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SUMMARY 

 

 Empowered by information technology, modern consumers increasingly rely 

upon online word-of-mouth (WOM—e.g., product reviews) to guide their purchase 

decisions. This dissertation investigates how WOM information is processed by 

consumers and its downstream consequences. 

 The quality of consumer decisions often depends on accurate forecasting of future 

enjoyment. Chapter 2 of the dissertation explores the value of specific types of word-of-

mouth information (e.g., numeric ratings, text commentary, or both) for making forecast. 

After proposing an anchoring-and-adjustment framework for the utilization of WOM to 

inform consumer forecasts, I support this framework with a series of experiments. Results 

demonstrate that the relative forecasting advantage of different information types is a 

function of the extent to which consumer and reviewer have similar product-level 

preferences (‘source-receiver similarity’). 

 Consumers are more likely than ever to encounter a mixture of positive and 

negative WOM. Chapter 3 of the dissertation investigates the process by which 

dispersion—the degree to which opinions are divided for a product or service—in WOM 

is interpreted. Using an attribution-based approach, I argue that the effect of WOM 

dispersion is dependent on the perceived cause of that dispersion, which is systematically 

related to perceptions of preference heterogeneity in a product category. For products for 

which preferences are expected to vary, dispersion is likely to be attributed to the 

reviewers rather than the product itself, and therefore tolerated. I provide evidence for my 



 

 xi

proposal in a series of experiments where WOM dispersion is manipulated and 

respondents make choices and indicate purchase intentions. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 For the vast majority of consumer decisions, others have already experienced one 

or more of the options under consideration and shared their own opinions through online 

word-of-mouth (WOM—e.g., product reviews). Empowered by information technology, 

modern consumers increasingly rely upon such information to guide their purchase 

decisions. The topic has gained attention from marketing researchers interested in its 

effects on decision making (Cheema and Kaikati 2010; Irmak, Vallen, and Sen 2010; 

Naylor, Lamberton, and Norton 2011; Weiss, Lurie, and MacInnis 2008), sales 

(Chevalier and Mayzlin 2006; Chintagunta et al. 2010; Clemons et al. 2006; Dellarocas et 

al. 2007; Li and Hitt 2008; Moe and Trusov 2011; Moon et al. 2010; Sun 2011; Zhu and 

Zhang 2010), and related variables. I am interested in how WOM information is 

processed by consumers and its downstream consequences, and this dissertation 

contributes to the understanding of these important questions by investigating the 

forecasting value of WOM and the risks embedded in WOM dispersion. 

 One objective criterion for evaluating the usefulness of WOM to consumers is the 

extent to which it enables accurate forecasting of future enjoyment. Based on this 

criterion, Chapter 2 of the dissertation explores the value of specific types of WOM 

information (numeric ratings, text commentary, or both) for making forecasts. I propose 

an anchoring-and-adjustment framework in which the relative value of different 

information types is a function of the extent to which consumer and reviewer have similar 

product-level preferences (‘source-receiver similarity’). In particular, I argue that 
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numeric ratings are processed by a heuristic of ‘assumed similarity’ that results in limited 

adjustment, while text commentary invokes a process of mental simulation that produces 

greater (but not necessarily better) adjustment. This framework allows me to derive 

conditions under which ratings, commentary, or their combinations are more useful for 

prediction. A series of experiments demonstrates that the forecasting advantage of ratings 

is restricted to cases where source-receiver similarity is high (e.g., products with 

relatively homogenous preferences). Most importantly, as source-receiver similarity 

decreases, the usefulness of ratings declines substantially, but the usefulness of 

commentary remains intact. As predicted by my framework, the data also reveal 

conditions where the presence of ratings and commentary together actually inhibit 

forecasts. Finally, despite the presumed benefits of aggregating WOM through use of 

‘average’ ratings, I show that when preferences are heterogeneous, forecasts based on 

averages of ratings may underperform those based on a single review, especially when 

commentary is provided. 

 Regardless of the specific format of WOM involved, the advance of social and 

mobile technologies has ensured that online consumers inevitably encounter a mixture of 

positive and negative reviews. However, the magnitude of this disagreement can vary 

dramatically across and within product categories. Both intuition and existing evidence 

suggest that because uncertainty is usually undesirable, consumers will tend to favor 

products with consistent WOM. Chapter 3 of the dissertation presents a more nuanced 

perspective. In particular, I investigate WOM using an attribution-based approach and 

provide experimental evidence for the process by which divided opinions are interpreted. 

I argue that WOM dispersion signals (in)consistency across consumption incidences, but 
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whether this (in)consistency is attributed to the product or the reviewers will depend on 

the decision context (e.g., product type, positioning, etc.). A reviewer-oriented attribution 

draws attention away from the focal product while emphasizing the ability of the 

consumer to control their outcome. Consequently, consumers will be more tolerant of 

WOM dispersion when they attribute the dispersion to reviewer idiosyncrasies. I provide 

evidence for this approach in a series of experiments where respondents provide choices 

and intentions in response to decisions with varying levels of WOM dispersion. These 

experiments demonstrate that when products are characterized by heterogeneous 

preferences or when reviewers are known to differ from one another, dispersion is less 

detrimental to choice likelihood and purchase intention. Thus, they provide important 

insights into consumer WOM, risk perception, and the causal attribution of uncertainty. 
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CHAPTER 2 

WORD-OF-MOUTH AND THE FORECASTING OF 

CONSUMPTION ENJOYMENT 

 

2.1 Introduction 

 

“Enjoying the joys of others and suffering with them—these are the best guides for man.” 

-Albert Einstein 

 

 Satisfactory purchase decisions often depend on the ability to accurately forecast 

future consumption experience. Ideally, online shopping environments facilitate the 

forecasting process by increasing access to informative word-of-mouth (WOM), through 

which product information is transmitted between consumers (Brown and Reingen 1987). 

However, despite its prevalence and assumed benefits, there is scant empirical evidence 

that WOM actually enables consumers to make better forecasts. Moreover, there is little 

understanding of conditions under which different forms of WOM are more or less useful 

for forecasting purposes. This essay addresses these issues. 

 I focus on two common forms of WOM: summary ratings and review 

commentary (i.e., text reviews). Ratings and commentary represent a class of ‘surrogate’ 

WOM in which the usage experience and opinions of peer consumers are presented 

directly. An emerging research stream has documented the influence of product ratings 

on sales (Chevalier and Mayzlin 2006; Liu 2006; Moe and Trusov 2011), and a separate 

literature has investigated the economic impact of commentary (Archak, Ghose, and 
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Ipeirotis 2011; Park, Lee, and Han 2007), but there has been little research directly 

comparing these types of information on consumer outcomes. In contrast to prior work 

examining WOM from the viewpoint of firms or retailers, my research explicitly adopts a 

consumer perspective, focusing on the utilization of WOM to predict future enjoyment 

and satisfaction. Intuitively, marketers and consumers might expect a numeric rating to 

be less useful than a commentary (Archak, et al. 2011), as the latter provides both 

objective and subjective information, allowing prospective consumers to simulate their 

product experience in advance (Adaval and Wyer 1998). However, research in affective 

forecasting reveals a litany of simulation errors which cast doubt on this assumption: in 

fact, a single peer rating is sometimes more helpful for prediction than detailed 

descriptions of an experience (Gilbert, Killingsworth, Eyre, and Wilson 2009). 

 My contribution is fourfold. First, I amend the affective forecasting literature by 

examining how consumers utilize word-of-mouth from others to inform their forecasts. 

To do so, I present an anchoring-and-adjustment framework in which a critical factor is 

the extent to which consumer and reviewer share similar product-level preferences. This 

framework allows me to examine the relative utility of ratings, commentary, or their 

combination for prediction. Interestingly, and counter to the notion that “more 

information is better,” I demonstrate that rating and commentary together are sometimes 

less useful than one of these alone. Third, I incorporate a highly relevant variable, 

heterogeneity in preferences, and demonstrate that heterogeneity affects the value of 

WOM in a manner congruent with my framework. Finally, given that consumers often 

utilize ‘average’ ratings as a decision aid, I consider the implications of this aid for 

forecast accuracy.  
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2.2 Conceptual Background 

 

Forecasting Future Experience 

 The ability of consumers to accurately forecast their future consumption 

experience has notable psychological and economic consequences. Overestimation of 

future enjoyment may result in post-purchase regret and dissatisfaction, while 

underestimation may result in forgone opportunities for both consumer and marketer; 

therefore, both parties stand to gain from the alignment of forecast and actual experience. 

The topic has received substantial scholarly attention (Hoch 1988; Loewenstein and 

Adler 1995; Patrick, MacInnis, and Park 2007; Wang, Novemsky, and Dhar 2009). A 

robust finding of this work is that individuals are poor at making affective forecasts, 

especially for hedonic experiences (Billeter, Kalra, and Loewenstein 2011; Kahneman 

and Snell 1992; Read and Loewenstein 1995; Simonson 1990; Wilson, Wheatley, 

Meyers, Gilbert, and Axsom 2000; Wood and Bettman 2007). Most commonly, 

forecasting errors are attributed to faulty simulation of future experiences (Gilbert and 

Wilson 2007; Zhao, Hoeffler, and Dahl 2009), and prescriptive advice often aims at 

improving the simulation process.  

 Online WOM has gained increasing attention from consumer researchers 

interested in its effects on decision making (Weiss, Lurie, and MacInnis 2008), purchase 

intention (Chevalier and Mayzlin 2006), and related variables. In keeping with recent 

research on the use of peer knowledge in personal predictions (Gilbert, et al. 2009), this 

paper focuses on WOM as a means of improving consumer forecasts. In particular, I 
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focus on instances in which consumers relay their own, experience-based evaluation of 

goods and services (e.g., consumer reviews available through vendors or third parties). 

Although such WOM offers clear informational benefits to consumers, its availability 

also adds complexity to the decision environment and increases consumers’ processing 

burden (Ansari and Mela 2003). 

 

Word-of-Mouth: Ratings and Commentaries 

 Scholars have conceptualized the communication process using a variety of 

frameworks but most involve four fundamental elements: source, receiver, message, and 

channel (Berlo 1960, Rothwell 2010). In terms of these elements, I focus in particular on 

two issues: 1) the message format, and 2) the relationship between source and receiver. 

Regarding format, ratings and commentaries represent two common implementations of 

WOM that have been widely studied (though rarely from the consumer’s perspective—

Chevalier and Mayzlin 2006; Dellarocas, Zhang, and Awad 2007; c.f. Park, et al. 2007). 

Almost all WOM-enabled retailers provide some form of peer-generated product or 

service evaluation, usually in the form of an ‘overall’ rating scale intended to summarize 

positive and negative aspects with a single number. Although consumers may disagree on 

the perceptual meaning of specific ratings, they at least know the range of possible values 

and recognize that larger values connote more positive evaluations. Under ideal 

conditions, an overall rating conveys the reviewer’s opinion accurately, with minimal 

effort required from the reader. 

 In contrast to an overall rating, a textual commentary provides a far richer context 

and often includes vivid and concrete content that enhances mental simulation (Adaval 
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and Wyer 1998; Dickson 1982). Although the helpfulness of commentary varies by its 

depth and readability (Archak, et al. 2011; Mudambi and Schuff 2010), it typically 

contains both objective and subjective content relevant to the decision. Moreover, 

commentary often provides readers with a variety of reasons underlying the author’s 

evaluation; these reasons may in turn be utilized by the reader to resolve decision conflict 

or to justify their own choices (Shafir, Simonson, and Tversky 1993). Hence, it is natural 

for consumers to assume that commentary will be more useful than a simple overall 

rating,1 and evidence indicates that consumers provided with both ratings and written 

content tend to rely heavily on the latter (Freedman 2008; Schlosser 2011). 

 However, research on the communication of experiences casts doubt on the 

validity of this assumption. As a written explanation of a reviewer’s experience, a 

commentary may overemphasize certain aspects that are easier to recall or verbalize 

(Schooler and Engstler-Schooler 1990). In addition, it may contain reasoning that is ad 

hoc or inconsistent with the reviewer’s attitude (Sengupta and Fitzsimons 2000; Wilson 

and Schooler 1991). In contrast, ratings are concise and easily understood, representing 

the evaluations of diverse peers on a common scale (though it need not true that they 

utilize the scale identically). Under ideal conditions, an overall rating conveys the 

reviewer’s opinion accurately, with minimal effort required from the reader. In one 

prominent example (Gilbert et al. 2009), even a single peer’s evaluation of an experience 

                                                 

 
 
1 In a pretest, undergraduate students were asked how helpful a rating would be and a 
how helpful a commentary would be for predicting one’s enjoyment of a movie (1 = “not 
at all helpful,” 7 = “very helpful”). Results indicated that a commentary was considered 
more helpful than a rating (M = 3.68 vs. 5.63, F(1, 188) = 203.03, p < .001). 
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was more useful to forecasters than an objective description. In sum, it is unclear whether 

rating or commentary is inherently ‘superior’ from an informational standpoint. 

Therefore, I focus on factors affecting their relative value. 

 

Source-Receiver Preference Similarity and Forecast Accuracy 

 Substantial evidence indicates that consumers look for – and are persuaded by – 

information provided by similar peers (Forman, Ghose, and Wiesenfeld 2008; Gershoff, 

Mukherjee, and Mukhopadhyay 2007; Price, Feick, and Higie 1989). However, in most 

prior research, similarity is defined in terms of group-level characteristics (gender, 

expertise, etc) rather than individual-level preferences. In order to predict the relative 

usefulness of different WOM, I propose a crucial moderator: source-receiver preference 

similarity. I define source-receiver preference similarity as the overlap in product-specific 

preferences of a reviewer and a prospective consumer. In principle, this construct 

captures the difference in utility function between the two (i.e., their weighting and 

valuation of product attributes).  

 Ideally, source-receiver preference similarity could be directly measured as the 

actual difference in product evaluations between source and receiver, and I utilize this 

approach in two of my studies. In the marketplace, however, actual product evaluations 

of prospective consumers cannot be known in advance at the individual level. On the 

other hand, consumers (and marketers) often do know whether liking of a product varies 

at the aggregate level. Such knowledge is captured by the notion of preference 

heterogeneity, i.e., the extent to which preferences for a specific good vary within a 

population (Gershoff and West 1998; Price, et al. 1989). For some product categories, 
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consumers are likely to have reasonable lay theories of preference heterogeneity (e.g., 

preferences will vary less widely for functional goods than taste goods); in other cases, 

heterogeneity may be inferred from information provided by the vendor (e.g., a graph of 

ratings dispersion) or a third party (e.g., Consumer Reports). 

 Applied to the current context, preference heterogeneity provides a useful proxy 

for source-receiver similarity. For products characterized by high preference 

heterogeneity, any one reviewer’s preferences are likely to differ not only from those of 

other reviewers, but also from those of prospective consumers; i.e., average levels of 

source-receiver similarity will be low. Therefore, a prospective consumer is unlikely to 

be ‘matched’ with a reviewer whose preferences are similar. For products characterized 

by homogeneous preferences, evaluations differ little across consumers; i.e., average 

levels of source-receiver similarity are high. Therefore, a prospective consumer is likely 

to be ‘matched’ with a reviewer whose preferences are similar. My first study examines 

the impact of preference heterogeneity on WOM-based predictions. 

 In developing predictions for when ratings will outperform commentary, and 

vice-versa, I c adopt an anchoring-and-adjustment framework (Lichtenstein, Slovic, 

Fischhoff, Layman, and Combs 1978; Tversky and Kahneman 1974). In my framework, 

receivers estimate the source’s (reviewer’s) evaluation, then adjust that evaluation based 

on the extent to which they believe their own preferences align with those of the reviewer 

(c.f. egocentric models for prediction of others’ preferences – Davis et al. 1986). When 

WOM consists merely of an overall rating, that rating serves as a natural and readily 

available forecasting anchor; indeed, consumers often rely on others’ ratings to estimate 

their own (Irmak, Vallen, and Sen 2010). Note that even when preference similarity with 
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the reviewer is unknown, consumers will often adjust their own prediction from that of 

the reviewer. For example, extremity aversion may provoke an adjustment towards 

neutrality; general optimism or pessimism may provoke adjustment upward or 

downward; experience with the product category may provoke adjustment consistent with 

that experience. Typically, however, the extent of any adjustment will be limited, a 

phenomenon which Cronbach (1955) labeled “assumed similarity.” Moreover, Naylor et 

al (2011) have shown that consumers often perceive themselves as highly similar to an 

ambiguous information source, whether or not such perceptions are warranted. As a 

result, it is expected that: a) minimal adjustment will occur, and b) any adjustment that 

does occur will be of limited value. Therefore, when forecasts are based on a rating alone, 

error will be minimized when source-receiver preference similarity is high and 

maximized when source-receiver preference similarity is low. Consequently, rating-based 

forecasts should be more (less) accurate than commentary for product categories in which 

preferences are more homogeneous (heterogeneous). 

 In contrast, I expect forecasts based on commentary to be less dependent on 

similarity between writer and reader. Although commentary lacks a direct indicator of the 

reviewer’s evaluation, it provides descriptive semantic content conducive to visualization 

and mental simulation (Gilbert and Wilson 2007; Kahneman and Tversky 1982). In 

written content, readers are able not only to form an estimate of the reviewer’s 

evaluation, but also to infer the reasons for that evaluation, and thus contrast the 

reviewer’s preferences with their own. Assume, for example, that a reviewer speaks 

favorably of an apartment complex but laments its pool quality. A prospective renter who 

does not swim may use this information to: 1) perceive the reviewer’s positive overall 
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evaluation, 2) recognize the impact of the pool on this evaluation, and 3) adjust her own 

forecast upward. Because source-receiver similarity is identified and adjusted for, its 

impact is reduced. 

 Figure 1 illustrates the process that I propose. In the first panel (A1-A2), 

consumers exposed to mere rating information use that information as an anchor for their 

forecasts, and make limited adjustment. In the second panel (B1-B2), consumers who 

read commentary make an estimate of the reviewer’s rating as their anchor, and then use 

similarity cues in the commentary to adjust that anchor. In the third panel (C1-C2), where 

both rating and commentary are available, consumers anchor on the rating and utilize the 

commentary to make similarity-based adjustment. The figure illustrates that when a 

reviewer and reader have similar preferences, commentary will tend to lead to more 

forecast error due to noise in the estimation / adjustment processes. In contrast, when a 

reviewer and reader have dissimilar preferences, the rating results in a misleading anchor, 

while commentary enables readers to make adjustments based on awareness that their 

criteria are different than those of the reviewer.  
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A1: Rating (similar reviewer) 
 

 
 

 
A2: Rating (dissimilar reviewer) 

 

 
 

 
B1: Commentary (similar reviewer) 

 

 
 

 
B2: Commentary (dissimilar reviewer) 

 

 
 

 
C1: Combination (similar reviewer) 

 

 
 

 
C2: Combination (dissimilar reviewer) 

 

 
 

 

 
 
 

Figure 1: Graphic Interpretation of the Forecasting Process 
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 In sum, my model predicts that the effect of preference heterogeneity on WOM-

based forecasts will depend on the type of WOM involved. Being ‘matched’ with a 

similar reviewer is critical in the case of ratings, but has little impact on the value of 

commentary; thus, the advantages of commentary will be greatest for products with 

heterogeneous preferences. Note that this interaction model does not predict a general 

superiority of commentary over ratings. Accounting for interpersonal differences is 

inherently difficult (Davis, Hoch, and Ragsdale 1986; Hoch 1988), and estimates based 

on mental simulation are subject to misinterpretation, egocentric bias, focalism, etc. 

(Wilson, et al. 2000). When readers and reviewers tend to have different preferences, 

these errors in commentary processing will be negligible compared to its benefits for 

adjustment, and forecasts based on commentary will outperform those based on ratings. 

However, when reviewers and readers tend to share similar preferences, errors in 

commentary processing will remain, but the ‘natural anchor’ of a rating will be very 

useful for prediction. In sum, I predict the following: 

 

H1: Commentary information leads to more accurate forecasts than rating 

information when preference heterogeneity is high, but this advantage 

diminishes as preference heterogeneity decreases. 

 

 Many review forums provide rating and commentary information together. In 

these cases, consumers receive not only an “error-free” anchor for the reviewer’s 

evaluation, but also evidence of underlying preferences that can be used to infer 

necessary adjustment. Although intuition suggests a synergy by which the combination is 
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more useful than either rating or commentary alone, my framework implies that this need 

not obtain. Based on abundant evidence that individuals tend to overweight vivid or case-

based information compared to statistical or numeric information (Borgida and Nisbett 

1977; Dickson 1982; Schlosser 2011), I expect that processing in the combined condition 

will focus heavily on the commentary portion. Hence, forecasts based on combined 

information will still be subject to the errors of interpretation and simulation described 

above. When readers and reviewers tend to have different preferences, these errors are 

trivial compared to the benefits of commentary for adjustment. However, as reviewers 

and readers become more similar, the need for adjustment diminishes, while the cost of 

these errors remains; in cases of extreme homogeneity, forecasts based on rating and 

commentary together may even underperform those based on a rating alone: 

 

H2: Combined information leads to more accurate forecasts than rating 

information when preference heterogeneity is high, but this advantage 

diminishes as preference heterogeneity decreases. 

 

 The relative value of combined information versus commentary alone is unclear. 

Although the addition of an overall rating to a reviewer’s commentary ensures an 

accurate anchor, the rating may also introduce new error in the interpretation/adjustment 

process. For example, knowledge of a reviewer’s overall evaluation may discourage 

attempts by the reader to process commentary carefully, or may create a halo effect 

which biases its interpretation. Therefore, I make no formal prediction regarding the 

relative value of combined information versus commentary alone. Rather, I expect that 
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the two scenarios will tend to invoke similar processing patterns and result in similar 

levels of performance. Study 1 offers an empirical test of this prediction. 

 My discussion thus far has been restricted to WOM from a single reviewer. 

However, aggregate ‘average’ ratings are often provided by online vendors, and it is 

reasonable to expect that average ratings would be especially valuable for forecasting. 

This intuition is consistent with the notion of the “wisdom of crowds,” by which 

aggregated group judgments are often more accurate than those of individuals (Gigone 

and Hastie 1997; Larrick and Soll 2006). However, unlike the objective judgments shown 

to benefit from aggregation, product preferences are inherently idiosyncratic. An average 

rating is akin to a ‘preference of crowds,’ whose usefulness for forecasting depends on 

the dispersion of those preferences. When preference heterogeneity is high, an average 

rating is likely to be a poor anchor for predicting one’s own evaluation, but when 

preference heterogeneity is low, the anchor is likely to be more accurate. In contrast – 

and as discussed above – the benefits and costs of commentary are largely independent of 

preference heterogeneity. Thus, I predict the following:  

 

H3: a. Commentary information leads to more accurate forecasts than average 

ratings when preference heterogeneity is high, but this advantage diminishes 

as heterogeneity decreases. 

b. Combined information leads to more accurate forecasts than average 

ratings when preference heterogeneity is high, but this advantage diminishes 

as heterogeneity decreases. 
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2.3 Overview of Studies 

 

 All four of my studies utilize a matched-pair paradigm (Gilbert, et al. 2009), in 

which participant ‘receivers’ (readers) are assigned randomly to ‘sources’ (reviewers) 

from a preliminary session. Each of the studies has three distinct components: 1) 

collection of WOM from preliminary reviewers who undergo the consumption 

experience, 2) construction of forecasts by readers who receive that WOM, and 3) actual 

evaluations of the consumption experience by the same readers. My key dependent 

variable is forecast error, defined as the absolute discrepancy between forecasts and 

evaluations. Given that hedonic products are typically hard to quantify, difficult to 

describe, and associated with low forecasting accuracy (Huang, Lurie, and Mitra 2009; 

Patrick, et al. 2007; Wang, et al. 2009), all four studies utilize hedonic stimuli (music and 

jellybeans). To ensure that participants rely solely on WOM, only sparse product 

information is presented (Gershoff, Broniarczyk, and West 2001). Key independent 

variables include type of WOM, source-receiver preference similarity (measured or 

manipulated), and product-level preference heterogeneity.  

 Researchers have long known that elicitation of forecasts can affect actual 

experience (Olshavsky and Miller 1972; Shiv and Huber 2000), and that expectations 

may influence evaluations through elation or disappointment effects (Mellers, Schwartz, 

Ho, and Ritov 1997). It is therefore incumbent on researchers to meaningfully separate 

forecast and evaluation, despite the challenges involved (Loewenstein and Schkade 

1999). As described below, my designs utilize multiple strategies to establish the 

independence of forecasting from evaluation. 
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2.4 Study 1 

 

 Study 1 examined the influence of different types of WOM on forecast accuracy 

at different levels of preference heterogeneity Participants in the study were asked to 

predict their enjoyment of different jellybeans based on provided WOM. Three weeks 

later, participants consumed the jellybeans, and their forecasts were compared to actual 

enjoyment. 

 

Method 

 Prior to the main study, eight different flavors of jellybean were pretested by 23 

students at a large university. Participants sampled each jellybean, rated it on a 100-pt 

scale (very unenjoyable to very enjoyable), and wrote a short review commentary 

(roughly 3-4 sentences long). These pairs of ratings and commentaries formed the 

collection of WOM used in the main study (Table 1 provides a sample). Based on data 

from the preliminary session, two flavors –cinnamon and vanilla – were chosen to 

manipulate preference heterogeneity; these flavors evoked similar mean preferences but 

distinct variances (cinnamon vs. vanilla: M = 55.35 vs. 55.48, F(1, 44) < 1, NS; SD = 

28.92 vs. 20.84, F(22, 22) = 1.93, p = .07). Two other flavors were chosen as fillers (root 

beer: M = 55.83, SD = 24.80; pear: M = 48.96, SD = 29.45), in order to reduce the 

likelihood that participants would associate the forecast and evaluation tasks. 
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Table 1: Sample Ratings and Commentaries 
 

Flavor Rating Commentary 

Root Beer 23 
It's approaching (or might even be) the taste of licorice, which is flavor I'm not a fan 
of. The darkness of the flavor seems to linger on my tongue, long after I'm done 
with it. Not a fan. 

Cinnamon 86 This jellybean had a slightly hot quality to it, but in my opinion it could be hotter. It 
had a nice burst of flavor. 

Pear 35 The appearance of the jellybean made me skeptical about it's flavor. It wasn't quite 
as bad as I was expecting, but I would not recommend this one to my friends. 

Vanilla 64 
This jellybean is enjoyable. I would say that it most resembles a marshmellow sort 
of flavor. This makes it very enjoyable because marshmellows have a great taste. 
Most people who enjoy marshmellows would enjoy this flavor a lot. 
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 One-hundred and eighteen students from the same university participated in the 

main study in exchange for course credit. For each of the four jellybeans (one at a time), 

participants were asked to read a piece of WOM collected during the pretest, then 

forecast how much they would enjoy the jellybean on the 100-pt enjoyment scale. The 

study constituted a 2 (preference heterogeneity: low vs. high) x 4 (WOM type: rating vs. 

commentary vs. combination vs. average rating) mixed design. As described above, 

preference heterogeneity was manipulated within-subjects by use of two flavors 

(cinnamon and vanilla). WOM type was manipulated between-subjects following a 

random-pairing approach common in social prediction research (Dunning, Griffin, 

Milojkovic, and Ross 1990; Gilbert et al 2009): In the rating condition, each participant 

viewed one rating, randomly chosen, from those collected earlier; in the commentary 

condition, each participant viewed one commentary; in the combination condition, each 

participant viewed both rating and commentary (from the same reviewer); and in the 

average rating condition, each participant viewed the average rating of the pretest group. 

With the exception of the avg. rating condition, the WOM given to a participant for each 

jellybean was provided by a different reviewer, and randomization was constrained to 

ensure that ratings and commentaries from each reviewer were presented equally often. 

In addition to making their forecasts, participants answered two process-related questions 

(below). 

 Approximately three weeks later, participants were invited back for the evaluation 

stage of the study. All participants tasted the four jellybeans in an order different from 

that used in the forecasting stage; study materials made no mention of the prior session. 
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Participants reported how much they enjoyed each jellybean on the same (100-pt) 

enjoyment scale.  

 Forecast error. For each jellybean, forecast error was operationalized as the 

absolute difference between a participant’s initial forecast and their evaluation three 

weeks later. Therefore, participants exhibiting lower forecast error were more accurate in 

predicting their subsequent evaluations. 

 Perceived reviewer enjoyment / Adjustment. For each jellybean, participants were 

asked to estimate how much the reviewer enjoyed the jellybean on the 100-pt scale. In the 

rating, combination, and avg. rating conditions, this measure verified that the rating was 

encoded accurately, while in the commentary condition, it captured participants’ 

perceptions of the reviewer’s evaluation. Adjustment was calculated as the absolute 

difference between perceived reviewer enjoyment and a participant’s own forecast. 

Therefore, a large adjustment indicates that a participant consciously chose to deviate 

from the opinion provided by the reviewer. 

 Forecast confidence. After making each forecast, participants reported their 

confidence in that forecast on a 7-pt. scale (1 = “not at all confident,” 7 = “very 

confident”). 

 

 

Results and Discussion 

 Prior to the main analysis, I first compared the actual source-receiver preference 

similarity observed for the high-heterogeneity stimulus (cinnamon) and low-

heterogeneity stimulus (vanilla). Preference similarity was computed by subtracting from 
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100 the absolute difference between the evaluation of each participant and the evaluation 

of his/her review author (so that bigger numbers indicate greater similarity). As expected, 

actual source-receiver similarity was significantly less for the high-heterogeneity 

stimulus than the low-heterogeneity stimulus: M = 67.16 vs. 75.14, F(1, 228) = 7.94, p < 

.01). 

 Mean forecast errors are plotted in Figure 2, and Table 2 summarizes forecast 

error for all four studies in the paper. H1 and H2 were tested by using a mixed-effects 

model to predict forecast error as a function of WOM type, jellybean flavor, and their 

interaction. Analyses revealed a main effect for WOM type (F(3, 228) = 3.14, p = .03); 

more importantly, and consistent with predictions, analyses also revealed a significant 

interaction between WOM type and heterogeneity (F(3, 228) = 6.77, p < .001), as well as 

the hypothesized partial interactions (commentary vs. rating F(1, 228) = 6.79, p = .01; 

combination vs. rating F(1, 228) = 7.34, p < .01; commentary vs. average rating F(1 

228) = 12.48, p < .001; combination vs. average rating F(1 228) = 13.13, p < .001).  

 Follow-up comparisons revealed a pattern consistent with H1 and H2. For the 

flavor having high preference heterogeneity (cinnamon), forecast error was higher in the 

rating condition (M = 30.93) than both the commentary condition (M = 20.22; F(1, 228) 

= 5.12, p = .03) and the combination condition (M = 12.37; F(1, 228) = 14.94, p < .001). 

However, for the flavor having low preference heterogeneity (vanilla), forecast error in 

the rating condition (M = 23.63) was not reliably different from that in the commentary 

condition (M = 30.00; F(1, 228) = 1.97, p = .16) or the combination condition (M = 

23.10; F(1, 228) <1). In sum, commentary was clearly more useful than ratings when 



 

 23

preferences were diverse, but this advantage was not observed when preferences were 

more homogeneous. 
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Notes: Forecast error measures the absolute value of the difference between predictions and 
subsequent evaluations. 

 
Figure 2: Study 1: Forecast Error by WOM Type and Preference Heterogeneity 
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Table 2: Study 1: Forecast Error by WOM Type and Experimental Condition 

 
Study  Condition Rating Commentary Combination Avg. rating 

1  Cinnamon (high heterogeneity) 30.93 20.22 12.37 28.76 
  (3.48) (3.20) (3.31) (3.36) 

  Vanilla (low heterogeneity) 23.63 30.00 23.10 15.83 
  (3.34) (3.07) (3.17) (3.22) 

2a  Similarity (25th percentile) 27.64 17.95 21.83 n/a 
  (1.48) (1.34) (1.27)  

  Similarity (50th percentile) 18.09 16.39 17.88 n/a 
  (1.15) (1.15) (1.18)  

  Similarity (75th percentile) 10.80 15.20 14.86 n/a 
  (1.44) (1.51) (1.52)  

2b  Low similarity  25.63 22.31 19.95 n/a 
  (2.04) (1.98) (1.82)  

  High similarity 11.48 17.58 16.63 n/a 
  (1.67) (1.86) (2.09)  

3  Informed  20.68 24.44 22.33 n/a 
  (2.51) (2.30) (2.32)  

  Uninformed 28.24 25.03 23.13 n/a 
  (2.29) (2.35) (2.35)  

  Misinformed 34.90 24.77 24.86 n/a 
  (2.37) (2.51) (2.67)  

Notes: Standard errors are reported in parentheses. Lower forecast error indicates higher 
accuracy in predicting subsequent evaluations (and thus more useful WOM). 
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 According to the framework presented earlier, consumers given commentary 

alone and those given combined information should be similarly impacted by preference 

heterogeneity, as both groups will utilize the written content to infer similarity. In line 

with this argument, I observed no partial interaction between flavor and WOM type for 

commentary and combination conditions (F(1, 228) <1). This result was replicated in the 

next two studies and is clearly evident in Table 2: although the relative performance of 

commentary and combination conditions varied across studies, they responded similarly 

to underlying variance in preferences. While tentative, these findings support my view 

that participants given commentary (with or without a rating) integrate source-receiver 

similarity into their forecasts in a comparable manner. 

  To test H3a and H3b, I compared forecasts based on WOM from a single 

reviewer to those based on an average rating. For cinnamon, forecast error in the average 

rating condition (M = 28.76) was marginally higher than that in the single reviewer 

commentary condition (M = 20.22; F(1, 228) = 3.39, p = .07) and significantly higher 

than that in the single reviewer combination condition (M = 12.37; F(1, 228) = 12.09, p = 

.001). In other words, when preferences were diverse, an average rating was no more 

helpful (and was often less helpful) than the review of a single peer. However, when 

preferences were more homogeneous, this pattern reversed: for vanilla, forecast error in 

the average rating condition (M = 15.83) was significantly lower than that in the 

commentary condition (M = 30.00; F(1, 228) = 10.14, p < .01) and directionally lower 

than that in the combination condition (M = 23.10; F(1, 228) = 2.59, p = .11).  

 Mean adjustment by condition is summarized in Table 3, for study 1 along with 

the other three studies. My framework states that when given rating information alone, 
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consumers will have little reason to deviate from that rating (i.e., adjustment will be 

minimal), but when given commentary information, participants will use that 

commentary to infer potential differences with the reviewer. A mixed-effect model was 

used to predict adjustment from WOM type, jellybean flavor, and their interactions. 

Analysis identified main effects for WOM type (F(3, 228) = 8.02, p < .001) and flavor 

(F(1, 228) = 8.06, p < .01). As expected, follow-up comparisons revealed that adjustment 

was significantly lower in the rating condition (M = 14.02) than in the commentary or 

combination conditions (M = 20.98, F(1, 228) = 4.67, p = .03; M = 20.35, F(1, 228) = 

3.75, p = .05). In addition, adjustment in the avg. rating condition was even lower than 

that in the rating condition (M = 7.31; F(1, 228) = 4.14, p = .04), indicating that 

participants were even more likely to conform to aggregate opinions (Watts and Dodds 

2007).  
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Table 3: Study 1-3: Adjustment and Correlation Between Adjustment and Actual 
Similarity, by WOM Type 

 

Study WOM type n 
Adjustment Correlation 

M SD r sig. 

1 Rating 54 14.02 2.37 -0.07 0.62 
 Commentary 64 20.98 2.18 -0.28 0.03 
 Combination 60 20.35 2.25 -0.48 0.00 
 Avg. rating 58 7.31 2.29 -0.01 0.95 

2a Rating 158 11.87 1.29 -0.17 0.04 
 Commentary 162 23.98 1.25 -0.18 0.02 
 Combination 157 23.17 1.28 -0.41 0.00 

2b Rating 132 13.96 1.29 -0.14 0.11 
 Commentary 120 19.01 1.33 -0.19 0.04 
 Combination 117 16.71 1.36 -0.37 0.00 

3 Rating-informed 68 15.92 2.62 -0.30 0.01 
 Rating-uninformed 80 12.58 2.38 -0.18 0.10 
 Rating-misinformed 76 20.52 2.45 0.39 0.01 
 Commentary-informed 80 27.06 2.38 -0.28 0.01 
 Commentary-uninformed 76 26.82 2.44 -0.07 0.55 
 Commentary-misinformed 68 25.19 2.61 -0.12 0.33 
 Combination-informed 79 24.06 2.42 -0.47 0.00 
 Combination-uninformed 76 19.14 2.44 -0.18 0.11 
 Combination-misinformed 61 24.38 2.75 -0.22 0.09 

Notes: Adjustment was measured by comparing participants’ own forecasts to their perception of 
the rating assigned by the reviewer. A higher score indicates greater adjustment (the possible 
range is 0-100.) 
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 Under my framework: the ability to form similarity inferences from commentary 

content and adjust one’s forecast accordingly is most helpful in situations where source 

and receiver have different preferences. Table 3 summarizes correlations between 

adjustment and actual similarity. In conditions where commentary was available 

(commentary and combination), adjustment was negatively correlated with actual 

similarity (r = -.48 and r = -.28), as would be expected if readers were able to infer 

preference similarity from the commentary. Presumably, it is this ability to infer and 

adjust that explains the negligible impact of similarity on forecast accuracy among these 

participants. However, no correlation between adjustment and similarity observed in the 

rating and avg. rating conditions (r = -.07 and r = -.01, NS). Consistent with the results 

above, these findings strongly support my contention that forecasts based on WOM are 

influenced by perceptions of source-receiver preference similarity, even when those 

perceptions are inaccurate. 

 Table 4 presents forecast confidence for study 1 along with the other three studies, 

and the table also summarizes correlations between forecast confidence and error. 

Responses to the confidence measure revealed a main effect of WOM type (F(3, 228) = 

15.65, p < .001). Follow-up comparisons revealed that participants in the commentary 

and combination conditions had similar confidence in their forecasts (M = 5.52 vs. 5.18, 

F(1, 228) = 1.78, p = .18), and both were more confident than participants in the rating 

condition (M = 3.93, F(1, 228) = 38.62, p < .001; F(1, 228) = 23.42, p < .001) or the avg. 

rating condition (M = 4.45, F(1, 228) = 18.07, p < .001; F(1, 228) = 8.31, p < .001). 

These findings are consistent with the arguments presented earlier that consumers will 

believe commentary to be useful, based on its vividness, detail, provision of reasons, etc. 
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To the extent that participants were able to gauge the usefulness of WOM, confidence in 

forecasts would be expected to show a strong negative correlation with actual forecast 

error, particularly in the commentary and combination conditions. However, the overall 

correlation between confidence and forecast error was small (r = -.16), as was the 

correlation in each condition. This general pattern was replicated in studies 2a, 2b, and 3: 

confidence-error correlations were consistently near zero, and in some cases even 

positive (e.g., the commentary condition of study 2b). Together, these findings call into 

question consumers’ ability to recognize the usefulness of the WOM they are provided. 
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Table 4: Study 1-3: Forecast Confidence and Correlation Between Forecast 
Confidence and Forecast Error, by WOM Type  

 

Study WOM type n 
Forecast confidence Correlation 

M SD r sig. 

1 Rating 54 3.93 0.19 -0.35 0.01 
 Commentary 64 5.52 0.17 -0.14 0.26 
 Combination 60 5.18 0.18 -0.10 0.43 
 Avg. rating 58 4.45 0.18 0.04 0.74 

2a Rating 158 3.52 0.12 0.00 0.99 
 Commentary 162 4.63 0.12 0.04 0.61 
 Combination 157 4.79 0.12 -0.04 0.64 

2b Rating 132 2.78 0.14 0.11 0.21 
 Commentary 120 4.97 0.14 0.24 0.01 
 Combination 117 4.71 0.14 -0.18 0.05 

3 Rating-informed 68 4.37 0.17 -0.04 0.75 
 Rating-uninformed 80 3.86 0.16 0.13 0.24 
 Rating-misinformed 76 4.29 0.16 0.19 0.09 
 Commentary-informed 80 5.18 0.16 -0.01 0.90 
 Commentary-uninformed 76 5.03 0.16 0.01 0.94 
 Commentary-misinformed 68 5.31 0.17 0.13 0.28 
 Combination-informed 79 5.62 0.16 0.08 0.49 
 Combination-uninformed 76 5.00 0.16 0.06 0.61 
 Combination-misinformed 61 5.45 0.19 -0.02 0.86 
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 Data from study 1 supported my argument that the impact of different WOM on 

forecast accuracy depends on the similarity in preferences of source and receiver. 

Moreover, participants had little insight into the value of WOM for their predictions, and 

follow-up analyses supported my argument that different forecasting strategies were 

adopted based on the WOM information available. However, it is conceivable that 

differences in the products themselves may have confounded the heterogeneity 

manipulation. Studies 2a and 2b remove any such confounds by examining the 

moderating influence of source-receiver similarity within the same product experience. In 

addition, they examine a different category of consumption experience. 

 

2.5 Study 2a 

 

 According to my theoretical framework, a critical influence on the value of 

different WOM for prediction is source-receiver preference similarity – i.e., the extent to 

which reader and reviewer share similar underlying preferences. In particular, being 

‘matched’ with a reviewer whose preferences are similar will dramatically improve the 

value of ratings, but have little impact on the value of commentary. Therefore, the 

advantage of commentary for forecasting will diminish (or even disappear) when reader 

and reviewer have sufficiently similar preferences. Stated formally: 

 

H4: The value of different forms of WOM for forecasting is moderated by 

source-receiver preference similarity: 
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a. Commentary information leads to more accurate forecasts than rating 

information when preference similarity is low, but this advantage diminishes 

as similarity increases. 

b. Combined information leads to more accurate forecasts than rating 

information when preference similarity is low, but this advantage diminishes 

as similarity increases. 

 

 Study 1 relied on product-level heterogeneity as a proxy for source-receiver 

similarity, under the assumption that (on average) similarity between randomly paired 

reviewers and readers will be higher for products with homogenous preferences. In 

Studies 2a-2b, I examine the preference similarity variable itself. To do so, I employ an 

experimental design that manipulates preference similarity directly within the same 

product. Furthermore, in order to examine my theoretical account more closely, I employ 

textual analysis software to identify specific aspects of commentary that facilitate or 

inhibit forecasting. 

 

Method 

 Based on initial pretesting of a variety of music available at Amazon.com, three 

target music clips were selected to be used as the focal consumption experience. The 

clips, which were shortened from their original length to 60 seconds, represented three 

distinct genres (country, jazz, rock); each was unfamiliar to pretest participants, and was 

neither extremely liked nor disliked. Twenty students at a large university listened to each 

clip, rated their enjoyment on a 100-pt scale, and wrote a brief commentary. Average 
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enjoyment was as follows: Mcountry = 68.39 (SD = 19.13), Mjazz = 51.32 (SD = 25.32), 

Mrock = 53.33 (SD = 25.55). As in study 1, these ratings and commentaries formed the 

collection of WOM used in the main study.  

 The main study incorporated a 3 (WOM type: rating vs. commentary vs. 

combination) x 1 (source-receiver similarity) x 3 (music genre: country vs. jazz vs. rock) 

mixed design. Source-receiver similarity was a continuous measured variable, described 

below. The WOM type manipulation was identical to that used in study 1, and music 

genre was treated as a control variable in the analysis. 

 One-hundred sixty-five students participated in the study for course credit. For 

each of four different music clips (one at a time), participants were asked to read one 

piece of WOM. Participants then forecasted how much they would enjoy the music on a 

100-pt scale. The first clip was a filler not relevant to the study, followed by the three 

target clips. Presentation of WOM followed the same constrained randomization as study 

1, and the same measures were used to assess forecast confidence and perceived reviewer 

enjoyment. 

 After making their forecasts, participants were informed that the next task was an 

unrelated pretest of various pieces of music. All participants listened to four clips: the 

first was a decoy clip not relevant to the study, and the following three were the target 

clips, presented in an order different from the forecast stage. Participants reported how 

much they enjoyed each music clip on the same 100-pt enjoyment scale. Finally, they 

rated liking of various music genres on a 7-pt. scale (-3 = “dislike very much,” 3 = “like 

very much”); this measure is used in an ancillary analysis below. 
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Results and Discussion 

 Actual source-receiver preference similarity was calculated in the same way as 

study 1. Hypothesis 1 was tested by using a mixed-effect model to predict forecast error 

as a function of WOM type, source-receiver preference similarity, music genre, and their 

interactions. Analyses revealed main effects for WOM type (F(2, 459) = 17.89, p < .001) 

and source-receiver similarity (F(1, 459) = 79.54, p < .001). More important, and 

consistent with predictions, analyses revealed a significant overall interaction between 

WOM type and source-receiver similarity (F(2, 459) = 16.45, p < .001), as well as the 

hypothesized partial interactions (commentary vs. rating F(1, 459) = 31.26, p < .001; 

combination vs. rating F(1, 459) = 16.78, p < .001) (H4a and H4b).  

 Figure 3 provides a plot of forecast error against an interquartile split of source-

receiver preference similarity, and relevant means are presented in Table 5. When 

similarity was low (below 25th percentile), forecast error in the commentary condition (M 

= 17.95) and the combination condition (M = 21.83) was less than that in the rating 

condition (M = 27.64, F(1, 459) = 23.57, p < .001; F(1, 459) = 8.88, p < .01). However, 

this pattern reversed under high source-receiver similarity (above 75th percentile), where 

forecast error in both commentary and combination conditions (M = 15.20 and 14.86) 

was greater than that in the rating condition (M = 10.80, F(1, 459) = 4.46, p = .04; F(1, 

459) = 3.75, p = .05). These findings support my theoretical framework and demonstrate 

that source-receiver preference similarity influences the relative value of different WOM 

for forecasting. Notably, addition of commentary information did not always improve 

forecasts; when source-receiver similarity was high, combination condition forecasters 

would have been more accurate by simply using the rating provided. 
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Notes: Forecast error measures the absolute value of the difference between predictions and 
subsequent evaluations. Means were estimated at the 25th percentile, 50th percentile, and 75th 
percentile of actual source-receiver preference similarity. 
 
Figure 3: Study 2a: Forecast Error by WOM Type and Source-Receiver Similarity 
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Table 5: Study 2a: Forecast Error by WOM Type and Actual Source-receiver 
Similarity / Genre-based Similarity 

 
Actual source-receiver similarity Genre-based preference similarity 

WOM type 25th percentile 50th percentile 75th percentile 25th percentile 50th percentile 75th percentile 

Rating 27.64 18.09 10.80 22.69 18.70 14.72 
(1.48) (1.15) (1.44) (1.41) (1.23) (1.55) 

Commentary 17.95 16.39 15.20 17.58 16.89 16.21 
(1.34) (1.15) (1.51) (1.52) (1.22) (1.39) 

Combination 21.83 17.88 14.86 19.84 19.14 18.44 
(1.27) (1.18) (1.52) (1.41) (1.24) (1.51) 

Notes: Standard errors are reported in parentheses. Lower forecast error indicates higher 
accuracy in predicting subsequent evaluations (and thus more useful WOM). Forecast error 
means were estimated at the 25th percentile, 50th percentile, and 75th percentile of source-
receiver similarity and genre-based preference similarity. 
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 A valid concern raised by the use of actual source-receiver similarity is the fact 

that the receiver’s evaluation must be known a priori. In the following analysis, I show 

that my results still hold if the receiver’s music genre preferences are used as a proxy for 

their actual evaluations. I first operationalized genre-based preference similarity for each 

of the three genres by: 1) transforming the reviewer’s evaluation of the clip representing 

that genre to a 7-pt scale, 2) taking the absolute difference between this value and the 

participant’s 7-pt rating of the genre, and 3) subtracting this difference from 7, so that a 

higher number indicates greater similarity. Unsurprisingly, a positive correlation was 

observed between preference similarity based on genre and that based on actual 

evaluations (r = .44, p <. 001). Consistent with the findings above, results of a mixed-

effect analysis using genre-based similarity in place of actual similarity revealed a 

significant overall interaction of WOM type and preference similarity (F(2, 459) = 5.47, 

p < .01). In addition, the hypothesized partial interactions were significant: commentary 

vs. rating F(1, 459) = 8.25, p < .01; combination vs. rating F(1, 459) = 8.39, p < .01). 

Table 3 depicts mean forecast errors, which follow the same pattern obtained in the 

preceding analysis. 

 Analysis of the adjustment and confidence measures replicated the findings 

obtained in study 1. As shown in Table 3, adjustment was lower for the rating condition 

(M = 11.87) than for the commentary and combination conditions (M = 23.98, F(1, 459) 

= 45.27, p < .001; M = 23.17, F(1, 459) = 38.65, p < .001). This finding supports our 

argument that rating-based forecasts tend to involve only limited adjustment. 

Furthermore, across all three types of WOM (see Table 4), the correlation between 



 

 39

confidence and forecast error was low, indicating little ability to gauge the usefulness of 

WOM information (see Table 4).  

 A follow-up analysis was conducted on the textual content of the commentaries 

provided, in order to identify characteristics of the text that relate to: 1) estimation of the 

reviewer’s evaluation, and 2) inferences of similarity with the reviewer. In the analysis, 

the 46 commentaries from Study 1 and 60 commentaries from Study 2a were assessed 

individually with the Linguistic Inquiry and Word Count program (LIWC - Pennebaker, 

Booth, and Francis 2007). Using a matching algorithm, LIWC searches a target script for 

words representing 70 linguistic or psychological dimensions, then calculates the 

percentage of total words in the script that fall into these dimensions. Over numerous 

investigations, the instrument has been extensively validated and applied to a wide 

variety of topics and domains, including physical and psychological health, interpersonal 

relationships, and honesty (Campbell and Pennebaker 2003; Ireland, et al. 2011; 

Newman, et al. 2003). 

 My framework suggests that linguistic components of commentary influence the 

estimation process and the adjustment process separately. In order to investigate the 

estimation process, I restricted my examination to the commentary condition (who did 

not receive the reviewer’s rating directly). The examination took place in three steps. 

First, estimation error was defined as the absolute difference between perceived reviewer 

enjoyment and the actual enjoyment of the reviewer, and an average estimation error was 

calculated for each of the 106 commentaries. Next, each of the commentaries was 

submitted to LIWC and assigned a score on each underlying dimension. Finally, 

correlational analyses were conducted to determine which (if any) linguistic or 



 

 40

psychological dimensions of the commentaries predicted their average estimation error. 

Analyses revealed that, on average, longer reviews did not reduce estimation error (c.f. 

Mudambi and Schuff 2010) (r = .01, p = .91). However, estimation error was associated 

with two theoretically relevant LIWC categories. In particular, estimation error was 

smaller for commentaries that made greater use of exclusive words (e.g., ‘lack,’ ‘really,’ 

‘just’; r = -.17, p = .07). This finding is consistent with previous arguments by 

Pennebaker and King (1999), who suggest that exclusive words help readers to 

distinguish between possible interpretations of an authors’ intended meaning. In addition, 

estimation error was smaller for commentaries that made greater use of affect words (e.g., 

‘enjoy,’ ‘great,’ ‘awful’; r = -.23, p = .02). Given that such terms involve the direct 

expression of feelings, a plausible interpretation is that they enable readers to simulate the 

reviewer’s experience more accurately.  

 In order to investigate the relationship between language use and the adjustment 

process, I restricted my examination to participants in the combination condition. 

Because these participants received the reviewer’s rating, their forecast error is a direct 

reflection of inaccurate adjustment. The examination proceeded in two steps. First, the 

average forecast error for each of the 106 commentaries was calculated. Next, in a 

manner similar to that above, correlation analyses were conducted to determine 

dimensions of the commentaries that predicted their average forecast error. Analyses 

revealed that, on average, the overall length of a commentary was not associated with 

errors in adjustment (r = .06, p = .54). However, adjustment error was associated with 

two LIWC dimensions that were both theoretically relevant and distinct from those 

identified above. First, adjustment error was larger for commentaries making greater use 
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of the past tense (r = .24, p = .01), but smaller for commentaries making greater use of 

the future tense (r = -.21, p = .03). A possible interpretation (corroborated by examination 

of the reviews) is that the past tense was often used to: 1) describe an experience with the 

product objectively, which is of no help in gauging similarity, or 2) introspect regarding 

reasons for their preferences, which can be difficult and misleading (e.g., Wilson and 

Schooler 1991). In contrast, the future tense was often used to express intentions or 

provide a context in which they might consume the product again, both of which may be 

valuable for inferring similarity. Second, adjustment error was larger for commentaries 

making greater use of function words, including adverbs, pronouns, articles, prepositions, 

conjunctives, and auxiliary words (r = .19, p = .05). Function words have been described 

as a ‘glue’ that holds more substantive content together and helps writers to clarify their 

opinions (Pennebaker, et al. 2003). In a product review, however, greater use of function 

words necessarily reduces the proportion of content devoted to product- or context-

relevant information, which is more useful to readers attempting to gauge similarity with 

the reviewer. 

 In contrast to existing research examining concrete variables such as length, 

readability, or spelling (Mudambi and Schuff 2010; Ghose and Ipeirotis 2011; Moore 

2012), the analyses above focus on the linguistic and psychological dimensions of a 

commentary. Although the investigation was exploratory, my results suggest that 

specific, distinct textual properties influence readers’ use of the commentary to: 1) 

estimate the reviewer’s evaluation of a product, and 2) adjust away from that evaluation, 

based on similarity in underlying preferences, 3) make accurate forecasts. 
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2.6 Study 2b 

 

 Although study 2a provided a direct test of my framework, its design was 

constrained by the use of a post hoc measure for source-receiver similarity. In addition, 

despite my precautions, it is possible that some participants linked the WOM they had 

received to the clips at the evaluation stage. The next study addresses these concerns with 

a design that: 1) manipulates source-receiver similarity directly, and 2) clearly separates 

the forecast and evaluation stages.  

 In study 2b, the procedure of study 2a was modified by reversing the order of 

prediction and evaluation. By this modification, source-receiver similarity could be 

manipulated a priori, and potential dependencies between prediction and evaluation were 

minimized. Note that because prediction took place subsequent to evaluation, it was not a 

forecast in the traditional sense; however, in this study (and all others), the prediction 

question did not specify when consumption would occur. To the extent that underlying 

preferences do not change systematically over the interim, the order of prediction and 

evaluation is irrelevant. I believe this assumption to be reasonable for music clips, and I 

use the term forecast to maintain consistency. 

 

Method 

 One-hundred twenty-three students from a large university were recruited to 

participate in a two-session, computer-based study for course credit. Stimuli (music clips) 

were identical to those of study 2a, and the same set of WOM information was utilized. 

However, the order of forecast and evaluation tasks was reversed, so that evaluation 
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preceded forecasting. Therefore, any expectations and demand effects that were 

generated by the act of forecasting could not possibly have influenced evaluations. In 

addition, a time interval of approximately three weeks was introduced between the two 

stages to ensure that the consumption experience would not influence the later forecasting 

process.  

 Because evaluation measures were collected during the first session, actual 

source-receiver preference similarity could be manipulated directly. Hence, the study 

incorporated a 3 (WOM type: rating vs. commentary vs. combination) x 2 (preference 

similarity: high vs. low) x 3 (music genre: country vs. jazz vs. rock) mixed design. 

Participants were randomly assigned to one of the six WOM type x similarity conditions, 

and music genre was a within-subject factor. The WOM type manipulation was identical 

to that of study 2a. Source-receiver preference similarity was manipulated as follows: for 

each participant and music clip, actual similarity with each potential reviewer was 

calculated using the same method as study 2a. Next, participants in the high-similarity 

(low-similarity) condition were randomly paired with reviewers who had provided similar 

(dissimilar) ratings of the clip; the process was constrained so that WOM from each 

reviewer was presented an equal number of times. As intended, this procedure resulted in 

substantial differences in source-receiver similarity across conditions: high-similarity M 

= 96.54, low-similarity M = 63.24 (F(1, 351) = 1623.30, p < .001). Finally, forecast 

confidence and perceived reviewer enjoyment were measured as before. 
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Results and Discussion 

 A mixed-effect model was used to predict forecast error as a function of WOM 

type, source-receiver similarity, music genre, and their interactions. Analyses revealed a 

main effect for similarity (F(1, 351) = 22.40, p < .001) but no main effect for WOM type 

(F(2, 351) < 1). More important, and consistent with hypotheses, a significant interaction 

indicated that the impact of WOM type on forecast error was moderated by similarity 

(F(2, 351) = 4.85, p < .01). Both planned partial interaction contrasts were also 

significant (commentary vs. rating: F(1, 351) = 6.20, p = .01; combination vs. rating: 

F(1, 351) = 8.03, p < .01). Results are depicted in Table 2. For participants matched with 

low-similarity reviewers, forecast error in the commentary condition (M = 22.31) and 

combination condition (M = 19.95) was directionally lower than that in the rating 

condition (M = 25.63); the difference was reliable only for the latter (F(1, 351) = 1.36, 

NS; F(1, 351) = 4.31, p = .04). For participants matched with high-similarity reviewers, 

the pattern was reversed: forecast error in both the commentary condition (M = 17.58) 

and the combination condition (M = 16.63) was greater than that in the rating condition 

(M = 11.48, F(1, 351) = 5.98, p = .02; F(1, 351) = 3.72, p = .06).  

 For each condition, Table 3 presents the extent to which participants adjusted 

their own forecast from their estimate of the reviewer’s opinion. As expected, adjustment 

in the rating condition was smaller than adjustment in the commentary condition (M = 

13.96 vs. 19.01, F(1, 351) = 7.40, p < .01), and marginally smaller than adjustment in the 

combination condition (M = 16.71, F(1, 351) = 2.15, p = .14). As before, the observed 

correlation between confidence and forecast error (Table 4) did not reflect awareness of 
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the usefulness of different forms of WOM; in fact, the correlation was directionally 

positive in the commentary condition. Moreover, my adjustment measure again suggested 

that the availability of ratings facilitated anchoring with minimal adjustment, and that this 

tendency was attenuated when commentary was available.  

 Taken together, the first three studies provide convergent evidence that neither 

rating nor commentary has a consistent advantage over the other in aiding prediction. 

Instead, the relative value of these two types of WOM depends on whether the consumer 

is paired with a reviewer whose underlying preferences are similar. Because rating alone 

provides few similarity cues, consumers tend to apply an ‘assumed similarity’ heuristic 

which is most effective when source and receiver indeed have similar preferences. On the 

other hand, consumers given commentary do not have to rely on this heuristic, because 

preference similarity can be inferred from the commentary itself (albeit imperfectly). 

 The logic above can be tested by a simple modification to the designs presented 

thus far: the direct provision of similarity information. For consumers receiving WOM in 

the form of ratings alone, the addition of similarity information should greatly improve 

their forecast accuracy. However, the same degree of benefit should not be expected for 

consumers receiving WOM that contains commentary. Formally: 

 

H5: Explicitly informing consumers about their similarity in preferences to the 

reviewer will improve forecasts based on ratings alone to a greater extent 

than forecasts based on commentary or combined information. 

 

2.7 Study 3 
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 The design of study 3 was similar to that of studies 1-2, with two important 

modifications. First, I included a post-task introspection measure to identify strategies 

used in processing different types of WOM. Second, participants were provided not only 

different types of WOM, but also different statements regarding source-receiver 

preference similarity. Because actual preference similarity was not known in advance, the 

statements provided randomly were sometimes correct and sometimes incorrect, and this 

variance provided a straightforward test of my theory. Following the arguments above, 

forecasts based on a reviewer’s rating should benefit strongly from the provision of 

similarity information, but only when that information is correct. Forecasts based on a 

reviewer’s commentary (with or without a rating) should be relatively unaffected by 

explicit similarity information, regardless of its accuracy.  

 

Method 

 Target stimuli were the four flavors of jellybeans utilized in study 1, and the same 

collection of WOM was utilized. The study incorporated a 3 (WOM type: rating vs. 

commentary vs. combination) x 3 (preference similarity information: informed vs. 

uninformed vs. misinformed) x 4 (flavor: root beer vs. cinnamon vs. pear vs. vanilla) 

mixed design. Flavor was a within-subject factor, and the WOM type manipulation was 

the same as that of the prior studies. Preference similarity information represented a 

within-subject variable, described below.  

 One-hundred and eight university students were recruited to participate in a two-

session, computer-based study for course credit. At the start of the first session, 
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participants answered a series of survey questions about their liking of different flavors 

(the survey was used as a cover story for the similarity information manipulation). Next, 

participants were exposed to WOM for each jellybean, one at a time, along with 

information regarding their preference similarity with the reviewer. Participants in the 

informed and misinformed conditions read that “Based on the information you shared 

with us earlier … this student’s preferences for jellybeans are generally very SIMILAR 

(very DISSIMILAR) to yours” (participants were given the SIMILAR phrasing for two 

jellybeans and the DISSIMILAR phrasing for two jellybeans, counterbalanced). In the 

uninformed conditions, participants were told nothing at all about their similarity to the 

reviewer. As in the previous studies, participants then forecasted how much they would 

enjoy each jellybean, along with their confidence in that forecast, and reported their 

estimate of the reviewer’s enjoyment. Unique to this study was an added manipulation 

check: participants rated the degree to which they perceived their own preference to be 

similar to the reviewer’s, using a 100-pt scale (“not at all similar,” “very similar”). Also 

added was an introspection measure: at the end of the session, participants were asked to 

write “a few sentences” describing the process by which they made their forecasts. After 

a delay of approximately three weeks, participants completed a follow-up session in 

which they tasted the jellybeans and reported their enjoyment. 

 

Results and Discussion 

 Examination of the manipulation check revealed that explicit similarity 

information did influence participants’ perceptions of similarity with the reviewer. 

Compared to the uninformed condition, participants told that WOM was provided by a 
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similar peer perceived greater similarity (M = 61.83 vs. 50.44; F(1, 628) = 26.12, p < 

.001); participants told that WOM was provided by a dissimilar peer perceived less 

similarity (M = 41.98 (F(1, 628) = 14.37, p < .001). 

 Among participants who were provided explicit similarity information, the 

informed and misinformed conditions were created as follows: For each jellybean, actual 

source-receiver similarity was calculated in the same manner as studies 1-2. Next, a 

median split was used to classify participants as either similar or dissimilar to their 

assigned reviewer, and these classifications were compared to the similarity information 

provided. The informed condition represents participants for whom provided similarity 

information matched their actual classification (i.e., similar-similar or dissimilar-

dissimilar), and the misinformed condition represents participants for whom the two did 

not match. 

 My framework argues that compared to forecasts based on commentary, those 

based on ratings will be more heavily influenced by explicit information regarding 

source-receiver preference similarity. Consistent with this prediction, a mixed-effect 

analysis revealed that the impact of explicit similarity information on forecast error was 

moderated by WOM type, as indicated by a significant overall interaction (F(4, 628) = 

2.36, p = .05). In the rating conditions, average forecast error for uninformed participants 

(M = 28.24) was larger than that for informed participants (M = 20.68; F(1, 628) = 4.95, p 

= .03), but smaller than that for misinformed participants (M = 34.90, F(1, 628) = 4.09, p 

= .04). In the commentary and combination conditions, however, forecast error was not 

significantly affected by explicit similarity information (all Fs < 1). These findings 

support H5 and my argument that participants given ratings alone adjusted their forecasts 
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based on the additional explicit similarity information, while participants given 

commentary used the content itself to gauge their similarity in preferences with the 

reviewer. 

 Additional analyses examined the extent to which adjustment depended on the 

explicit similarity information provided. For each of the four trials, participants were 

reclassified by the level of similarity indicated: similar, dissimilar, or control (no 

statement given). Next, a mixed-effect model was used to predict adjustment as a 

function of WOM type, indicated similarity, jellybean flavor, and their interactions. 

Analysis revealed main effects for WOM type (F(2, 628) = 11.64, p < .001), indicated 

similarity (F(1, 628) = 21.71, p < .001), and flavor (F(1, 628) = 3.41, p = .02), as well as 

the expected interaction between WOM type and indicated similarity (F(3, 628) = 2.38, p 

= .05). Table 6 summarizes the relevant means. For participants given ratings alone, 

adjustment was low in both the control and similar conditions (M = 12.58 and M = 9.43), 

and the two were not reliably different (F(1, 628) < 1). However, adjustment for both 

these conditions was lower than adjustment in the dissimilar condition (M = 28.66, F(1, 

628) = 22.82, p < .001; F(1, 628) = 30.95, p < .001). These findings support my argument 

that consumers given ratings alone are especially receptive to explicit similarity 

information. 

 In contrast, findings also supported my argument that consumers given 

commentary will gauge preference similarity based on the content provided. First, a 

comparison of the three control groups revealed adjustment to be significantly higher for 

the commentary and combination conditions (M = 26.82 and M = 19.14) than for the 

rating condition (M = 12.58, F(1, 628) = 18.45, p < .001; F(1, 628) = 3.93, p < .05), 
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Second, explicit similarity information had limited effect on adjustment when 

commentary was present. Among the commentary groups, adjustment did not reliably 

differ across control, similar, and dissimilar conditions (M = 26.82, M = 22.25, M = 

29.83, NS). Among the combination groups, adjustment in the control condition (M = 

19.14) did not reliably differ from that in the similar condition (M = 18.59, NS), but was 

significantly lower than that in the dissimilar condition (M = 29.22, F(1, 628) = 8.62, p < 

.01). 
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Table 6: Study 3: Adjustment by WOM Type and Indicated Similarity 
 

WOM type Indicated similarity n M SD 

Rating Control 80 12.58 2.31 
 High 72 9.43 2.44 
 Low 72 28.66 2.45 

Commentary Control 76 26.82 2.37 
 High 74 22.25 2.41 
 Low 74 29.83 2.41 

Combination Control 76 19.14 2.37 
 High 70 18.59 2.47 
 Low 70 29.22 2.48 
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 As before, corollary analyses were conducted to examine the correlation between 

adjustment and actual similarity (Table 3). In the rating groups, this correlation was 

lowest in the informed condition and highest in the misinformed condition (r = -.30 vs. 

.39, z = 4.23, p < .001); again suggesting that participants simply took the similarity 

information at face value. However, in the commentary and combination groups, the 

perceived-actual correlation was not reliably different across informed and misinformed 

conditions (commentary: r = -.28 vs. -.12, NS; combination: r = -.47 vs. -.22, NS). The 

similarity in correlations again suggests that participants formed their own assessments of 

source-receiver similarity directly from commentary provided. 

 Finally, participants’ verbal reports provided a means of investigating the process 

by which forecasts were generated. I have argued that the presence of commentary 

enables consumers to estimate reviewer preferences and make similarity inferences 

through a process of mental simulation. As a preliminary test of this argument, the 

content of the verbal reports was examined for specific words relating to the use of 

mental simulation (e.g., “imagine” and “taste”). Each report was coded in a binary 

manner for the presence or absence of such words (given that reports were typically 1-2 

sentences, more complex coding schemes were not practical). Subsequently, an analysis 

of proportions revealed that reference to simulation was far more common in the 

commentary conditions (78%) and combination conditions (66%) than in the rating 

conditions (19%; χ2(1) = 25.35, p < .001; χ2(1) = 15.57, p < .001). Although preliminary, 

these results support my framework and identify the use of mental simulation as a factor 

distinguishing the processing of commentary- and rating-based WOM. 
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2.8 General Discussion 

 

 For the vast majority of consumer decisions, others have already experienced one 

or more of the options under consideration and shared their own opinions. Growth in e-

commerce and communications has enhanced the availability of such word-of-mouth, 

raising the question of which formats offer the greatest potential for enhancing consumer 

forecasts. The present research addressed this question by examining two common forms 

of WOM, numeric ratings and text commentary, and a moderating factor, source-receiver 

similarity. Consistent with my anchoring-and-adjustment framework, an advantage of 

commentary over ratings was observed for choices characterized by preference 

heterogeneity and the inability to match consumers with reviewers having similar 

preferences. This advantage diminished when preferences were more homogenous, 

consumers could be matched with similar reviewers, or preference similarity information 

was provided directly. Together, these findings supplement and integrate prior 

understanding of word-of-mouth and affective forecasting.  

 My results challenge a number of intuitions regarding the use of ratings, reviews, 

and WOM more generally. Perhaps most notably, exposure to a greater quantity of WOM 

did not always produce more accurate forecasts. For example, rating or commentary 

alone sometimes led to more accurate forecasts than a combination of both (studies 2-3). 

Moreover, across all studies, I observed low correlations between confidence and forecast 

accuracy, suggesting a general lack of awareness regarding the value of WOM. Finally, 

despite the presumed benefits of aggregating reviews via ‘average’ ratings, my study 1 

results suggest an important caveat: when opinions of a product vary greatly across 
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consumers, forecasts based on average ratings may underperform those based on a single 

reviewer (especially if commentary is available). 

 Theoretical Contributions. Previous work has investigated the influence of 

various WOM characteristics on persuasion and downstream consequences for sellers 

(Archak, et al. 2011; Chevalier and Mayzlin 2006); surprisingly, however, the inherent 

function of WOM as a means of improving consumer decisions has received little 

attention. I address this void by showing that commonly used forms of WOM may lead to 

more or less accurate consumer forecasts, depending on the similarity in preferences 

between source and receiver. An important implication is that despite its utility for 

vendors, some forms of highly persuasive WOM may generate undesirable outcomes for 

consumers. Consequently, a number of related questions present themselves: What is the 

relationship between the persuasiveness of WOM and its objective value as a decision 

aid? What are the implications of negative versus positive decision outcomes for 

consumer perceptions of the vendor, reviewer, and WOM more generally? My results 

suggest that consumers are remarkably unaware of the extent to which to various forms 

of WOM help or hinder their forecasts, but do consumers learn over time to use WOM 

information more effectively? Each of these issues merits investigation. 

 Previous research in affective forecasting (Gilbert, et al. 2009) has demonstrated 

that the rating of a single peer is often more useful for prediction than descriptive 

information. I supplement this idea in several ways. First, I compare distinct forms of 

WOM information from the same source, and propose distinct mechanisms by which 

they are used for forecasting. Second, I demonstrate that the forecasting advantage of 

ratings is restricted to cases of high source-receiver preference similarity. Third, I extend 
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these ideas to the concept of preference heterogeneity and find that even when 

preferences are highly variable, experience-based WOM may nonetheless be valuable, 

especially when conveyed in the form of commentary. 

 In exploring the value of ‘average’ ratings for predicting enjoyment, I 

demonstrated that aggregated WOM information need not outperform that from a single 

peer. I attributed this result in part to characteristics of consumer decisions that limit the 

extent to which the “wisdom of crowds” is applicable (Gigone and Hastie 1997). Future 

work might extend this investigation by focusing on assumptions consumers make 

regarding their similarity with the ‘average’ reviewer (Cronbach 1955), and how those 

assumptions are affected by context (e.g., information load, product category) and 

individual differences (e.g., need-for-uniqueness, thinking style). 

 Limitations. For the sake of experimental control, my studies incorporated a 

number of compromises to ecological validity. In particular, all four studies focused on 

the transmission of WOM from a single source; however, in many typical settings, 

consumers encounter multiple opinions from multiple sources. Indeed, the acquisition 

and aggregation of multi-sourced WOM is an important topic unto itself, and although 

my aggregate, ‘average rating’ conditions shed some initial light on this topic, further 

investigation is warranted. More generally, a clear need exists for the establishment of a 

broader model to capture exposure, attention, and integration of multiple types of WOM 

from multiple providers. Such a model might also consider the extent to which ratings 

and commentary interact, both within and across different providers. For example, is the 

value of commentary greater when the reviewer’s evaluation is known to be extreme? 

Does the knowledge of a reviewer’s rating bias interpretation of the commentary (or vice-
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versa)? As such, my research represents only one step towards the development of a more 

complex, expansive understanding of WOM utilization by consumers. 

 In all four of my studies, participants were allowed to consider the provided 

review information without any constraints on time or cognitive resources. However, 

such constraints are common in real-world settings, and it would be useful to consider 

their impact on my results. A straightforward implication of my anchoring-and-

adjustment framework is that load would impede forecasts based on commentary alone to 

a much greater extent than those based on rating (with or without commentary), due to 

the lack of an externally provided anchor. Future research might examine this implication 

directly, and address the more general issue of how cognitive constraints alter WOM-

based forecasting.  

 In keeping with other investigations of consumer affective forecasting (Patrick, et 

al. 2007; Wang, et al. 2009), I chose to examine product categories that were more 

hedonic than functional in nature. Compared to hedonic products, functional products 

tend to evoke less preference heterogeneity; under my framework, this would benefit 

rating-based forecasts to the extent that the average similarity of reviewers and readers is 

increased. In addition, functional products tend to be defined by attributes that are 

tangible and quantifiable; under my framework, this would benefit commentary-based 

forecasts to the extent that errors of verbalization and simulation are diminished. Hence, I 

expect that use of functional products would result in generally improved forecasts. More 

importantly, I believe that the key interaction of similarity and WOM format would 

operate similarly in a functional setting, but the question remains open.  
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 By design, the present studies provided only sparse objective information about 

the products involved. Thus, I cannot speak to the process by which consumers may 

integrate more detailed product information with the rating- or commentary-based WOM 

that they encounter. Similarly, my studies did not include conditions in which participants 

received neither ratings nor commentary (such conditions would have provided virtually 

no basis for prediction). Consequently, I only address the relative performance of ratings 

and commentary under different levels of source-receiver similarity. Consumers solicit 

WOM under the assumption that it will aid their decisions; by the use of an appropriate 

control, it would be interesting to test this assumption directly. Finally, all four studies 

measured forecasting accuracy based on evaluations; although this approach is common, 

it is subject to the concern that standards of comparison may change between forecast and 

consumption, reducing accuracy in a way that may not be meaningful. Tradeoff-based 

measures such as rankings or choices are less affected by this issue, and future research 

using such measures would provide a useful complementary approach.  

 Implications. The vast majority of web-enabled retailers offer some form of 

review platform by which consumers may observe the feedback of their peers. Although 

a broad array of issues must be taken in choosing and implementing such a platform, I 

suggest that firms carefully consider its effects from a consumer perspective. In 

particular, improving the forecast accuracy of prospective consumers allows sellers to 

increase customer satisfaction, strengthen loyalty, and reduce return costs. Therefore, it is 

imperative to consider the effects of WOM on consumer forecasting, and an important 

underlying consideration is the format of WOM to provide.  
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 From the perspective of my model, the most ‘helpful’ review is one that transmits 

an evaluation clearly and provides cues by which readers may accurately infer similarity. 

Therefore, based on the results of my lexical analyses, consumers might focus on reviews 

containing qualities associated with better estimation and adjustment (use of affect words, 

future tense, etc.) More generally, consumers will benefit from knowing whether their 

preferences are similar to those of the reviewers they encounter. To the extent this 

information is not provided externally (see below), consumers may seek to obtain it 

directly. At the individual level, there exist a variety of means by which similarity may be 

uncovered (e.g., scanning a reviewer’s other reviews, his/her profile, or social network 

account). At the product or category level, consumers may possess lay theories of 

heterogeneity, based on their own past consumption experiences or knowledge regarding 

the preferences of their peers. As with the similarity information embedded in a review 

itself, such tools enable more accurate ‘adjustment’ from a reviewer’s evaluation. 

 Typically, marketers are aware of the extent to which preferences for a product 

vary across consumers (distributions of product ratings, prior market research, etc.). My 

work suggests that the potential advantages of collecting and providing reviewer 

commentaries will be most pronounced when preferences are known to vary substantially 

(or when the degree of variance is unknown). In these cases, it is advisable that retailers 

make salient the availability of commentary information and directly encourage its use. 

On the other hand, provision of ratings alone may be appropriate for offerings 

characterized by limited preference heterogeneity. In the latter case, customers would 

benefit from the presence of cues enabling better inference of source-receiver preference 

similarity (e.g., a reviewer ‘profile’). Because a prospective consumer’s evaluation is 
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rarely known a priori, various proxies for source-receiver similarity are available: e.g., 

demographic or psychographic traits, usage characteristics, or evaluations of related 

products (Naylor, et al. 2011). Given sufficient individual-level data (transaction history, 

past product reviews, etc.), firms may even be able to approximate the source-receiver 

similarity of prospective customers with prior reviewers. This process would enable the 

provision of customized WOM that prioritizes opinions of peers having similar 

preferences (for example, by arranging reviews in order of ‘similarity’). 

 Finally, my work yields insights on a pervasive problem inherent to WOM 

communication: artificial reviews are common, and a subset of authors with numerous 

reviews can be overly influential (Kostakos 2009). I suggest that one method of 

managing the problem relies on the concept of source-receiver preference similarity. 

Deceitful reviewers are unlikely to be categorized as ‘similar’ in preferences to any 

prospective consumer. Therefore, the inclusion of similarity measures in protocols for 

WOM collection and display provides a potential means of identifying artificial reviews 

and limiting their undue influence. 
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CHAPTER 3 

WHEN THE CROWD IS DIVIDED: PERCEPTIONS OF WORD-OF-

MOUTH DISPERSION 

 

3.1 Introduction 

 

 As a direct consequence of advances in information technology, modern 

consumers increasingly rely upon online word-of-mouth (e.g., product reviews) to guide 

their purchase decisions. As a result, consumers inevitably encounter a mixture of 

positive and negative voices for the same products (Berger and Heath 2008; Gershoff, 

Mukherjee, and Mukhopadhyay 2003). Because uncertainty is typically undesirable in 

this setting (Mudambi and Schuff 2010), intuition suggests that consumers will tend to 

favor products with consistent WOM, and existing evidence generally supports this 

contention (Matz and Wood 2005; Urbany, Dickson, and Wilkie 1989). However, a large 

proportion of goods and services are characterized by a bimodal distribution of reviewer 

opinions (Hu, Pavlou, and Zhang 2009), connoting substantial uncertainty and decision 

risk. The degree to which crowd opinions are divided for a product or service can be 

described by the dispersion of its WOM distribution. In this research, I examine the 

influence of WOM dispersion on consumer decisions, and how product and marketing 

message characteristics affects the process by which dispersion is interpreted. 

 The topic of mixed opinions has been investigated only sparsely in the extant 

WOM literature (Cheema and Kaikati 2010; Chevalier and Mayzlin 2006; Irmak, Vallen, 

and Sen 2010; Naylor, Lamberton, and Norton 2011; Schellekens, Verlegh, and Smidts 
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2010; Schlosser 2005; Sridhar and Srinivasan 2012) with some notable exceptions. In 

particular, few scholars have examined the direct impact of different forms of WOM 

dispersion on consumers’ decision making process. Moreover, the few studies that exist 

have obtained contradictory findings of how greater dispersion might influence purchase 

decisions—from negative (Moon, Bergey, and Iacobucci 2010; Zhu and Zhang 2010) to 

positive (Clemons et al. 2006; Martin, Barron, and Norton 2008; Moe and Trusov 2011) 

or null effects (Chintagunta, Gopinath, and Venkataraman 2010). These conflicting 

findings suggest potential moderators (Khare et al. 2011; Sun 2011; West and 

Broniarczyk 1998). In this research, I pursue consolidation by advancing an attribution 

approach to consumers’ interpretation of divided opinions. 

 Drawing on research in social perception (Boldry and Kashy 1999; Nisbett and 

Kunda 1985) and attribution (Folkes 1988; Kelley and Michela 1980), I propose that 

dispersion in WOM for a product will be perceived by consumers as stemming from two 

general sources: 1) inconsistency in product performance, and 2) idiosyncrasy in 

preferences across reviewers (preference heterogeneity). I argue that although consumers 

will frequently attribute WOM dispersion to product-related reasons (#1 above), decision 

context influences the degree to which dispersion is also attributed to reviewer-related 

reasons (#2). Moreover, the attribution of WOM dispersion to reviewers rather than the 

product itself implies that individuals have some control over their product experience, 

reducing the level of risk implied by mixed opinions. Therefore, I hypothesize that the 

attribution of WOM dispersion moderates its influence on consumer decisions. In four 

laboratory studies, I demonstrate the influence of WOM dispersion on purchase intention 

and provide support for my hypotheses. These findings have important marketing 
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implications for online retailers facing the presentation of mixed product reviews across a 

variety of categories. 

 The contributions of this essay are threefold. First, responding to West and 

Broniarczyk’s call for research on the impact of WOM dispersion across different 

product types (1998), I extend the literature on consumer reactions to this form of 

information uncertainty. Second, my attribution approach offers a means to consolidate 

mixed findings in recent WOM literature regarding the influence of WOM variance on 

consumer behavior. Third, the existing attribution literature offers predictions primarily 

for settings with high consensus (low dispersion). I supplement this work by providing 

predictions for settings with low consensus (high dispersion).  

 

3.2 Conceptual Background 

 

Perceptions of Word-of-Mouth Distribution 

 Psychologists have long been interested in the processes by which individuals 

perceive social distributions—how different types of attitude or behavior are spread 

across a particular population (Nisbett and Kunda 1985; Peterson and Beach 1967). In 

typical examples of this research, participants were asked to estimate the distribution of 

others’ evaluation of movies, food, etc (e.g., How many people will like the movie / be 

indifferent, not like the movie at all?). These scholars believed that acknowledging the 

distribution of attitudes and behaviors of others plays an important role in individual 

decisions, and they found that subject to a few systematic biases, perceived social 

distributions are often surprisingly accurate.  
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 In contrast, the direct influence of distribution information on decision making 

has rarely been studied, because the collection and display of information on social 

distributions was not readily available. However, the flourish of e-commerce and user-

generated content has brought social distributions directly into consumers’ decision 

journeys. Technological advancement has allowed individuals to access the opinions of 

thousands of strangers regarding goods and services in the marketplace: e.g., a consumer 

can read yelp.com restaurant reviews on their smart phone and decide where to go for 

dinner, consult imdb.com for movie reviews, and surf cnet.com for electronic reviews. 

Most contemporary online retail platforms provide entire product rating histories 

summarized in a bar chart form, making divided opinions easily recognizable (see Figure 

4 and 5 for examples). As a result, the distribution of WOM now plays a larger role in the 

purchase decisions than ever before. 
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Retrieved July 7, 2011, from: <http://www.amazon.com/Magic-Bullet-Express-17-Piece-High-
Speed/dp/B000AEZVRS/ref=sr_1_1?ie=UTF8andqid=1290822686andsr=8-1> 

 
Figure 4: Word-of-mouth of Large Dispersion 
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Retrieved July 7, 2011, from: <http://www.amazon.com/Jurassic-Park-Ultimate-Trilogy-Blu-
ray/dp/B0057R5XRG/ref=zg_bs_dvd_8> 

 
Figure 5: Word-of-mouth of Small Dispersion 
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 In consumer research, early WOM literature investigated situations involving 

consumer consultation with a few friends or family members (Arndt 1967; Brown and 

Reingen 1987). Only recently have researchers begun to investigate the influence of 

WOM distributions involving strangers online. Among the fundamental properties of a 

ratings distribution are its volume, central tendency, and dispersion2. Recent empirical 

studies have examined real-world online product ratings of books, movies, video games, 

and toiletry products, observing a direct positive effect on sales of volume (Chevalier and 

Mayzlin 2006; Dellarocas, Zhang, and Awad 2007; Duan, Gu, and Whinston 2008; Li 

and Hitt 2008; Liu 2006; Moe and Trusov 2011; Sun 2011; Zhu and Zhang 2010) and 

central tendency (Chevalier and Mayzlin 2006; Chintagunta et al. 2010; Clemons et al. 

2006; Dellarocas et al. 2007; Li and Hitt 2008; Moe and Trusov 2011; Moon et al. 2010; 

Sun 2011; Zhu and Zhang 2010) . Table 7 summarizes relevant findings. 

                                                 

 
 
2 I use the statistical definition of dispersion here, which can be operationalized as the variance or 
second moment of product ratings. This approach follows Clemons et al (2006) but differs from 
that of others, such as of Godes and Mayzlin (2004). The opposite of dispersion is often known as 
‘consensus’ (Khare, Labrecque, and Asare 2011; West and Broniarczyk 1998). 
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Table 7: Empirical Literature on WOM Distribution 
 

Article Product 
Category 

Dependent 
Variable 

Characteristic of the Distribution 

Volume Average Dispersion 

Godes and 
Mayzlin (2004) 

TV shows TV ratings No effect   

Chevalier and 
Mayzlin (2006) 

Books Book sales 
rank 

Positive 
effect 

Positive 
effect 

 

Clemons et al. 
(2006) 

Crafted beer Sales growth 
rate 

No effect Positive 
effect 

Positive 
effect 

Liu (2006) Movies Box office 
revenue 

Positive 
effect 

No effect  

Dellarocas et al. 
(2007) 

Movies Box office 
revenue 

Positive 
effect 

Positive 
effect 

 

Duan et al. (2008) Movies Box office 
revenue 

Positive 
effect 

No effect  

Li and Hitt (2008) Books Book sales 
rank 

Positive 
effect 

Positive 
effect 

 

Chintagunta et al. 
(2010) 

Movies Box office 
revenue 

No effect Positive 
effect 

No effect 

Moon et al. 
(2010) 

Movies Box office 
revenue, 
satisfaction 

Negative 
effect on 
satisfaction 

Positive 
effect with 
ad spending 
(interaction) 

Negative 
effect on 
satisfaction 

Zhu and Zhang 
(2010) 

Video games Game sales Positive 
effect 

Positive 
effect 

Negative 
effect 

Sun (2011) Books Book sales 
rank 

Positive 
effect 

Positive 
effect 

Negative 
effect with 
high average 
(interaction) 

Moe and Trusov 
(2011) 

Bath, fragrance, 
and beauty 
products 

Cross-product 
sales and 
ratings 

Positive 
effect on 
sales, 
negative 
effect on 
ratings 

Positive 
effect on 
sales, 
negative 
effect on 
ratings 

Positive 
effect on 
sales, 
negative 
effect on 
extreme 
ratings 



 

 68

 In contrast, the influence of dispersion on consumer behavior is less clear, and a 

small relevant research stream has presented ambiguous conclusions. One the one hand, 

intuition suggests that consumers may see mixed opinions as a signal of risk—and 

indeed, greater dispersion of WOM has been shown to lower sales of video games (Zhu 

and Zhang 2010) and reduce reported satisfaction of movies (Moon et al. 2010). On the 

other hand, other evidence indicates that mixed opinions are tolerated and even viewed as 

opportunities (West and Broniarczyk 1998). Clemons, Gao, and Hitt (2006) found that 

sales of beer brands with mixed WOM grew faster than those with univalent WOM, 

while Martin, Barron, and Norton (2008) demonstrated that consumers prefer movies 

with greater WOM dispersion (c.f., Chintagunta et al.(2010), who observed no effects of 

dispersion on box office revenue). Across a range of hedonic and utilitarian product 

category.es, Moe and Trusov (2011) observed that higher variance in WOM accompanied 

sales increases.  

 

Qualifying the Influence of Dispersion 

Very few scholars have attempted to consolidate the inconsistency above, and 

their work has focused on interactions between dispersion and other characteristics of the 

WOM distribution. Khare et al. (2011) argue that the volume of WOM can enhance 

existing beliefs: their experimental studies found an effect of WOM dispersion on movie 

preferences when volume was high (e.g., there are thousands of reviews for a single 

product), but found no effect when volume was low (e.g., less than a hundred reviews). In 

contrast, Sun (2011) claims that consumers perceive both product quality and potential 

undesirable outcomes based on the central tendency and the dispersion of a product’s 
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rating distribution. In an examination of consumer ratings and sales data for online book 

retailers, Sun found that higher ratings variance increased sales only for books with a low 

average rating is low. A similar pattern would be predicted by West and Broniarczyk’s 

(1998) reference-dependent risk perception theory. Extending concepts from prospect 

theory (Kahneman and Tversky 1979), West and Broniarczyk argued that consumers’ 

aspiration levels determine their reactions to variance in critic’s opinions. In scenarios 

involving movies and restaurants, participants whose expectations were above the 

average critic’s rating evaluated products more favorably when there was critical 

disagreement. When participants’ expectations were below the average of critics, 

evaluations were more favorable when there was critical agreement. 

Importantly, the investigations above focused almost exclusively on experiential 

products (books, movies, etc.); little research exists to generalize existing findings to 

functional products, despite the fact that WOM of functional products can have a distinct 

influence on consumer search and purchase intention (Huang, Lurie, and Mitra 2009; 

Senecal and Nantel 2004). Moreover, these approaches cannot fully explain the 

discrepancies observed in the studies cited above. Given that the existing literature makes 

no prediction of how consumers perceive WOM dispersion differently across product 

types and decision domains, the present research aims to fill this gap. This paper employs 

an attribution-based approach to explore how consumers perceive dispersion. By 

examining the way variance in reviewer opinions is interpreted, my approach is intended 

to consolidate the existing mixed findings across different product categories. 

 

Attributions for WOM Dispersion 
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 Attribution theory is predicated on the notion that individuals make spontaneous 

causal attribution for the events and information that they encounter (Hastie 1984; Kelley 

1973; Weiner 1972). Within the marketing literature, consumers’ perception of cause-

and-effect relationships has been examined extensively in post-purchase contexts (Folkes 

1984; Folkes and Kotsos 1986; Hui and Toffoli 2002; McGill 1989; Tsiros, Mittal, and 

Ross 2004). This stream has shown that attribution of responsibility and stability 

substantially influences consumer satisfaction judgments, and some scholars have argued 

that causal inferences about product performance drive most purchase decisions 

(LeBoeuf and Norton 2012; Weiner 2000). Other work has demonstrated that consumers’ 

causal inferences are not restricted to standalone events such as service encounters, but 

also the attitudes and behaviors of individuals and groups (Kenworthy and Miller 2002; 

O'Laughlin and Malle 2002). In keeping with this idea, I adopt an attribution approach to 

understanding WOM dispersion, suggesting that consumers make different causal 

inferences for the variance in product ratings under different (and predictable) 

circumstances.  

 The attribution process does not happen automatically, and unexpectedness has 

been identified as one important antecedent to attributional processing (Folkes 1988; 

Hastie 1984; Kelley and Michela 1980). Scholars have found that people are heavily 

biased toward perceiving normality in perceiving social distribution shapes; even when 

the actual distribution lacks this normality (Fried and Holyoak 1984; Nisbett and Kunda 

1985). Therefore, highly dispersed WOM distributions, usually characterized by a flat or 

bimodal form, should instigate unexpectedness and provide a strong motivation to engage 

in explanatory analysis.  
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 For consumers facing wide dispersion in WOM for a product they are 

considering, the question becomes: What is the source of dispersion? Prior literature has 

focused on three potential causal agents: the reviewer, the product, and the situation 

(Folkes 1988); in a WOM context, the first two of these are most directly applicable. An 

assumption made by many researchers is that WOM is a proxy for product quality and 

underlying product characteristics (Khare et al. 2011; Sun 2011; West and Broniarczyk 

1998), where product quality is defined as the degree to which a product performs well 

according to what is advertised. I relax this assumption to suggest that consumers may 

attribute the variance in product ratings to either the product itself or other factors (e.g., 

the heterogeneous taste of consumers who provided the WOM, luck, etc.). In fact, 

negative WOM from a consumer whose opinion diverges from others often leads to the 

inference that the consumer did not use the product correctly (Laczniak, DeCarlo, and 

Ramaswami 2001). Moreover, given that reviewers are the contributors of WOM and that 

characteristics of reviewers often play a role in their interpretation (Forman, Ghose, & 

Wiesenfeld, 2008; Weiss, Lurie, & MacInnis, 2008), I restrict my focus to causal 

inferences involving either the product or the reviewers.  

 My fundamental argument is that the extent to which WOM is attributed to 

product versus reviewer characteristics will be influenced by consumer expectations 

regarding how much tastes vary across reviewers. As mentioned in Chapter 2 of the 

dissertation, consumers hold different beliefs regarding preference heterogeneity—the 

extent to which preferences for a specific good vary within a population—for different 

product categories (Gershoff & West, 1998; Price, et al., 1989). When perceived 

preference heterogeneity is low, a consumer might reasonably expect every reviewer to 
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give the same rating for the same product. In this case, therefore, WOM dispersion 

should be driven by whether the product consistently delivers what the retailer has 

promised. For example, faced with electronics that do not receive high evaluations across 

users, consumers are more likely to assign blame to quality issues than to users who 

might have operated it incorrectly. In contrast, when perceived preference heterogeneity 

is high, WOM dispersion can be attributed both to product quality and to idiosyncratic 

reviewer tastes. For example, variance in ratings for movies, books, and art can be 

attributed to the product (e.g., the performers, authors, or painter do not entertain as 

expected.). However, because expectations in these categories are largely subjective (e.g., 

the same movie trailer may elicit different impressions), product quality will be 

interpreted differently across consumers. Realizing this, consumers who expect 

heterogeneity are more likely to attribute WOM dispersion to the reviewers than to the 

product.  

 Research shows that products differ by the extent to which consumers share 

similar preferences, and that people hold beliefs regarding whether the evaluation of a 

product is similar (Berger and Heath 2007; Gershoff and West 1998; Price, Feick, and 

Higie 1989). As a general rule, high preference heterogeneity is associated with 

experiential products such as restaurants and movies (stimuli used by West and 

Broniarczyk 1998). In contrast, low preference heterogeneity is associated with 

functional products such as flash drives and desk lamps. (I do not claim that the 

difference between high and low reviewer preference heterogeneity maps onto the 

difference between experiential and functional products, which is not the focus of this 

essay.) As a result, online shoppers are likely to expect reviewer tastes to vary across 



 

 73

different product categories. In other words, certain types of products might be more or 

less conducive to the inference that WOM dispersion is caused by the product versus the 

reviewer. Next, I explain how these causal attributions interact with context to influence 

consumer decisions. 

 

Dispersion and Purchase Decision 

 When WOM dispersion is low, my attribution approach suggests that product type 

should have little influence purchase decisions. Existing research indicates that 

individuals tend to expect low dispersion and normality in the distribution of peer 

opinions (Fried and Holyoak 1984; Nisbett and Kunda 1985). Therefore, WOM with 

limited variance is hardly surprising, and consumers encountering this WOM have little 

motivation to make causal inferences (Folkes 1988; Hastie 1984; Kelley and Michela 

1980)—in fact, low dispersion indicates invariability in both product- and reviewer-

related causes, and may encourage the use of the central tendency as a decision heuristic. 

In contrast, high dispersion can result from either inconsistent product performance or 

reviewer preferences, and the salience of one cause or the other will lead to different 

causal inferences and purchase decisions. 

 When WOM dispersion is high, the causal inference of that dispersion will affect 

the decisions made by consumers. I first consider products characterized by low 

preference heterogeneity (e.g., desk lamps, flash drives) or homogeneous users. Because 

WOM is often utilized as a proxy for product quality, the dispersion of WOM conveys 

more information than randomness characterized by lottery tickets or gambles. Thus, this 

form of dispersion distinguishes itself from forms of ‘risk’ commonly studied under a 
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prospect theory paradigm (Kahneman and Tversky 1979; West and Broniarczyk 1998). 

Reduced uncertainty and stability are desirable factors in most consumer decisions 

(Urbany et al. 1989), and even in experiential domains such as sky diving and mountain 

climbing, noncontrollable risk is avoided when possible (Celsi, Rose, and Leigh 1993). 

Therefore, when high WOM dispersion is solely attributed to the product itself, it should 

have a negative influence on the likelihood of purchase.  

 However, I argue that the same dispersion is more likely to be tolerated if it 

belongs to products characterized by high preference heterogeneity (e.g., art, restaurants) 

or idiosyncratic users. This tolerance has two fundamental reasons: first, internal 

disagreement is shifted away from the product to external factors like reviewer. Second, 

attribution of outcomes to a reviewer implies that consumers themselves possess control 

over the user experience (Lee, Peterson, and Tiedens 2004). Therefore, this type of causal 

explanation can empower prospective consumers when they read reviews and try to put 

themselves into the reviewers’ shoes (Averill 1973; Hui and Toffoli 2002).  

 In summary, I hypothesize that although greater WOM dispersion makes 

consumers less likely to acquire a product, this negative influence of dispersion will be 

attenuated if the product is characterized by high preference heterogeneity.  

 

H1: The negative influence of high WOM dispersion on consumers’ purchase 

intention will be attenuated if the product is perceived to have high 

preference heterogeneity.  
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 The attribution approach assumes that consumers make causal attributions during 

a purchase decision, and that decision contexts affect the direction of these attributions. 

H1 predicts a pattern in which the context is determined by product type. If the theory is 

valid, holding product type constant and varying the profile users should lead to similar 

patterns of results. Specifically, when a product is used by a wide variety of consumers 

mixed WOM can be expected due to preference heterogeneity, but this is not the case 

when a product has a narrower user profile. Thus, I predict the following:  

 

H2: The negative influence of high WOM dispersion on consumers’ purchase 

intention will be attenuated if the product is perceived to be used by a diverse 

group.  

 

3.3 Overview of Studies 

 

 My hypotheses were examined in four studies that presented subjects with 

hypothetical decision scenarios. In all studies, I provide displays of ostensible WOM 

distributions which included both the overall ‘average’ rating and the distribution of 

ratings, using a horizontal bar chart. This format allowed me to vary both the expected 

outcome of choosing the product (its average rating) and the risk of a obtaining a worse 

outcome (its dispersion). In Study 1, attribution is manipulated through product 

preference heterogeneity. Across different levels of average rating, I show that preference 

heterogeneity moderates the influence of WOM dispersion on purchase intention. Studies 

2a and 2b expand my theoretical test by examining choice decisions and incorporating 
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different product types. Study 3 holds product type constant and varies the perceived 

variability of users, in order to replicate the effect while collecting evidence for the 

attribution process. Taken together, these studies demonstrate that consumers’ reaction to 

dispersion in product WOM depends critically on the way that dispersion can be 

attributed. To the extent that preference heterogeneity or user variability is expected, so 

that dispersion can be attributed to idiosyncratic preferences rather than the product itself, 

consumers become more tolerant of dispersion. 

 

3.4 Study 1 

 

 Study 1 examined the influence of WOM dispersion on purchase intention as a 

function of product type. In addition, average rating was included in the design, in order 

to control for the moderating influence of central tendency on dispersion shown by West 

and Broniarczyk (1998) and Sun (2011). (Note that there is no a priori reason to expect 

that consumer’s attribution process will be affected by their aspiration level or the 

average rating.) Participants expressed their purchase intention under several decision 

scenarios that varied in WOM. The focal product categories were desk lamps and framed 

paintings, pretested to represent low and high preference heterogeneity. According to H1, 

I expected WOM dispersion to have a larger influence on the purchase intention of lamps 

than paintings.  

 

Method 
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 In the main study, a set of sixteen scenarios was presented, one at a time. Each 

scenario included the same focal product, accompanied by different reviews. The 

scenarios crossed four levels of average rating with four levels of dispersion. The only 

between-subject factor, product type, was manipulated by randomly assigning 

participants to either desk lamps or framed paintings as the target product (see below). 

Therefore, the main study constituted a 4 (WOM dispersion: high vs. medium vs. low vs. 

none) x 4 (WOM average: 4 star vs. 5 star vs. 6 star vs. 7 star) x 2 (product type: desk 

lamp vs. framed painting) mixed factorial design.  

 For each of two product types, a core set of eight alternatives was developed and 

used as stimuli (Figure 6). Two goals were established for this set of alternatives: First, I 

sought to provide WOM distributions in a format relatively familiar to the participants. 

Therefore, a star-ratings scale was used to show WOM of product alternatives, with more 

stars reflecting higher satisfaction; next to each star rating, bars were used to indicate the 

number of reviewers who have given that rating (see Figure 6). This format is consistent 

with that of prominent online review sites. Second, in order to control for the potential 

effect of central tendency on participants’ response to dispersion, I sought to vary the 

average star rating as well as the level of agreement among reviewers. The key 

independent variable, WOM dispersion, was operationalized as the variance of peer 

ratings for the target product, and this variable was manipulated (within-subjects) at four 

levels (high: var > 8.00, medium: var ≈ 2.00, low: var < 1.00, and none: var = 0). 

Distributions were created in pairs of high-dispersion and low-dispersion alternatives at 

four different levels of average rating (4 through 7 out of 10).  



 

 78

 

 WOM Dispersion (N = 40) 

WOM Average No dispersion Low dispersion 

4 star 

 
Variance = 0 

 
Variance = .9 

5 star 

 
Variance = 0 

 
Variance = .9 

6 star 

 
Variance = 0 

 
Variance = .9 

7 star 

 
Variance = 0 

 
Variance = .9 

Notes: Figure 6 continues on the next page. 
 

Figure 6: Study 1: WOM Stimuli 
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 WOM Dispersion (N = 40) 

WOM Average Medium dispersion High dispersion 

4 star 

 
Variance = 1.8 

 
Variance = 10.9 

5 star 

 
Variance = 1.9 

 
Variance = 8.9 

6 star 

 
Variance = 1.9 

 
Variance = 8.9 

7 star 

 
Variance = 1.8 

 
Variance =10.9 

 
Figure 6 (continued) 

  



 

 80

 Perceived preference heterogeneity was manipulated by using different types of 

target product (between-subjects) in the decision scenario. In a pretest, sixty-one subjects 

were asked to rate several products (e.g., music album, movie, hotel, restaurants, etc.) 

based on: 1) how similar, and 2) how dissimilar they believe people’s evaluations are to 

one another. Answers to the similarity and dissimilarity questions were combined to form 

a composite scale of preference heterogeneity beliefs. Based on the results of the pretest, 

I selected desk lamps for the low-preference-heterogeneity conditions, and framed 

paintings for the high-preference-heterogeneity conditions (taste similarity for lamps vs. 

paintings: M = 69.29 vs. 34.85 on a 100-pt. scale; F(1, 60) = 86.60, p < .001). 

 One-hundred and eighty-nine undergraduate students from the same university 

participated in the main study in exchange for course credit. Participants were told that 

they would be evaluating a series of products, based on reviews provided by actual 

consumers. For each alternative in the set, one at a time, participants saw a screen 

providing product and WOM information (based on 40 reviewers), then reported their 

purchase intention on a 9-pt scale (1 = “very unlikely,” 9 = “very likely”). The 

alternatives were shown in a random order. 

 

Results and Discussion 

 Prior to the analyses, the purchase intention variable was mean-centered to allow 

for comparisons between the two different product categories. H1 was tested using a 

mixed–effect model to predict purchase intention as a function of WOM dispersion, 

WOM average, product type, and all interactions. Analyses revealed main effects of 

WOM dispersion (F(3, 1349) = 16.45, p < .001) and WOM average (F(3, 1352) = 
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498.44, p < .001). More important, and consistent with H1, analyses revealed a 

significant overall interaction between dispersion and product type (F(3, 1349) = 2.55, p 

= .05), indicating that the influence of dispersion on purchase intention differed by the 

type of product being considered. A follow-up examination of high and low dispersion 

conditions revealed that when WOM dispersion was low, participants expressed similar 

purchase intention for the lamp and painting (M = .33 vs. .20; F(1, 744) = 1.52, p = .22), 

but when dispersion was high, they were less likely to buy the lamp than the painting (M 

= -.39 vs. -.17; F(1, 726) = 3.67, p = .06) (shown in Figure 7). The 3-way interaction was 

not significant (F(1, 727) = .58, p = .81), indicating that these results did not depend on 

the average rating. 
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Notes: These estimates are mean-adjusted to allow comparison across product types. 

 
Figure 7: Study1: Estimated Means Of Purchase Intention 
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 I also observed an interaction between dispersion and average rating (F(9, 727) = 

7.48, p < .001), indicating that increased dispersion leads to lower purchase intention as 

average rating increases. This finding replicates prior authors (Sun 2011; West and 

Broniarczyk 1998) and indicates that dispersion becomes less acceptable once the 

expected outcome surpasses aspiration levels. In addition, an interaction between average 

rating and product category (F(3, 1352) = 5.09, p < .01) was observed, indicating that the 

average had more influence on intentions for lamps than for paintings. This finding 

corroborates with the notion that reviews of search goods are perceived as more helpful 

than reviews of experiential goods (Mudambi and Schuff 2010). 

 The results of Study 1 supported my argument that the impact of WOM 

dispersion on purchase intentions depends on preference heterogeneity. I demonstrated 

that participants preferred low-dispersion options over high-dispersion ones in general, 

but that compared to the desk lamp decision (low preference heterogeneity), this 

tendency was attenuated for the framed painting decision (high preference heterogeneity), 

as participants became more tolerant to high-dispersion options. These findings are 

consistent with the predictions made by H1, and I show that the moderating effect of 

preference heterogeneity on the influence of dispersion does not depend on average 

rating. 

 Study 1 focused on purchase intention as the dependent measure. The next study 

examined tradeoffs more directly, using a different dependent measure. The goal was to 

examine whether my attribution approach can also account for consumer choice. 

 

3.5 Study 2a 
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 Study 2a and 2b expanded the investigation to consumer choices. Because 

average ratings in online retail settings tend to be positive (Chevalier and Mayzlin 2006; 

Li and Hitt 2008), and given that H1 was supported across different levels of average 

rating in Study 1, these studies only included stimuli with moderately positive average 

ratings. In Study 2a, participants chose between two options that vary by WOM 

dispersion and average rating. If my theory holds, I should find that participants are more 

willing to trade high average rating for low dispersion for products of low preference 

heterogeneity than for products characterized by high preference heterogenity.  

 

Method 

 Sixty-one paid, nonstudent participants recruited over the internet made a series of 

choices based on WOM information for nine different product categories. The nine 

categories included two target categories (desk lamp and framed painting), along with 

seven fillers. Product preference heterogeneity was manipulated within-subject using the 

two target products in the decision scenario. 

 Participants made hypothetical purchase decisions based on online review ratings 

for products of nine categories. They viewed pairs of alternatives for each of these 

categories, and were asked to choose between them. Cover stories that specify where 

these alternatives stand in the market in terms of price and desirability were used to fix 

participants’ aspiration level (West and Broniarczyk 1998) and reduce potential noise in 

the data. As before, the information included distributions of ratings from ten reviewers 
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for each alternative, represented by a horizontal bar chart. For the two target categories, 

participants were asked to choose from the following pair of similarly attractive options: 

 Option A (high-average / high-dispersion): average rating 7/10, var = 18.65 

 Option B (low-average / low-dispersion): average rating 6/10, var = .40 

 The left-right position of alternatives was counterbalanced, and the seven choices 

were presented in one of two random orderings. 

 

Results and Discussion 

 Analyses were conducted by comparing the relative choice shares of each option 

for the two focal categories. This comparison revealed that choices differed reliably 

across preference heterogeneity conditions (χ2(1) = 3.97, p = .05): specifically, the high-

average / high-dispersion Option A was chosen more often for paintings (61%) than for 

lamps (43%) (see Table 8).  



 

 86

Table 8: Study2a and 2b: Attributes of Options and Choice Share 
 

 Low preference 
heterogeneity 

High preference 
heterogeneity 

Study 2a Lamp Painting 

Option A (high-average / high-dispersion) 
average rating = 7/10, var = 18.65 

43% 61% 

Option B (low-average / low-dispersion) 
average rating = 6/10, var = .40 57% 39% 

Study 2b Lamp and flash drive Painting and music album

Option A (high-average / low-dispersion) 
average rating = 6/10, var = .40 

80% 57% 

Option B (low-average / high-dispersion) 
average rating = 5.5/10, var = 18.65 

20% 43% 
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 This study strengthened the findings of Study 1 by investigating the effects of 

dispersion and preference heterogeneity in a choice environment, where participants were 

required to make realistic trade-offs between average ratings and their dispersion. Results 

of the study supported my argument by showing that more than half of the participants 

traded lower dispersion for higher average rating for painting (high preference 

heterogeneity), but less than half did for lamp (low preference heterogeneity).  

 

3.6 Study 2b 

 

 My attribution approach suggests that although average ratings may often used as 

a decision heuristic, WOM dispersion can also influence consumers’ decision process. 

Therefore, it should be possible to find cases where an alternative with a lower WOM 

average and higher WOM dispersion is chosen over an alternative with a higher average 

and lower dispersion. The first alternative represents a high-expected-value, low-risk 

option, while the second alternative represents a low-expected-value, high-risk option. 

Expected utility theory suggests that most consumers who are often risk averse would not 

choose the second alternative. However, my approach argues that for products where 

high dispersion is attributed to reviewer taste differences rather than product quality, 

consumers might choose an alternative with lower ratings and higher dispersion. 

 For the sake of control, previous research examined the influence of variance on 

choices between two alternatives with same expected values (Meyer 1981; West and 

Broniarczyk 1998). Much more common in real-world decision making are, choices 

between alternatives with different expected values. Study 2b examines whether an 
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alternative with lower average rating and higher variance is more likely be chosen in 

product categories characterized by high preference heterogeneity. 

 

Method 

 Seventy-nine paid, nonstudent participants recruited over the internet took part in 

Study 2b. The design and procedure were similar to that of Study 2a, with a few 

modifications. First, two new target categories were added, based on the pretest described 

earlier: flash drives (low preference heterogeneity) and downloadable music albums (high 

preference heterogeneity). In addition, only two filler categories were used, so that 

participants made a series of choices for six different product categories (four target 

products and two fillers). Second, the two choices in the target categories were designed 

so that Option A ‘dominated’ Option B assuming most people are risk averse (see Figure 

8 for an example): 

 Option A (high-average / low-dispersion): average rating 6/10, var = .40 

 Option B (low-average / high-dispersion): average rating 5.5/10, var = 18.65 
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Figure 8: Study 2b: WOM Stimuli Example 
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Results and Discussion 

 As before, analyses were conducted by examining the relative choice shares of 

each option. These analyses again revealed a reliable difference across preference 

heterogeneity conditions (χ2(1) = 25.51, p < .001). Table 8 summarizes the results. For 

lamps and flash drives, the ‘dominated’ option B was chosen only chosen 31 times out of 

158 (20%). However, for paintings and music albums, option B was chosen 68 times out 

of 158 (43%). In other words, option B was chosen by almost half of participants in a 

product category where preference heterogeneity is expected, despite having both lower 

expected value and higher variance. 

 Consistent with my earlier studies, the results of Study 2a demonstrated that the 

influence of WOM dispersion was affected by product type. In choice scenarios 

involving products with high preference heterogeneity, even an apparently dominated 

option became more appealing and was chosen by almost half of the participants. Study 3 

extends my investigation by directly testing the role of preference heterogeneity in 

explaining the effects of dispersion. 

 

3.7 Study 3 

 

 The studies conducted thus far tested my attribution approach by manipulating 

perceived preference heterogeneity through the use of different products. However, these 

studies are subject to the concern that differences in the products themselves may have 

been responsible for my results. Therefore, Study 3 was designed to remove potential 

confounds by holding the product category constant, and instead manipulating the 
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perceived variability of users (described below). According to the logic presented in 

Hypothesis 2, consumers are more likely to expect a difference in reviewers’ evaluations 

if those reviewers differ by age, gender, profession, etc. As a result, consumers faced 

with WOM dispersion should be more likely to attribute that dispersion to reviewers 

when they believe that reviewers come from a diverse group. In addition, Study 3 

collected participant attributions directly, in order to examine my underlying process 

explanation. 

 

Method 

 One-hundred and thirty-two student participants took part in Study 3 for course 

credit. The study constituted a 2 (WOM dispersion: high vs. low) x 2 (user variability: 

diverse group vs. homogeneous group) between-subjects factorial design. The focal 

product was a vacation hotel (‘Marison Inn’). Holding the average rating constant (at 6 

out of 10 stars), I manipulated WOM dispersion between-subjects through the review 

summary of forty consumers: high dispersion (var = 3.59), low dispersion (var = 0.95) 

(see Figure 9 for examples). User variability was manipulated by telling participants that 

WOM was posted by one of two groups of reviewers. The diverse group conditions 

stated: “You find some reviews for the hotel on a traveler website populated by an 

extremely diverse group of customers. The reviewers include business travelers, 

backpackers, vacationing families, and college students.” The homogenous group 

conditions stated: “You find some reviews for the hotel on a traveler website populated 

by an extremely homogeneous group of customers: college students. The reviewers 

include college students only.” 
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WOM Dispersion (N = 40) 

High dispersion Low dispersion 

 
Variance = 3.6 Variance = 1.0 

 
Figure 9: Study 3: WOM Stimuli 
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 Participants were asked to imagine that they were traveling to a city across the 

county and wanted to book a hotel for two nights. A friend informed them of a discount 

coupon offer in which they could receive $100 toward their stay for a price of $50 (i.e., a 

50% discount). After seeing reviews about the hotel according to their assigned 

condition, participants reported their intention to purchase the coupon. (The coupon 

decision was intended to make participants seriously consider the target option and to 

reduce potential noise from income differences.) In addition, participants’ were asked to 

provide their expected rating of the hotel, assuming they eventually stayed there. Based 

on the general principle of self-enhancement biases and the “above-average effect” 

(Brown 1986; Kruger 1999), consumers who explain WOM dispersion by reviewer 

differences might expect their own experience to be more satisfactory than the average of 

reviewers. Finally, direct measures were provided to explore my hypothesized attribution 

process. Specifically, participants were asked to choose a causal explanation for the 

observed ratings dispersion, from one of three sources: ‘something about the reviewers’, 

‘something about the hotel’, or ‘other.’ (In the analysis, this measure was coded as 

dichotomous by merging the choice shares of ‘reviewer’ and ‘other.’) 

 

Results and Discussion 

 Analyses were conducted by utilizing ANOVA to predict purchase intention as a 

function of WOM dispersion, user variability, and their interactions. As before, these 

analyses revealed a main effect of dispersion (F(1, 128) = 20.77, p < .001), indicating 

that more dispersion was associated with lower purchase intention overall. More 

important, and in line with H2, a dispersion by user variability interaction was obtained 
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(F(1, 128) = 4.60, p < .05). As shown in Figure 10, the effect of dispersion was smaller 

when WOM was provided by a diverse group of reviewers than when it was provided by 

college students only (mean difference = -.61 vs. -1.70). A pairwise comparison showed 

that the high-variability condition were more likely to buy the hotel coupon than the low-

variability condition when exposed to high WOM dispersion (M = 4.33 vs. 3.49, F(1, 

128) = 5.37, p < .05). However, This difference disappeared for participants exposed to 

low WOM dispersion (M = 4.94 vs. 5.18, F(1, 128) <1, NS). 



 

 95

 
 

Figure 10: Study3: Estimated Means of Purchase Intention 
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 Participants’ own expected rating of the hotel was analyzed in using the same 

model. Corroborating the findings above, I observed a dispersion by user variability 

interaction effect (F(1, 128) = 6.85, p = .01). Again, the high-variability condition rated 

the hotel coupon higher than the low-variability condition when exposed to high WOM 

dispersion (M = 6.80 vs. 5.52, F(1, 128) = 17.07, p < .001), and there was no difference 

for the two conditions exposed to low WOM dispersion (M = 6.25 vs. 6.09, F(1, 128) <1, 

NS). As expected, high WOM dispersion led to higher expectations of the hotel 

experience than low WOM dispersion (M = 6.80 vs. 6.25, F(1, 128) = 3.26, p = .07)—an 

above-average effect, but only for high-variability conditions. In contrast, high WOM 

dispersion led to lower-than-average expectations for the low-variability conditions (M = 

5.52 vs. 6.09, F(1, 128) = 3.60, p = .06). 

 Finally, analysis of the direct attribution measure revealed evidence in line with 

my arguments. When dispersion was high, participants were more likely to attribute it to 

‘something about the hotel’ if they believed that ratings were provided by a homogeneous 

set of reviewers than by a diverse set of reviewers (M = 36% vs. 17%; χ2(1) = 3.33, p = 

.07). In contrast, when dispersion was low, the source of the reviews did not influence 

attribution (M = 24% vs. 22%; χ2(1) = .04, NS). 

 The results of Study 3 provide evidence for H2 and further support for my 

attribution approach. When WOM dispersion was high, participants were more willing to 

acquire a coupon – and expected a better experience – if the group of reviewers was 

perceived as diverse than if the group of reviewers was perceived as homogeneous. 

Attribution measures showed that participants’ causal explanations were also influenced 

by the interaction of WOM dispersion and user variability, suggesting that the influence 
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of WOM dispersion on purchase intention depended on the extent to the party to whom it 

was attributed. 

 

3.8 General Discussion 

 

 Modern consumers often consult online WOM before making their purchase 

decisions. However, when many individuals with different preferences evaluate the same 

product, the opinions that result are likely to vary. The increasingly common display of 

WOM as a social distribution not only adds extra information, but also increases risk and 

uncertainty. Such risk is evident when consumers encounter distributions with high 

dispersion, which indicates disagreement among reviewers’ product usage experiences. 

Existing research has documented positive as well as negative effects of WOM dispersion 

on retail performance (e.g., Moe and Trusov 2011; Zhu and Zhang 2010); however, no 

attempt has been made to consolidate these conflicting results, and we remain largely 

unaware how conflicting WOM information is processed by consumers psychologically. 

The present essay is intended to fill these gaps. I argue that perceptions of WOM 

dispersion are influenced by consumer expectations regarding product preference 

heterogeneity and user variability. These factors in turn determine how dispersion is 

attributed and prompt downstream consequences on purchase intention.  

 Four studies supported my attribution approach to understanding the influence of 

WOM dispersion. Study 1 provided initial evidence using products of different 

preference heterogeneity. For products characterized by low preference heterogeneity, 

options with high WOM dispersion were less attractive to participants. However, for 
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products characterized by high preference heterogeneity, the negative impact with high 

WOM dispersion was tolerated. Studies 2a and 2b expanded my investigation to choice 

settings. Consistent with my predictions, options with higher WOM dispersion received 

greater choice share for products where tastes are expected to vary, and this effect was 

observed even for a seemingly ‘dominated’ option. Finally, Study 3 held product 

category constant and manipulated the attribution process through perceived user 

variability. As expected, the negative influence of increased dispersion was smaller for 

participants who perceived a diverse user base than for those who perceived a 

homogeneous user base. Finally, in line with my theoretical arguments, participants in the 

diverse user conditions were much less likely to attribute WOM dispersion to product-

related causes. 

 Theoretical Contributions. Consumer response to information uncertainty has 

been investigated extensively, but there are few studies grounded in the emerging WOM 

context. In particular, West and Broniarczyk (1998) called for research on the 

investigation of risk embedded in WOM across different product categories. Responding 

to this call, my essay responds by both demonstrating a moderating effect of product 

type, and proposing an attribution mechanism to underlie this effect. 

 Dealing with disagreement in WOM is not a new problem for consumers. Prior 

research has shown that when WOM received from a limited number of sources lacks 

consensus, those sources may be treated differently based on their credibility or 

diagnosticity. For example, WOM from a similar peer—or a consistent critic—may be 

weighted more heavily (West and Broniarczyk 1998). However, the selective strategy 

described above is simply not feasible in most contemporary online environments, where 
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WOM exists in vast amount and comes from unknown others. Therefore, consumers must 

resort to other information processing strategies. Here, I suggest that expectancies 

regarding preference heterogeneity (and resulting attributions) play an important role in 

those strategies.  

 Previous work in WOM has found seemingly contradictory associations between 

review variance and sales. The attribution approach proposed in this essay offers a way to 

consolidate these mixed findings. For example, a positive influence of WOM dispersion 

has been found for toiletry products with a variety of fragrances (Moe and Trusov 2011) 

and for craft beers (Clemons et al. 2006); both of these appear to represent product 

categories characterized by high preference heterogeneity. In contrast, a negative effect 

or null effects have been observed for movies (Chintagunta et al. 2010) and video games 

(Zhu and Zhang 2010). In these categories, it is likely that reviewers are perceived as 

relatively homogenous in tastes, so that their variance of opinion creates uncertainty as to 

whether the product can deliver what is promised. 

 Within consumer research, the relevant attribution literature has often focused on 

causal inferences regarding single pieces of discrepant WOM (Folkes 1988; Laczniak, 

DeCarlo, and Ramaswami 2001). In contrast, I explore the attributions made by 

consumers for multiple, discrepant WOM sources and demonstrate the influence of those 

attributions on purchase decisions. Therefore, while extant research has explored settings 

marked by high consensus (low WOM dispersion), I supplement this work by examining 

settings where no consensus exists (high WOM dispersion).  

 Managerial Implications. The findings of this essay have important implications 

for marketers, especially those facing divided consumer opinions of their offerings. 
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Intuition suggests that the risk conveyed by polarized WOM tends to drive away 

prospective customers. Using my attribution approach, I point out that this may not be 

true. In particular, the negative influence of WOM dispersion varies by product category. 

Therefore, for marketers of products where tastes are expected to vary or those with a 

very diverse user base, it may be reasonable to worry less about divided opinions.  

 This essay also yields insights on targeting and branding. Practitioners are often 

advised to concentrate their efforts on specific subsets of consumers for whom the value 

proposition is strongest. However, in settings characterized by pervasive WOM, my 

research suggests that fine-grained targeting may be problematic, especially when WOM 

dispersion is high. A clear implication of Study 3 is that if a product is positioned 

narrowly, the presence of mixed opinions can lead to inferences of inconsistent quality 

and lower intentions to purchase. However, if a product is positioned to appeal more 

broadly, variance in product ratings will tend to be attributed to user idiosyncrasies and 

therefore tolerated. Above the actual targeting decision, various communication tactics 

can be used to signal a wide or narrow user base, having similar effects (e.g., the use of 

testimonials from a wide assortment of consumers to signal diversity). More generally, by 

considering the influence of their own actions on the attribution process, marketers can 

practically influence the choices of consumers facing divided WOM. 
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