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SUMMARY 

 

Nowadays, RNA is extensively acknowledged an important role in the functions 

of information transfer, structural components, gene regulation and etc. The secondary 

structure of RNA becomes a key to understand structure-function relationship. 

Computational prediction of RNA secondary structure does not only provide possible 

structures, but also elucidates the mechanism of RNA folding. Conventional prediction 

programs are either derived from evolutionary perspective, or aimed to achieve minimum 

free energy. In vivo, RNA folds during transcription, which indicates that native RNA 

structure is a result from both thermodynamics and kinetics.  

In this thesis, I first reviewed the current leading kinetic folding programs and 

demonstrate that these programs are not able to predict secondary structure accurately. 

Upon that, I proposed a new sequential folding program called GTkinetics. Given an 

RNA sequence, GTkinetics predicts a secondary structure and a series of RNA folding 

trajectories. It treats the RNA as a growing chain, and adds stable local structures 

sequentially. It is featured with a Z-score to evaluate stability of local structures, which is 

able to locate native local structures with high confidence. Since all stable local structures 

are captured in GTkinetics, it results in some false positives, which prevents the native 

structure to form as the chain grows. This suggests a refolding model to melt the false 

positive hairpins, probable intermediate structures, and to fold the RNA into a new 

structure with reliable long-range helices. By analyzing suboptimal ensemble along the 

folding pathway, I suggested a refolding mechanism, with which refolding can be 

evaluated whether or not to take place.  



 xi 

Another way to favor local structures over long-distance structures, we introduced 

a distance penalty function into the free energy calculation. I used a sigmoidal function to 

compute the energy penalty according to the distance in the primary sequence between 

two nucleotides of a base pair. For both the training dataset and the test dataset, the 

distance function improves the prediction to some extent.  

In order to characterize the differences between local and long-range helices, I 

carried out analysis of standardized local nucleotide composition and base pair 

composition according to the two groups. The results show that adenine accumulates on 

the 5’ side of local structure, but not on that of long-range helices. GU base pairs occur 

significantly more frequent in the local helices than that in the long-range helices. These 

indicate that the mechanisms to form local and long range helices are different, which is 

encoded in the sequence itself.  

Based on all the results, I will draw conclusions and suggest future directions to 

enhance the current sequential folding program.  

 

 



 

 

CHAPTER 1 

INTRODUCTION 

 

 Increasingly, RNA molecules have taken center stage as key informational, 

structural, catalytic, and gene-regulatory molecules. Contrary to the traditional view of 

the passive genetic information carrier, RNAs have now been shown to be involved in a 

wide range of biological processes. Ribosomal RNAs catalyze and regulate protein 

synthesis(1,2). The crystal structures of 70S ribosome support the view that the 

fundamental steps of translation are based on RNA–RNA interactions. In the nucleus, 

small nuclear RNAs bound to proteins catalyze and regulate pre-mRNA splicing(3). 

Bacterial riboswitches influence transcription or translation by changing the 

conformations upon directly sensing metabolites or other environmental cues(4,5).  

All functional RNA molecules depend on their structures to perform their 

respective functions, but only a few RNA structures are known. Of the structures 

deposited in the Protein Data Bank, proteins constitute 95%, whereas RNAs account for 

less than 2%(6). Nevertheless, analysis of the human genome data reveals that only about 

1.5 % of the genome encodes proteins; about 60-70% of the genome produces non-

coding RNA(7). The lack of RNA structures indicates that it is hard to obtain structural 

information through experiments(6). Nowadays, with the development of RNA/DNA 

sequencing, reverse transcription is a routine method to obtain RNA primary sequence. 

However, it is still difficult to predict RNA secondary structure.  

RNA secondary structure is the base pair information within the RNA, including 

Watson-Crick base pairs, wobble base pairs and non-canonical base pairs. RNA 
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secondary structures established themselves as the most significant level of description 

because they have a physical meaning as folding intermediates of RNA 3D 

structures(8,9), and are accessible to mathematical analysis, since their formation follows 

simple combinatorial rules. This calls for computational methods to solve the RNA 

secondary structure prediction problem.  

 

1.1 Conventional RNA secondary structure predictions 

 Comparative analysis is considered to be the gold standard in RNA secondary 

structure determination. The fundamental premise of this approach is that functionally 

equivalent molecules will exhibit the same secondary structure in spite of variations in 

sequence, i.e., the two bases in a base pair should “co-vary” to preserve the base pair 

structure. From an evolutionary point of view, in order to keep the function of the RNA 

molecule, the RNA sequences have evolved to preserve certain base pairs and single 

stranded regions. For example, if a guanine in a G-C base pair mutates to A, in order to 

keep the base pair, the corresponding position of C will mutate to U.  

In the 1975 paper on 5S rRNA(10), Fox and Woese stated the “covariation 

model” systematically. The secondary structures of 16S rRNA(11,12) and 23S rRNA(13) 

predicted by comparative analysis in the 1980s are the classic models in this field. These 

two models were substantially improved as more and more homologous sequences 

became available(14). Gutell et al. evaluated the accuracy of the comparative structure 

models(14) right after the high resolution crystal structures were determined(15,16). 

Because of the fundamental phylogenetic perspective and using thousands of homologous 

sequences, comparative analysis greatly succeeded in the ribosomal RNA secondary 



 3 

structure prediction. All of the base pairs in the 1999 16S and 23S secondary structure 

models, including tertiary base pairs and triplets were found in the crystal structures (14).  

However, because the approach requires thousands of homologous sequences to 

ensure high accuracy, comparative analysis is not able to provide high quality models 

with few sequences. The first models of 16S rRNA (11,12) and 23S rRNA (13) which 

were based on about two sequences contained only 59.4% and 77.7% correct base pairs 

respectively, far away from the 1999 model.  Moreover, comparative analysis searches 

for co-variation, which requires sufficient variance among the sequences. No base pair 

information can be deduced in the highly conserved regions, since without variation, 

there can be no covariation in the sequence. Comparative analysis is not useful in the case 

that only one sequence of its homolog species is available, or the structures of the 

homologous sequences are not similar. 

Thermodynamic methods were first introduced(17) to maximize the number of 

base pairs. In this paper, Holley et al. suggested 3 possible secondary structures for 

tRNAPhe, including the cloverleaf structure(17). When the sequences of tRNASer(18) 

and tRNATyr(20) became available, it was clear that the cloverleaf model was consistent 

with all three sequences. These studies focused on finding longest possible helices 

subject to the constraints that the anti-codon stems must be in a single-stranded region. 

Now they have become the most common method for predicting secondary structure 

when only a single RNA sequence is known for a given function. The assumption of this 

method is that the RNA molecule is at equilibrium in solution so that the minimum free 

energy (MFE) structure is the most probable structure. The prediction of the MFE 

structure using nearest neighbor energy parameters began with Tinoco and colleagues 
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(18,19). Zuker et al. developed efficient algorithms for RNA secondary structure 

prediction (20-23) using dynamic programming methods(24). The Mfold web server and 

the UNAfold program(25) by Zuker’s group have become  some of the most popular 

MFE structure prediction programs. There are several other closely related programs, 

such as RNAfold in the Vienna Package (26,27), and RNAstructure by Matthews(28). 

GTfold developed by Mathuriya et al. (29)is a new parallel multicore and scalable 

program, which is one to two orders of magnitude faster than the standard programs 

(O(n4)) and achieves comparable accuracy of prediction. GTfold opens up a new path for 

the computation of MFE for large RNAs. It is available at 

http://gtfold.sourceforge.net/download.html. 

The advantages of this approach are that it is physics-based, it gives one simple 

output, and it is computationally inexpensive. However, the prediction accuracy for large 

RNAs is not satisfying (30,31). The average prediction accuracy of Mfold 3.1 for a 16S 

or 23S rRNA sequence is only about 40% (30,31). One of the reasons of the limitation of 

the MFE method is that the thermodynamic rules are incomplete. Turner’s group has 

been working on determining the energy parameters for over twenty years (32-34); and 

has recently included the stabilizing effects of different RNA motifs beyond base-paring 

and stacking(35-37). Nevertheless the better thermodynamic rules and parameters are not 

able to improve the prediction accuracy fundamentally. Mfold 3.1 offers little 

improvement over Mfold 2.3 for rRNAs, although it has much better parameters (31). 

This suggests a more fundamental reason for the limited accuracy, which is that RNA 

molecules adopt secondary structures that are at least partially determined by folding 

kinetics. This may explain why the nearest-neighbor energy parameters do work well for 
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shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact 

distance between the base pairs is less than 100 nucleotides(31). RNA folding kinetics 

will be elaborated in section 1.2. 

McCaskill argued that the overall structural features of the equilibrium ensemble 

should be more precise than the single MFE structure (38). He applied dynamic 

programming to calculate the full equilibrium partition function (PF) for secondary 

structure and featured base pair probability as a measure of confidence for the final 

prediction(38). Ding et al. utilized a statistical algorithm to sample rigorously and exactly 

from the Boltzmann ensemble of secondary structures(39). This provides a means to 

estimate the probability of any structural motif, with or without constraints. This 

approach provides sub-structure probability in order to deduce a higher quality secondary 

structure model for a given sequence.  Although the base pairs predicted are very reliable, 

PF cannot give a complete structure. A moderate portion of structure information is 

missing, since some regions do not have a high base-pair or single-stranded probability. 

Furthermore PF is also a thermodynamic method based on the same energy model and 

using similar energy parameters as the MFE method, still assuming that RNA molecules 

are at equilibrium. PF methods neglect kinetic effects in the RNA folding process, as do 

the MFE methods.  

The equilibrium view of RNA folding can be misleading: the time needed to 

reach equilibrium can be very long, perhaps even exceeding the lifetime of RNA 

molecule. The minimum free energy structures do not always correspond to the native 

structure. Mahen et al. (40)showed that the renatured whole length hairpin ribozyme 

displayed a different secondary structure from the one transcribed in vivo. For the self-
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induced riboswitches, the metastable structure is actually the functional structure(5,41). 

After the riboswitches gradually unfold and refold to the lowest free energy structure, 

they lose their functions. The formation of metastable structure during the sequential 

folding of potato spindle tuber viroid (-)-stranded RNA is essential for template activity 

during (+)-strand synthesis(41). Theoretical research also suggests that the native 

structures of large RNAs deviate from the MFE structures(42). By using the current 

thermodynamic RNA prediction program, Morgan et al. (42) found that the energy of 

native RNA structures are generally higher than the energy of the predicted MFE 

structures. Clearly, a purely thermodynamic model poorly predicts secondary structures 

of large RNAs. 

1.2 RNA folding during transcription 

 RNAs begin to fold as they are transcribed in the cell. Folding during 

transcription can be modulated by properties of the RNA polymerase and the in vivo 

environment. Three particular properties are relevant to RNA folding during 

transcription(43): (1) elongation speed (41,44-46), (2) site specific pausing of RNA 

polymerase (47), and (3) the co-transcriptional interaction of the nascent RNA with 

proteins or small molecules(44). Transcription of the large ribosomal RNA of Escherichia 

coli by T7 RNA polymerase, which is significantly faster than the E. coli RNA 

polymerase, generates a folding defect in vivo(46). A non-cognate polymerase may cause 

RNA misfolding due to a different transcription rate or pausing sites, which suggests that 

kinetic effects are involved in RNA folding. A particular elongation speed and site-

specific pausing provide RNA molecules with a crucial time window of intramolecular 

interaction for folding/refolding to the native structures.  
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Intramolecular interactions form within the upstream part of the RNA before the 

downstream part is synthesized(48,49). This has several implications for the assembly of 

RNA structure. First, sequential folding during transcription is expected to favor local 

structure over long-range interactions that require synthesis of a longer RNA chain.  

Second, the context of the nascent RNA is very important to its folding. Several circular 

permutation results show that, given a different 5’end and 3’ end, the RNA molecules can 

misfold (50,51). In other words, co-transcriptional folding is encoded within RNA 

genes(52). Third, the intermediate structures formed during transcription are not static. 

Comparison of RNA fragments of increasing length from chain termination 

reactions(49), or direct observation of RNA conformers on acrylamide gels(41), found 

that interactions formed early during transcription can be displaced later by more 

thermodynamically stable interactions. The stability of the folding intermediates 

determines the time required to rearrange to the final structure, and hence the overall 

folding time. These intermediate structures can efficiently regulate or guide the folding of 

nascent RNA molecules into native structures. 

1.3 kinetic folding programs 

The characteristic of RNA sequential folding in transcription suggests a need for 

kinetic folding algorithms to directly model the physical folding process. These 

approaches are based on a description of folding in terms of a stochastic process. In 

general, any such model is defined by three key ingredients (53): (1) the state space, 

comprising the set of structures or conformations a given RNA sequence may assume, (2) 

a move-set, defining the elementary transitions that can occur between such 

conformations, (3) transition rates for each of these allowed transitions. Due to the 
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limited kinetic experimental data of RNA folding and refolding, the calculation of 

transition rate becomes the hardest part of the kinetic prediction approach. 

RNAkinetics 

Mironov et al. (54) presented the formation of RNA secondary structure as a 

Markov process. A Markov process is one for which the likelihood of a given future 

state, at any given moment, depends only on the present state and the transition rates to 

all possible future states. The states here are the secondary structures; a transition is 

formation of a new helix, complete decay of an existing helix, or addition of new 

nucleotides. Transition rates are calculated as the kinetic rate in a chemical reaction. The 

number of possible transition states is equal to the number of stacking pairs in the helix, 

assuming that every base pair has the same probability to nucleate a helix. The transition 

rates of formation and dissociation of a helix are described as, 

,  

Nh is the number of stacking pairs in the helix. κc is an elementary event constant, 

determined in temperature-jump experiments(55). ∆Gloop is the free energy to form a 

loop. ∆Ghelix is the free energy to melt a helix. Based on the computable transition rates, 

RNAkinetics uses kinetic Monte Carlo to simulate RNA folding.  At each step in the 

simulation, all possible transitions are generated. The next transition is chosen according 

to a set of probabilities that are determined by the transition rates. Simulation time is 

increased by the first pass time at that step. Later on, the algorithm was refined by adding 

a classification of mutual positions of two candidate helices(56,57).  
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The problem with this program is mainly the transition model. The assumption 

that every base pair in the helix has the same probability to form a helix or to unfold a 

helix is not reasonable. Each base pair closes a different size of loop, so that the entropy 

to form or unfold that base pair is different. The transition rates are unrealistically 

simplified.  

Kinefold 

Isambert et al. (58)divided the energy barrier into two parts. One is the energy 

needed to destroy an existing helical region to nucleate a new helix; the other is the 

entropy cost to bring two parts of the new helical region together. The first part is 

obtained from the MFE model. They used polymer theory to calculate the entropy terms. 

By modeling the single-stranded sections as Gaussian chains, they analytically obtained 

the entropy costs for forming different structures, including pseudoknots. They also 

employed kinetic Monte Carlo to simulate RNA folding.  

Kinefold is able to predict pseudoknots in the RNA secondary structure, without 

additional parameters. This physical modeling of pseudoknots is also expected to be more 

widely applicable than previously proposed estimations, as it explicitly takes into account 

important physical-structural constraints of the RNA molecule(58). However, there is no 

sequence-dependent term in the entropy part.  

One of the advantages of Kinefold is that pseudoknots can be predicted. The 

stochastic approach is a good way to simulate RNA folding in the sense that RNAs may 

fold by different pathways (59). However, it does not generate the same structures every 

time. In order to get a better prediction, users are encouraged to do several independent 

foldings. At present, there is no well-established way to analyze the results. Moreover, 
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this program is always computationally expensive, since it samples a lot of possible 

structures at each step. Its capacity is only 400 nucleotides for the web server, or 600 

nucleotides for stand-alone program. 

Kinwalker  

Geis et al. (60) employed a heuristic approach to add structural blocks 

sequentially onto the RNA. One MFE structure is generated for each length of the RNA 

chain. Every time RNA chain elongates by one nucleotide (N to N+1). The structure 

blocks in the MFE structure of N+1 length but not in that of N nucleotides will be 

evaluated whether or not to add on. This restrains the size of the conformational space. 

The transition of two structures are at base-pair resolution using transition paths based on 

the Morgan-Higgs method(61), which tries to find a direct folding path from one 

secondary structure to a target secondary structure where the maximum barrier height 

along the path is minimal. In order to find such a path, the heuristic method iteratively 

adds base pairs from the set of base pairs in the target structures that are not included in 

the current structure. The authors empirically derived a time-energy function from 

experiments (62) to evaluate the height of the energy barrier that can be overcome in a 

certain time window, t(∆G) = 10(8/11∆G-7), for ∆G > 0. However, the energy barriers 

are the highest equilibrium free energy in all transition steps, which is not the real kinetic 

barrier height.  

Compared to stochastic simulations, the heuristic approach displays some 

advantages: it always gives the same secondary structure and it is computationally 

inexpensive. However this prediction program tends to achieve the MFE structure to a 

great extent, because the target structures of a transition are always MFE structures or 
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some rearrangement of the MFE substructures. The results from this program (62) shows 

that this program does not identify kinetic traps very well, since it accepts almost all 

transition along the folding pathway. 

FlexStem   

Chen et al. developed a heuristic kinetic RNA folding algorithm with 

pseudoknots(63,64). Flexstem simulates the RNA folding process by successive addition 

of maximal stems, which are the longest helical stems to reach, in order to reduce the 

search space. After all the candidate stems are constructed, they are arranged in an order, 

which is defined as the rank of ability to decrease the free energy of the current structure. 

At each step, the current structure is “perturbed” by adding candidate stems in this order. 

However, there is no energy barrier calculation in FlexStem. As long as the free energy 

of the potential structure is lower than that of the current one, the potential structure will 

be accepted. This reduced space is constructed by the maximal stem strategy and stem-

adding rules induced from elaborate statistical experiments on real RNA secondary 

structures. Chen et al. developed a novel free energy model capable of computing free 

energy of pseudoknots. They validated FlexStem by testing it on tRNAs, 5S rRNA and a 

large number of pseudoknotted structures. They also compared it with other well-known 

algorithms such as RNAfold, PKNOTS(65), PKnotsRG (66), and ILM (67). FlexStem 

significantly increases the prediction accuracy through its local search strategy.  

I summarize the transition function in each program in Table 1.1 for comparison.  

Other kinetic folding programs  

There are several other kinetic folding programs (53). They are similar in 

principle, but differ in the move-set (a helix, or a base pair) and the transition rate model. 
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Most of them develop equations to compute transition rates. However, given the sparsity 

of kinetic data compared to the abundance of free energy parameters, the addition of 

refolding steps has not yet produced an overall improvement in prediction accuracy. An 

interesting alternative is the analysis of energy landscapes(68). The resulting barrier trees 

provide a convenient summary of possible folding scenarios without the need to sample 

trajectories from different initial states. In addition, barrier trees form the basis for a 

coarse graining such that the folding dynamics can be solved exactly in the reduced 

conformation space. However, the barrier tree alone cannot provide a folding pathway 

and it starts from the whole length sequence, so it does not mimic folding during 

transcription.  

Fortunately, the renewed interest in RNA as a versatile biomolecule has also 

inspired diverse experimental approaches to measure folding kinetics in detail, ranging 

from classical temperature jump experiments (62,69)to time-resolved NMR spectroscopy 

(70,71)and single molecule methods(72). With the development of experimental 

techniques, more and more kinetic data will advance the RNA folding prediction, just as 

more accurate thermodynamic parameters improve the quality of the MFE computations. 

At present, since the kinetic data is limited, an empirical but realistic RNA folding 

algorithm is needed to suggest some underlying mechanisms of RNA folding and 

refolding.  
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Table 1.1 Summary of three kinetic RNA folding programs.  

program Transition Rate Energy barrier Target structure 

RNAkinetics 
 

∆Gloop = T∆S 

Chosen at random 

with a probability 

proportional to its 

rate 

Kinefold k+ =  k°*exp(-∆G+/kT) 
∆G+ = ∆Gfree-up-existing-helix 

+T∆Sbring-two-strand-new-helix 

Chosen at random 

with a probability 

proportional to its 

rate 

Kinwalker 

€ 

t ΔG( ) =10
( 8
11
ΔG )−7

 

Saddle point, t(∆Gmax), 

a next transcription 

event can surpass 

An MFE structure or 

rearrangement of 

some MFE sub-

structures 
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1.4 Accuracy of the leading kinetic folding programs 

The performance of the four leading kinetic programs on tRNA, 5S rRNA, RNase 

P and the 5’ domain of 16S rRNA are shown in Table 1.2. The accuracy is measured in 

two ways, sensitivity and specificity. Sensitivity is the percentage of true positives in the 

real structure, while specificity is the percentage of true positives in the predicted model.  

€ 

Sensitivity =
TruePositives

TruePositives+ FalseNegatives
×100%

Specificity =
TruePositives

TurePositives+ FalsePositives
×100%

 

Each program was tested with its default settings. In order to only compare pseudoknot-

free structures I turned off the ‘pseudoknot’ function in Kinefold and Flexstem. 

UNAfold and RNAfold are MFE RNA secondary structure prediction programs, 

serving here as controls for comparison. For tRNA and 5S rRNA, the kinetic folding 

programs work better than MFE programs overall, while for the larger RNAs, their 

results are worse than those MFE programs. This is unexpected, since the kinetic folding 

programs were developed to resolve the mistreatment of kinetic traps in the folding of 

large RNAs by MFE programs. The results indicate that the transition functions in the 

kinetic programs, which were established to cope with refolding, are not very realistic. 

The theories behind these transition functions are not able to correctly explain the 

behavior of RNA chains. One of the problems in the theories is the inaccurate estimation 

of the heights of energy barriers. These programs all apply some oligonucleotide 

experimental data in the empirical equations; however these data may be not suitable for 

a complex system, since there are many more interactions in larger RNAs than in smaller 

ones. While these kinetic folding programs pioneered a kinetics-driven track in the RNA 

folding problem, they are far from elucidating real RNA folding. A more realistic kinetic 
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folding program is still required. The remainder of this thesis describes my efforts at 

developing an empirical folding algorithm that combines thermodynamic and kinetic 

effects.  

1.5 Other interactions 

Besides the nearest-neighbor interactions, which correspond to the proximity 

along the sequence, RNAs also have intramolecular tertiary interactions. Pseudo-knots, 

base triplets, and GNRA tetraloop interactions are all in this category. These interactions 

play a very important role in stabilizing RNA structure. For example, in tRNAs, the 

pseudoknots between the D-loop and the T-loop make tRNAs adopt a unique pattern of 

folding (73). van Batenburg et al. have established a database containing over 250 

pseudoknots obtained in the past 25 years through crystallography, NMR, mutational 

experiments and sequence comparisons(74,75).  

Nevertheless, several observations suggest that 3D architecture results from the 

compaction of separate preexisting and stable secondary structural elements(8). Such 

structural elements as hairpins are known to form as autonomous entities that interact 

with each other later to form the 3D structure. RNA unfolding experiments show that 

RNAs unfold in a series of discrete steps. The multiplicity of intermediate states represent 

the breaking down of the folded structure into localized regions of the structure, i.e., 

tertiary interactions destroyed first, followed by melting of the secondary structure. This 

suggests that the secondary structure interactions are stronger than tertiary interactions. 

Most of the time, secondary structures do not change after tertiary interactions; only the 

weakest of the secondary structure elements may change, leaving the rest largely 

unaffected(9). 
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There exist several prediction programs that include pseudo-knots(58,63,65,76). 

These prediction programs generally require comprehensive computation, O(N6), which 

sample all possible interactions. Given this computational complexity, the inclusion of 

tertiary interactions is not feasible for large RNAs (>1000 nt), so these interactions are 

excluded from my proposal. 

1.6 Overview of this research 

In this research, I first introduce a new sequential folding program called 

GTkinetics. Chapter 2 describes the algorithm, presents results of folding test sequences 

and discusses the implications of these results. In addition, I suggest a refolding 

mechanism by analyzing suboptimal ensemble along the folding pathway. In Chapter 3, I 

evaluate a distance function in MFE calculations, as a possible method, as a possible 

method to improve accuracy of prediction. In Chapter 4, I examine differences in 

composition between local and long-range helices, testing a hypothesis about folding 

mechanisms. In Chapter 5, I conclusions and suggest future directions for RNA 

secondary structure prediction. 
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Table 1.2 Sensitivity and Specificity of thermodynamic and kinetic RNA folding 
programs tested on different RNAs. Sensitivity is the percentage of true positives in the 
real structure. Specificity is the percentage of true positives in the predicted model. ND, 
not determined.  
 

 
Thermodynamic 

programs 
Kinetic programs 

Molecule length accuracy UNAfold RNAfold 
RNA 

kinetics 
Kinefold Kinwalker Flexstem 

sensitivity 30% 20% 95% 68% 30% 95% 
Yeast 

tRNAphe 
76 

specificity 30% 20% 100% 63% 30% 100% 

sensitivity 25% 25% 35% 42% 43% 25% 
E.coli 

5S rRNA 
120 

specificity 27% 26% 82% 50% 50% 26% 
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CHAPTER 2 

GTkinetics 

 

2.1 Overview 

GTkinetics is an RNA sequential folding program. For a given RNA, it predicts a 

secondary structure and a series of RNA folding trajectories. It treats the RNA as a 

growing chain, and adds stable local structures sequentially. At this stage, the time scale 

of successive events is not determined, but the program proposes a folding pathway and 

predicts kinetic traps on the folding pathway.  

GTkinetics mimics the RNA transcription and folding in vivo. When RNAs fold 

during transcription, the nascent nucleotides will fold into some structures before the 

whole sequence is transcribed. There are four structural possibilities for nascent 

nucleotides (Figure 2.1):  

(1) becoming an independent hairpin,  

(2) extending a pre-existing helix, 

(3) pairing with a single stranded region to form a long-range helix,  

(4) unfolding a part of an existing structure and folding these with the nascent nucleotides 

to a new structure. 

The first three possibilities are simply adding more base pairs onto the structure 

without interrupting any existing base pairs, while the last one represents a refolding 

event. At present, GTkinetics is designed to assign the nascent nucleotides either to adopt 

possibility (1) or to adopt (2) or to leave them temporarily unassigned, i.e. it can also 

adopt possibility (3) and (4). In other words, at each step, GTkinetics adds some more 
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nucleotides onto the chain and makes a decision whether these new nucleotides should be 

used to form a hairpin, or to form an extension, or to leave them free to form any other 

structures later. This is a starting point, since it does not deal with the transition rates for 

refolding, which are difficult to establish realistically. In this version, the algorithm 

captures the stable structures as kinetic traps when the RNA chain gradually elongates. 

At each step, there is generally more than one possible hairpin or extension, 

which can form along the nascent sequence. These possible hairpins and extensions 

overlaps, so compete with each other; I call a collection of such overlaps a competition 

cluster. In next section, a competition cluster will be elaborated mathematically. In 

Section 2.2, I introduced Z-score as a criterion to estimate relative stabilities of 

competing hairpins. GTkinetics utilizes Z-scores to select optimal candidates and then 

evalutes them by folding the growing chain; the algorithm is described in Section 2.3. 

The results of applying GTkinetics to a series of test cases are given in Section 2.4. In the 

results, I identified possible intermediate structures along a pathway to the native state 

that includes refolding events (Section 2.5). The chapter closes with a possible evaluation 

method for refolding events, which is suggested by suboptimal structures along the 

folding pathway (Section 2.6). 
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Figure 2.1   Structural possibilities for nascent nucleotides.  
(A) a synthesizing RNA 
(B) nascent nucleotides (purple) form an independent hairpin 
(C) nascent nucleotides (purple) form an extension of a previous hairpin 
(D) nascent nucleotides (green) form a long range helix 
(E) nascent nucleotides (green) lead to a refolding event 
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2.2 Z-score 

While RNA is transcribed, several potential local hairpins may compete with each 

other along the sequence. The key to correctly predicting local hairpins is a good scoring 

function to evaluate the relative stabilities of competing local hairpins. One simple 

criterion is free energy; however, the free energies of longer RNA segments are generally 

lower than those of shorter RNAs (Figure 2.2), because longer segments have more bases 

to pair and to stack. 

As a consequence, using free energy for the scoring function biases predictions 

toward more thermodynamically stable structures, long hairpins at the expense of shorter 

hairpins, which are favored kinetically. In order to credit kinetic effects with a higher 

weight, I normalize free energy according to the lengths of segments. Z-score is 

introduced here to normalize ∆G with ensemble of sequences of a given length.  

€ 

Z =
ΔG −µ(w)
σ(w) . 

∆G is the folding free energy of the MFE structure of a given RNA segment; w is the 

window size, i.e., the sequence length of that segment. Z-score indicates how many 

standard deviations an observation is above or below the mean µ(w). It is a normalized 

dimensionless quantity derived by subtracting the population mean µ(w) from the raw 

score and then dividing the difference by the population standard deviation σ(w). The 

lower the Z-score, the more stable a helix is, in terms of folding free energy per base pair. 

In order to obtain the population mean µ(w) and standard deviation σ(w), which 

are functions of window length, 20,000 random sequences with equal probability of for 

nucleotides were generated for each window size (8≤w≤110), followed by MFE 
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calculations with UNAfold. The average value and the standard deviation are plotted 

against window size in Figures 2.3 and 2.4.  

The average MFE generally decreases linearly with window size. The standard 

deviation, on the contrary, increases linearly with window size. I regressed µ(w) and σ(w) 

to linear functions of window size, 

µ(w) = -0.2558w + 3.9684 

σ(w) = 0.0512w + 1.23. 

Combining these, the Z-score for a segment of length w whose energy is ∆G is given by, 

Z = (∆G - (-0.2558w + 3.9684))/(0.0512w + 1.23).  

Figure 2.5A shows the correct secondary structure of tRNAphe, while Figure 2.6 

shows all possible hairpins in the molecule, with their free energies. Three red lines 

represent the three native hairpins in the tRNA. The longest possible hairpin in blue, 

which has the lowest free energy, is not part of the native structure.  

Figure 2.7 shows the Z-scores of all possible helices in the tRNA. The three 

native helices stand out with this normalization method. If one forces these three stable 

helices to form when running UNAfold, one obtains an essentially correct cloverleaf 

structure (Figure 2.5B). This structure only misses two base pairs, one of which is a non-

canonical GA pair. Sensitivity and specificity are 95% and 100% respectively, which are 

significantly higher than those of UNAfold and RNAfold without any constraints (Table 

1.2). 
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Figure 2.2 MFEs of all sub-sequences with length of 8 to 200 in 16S rRNA as a function 
of window size. Each dot represents the free energy of the MFE structure for one sub-
sequence.  
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Figure 2.3 The population mean ∆G of each window size plotted against window size. 
Error bars show the standard deviation. The red line is the linear regression of average 
∆G. Correlation coefficient is also shown. 

 

 
Figure 2.4   The population standard deviations of ∆G plotted against window size. The 
red line is the linear regression of the standard deviations. Correlation coefficient is also 
shown.  
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Figure 2.5   Secondary structure of tRNAphe of yeast.  
(A) Real structure, cited from Comparative RNA web site,  
http://www.rna.icmb.utexas.edu. 
(B) The structure predicted by constraining the three hairpins with lowest Z-score in 
Figure 2.7. 
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Figure 2.6  Free energy (∆G) of all possible hairpins along tRNAphe. X-axis is the 
sequence position that the hairpins occupy. The red lines are three real hairpins (D stem, 
anticodon stem and T stem respectively); the blue line is the lowest free energy hairpin.  

 
 

Figure 2.7   The Z-scores of all possible hairpins along tRNAphe sequence. X-axis is the 
sequence position that the hairpins occupy. Color code is same as in Figure 1. 
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2.3 Algorithm  

The program works in the following steps.  

Step 0, a pre-process step, all possible hairpins, ListH and extensions ListEX are 

generated for selection.  

Step 1, initialize folding, transcribed length N is 0; folded structure S set to empty; 

constraining List C is empty; Z-score of the preceding hairpin, Zex set to 99999; the 5’ 

boundary of competition cluster, b5 is 0; the 3’ boundary of competition cluster, b3 is the 

3’ end of the first ending hairpin in ListH.  

Step 2, generate a competition cluster. Find hairpins whose 5’ ends fall in the range of b5 

and b3. Put the Z-scores of these hairpins and Zex into the competition cluster 

Step 3, select optimal structure. The helix (m-n) with the lowest Z-score in the 

competition cluster is selected as a hypothetical helix.  

Step 4, elongate the chain and fold the RNA. Then the RNA chain elongates to the 3’ end 

of the hypothetical helix, N= n+1. Fold (1- N) by UNAfold with all helices in List C 

constrained and obtain new structure S.  

Step 5, make decision. If the hypothetical structure survives from the competition with 

all other possible folding, it becomes a new stable helix. It is then added into List C. If 

the hypothetical structure does not survive this competition, that piece of RNA will be 

left free to adopt any conformation.  

Step 6, reset the boundaries of competition cluster. b5 set to N+1, the end of the 

transcribed sequence. If a new constraint has been added in Step 5, then search for the 

shortest extension of that constraining structure. If the shortest extension (m’-n’) is found, 
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b3 set to n’ and Zex becomes the Z-score of that extension. In all other cases, b3 is the 

first ending hairpin in List H and Zex is set to 99999. Go to Step 2. 

In this algorithm, local stable helices are favored over other helices; meanwhile, 

competition between local helices, long-range helices, and single stranded regions are 

incorporated. These two characteristics are both suggested by the nature of sequential 

folding. The pseudo-code is shown in Figure 2.8.  
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Input: RNA sequence of length N 

Output: folding trajectories and a secondary structure 

1. Compute Cij for (i, j) with i<j≤n, 7≤(j-i+1)≤100; 

2. Create List H of all hairpins closed by (i, j), List EX of the all hairpin extensions closed by (i, j)  

3. S  ∅ 

4. Constraints  ∅ 

5. B5  0  /* 5’end of a competition cluster */ 

6. B3 3’end of first end hairpin starting from B5  /*3’end of a competition cluster */ 

7. Zex  99999 /* z-score of extension initially set to 99999 */ 

8. While B3 ≤ N do  

9. Cluster  hairpins with B5 < i ≤ B3 /* competition cluster */ 

10. Zh  min{Z(cluster)} /* pick the lowest Z-score */ 

11. If  Zh < Zex  then /* hairpin is better than extenstion */ 

12. CandidateHelix(ih, jh)  hairpin (ih, jh) with Zh 

13. Nt  (jh+1) /* elongate the RNA chain */ 

14. S’  fold (1, Nt) /* fold the elongated RNA chain with UNAFold */ 

15. If S’ contains hairpin (ih, jh) then 

16. S  S’ 

17. Next5  

18. Bp  basepairs in hairpin (ih, jh) 

19. Constraints = Constraints + (F ih jh bp) 

20. B5  jh 

21. If hairpin (ih, jh) has extension then 

22. Ex0 (iex0, jex0)  shortest extension (iex0, jex0) 

23.  

24. Nt  (jh+1)  /* elongate the RNA chain */ 

25. S’  fold (1, Nt) /* fold the elongated RNA chain with UNAFold */ 

26.  

 

Figure 2.8. Pseudo code of GTkinetics 
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2.4 Test cases 

tRNAphe  

Figure 2.9 shows the folding pathway of tRNAphe predicted by GTkinetics. The 

hairpins predicted by Z-scores were (10-25), (27-43), and (49-65), which are the D-stem, 

anti-codon stem and T-stem respectively (Figures 2.6, 2.7). The D-stem and the anti-

codon stem were constrained one after the other, since they did occur in the foldings of 

corresponding lengths. The results agreed with an NMR study of successively longer 

tRNAphe fragments with a common 5’ end (48). In this study, the T-stem and anticodon 

stem sequentially formed as the tRNA elongated to the corresponding lengths. However, 

the T-stem did not arise in the folding of (1-66); instead, a long-range helix formed. Since 

piece 49-65 is free to adopt any conformation, later on this long-range helix unfolded 

when a longer sequence was available. Figure 2.9D is a predicted transient structure, 

which can be tested by experiment, such as time-resolved NMR(70), which is able to 

monitor the folding and refolding of the transient structure at atomic resolution. Finally 

the cloverleaf structure is achieved, which is the same as the previous prediction (Figure 

2.5B).  

The 5’ domain of 16s rRNA 

The secondary structure of the 5’ domain of 16S rRNA (1-560) predicted by GTkinetics 

is shown in Figure 2.10. The sensitivity and specificity are 52% and 48% respectively. 

Twelve of the predicted helices are true positives. In contrast to the case of tRNA, 

GTkinetics does not work as well as UNAfold, which achieves a higher specificity and 

sensitivity. Zuker et al. showed that MFE programs are able to provide a high quality 

prediction if the intact domain is given(77). In order to assess this possibility, I tested 
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nucleotides 1-600 of the 16S rRNA with UNAfold and GTkinetics, since this segment 

does not comprise an actual domain. The additional 40 nucleotides dramatically change 

the result of UNAfold (Figure 2.11). The specificity of UNAfold drops from 80% for [1-

560] to 43% for [1-600], while that of GTkinetics decreases only slightly, 52% to 49%. 

This suggests that the high accuracy of UNAfold resulted from specifying the actual 

domain. For GTkinetics, the local structures (hairpins and extensions) are added 

sequentially; so the structure of the longer sequence is not very different from the shorter 

sequences.  
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Figure 2.9 Folding pathway of tRNAphe predicted by GTkinetics. 
A. Formation of D-stem 
B. Formation of anticodon stem, result without refolding 
C. The predicted transient structure, result without refolding 
D. The predicted refolding event. Blue base pairs are predicted in the previous step and 
are broken during formation of the red base pairs as the RNA elongates to its full length 
E. Final cloverleaf structure 
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Figure 2.10  Secondary structure of the 5’ domain of 16S rRNA. (A) The real structure, 
from the Comparative RNA web site, http://www.rna.icmb.utexas.edu.  (B) This structure 
predicted by GTkinetics. Blue highlighted regions are correctly predicted by GTkinetics. 
Red highlighted regions represent the possible intermediate structures. 
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Figure 2.11 The predictions for different lengths of 16S rRNA with UNAfold and 
GTkinetics without refolding. Each arch represents a base pair connecting the two 
positions.  
(A) The structure of 1-560, real vs UNAfold prediction  
(B) The structure of 1-600, real vs UNAfold prediction 
(C) The structure of 1-560, real vs GTkinetics prediction 
(D) The structure of 1-600, real vs GTkinetics prediction. 
Yellow, true positive; red, false positive; blue, false negative. 
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2.5 Intermediate structures 

By examining the constrained structures given by GTkinetics, I found that one 

small false positive hairpin (38-48) occupied the nucleotides that are actually part of a 

long-range helix, which led to great error proliferation (Figure 2.10B). This caused three 

false negative helices, and two false positive helices. This suggests that the problem 

might be fixed by removing the constraint of (38-48). Figure 2.12B displays a 

significantly improved prediction after the constraint was removed. Another false 

positive example is hairpin (126-133). Once both constraints of (38-48) and (126-133) 

were taken off, the predicted secondary structure becomes much closer to the real 

structure (Figure 2.11). This kind of error cannot be avoided in the first version of 

GTkinetics, since all the stable hairpins and extensions are constrained all the time after 

confirmed. This indicates the necessity of a good refolding model, by which some local 

structures are able to refold properly. 

It is possible that these structures may be transient structures along the folding 

pathway. They could guide the RNA folding by lowering the transition energy or 

eliminating misfolding pathways(47). For example, the 5’ side of a long-range helix 

might need to be sequestered before the 3’ side is synthesized. The 5’ side could fold to 

some intermediate structure at first and refold later. The stability of intermediate 

structures should be moderate, high enough to avoid undesired premature refolding but 

low enough to permit melting and refolding to the final structure. Both hairpins (38-48) 

and (126-133) are on the 5’ side of the long-range helices; both are small hairpins with a 

good Z-score. I hypothesize that helices (38-48) and (126-133) occur early in the folding 

process and unfold later. This prediction could be also tested by time-resolved NMR 
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analysis or by temperature-gradient gel electrophoresis(41) using partially transcribed 

16S rRNA. The possible existence of such intermediate structures again emphasizes the 

need to develop an algorithm that does allow refolding and to test this algorithm.  
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Figure 2.12   The performance of GTkinetics is greatly improved by allowing refolding. 
The improvement by removing the constraints of two hairpins.  
(A) GTkinetics prediction without refolding.  
(B) The folding by GTkinetics removing the constraint of hairpin (38-48) and allowing 
refolding. Nucleotides (38-48) become part of a long-range helix.  
(C) The folding by GTkinetics removing the constraints of two hairpins (38-48), (126-
133). Again, refolding leads to the formation of long-range helices.  
The insets show the enlargement of the two wrong hairpins in the black boxes. 
Yellow, true positive. Red, false positive. Blue, false negative. 
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2.6 Refolding suggested by suboptimal structures 

One possible basis for refolding is that the ensemble of all possible secondary 

structures may not be dominated by the MFE structure as the RNA chain grows. If the 

free energy of suboptimal structures is close to that of a correct local MFE structure, the 

ensemble might be unstable and “leak” to the MFE structure of a longer fragment. It is 

worthwhile to examine the suboptimal structures along the folding pathway for local 

structures first, in order to see how refolding leads to the native structure.  

The hypothesis of this analysis is that the native local structures, which are the 

MFE structures of certain pieces of sequence, dominate the ensemble suboptimal 

structures during transcription. I took the sequence segments containing the optimal 

hairpins according to the Z-scores and generated suboptimal ensembles for the elongating 

segments. I measured the stability of the MFE structures by free energy, Boltzmann 

weight and the number of structural clusters. A structural cluster is defined as a group of 

compatible structures without any conflicting base pairs. The procedure of clustering is 

described below. All the secondary structures in an ensemble are sorted from low to high 

energy in a list. At every step, the clustering starts from the top of the list. The first one is 

taken as the central structure of a new cluster. And then scan the list; if a structure is 

compatible with the central structure, it will be grouped into the cluster and removed 

from the list. The clustering runs iteratively until all the structures in the ensemble are 

assigned to a cluster. After clustering, the suboptimal ensemble is divided into several 

clusters. The central structures are the representatives of the ensemble structures. 

Boltzmann weight is also calculated according to the corresponding clusters, instead of 
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every single structure. According to this hypothesis, we expected to observe true positive 

hairpins with low free energy, high Boltzmann weight and few competing clusters.  

Methods 

1. Locate the local optimal structures (closing base pair i-j) with minZ in the 16s rRNA of 

E.coli. 

2. Fold the sequence starting with a segment 10 nucleotides long and add one more 

nucleotide at a time, until hit the nucleotide j+5. 

3. Calculate the MFE and suboptimal structures within 2 kcal/mol using RNAsubopt, a 

program predicting suboptimal structures in Vienna package.  

4. Group all the suboptimal structures into clusters and calculate the Boltzmann weight of 

cluster centered the MFE structure. 

Results: 

The local optimal structures selected by Z-score can be categorized into four 

classes from this analysis.  

Class I (Figure 2.13): The local optimal structure forms exclusively. There are no 

alternative structures competing with the optimal local structures along the pathway. The 

Boltzmann weight of the MFE cluster is close to 1 (>0.95). 

Class II (Figure 2.14): Alternative structures before the local optimal structure are 

unstable, i.e. the free energy is higher than -2 kcal/mol, and/or the Boltzmann weight is 

lower than 0.6. 

Class III (Figure 2.15): The alternative structure before the local optimal structure is 

stable (∆G < -2 kcal/mol and Boltzmann weight > 0.6) 
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Class IV (Figure 2.16): The local optimal structure does not occur, or not stable (∆G > -2 

kcal/mol or Boltzmann weight < 0.6) 

The data below show the distribution of true and false positives in four classes: 

  True+  False+ 

Class I  14  7 

Class II 9  10 

Class III 3  1 

Class IV 2  9 

The hairpins of Class I and II are able to form with little or no kinetic cost, while 

those of Class III and Class IV have a much higher barrier to overcome or are 

thermodynamically unstable. The results show that the true positive hairpins are overall 

more stable and more dominant among the suboptimal ensembles than the false positive 

ones. For the true positives, there are 23 out of 28 (82%) hairpins are in Class I and II; 

while for the false positives, there are only 17 out of 27 (63%) hairpins in these two 

classes. The chi-square test shows that the two distributions are significantly different 

from each other (p< 0.001). 

This analysis indicates that the suboptimal structures may play an important role 

in helix formation as in Class II. The alternative hairpins could provide a nucleation 

platform by bringing the two ends of the real hairpins close to each other. Since they are 

not thermodynamically stable, the real ones finally replace them. Contrasted with Class 

II, the alternative hairpins in Class III are not able to melt easily, which suggests that the 

refolding is unlikely to happen. This can be used to evaluate the possibility of refolding. 

Given an initial structure and a target structure, a folding pathway can be plotted as 
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demonstrated. Refolding is more likely to happen if there are a lot of suboptimal 

structures with close free energy along the folding pathway.  

Unfortunately, the results here are not sufficient to guide us directly to modify 

GTfold to incorporate refolding events. In particular, it's not clear how to determine when 

to allow a local helix to refold, or to unfold and allow formation of a long-range helix. In 

Chapter 3, I will examine the possibility to incorporate entropic effects into MFE 

calculation, which favors short-range helices over long-range helices.  In Chapter 4, I will 

examine sequence characteristics of short-range and long-range helices to identify factors 

that may suggest the design of future algorithms. 
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hairpin  1087  1098 

end  no.  ∆G  Bolt‐w  clusters 

1093  0  0.00  1.0000  1  ................. 

1094  0  0.00  1.0000  1  .................. 

1095  0  0.00  1.0000  1  ................... 

1096  0  0.00  1.0000  1  .................... 

1097  0  0.00  0.4883  4  ..................... 

1098  1  ‐2.70  1.0000  1  ..........(((......))) 

1099  1  ‐4.40  1.0000  1  ..........(((......))). 

1100  1  ‐4.40  1.0000  1  ..........(((......))).. 

1101  2  ‐4.70  0.5009  3  .....(((.(((......)))))) 

1102  2  ‐5.50  0.4954  3  .....(((.(((......)))))). 

1103  2  ‐5.50  0.4954  3  .....(((.(((......)))))).. 

 

Figure 2.13 Example of Class I hairpins. The local optimal structure forms 
exclusively. There are no alternative structures competing with the optimal local 
structures along the pathway. The Boltzmann weight of the MFE cluster is close to 1. 
Yellow highlighted, the local optimal hairpin with minZ. 
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hairpin  9  25 

end  no.  ∆G  Bolt‐w  cluster no. 

7  0  0.00  1.0000  1  ....... 

8  0  0.00  1.0000  1  ........ 

9  0  0.00  1.0000  1  ......... 

10  0  0.00  1.0000  1  .......... 

11  0  0.00  1.0000  1  ........... 

12  0  0.00  1.0000  1  ............ 

13  0  0.00  1.0000  1  ............. 

14  0  0.00  0.9350  2  .............. 

15  0  0.00  0.7575  2  ............... 

16  0  0.00  0.7575  2  ................ 

17  0  0.00  0.6428  3  ................. 

18  0  0.00  0.5829  4  .................. 

19  1  0.00  0.3521  5  ........((......)). 

20  1  0.00  0.3434  5  ........((......)).. 

21  1  0.00  0.3434  5  ........((......))... 

22  1  0.00  0.3434  5  ........((......)).... 

23  1  0.00  0.3385  5  ........((......))..... 

24  1  0.00  0.2366  5  ........((......))...... 

25  2  ‐2.60  1.0000  1  ........(((((.......))))) 

26  2  ‐4.30  1.0000  1  ........(((((.......))))). 

27  2  ‐4.30  1.0000  1  ........(((((.......))))).. 

28  2  ‐4.30  1.0000  1  ........(((((.......)))))... 

29  2  ‐4.30  1.0001  1  ........(((((.......))))).... 

30  2  ‐4.30  0.9506  2  ........(((((.......)))))..... 

 

Figure 2.14 Example of Class II hairpins. The local optimal structure does not occur, 
or not stable (∆G > -2 kcal/mol or Boltzmann weight < 0.6). Yellow highlighted, the 
alternative structure before the local optimal.  
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 hairpin  1506  1529 

1510  0  0.00  1.0000  1  .......... 

1511  0  0.00  0.5889  2  ........... 

1512  0  0.00  0.5889  2  ............ 

1513  0  0.00  0.5889  2  ............. 

1514  0  0.00  0.5889  2  .............. 

1515  0  0.00  0.5746  3  ............... 

1516  0  0.00  0.3243  4  ................ 

1517  1  ‐1.10  0.6534  5  ........((....)). 

1518  1  ‐1.10  0.4690  5  ........((....)).. 

1519  1  ‐1.10  0.4690  5  ........((....))... 

1520  2  ‐1.40  0.6981  5  ....((..((....))..)) 

1521  3  ‐4.90  1.0000  1  ...(((..((....))..))) 

1522  4  ‐6.60  1.0000  1  ..((((..((....))..)))) 

1523  4  ‐7.30  1.0000  1  ..((((..((....))..)))). 

1524  5  ‐7.50  0.6486  3  ..........(((((....))))) 

1525  6  ‐9.90  0.8578  2  .........((((((....)))))) 

1526  7  ‐13.40  1.0000  1  ........(((((((....))))))) 

1527  8  ‐14.90  1.0000  1  .......((((((((....)))))))) 

1528  9  ‐15.70  1.0000  1  ......(((((((((....))))))))) 

1529  10  ‐16.70  1.0000  1  .....((((((((((....)))))))))) 

1530  10  ‐17.50  1.0000  1  .....((((((((((....)))))))))). 

1531  10  ‐17.50  1.0000  1  .....((((((((((....)))))))))).. 

1532  10  ‐17.50  1.0000  1  .....((((((((((....))))))))))... 

1533  10  ‐17.50  1.0000  1  .....((((((((((....)))))))))).... 

1534  10  ‐17.50  0.6539  2  .....((((((((((....))))))))))..... 

 

Figure 2.15 Example of Class III hairpins. The alternative structure before the 
structure is stable (∆G < -2 kcal/mol and Boltzmann weight > 0.6). Yellow highlighted, 
the alternative structure before the local optimal.  
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15  391  400  4 

395  0  0.00  0.8319  2  .......... 

396  0  0.00  0.8319  2  ........... 

397  0  0.00  0.8319  2  ............ 

398  0  0.00  0.7988  2  ............. 

399  0  0.00  0.7343  2  .............. 

400  1  ‐1.00  0.7552  2  .....(((....))) 

401  1  ‐1.80  0.9580  2  .....(((....))). 

402  1  ‐1.80  0.9251  2  .....(((....))).. 

403  1  ‐1.80  0.8048  3  .....(((....)))... 

404  2  ‐2.40  0.6517  2  .....((.((...)).)). 

405  3  ‐3.40  0.9064  2  ...((((.((...)).)))) 

 

Figure 2.16 Example of Class IV hairpins. The local optimal structure does not occur, 
or not stable (∆G > -2 kcal/mol or Boltzmann weight < 0.6). Yellow highlighted, the 
local optimal structure.  
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CHAPTER 3 

FOLDING WITH DISTANCE PENALTY FUNCTION 

 

In order to favor local structures over long-distance structures, we introduced a 

distance penalty function into the free energy calculation. This penalty function serves as 

an ‘entropy’ term in the free energy. Classical statistical mechanics suggests that there is 

an entropic penalty for forming base pairs between nucleotides that are far apart in the 

primary sequence. The penalty cannot rise without limit, however, because this will 

absolutely forbid base pairing between nucleotides beyond some distance, since the 

entropic penalty will exceed the favorable enthalpy. For this reason, I have chosen to 

model the distance penalty as a sigmoidal function. It is added to every base pair, 

together with the stacking energy and loop energy. The result from the dynamic 

programming is a sum of the original nearest neighbor model (NNM) and this distance 

penalty. If the parameters of the penalty function are well estimated, we expect that it 

should provide a significant improvement in the prediction of RNA secondary structure.  

3.1 Methods 

The distance function is a sigmoid function with three parameters. 

.  

In this expression, d is distance (number of nucleotides) between nucleotide i and j in 

base pair ij; Vmax is the amplitude of the maximum penalty; β controls the steepness of 

the slope; d0 is the critical distance, at which ΔGDISTANCE is half of Vmax. It may be easier 

to think of the width (w) of the region centered by d0 where the penalty rises from about 

0.05Vmax to about 0.95Vmax, for this particular function, w = 6/β. The curves of the 
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functions using two different β are shown in Figure 3.1. As β increases, the curve 

becomes steeper at d0. This function has been incorporated in the free energy calculation 

for a base pair within the source code of GTfold(29), in which the three parameters can 

be specified as an option.  

Optimum values of Vmax, β and d0 were determined for the 16S and 23S rRNA of 

E.coli, using a grid search method.  I sampled Vmax in the range of [0, 2.5], β in the 

range of [0, 0.1] and d0 in the range of [100, 1000], 4560 combinations in total.  

Sensitivity of the predicted structure using each combination is then calculated. An 

important question is whether the optimum parameters for the two rRNAs cases are 

similar or significantly different.  

3.2 Results 

A 3D sensitivity landscape for 16S rRNA using different combinations is plotted 

in Figure 3.2. The color of each point indicates the sensitivity: the redder the color, the 

higher the sensitivity. It is interesting to observe that ‘sweet spot’, which is the best 

estimation of the parameters, is not a small area, but a large ‘sweet zone’. One boundary 

of the ‘sweet zone’ is ‘soft’, where the sensitivity is close to the highest value, while the 

other boundry is very ‘hard’, which is around 0.3 lower than the highest value. The zone 

occupies the space with Vmax > 0.5, β > 0.02 and d0 > 600. Within the zone, all the 

combinations of the parameters lead the structure with the maximum sensitivity (0.72) 

and maximum specificity (0.71). The circular arc representation of this secondary 

structure is shown in the Figure 3.3. The overall structure is very similar to the real 

structure, except for three major false long-range helices and two major local helices. 
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This structure is significantly better than that prediceted by NNM alone (sensitivity = 

0.49, specificity = 0.49). 

Compared to the 16S rRNA, the distance penalty function affects 23S rRNA to a 

smaller extent (Figure 3.4). With the distance function, sensitivity of 16S rRNA spans 

from 0.2 to 0.7, while that of 23S rRNA only spans from 0.2 to 0.65 and most falling 

between 0.5 and 0.65. The ‘sweet zone’ is also much smaller than that of 16S rRNA, 

which has ‘soft boundaries’ on both sides. The structure with highest sensitivity 

(sensitivity = 0.64, specificity = 0.61) is shown in Figure 3.5. However, this does not 

coincide with the highest specificity structure (sensitivity = 0.56, specificity = 0.65) 

(Figure 3.6). Both structures are better than that from NNM alone (sensitivity = 0.50, 

specificity = 0.47). The best specificity structure has most of the local structures 

correctly, but it does miss a lot of long-range ones. On the contrary, the best sensitivity 

structure has several true large domains, but falsely predicted other long-range helices. It 

is expected, since d0 of the highest specificity is 100, which prevents from forming long-

range helices, resulting in fewer base pairs in the final structure.  

When the ‘sweet zone’ of 23S rRNA is overlapped onto 16S rRNA landscape, the 

sensitivity of 16S rRNA in this zone is also around 0.65. This zone may be able to use for 

other RNAs. I tested this on the 16S and 23S rRNA of Thermus thermophilus. I selected 

one combination Vmax = 1, β = 0.08, d0= 750. The sensitivity and specificity of the 16S 

rRNA with and without the distance function are 0.60, 0.57 and 0.54, 0.52 respectively. 

The sensitivity and specificity of the 23S rRNA with and without the distance function 

are 0.68, 0.62 and 0.59, 0.53 respectively. The predictions for both RNAs are improved 

by adding the distance function, but only modestly.  In the next chapter, I will examine 
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the possibility that the composition of short-range helices is different from that of long-

range helices. 
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Figure 3.1 Curves of sigmoidal function using different β.  
In both curves, Vmax = 2, d0 = 6. (A) β = 1, w = 6/β = 6. (B) β = 0.5, w = 6/β = 12. 

A 

B 
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Figure 3.2   Sensitivity landscape of 16S rRNA using different combinations of Vmax, β 
and d0. Color code is on the right.   
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Figure 3.3 Secondary structure of 16S rRNA with highest sensitivity (0.72) and 
specificity (0.71). Green, true positive; Red, false positive; Blue, false negative. 
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Figure 3.4   Sensitivity landscape of 23S rRNA using different combinations of Vmax, β 
and d0. Color code is on the right.   
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Figure 3.5  Secondary structure of 23S rRNA with highest specificity (0.65). Green, true 
positive; Red, false positive; Blue, false negative. 
 

 
 

Figure 3.6 Secondary structure of 23S rRNA with highest sensitivity (0.64). Green, true 
positive; Red, false positive; Blue, false negative. 
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CHAPTER 4 

SEQUENCE AND STRUCTURAL ANALYSIS  

OF RIBOSOMAL RNA 

 

GTkinetics is able to capture stable local structures, but it also predicts a lot of 

false positive local structures. These false positives extensively affect the accuracy of the 

prediction. We hypothesize that some of the false positives are intermediate structures, 

which might exist temporally to sequester the 5’ side for its real partner. In addition, 

other false positive local structures may occur off the folding pathway. These are resulted 

from the false signal of Z-score. In other words, we need some other criteria to evaluate 

the local structures, in addition to the Z-score. If we are able to eliminate the false 

positives, particularly those that lie off the folding path, the accuracy of GTkinetics will 

be improved. In order to obtain some characteristics to discriminate the real local 

structures from the false positive ones, I have carried out several analyses on the 

sequences and secondary structures of some ribosomal RNAs.  

4.1 Standardized local nucleotide composition 

The structure of the HIV RNA genome put forward by Watts et al. (78) has a 

remarkably high degree of single strandedness: only 41% of the 9142 nucleotides are 

involved in either Watson-Crick or wobble base pairing. This is in sharp contrast to the 

~60% base pairing found in ribosomal RNAs and predicted MFE structures of random 

sequence RNAs. Our laboratory has recently completed an analysis of the HIV genome, 

finding that the unusual secondary structure has two sources.  First, the HIV genome is 

very A-rich (36%) and C-poor (18%).  Second, the composition of single-stranded 
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regions is even more A-rich (48%) and C-poor (12%) than the genome as a whole. Since 

the 5' sides of each helix should have a propensity to remain single-stranded until the 

complementary 3' side of the helix is synthesized, I hypothesize that there will be more 

adenines on the 5' side of helices than on the 3' side, or that there will be a gradual build-

up of adenines on the 5' sides of helices.  

Because the absolute number of adenines increases monotoically, we used a 

normalized value to characterize the richness and poorness of A. We assume that all the 

adenines are scattered uniformly along the sequence, so that we have an expected number 

of adenine for every length, <A(length)>= sum(A)/total(length) * length. By subtracting 

the expected value from the real number of adenines at every length, we are able to 

visualize the A-rich and A-poor regions. Figure 4.1 shows the standardized local adenine 

composition of the 5’ domain of 16S rRNA. The two peaks circled are two typical 

examples where the hypothesis holds true. The regions with increasing adenines are the 

5’ sides. The two peaks are located in the hairpin loops. The decreasing adenine regions 

are the 3’ sides of the hairpin helices. However, this is not always true along the entire 

sequence. Many of the long-range helices do not have this pattern. In order to test this 

hypothesis from a statistical perspective, I counted the adenines of both sides of all 

helices in the 16S rRNA to verify whether or not adenine at the 5’ sides are significantly 

more than those at the 3’ sides. The results show that the number of adenines at the 5’ 

sides (n = 2152) is even smaller than that of the 3’ sides (n = 2253). 
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Figure 4.1  Standardized local adenine composition of the 5’ domain in the 16S 
rRNA.Top, The standardized local adenine composition of the 5’ domain of the 16S 
rRNA. Bottom, the secondary structure of the 5’ domain of the 16S rRNA. The two peaks 
circled are two hairpins; whose 5’ sides are adenine rich and 3’ sides are adenine poor.  
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4.2 Base pair composition analysis 

From the standardized local nucleotide composition analysis, we found some 

signals for local helices but not for long-range helices. This suggested that folding of 

long-range helices is different from that of local ones. Intermediate structures have been 

already suggested as a strategy to protect the 5’ side before its 3’ complement is 

synthesized. Another direct perspective to examine the differences between long-range 

and local helices is to examine the base pair composition. The null hypothesis is that the 

distribution of four kinds of base pairs (A-U, G-C, G-U and non-canonical (nc) pairs) in 

the local helices is the same as that in long-range (l-r) helices.  

I tested 24 ribosomal RNAs from 3 domains of life (Table 3.1). From the chi-

square test (Table 3.2), it is obvious that the base pair compositions between local and 

long-range helices are significantly different, p=3.23E-11. The biggest contributor is 

from long-range GU base pairs. The number of GU base pairs in long-range helices is 

smaller than the expected number, while GU base pairs in local helices are more frequent 

than expected. This is also true for non-canonical base pairs. This indicates that the high-

energy GU and non-canonical base pairs are not favored by long-range helices, which 

may suggest long-range helices need lower average base pair energy to overcome the 

higher entropy penalty. The next biggest contributor is the long-range AU base pair. AU 

base pair appears more than expected in the long-range helices, but less than expected in 

the local helices. The distribution of GC base pair is almost the same in local and long-

range helices. It is also interesting that AU and GU base pairs are mutually impairing. 

When the number of AU increases, the number of GU decreases, and vise versa. This 

suggests that the promiscuity of uracil facilitates the formation of local and long-range 
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helices via different means. 
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Table 4.1  The rRNA sequences in the test of base pair composition 

Species Type CRW ID Length Domain 

Escherichia coli 16S CRW_00110 1542 Bacteria 

Escherichia coli 23S CRW_00492 2904 Bacteria 

Deinococcus radiodurans 16S CRW_00105 1504 Bacteria 

Deinococcus radiodurans 23S CRW_00490 2880 Bacteria 

Staphylococcus aureus 16S CRW_00196 1555 Bacteria 

Staphylococcus aureus 23S CRW_00515 2923 Bacteria 

Thermus thermophilus 16S CRW_00252 1518 Bacteria 

Thermus thermophilus 23S CRW_00519 2915 Bacteria 

Haemophilus influenzae 16S CRW_00129 1539 Bacteria 

Haemophilus influenzae 23S CRW_00496 2897 Bacteria 

Arabidopsis thaliana 16S CRW_00303 1808 Eucaryota 

Arabidopsis thaliana 23S CRW_00524 3539 Eucaryota 

Drosophila melanogaster 16S CRW_00330 1995 Eucaryota 

Drosophila melanogaster 23S CRW_00536 1335 Eucaryota 

Xenopus laevis 16S CRW_00415 1826 Eucaryota 

Xenopus laevis 23S CRW_00545 1640 Eucaryota 

Carelia paradoxa 16S CRW_00327 1807 Eucaryota 

Carelia paradoxa 23S CRW_00547 2926 Eucaryota 

Saccharomyces cerevisiae 16S CRW_00389 1800 Eucaryota 

Saccharomyces cerevisiae 23S CRW_00529 3554 Eucaryota 

Thermococcus celer 16S CRW_00470 3029 Archaea 

Thermococcus celer 23S CRW_00042 1487 Archaea 

Haloarcula marismortui 16S CRW_00022 1473 Archaea 

Haloarcula marismortui 23S CRW_00467 2925 Archaea 



 61 

Table 4.2  Base pair composition analysis of local and long-range helices. A. Base pair 
composition of local and long-range (l-r) helices. B. The actual number and expected 
number of all kinds base pairs. Green, actual number is larger than expected; Red, actual 
number is smaller than expected. C, the chi-square test of the two distributions. Degree of 
freedom is 3, chi-square = 51.8458. P-value is 3.23E-11.  
A 

 A-U G-U G-C NC total   

local 2470 1320 5414 602 9806   

l-r 1364 495 2684 222 4765   

total 3834 1815 8098 824 14571   

        
B 

 Local Long-range 

 Expected Actual Expected Actual 

A-U 2580.21 2470 1253.79 1364 

G-U 1221.46 1320 593.54 495 

G-C 5449.80 5414 2648.20 2684 

NC 554.54 602 269.46 222 

     
C 

 local l-r 

A-U 4.7073 9.6872 

G-U 7.9497 16.3598 

G-C 0.2351 0.4839 

NC 4.0626 8.3604 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

As the functional importance of RNA has become more apparent in recent years, 

research on RNA secondary structure determination has been developing very rapidly. 

There are two big questions in RNA secondary structure prediction. One is that given a 

certain sequence, what is the final structure? The other is, given the sequence and the 

final structure, what is the folding path?  

My work here does not only aim at more accurate secondary structure prediction, 

but also try to understand RNA folding in vivo. GTkinetics is designed to serve these two 

targets. In GTkinetics, the Z-score is the key to the selection of local structures. With the 

Z-score criterion, there are 10 out of 13 hairpins correctly predicted in the 5’ domain of 

the 16s rRNA. One of three false hairpins (199-209) is also suggested a refolded region in 

SHAPE analysis. Z-score is a normalized free energy, which compares the stability of 

local structures of different lengths. It facilitates the selection for local competitions, 

which suggest that the relative stability plays a more important role than the absolute free 

energy in the local structures. It is worthwhile to point out that Z-score is still a 

thermodynamic term, which means that the local structures fold thermodynamically.  

In GTkinetics, Z-score is not the only criterion of local structure selection. The 

length of the sequence elongation favors the lowest Z-score structure, but the structure is 

not forced to form. Instead, it is under the competitive pressure from other local 

structures and possible long-range interactions with other parts along the sequence. In 

this way, the program partially mimics the folding in vivo, which is dynamic but also is 
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encoded in the sequence. If a local minimum Z-score structure is able to form under such 

competition, it is confirmed as a stable one. This step is also determined by 

thermodynamics, since the structure computed is from energy minimization.  

The kinetic effect involved in GTkinetics is to constrain those stable local 

structures, which assumes an infinitely high-energy barrier to refold them. This is not 

very realistic, but it is a good starting point to evaluate the selection method for local 

structures and to learn some characteristics of the RNA folding. Some small hairpins 

occur on the 5’ side of the long-range helices, are these may be intermediate structures 

(Section 3.3). Meyer et al. (54) did a series of statistical tests and pointed out that the 

formation of transient structures, which may serve as guidelines for the co-transcriptional 

folding pathway, is encouraged. Wong et al. (49) found a non-native structure during 

transcription, which facilitates the RNA folding. Alternative structures or non-native 

structures are no longer considered as obstacles in RNA folding, but as intermediate or 

transient structures that guide and regulate the RNA folding. Both of the proposed 

intermediate structures in the 16S rRNA stand on the 5’ sides of the long-range helices, 

by which the 5’ sides are protected from premature interactions with other parts of the 

sequence. Their free energies are -2.7 kcal/mol and -1.6 kcal/mol respectively, which are 

not so high as to prevent refolding. They have the characteristics of intermediate 

structures: relatively stable (low Z-score) and relatively refoldable (high free energy). 

GTkinetics enables us to capture these possible intermediate structures; however, the 

question remains as to when and how to refold them. A refolding model is required 

within every kinetic folding algorithm, which we need to establish in GTkinetics.  

By analyzing the suboptimal structures along the folding pathways of hairpins, I 
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have concluded that real hairpins are usually more stable and dominant in the suboptimal 

ensemble than the false positive hairpins. It is interesting to observe that half of the real 

hairpins fall into Class II, which feature alternative transient structures before the 

formation of real structures. This suggests a mechanism to evaluate refolding, but it will 

require a new searching method for target structures, particularly long-range helices.  

Also the method for evaluating possible refolding events needs to be quantified. 

Instead of incorporating a refolding model in the program, the other way to solve 

the long-range base pairs falsely predicted by MFE program is to introduce a distance-

dependent penalty function into the program. The sensitivity landscapes of 16S and 23S 

rRNA seem to be very different with regard to the optimal parameters in the variation and 

‘sweet spot’ location. This indicates that there is no ‘optimal’ combination for all RNAs, 

but it is possible to obtain a better prediction if an appropriate set of parameters is 

selected. From the test on Thermus thermophilus rRNA, we saw that a compromise set of 

parameters from the training sets did improve the prediction to a moderate extent.  

From the analysis of local nucleotide composition and base pair composition, it is 

apparent that RNAs utilize different strategies to form local and long-range helices. The 

local nucleotide composition of adenine accumulates on the 5’ sides of some local 

structures, but not on the 5’ sides of long-range helices. In the base pair composition 

analysis, the A-U pairs are more frequent than expected in the local helices, but less 

frequent than expected in the long-range helices. It has been pointed out that GC content 

is higher in stems than in the loop regions(80). This also agrees with my analysis. The 

number of G-C pairs is more than half of the number of total base pairs. Furthermore, the 

G-C pair has the same frequency in local and long-range helices. This suggests that GC 
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characterizes helical regions and adenine characterizes loop regions.  

It is very interesting that uracil, which can pair with both adenine and guanine, 

has different composition of partners in local and long-range pairs. AU and GU base 

pairs are mutually impairing. When the frequency of AU increases, the frequency of GU 

decreases, and vise versa. Generally, there are fewer week base pairs (G-U and non-

canonical) in long-range helices. It is reasonable to hypothesize that for local structures, 

because the kinetic barrier is very small, it is acceptable to adopt some high-energy base 

pairs. However, in the long-range helices, which either result from refolding or from 

directly closing a multi-branch loop, the kinetic barriers are much higher than the local 

ones, so more stable low-energy base pairs are favored. RNAs are the product of natural 

selection, in which both thermodynamics and kinetics play important roles as selection 

pressure. The sequences of real RNAs have evolved to form the desired structures 

efficiently. These compositional trends may improve the accuracy of RNA secondary 

structure prediction, because they allow us to compare predicted structures against known 

compositional preferences.  

The results here point to future directions for RNA secondary structure prediction. 

I would propose a new GTkinetics program by adding more components to it. First, a list 

of possible long-range helices should be generated using a sliding window method 

similar to the one used for identifying candidate local structures. Once we have the lists 

of both local and long-range helices, we can score them for free energy, nucleotide 

composition, base pair composition and so on, in the hope of determining the stability of 

a candidate local and long-range helices. Next, as in the current GTkinetics, we can add 

candidate helices sequentially according to their scores. Refolding will take place if we 
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replace a previously stable local helix with a long-rang helix. We can then generate 

suboptimal ensembles from the initial to target structures. The various possibilities can be 

evaluated from the free energy differences, Boltzmann weights and cluster numbers. The 

distance function can also be incorporated in GTkinetics to entropically favor local 

helices over long-range ones.  

In order to accomplish the proposed changes to GTkinetics, I need to complete the 

following tasks. First a computationally inexpensive method is required for populating 

long-range helices. I can use the sliding window method similar to that used for 

generating local structures. To decrease the computing complexity, I can slide the 

window in steps of five nucleotides apart instead of one nucleotide. After obtaining all 

the possible local and long-range helices, we need a reliable scoring method. The score of 

each helix will evaluate thermodynamic stability (Z-score and ∆G) and the likelihood of a 

local structure or a long-range helix. The likelihood calculation will incorporate the 

analyses results in Chapter 4, such as base pair composition. How to assign the weights 

for stability and likelihood is not a trivial problem. I can apply a grid search method as in 

the distance function determination, using known local and long-range helices as a 

training set, to get a consistent solution. According to the stability and likelihood, I will 

add the highest score helix at each step. In this way, some local structures may be 

replaced with long-range helices as the RNA chain grows. In this scenario, we need to 

evaluate the possibility of refolding. As suggested by Section 2.6, I will generate 

suboptimal ensembles along the folding pathway from the initial structure to the target 

one. The free energy of the MFE structure, the Boltzmann weight of the MFE cluster and 

the number of total clusters will be factors to determine whether to accept refolding. The 
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threshold of these three factors can also be determined by using a grid search method on 

various sets of training data set. 

These steps are workable but challenging. It is possible that an optimal solution 

may not be found; however, a consistent suboptimal solution is also acceptable. The main 

goal of this research is to understand the RNA folding by learning from the mechanisms 

encoded in the sequences. The extent of our understanding will be tested by the capability 

of the program to reproduce the native structures. 

  

 



 68 

REFERENCES 

 

1. Korostelev, A. and Noller, H.F. (2007) The ribosome in focus: new structures 
bring new insights. Trends Biochem Sci, 32, 434-441. 

2. Steitz, T.A. (2008) A structural understanding of the dynamic ribosome machine. 
Nat Rev Mol Cell Biol, 9, 242-253. 

3. Bessonov, S., Anokhina, M., Will, C.L., Urlaub, H. and Luhrmann, R. (2008) 
Isolation of an active step I spliceosome and composition of its RNP core. Nature, 
452, 846-850. 

4. Edwards, T.E., Klein, D.J. and Ferre-D'Amare, A.R. (2007) Riboswitches: small-
molecule recognition by gene regulatory RNAs. Curr Opin Struct Biol, 17, 273-
279. 

5. Nagel, J.H. and Pleij, C.W. (2002) Self-induced structural switches in RNA. 
Biochimie, 84, 913-923. 

6. Dayie, K.T. (2008) Key labeling technologies to tackle sizeable problems in RNA 
structural biology. Int J Mol Sci, 9, 1214-1240. 

7. Amaral, P.P., Dinger, M.E., Mercer, T.R. and Mattick, J.S. (2008) The eukaryotic 
genome as an RNA machine. Science, 319, 1787-1789. 

8. Brion, P. and Westhof, E. (1997) Hierarchy and dynamics of RNA folding. Annu 
Rev Biophys Biomol Struct, 26, 113-137. 

9. Tinoco, I., Jr. and Bustamante, C. (1999) How RNA folds. J Mol Biol, 293, 271-
281. 

10. Fox, G.W. and Woese, C.R. (1975) 5S RNA secondary structure. Nature, 256, 
505-507. 

11. Noller, H.F. and Woese, C.R. (1981) Secondary structure of 16S ribosomal RNA. 
Science, 212, 403-411. 

12. Woese, C.R., Magrum, L.J., Gupta, R., Siegel, R.B., Stahl, D.A., Kop, J., 
Crawford, N., Brosius, J., Gutell, R., Hogan, J.J. et al. (1980) Secondary structure 
model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical 
evidence. Nucleic Acids Res, 8, 2275-2293. 

13. Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Gutell, R.R., Kopylov, A.M., 
Dohme, F., Herr, W., Stahl, D.A., Gupta, R. et al. (1981) Secondary structure 
model for 23S ribosomal RNA. Nucleic Acids Res, 9, 6167-6189. 



 69 

14. Gutell, R.R., Lee, J.C. and Cannone, J.J. (2002) The accuracy of ribosomal RNA 
comparative structure models. Curr Opin Struct Biol, 12, 301-310. 

15. Wimberly, B.T., Brodersen, D.E., Clemons, W.M., Jr., Morgan-Warren, R.J., 
Carter, A.P., Vonrhein, C., Hartsch, T. and Ramakrishnan, V. (2000) Structure of 
the 30S ribosomal subunit. Nature, 407, 327-339. 

16. Ban, N., Nissen, P., Hansen, J., Moore, P.B. and Steitz, T.A. (2000) The complete 
atomic structure of the large ribosomal subunit at 2.4 A resolution. Science, 289, 
905-920. 

17. Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, 
S.H., Penswick, J.R. and Zamir, A. (1965) Structure of a Ribonucleic Acid. 
Science, 147, 1462-1465. 

18. Tinoco, I., Jr., Uhlenbeck, O.C. and Levine, M.D. (1971) Estimation of secondary 
structure in ribonucleic acids. Nature, 230, 362-367. 

19. Tinoco, I., Jr., Borer, P.N., Dengler, B., Levin, M.D., Uhlenbeck, O.C., Crothers, 
D.M. and Bralla, J. (1973) Improved estimation of secondary structure in 
ribonucleic acids. Nat New Biol, 246, 40-41. 

20. Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA 
sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9, 
133-148. 

21. Zuker, M. (1989) Computer prediction of RNA structure. Methods Enzymol, 180, 
262-288. 

22. Zuker, M. (1989) On finding all suboptimal foldings of an RNA molecule. 
Science, 244, 48-52. 

23. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization 
prediction. Nucleic Acids Res, 31, 3406-3415. 

24. Nussinov, R., Pieczenik, G., Griggs, J.R. and Kleitman, D.J. (1978) Algorithms 
for Loop Matchings. Siam Journal on Applied Mathematics, 35, 68-82. 

25. Markham, N.R. and Zuker, M. (2008) UNAFold: software for nucleic acid folding 
and hybridization. Methods Mol Biol, 453, 3-31. 

26. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M. and 
Schuster, P. (1994) Fast Folding and Comparison of RNA Secondary Structures 
(The Vienna RNA Package). Monatsh Chem, 125, 167-188. 

27. Hofacker, I.L. (2004) RNA secondary structure analysis using the Vienna RNA 
package. Curr Protoc Bioinformatics, Chapter 12, Unit 12 12. 



 70 

28. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M. and 
Turner, D.H. (2004) Incorporating chemical modification constraints into a 
dynamic programming algorithm for prediction of RNA secondary structure. Proc 
Natl Acad Sci U S A, 101, 7287-7292. 

29. Amrita Mathuriya, D.A.B., Christine E. Heitsch, Stephen C. Harvey. (2009) 
GTfold: a scalable multicore code for RNA secondary structure prediction. 
Proceedings of the 2009 ACM symposium on Applied Computing  

30. Konings, D.A. and Gutell, R.R. (1995) A comparison of thermodynamic foldings 
with comparatively derived structures of 16S and 16S-like rRNAs. RNA, 1, 559-
574. 

31. Doshi, K.J., Cannone, J.J., Cobaugh, C.W. and Gutell, R.R. (2004) Evaluation of 
the suitability of free-energy minimization using nearest-neighbor energy 
parameters for RNA secondary structure prediction. BMC Bioinformatics, 5, 105. 

32. Mathews, D.H., Sabina, J., Zuker, M. and Turner, D.H. (1999) Expanded 
sequence dependence of thermodynamic parameters improves prediction of RNA 
secondary structure. J Mol Biol, 288, 911-940. 

33. Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T. 
and Turner, D.H. (1986) Improved free-energy parameters for predictions of RNA 
duplex stability. Proc Natl Acad Sci U S A, 83, 9373-9377. 

34. Burkard, M.E., Kierzek, R. and Turner, D.H. (1999) Thermodynamics of unpaired 
terminal nucleotides on short RNA helixes correlates with stacking at helix 
termini in larger RNAs. J Mol Biol, 290, 967-982. 

35. Xia, T., McDowell, J.A. and Turner, D.H. (1997) Thermodynamics of 
nonsymmetric tandem mismatches adjacent to G.C base pairs in RNA. 
Biochemistry, 36, 12486-12497. 

36. Chen, G. and Turner, D.H. (2006) Consecutive GA pairs stabilize medium-size 
RNA internal loops. Biochemistry, 45, 4025-4043. 

37. Bourdelat-Parks, B.N. and Wartell, R.M. (2005) Thermodynamics of RNA 
duplexes with tandem mismatches containing a uracil-uracil pair flanked by 
C.G/G.C or G.C/A.U closing base pairs. Biochemistry, 44, 16710-16717. 

38. McCaskill, J.S. (1990) The equilibrium partition function and base pair binding 
probabilities for RNA secondary structure. Biopolymers, 29, 1105-1119. 

39. Ding, Y. and Lawrence, C.E. (2003) A statistical sampling algorithm for RNA 
secondary structure prediction. Nucleic Acids Res, 31, 7280-7301. 



 71 

40. Mahen, E.M., Harger, J.W., Calderon, E.M. and Fedor, M.J. (2005) Kinetics and 
thermodynamics make different contributions to RNA folding in vitro and in 
yeast. Mol Cell, 19, 27-37. 

41. Repsilber, D., Wiese, S., Rachen, M., Schroder, A.W., Riesner, D. and Steger, G. 
(1999) Formation of metastable RNA structures by sequential folding during 
transcription: time-resolved structural analysis of potato spindle tuber viroid (-)-
stranded RNA by temperature-gradient gel electrophoresis. RNA, 5, 574-584. 

42. Morgan, S.R. and Higgs, P.G. (1996) Evidence for kinetic effects in the folding of 
large RNA molecules. J Chem Phys, 105, 7152-7157. 

43. Pan, T. and Sosnick, T. (2006) RNA folding during transcription. Annu Rev 
Biophys Biomol Struct, 35, 161-175. 

44. Wickiser, J.K., Winkler, W.C., Breaker, R.R. and Crothers, D.M. (2005) The 
speed of RNA transcription and metabolite binding kinetics operate an FMN 
riboswitch. Mol Cell, 18, 49-60. 

45. Chao, M.Y., Kan, M.C. and Lin-Chao, S. (1995) RNAII transcribed by IPTG-
induced T7 RNA polymerase is non-functional as a replication primer for ColE1-
type plasmids in Escherichia coli. Nucleic Acids Res, 23, 1691-1695. 

46. Lewicki, B.T., Margus, T., Remme, J. and Nierhaus, K.H. (1993) Coupling of 
rRNA transcription and ribosomal assembly in vivo. Formation of active 
ribosomal subunits in Escherichia coli requires transcription of rRNA genes by 
host RNA polymerase which cannot be replaced by bacteriophage T7 RNA 
polymerase. J Mol Biol, 231, 581-593. 

47. Wong, T.N., Sosnick, T.R. and Pan, T. (2007) Folding of noncoding RNAs during 
transcription facilitated by pausing-induced nonnative structures. Proc Natl Acad 
Sci U S A, 104, 17995-18000. 

48. Boyle, J., Robillard, G.T. and Kim, S.H. (1980) Sequential folding of transfer 
RNA. A nuclear magnetic resonance study of successively longer tRNA 
fragments with a common 5' end. J Mol Biol, 139, 601-625. 

49. Kramer, F.R. and Mills, D.R. (1981) Secondary structure formation during RNA 
synthesis. Nucleic Acids Res, 9, 5109-5124. 

50. Pan, T., Artsimovitch, I., Fang, X.W., Landick, R. and Sosnick, T.R. (1999) 
Folding of a large ribozyme during transcription and the effect of the elongation 
factor NusA. Proc Natl Acad Sci U S A, 96, 9545-9550. 

51. Heilman-Miller, S.L. and Woodson, S.A. (2003) Effect of transcription on folding 
of the Tetrahymena ribozyme. RNA, 9, 722-733. 



 72 

52. Meyer, I.M. and Miklos, I. (2004) Co-transcriptional folding is encoded within 
RNA genes. BMC Mol Biol, 5, 10. 

53. Flamm, C. and Hofacker, I.L. (2008) Beyond energy minimization: approaches to 
the kinetic folding of RNA. Monatsh Chem, 139, 447-457. 

54. Mironov, A.A., Dyakonova, L.P. and Kister, A.E. (1985) A kinetic approach to 
the prediction of RNA secondary structures. J Biomol Struct Dyn, 2, 953-962. 

55. Porschke, D. (1974) A direct measurement of the unzippering rate of a nucleic 
acid double helix. Biophys Chem, 2, 97-101. 

56. Mironov, A.A. and Lebedev, V.F. (1993) A kinetic model of RNA folding. 
Biosystems, 30, 49-56. 

57. Danilova, L.V., Pervouchine, D.D., Favorov, A.V. and Mironov, A.A. (2006) 
RNAKinetics: a web server that models secondary structure kinetics of an 
elongating RNA. J Bioinform Comput Biol, 4, 589-596. 

58. Isambert, H. and Siggia, E.D. (2000) Modeling RNA folding paths with 
pseudoknots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci U 
S A, 97, 6515-6520. 

59. Pan, J., Thirumalai, D. and Woodson, S.A. (1997) Folding of RNA involves 
parallel pathways. J Mol Biol, 273, 7-13. 

60. Geis, M., Flamm, C., Wolfinger, M.T., Tanzer, A., Hofacker, I.L., Middendorf, 
M., Mandl, C., Stadler, P.F. and Thurner, C. (2008) Folding kinetics of large 
RNAs. J Mol Biol, 379, 160-173. 

61. Morgan, S.R. and Higgs, P.G. (1998) Barrier heights between ground states in a 
model of RNA secondary structure. Journal of Physics a-Mathematical and 
General, 31, 3153-3170. 

62. Porschke, D. and Eigen, M. (1971) Co-operative non-enzymic base recognition. 3. 
Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic 
acid system and of oligoriboadenylic acid alone at acidic pH. J Mol Biol, 62, 361-
381. 

63. Chen, X., He, S.M., Bu, D., Chen, R. and Gao, W. (2007) A flexible Stem-based 
local search algorithm for predicting RNA secondary structures including 
pseudoknots. IEEE, 411-417. 

64. Chen, X., He, S.M., Bu, D., Zhang, F., Wang, Z., Chen, R. and Gao, W. (2008) 
FlexStem: improving predictions of RNA secondary structures with pseudoknots 
by reducing the search space. Bioinformatics, 24, 1994-2001. 



 73 

65. Rivas, E. and Eddy, S.R. (1999) A dynamic programming algorithm for RNA 
structure prediction including pseudoknots. J Mol Biol, 285, 2053-2068. 

66. Ren, J., Rastegari, B., Condon, A. and Hoos, H.H. (2005) HotKnots: heuristic 
prediction of RNA secondary structures including pseudoknots. RNA, 11, 1494-
1504. 

67. Ruan, J., Stormo, G.D. and Zhang, W. (2004) ILM: a web server for predicting 
RNA secondary structures with pseudoknots. Nucleic Acids Res, 32, W146-149. 

68. Flamm, C., Hofacker, I.L., Stadler, P.F. and Wolfinger, M.T. (2002) Barrier trees 
of degenerate landscapes. Zeitschrift Fur Physikalische Chemie-International 
Journal of Research in Physical Chemistry & Chemical Physics, 216, 155-173. 

69. Nagel, J.H., Flamm, C., Hofacker, I.L., Franke, K., de Smit, M.H., Schuster, P. 
and Pleij, C.W. (2006) Structural parameters affecting the kinetics of RNA 
hairpin formation. Nucleic Acids Res, 34, 3568-3576. 

70. Furtig, B., Buck, J., Manoharan, V., Bermel, W., Jaschke, A., Wenter, P., Pitsch, 
S. and Schwalbe, H. (2007) Time-resolved NMR studies of RNA folding. 
Biopolymers, 86, 360-383. 

71. Furtig, B., Wenter, P., Reymond, L., Richter, C., Pitsch, S. and Schwalbe, H. 
(2007) Conformational dynamics of bistable RNAs studied by time-resolved 
NMR spectroscopy. J Am Chem Soc, 129, 16222-16229. 

72. Harlepp, S., Marchal, T., Robert, J., Leger, J.F., Xayaphoummine, A., Isambert, 
H. and Chatenay, D. (2003) Probing complex RNA structures by mechanical 
force. Eur Phys J E Soft Matter, 12, 605-615. 

73. Kim, S.H., Suddath, F.L., Quigley, G.J., McPherson, A., Sussman, J.L., Wang, 
A.H., Seeman, N.C. and Rich, A. (1974) Three-dimensional tertiary structure of 
yeast phenylalanine transfer RNA. Science, 185, 435-440. 

74. van Batenburg, F.H., Gultyaev, A.P., Pleij, C.W., Ng, J. and Oliehoek, J. (2000) 
PseudoBase: a database with RNA pseudoknots. Nucleic Acids Res, 28, 201-204. 

75. Taufer, M., Licon, A., Araiza, R., Mireles, D., van Batenburg, F.H., Gultyaev, 
A.P. and Leung, M.Y. (2009) PseudoBase++: an extension of PseudoBase for 
easy searching, formatting and visualization of pseudoknots. Nucleic Acids Res, 
37, D127-135. 

76. Abrahams, J.P., van den Berg, M., van Batenburg, E. and Pleij, C. (1990) 
Prediction of RNA secondary structure, including pseudoknotting, by computer 
simulation. Nucleic Acids Res, 18, 3035-3044. 

77. Zuker, M., Jaeger, J.A. and Turner, D.H. (1991) A comparison of optimal and 
suboptimal RNA secondary structures predicted by free energy minimization with 



 74 

structures determined by phylogenetic comparison. Nucleic Acids Res, 19, 2707-
2714. 

78. Watts, J.M., Dang, K.K., Gorelick, R.J., Leonard, C.W., Bess, J.W., Jr., 
Swanstrom, R., Burch, C.L. and Weeks, K.M. (2009) Architecture and secondary 
structure of an entire HIV-1 RNA genome. Nature, 460, 711-716. 

79. Kertesz, M., Wan, Y., Mazor, E., Rinn, J.L., Nutter, R.C., Chang, H.Y. and Segal, 
E. Genome-wide measurement of RNA secondary structure in yeast. Nature, 467, 
103-107. 

80. Smit, S., Yarus, M. and Knight, R. (2006) Natural selection is not required to 
explain universal compositional patterns in rRNA secondary structure categories. 
RNA, 12, 1-14. 

 

 

  

 


