts these ideas of randomization and bucketization. In particular, as de-

picted in Fig. 10(a), to access the yth counter, a pseudorandom permutation function π :
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(a) Index permutation (b) Bucketization

Figure 10: Randomly bundling counters into buckets.

{1. . .N} → {1. . .N} is first applied to the index y to obtain a permuted index i. This pseudo-

random permutation function in practice can be as simple3 as reversing the bits of y. The

corresponding counter Ci can then be found in the `th bucket B`, where ` = d i
k e. The bucket

structure is depicted in Fig. 10(b). Unless otherwise noted, when we refer to the ith counter

Ci, we will assume i is already the result of a random permutation.

As we explained before, the baseline bucketing scheme does not allow for efficient read

and write (increment) accesses. In BRICK, a multi-level partitioning scheme is designed

to address this problem as follows. The worst-case counter width L is divided into p parts,

which we refer to as “sub-counters”. The jth sub-counter, j ∈ [1, p] (from the least signif-

icant bits to most significant bits) has w j bits, such that 0 < w j ≤ L and
∑p

j=1 w j = L. To

save space, for each counter, BRICK maintains just enough of its sub-counters to hold its

current value. In other words, counters with values no more than 2w1+w2+···+wi will not have

3Since the adversary is defined in the online algorithm context discussed above, we do not believe crypto-
graphically strong pseudorandom permutations, which may increase our cost and slow down our operations,
are needed here.
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Figure 11: (a) Within a bucket, segmentation of variable-width counters into sub-counter
arrays. (b) Compact representation of variable-width counters. (c) Updated data structure
after incrementing C2.

its (i + 1)th, . . . , pth sub-counters stored in BRICK. For example, if w1 = 5, any counter

with value less than 25 = 32 will only be allocated a memory entry for its 1st sub-counter.

Consider the example shown in Fig. 11(a) with k = 8 counters in a bucket. Only C1 and

C5 require more than their first sub-counters. Such an on-demand allocation requires us to

link together all sub-counters of a counter, which we achieve using a simple and memory-

efficient bitmap indexing scheme called rank indexing. Rank indexing enables efficient

lookup as well as efficient expansion (when counter values exceed certain thresholds after

increments), which will be discussed in detail in Section 3.3.2.

Each bucket contains p sub-counter arrays A1, A2, . . ., Ap to store the 1st, 2nd, . . .,

pth sub-counters (as needed) of all k counters in the bucket. How many entries should be

allocated for each array Ai, denoted as ki, turns out to be a non-trivial statistical optimization

problem. On the one hand, to save memory, we would like to make k2, k3, . . ., kp (k1 is fixed

as k) as small as possible. On the other hand, when we encounter the unlucky situation that

we need to exceed any of these limits (say for a certain d, we have more than kd counters in

a bucket that have values larger than or equal to 2w1+w2+···+wi−1), then we will have a “bucket

overflow” that would require that all counters inside the bucket be relocated to an additional

array of full-size buckets with fixed worst-case width L for each counter, as we will show

in Section 3.3.4. Given the high cost of storing a duplicated bucket in the full-size array,

we would like to choose larger k2, . . . , kp to make this probability as small as possible.
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3.3.2 Rank Indexing

A key technique in our data structure is an indexing scheme that allows us to efficiently

identify the locations of the sub-counters across the different sub-counter arrays for some

counter Ci. In particular, for Ci, its d sub-counters Ci,1, . . . ,Ci,d are spread across A1, . . . , Ad

at locations ai,1, . . . , ai,d, respectively (i.e., Ci, j = A j[ai, j]). For example, as shown in

Fig. 11(b), C5 is spread across A3[1] = 10, A2[2] = 11, and A1[5] = 11011.

For each bucket, we maintain an index bitmap I. I is divided into p−1 parts, I1, . . . , Ip−1,

with an one-to-one correspondence to the sub-counter arrays A1, . . . , Ap−1, respectively.

Each part I j is a bitmap with k j bits, I j[1], . . . , I j[k j], one bit I j[a] for each entry A j[a] in

A j. Each I j[a] is used to determine if the counter stored in A j[a] has expanded beyond the

jth sub-counter array. I j is also used to compute the index location of Ci in the next sub-

counter array A j+1. Because a counter cannot expand beyond the last sub-counter array,

there is no need for an index bitmap component for the most significant sub-counter array

Ap. For example, consider the entries A1[1] and A1[5] where the corresponding counter has

expanded beyond A1. This is indicated by having the corresponding bit positions I1[1] and

I1[5] set to 1, as shown in shaded boxes in Fig. 11(b). All remaining bit positions in I1 are

set to 0, as shown in clear boxes.

For each counter that has expanded beyond A1, an arrow is shown in Fig. 11(b) that

links a sub-counter in A1 with the corresponding sub-counter entry in A2. For example,

for C5, its sub-counter entry A1[5] in A1 is linked to the sub-counter entry A2[2] in A2.

Rather than expending memory to store these links explicitly, which could vanish savings

gained by reduced counter widths, we dynamically compute the location of a sub-counter

in the next sub-counter array A j+1 based on the current bitmap I j. This way, no memory

space is needed to store link pointers. This dynamic computation can be readily determined

using an operation called rank(s, j), which returns the number of ones only in the range

s[1] . . . s[ j] in the bit-string s. This operation is similar to the rank operator defined in [35].

We apply the rank operator on a bitmap I j by interpreting it as a bit-string. As we
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shall see in Sections 3.4 and 3.6, our approach is designed to work with small buckets of

counters (e.g. k = 64). Therefore, the corresponding bit-strings I j are also relatively short

since all sub-counter arrays satisfy k j ≤ k. Moreover, each successive k j in the higher

sub-counter arrays is substantially smaller than the previous sub-counter array, with the

corresponding reduction in the length of the bit-string I j. In turn, the rank operator can be

efficiently implemented by combining a bitwise-AND instruction with another operation

called popcount(s), which returns the number of ones in the bit-string s. Fortunately, the

popcount operator is becoming an increasingly available hardware-optimized instruction

in modern microprocessors and network processors. For example, current generations of

64-bit x86 processors have this instruction built-in [1, 2]. Using this popcount instruction,

the rank operation for bit-strings with lengths up to |s| = 64 bits can be readily computed

in as few as two instructions. As shown with numerical examples and trace simulations in

Section 3.6, very good results can be achieved with a bucket size fixed at 64.

The pseudo-code for the lookup operation is shown in Algorithm 1. The retrieval of

the sub-counters using rank indexing is shown in Lines 3-6, with the final count returned

at the end of the procedure. For a hardware implementation, the iterative procedure can be

readily pipelined. As we shall see in Section 3.6, we only need a small number of levels

(e.g. three) in practice to achieve efficient results.

3.3.3 Handling Increments

The increment operation is also based on the traversal of sub-counters using rank index-

ing. We will first describe the basic idea by means of an example. Consider the counter C2

in Fig. 11(b). Its count is 31, which can be encoded in just the sub-counter array A1 with

C2,1 = 11111. Suppose we want to increment C2. We first increment its first sub-counter

component C2,1 = 11111, which results in C2,1 = 00000 with a carry propagation to the

next level. This is depicted in Fig. 11(c).

This carry propagation triggers the increment of the next sub-counter component C2,2.
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Algorithm 1: Pseudo-code
lookup(i)1

Ci = 0; a = i mod k;2

for j = 1 to p3

Ci, j = A j[a];4

if ( j == p or I j[a] == 0) break;5

a = rank(I j, a);6

return Ci;7

increment(i)8

a = i mod k;9

for j = 1 to p10

A j[a] = A j[a] + 1;11

if ( j == p or A j[a] , 0) break; /* last array or no carry */12

if (I j[a] == 1) /* next level already allocated */13

a = rank(I j, a);14

else /* expand */15

I j[a] = 1;16

a = rank(I j, a);17

b = (a − 1)w j+1 + 1;18

A j+1 = varshift(A j+1, b,w j+1);19

I j+1 = varshift(I j+1, a, 1);20

A j+1[a] = 1;21

break;22

The location of C2,2 can be determined using rank indexing (i.e. rank(I1, 2) = 2). How-

ever, the location of A2[2] was previously occupied by the counter C5. To maintain rank

ordering, we have to shift the entries in A2 down by one to free up the location A2[2]. This

is achieved by applying an operation called varshift(s, j, c), which performs a right shift

on the sub-string starting at bit-position j by c bits (with vacant bits filled by zeros). The

varshift operator can be readily implemented in most processors by means of shift and

bitwise-logical instructions.

In particular, we can view a sub-counter array A j as a bit-string formed by the con-

catenation of its entries, namely A j = A j[1]A j[2] . . . A j[k j]. The starting bit-position for an

entry A j[a] in the bit-string can be computed as b = (a−1)w j + 1, where w j is the bit-width

of the sub-counter array A j. Consider C5 in Fig. 11(c). After the shifting operation has been

applied, the location of its sub-count in A2 will be shifted down by one entry. Therefore,
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its corresponding expansion status in I2 must be shifted down by one position as well. The

carry propagation of C2 into A2 is achieved by setting A2[2] = 1.

As with the rank operator, BRICK has been designed to work with small fixed size

buckets so that varshift can be directly implemented using hardware-optimized instruc-

tions. In particular, varshift only has to operate on A2 or higher. Since the size of

each level decreases exponentially, the bit-strings formed by each sub-counter array A2 and

above are also very short. As the results show in Section 3.6, with a bucket size of 64,

all sub-counter arrays A2 and above have a string length at most 64 bits, much less for the

higher levels. Therefore, varshift can be directly implemented using 64 bit instructions.

The pseudo-code for the increment operation is shown in the latter part of Algo-

rithm 1. Again, the iterative procedure shown in Algorithm 1 for increment is readily

amenable to pipelining in hardware. In general, the lookup or update of each successive

level of sub-counter arrays can be pipelined such that at each packet arrival, a lookup or

update can operate on A1 while a previous operation operates on A2, and so forth.

3.3.4 Handling Overflows

Thus far, we have assumed in our basic data structure that we are guaranteed that each

sub-counter array has been dimensioned to always provide sufficient entries to store all

sub-counters in a bucket. To achieve greater memory efficiency, the number of entries

in the sub-counter arrays can be reduced so that there is only a very small probability

that a bucket will not have sufficient sub-counter array entries. As rigorously analyzed in

Section 3.4 and numerically evaluated in Section 3.6, this bucket overflow probability can

be made arbitrarily small while achieving significant reduction in storage for each bucket.

To facilitate this overflow handling, we extend the basic data structure described in Sec-

tion 3.1 with a small number of full-size buckets F1, F2, . . . , FJ. Each full-size bucket Ft is

organized as k full-size counters (i.e., all counters with a worst-case width of L bits). When

a bucket overflow occurs for some B`, the next available full-size bucket Ft is allocated to
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store its k counters, where t is just +1 of the last allocated full-size bucket. An overflow

status flag f` is set to indicate the bucket has overflowed. The index of the full-size bucket

Ft is stored in a field labeled t`, which is associated with B`. In practice, we only need a

small number of full-size buckets. As shown in Section 3.6, for real Internet traces with

over a million counters, only about J ≈ 100 full-size buckets are enough to handle the

overflow cases. Therefore, the index field only requires a small number of extra bits per

bucket (e.g. 7 bits).

Rather than migrating all k counters from B` to Ft` at once, a counter is only migrated

on-demand upon the next increment operation (“migrate-on-write”). This way, the migra-

tion of an overflow counter to a full-size counter does not disrupt other counter updates.

The location of counter Ci in Ft` is simply a = i mod k, as before. To indicate if counter

Ci has been migrated, a migration status flag gt`[a] is associated with each counter entry

Ft`[a] (i.e. gt`[a] = 1 indicates that the corresponding counter has been migrated).

The modified lookup operation simply first checks if a counter from an overflowed

bucket has already been migrated, in which case the full-size count is simply retrieved from

corresponding full-size bucket entry. Otherwise, the counter is retrieved as before. The

modified increment operation is extended in a similar manner. It first checks if a counter

from an overflowed bucket has already been migrated, in which case the full-size counter

in the corresponding full-size bucket is incremented. If the counter is from a previously

overflowed bucket B`, but it has not been migrated yet, then it is read from B`, incremented,

and migrated-on-write to the corresponding location in the full-size bucket. Otherwise, the

counter in B` is incremented as before. Finally, before propagating a carry to the next level,

we first check if all entries in the next sub-counter array are already being used. If so,

the next full-size bucket is allocated and the incremented count is migrated-on-write to the

corresponding location.
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3.4 Analysis
3.4.1 Analytical Guarantees

In this section, we bound the failure probability P f that the number of overflowed buckets,

each of which carries the hefty penalty of having to be allocated an additional bucket of

full-size counters (as discussed in Section 3.3.4), will exceed any given threshold J. We

will establish a rigorous relationship between P f and parameters k2, k3, ..., kp the number

of entries BRICK allocates to sub-counter arrays A2, ..., Ap (The size of A1 is already fixed

to k) and w1, w2, ..., wp, the widths of an entry in A2, ..., Ap. The ultimate objective of this

analysis is to find the optimal tradeoff between k2, k3, ..., kp and J that allows us to minimize

the amount of overall memory consumption (h = N/k regular buckets + J full-size buckets)

while keeping the failure probability P f under an acceptable threshold (say 10−10 or even

smaller). Surprisingly, the theory of stochastic ordering [51], which seems unrelated to the

context of this work, plays a major role in these derivations.

Recall that the maximum counter width L is partitioned into sub-counter widths w1, w2,

..., wp. Only counters whose value is larger than or equal to 2Ld , where Ld is defined as∑d−1
j=1 w j, will need an entry in the sub-counter array Ad of a bucket. Since the aggregate

count of all counters is no more than M, we know that there will be at most md of such

counters in the whole counter array, where md is defined as M2−Ld .

Now imagine at most md such counters are uniformly randomly distributed into N array

locations through the aforementioned index permutation scheme. We hope that they are

very evenly distributed among these buckets so that very few buckets will have more than

kd of them falling into it (i.e., overflow of Ad). Suppose we dimension Jd full-size buckets to

handle bucket overflows caused by these counters. We would like to bound the probability

that more than Jd buckets will have their Ad arrays overflowed.

We will consider the worst case scenario that there are exactly md counters needing

entries in Ad. If there are less such counters, the overflow probability will only be smaller,

and our tail bound still applies. For convenience, we denote the percentage of them in the
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counter array md
N as αd.

Let random variables X1,d, X2,d, ..., Xh,d be the number of used entries in the sub-counter

array Ad among the buckets B1, B2, ..., Bh. Each array location has a probability αd of being

assigned one of the md counters, and there are k array locations in each bucket, so X j,d is

roughly distributed as Binomial(k, αd) for any j. Here Binomial(N ,P) is the Binomial

distribution with N trials and P as the success probability of each trial. Therefore, the

overflow probability of level d from any bucket B j is roughly

εd = Binotailk,αd (kd)

where BinotailN ,P(K) ≡
∑N

z=K+1

(
N

z

)
Pz(1 − P)(N−z) denotes the tail probability Pr[Z > K],

where Z has distribution Binomial(N ,P).

Intuitively, these random variables are almost independent, as the only dependence

among them seems to be that their total is md. If we do assume that they are indepen-

dent, then the probability that the number of total overflows be larger than Jd entries is

roughly

δd = Binotailh,εd (Jd)

Readers understandably will immediately protest this voodoo tail bound result since the

X j,d’s are not exactly Binomial, and they are not actually independent. Interestingly, we are

able to establish a rigorous tail bound of 2δd, which is only two times the voodoo tail bound

δd. A similar bound has been established by Mitzenmacher and Upfal in their book [48]

which used independent Poisson distributions to bound multinomial distributions, using

techniques from stochastic ordering theory [51] implicitly (i.e., without introducing such

concepts). In our case we use independent binomial distributions to bound multivariate

hypergeometric distributions, i.e. those of X1,d, X2,d, ..., Xh,d.

Based on this rigorous tail bound to be proven in Section 3.4.2 and taking union of the

overflow events from all the subarrays, we arrive at the following corollary.

Corollary 1. Let parameters δ2, · · · , δp be defined as above. The failure probability of
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insufficient full-size buckets, i.e. that the total number of overflows that need to be moved

to the additional full-size buckets from all subarrays exceeds J = J2 + · · · + Jp, is no more

than 2(δ2 + · · · + δp).

If given a target worst-case failure probability P f of insufficient full-size buckets, e.g.

10−10 or even smaller, an optimization procedure remains to configure parameters from

w1 to wp−1, k2 to kp, and J2 to Jp, so that we can achieve the best tradeoff for the overall

memory space, which takes into consideration the storage of all sub-counter arrays, index

bitmaps, and all full-size buckets, and even the blg(J)c + 2 bits for f` and t` in each bucket,

which indicate the migration to full-size buckets.

Given the messy nature of the Binomial distribution, “clean” analytical solutions (e.g.,

based on Lagrange multipliers) do not exist. We designed a quick search strategy that can

generate near-optimal configurations. Our evaluation results in Sec 3.6 are obtained based

on the near-optimal parameter configurations generated by this procedure. We omit the

detail of this procedure in the interest of space.

3.4.2 the Main Tail Bound

In this section, we state formally the aforementioned tail bound theorem (two times the

voodoo bound). We would like to state this theorem using generic parameters that have the

same symbol as before but without the subscript d, since they can be replaced by the corre-

sponding parameters with subscript d to obtain the tail bound on the number of overflows

from every subarray Ad. In particular, we will replace md (the number of counters that will

have an entry in sub-counter array Ad) by m, and kd (the number of entries in sub-counter

array Ad) by c, as k has been used to denote the number of counters in each bucket in the

original counter array. Furthermore, to highlight the general nature of our theorem, we

further detach ourselves from the application semantics by stating the theorem as follows.

Theorem 2. m balls are uniformly randomly thrown into h buckets that has k entries each,

with at most one ball in each entry. Let N = hk. Let X(m)
1 , ..., X(m)

h be the number of balls
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that falls into each bucket. Let α = m
hk and assume α ≤ 1

2 . Let Y (α)
1 , ..., Y (α)

h be independent

random variables distributed as Binomial(k, α). Let f (x1, ..., xh) be an increasing function

in each argument. Then

E[ f (X(m)
1 , ..., X(m)

h )] ≤ 2E[ f (Y (α)
1 , ...,Y (α)

h )]

Before we prove this theorem, we need to formally characterize the underlying prob-

ability model and in particular specify precisely what we mean by throwing m balls “uni-

formly randomly” into N entries as follows. Among all
(

N
m

)
ways of injective mapping from

m balls into N entries, every way happens with equal probability 1
(N

m) , when these balls are

considered indistinguishable. We refer to this characterization of the underlying probabil-

ity model as “throwing m balls into N entries in one shot”. It is not hard to verify that

the following process of “throwing m balls into N entries one by one” results in the same

probability model. In this process, at first a ball is thrown into an entry chosen uniformly

from these N entries. Then another ball is thrown into an entry uniformly picked from the

remaining N−1 entries, and so on. This equivalent characterization of the underlying prob-

ability model makes it easier for us to establish the stochastic ordering relationship among

vectors of random variables in Section 3.4.3, an essential step for the proof of Theorem 2.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We use X(l)
1 , X

(l)
2 , . . . , X

(l)
h when there are l balls thrown instead of

m. In Proposition 3, we prove that for any l value, µ(X(l)
1 , X

(l)
2 , . . . , X

(l)
h ) is equivalent to

µ(Y (α)
1 ,Y (α)

2 , . . . ,Y (α)
h |

∑h
j=1 Y (α)

j = l), where µ(Z) denotes the distribution of a random vari-

able or vector Z. In other words, conditioned upon
∑h

j=1 Y (α)
j = l, the independent random

variables Y (α)
1 ,Y (α)

2 , . . . ,Y (α)
h have the same joint distribution as dependent random variables

X(l)
1 , X

(l)
2 , . . . , X

(l)
h . Then we prove in Proposition 5 that, when l ≤ l′, [X(l)

1 , X
(l)
2 , . . . , X

(l)
h ] is

stochastically less than or equal to (defined later) [X(l′)
1 , X(l′)

2 , . . . , X(l′)
h ]. For any increasing

function f (x1, x2, ..., xh), we have
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E[ f (Y (α)
1 , ...,Y (α)

h )]

=

N∑
l=0

E[ f (Y (α)
1 , ...,Y (α)

h ) |
h∑

j=1

Y (α)
j = l] Pr[

h∑
j=1

Y (α)
j = l]

≥

N∑
l=m

E[ f (Y (α)
1 , ...,Y (α)

h ) |
h∑

j=1

Y (α)
j = l] Pr[

h∑
j=1

Y (α)
j = l]

=

N∑
l=m

E[ f (X(l)
1 , ..., X

(l)
h )] Pr[

h∑
j=1

Y (α)
j = l] (3)

≥

N∑
l=m

E[ f (X(m)
1 , ..., X(m)

h )] Pr[
h∑

j=1

Y (α)
j = l] (4)

= E[ f (X(m)
1 , · · · , X(m)

h )] Pr[
h∑

j=1

Y (α)
j ≥ m]

= E[ f (X(m)
1 , · · · , X(m)

h )]BinotailN,α(m − 1)

≥
1
2

E[ f (X(m)
1 , ..., X(m)

h )] (5)

Equality (3) is due to Proposition 3, inequality (4) is due to Proposition 3, and inequality

(5) is due to the properties of the 50-percentile point of Binomial distributions proven in

[27]. �

Corollary 2. Let the variable be as defined in Theorem 2. Let c and J be some constants.

Let ε = Binotailk,α(c). Then

Pr[
h∑

j=1

1
{X(m)

j >c} > J] ≤ 2Binotailh,ε(J)

Proof. Consider function f (x1, x2, · · · , xh) ≡ 1{∑h
j=1 1{x j>c}>J}, which is an increasing func-

tion of x1, ..., xh. From Theorem 2 we have Pr[
∑h

j=1 1
{X(m)

j >c} > J] ≤ 2 Pr[
∑h

j=1 1
{Y (α)

j >C} >

J]. Since {1
{Y (α)

j >c}}1≤ j≤h are independent Bernoulli random variables with probability ε =

Binotailk,α(c), their sum is distributed as Binomial(h, ε). Therefore Pr[
∑h

j=1 1{Y j>c} > J] is

equal to Binotailh,ε(J). �
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3.4.3 Proofs of propositions 1–3

Proposition 3.

µ(X(l)
1 , X

(l)
2 , . . . , X

(l)
h ) = µ(Y (α)

1 ,Y (α)
2 , . . . ,Y (α)

h |

h∑
j=1

Y (α)
j = l) (6)

Proof. It suffices to prove that for any nonnegative integers l1, l2, ..., lh that satisfy
∑h

j=1 l j =

l, Pr[X(l)
1 = l1, X

(l)
2 = l2, . . . , X

(l)
h = lh] = Pr[Y (α)

1 = l1,Y
(α)
2 = l2, . . . ,Y

(α)
h = lh |

∑h
j=1 Y (α)

j = l].

We show that both the LHS (left hand side) and the RHS (right hand side) are equal to(
k
l1

)(
k
l2

)
· · ·

(
k
lh

)(
N
l

) (7)

Since there are
(

N
l

)
ways of selecting l entries out of a total of N entries, and each way

happens with equal probability 1
(N

l )
, the LHS is equal to (7) because there are

(
k
l1

)(
k
l2

)
· · ·

(
k
lh

)
ways among them that result in the event {X(l)

1 = l1, X
(l)
2 = l2, . . . , X

(l)=lh
h }. Now we prove that

the RHS is equal to (7) as well. Since Y (α)
1 , Y (α)

2 , . . ., Y (α)
h are independent random variables

with distribution Binomial(k, α),
∑h

j=1 Y (α)
j has distribution Binomial(N, α) and therefore

Pr[
h∑

j=1

Y (α)
j = l] =

(
N
l

)
αl(1 − α)N−l (8)

Additionally, when
∑h

j=1 Y (α)
j = l, we have

Pr[Y (α)
1 = l1,Y

(α)
2 = l2, . . . ,Y

(α)
h = lh,

h∑
j=1

Y (α)
j = l]

=

h∏
j=1

(
k
l j

)
αl j(1 − α)k−l j = αl(1 − α)N−l

h∏
j=1

(
k
l j

)
(9)

Combining (8) and (9) we obtain that the RHS is equal to (7) as well. �

Stochastic ordering is a way to compare two random variables. Random variable X is

stochastically less than or equal to random variable Y , written X ≤st Y , iff Eφ(X) ≤ Eφ(Y)

for all increasing functions φ such that the expectations exits. An equivalent definition of

X ≤st Y is that Pr[X > t] ≤ Pr[Y > t],−∞ < t < ∞. The definition involving increasing
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functions also applies to random vectors X = (X1, ..., Xh) and Y = (Y1, ...,Yh): X ≤st Y

iff Eφ(X) ≤ Eφ(Y) for all increasing functions φ such that the expectations exits. Here φ

is increasing means that it is increasing in each argument separately with other arguments

being fixed. This is equivalent to φ(X) ≤st φ(Y). Note this definition is a much stronger

condition than Pr[X1 > t1, ..., Xh > th] ≤ Pr[Y1 > t1, ...,Yh > th] for all t = (t1, ..., th) ∈ Rn.

Now we state without proof a fact that will be used to prove Proposition 5. Its proof

can be found in all books that deal with stochastic ordering [51].

Proposition 4. Let X and Y be two random variables (or vectors). X ≤st Y iff there exists

X′ and Y ′ such that µ(X′) = µ(X), µ(Y ′) = µ(Y), and Pr[X′ ≤ Y ′] = 1.

Now we are ready to prove the following proposition.

Proposition 5. For any 0 ≤ l < l′ ≤ N, we have

[X(l)
1 , X

(l)
2 , . . . , X

(l)
h ] ≤st [X(l′)

1 , X(l′)
2 , . . . , X(l′)

h ] (10)

Proof. It suffices to prove it for l′ = l + 1. Our idea is to find random variables Z and W

such that Z has the same distribution as [X(l)
1 , X

(l)
2 , . . . , X

(l)
h ], W has the same distribution as

[X(l+1)
1 , X(l+1)

2 , . . . , X(l+1)
h ], and Pr[Z ≤ W] = 1. We will use the aforementioned probability

model that is generated by “throwing m balls into N entries one-by-one” random process.

Now given any outcome ω in the probability space Ω, let Z(ω) = [Z1(ω),Z2(ω), ...,Zh(ω)],

where Z j(ω) is the number of balls in the jth bucket after we throw l balls into these N entries

one by one. Now with all these l balls there, we throw the (l + 1)th ball uniformly randomly

into one of the remaining empty entries. We define W(ω) as [W1(ω),W2(ω), ...,Wh(ω)],

where W j(ω) is the number of balls in the jth bucket after we throw in the (l + 1)th ball.

Clearly we have Z(ω) ≤ W(ω) for any ω ∈ Ω and therefore Pr[Z ≤ W] = 1. Finally, we

know from the property of the “throwing m balls into N entries one-by-one” random process

that Z and W have the same distribution as [X(l)
1 , X

(l)
2 , . . . , X

(l)
h ] and [X(l+1)

1 , X(l+1)
2 , . . . , X(l+1)

h ]

respectively. �
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3.5 Information theory bound

We are interested in how far we are from the optimal memory usage cost. In this section,

we will try to answer this question partly by deriving several lower bounds on the mini-

mum memory requirement per counter under the aforementioned constraint that the sum of

counter values C1, C2, ..., CN (i.e., the total number of increments) is no more than M.

We will explore this question in the following sequence. Firstly, we will present a naive

bound, which is the worst-case total number of bits needed to store all these counter values.

However, this bound doesn’t take into account the indexing cost. Therefore, secondly, we

will explore the additional indexing cost based on information theory. However, this part

is only aimed at getting a feeling about how much additional indexing cost is required,

since the derivation is not strict. Finally, we will analyze and prove the minimum number

of bits needed to accurately represent the whole counter array, no matter what kind of

coding/decoding techniques are used.

3.5.1 The worst-case average binary length of counters

When no coding techniques are used, every counter value is stored as a plain binary number.

The minimum memory required are the worst-case total number of bits of those counter

values.

For each counter value Ci, its binary length is blog2 Cic+1, where we use the convention

log2(0) = 0. Hence the worst-case bound of the average4 number of bits per counter,

defined as B0, is as follows:

B0 = max∑N
i=1 Ci≤M

∑N

i=1

blog2 Cic + 1
N

= max∑N
i=1 Ci=M

∑N

i=1

blog2 Cic + 1
N

.

It could be bounded through the Jensen’s inequality:

4For the convenience of comparison, we calculate and compare the average number of bits per counter
instead of the total number.
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B0 ≤
∑N

i=1

log2 Ci + 1
N

=
∑N

i=1

log2 Ci

N
+ 1

≤ log2(
1
N

∑N

i=1
Ci) + 1 = log2(M/N) + 1

If log2
M
N is an integer, all the inequalities above would hold when all counter values are

equal to M
N , and the bound B0 would be reached at log2

M
N + 1.

When log2
M
N is not an integer, it becomes a little more complex to get the precise value

of B0. We claim B0 would be bounded by the result of the following optimization:

B0 = max
∑L

i=1
iβi

subject to ∀i, βi ≥ 0;
∑L

i=1
βi = 1 (11)

M/N + 1 ≤
∑L

i=1
βi2i ≤ 2M/N (12)

where βi is the fraction of i-bit-long counters among all counters, i.e. 1
N

∑N
j=1 1blog2 C jc=i−1, L

is the maximum possible length of one counter, i.e. blog2 Mc + 1. The constraints (12) are

transformed from the constraint
∑N

i=1 Ci = M, since for each Ci that is j-bit-long, 2 j−1 ≤

Ci ≤ 2 j − 1.

We could numerically solve the linear programming above, and could find that the

bound B0 is at least log2
M
N + 0.9 for arbitrary M

N .

3.5.2 Bound1: Considering the unavoidable indexing costs

The lower bound above does not account for the extra bits needed to delimit these counter

values. However, it is hard to directly get the lower bound of indexing cost since we would

never know whether we have invented the most efficient indexing scheme and how far it is

from the optimal cost. We can only approximately estimate the cost through information

entropy.

Given an array of indistinguishable counter bits, the original counter values could be

decoded if and only if the sequence of the sizes of the counters are known. Hence we could
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Table 9: Bounds for schemes without using any coding technique
log2( M

N )= 2 4 6 8
B0 =log2

M
N + 1.00 1.00 1.00 1.00

Bindex = 1.83 2.61 3.10 3.45
B1 =log2

M
N + 1.82 1.94 1.96 1.97

model the worst-case indexing cost by calculating the worst-case information entropy of

the sequence of the counter sizes under all possible distributions as follows:

Bindex = max
subject to (11),(12)

− L∑
i=1

βi log2 βi


However, we should notice that the counter size distribution {β1, β2, . . .} for the worst-

case indexing cost may not be the same as the distribution for the worst-case counter bits.

Hence if we want a more reasonable bound, it should be the result of the following opti-

mization of the sum of both the indexing entropy and the counter bits:

B1 = max
subject to (11),(12)

− L∑
i=1

βi log2 βi +

L∑
i=1

iβi


Both two bounds could solved by standard Lagrange techniques. The numerical result

of B0, Bindex and B1 are presented in Table 9. Although the worst-case indexing cost Bindex

could be very large, only bound B0 and B1 are comparable with our scheme. Compared

with numbers in Table 11, our schemes are about 3 to 4 bits from the optimal cost that one

could achieve without compressing the original counter bits.

3.5.3 Bound2: Lower bound when optimal coding is used

Although we haven’t seen any works that could use coding techniques and support router-

level fast random read and write at the same time, we are still interested in the optimal

memory cost if we allow coding techniques. In our previous publication [32] published in

ANCS’08 , we calculate the worst-case 2-D empirical information entropy of the whole

counter array and claim that it is the worst-case bound for the case when optimal coding is

used. However, the method employed by [32] suffers the similar weakness as B1 and hence

not strict.
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Table 10: Information-theoretic lower bound.
log2( M

N )= 2 4 6 8
B2 =log2

M
N + 1.61 1.49 1.45 1.45

We propose the following method to calculate a strict worst-case bound. Our constraint∑N
i=1 Ci ≤ M is equivalent to

∑N
i=1 Ci + δ = M, where δ is a non-negative integer. Basic

combinatorics gives that the number of distinct non-negative integer vectors {C1, ...,CN , δ}

satisfying
∑N

i=1 Ci + δ = M is exactly
(

M+N
N

)
. Since each possible counter value vector must

correspond to a distinct memory state, at least log2

(
M+N

N

)
bits of memory are needed to

accurately represent all possible counter value vectors, no matter what coding technique

is employed. So we get the lower bound on average number of bits per counter as B2 =

log2

(
M+N

N

)
/N. This lower bound is also achievable in theory, since we can index all possible

counter value vectors from 1 through
(

M+N
N

)
and simply store the index as a binary number.

Using Sterling’s Formula we could get,

B2 = log2

(
M + N

N

)
/N ≈ log2

( M
N

(1 +
N
M

)
M
N +1

)
≈ (log2

M
N

+ 1.44)

The numerical values of B2 is presented in Table 10. Interestingly, the results are very

close to the worst-case empirical entropy results in [32], with differences less than 1×10−4.

We observe that the worst-case bound B2, which allows coding techniques to be used

on counter values, would be smaller than B1 by around 0.2 to 0.5 bits. Hence we could

conclude that we are only 4 to 6 bits away from the optimal cost we could get even if

optimal coding is used.

We should notice that in reality we will never be even close to the bounds above, even

the bound B1, because the information theory employed in all those calculations does not

take account of the complexity issues, considering our application scenarios requires en-

coding and decoding (write and read) to be both very fast.

64



3.6 Performance Evaluations

In this section, we will evaluate the performance of BRICK and show that BRICK is

extremely memory-efficient. Our results show that the number of extra bits needed per

counter in addition to the lower bounds log2
M
N remains practically constant with increasing

number of flows N, and hence the solution is scalable. We also evaluate in Section 3.6.2

the performance of our architecture using two real-world Internet traffic traces. Finally, we

discuss implementation issues in Section 3.7.

3.6.1 Numerical Results of Analytical Bounds

In this section, we present a set of numerical results computed from the tail bound theorems

derived in Section 3.4.

3.6.1.1 Configuration of Parameters and Memory Costs Optimization

Recall that in our problem, the number of flows N and the maximum total increments in

a measurement period M are given. For the specified N and M, we apply our tail bound

theorems to derive optimal configurations for different combinations of constraints, i.e.,

bucket sizes k, number of levels p, and failure probabilities P f . The derived configuration

is in terms of the number of entries in each sub-counter array k j, the width of each sub-

counter array w j, and the number of full-size buckets J that we need to ensure a failure

probability less than P f (the probability that we have insufficient entries in a sub-counter

array or a full-size bucket).

For a configuration of these parameters, the amount of memory required, which is also

the target of our optimization, can be computed as follows:

S` =


 p∑

j=1

k j(w j + 1)

 − kp

 +
(
blog2 Jc + 2

)
(13)

S =

 h∑
`=1

S`

 + Jk (L + 1) (14)

Here S` is the memory cost of each bucket; its first component corresponds to the space
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required for storing the sub-counter arrays and the index bitmaps, and its second component

corresponds to the overflow status flag and the index to the corresponding full-size bucket5.

Then the total memory cost S is h = dN
k e buckets of size S` each plus J full-size buckets

of size k(L + 1) each. (For each full-size counter of size L, we need 1 bit for indicating the

migration status.)

We traverse typical possible configurations with the help of branch-and-prune technique

and select the best among those configurations. We should emphasize that, actually there

might exist many different configurations around the optimal point. The difference between

the average memory utilization of those quasi-optimal points is very minute. In practice, it

is not necessary to really find the “optimal” point as long as the solution found is close to

the optimal enough. Hence the results shown below are only of typical example and might

not be the best.

3.6.1.2 Numerical results with various configurations

In Section 3.5, we have noticed that all lower bounds are just around one or two bits over

log2
M
N . Hence, for convenience, we use σ = (S/N) − log2(M/N)as a metric to evaluate the

space efficiency of our solution.

In Table 11, we first consider results for the case with k = 64 counters per bucket. We

first consider this case with a small bucket size to ensure that all string operations are within

64 bits, which allows for direct implementations using 64-bit instructions in modern pro-

cessors [1, 2]. As we shall see, substantial statistical multiplexing can already be achieved

with k = 64. For the results presented in Table 11, we used representative parameters with

N = 1 million counters and M = 16 million as the maximum total increments during a

measurement period. We also set the failure probability to be P f = 10−10, which is a tiny

probability corresponding to an average of one failure (when there are more than J over-

flowed buckets) every ten thousand years. We will later show in Figures 13, 14, and 15 that

5Since there are J full-size buckets, this index can be stored in blog2 Jc + 1 bits.
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Table 11: An Example of Sub-counter array sizing and per-counter storage for k = 64 and
P f = 10−10.

(a) Sizing of sub-counter arrays.
p k2 k3 k4 k5 w1 w2 w3 w4 w5

3 15 3 log2
M
N + 3 4 13

4 25 10 2 log2
M
N + 2 2 4 12

5 25 10 3 1 log2
M
N + 2 2 3 4 9

(b) Size of each sub-counter array = k j × w j (in bits).

p A2 A3 A4 A5

3 15 × 4 = 60 3 × 13 = 39
4 25 × 2 = 50 10 × 4 = 40 2 × 12 = 24
5 25 × 2 = 50 10 × 3 = 30 3 × 4 = 12 1 × 9 = 9

(c) Storage per counter.
p = 3 p = 4 p = 5

log2
M
N + 6.05 log2

M
N + 5.66 log2

M
N + 5.50

the additional per-counter storage cost beyond the minimum width of the average count is

practically a constant unrelated to the number of flows N, the maximum total increments

M, or the failure probability P f .

In Table 11(a), the number of entries and the width for each sub-counter array are

shown for BRICK implementations with varying number of levels p. As can be seen, in

each design, the number of entries decreases exponentially as we go to the higher sub-

counter arrays. This is the main source of our compression. With k = 64, the rank indexing

operation described in Section 3.3 only needs to be performed on bitmaps with |I j| ≤ 64 bits

(much less than 64 for the higher sub-counter arrays) and can be directly implemented using

64-bit popcount and bitwise-logical instructions that are available in modern processors [1,

2]. Table 11(b) shows the size of each sub-counter array. For all three designs, the space

requirement for each sub-counter array other than A1 is also less than 64 bits. Therefore,

the “varshift” operator described in Section 3.3.3, which only needs to operate on A2 and

higher, can be directly implemented using 64-bit shift and bitwise-logical instructions as

well.

In Table 11(c), the per-counter storage cost for the three designs are shown. For three

67



3 4 5
4.5

5

5.5

6

6.5

ex
tr

a 
bi

ts
 p

er
 c

ou
nt

er
 (σ

)

number of levels p

 

 
k=64
k=128
k=256
k=512

Figure 12: Impact of increasing bucket size k. Extra bits σ in the range of [5.03, 6.05].

levels, the extra storage cost per counter is 6.05, and the extra storage costs per counter

are 5.66 and 5.50 for four and five levels, respectively. The amount of extra storage only

decreases slightly with additional levels in the BRICK implementation. For example, as

we go from three to five levels, the reduction of 6.05 − 5.50 = 0.55 extra bits is only about

5.5% in the overall per-counter cost if log2
M
N = 4.

We next consider the impact of larger bucket sizes on storage costs. Figure 12 shows

the results for k = 128, 256, and 512. The number of extra bits per counter decreases

with increasing bucket sizes and number of levels, with σ in the range of [5.03, 6.05]. The

results show that increasing the bucket size has only an insignificant impact on the stor-

age savings, corresponding to only a small increase in statistical multiplexing with larger

buckets. Therefore, we will use 64 counters per bucket for software implementation and

recommend it for ASIC implementation as well, since it has the advantage that operations

can be directly implemented using 64-bit processor instructions in software.

As stated earlier, the added per-counter cost is practically a constant with respect to the

number of flows N, the maximum total increments M, and the failure probability P f . We

now verify this statement by evaluating BRICK under different N, M, and P f . The results
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are shown in Figures 13, 14, and 15, respectively. In these evaluations, we used 64 counters

per bucket and four levels.

In Figures 13, 14, and 15 we evaluate the impact of different N, M, and P f , where we

use k = 64 and p = 4.

Figure 13 shows that the added per-counter cost remains practically constant as we in-

crease N exponentially by powers of 10. Similarly, Figure 14 shows that the added cost

also remains practically constant with different ratios of M and N. These results show that

BRICK is scalable to different values of M and N with per-counter storage cost within

approximately a constant factor from the minimum width of the average count. Figure 15

shows the impact of decreasing failure probability. We show results for P f = 10−10 down

to 10−20. Again, we see that the change in storage cost is negligible with decreasing failure

probability, which means BRICK can be optimized to vanishingly small failure probabili-

ties with virtually no impact on storage cost.

3.6.2 Results for real Internet traces

In this section, we evaluate our active counter architecture using real-world Internet traffic

traces. The traces that we used were collected at different locations in the Internet, namely

University of Southern California (USC) and University of North Carolina (UNC), respec-

tively. The trace from USC was collected at their Los Nettos tracing facility on February

2, 2004, and the trace from UNC was collected on a 1 Gbps access link connecting the

campus to the rest of the Internet on April 24, 2003. For each trace, we used a 10-minute
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segment, corresponding to a measurement epoch. The trace segment from USC has 18.9

million packets and around 1.1 million flows; the trace segment from UNC has 32.6 million

packets and around 1.24 million flows. We use the first counter for the first encountered

flow in the trace, the second counter for the second encountered flow in the trace, etc.

We use the same general parameter settings as the evaluations in Section 3.5 with 64

counters per bucket, four levels, and a failure probability of P f = 10−10. The total storage

space required for counting packets 6 in USC trace is 1.36 MB, and the total required for the

UNC trace is 1.61 MB. In comparison, a naive implementation would require a worst-case

counter width for all counters. Both traces require a worst-case width of 25 bits, whereas

the BRICK implementations require a per-counter cost of about 10 bits. The total storage

required for a naive implementation is 3.85 MB for the USC trace and 4.40 MB for the

UNC trace. The BRICK implementations represent a 2.5x improvement in both cases.

This is exciting since with the same amount of memory, we will be able to squeeze in 2.5

times more counters, which is badly needed in future faster and “more crowded” Internet!

Table 12: Percentage of full-size buckets.
Trace h J J

h J∗ J∗∗

USC 17.3K 112 0.65% 99 0
UNC 19.5K 127 0.65% 172 0

Table 12 shows the number of full-size buckets needed according to our tail bounds,

and the number of full-size buckets actually used. We should emphasize that the numbers

shown in Table 12 are only one example of the various good configurations selected by the

process described in Section 3.6.1.1. The total number of full-size buckets needed could

be much smaller by two to ten folds, at the cost of a little more total memory utilization

(typically around 1 to 5%).

6We note that the memory savings for counting bytes would be less, due to the much larger M. Consider-
ing the typical average packet size is around 500 bytes, 9 more bits are needed per counter for both the naive
implementation and the BRICK implementation.
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In Table 12, we see that only a small number of full-size buckets are needed to guaran-

tee a tiny probability (P f = 10−10) that we will have insufficient number of full-size buckets

to handle bucket overflows. J∗ denotes the actual number of full-size buckets used when no

random permutation is used. J∗∗ denotes the actual number of full-size buckets used when

permutation is done by reversing bits. We could see that J∗ is similar to or even worse than

the calculated J. This is because that our guarantee is based on randomized permutation,

and for J∗ no permutation is used. In this experiment, the larger flows tend be concen-

trated in lower index counters, thus causing those buckets to overflow to full-size buckets.

However, when some very simple “randomization” techniques are used, such as reversing

the bits of the counter index, we could see that actually no full-size buckets are used for

both traces. We emphasize that the J full-size buckets are allocated for guaranteeing a tiny

probability (P f = 10−10) of overflow for any counter value distribution. In summary, this

experiment demonstrates random permutations is crucial to our design and to establish of

our statistical guarantee, and verifies that simple permutation techniques might be sufficient

for real-world deployment.

3.7 Discussions
3.7.1 Implementation issues

In a BRICK implementation, all sub-counter arrays (A j) and index bitmaps (I j) are fixed in

size, and the number and size of buckets are also fixed. Consider the three level case shown

in Table 11 with k = 64. Both lookup and increment operations can be performed with 10

memory accesses in total, 5 reads and 5 writes. For the bucket being read or updated, we

first retrieve all bitmaps (I j), bucket overflow status flag f`, and an index field t` to a full-

size bucket in case a bucket overflow has previously occurred. All this information for a

bucket can be retrieved in two memory reads with 64-bit words, the first word corresponds

to I1 with 64-bits, and the second word stores I2 = 3 bits, the overflow status flag, and the

t` (about 7 bits). If f` is not set, then we need up to three reads and writes to update the
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three levels of sub-counter arrays. The updated index bitmaps and overflow status flags can

be written back in two memory writes. If f` has been set, then we read directly from the

corresponding entry in the full-size bucket indicated by t` for a lookup operation, avoiding

the need to read the sub-counter arrays, hence requiring fewer memory acceses. Similarly,

an increment operation for a counter that is already in a full-size bucket takes only one read

and one write to update. If a bucket overflow occurs during an increment of a counter in a

bucket, there is no need to access the last sub-counter array (otherwise, we wouldn’t have

an overflow). Therefore, we save two memory accesses at the expense of one write to the

full-size bucket. With index bitmaps, overflow status flag, and full-size index field packed

into two words, the worst case number of memory accesses is 10 in total, which permits

updates in 20ns with a 2ns SRAM time, enabling over 15 million packets per second of

updates.

BRICK is also amenable to pipelining in hardware. In general, the lookup or update

of each successive level of sub-counter arrays can be pipelined such that at each packet

arrival, a lookup or update can operate on A1 while a previous operation operates on A2,

and so forth. This enables the processing of hundreds of millions of packets per second.

3.8 Conclusion

In this chapter, we have presented a novel exact active statistics counter architecture called

BRICK (Bucketized Rank Indexed Counters) that can very efficiently store large arrays

of variable width counters entirely in SRAM while supporting extremely fast increments

and lookups. This high memory (SRAM) efficiency is achieved through a statistical multi-

plexing technique, which by grouping a fixed number of randomly selected counters into a

bucket, allows us to tightly bound the amount of memory that needs to be allocated to each

bucket. Statistical guarantees of BRICK are proven using a combination of stochastic or-

dering theory and probabilistic tail bound techniques. We also employed the rank-indexing

data structure, similar to the rank-indexing technique in Chapter 2, to allow for fast random
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access of every counter inside a bucket. Experiments with real-world Internet traffic traces

show that our solution can indeed maintain large arrays of exact active statistics counters

with moderate amounts of SRAM.
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CHAPTER IV

DESIGN AND ANALYSIS OF ERROR ESTIMATING CODING:

NEW SKETCHES, ESTIMATORS AND ANALYSIS FRAMEWORK

4.1 Problem Overview

Estimating the bit error rate (BER) in packets transmitted over wireless networks has been

established as an important research problem in the seminal work of Chen et al. [13].

It was shown in [13] that, if the BER in packets can be accurately estimated, important

operations in wireless networks such as packet re-scheduling, routing, and carrier selection

can all be performed with greater efficiency. A simple yet effective technique, called error

estimating codes (EEC), is proposed in [13] to help estimate this BER. Its basic idea is for

the transmitter to send along with a packet a set of parity-check bits, each of which is the

exclusive-or of a group of bits randomly sampled from the packet. These parity equations

are designed in such a way that, by counting how many of them are violated after the packet

transmission, the receiver can estimate, with low relative error, this BER.

Using an EEC of O(log n) bits for a packet n bits long, their technique guarantees that

the estimated BER falls within 1± ε of the actual BER with probability at least 1−δ, where

ε and δ are tunable parameters that can be made arbitrarily small at the cost of increased

constant factor in O(log n), the coding overhead.

A natural question to ask is whether EEC achieves the best tradeoff between space

(O(log n)) and estimation accuracy ((ε, δ) guarantee) in solving the BER estimation prob-

lem. In this dissertation work, we answer this question definitively from a very different

alternative angle. While the EEC work looks at this problem from by and large a coding

theoretic perspective, we can also look at it from a theoretical computer science perspec-

tive, modeling it as a so-called two-party computation problem as follows. Two parties
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Alice and Bob each knows a (local) binary string x and y respectively, but Alice has no

knowledge of y and vice versa. Alice and Bob are faced with the problem of computing the

value of a function f acting upon the inputs x and y, often approximately. Intuitively, given

any “sufficiently nontrivial” function f , for Alice and Bob to compute f (x, y) together even

approximately, either Alice has to tell Bob something about x or Bob needs to tell Alice

something about y. The theory of two-party computation is concerned with how to eval-

uate f (x, y) using as little communication (telling the other party about their local strings)

between Alice and Bob as possible. Such a minimum amount of communication needed

for the two-party computation of f (x, y) is referred to as its communication complexity.

In the context of this work, two parties Alice and Bob are the transmitter and the receiver

respectively. Alice knows the string (packet) x that is transmitted and Bob knows the string

(packet) y that is received. The function f we would like to evaluate on (x, y) is clearly the

Hamming distance between x and y, that is, ||x− y||0 (L0 norm of the difference). We would

like to find out the minimum amount of extra information (about x) that Alice needs to send

to Bob, alongside with x, in order for Bob to approximately estimate f (x, y). Techniques

for (most) compactly encoding such extra information (about x) are referred to as sketching

algorithms and the resulting encodings are called sketches.

Casting this BER estimation problem into the rich theoretical framework of two-party

computation allows us to look much deeper into its underlying mathematical structures

and obtain a set of new and better results. We can hence prove that the (randomized)

communication complexity for the two-party computation of ||x−y||0 is Ω(log n), where n is

the length of the string x and y. In other words, Alice (the sender) needs to send to Bob (the

receiver) a minimum of Ω(log n) bits in order for Bob to approximately compute ||x − y||0.

Since the number of overhead bits used in the EEC algorithm is indeed O(log n) [13], it

matches this lower bound and is therefore asymptotically optimal.

A natural deeper and more important question following up is whether EEC has achieved

the desired optimal space-accuracy tradeoff. In this dissertation work, we will answer this
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question in Section 4.6 and demonstrate that EEC decoding is inefficient by deriving the

amount of Fisher information contained in EEC codewords and showing that the variance

of the estimator used in EEC encoding is much larger than the corresponding Cramer-Rao

bound. In fact, we find that EEC codewords contain around one time more information

than that is utilized by the estimator proposed in [13].

In order to overcome the inefficiency of the original EEC scheme, we then propose

a new estimator that achieves a significantly higher estimation accuracy and is provably

near-optimal by almost matching the Cramer-Rao bound. Our experiments will show that

this new estimator allows us to reduce the coding overhead by as much as two to three

times while achieving the same BER estimation accuracy. Another salient property of this

new estimator is that its variance can be approximated by a closed-form formula, making

it much easier to parameterize the EEC algorithm (i.e., to “tune”) for optimal estimation

accuracies (i.e., minimum variance) under various bit error models.

Successive to the improvement on the decoding part, we proceed to investigate whether

there are inefficiencies with the encoding part of EEC. This question is, however, much

harder to answer definitively because existing lower-bound techniques, rooted in the the-

ory of communication complexity [41], only allow us to establish asymptotic space lower

bounds such as the aforementioned Ω(log n) bound.

Our first discovery on this actually still derives from two-party communication angle

presented above. From that angle, our goal is actually is just measuring the the Hamming

distance ||x−y||0 (the number of errors occurring during transmission), which is actually the

same as ||x−y||1 (L1 norm) and ||x−y||2 (L2 norm)1. Various sketches have been proposed to

compactly encode a (long) string x for the two-party computations of ||x− y||0, ||x− y||1, and

||x − y||2. Among them, we discover that the tug-of-war sketch [3] proposed for estimating

the L2 norms is most suitable for our purposes.

1Let xi and yi be the ith bit in x and y respectively, i = 1, 2, ..., n. Then the Lp norm of the difference vector

x − y is defined as
(∑n

i=1 |xi − yi|
p
)1/p

.
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However, the tug-of-war sketch per se is not yet the right solution to our problem for

several reasons, which will be discussed in detail in Section 4.5. In short, we come on

several nice techniques to make the solution competitive and we name it as “Enhanced

Tug-of-War Sketch” (EToW).

Our next discovery, is that EEC and EToW can actually be viewed as different instances

of a unified coding framework that we call generalized EEC (gEEC). In other words, gEEC

can be parameterized into both EEC and EToW, and EEC can be viewed as a “degenerate”

case of gEEC.

This generalization makes it easier for us to analyze and improve the designs of both

EEC and EToW for two reasons. First, we need only design a single optimal decoder (i.e.,

estimator) for gEEC, which applies to both EEC and EToW, instead of one for each. This

decoder is a Maximum Likelihood Estimator (MLE) with the Jeffreys prior, which in the

case of EEC is the aforementioned estimator, and in the case of EToW performs better than

a different estimator we developed for EToW in [30]. Second, the Fisher information for-

mula derived for gEEC, which is in a closed form of matrix computations, applies to both

EEC and EToW. Through this unified framework of gEEC, we found that some parameteri-

zation of gEEC (similar to EToW, but not needing the extra error detection bits) can contain

around 25% more information than the pure EEC scheme. This information gain cannot be

fully decoded through EToW’s decoder, but is achievable by gEEC’s decoder.

Note that, although the second discovery presented above looks comprehensive than

EToW, EToW still has its special advantage in its simple decoding process.

4.2 Background, Preliminaries and Related Works

In this section, we will firstly overview the EEC problem and then provide the backgrounds

related to the problem here.
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4.2.1 Error Estimating Codes (EEC)

Error correcting coding [44] has been playing a fundamental and critical role in commu-

nication systems for more than fifty years, behind which is a philosophy that application

and network can or should only deal with entirely correct data. However, in recent years,

partially correct packets are found to be also useful in more and more designs, such as the

designs with incremental redundancy ARQ[43], the designs that may collect and combine

multiple partially correct packets[19, 36], the designs with forward error corrections[20],

and audio/video communication where errors could be tolerated to some extent[57].

The seminal paper of Chen et al. [13] has brought to the fore the problem of (approx-

imately) estimating the number of bit errors (correspondingly the bit error rate, BER) that

has occurred to a packet during its transmission over a wireless network. In contrast of error

correcting coding, Chen et al. [13] aim to use much smaller overhead while only providing

light-weight function: merely estimating the number of bit errors without correcting them.

A simple yet effective technique, called error estimating codes (EEC), is proposed in [13]

to help estimate this BER. It has been shown in [13] that knowing this (approximate) bit

error rate (BER) of a packet makes possible a host of advanced packet processing capabil-

ities such as packet re-scheduling, routing, and carrier-selection schemes that can improve

the (good) throughput of a wireless network in various ways. Compared to the previous

solutions , which either uses indirect inference such as packet loss ratio and signal/noise

ratio [29, 65], or needs special hardware support in the lower layer with the soft decoding

capability [64], the EEC solution directly infers the BER from the packet and achieve better

accuracy while also doesn’t need special hardware support.

In EEC [13], the codeword for a packet consists of a set of m = ab parity bits z1, z2, ...,

zm. They form a groups of size b each, {z1, z2, ..., zb}, {zb+1, zb+2, ..., z2b}, ..., {z(a−1)b+1, z(a−1)b+2, ..., zab}.

Each parity bit zi that belongs to group j (i.e., ( j − 1) ∗ b + 1 ≤ i ≤ jb) is calculated as

the XOR of a set of li = 2 j − 1 bits uniformly (pseudo-)randomly sampled with replace-

ment from the packet (viewed as a bit array). The size of groups (li’s) are geometrically
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distributed to maintain a good “estimation resolution” on a wide range of different BERs.

In the following, we refer to each such group as a level to be consistent with the terms used

in [13]. The codeword thus computed will be sent along with the packet to the receiver.

Note the encoding scheme of EEC has some flavor of Low Density Parity Check (LDPC)

codes although its parity check matrix is not strictly sparse as some of the rows can have

as many as 2a (including the parity check bit itself) ones in it, and in LDPC, no bit will be

sampled more than once, which may happen in EEC due to its sampling with replacement

nature.

Upon the receipt of a packet and its codeword (possibly with one or more bits flipped

during transmission), the receiver will multiply them (viewed as a vector) by the same

parity check matrix2 and infer the BER from the outcome of this multiplication, which

is often referred to as a syndrome vector in coding theory literature. From the syndrome

vector, the inference algorithm (i.e., the decoder) used in [13] first decides on the group

(i.e., level) of parity check bits that are expected to provide the best estimation accuracy.

Then BER will be estimated only from the corresponding syndrome bits within that group.

The authors of [13] showed that that their scheme with 9 levels and less than 300

additional bits in total per packet would be able to well differentiate BER rate in range

[10−3, 0.15], and it would work well in real-world wireless experiments and is a great

enhancement. They also show that they provide a (ε, δ) bound analysis of the proposed

scheme, i.e. they could guarantee at most ε relative error that failed with probability less

than δ, where ε and δ are arbitrarily tunable parameters that determine the overhead cost of

their algorithm. In total they need about O(log (n)) overhead for an n bit packet to achieve

error estimating rates within the threshold desired by target applications.

2Both the sender and the receiver know this matrix.
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4.2.2 Randomized Approximation and Communication Complexity

Randomized approximation: The original EEC scheme, the tug-of-war sketch to be pre-

sented in Section 4.4.1, and the generalized EEC scheme to be presented in Section 4.7, are

(ε, δ)-approximation schemes. An (ε, δ)-approximation algorithm is one that produces an

estimate X̂ for some quantity X with the guarantee that the absolute relative error |X̂ −X|/X

is at most ε with probability at least 1 − δ. It is assumed that 0 < ε, δ < 1 are arbitrary con-

stants that can be tuned by the designer of the algorithm. Typically, the cost of the scheme

is dependent on these two parameters.

Communication complexity: Many of our lower bounds on this dissertation research

make direct use of results from the communication complexity literature [41]. As men-

tioned before, communication complexity deals with the problem of determining the exact

amount of communication needed between two parties to compute some function on their

non-overlapping but jointly complete input. The communication complexity of a function

at input size n is the largest number of bits that the two parties have to communication

with each other using the optimal protocol for any input of size n. The basic communi-

cation complexity model can be generalized in many ways, two of which—randomization

and one-round—appear in this thesis. The randomized communication complexity of a

function is the communication complexity of an optimal randomized protocol that is cor-

rect with some positive constant probability (over random choices of the protocol). The

one-round communication complexity of a function is the communication complexity of

an optimal protocol in which Alice sends a single message to Bob, and Bob then computes

the result of the function with no further communication. The problem of estimating BER

clearly corresponds to the one-round model. Randomization is also allowed in our context

and is actually used by both EEC and our scheme.
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4.2.3 Fisher Information and Cramer-Rao Bound

In information theory and mathematical statistics, Fisher information quantifies the amount

of information an observable parameterized random variable X(θ) carries about its un-

known parameter θ. (Our description closely follows [16]; please consult it for more

background on this topic.) In our context, the error estimating codewords and sketches

correspond to random variable X(θ) and θ corresponds to the BER we would like to esti-

mate in a received packet. The probability function of X(θ) takes the form f (x; θ). When

θ is viewed as a constant and x as a variable, f (x; θ) is the probability density (or mass) of

the random variable X conditional on the value of θ; When θ is viewed as a variable and x

as a constant on the other hand, f (x; θ) is the likelihood function of θ, that is, the likelihood

of the parameter taking value θ when the observed value of X is x. Fisher information of

X(θ), which is a function of θ, is defined as

J(θ) , Eθ

[
∂

∂θ
log f (X; θ))

]2

. (15)

Fisher information J(θ) is an important quantity because it determines the minimum

variance achievable by any unbiased estimator of θ given an observation of X(θ), through

the Cramer-Rao lower bound (CRLB):

MSE[θ̂] = Var[θ̂] ≥
1

J(θ)
. (16)

If a biased estimator of θ with bias b(θ) is used instead, we have a slightly different

inequality:

MSE[θ̂] ≥
(1 + b′(θ))2

J(θ)
+ b(θ)2. (17)

While it is possible for a biased estimator to “beat” the Cramer-Rao bound for unbiased

estimators (Formula (2)) when θ takes certain values (over which b′(θ) takes negative val-

ues), that biased estimator is not a clear winner since bias comes at a cost and may not be

desirable to many applications.
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In the context of this work, where the goal is to measure the “scale” of the bit error

rate θ, the statistics of the relative error θ̂−θ
θ

and the log-difference log θ̂ − log θ are more

important. In particular, we prefer to use the statistics of the log-difference rather than the

relative ratio to evaluate the performance of an estimator, since it assigns higher penalty to

large deviations, making the comparison fairer for this application setting. For example,

suppose the real value of θ is 0.1, and three large-deviation estimates are 0.05, 0.19 and

0.01, then the penalty for the last one will be much larger if measured by log θ̂’s statistics.

However, when measured by the relative error, the penalties of the latter two are the same

and just around twice of the first.

The C-R bound for both θ̂−θ
θ

and log θ̂ − log θ can be derived from (16) and the results

are as follows:

Var
[
θ̂ − θ

θ

]
= Var

[
θ̂

θ

]
≥

1
θ2J(θ)

. (18)

Var
[
log θ̂ − log θ

]
= Var

[
log θ̂

]
≥

1
θ2J(θ)

. (19)

Interestingly, they are bounded by the same value, θ2J(θ). The second inequality (19) is

derived by a transformation from (16). In other words, θ2J(θ) is the Fisher information of

log θ. We will use θ2J(θ) frequently throughout the chapter since it will directly determine

the bound of the relative error/log difference.3

The maximum likelihood estimator (MLE) of θ, defined as θ̂MLE , arg maxθ{ f (x; θ)}, is

known to be asymptotically normal (denoted as N(∗, ∗)) under certain regularity conditions

[42] and has the following distribution:

θ̂MLE ∼ N
(
θ,

1
tJ(θ)

)
, (20)

where t here denotes the number of repeated independent experiments and J(θ) denotes the

Fisher information contributed from each experiment. Hence the Cramer-Rao lower bound

is (asymptotically) reached by the MLE.

3There is another concept called relative Fisher information established in information theory which is
not related to anything here.
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Fisher information and Cramer-Rao bound analysis has been used in a few previous

works on network measurement in the literature. It has been used by Ribeiro et al. [54] to

derive the minimum number of samples needed for accurately estimating flow size distribu-

tions from outputs of a packet sampling process (e.g., sampled Cisco NetFlow). They also

proposed an unbiased MLE estimator for this estimation problem that empirically matches

the Cramer-Rao bound. This work was followed up in [60] by Tune et al. who demon-

strated through Fisher information analysis that samples collected by flow sampling, which

is much more expensive computationally, are more information-rich, in terms of Fisher in-

formation per bit, than packet sampling. They then proposed a new hybrid sampling tech-

nique called dual sampling that combines the advantages of both flow and packet sampling.

Fisher information analysis is also used in recent work [61] to compare the information-

richness of the samples collected by a few packet sampling and sketching techniques for

the purpose of estimating flow size distributions.

4.2.4 Data Streaming and Communication Complexity

One of the major technical contribution that we make in this thesis is to adapt sketching

algorithms from the field of data streaming to this problem. Data streaming is a well-

studied area with a rich literature [52]. In the data streaming model, the input is provided

as a long stream of updates in which only a single pass is allowed over the stream and the

memory and time of the algorithm is heavily constrained (in particular much smaller than

the size of the input). The connection to this problem is that there are many streaming

algorithms that can be used to compute the difference (or distance) between two streams,

and the summaries of these algorithms (called sketches) are what we can use as overhead

bits for this problem. We tried several different sketching algorithms, including the count-

min sketch [15], the Flajolet-Martin (FM) sketch [25], the stable distribution sketch [34],

before settling on our variation on the tug-of-war sketch [3]. The tug-of-war sketch was

originally suggested by Alon et al. [3] for estimating the second frequency moment of a data
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stream. The governing characteristic of this sketch, that we make use of in this thesis, is

that it is a random projection of the input, thereby allowing for deletions from the received

packet. This sketch was modified for measuring the L1 distance of streams by Feigenbaum

et al. [23].

As for the proof of the lower bounds, our lower bounds make direct use of known

results for the communication complexity [41] of the Hamming distance problem. Our

main lower bound, showing that Ω(log (n)/ε2) overhead is necessary is a consequence of

the communication complexity result from [38].

4.2.5 Definitions and notes of Notations

For convenience, all major notations that will be used are summarized in the following

table for future reference

4.3 Lower Bounds

We next show lower bounds for the BER estimation problem, demonstrating the optimality

of our algorithms. In Sec. III.A, we show that deterministically estimating the error rate

(i.e., without the use of randomization) requires the coding scheme to use Ω(n) bits of over-

head even when we allow the estimate to err by over 10% from the actual value. Similarly,

we show in Sec. III.B that randomization alone cannot produce the exact BER estimation

using a well-known result from the area of communication complexity. Based on these two

results, one can see why we can only approximate the result with high probability. Finally,

we show in Sec. III.C why the O(log n)-bit sketch our algorithms use is necessary.

4.3.1 Why Randomization Is Needed

Theorem 1. Any error-estimating scheme that estimates the number of the bits in an n-bit

packet that change during transmission to within n/8 must use Ω(n) overhead bits.

Proof. Let n be divisible by 8 (the argument works for all n with some slight modifications).

It is known that there exists a family G of 2Ω(n) subsets of {1, 2, 3, . . . , n} such that (i) each set
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Notation Definition Schemes Note
Parameters

n binary length of the origi-
nal packet (data size)

All schemes In practice, typically less
than 12,000 (1500bytes)

m binary length of the sketch
bits for EEC purpose

All schemes Typically 80 to 300 bits

li sampling group size of the
ith EEC-bit/sub-sketch

EEC/gEEC Dependant on application.

l sampling group size of
each sub-sketch

EToW Dependant on application.

k the binary length of the ith

sub-sketch sent
EToW Typically 3-5

ki the binary length of the ith

sub-sketch sent
gEEC Typically 1-6

r the binary length of the
checking bits of each sub-
sketch sent

EToW Typically 1-2

Variables
θ bit error rate (BER) All schemes We are estimating the BER

of each packet, not BER of
the channel.

θ̂ Estimator of θ All schemes
−→
b Binary vector of the data

bits
ToW, EToW
and gEEC

n-entries(bits), typically
defined in {−1, 1}n, unless
specifically designated

−→si Binary random vector for
the ith sub-sketch

EToW,gEEC n-entries(bits), defined in
{−1, 1}n

zi or −→zi the ith EEC-bit/sub-sketch
sent

EEC/EToW,gEEC

−→
b′ the data bits received All schemes 1-bit in EEC, k-bit in

EToW, ki-bit in gEEC

z′i or
−→
z′i the ith EEC-bit/sub-sketch

calculated from
−→
b′

EEC/EToW,gEECThe same size as above

ži or
−→
ži the ith EEC-bit/sub-sketch

received
EEC/EToW,gEECThe same size as above

qi the checking bits for ith

sub-sketch sent
EToW r-bits

q̌i the checking bits for ith

sub-sketch received
EToW The same size as above

Table 13: Definition of symbols for Error Estimating Problem
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in G has cardinality exactly n/4, and (ii) every pair of sets in G have at most n/8 elements

in common. The existence of such a family can be shown using the probabilistic method,

but this is omitted here for brevity.

Let us assume for a contradiction that there exists a deterministic sketch of size less

than Ω(n) bits that allows the computation of the Hamming distance between the original

and transmitted codewords within an error of less than n/8. Consider what happens when

we sketch all the codewords formed by the characteristic vectors of the sets in G. Since the

sketch size is less than log (|G|) = Ω(n), by the pigeonhole principle we know that two of

the sets, say g1 and g2, in G must result in the same sketch value, making them indistin-

guishable. The Hamming distance between these two sets is at least n/8 + n/8 = n/4. As

a result, since the sketch cannot distinguish between the cases when the original codeword

and the transmitted codeword correspond to g1 and g1, versus when they correspond to g1

and g2, respectively, one of these two cases must have an error of at least n/8. �

4.3.2 Why Approximation is Needed

Theorem 2. Any error-estimating scheme that computes the exact number of bits in an

n-bit packet that change during transmission with probability at least 3/4 must use Ω(n)

overhead bits.

Proof. For this result, we use the communication complexity of the Set Disjointness prob-

lem. It is known that for two parties to compute whether their subsets of {1, 2, 3, . . . , n}

have any elements in common requires Ω(n) communication, even when randomization

(with 1/4 failure probability) is allowed [37].

Assume for a contradiction that there is a randomized sketch using less than Ω(n) bits

that can be used to compute the Hamming distance between the original and transmitted

codewords exactly. We use this to create the following protocol for Set Disjointness. Alice

uses the sketch to summarize the characteristic vector of her set and sends the sketch (less

than Ω(n) bits) and the number of elements in her set (log n bits), call it na, to Bob. Bob
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can now use this information to compute the Hamming distance (call it h), the number of

elements in his set (call it nb), and then compute the size of the intersection of his and

Alice’s set as (na + nb − h)/2. This is a one-round randomized protocol to compute the

size of the intersection of Alice and Bob’s sets, and hence must use Ω(n) communication,

contradicting our assumption about the size of the sketch. �

4.3.3 Randomized Approximation

We now use a lower bound in [38] to show that the asymptotic complexity of the tug-of-war

sketch and the original EEC scheme are optimal in terms of their dependence on n and ε,

the relative error bound. The lower bound result we use is as follows:

Theorem 3 ([38, 66]). The randomized one-round two-party communication complexity of

approximating the Hamming distance of the n-bit vectors of two parties up to a relative

error of ε with constant probability is at least Ω(log (n)/ε2).

The reduction is the same as the last, and a lower bound of Ω(log (n)/ε2) on the sketch

size follows.

4.4 Tug-of-War Sketch for Error Estimating Coding
4.4.1 The sketch

In this section, we briefly describe and analyze the plain vanilla tug-of-war sketch [3] in

the context of error estimating coding, under the assumption that the sketch per se is not

subject to bit errors during transmission. The tug-of-war sketch of a bit array (packet)

b is comprised of a constant number c of counters (c is determined by the desired error

guarantees) that are maintained using the same update algorithm (with possibly different

update values) and is sent to the receiver alongside with b. After the execution of these
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update algorithms, each counter contains the inner product of the bit array4 −→b with a pre-

defined pseudorandom vector −→s ∈ {+1,−1}n. Note the actual update algorithm is not shown

here because it is not relevant to our context; Only its “net effect” after execution is.

As shown in the following algorithm, upon the receipt of the transmitted bit array
−→
b′ and

the sketch (assumed to have no bit error during transmission), the receiver computes the c

inner products using the received packet (possibly with bit errors)
−→
b′, takes the difference

between them and the counters in the sketch sent along the packet, and squares the result.

Each of these results is now an unbiased estimate (proved in [3]) of the Hamming distance

between the original and the transmitted packets, and can be averaged to give an accurate

estimate of the Hamming distance5, d. The details are given in Algorithm 2.

Algorithm 2: The tug-of-war sketch for EEC.

SKETCH–CREATION(~b)1

Input ~b: original data bits vector.
Output z: the sketch encoding ~b.
pre-compute random vectors ~s j,1≤ j≤c : [n]→ {−1, 1}
for j = 1 to c do

z j := (~b · ~s j)/2
end for
return z = 〈z1, . . . , zc〉

DISTANCE–ESTIMATION(~b′, z)
Input ~b′: received data bits vector, z: received sketch.
Output p̂: the estimated error rate.
pre-compute random vectors ~s j,1≤ j≤c : [n]→ {−1, 1}
for j = 1 to c do

X j := (z j − ~b′ · ~s j/2)2

end for
return θ̂= 1

naverage(X1, . . . , Xc)

4Here
−→
b is the vector representation of the packet b, where ‘0’s have been converted to ‘-1’s as discussed

earlier.
5Note that this is a simplified form of the tug-of-war sketch proposed in [3]. The original version reduced

the dependence on δ to log (1/δ) by computing the average of O( 1
ε2 ) estimators and then finding the median of

O(log (1/δ)) such groups, at the cost of a larger constant multiplicative factor. For simplicity of the analysis
in the following section, we omit this asymptotic improvement here.
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4.4.2 Analysis

We now show that this estimator (the average of component random variables X1, X2, . . . ,

Xc) has low variance. To compute the variance of each component X j, we first compute

E[X2
j ] = E

(∑
bi,b′i

bis j[i])4


= E

∑
bi,b′i

(bis j[i])4

 + E

6 ∑
bi,b′i∧bk,b′k∧i,k

(bis j[i])2(bks j[k])2


= d + 6d(d − 1)/2

= 3d2 − 2d, (21)

Substituting this into the expression for the variance of X j, we obtain

Var[X j] = E[X2
j ] − (E[X j])2

= 3d2 − 2d − d2 ≤ 2d2.

Although the variance of a single component X j may look large (giving a standard

deviation larger than d itself), averaging c of them reduces it by a factor of c. Using

Chebyschev’s inequality then allows us to bound the failure probability arbitrarily small

as well (depending solely on how large we allow c to get). More concretely, if we pick

c = 2
ε2δ

, then by Chebyschev’s inequality we get that the estimate d̂ from the above algo-

rithm has the guarantee

Pr[|d̂ − d| ≥ εd] ≤
Var[d̂]
ε2d2 ≤

2d2

cε2d2 = δ.

Correspondingly, the relative error of the final estimate of θ̂ = 1
n d̂ would also satisfy the

ε − δ bound:

Pr[|θ̂ − θ| ≥ εθ] = Pr[|d̂ − d| ≥ εd] ≤ δ.

The total overhead of this scheme is that of sending c = 2
ε2δ

(a constant, independent of

n) counters, each of which contains a number in the range [−n, n]. Hence, the asymptotic

cost is O(log n) bits.
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4.4.3 Cost and Overhead for EEC applications

In this section, we perform a rough estimate of the total size of the sketch if the plain

vanilla tug-of-war sketch is used directly for EEC applications. This is needed for us to

compare it with our enhanced sketch, to be described in the next section. To allow for a

fair comparison, here we no longer assume the sketch is immune from bit errors during

transmissions. The total size of the sketch is determined by three factors: the number of

counters c, the size of each counter (denoted as k), and the number of extra bits needed to

protect the sketch. Since our enhanced sketch uses the same number of counters, we only

need to discuss the second and third factors here for comparison purposes.

To estimate the size of each counter, let us assume that the (maximum) length of the

packet is 1500 bytes = 1.2 × 104 bits. In the worst case log2(n) = log2(12000) ≈ 14 is

needed per counter, since max(~b · ~s/2) = n/2 and min(~b · ~s/2) = −n/2. However, the

value of each counter in the sketch, which is a random variable, has its probability densities

concentrated around its mean 0, since ~b · ~s is the sum of n i.i.d. Bernoulli random variables

bisi, each of which takes value +1 or −1 with equal probability 0.5. We calculate the

tail probability of the resulting Binomial distribution and find Pr(|Z| > 255) ≈ 3 × 10−6.

Therefore, if we truncate each counter to 9 bits (including one sign bit, since z could be

positive or negative) from 14, we risk overflowing it with probability 3 × 10−6.

A lower bound of the number of additional bits needed to protect the sketch can be

estimated using information theory as follows. Suppose the bit errors are symmetric (equal

probability in flipping 1 to 0 and the other way around) and random, the amount of infor-

mation brought by each bit received is:

I(θ) = 1 + θ lg θ + (1 − θ) lg(1 − θ).

Therefore, the final size of the sketch, including all the protection bits, needs to be at

least I(θ)−1 times larger than the original sketch. For example, when the error rate is 0.15,

the blowup factor I(0.15)−1 is equal to 2.56.
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Summing all above factors together, our back-of-envelope conclusion is: when the

overheads of extra protection is not counted in, roughly 16 × 9 = 144 would be able to

deliver comparable performance. Compared with the 9× 32 = 288 bits needed by the EEC

scheme, using tug-of-war sketch would gain considerable reduction on the overhead while

the estimation procedure would be very simple. However, when the extra protection cost is

counted in, the tug-of-war sketch would be no longer of too much advantage.

In the next section, we would present the enhanced tug-of-war sketch, which could

reduce the size of each counter by roughly another half and protect the sketch with small

overhead, while still delivering comparable performance.

4.5 Enhanced Tug-of-war Sketch (EToW): Scheme and Analysis

As mentioned before, we enhance the vanilla tug-of-war sketch in the following three ways

to achieve better space-accuracy tradeoffs and to be able to handle bit errors that may

occur to the sketch. As shown in Algorithm 3, our enhanced sketch contains a number of

important improvements.

First, in some BER estimation scenarios, we need only know whether the BER falls

into a certain interval like [2−i, 2−i+1], as suggested in [13], rather than the exact BER value.

In some others, only a rough BER estimation is called for. The vanilla tug-of-war sketch

can be an overkill for both types of scenarios at the cost of an unnecessarily large sketch

size. Adding to the problem is the fact that a larger sketch is more susceptible to bit errors

during transmission and requires stronger protections which we can ill afford. Our solution

is to combine sampling with sketching, in which we randomly sample l bits of the packet

and sketch only these l bits according to Algorithm 3. A smaller l value leads to a smaller

counter size and hence a smaller sketch size, at the cost of lower BER estimation accuracy

due to higher sampling error. By adjusting this parameter l, we can minimize the sketch

size needed to achieve a desired level of accuracy. The analysis needed for tuning this

parameter for best size-accuracy tradeoffs is presented later in Sec. 4.5.1.

91



Figure 16: Overview of Enhanced Tug-of-War (EToW) Sketch (Algorithm 3)

Second, as we mentioned before, since the counter value (a random variable) stays close

to its mean 0 with high probability, we may use fewer (say k) bits to store it without causing

an “overflow” most of time. We refer to this enhancement as “statistical truncation”, or

truncation in short, for the lack of a better word. Even when an overflow (at either the

sender or the receiver side) does happen (albeit with a small probability), its impact on

estimation is small because with high probability truncation happens at both sides, in which

case their difference remain the same as when there are no truncations. The impact of

statistical truncation on the estimation accuracy will be analyzed in Sec. 4.5.2.

Finally, as previously mentioned, the sketch is not immune to bit errors during trans-

mission and requires some protection. In our scheme, each counter (5 bits long) will be

protected by a parity bit (an overhead ratio of 20%). Any counter that fails the parity check

will be considered corrupted and will not be included in the estimation. The rationale for

this choice will be explained in Sec. 4.5.3.

The parameters of the enhanced tug-of-war sketch in the following analyses are as fol-

lows. We let c be the total number of counters, l the number of bit positions sampled, k the

length of each counter, and r the length of the parity bits of each counter. For convenience,

we denote the sketch by Sketch(c, l, k, r). The total transmission cost is c(k + r).
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Algorithm 3: Enhanced tug-of-war sketch with parameters (c, l, k, r).

SKETCH–CREATION(~b)1

Input ~b: original data bits vector.
Output z: the sketch of ~b.
pre-compute l-bit-long vectors ~s j,1≤ j≤c : [l]→ {−1, 1}
for j = 1 to c do

l-bits-long vector ~b j: sampled with replacement from ~b
Random projection: z̃ j := (~b j · ~s j)/2
k-bits-long truncated projection: z j := trunck(z̃ j)
r-bits-long parities q j := parityr(z j)

end for
return c(k + r)-bits long sketch z = 〈z1, . . . , zc〉〈q1, . . . , qc〉

DISTANCE–ESTIMATION(~b′, ž)
Input ~b′: received data bits vector, ž′: received sketch.
Output θ̂: estimate of the error rate θ.
pre-compute l-bit-long vectors ~s j,1≤ j≤c : [l]→ {−1, 1}
for j = 1 to c do

l-bits-long vector ~b′j: sampled with replacement from ~b′

(with the same hash seed pre-configured.)
Random projection: z̃ j

′ := (~b′j · ~s j)/2
Estimation Y j := trunck(z̃ j

′ − ž j) ,X j = Y2
j

Check parities V j := 1{q j=parityr(trunck(z̃ j
′)}

end for
return θ̂ =

∑c
j=1 V jX j

l
∑c

j=1 V j
as the estimation of error rate θ.
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4.5.1 Analysis of the effect of sampling

Here we provide a simple analysis of the “sampled tug-of-war sketch” and show the benefits

of sampling. In this analysis, we assume that no truncation is used and that no bit error

happens during the transmission of the sketch. The value of a full (un-truncated) counter

(a random variable) is denoted as z̃. Note that we use X̃ j := 1
l (z̃ j − z j)2 to estimate the error

rate θ = d/n.

Note that the Hamming distance between the two sampled segments, denoted by D,

is no longer a constant. From Section 4.4, we have E[X2
j |D j] = D j and Var[X2

j |D j] =

3D2
j−2D j. Since the l bits are sampled with replacement, D follows a binomial distribution,

E[D] = lp and Var[D] = lp(1 − θ), where θ is the error rate.

The new estimator of θ̂ = 1
l X̃ j is still unbiased:

E[θ̂] =
1
l
E[X̃ j] =

1
l
E[E[X̃ j|D]] =

1
l
E[H] = θ.

As for variance, we have

Var[θ̂] =
1
l2 Var[X̃ j]

=
1
l2 (Var[E[X̃ j|D]] + E[Var[X̃ j|D]])

=
1
l2 (Var[D] + E[2D2 − 2D])

=
1
l2 (lp(1 − θ) + 2lp(1 − θ) + 2l2θ2 − 2lθ)

= θ2(2 +
1
lθ
−

3
l
) < θ2(2 +

1
lθ

). (22)

Compared with (21), the relative variance of the sampled tug-of-war sketch is bounded

by 2 plus an additional term 1
pl . This means only when θ is Ω( 1

l ) will the estimator achieve

good performance. We can clearly observe this difference in Fig. 17. The sampled sketch

with l = 512 performs very close to the original tug-of-war sketch when θ > 10−2, and

much worse when θ < 10−3. From a practical perspective, this is exactly what we have

intended. In typical application scenarios exemplified by [13], very accurate estimation

(constant relative error) for very small bit error rates is not needed. In other words, the
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Figure 17: Comparison of the variance of the sampled tug-of-war sketches and the original
one, with c = 16.

sampled tug-of-war sketch enables users to make the best use of bits for the applications

we are interested in.

As discussed in Sec. 4.3, the communication complexity bound for measuring the Ham-

ming distance is Ω(log n). Both the original tug-of-war sketch and the EEC sketch match

this bound. The sampled tug-of-war sketch uses only O(log l) bits, where l is a constant pa-

rameter that can be much less than n. This does not contradict our lower bound, however,

since it does not deliver the target estimation accuracy ((ε, δ)-approximation) for inputs

with certain BER parameter settings.

4.5.2 Analysis of truncation and sampling together

In this section, we analyze the impact of truncation on the overall estimation accuracy.

The operation of truncating a counter value to a k-bit number (including one bit needed to

represent the sign) can be formalized as follows:

z = trunck(z̃) ≡ z̃(mod 2k), z ∈ [−2k−1, 2k−1 − 1]. (23)

As shown in Algorithm 3 and Figure 16, we defined Z̃ j
′
= ~b′j·~s j and Y j = trunck(Z̃ j

′
−Z j).
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We can find the following relationship between Y j and the original (un-truncated) sketch

values Z̃ j and Z̃ j
′ as follows:

Y j = trunck(Z̃ j
′
− Z j) ,Y ∈ [−2k−1, 2k−1 − 1]

≡ Z̃ j
′
− Z j (mod 2k)

≡ Z̃ j
′
− Z̃ j (mod 2k), due to (23)

≡ trunck(Z̃ j
′
− Z̃ j) (mod 2k) (24)

In the following, we derive the distribution, expectation and variance of each estimator

θ̂ j = 1
l X j = 1

l Y2
j = 1

l trunck(Z̃ j
′
− Z̃ j)2.

Note Yi, i = 1, 2, ..., c, are i.i.d. discrete random variables. Let Y be an arbitrary Yi. In

the following we will derive the probability mass function (PMF) of Y so that we can ana-

lyze the impact of truncation on our estimation accuracy. Since Y takes values on exactly 2k

integer values {−2k−1,−2k−1+1, ..., 2k−1−1}, its PMF can be determined by a 2k-dimensional

vector ~γ(θ, l) ≡ 〈γ−2k−1(θ, l), γ−2k−1+1(θ, l), ..., γ2k−1−1(θ, l)〉 where γi(θ, l) ≡ Pr(Y = i|θ, l),

i ∈ [−2k−1,−2k−1 + 1, ..., 2k−1 − 1]. Note that each scalar γi is a function of the error rate θ

and the number of bits sampled l. We show that ~γ(θ, l) can be computed from the following

recurrence relation.

Lemma 4.

~γ(θ, l)1×2k = ~γ(θ, l − 1)1×2kM(θ)2k×2k , (25)

where

M(θ) =



1 − θ θ/2 · · · 0 · · · θ/2

θ/2 1 − θ θ/2 · · · 0 · · ·

θ/2 1 − θ θ/2 · · · 0 · · ·

· · · · · ·

· · · 0 · · · θ/2 1 − θ θ/2

θ/2 · · · 0 · · · θ/2 1 − θ


2k×2k

(26)
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Proof. Let ~e = 〈e1, e2, · · · , el〉 and ~s = 〈s1, s2, · · · , sl〉. We define the following interim

random variables Y j, j = 0, · · · , l:

Y j =

j∑
k=1

eksk. (27)

Clearly, X = Yl(mod 2k). Due to the sampling with replacement policy, the increment in

each step ∆Y j = Y j+1 − Y j = e j+1s j+1 is independent of every other. Hence the random vari-

ables {Y j}0≤ j≤l make up a Markov chain. In each step, with probability 1 − θ an unchanged

bit is selected and hence ∆Y j = 0; with probability θ a changed bit is selected, and half of

these increments are +1 and the other half −1 since sk is uniformly at random from {−1, 1}.

Hence the distribution of ∆Y j is:

∆Y j =



−1 with prob θ/2,

0 with prob 1 − θ,

1 with prob θ/2.

(28)

Mapping {Y j}0≤ j≤l into the finite field Z2k , formula (56) becomes the transition matrix,

which is the circular matrix M defined in (53). �

To allow for efficient matrix computations, M(θ) can be diagonalized as follows.

M(θ) =
1
K
Ω′Diag(d0, d1, . . . , dK−1)Ω,

where Ω = {ωik}, ωik = exp (2πik j
K ), j is the imaginary unit, and di = 1 − 2 sin2 (2iπ/K)θ.

Considering that ~γ(θ, 0) = [0, · · · , 0, 1, 0, · · · ]1×K , where 1 appears at the (2k−1 + 1)th

position, we have

~γ(θ, l) = [0, · · · , 1, 0, · · · ]M(θ)l

=
1
2k [0, · · · , 1, 0, · · · ]Ω′Diag(dl

0, d
l
1, . . . , d

l
K−1)Ω

=
1
2k [dl

0,−dl
1, . . . , d

l
2k−2,−dl

K−1]Ω. (29)
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Finally, we can calculate the expectation and the variance of Y2 from ~γ(θ, l) as follows:

E[Y2] = ~γ(θ, l)β2 (30)

Var[Y2] = ~γ(θ, l)β4 − (~γ(θ, l)β2)2, (31)

where βi = [(−2k−1)i, (−2k−1 + 1)i, ..., (2k−1 − 1)i].

After summing up all c counters in the sketch, we finally arrive at the Mean Squared

Error of the estimator,

l2MSE[θ̂] = E[(
1
c

∑
Y2

i − pl)2]

=
1
c

Var[Y2] + (E[Y2] − pl)2. (32)

Since 1
l Ỹ j

2 is unbiased and |trunck(x)| ≤ |x|, 1
l Y j

2 will be (slightly) negatively biased.

Note the aforementioned Chebyshev’s inequality still holds for the mean squared error,

while it does not for the variance when the estimator is biased. Because of the bias, the

aforementioned (ε, δ)-approximation guarantee no longer holds for the truncated version of

the tug-of-war sketch.

In Fig. 18, we plot the relative Rooted Mean Squared Error parameterized by several

combinations of k and l. It shows that the sampling parameter l shifts the left wing of the

relative error curve, while the truncation parameter k shifts the right wing.

4.5.3 Impact of bit errors on counters and protection

In this section, we discuss the types of error detection mechanisms that are appropriate for

protecting our enhanced sketch and derive the formula for analyzing their error probabili-

ties. An error detection code can be defined by its generating matrix. For example matrix 1 1 1 1 1

0 0 1 1 1

 means there are two parity bits per counter. The first parity bit is XOR

of all five bits and the second is the XOR of the three most significant bits. A counter is

considered corrupted during transmission if it fails at least one of the parity checks. A

corrupted counter thus detected will not be used in the BER estimation. However, all cor-

rupted counters may not be detected. The following analysis will derive the distribution,
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Figure 18: The relative Rooted Mean Squared Error of the enhanced tug-of-war sketch
(fully protected) with different sampling and truncation parameters, when c = 16, l =

{512, 1024}, k = {4, 5, 6}.

expectation and variance of the sketch differences Y , denoted by γq(θ), when the effects of

both types of corruptions (detected and undetected) are factored. Based on this analysis,

our scheme chooses to have one parity bit per counter, which is the XOR of all 5 bits in the

counter (corresponding to the first row of the above matrix).

We first model the distributions of the errors that survive the parity checking (unde-

tectable errors). The impact of those errors on the estimates Yi can be calculated as follows:

γq(θ) ≈ γ(θ)Q(θ),

where Q(θ) is determined by the design of the parity bit(s). We can then replace the γq in

(30-32) with γq(θ) to derive the expectation, variance and MSE of the final estimate Y2
i .

The next step is to take into consideration the impact of detectable errors. Such errors

will not affect the bias of the final θ̂, but will increase its MSE because fewer counters are
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included in the average. The MSE of θ̂ when considering such errors is as follows:

l2MSE[θ̂] =

c∑
k=1

1
k

(
c
k

)
θk(1 − θ)c−kVar[Y2]

+ (E[Y2] − pl)2, (33)

where θ is the probability with which each counter survives the parity checking. As dis-

cussed earlier, θ is a function of θ and the generating matrix. The error distribution of the

final estimator is also numerically computable, but we omit the details here in the interest

of space.

We compare different constructions of generating matrices in Fig. 19 and the results

can be summarized as follows. First, it is not necessary to parity-check all sketch bits.

However, if too few sketch bits are parity-checked, the accuracies in estimating low BER

can be impaired. This phenomena can be observed by comparing the first three curves

in the legend. Second, two parity bits per counter instead of one does not considerably

improve the accuracy of the final estimation. For this reason, we choose to have one parity

bit per counter in our scheme.

4.6 Fisher Information Analysis of EEC

In this section, we analyze the Fisher information contained in an EEC codeword. Since

each bit in an EEC codeword is generated in the same way independent of each other, it

suffices to analyze the contribution from each bit. The Fisher information of the codeword

is simply the sum of the Fisher information contained in each bit.

Throughout this chapter, we will use notation ži’s to denote the codeword bits (sent

along with the packet) received (hence subjected to transmission errors), and use z′i’s to

denote the codeword bits calculated from the packet received. In the EEC scheme, zi and

z′i are the parity bits of the li bits on the same locations of the original and the received

packets. The receiver computes their difference Xi = ži ⊕ z′i , i = 1, 2, . . . ,m, and infers the

error rate θ from the Xi’s.
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Figure 20: Fisher Information (of log θ) of each EEC bit in function of l and θ

4.6.1 Fisher Information Contained in each EEC bit

To simplify the exposition, we first perform the Fisher information analysis under the un-

realistic assumption that the codeword is immune from corruption during transmission. In

this case, ži’s, the codeword bits received, are the same as zi’s, the codeword bits sent. We

will then handle the more realistic case, without immunity, at the end of this section.

4.6.1.1 The case with “immunity”

Recall Xi defined above indicates whether or not the ith parity equation holds. In the

case with immunity, the likelihood function of observing Xi = 1 (i.e., odd number of bits

“flipped” during transmission among the set of bits sampled) is as follows:

f (Xi = 1, θ) = Pr(Xi = 1|θ) (34)

=

2 j+1≤li∑
j=0

(
li

2 j + 1

)
θ2 j+1(1 − θ)li−2 j−1

=
1 − (1 − 2θ)li

2
. (35)
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The Fisher information contained in each Xi can be calculated as follows:

JEEC
i (θ) = Eθ[(

∂

∂θ
log f (Xi; θ))2] (36)

= Pr(Xi = 1|θ)(
∂

∂θ
log f (Xi = 1; θ))2 + Pr(Xi = 0|θ)(

∂

∂θ
log f (Xi = 0; θ))2

=
1 − (1 − 2θ)li

2

(
2li(1 − 2θ)li−1

1 − (1 − 2θ)li

)2

+
1 + (1 − 2θ)li

2

(
−

2li(1 − 2θ)li−1

1 + (1 − 2θ)li

)2

=
4l2

i (1 − 2θ)2li−2

1 − (1 − 2θ)2li
. (37)

Before we aggregate Fisher information contributed by all the codeword bits, we would

like to highlight some nice properties of the derived Fisher information for a single bit (37).

For convenience of comparisons, we define the Fisher information (of log θ) of each bit as

η(li, θ):

θ2JEEC
i (θ) =

4θ2l2
i (1 − 2θ)2li−2

1 − (1 − 2θ)2li
, η(li, θ). (38)

As we explained earlier, this is inversely proportional to the Cramer-Rao bound of the

relative variance. The larger η(l, θ), the tighter the bound of the relative error (and the

log-difference) that can be achieved.

Values of η(li, θ) for various li (number of bits sampled) values are plotted in Figure 20.

We can see that the η(l, θ) curves corresponding to different l values are actually very similar

in shape to each other. A larger parity group size l is better for estimating smaller θ values

and vice versa. These curves also have similar “heights” except when l gets really small

(targeting extremely high BER close to the maximum possible value of 0.5). This means

that the “peak estimation powers” of different parity bits are about the same. The maximum

(i.e., “height”) of each curve is always reached around θ = 0.4/l, which means the parity

bit computed from l sampled bits yields the best estimation for θ when θ is around 0.4/l.

We can even quantify how much “information about θ” flows into the whole estimation

spectrum by the following integral formula, which is the area covered by the FI(rel) curves

in Figure 20:

SJ(l) =

∫ 0.5

0
θ2J(l, θ)d log θ (39)
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In (39), the upper limit of the integral is 0.5 is because all formulas derived above

(starting from (35)) are only valid when θ is less than or equal to 0.5.

From a practical perspective, an integral over the full spectrum might not be too useful

since practical applications might be only interested in a particular range of spectrum rather

than a full spectrum, such as [10−3, 0.15] proposed in [13]. Moreover, maintaining accuracy

over a certain threshold might be even more practical than an integral. However, we find

SJ is still a very good indicator of performance since it remains almost the same for EEC

bits with different parameter l, which is not surprising since the Fisher information curves

are similar to each other in shape and hence the “area under” the curves are also close to

one another. In Figure 20, we list the values of SJ(l) of different l’s in the legend, where

constant C = 1
24π

2 ≈ 0.4112, which is a provable limit of SJ(l) when l goes infinity. When

l increases, SJ(l) gets closer to C. In other words, the total information SJ contributed by

each bit is all on the same scale and almost invariant to parameter l. In Section 4.7.4, we

will see that this criteria SJ helps us to differentiate the strengths of different schemes and

guides us in selecting better schemes.

4.6.1.2 The case without “immunity”

We proceed to perform the Fisher information analysis of EEC when the codeword sent

along with the packet is no longer assumed to be immune from corruptions during trans-

mission. The amount of Fisher information contained in each parity bit Xi can be derived

as in (40). We omit the details of this derivation since it is a special case of the Fisher

information analysis (without “immunity”) in the gEEC framework in Section 4.7.2. Note

that, unlike the case with “immunity” where the analysis rigorously holds, the analysis for

the case without “immunity” only rigorously holds when i.i.d. random binary errors are

assumed or random placement of bits are assumed.

θ2JEEC
i (θ) =

4(li + 1)2(1 − 2θ)2li

1 − (1 − 2θ)2li+2 (40)
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Notice that the RHS of (40) is equal to η(li + 1, θ), only slightly different from (37).

4.6.2 Combining the contributions of the different levels of bits

Since all parity bit are calculated from independent samples with replacement and hence

each of them is independent of every other, the Fisher information of the codeword is

simply the sum of their Fisher information together:

JEEC(θ) =

m∑
i=1

JEEC
i (θ). (41)

In Figure 21, we plot the Cramer-Rao bound of the EEC scheme with the typical con-

figuration (9 levels, 32 bits per level) and we also plot the Cramer-Rao bound of schemes

with only one level of 32 bits. From Figure 21, we can see that after using the informa-

tion of all levels, the estimation accuracy has the potential to be considerably improved. In

other words, suppose there are two optimal estimators, the first can use only the informa-

tion contained in one level of bits, while the second can use the information contained in

all levels. Then the variance of the first estimator will be four times as large as compared

to the second for most θ values. This means the codeword size has to be four times as large

for the first estimator to match the second in estimation accuracy.

In the design of the original estimator in [13], they first identify the level of bits likely

to be the most accurate for estimating θ and then only use that level of bits for estimation.

Hence only one level of information is used in the final estimate. In Section 3.5 of the

technical report [12], the authors have proposed an improved estimator that can make use

of two neighboring levels of parity bits. In Figure 21, we use θ̂1 to denote the original

one proposed in [13] and use θ̂2 to denote the improved version proposed in [12]. We can

see that neither estimator is close to the Cramer-Rao bound corresponding to the amount

of Fisher information contained in such one or two levels of bits (In other words, their

estimators have not made full use of even the information contained in such one or two

levels of bits) and far from the Cramer-Rao bound corresponding to the Fisher information

of all the codeword bits. We note that when θ is larger than 0.15, the relative MSE falls
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below the Cramer-Rao bound; This is because the estimator is actually very biased in that

region. According to (17), this might lead to smaller MSE.

4.6.3 MLE estimator for EEC scheme

In this section, we present our MLE decoder that matches the Cramer-Rao bound, shown

in the following formula.

θ̂MLE = arg max
θ
{

m∑
i=1

log Pr(Xi|θ)} (42)

= arg max
θ
{

m∑
i=1

log
1 − (1 − 2θ)li

1 + (1 − 2θ)li
Xi (43)

+ log(1 + (1 − 2θ)li)} (44)

It has been discovered in [24] that the non-informative prior, Jefferys invariant prior, can

remove the O( 1
N ) component in bias for the family of exponential models. Here, although

the likelihood function is not a closed-form distribution, we find that Jeffreys prior will

help the MLE estimator to achieve better results. The MLE with the Jefferys prior, denoted

as θ̂MLE j , is

θ̂MLE j = arg max
θ
{

m∑
i=1

log Pr(Xi|θ) +
1
2

log J(θ)}

= arg max
θ
{

m∑
i=1

log
1 − (1 − 2θ)li

1 + (1 − 2θ)li
(Xi −

1
2

)

+ log(2li(1 − 2θ)li−1)}.

Here p(θ) ∼
√

J(θ), where p(θ) is the a priori distribution of the parameter θ and J(θ)

is the Fisher information calculated in (41). Note that the MLE with Jefferys prior will still

asymptotically reach the Cramer-Rao bound.

4.7 Design and Fisher Information Analysis of Generalized EEC (gEEC)

In the previous section, we showed through Fisher information analysis that the original

decoder for EEC used in [13] is far from optimal and our new decoder is near-optimal (by
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almost matching the Cramer-Rao bound) given the amount of Fisher information contained

in an EEC codeword. Now we would like to find out whether the EEC encoding scheme

is efficient enough by comparing its Fisher information (per bit) with that of EToW. How-

ever, when we were performing the Fisher information analysis of EToW, we discovered

a generalized EEC (gEEC) scheme that can be parameterized into both EEC and EToW.

Fisher information analysis of EToW can thus be generalized to that of gEEC so we shift

our “target” for comparison to gEEC. Through this unified framework of gEEC, we have

found that some parameterizations of the gEEC family contain 25% or more Fisher infor-

mation per bit in their codewords than EEC. In other words, the EEC encoding scheme

is not very efficient either. The discovery of gEEC is important also for another reason:

We have discovered a unified decoder (estimator) for gEEC that is near-optimal (by almost

matching the Cramer-Rao bound) and when parameterized into EToW, is more accurate

than the original EToW decoder proposed in [30]. Strictly speaking, it is not the clear win-

ner however since the original EToW decoder has much lower computational and storage

complexities.

The rest of the section is organized as follows. In Section 4.7.1, we briefly describe

the gEEC encoding scheme by highlighting its differences from and connections to both

EToW and EEC. In Section 4.7.2, we proceed to perform the Fisher information analysis of

its codeword and design its estimator. We will see the gEEC decoder that almost matches

the Cramer-Rao bound in Section 4.8. Finally, we will present the numerical results of the

information contained in gEEC family in Section 4.7.4.

4.7.1 The gEEC Encoding

A gEEC codeword (called sketch) of a packet (viewed as binary vector ~b) consists of m sub-

sketches z1, z2, . . . , zm. The value of sub-sketch zi is set to the number of 1’s contained in

the binary vector generated by sampling li bits from the packet with replacement, which we

refer to as ~bi, and then XOR-ing it with a pseudo random vector ~si bitwise. This operation is
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the same as in EToW, except that in EToW the value of zi is set to the half of the difference

between the number of 1’s and the number of 0’s. It can be shown that these two types

of encodings can be made equally efficient and statistically equivalent with respect to the

truncation operations (described shortly) with proper parameterizations.

The main difference between EToW and gEEC is that all l′i s have to take the same value

in EToW. This is not an artificially crafted difference because EToW’s decoder, inherited

from ToW and based on the method of moments, imposes this equal length requirement,

while the new decoder we propose for gEEC that we will describe in Section 4.7.2.2, does

not have such a requirement due to its MLE nature. Like in EToW, we use barely enough

bits to encode each sub-sketch and “overflows” are handled in the same way through trunca-

tion. Moreover, different from EToW which needs extra checking bits to detect corruption

inside the sketch, we will see that the estimators provided the gEEC’s framework have

built-in capability to decode the sketches which might suffer corruption in the case without

“immunity”.

The precise definition of zi in gEEC scheme is as follows:

zi =

li∑
j=1

(bi, j ⊕
1 + si, j

2
) (mod Ki), (45)

where Ki = 2ki , ki is the number of bits allocated to sub-sketch zi. Each si, j is a pre-

computed pseudo-random number uniformly and independently selected from {−1, 1}, the

same as the definition in the tug-of-war sketch [3, 30]. The function 1+si, j

2 maps si, j from

{−1, 1} to {0, 1}.

Noticed that here, different from the definition in (23) of Section 4.5,here we directly

define the zi by xor sum and zi is no longer defined in {−2ki−1,−2ki−1 + 1, ..., 2ki−1 − 1}, but

defined in {0, 1, ..., 2ki − 1}. We should say the purpose of this is only to make the formulas

cleaner and is also to be consistent with the definition in [31].

As shown below, the nature of the definition above is a random projection of ~si (only

different from the ~bi · ~si by a pseudo-random constant, i.e. a number that is the same in both
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sender and receiver):

zi =

li∑
j=1

(bi, j ⊕
1 + si, j

2
) (46)

=

li∑
j=1

1 + (2bi, j − 1)si, j

2
(47)

= ~bi · ~si −
1
2
~1 · ~si +

li
2
. (48)

It can be shown that when we allocate only 1 bit for each sub-sketch, the sketch becomes

a parity array and in this case gEEC “degenerates” into a scheme statistically equivalent to

EEC with the same li values. We can also see that gEEC becomes statistically equivalent

to EToW without sketch protection (explained next) when l′i s are set to the same value.

4.7.2 Fisher information analysis

In this section, we analyze the Fisher information contained in each gEEC codeword. Re-

call from Sec. 4.4.1 that in EToW we need to protect the sketch against corruptions during

transmission using lightweight error-detection codes. We will show no such protection is

needed in gEEC because, unlike the EToW decoder, the proposed MLE decoder for gEEC

is robust against such corruptions. In order to simplify the presentation of the analysis,

we first analyze the Fisher information of a gEEC codeword assuming that the codeword

is immune from corruption during transmission in Section 4.7.2.1 and then show how to

remove this assumption in Section 4.7.2.2.

4.7.2.1 The case with “immunity”

Like in Section 4.6, we use ~b′i to denote the set of bits sampled with replacement from the

packet received (subject to corruptions during transmission) that are used to compute the ith

sub-sketch z′i at the receiver side, and use ~bi to denote the corresponding set of bits sampled

from the packet sent (can be different from ~b′i due to corruptions during transmission) that

are used to compute the ith sub-sketch zi at the receiver side. In this section, we derive
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the Fisher information of the sketch under the aforementioned immunity assumption that

these sub-sketches z1, z2, ..., zm will arrive at the receiver without having any of their bits

corrupted during transmission.

The receiver can calculate the difference Xi between z′i and zi

Xi , z′i − zi(mod K), i ∈ [m] (49)

Here K = 2k where k is the number of bits we allocate to each sub-sketch. The effect

of the aforementioned (possible) overflow and resulting truncation is reflected in ”modulo

K”. It can be shown that this observation Xi is the following function of the error vector

~ei (the difference vector between ~bi and ~b′i), where si is the aforementioned pseudorandom

vector over which the sampled bit vectors ~bi and ~b′i are linearly projected:

Xi = ~bi · ~si − ~b′i · ~si(mod K), due to (48) (50)

= ~ei · ~si(mod K). (51)

Since observations X1, X2, ..., Xm are independent random variables, the likelihood

function of the random vector 〈X1, X2, ..., Xm〉 is the product of the likelihood functions

of these random variables. The likelihood function of Xi (for arbitrary i) can be derived as

follows.

For convenience, we drop the subscript from Xi and denote it simply as X. In the

following we will derive the probability mass function (PMF) of X, which takes values from

the set of K = 2k integers {0, 1, ...,K−1}. It can be shown that its PMF can be determined by

a K-dimensional vector ~γ(θ, l) ≡ 〈γ0(θ, l), γ1(θ, l), ..., γK(θ, l)〉 where γi(θ, l) ≡ Pr(X = i|θ, l),

i ∈ [0, 1, ...,K − 1]. Note that each scalar γi is a function of the error rate θ and the number

of bits sampled l (here the subscript i is dropped from li). We show that ~γ(θ, l) can be

computed from the following recurrence relation.

Lemma 5.

~γ(θ, l)1×K = ~γ(θ, l − 1)1×KM(θ)K×K , (52)

110



,where M(θ) is the same as the M(θ) defined in (26) of Section 4.5.

M(θ) =



1-θ θ/2 · · · 0 · · · θ/2

θ/2 1-θ θ/2 · · · 0 · · ·

θ/2 1-θ θ/2 · · · 0 · · ·

· · · · · ·

· · · 0 · · · θ/2 1-θ θ/2

θ/2 · · · 0 · · · θ/2 1-θ


K×K

(53)

The only difference from the definitions of Section 4.5 is in the initial condition of

~gamma, which is

~γ(θ, 0) = [1, 0 · · · , 0]1×K . (54)

here.

Proof. Let ~e = 〈e1, e2, · · · , el〉 and ~s = 〈s1, s2, · · · , sl〉. We define the following interim

random variables Y j, j = 0, · · · , l:

Y j =

j∑
k=1

eksk. (55)

Clearly, X = Yl(mod K). Due to the sampling with replacement policy, the increment in

each step ∆Y j = Y j+1 − Y j = e j+1s j+1 is independent of every other. Hence the random vari-

ables {Y j}0≤ j≤l make up a Markov chain. In each step, with probability 1 − θ an unchanged

bit is selected and hence ∆Y j = 0; with probability θ a changed bit is selected, and half of

these increments are +1 and the other half −1 since sk is uniformly at random from {−1, 1}.

Hence the distribution of ∆Y j is:

∆Y j =



−1 with prob θ/2,

0 with prob 1 − θ,

1 with prob θ/2.

(56)

Mapping {Y j}0≤ j≤l into the finite field ZK , formula (56) becomes the transition matrix,

which is the circular matrix M defined in (53). �

111



To allow for efficient matrix computation, M(θ) can be diagonalized as follows.

M(θ) =
1
K
Ω′Diag(d0, d1, . . . , dK−1)Ω (57)

where Ω = {ωik}, ωik = exp(2πik j
K ), j is the imaginary unit, and di = 1 − αiθ, αi =

2 sin2(iπ/K), which is actually the Fourier transform matrix.

Considering that ~γ(θ, 0) = [1, 0 · · · , 0]1×K , we have

~γ(θ, l) = [1, 0, · · · , 0]M(θ)l

=
1
K

[1, 0, · · · , 0]Ω′Diag(dl
0, d

l
1, . . . , d

l
K−1)Ω

=
1
K

[dl
0, d

l
1, . . . , d

l
K−1]Ω. (58)

The Fisher information of the gEEC sketch can be calculated as follows:

J(θ, l) = Eθ(
∂

∂θ
log f (Xi; θ))2

=

K−1∑
j=0

γ j(θ)(
d
dθ

log(γ j(θ)))2

=

K−1∑
j=0

l2{[0, α1dl−1
1 , . . . , αKdl−1

K−1]Ω}2j
K{[dl

0, d
l
1, . . . , d

l
K−1]Ω} j

, (59)

where γ j denotes the jth item in vector ~γ and {~v} j denotes the jth item in vector ~v.

It can be shown that when we set k to 1 (so that gEEC degenerates into EEC), formula

(59), the Fisher information of gEEC codeword is equal to formula (37), that of EEC.

4.7.2.2 The case without immunity

In the previous section, we have performed an Fisher information analysis of gEEC under

the assumption that the codewords (sketches) sent along with the packets are not subject

to corruptions during transmission (i.e., “with immunity”). In reality, these codewords

are certainly not immune to bit errors. In this section, we perform the Fisher information

anaysis without this “immunity assumption”.

Suppose the sender sends out a sub-sketch zi and the receiver receives ži. Now ži may

differ from zi as the “immunity” has been taken away. Having no knowledge of zi, the
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receiver has to use ži and zi
′ computed from the received packet to infer the bit error rate

θ. The conditional (upon θ) joint probability mass function of 〈ži, zi
′〉 is shown as follows.

For ease of notation, we remove the subscript i from the notations and get:

Pr(ž, z′|θ) ∝
K−1∑
z=0

Pr(z, ž|θ) Pr(z′|θ, z)

∝

K−1∑
z=0

Pr(z) Pr(ž|θ, z) Pr(z′|θ, z). (60)

Note that the formula (60) above only holds under the assumption that the binary error

flips on sketch bits and the error flips on data bits are independent, i.e., ž ⊥ z′|θ, z, which

requires either that the binary errors are i.i.d. distributed inside the sketch or that the lo-

cations of all bits participating including the sketch bits are all sampled with replacement

from the packet, which is not possible to be strictly guaranteed in reality. Hence, we read-

ily admit that, different from the analysis for the case with “immunity” which is rigorously

held, the analysis for the case without “immunity” does not model reality perfectly, though

we believe that it should be very close.

The matrix representation of (60) is as follows:

P(θ) f inal
K×K ∝ ΛM(θ)lT(θ)K×K , (61)

In (61), matrix M corresponds to Pr(z′|θ, z) and can be calculated using (57). Matrix Λ

is a diagonal matrix and corresponds to Pr(z). Its diagonal elements can also be calculated

using (58) with θ = 1. We acknowledge that an ulterior motive for us to define zi as the

number of 1’s, rather than the number of 1’s minus the number of 0’s, in the bitwise-XOR

of ~bi and ~si, is that it makes these formulae much “cleaner”.

Matrix T is the transition matrix that corresponds to Pr(ž, q̌|θ, z). Each of its entry Ti j is

defined as follows:

Ti, j = θdi j(1 − θ)k−di j , (62)

where di j is the Hamming distance between the binary representation of i and j.
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All entries in (61) are differentiable and the Fisher information can be derived in a way

similar to (59). In the interest of space the final Fisher information formula is omitted here.

Note that when k = 1, gEEC degenerates to EEC, and the final Fisher information

formula can be shown to be equivalent to EEC’s Fisher information formula (40).

4.7.3 Our MLE Estimators

In this section, we derive the MLE decoder for gEEC that perform much better than both

EEC and EToW decoders, as we will show in Sec. 4.8. Again, we first derive it for the

easier case with “immunity” and then proceed to take the “immunity” away.

In the case with “immunity”, our observations are Xi, which is the difference between

each pair of ži and z′i , i = 1, 2, ...,m, and our goal is to estimate θ. The maximum likelihood

estimator is

θ̂MLE = arg max
θ
{

m∑
i=1

log{~γ(θ, li)}Xi} (63)

Here {~γ(θ, li)}Xi denotes the Xth
i scalar in ~γ and ~γ(θ, l) and J(θ, l) have both been derived

earlier. The MLE estimator with Jeffreys prior (MLE-J) is

θ̂MLE−J = arg max
θ
{
1
2

log J(θ) +

m∑
i=1

log{~γ(θ, li)}Xi} (64)

We introduce MLE − J because it performs better than the plain vanilla MLE empiri-

cally, which will show in Section 4.8.

Similar to (64), the MLE estimator with Jeffreys prior for the case without immunity is

θ̂ = arg max
θ

1
2

log J(θ) +

m∑
i=1

log{P(θ, li)}ži,z′i

 , (65)

where {P(θ, li)}ži,z′i denotes the (ži, z′i)
th entry in the probability matrix P.

This estimator will also be evaluated empirically in Section 4.8.

4.7.4 Numerical Results of the Fisher Information contained in the gEEC Family

Fisher information contained in each gEEC’s sub-sketch is determined by two factors:

the sampling group size l and the binary width k. For convenience, this is denoted as
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gEEC(l, k), and a sketch composed of m such sub-sketches is denoted by gEEC(m, l, k).

In Figure 22, we show the impact of different l’s and k’s in the case with immunity.

We observe that, similar to Figure 20, the parameter l only “shifts” the curve. The larger l,

the more resolution on lower θ’s, while the total amount of “information flow” S J remains

almost the same. The parameter k, on the other hand, expands the “span” of the curve,

leading to a wider spread of the estimation power on the spectrum.

To compare the total amount of “information flow” of different parameterizations more

conveniently, we also list the value S J—the area covered by each curve as defined in (39)—

of each parameterization in the legend of the figure, where the constant C is π2

24 ≈ 0.4112,

the lower limit of the area covered by the EEC bit’s Fisher information curve, as discussed

in Section 4.6. Based on the S J values in Figure 22, we conclude that k = 2 is not able

to bring any additional benefit. In contrast, one sub-sketch with k = 4 can gain more

information over 4 independently coded EEC bits.

The next question we ask is: How much information is lost due to the contamination

of the sketch? To measure this, we plot the Fisher information curve with k = 4 or 6

and l = 2048, 512 or 128 in Figure 23. We observe that the Fisher information curve is

impacted only when θ is not small and the loss of information is also modest. For some

cases, such as k = 6 and l = 128, the total information is improved even when the sketch is

subject to errors.

We summarize the impact of l and k’s on S J by listing the 1
kC S J values of different

parameterizations in Table 14. From the perspective of total information gain S J, more

bits per sub-sketch usually improves the gain. We see that k = 5 gives around 25% more

information per bit in the contaminated case, which can be translated to a similar ratio

of reduction of the sketch size to achieve the same variance bound. It can be also shown

that the performance of one sub-sketch with k = 5 can dominate six one-bit sub-sketches

together.

However, a larger k is not always better. The larger k gets, the wider the span of the

115



Case with immunity Case without immunity
k l=128 l=512 l=2048 l=128 l=512 l=2048
2 1.00 1.00 1.00 1.00 1.00 1.00
3 1.12 1.12 1.11 1.08 1.10 1.11
4 1.23 1.22 1.22 1.13 1.18 1.21
5 1.24 1.31 1.31 1.16 1.20 1.26
6 1.05 1.30 1.37 1.19 1.21 1.27
7 0.90 1.14 1.36 1.22 1.24 1.27

Table 14: The total information gain S J

kC (C = 1
24π

2)

resolution curve gets, which might cover more range than needed. If l is small (for better

resolution on large θ’s), k should not need to be too large, otherwise it will be wasteful

(such as the k = 6 and l = 128 case in the table). For a typical EEC application in wireless

communications where the primary target parameter range is [10−3, 0.15], the span of k = 5

(or 6) would be sufficient. Moreover, a large k will mean a higher implementation cost for

a relatively modest gain, which will be discussed soon.

4.8 Evaluation
4.8.1 Experimental Results

In this section, we evaluate the performance of our sketches experimentally and compare it

with the original EEC scheme.

For the EEC scheme, we use the parameters recommended in [13] for Wifi applications,

i.e., with 9 levels and each level comprised of 32 bits. In total the EEC scheme costs 288 bits

per packet and is targeted for estimating error rates in the [10−3, 0.15] region. The authors

of [13] have proposed three different estimators for their scheme. A naive estimator for

θ̂ (BER) is qi/2i (defined in their paper); Two more sophisticated and accurate estimators

are the roots of φ(2i, θ) = qi and φ(2i, θ) = qi/2 + qi−1(1 − qi−1) respectively. We find that

the latter two estimators both have better estimation accuracies than the naive one, and

neither of them dominates the other. For convenience, we use θ̂1 and θ̂2 to denote the latter

estimators, respectively.

116



We have actually proposed two approaches. The first is the enhanced tug-of-war (EToW)

sketch, as presented in Section 4.5. The second is the estimator and schemes in the gEEC

framework, as presented in Section 4.7. We emphasize that although EToW can be regarded

one special case in the gEEC framework, it uses a very different estimator with some pros

and cons and hence should be evaluated separately. For both two approaches above, we

aim to answer two questions: (1) How far is the estimator’s real performance from the the-

oretical results? and (2) How does this compare with previously proposed solutions? Each

value in all figures in this section is obtained with 1000 runs in our simulations, in the case

without immunity.

As for the EToW sketch, as analyzed in Section 4.5, the sampling parameter l and

truncation parameter k can be tuned for different target error rate regions. Since we will

show that the experimental results are nearly identical to the analytical results, we present

only the analytical results with two parameter settings: c=16 or 48, l=768, k=5, and one

parity checking bit per counter generated by the matrix [ 0 0 1 1 1 ]. The sketch

with 16 counters consumes only 96 bits per sketch, 33.3% of that consumed by the original

EEC scheme; The sketch with 48 counters consumes 288 bits, the same as the original EEC

scheme.

As for gEEC approach, since we will also show that the experimental results are nearly

identical to the analytical results, we present only the analytical results with the following

parameterizations: the original EEC scheme with the new estimator(288bits), gEEC(16,512,5)

(80bits), gEEC(16,768,6) (96bits),gEEC(56,512,5)(280bits) and gEEC(48,768,6)(288bits).

We will also compare the performance of estimators with or without the Jeffrey’s prior.

As for the performance metric used for comparisons, the comparison metrics that we

use are the relative mean squared error (rMSE, defined as 1
θ
(θ̂ − θ)2), the mean squared error

of log θ̂ (defined as (log θ̂ − log θ)2)), the ratio of large errors (the ratio of θ̂ that are larger

than 2θ or smaller than θ/2), and the relative bias ( θ̂
θ
− 1).As discussed in Section 4.2.3,

although the Cramer-Rao lower bound for the relative MSE of θ̂ (18) and the MSE of log θ̂
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(19) are the same, we prefer to use the statistics of log θ̂ for comparison since it allocates

larger penalty to large deviations. We will also compare the tail probabilities of different

estimator on some θ’s on some representative BER values, such as 0.005 and 0.05.

We will firstly go through the evaluation of EToW sketch in this subsection. One dis-

tinguished feature of the EToW sketch is that its performance is fully predictable.

The experimental results of EToW sketches are shown in Figure 4.8.1. Each curve is

generated from the results obtained from 8000 experiments. We can make two observations

from these results. First, we observe that all experimental results are nearly identical to the

analytical results. Second, we observe that the performance (i.e., estimation accuracy) of

the enhanced tug-of-war sketch of size 96 bits is close to or even better than the original

EEC scheme of size 288 bits in the target error rate region, while the enhanced tug-of-war

sketch of size 288 bits performs way better than the original EEC scheme. To summarize,

our scheme achieves similar BER estimation accuracies with a sketch size that is only 1/3

of that used by the original EEC scheme.

In the next step, we will compare the performance of gEEC sketches and EToW sketch

together.

In Figure 25, we compare the performance of the original 288-bit EEC scheme with

original estimators with three gEEC/EToW configurations, gEEC(16, 768, 5), gEEC(16, 768, 6)

and EToW(16, 768, 5, r = 1), whose total transmission costs are 80, 96 and 96 bits, respec-

tively. We see that our new sketches perform very well in [0.001, 0.15] with much less

transmission overhead than the original EEC, while the performance of the original EEC’s

estimator varies, especially when measured by harsher criteria such as the MSE of log θ̂

and the ratio of large errors.

In Figure 26, we compare the performance of the four estimators of two schemes, the

original EEC and gEEC(56, 512, 5). All four estimators are derived from the newly pro-

posed gEEC framework, two of which use the Jeffreys prior and the other two do not. We

can see that the estimators with Jeffreys prior are generally better in the range where θ is
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relatively large and the inherent resolution of the scheme is relatively weak, no matter if

measured by MSE or by bias. Since estimators with Jeffereys prior are usually empirically

better, we always use that version in other comparisons.

In Figure 27, we compare the performance of four schemes, the original EEC, gEEC(56, 512, 5),

gEEC(56, 768, 6) and EToW(56, 768) with 5-bits per sub-sketch and 1-bit for detecting cor-

ruption, the transmission cost of which are almost the same. The first three use gEEC’s

MLE estimator with Jeffreys prior, while the last one uses EToW’s moment-based estima-

tor. Comparing these figures with Figure 25, we can see that, with the same transmission

cost, the estimation accuracy is substantially improved. Moreover, we can see that the

gEEC(56, 512, 5) and gEEC(56, 768, 6)’s performance are generally better than the others.

In a wide range they can achieve around a 30-50% reduction of MSE, compared with the

EEC scheme with our new estimator. This is not surprising since we have already seen that

a larger k can bring a modest improvement of estimation accuracy. We also observe that

EToW’s performance is only slightly worse, except when θ is close to or larger than 0.1.

Comparing the curves in Figure 25 and Figure 26, we can see that when the total number

of sketches is large, the MLE estimator’s performance is nearly equal to the Cramer-Rao

lower bound, and its bias is also reduced as seen by comparing Figure 25(d) and Fig-

ure 25(d). Note that sometime the MSE of log θ or rMSE might be below the Cramer-Rao

bound when bias is high, which is possible since all curves of Cramer-Rao bound presented

in the figures are for the unbiased estimator.

To summarize our comparisons above, our estimators, especially the ones with Jeffreys

prior, can almost achieve the Cramer-Rao bound empirically. On one hand, gEEC(16, 768, 5)

(which is also EToW’s scheme, just without EToW’s extra error detection bit) can achieve a

similar level of performance as the original EEC scheme with only one-fourth of the sketch

size; on the other hand, with the same budget of transmission cost, the estimation accuracy

of the original EEC scheme (288 bit design) can be greatly improved by our new estima-

tors, and our gEEC design can achieve around 30% additional gain of estimation accuracy.
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Compared to the EToW’s performance, the gEEC’s performance is still better, especially

in the range that θ is relatively large.

4.8.2 Implementation Cost of Estimators and Selection of Parameters

All presentations thus far have focused on the estimation performance. However, the im-

plementation and the computation costs should also be considered.

Firstly, the the implementation of EToW’s estimator is very low, since it only requires

a combination of inner products as well as modulo and other arithmetical operations, all

of which have cost O(n). In practice, the inner product is equivalent to the bit counting

operation. All of these operation took very little time in our experiments and therefore we

do not present any computation time measurements here.

As for the gEEC’s estimator, which is an MLE estimator in nature, it can be imple-

mented as table-based lookup. Whether or not it is enhanced by the Jeffrey’s prior, the

MLE estimator can be transformed in this way:

θ̂MLE = arg max
θ
{A(θ)Y + B(θ)}, (66)

where each entry of Y indicates the count of one particular type of sub-sketch equals to one

particular value. A(θ) and B(θ) are determined by

We can implement (66) as a linear transform of Y, i.e. Ad1×d2Yd2×1 + Bd1×1 and then find

the maximum of the result. Here Ad1×d2 and Bd1×1 are both pre-calculated matrixes.

One of A’s dimensions, d1, is determined by the size of candidate θ’s. For most practical

EEC applications, d1 in the order of hundreds is sufficient since it will be wasteful if it

becomes more fine-grained than the spectrum of estimation.

A’s other dimension, d2, corresponding to the length of Y, depends on the design of

the sketch. Suppose the codeword is composed of c types of sub-sketches: m1 gEEC(l1, k1)

sub-sketches, m2 gEEC(l2, k2) sub-sketches, . . . ,mc gEEC(lc, kc) sub-sketches. In the case

of “immunity” where the estimator can directly infer from the difference between ži and

z′i , d2 equals to
∑c

i=1 (2ki − 1). In the case without “immunity,” d2 equals to
∑c

i=1 (22ki − 1),
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since in such a case the estimator should directly infer from the pair of ži and z′i and hence

the table size is squared.

On one hand, the MLE estimator above can be implemented with an extremely low

cost, when all sub-sketches’ k parameters equal 1, which means the scheme degenerates to

the original EEC scheme. In this case, the matrix A can be as small as 9×100 (say, d2=100).

Moreover, some iterative methods similar to the bisection method can be employed to fur-

ther reduce the number of multiplication, add and compare operations to about 90. Further-

more, since our estimator has strong built-in capability to combine the information from

different levels, it can be shown that a 3-level, 96-bit-per-level design performs very closely

to a 9-level 32-bit design, which can reduce the number of the sub-sketch types and hence

even further reduce the cost by two-thirds.

On the other hand, as shown by previous evaluation results, larger values of k in the

sub-sketch, such as 5 or 6, can generally bring around 25% of additional improvement

of estimation accuracy, at the cost of thousands times higher cost in the storage and the

lookups in tables A and B. The computation cost actually remains almost the same since

X is sparse, and we can implement the linear transform by summing up only few rows.

Hence, the applicability of this improvement depends on the application scenario, since

a lookup table of several hundreds KB might be a very small cost for some applications,

but infeasible for others. Also, note that as discussed in Sec. 4.7.4, a large k might not be

necessary if the target range of parameters is not so wide.

There are two middle paths between the cases above. One way is to use the combina-

tions of several sub-sketches with k = 3 or 4 and different l’s, the cost of which is much

smaller than k = 5 since the table size increases exponentially (O(22k)) in the case without

immunity, while the scheme can still receive some gain on estimation accuracy.

Another way is to use the EToW’s scheme and estimator, whose implementation cost

is much lower. The weakness is that the performance is much weaker, especially when the

error rate θ is large.
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In summary, the gEEC framework (including the EToW sketch) can be easily and flex-

ibly configured for different requirements of estimation accuracy. All guidelines discussed

in this section not only hold for θ in the range [0.001, 0.15], but also for the other arbitrary

ranges as needed.

4.9 Conclusions

The seminal work of Chen et al. [13] has opened the door for the design of high-quality er-

ror estimating codes, with applications towards improving wireless network performance.

Chen et al. [13] designed an exceedingly simple code for estimating bit error rates in pack-

ets being transmitted, and it is an open—yet challenging—question whether this code is

optimal in practice.

In this chapter, we firstly cast the recently proposed BER estimation problem as a two-

party computation problem. From a theoretical standpoint, we proved that even when ap-

proximation and randomization are allowed the cost of this problem is Ω(log n), where n

is the length of data transmitted, which explains why both the EEC scheme and the tug-

of-war sketch both need this much overhead. From a practical standpoint we presented

an enhanced tug-of-war (EToW) sketch with significant additional innovations for better

fitting BER estimation applications. The EToW can bring 60% or more reduction of sketch

size and its performance is fully analyzable and easily tunable.

Moreover, we have systematically investigated the design space of error estimating

codes, stemming from the natural question whether EEC achieves the best tradeoff be-

tween the space and estimation accuracy in estimating bit error rates. Along the path of our

exploration using Fisher information analysis, we have demonstrated that EEC decoding

is inefficient, and proposed a new estimator (decoder) that achieves a significantly higher

accuracy. While investigating whether EEC encoding is efficient, we have developed a

generalized coding framework, called generalized EEC, in which existing designs, such as

EEC and EToW, are just degenerate cases. Using this unified framework, we found that
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some parameterization of gEEC similar to EToW can contain around 25% more informa-

tion than the pure EEC/EToW scheme.
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Figure 21: the empirical performance of EEC’s original estimators and the associated
Cramer-Rao Bound (all levels, each level, and the envelope of only one level/two levels).
The EEC scheme is composed by nine levels and 32 bits each level.
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Figure 22: gEEC’s Fisher information: Relationship to l and k in the case with immunity
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Figure 23: gEEC’s Fisher information: Relationship to l and k in the cases with and with-
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Figure 24: Experimental Results of EToW sketch
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Figure 25: Empirical Results of Estimators: Compare the performance of original EEC
(with original estimator), two gEEC schemes (with much smaller size, 80 and 96 bits re-
spectively), and one EToW scheme (with 96 bits), in the case without “immunity”.
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Figure 26: Empirical Results of Estimators: Compare the performance of two types of
gEEC estimators (with or without Jeffrey’s prior) on three schemes including the original
EEC scheme, in the case without “immunity”.
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Figure 27: Empirical Results of Estimators: Compare the performance of four schemes
(original EEC, gEEC(56,512,5),gEEC(48,768,6) and EToW), with almost the same size
and using gEEC’s estimator with Jeffrey’s prior, in the case without “immunity”.
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CHAPTER V

CONCLUSION AND FUTURE WORKS

In this dissertation research, we have researched three network sketching problems, namely

the designs and analysis of Bloom Filter, exact active counter array, and error estimating

coding. All these problems require the creation and maintenance of succinct sketches of

packets or flows that will later be queried by the respective applications to extract informa-

tion out. The sizes of sketches is a paramount concern in all these sketching applications.

and even modest reduction of sketch sizes (while delivering the same or better function-

alities and accuracies) could mean considerable savings in precious on-chip memory re-

sources for the first two applications and less transmission overhead for the last one.

We have proposed one or two techniques for each aforementioned problem, along with

rigorous analyses of their performance and the closeness to the optimality. Interestingly,

all these techniques exploit randomization and statistical multiplexing, in a way different

than do other network applications which usually statistically multiplex traffic flows into a

link with fixed bandwidth. In the rank-indexed Bloom filter and the rank-indexed counter

architecture, we statistically pack variable number of fingerprints or counter segments into

a fixed size bucket (Figure 9) and statistically guarantee the number of overflows from

the buckets. In the improved error estimating codes, we statistically pack lower-order bits

(after truncation) into a sub-sketch . Our key findings are listed as follows:

1. Rank-Indexed Bloom Filter Rank-Indexed Bloom Filter, is a new fingerprint hash

table construction that can achieve the combined functionalities of Bloom filters,

counting Bloom Filters, and several other variants. It inherits all the benefits from

the fingerprint hash-table approach and hence support both deletion and query of

associate value, while also has the advantage of less storage cost and better memory
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locality. Since the rank-indexing technique is almost orthogonal to d-left hashing,

we can combine these two techniques together to achieve more memory savings at

the slight cost of decreased memory locality and increased amortized memory access

cost. We have also developed rigorous analysis of our bloom filter’s performance.

2. BRICK: an exact and active counter architecture BRICK (Bucketized Rank In-

dexed Counters), is a novel exact active statistics counter architecture that can very

efficiently store large arrays of variable length counters entirely in SRAM while sup-

porting extremely fast increments and lookups. The high memory (SRAM) efficiency

is achieved through the rank-indexing technique and the statistical multiplexing tech-

nique similar to Rank-Indexed Bloom Filter, which by grouping a fixed number of

randomly selected counters into a bucket, allows us to tightly bound the amount

of memory that needs to be allocated to each bucket. The statistical guarantees of

BRICK are proven using some more theory including stochastic ordering theory and

probabilistic tail bound techniques. The performance is verified by simulation using

real-world Internet traffic traces .

3. Error Estimating Coding Error estimating Coding was originally proposed in the

seminal work of Chen et al. [13]. In this thesis, we have designed a new estimator for

the original EEC solution in [13] and designed two new sketch data structures for

estimating BERs with estimators, namely Enhanced Tug-of-War(EToW) sketch and

the generalized EEC (gEEC) family of sketches. The performances of our proposed

techniques are close to each other (with up to 25% difference) while all of them

are much better than that of the original algorithm (up to 70% improvement). We

have established asymptotic lower bounds for error estimating code through Fisher

information and Cramer-Rao bound analyses.We found that the original EEC scheme

(with original estimator) is asymptotically the optimal but not in the constant factor.

Our techniques, in comparison, can match the Cramer-Rao bound asymptotically
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and empirically. In addition, all schemes and estimators’s performance are analyzed,

proved, and verified through experiments.

As for the future work, I consider the following directions promising and interesting:

1. Improving and extending the rank-indexing techniques One major contribution of

this thesis is the rank-indexing techniques with statistical multiplexing for Bloom fil-

ter and counter array problems. Rank-indexing is indeed a powerful indexing scheme

that has much much smaller overhead than naı̈ve pointer-based indexing. However,

rank-indexing scheme does have its weakness: it incurs the overhead of memory

moves during insertions and deletions. We wonder whether there can be some alter-

native schemes that can achieve better tradeoffs between rank-indexing and the naı̈ve

pointer-based indexing.

We are also interested in applying the combination of rank-indexing technqiue with

statistical multiplexing on other application areas where dynamic indexing and man-

agement of small chunks of memory are needed, such as the memory management

for packet buffers.

2. Comparison and combination of sampling & streaming During the research on

error estimating codes, we noticed some interesting connections between sampling

and streaming. First, our results reveal an important fact that data streaming, where

every bit(or item) participates in the sketch calculation, doesn’t necessarily improve

the results significantly. For certain applications where users might be interested only

in better estimation accuracies when the parameter at issue lies within a particular

range,combining sampling and streaming together might deliver even better results.

Hence we are interested in extending this idea for some other data streaming problem

such as the sketches in [15] and enable the users to tune the configuration of the

sketch towards better space efficiency.

Moreover, I also noticed that an interesting fact from Section 4.5.1, where I find
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that the streaming of the entire packet, which can be viewed as sampling all bits

without replacement, performs empirically better than sampling the same number of

bits with replacement. However, sampling with replacement is much easier to be

analyzed and hence employed throughout our two schemes, EToW and gEEC. We

are interested in further analyzing the difference between sampling with and without

replacement from an information theoretic perspective. We hope that the mathemati-

cal techniques developed in [68], where an inequality connecting sampling with and

without replacement is proved, will provide a starting point for this exploration.

3. Error Estimating Codes In this thesis, we have proposed two error estimating

coding schemes, namely EToW and gEEC, from an algorithmic perspective, and

verified their performance by extensive comparison of the statistics and the CDF

of theoretical and experimental results. We are interested in collaborating with some

other research groups to implement and evaluate our EEC codes in some real wireless

settings.

We also noticed that, although we proved the asymptotic lower bound in Section 4.3

and had the Cramer-Rao lower bound for all proposed schemes, we have not so far

proved that our gEEC sketch family either reaches or be close to the non-asymptotic

lower bound. We are curious whether there are sketching techniques that can achieve

higher information density (i.e. higher amount of Fisher information per sketch bit).

We are also curious whether we can find an exact (i.e. non-asymptotic) lower bound

for the EEC problem, even for a particular family of sketches.
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