
STOCHASTIC PROGRAMMING METHODS FOR SCHEDULING OF
AIRPORT RUNWAY OPERATIONS UNDER UNCERTAINTY

A Thesis
Presented to

The Academic Faculty

by

Gustaf Sölveling

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2012

STOCHASTIC PROGRAMMING METHODS FOR SCHEDULING OF
AIRPORT RUNWAY OPERATIONS UNDER UNCERTAINTY

Approved by:

Ellis Johnson, Committee Chair
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Shabbir Ahmed
School of Industrial and Systems
Engineering
Georgia Institute of Technology

John-Paul Clarke, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Joel Sokol
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Senay Solak
Isenberg School of Management
University of Massachusetts

Date Approved: 25 June 2012

This thesis is dedicated to my beautiful girls,

Jaleh, Helena, and Lovisa.

You are my everything!

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisors Ellis Johnson and John-Paul Clarke

for their professional guidance, continuous encouragement and their belief in me that always

gave me confidence to continue my research. Without their deep knowledge, positive spirit

and valuable suggestions always pointing me in the right direction, I would not have been

able to reach this point.

I would also like to express my deepest gratitude to Senay Solak, who from the moment

I first set my foot in the research lab until today has been a great inspiration, collaborator

and friend. I would also like to thank the other members of my committee, Shabbir Ahmed

and Joel Sokol, for their valuable insights and suggestions.

To all my friends in the Air Transportation Laboratory, I would like to say thank you for

all your help and good luck with your future research and careers. I would like to thank the

faculty, the staff and the students in ISyE who all have contributed to the great experience

I have had at Georgia Tech.

I would like to thank my family and friends both in Sweden and in the U.S., especially

Annika, Svante, Janet, and Samad, for their constant support and encouragement.

Although their presence has lead to a slight drop in research productivity, nothing in

the world means more to me than my two wonderful daughters, Helana and Lovisa. Their

arrival showed me what really matters in life, and their amazing personalities make me a

very proud father.

Last, but certainly not least, I would like to thank my wife Jaleh from the bottom of

my heart for making all of this possible. Without your love, patience and understanding

I would not have been able to reach this far. You are my great love and my best friend.

Thank you!

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Airport Runway Scheduling . 1

1.2 Stochastic Programming . 7

1.2.1 Two-Stage Stochastic Programming 8

1.2.2 Stochastic Branch and Bound . 11

1.3 Thesis Contribution and Outline . 11

II LITERATURE REVIEW . 13

2.1 Airport Runway Scheduling . 13

2.1.1 Deterministic Methods . 13

2.1.2 Robust/Stochastic Runway Scheduling 17

2.2 Machine Scheduling under Uncertainty . 18

2.3 Stochastic Programming and Applications in Aviation 19

III COST FUNCTIONS FOR REDUCED ENVIRONMENTAL IMPACTS 21

3.1 Problem . 21

3.2 Cost Functions with Environmental Impacts 24

3.2.1 Components of the Global Cost Function 25

3.2.2 Cost of Deviation from Latest Scheduled Operation Time 30

3.3 Simulations for Environmental Cost Analysis 31

3.4 Analysis and Policy Implications . 32

3.4.1 Environmental Value of Optimization 32

3.4.2 Cost of Environmental Runway Scheduling to Airlines 36

3.4.3 Structure of Optimal Schedules . 37

v

IV TWO-STAGE STOCHASTIC RUNWAY SCHEDULING 39

4.1 Problem Description . 39

4.1.1 Two-Stage Scheduling Process . 39

4.1.2 A Generic Modeling Framework for a Simplified Version of SRSP . 41

4.2 Two Alternative Formulations for SRSP-R and SRSP 44

4.2.1 Network Formulation of SRSP-R 44

4.2.2 Slot Formulation of SRSP-R . 48

4.2.3 Distinctions of SRSP . 50

4.2.4 Extension of the Two Formulations to SRSP 52

4.3 Valid Inequalities for SRSP . 55

4.4 Solution Methodology for SRSP-R and SRSP 59

4.4.1 Scenario Decomposition . 60

4.4.2 The Sample Average Approximation Implementation 63

4.5 Computational Framework and Experimental Setup 65

4.6 Computational Study and Analysis . 68

4.6.1 Analysis-I: Efficiency of Flow vs. Slot Formulations for SRSP-R and
SRSP . 69

4.6.2 Analysis-II: Impact of Improvement Procedures for SRSP 77

4.6.3 Analysis-III: Comparison of SRSP vs. SRSP-R 83

4.6.4 Analysis-IV: Practical Performance 88

V SINGLE-STAGE STOCHASTIC SEQUENCING 92

5.1 Stochastic Branch and Bound . 94

5.1.1 Algorithm . 95

5.1.2 Partitioning . 98

5.2 Algorithm Enhancements . 99

5.2.1 Dynamic Sample Size Update and Statistical Testing 99

5.2.2 Termination Criteria . 101

5.2.3 Heuristic Solution Methods . 102

5.3 Implementation Details . 103

5.3.1 Upper Bound Estimation . 103

5.3.2 Lower Bound Estimation . 103

vi

5.4 Computational Study . 105

5.4.1 Experiment Setup . 105

5.4.2 Reference Experiment . 107

5.4.3 Sample Size Selection . 109

5.4.4 Dynamic Sample Size . 111

5.4.5 Termination Criteria . 113

5.5 Implementation for Runway Scheduling . 115

5.5.1 Runway Scheduling Model . 115

5.5.2 Solution Procedure for Runway Scheduling Model 117

5.5.3 Lower Bound Estimation . 119

5.5.4 Upper Bound Estimation . 123

5.6 Computational Study for Runway Scheduling 123

5.6.1 Input Data and Parameters . 124

5.6.2 Configuration 1: General Layout 125

5.6.3 Configuration 2: Departure Scheduling with Crossings 130

VI CONCLUSIONS AND FUTURE RESEARCH 133

6.1 Conclusion for Two-Stage Sequencing Model 134

6.2 Conclusion for Single Stage Model . 135

6.3 Directions for Future Research . 136

vii

LIST OF TABLES

1 Aircraft weight class categories. 2

2 Separation requirements, in seconds, for arrival operations on a single runway. 3

3 Separation requirements (in seconds) for two parallel runways. 23

4 Separation requirements (in seconds) at runway crossing. 23

5 External costs of aircraft emissions. ($/lb) 28

6 Emission rates (lb/hr) based on the Boeing Fuel Flow Method 2. 28

7 Noise cost, $/minute, for three different cost levels. 29

8 Crew and passenger delay costs. ($/minute) 30

9 Arrival and departure rates for the different schedules. 31

10 Average arrival and departure rates after realization. 32

11 Annual estimate of the environmental value of optimization for 30 major
airports in the U.S. 34

12 Same runway separation requirements for arrival operations. 42

13 Same runway separation requirements, in seconds, for departure operations. 42

14 Separation requirements, in seconds, for operations on close parallel runways.
The leading operation is performed on one runway and the trailing operation
is on the parallel runway. 42

15 Parameters used in the implementation of the scenario decomposition proce-
dure. 63

16 Overall fleet mix at the 35 OEP airports in 2009. The fleet mix is obtained
from 12 months of Aviation System Performance Metrics (ASPM) data. . 66

17 Description of instance groups used for model evaluation. 66

18 Computational results comparing the slot based formulation to the network
flow based formulation of deterministic instances of SRSP-R. 71

19 Computational results comparing the slot based formulation to the network
flow based formulation of deterministic instances of SRSP. 73

20 Computational results comparing the slot based formulation to the network
flow based formulation of SRSP-R using scenario decomposition. 75

21 Computational results comparing the slot based formulation to the network
flow based formulation of SRSP using scenario decomposition. 76

22 Computational results showing the impact of using valid inequalities (50)
and (51) for the slot based formulation of SRSP. 78

viii

23 Computational results showing the impact of using valid inequalities (50)
and (51) for the network flow based formulation of SRSP. 79

24 Computational results showing the impact of the heuristic upper bound cal-
culations. 80

25 Computational results for showing the impact of prioritization for the slot
based formulation of SRSP over four different cases. 82

26 Computational results for showing the impact of prioritization for the net-
work flow based formulation of SRSP over four different cases. 82

27 Computational results comparing the deterministic model of SRSP-R to the
deterministic model of SRSP for the slot based formulation. 83

28 Computational results comparing the SRSP-R model to the SRSP model for
the slot based formulation. 84

29 Computational results comparing the deterministic model of SRSP-R to the
deterministic model of SRSP for the flow based formulation. 85

30 Computational results comparing the SRSP-R model to the SRSP model for
the network flow based formulation. 86

31 Computational results comparing the characteristics of the full two hour al-
gorithm to a truncated version that solves the problem in 20 minutes. The
slot based model is used in the implementations. 89

32 Computational results comparing the best sequence found in the full two hour
algorithm compared to the best sequence found in the truncated version that
solves the problem in 20 minutes. 90

33 Computational results comparing the impact of runtime for the truncated
SAA algorithm implementations. 90

34 Computational results showing the percentage of instances for which the best
sequence, as identified by the 2 hour run, is found. The increase, relative to
the 2 hour run, in the upper confidence interval limit is also shown for cases
where the best sequence is the same and when it is not. 91

35 Sequence-dependent setup times for five categories of jobs, C1,. . . ,C5. The
rows indicate the leading job and the columns indicate trailing job. 106

36 Triangular delay distribution, in seconds, from earliest possible release time r0.107

37 Parameters used for the reference experiment. 107

38 Average runtime change (39a) and average objective value change (39b) for
the makespan objective for different values of N0 and N1. The table also
shows the average number of samples used for the optimal sequence (39c)
and the average number of iterations required by the algorithm (39d). . . . 110

ix

39 Average runtime change (40a) and average objective value change (40b), for
the makespan objective for different values of N0 and N1. The table also
shows the average number of samples used for the optimal sequence (40c)
and the average number of iterations required by the algorithm (40d). . . . 110

40 Change in runtime and average system delay for N0 = 10 and different values
of N1. 111

41 Impact of dynamically changing the sample size for the makespan objective.
In Tables 42a and 42b the change is with respect to the base case with
N1

min = 1, N− = 2 and qE = 10. 112

42 Impact of dynamically changing the sample size for the system delay objec-
tive. In Tables 42a and 42b the change is with respect to the base case with
N1

min = 1, N− = 2 and qE = 10. 112

43 Change in average objective function value, compared to Tmax = 30, and the
percentage of instances in which no complete sequence was found for different
time limits. 113

44 Change in average runtime, average objective function value and the percent-
age of instances in which no complete sequence was found for two different
termination criteria. 114

45 Aircraft weight class distributions used for schedule generation. 124

46 Triangular delay distribution, in minutes, from earliest possible release time
r0. 125

47 Parameters used in the algorithm applied to runway scheduling. 125

48 Comparison between aircraft sequences obtained from the stochastic branch
and bound algorithm (Opt.), the deterministic scheduling model (Det.) and
the FCFS scheduling policy (FCFS). 126

49 Change in average makespan when using a deterministic model compared
to using the stochastic branch and bound algorithm for four different input
distributions. Distr. 1 has no uncertainty whereas Distr. 4 has the highest
level of uncertainty. 128

50 Comparison between aircraft sequences obtained from the stochastic branch
and bound algorithm (Opt.), the deterministic scheduling model (Det.) and
the FCFS scheduling policy (FCFS). The result is for the special case when
only departure operations and crossings are considered. 131

51 The preferred models with respect to run times for the restricted SRSP
(SRSP-R) and SRSP for different input schedules. 135

x

LIST OF FIGURES

1 Example of uncertainty levels in arrival prediction and pushback delay. . . . 6

2 Network used in CPS algorithm presented in Balakrishan and Chandran (2010). 16

3 A two-runway configuration similar to runways 22L and 22R at DTW. . . . 22

4 Cost components for arriving (top) and departing (bottom) aircraft. 26

5 Average reduction in environmental costs when an optimization based sched-
ule is used. The savings are over a FCFS policy. 33

6 Environmental costs per flight based on schedules optimized with and without
explicit consideration of the environmental factors. The values are according
to the base emission cost estimate. 35

7 Analysis of environmental and non-environmental costs per flight for optimal
and FCFS schedules. 36

8 Cost of including the environmental impact in optimization. 37

9 Maximum position shifts in the optimized schedule with respect to the FCFS
schedule. 38

10 Network representation for the flow based formulation 45

11 Sample arrival and departure delay cost functions for Boeing 737, represent-
ing the Large aircraft weight class. 51

12 Hartsfield-Jackson Atlanta International Airport operates two-pairs of close
parallel runways where 26L and 27R are used for departures, while 26R and
27L are used for arrivals. 67

13 Comparison of run times when the problem is solved using scenario decompo-
sition versus when the deterministic equivalent formulation is used directly.
The higher values correspond to the deterministic equivalent solution. . . . 69

14 Impact of the objective weights for SRSP-R. 87

15 Example of an incomplete branching tree for 4 jobs. 98

16 Average objective for three different scheduling methods: stochastic branch
and bound algorithm (Opt. Sequence), optimal deterministic sequence (Det.
Sequence), and a FCFS policy (FCFS Sequence). The error bars indicate the
95% confidence interval for the average objective value. 108

17 Average (with 95% confidence interval) and median runtime for instances
solved by the stochastic branch and bound algorithm. The bars show the
percentage of instances in which we are not able to find a solution within 30
minutes of runtime. 108

18 Upper and lower bound estimates for an instance with 9 jobs. 114

xi

19 The runway configuration in this study consist of a pair of closely spaced
parallel runways with one crossing where arrivals taxiing to the gate cross
the departure runway. 115

20 Average makespan for three different scheduling methods: stochastic branch
and bound algorithm (Opt. Sequence), optimal deterministic sequence (Det.
Sequence), and a FCFS policy (FCFS Sequence). The error bars indicate the
95% confidence interval for the average makespan. 127

21 Average (with 95% confidence interval) and median runtime for instances
solved by the stochastic branch and bound algorithm. The bars show the
percentage of instances in which we were not able to find a solution within
20 minutes of runtime. 128

22 Average makespan for different levels of uncertainty around the nominal run-
way time. The triangular distributions are given as (lower limit, mode, upper
limit) . 129

23 Average makespan for three different scheduling methods in the special case
where only departures and runway crossings are considered: stochastic branch
and bound algorithm (Opt), optimal deterministic sequence (Det), and a
FCFS policy (FCFS). The error bars indicate the 95% confidence interval
for the average makespan. 131

24 Average (with 95% confidence interval) and median runtime for instances
solved by the stochastic branch and bound algorithm. The bars show the
percentage of instances in which we were not able to find a solution within
20 minutes of runtime. The result is for the special case when only departure
operations and crossings are considered. 132

xii

SUMMARY

Runway systems at airports have been identified as a major source of delay in

the aviation system and efficient runway operations are, therefore, important to maintain

and/or increase the capacity of the entire aviation system. The goal of the airport runway

scheduling problem is to schedule a set of aircraft and minimize a given objective while

maintaining separation requirements and enforcing other operational constraints. Uncertain

factors such as weather, surrounding traffic and pilot behavior affect when aircraft can be

scheduled, and these factors need to be considered in planning models. In this thesis

we propose two stochastic programs to address the stochastic airport runway scheduling

problem and similarly structured machine scheduling problems.

In the first part, we develop a two-stage stochastic integer programming model and ana-

lyze it by developing alternative formulations and solution methods. As part of our analysis,

we first show that a restricted version of the stochastic runway scheduling problem is equiv-

alent to a machine scheduling problem on a single machine with sequence dependent setup

times and stochastic due dates. We then extend this restricted model by considering char-

acteristics specific to the runway scheduling problem and present two different stochastic

integer programming models. We derive some tight valid inequalities for these formula-

tions, and we propose a solution methodology based on sample average approximation and

Lagrangian based scenario decomposition. Realistic data sets are then used to perform a

detailed computational study involving implementations and analyses of several different

configurations of the models. The results from the computational tests indicate that prac-

tically implementable truncated versions of the proposed solution algorithm almost always

produce very high quality solutions.

In the second part, we propose a sampling based stochastic program for a general

machine scheduling problem with similar characteristics as the airport runway schedul-

ing problem. The sampling based approach allows us to capture more detailed aspects of

xiii

the problem, such as taxiway operations crossing active runways. The model is based on

the stochastic branch and bound algorithm with several enhancements to improve the com-

putational performance. More specifically, we incorporate a method to dynamically update

the sample sizes in various parts of the branching tree, effectively decreasing the runtime

without worsening the solution quality. When applied to runway scheduling, the algorithm

is able to produce schedules with makespans that are 5% to 7% shorter than those obtained

by optimal deterministic methods.

Additional contributions in this thesis include the development of a global cost function,

capturing all relevant costs in airport runway scheduling and trading off different, sometimes

conflicting, objectives. We also analyze the impact of including environmental factors in

the scheduling process.

xiv

CHAPTER I

INTRODUCTION

Models explicitly considering uncertainty are an important area in the field of optimization.

There are many real-world applications in which the input parameters to the model are

not known with certainty at the time of model execution and decision making. One such

area is the scheduling of aircraft operations at an airport. Because the costs associated

with aircraft operations are relatively high, efficient operations can lead to significant cost

and environmental savings. The most critical part of aircraft operations at airports is the

runways, which have been shown to be bottlenecks in the entire aviation system. In this

thesis, we consider stochastic optimization models for scheduling aircraft operations on the

runway. The problem is introduced in the next section, followed by an introduction to

stochastic programming.

1.1 Airport Runway Scheduling

It is reported that in 2007, nearly one in four scheduled airline flights arrived more than 15

minutes late to its destination (Ball et al. 2010). Furthermore, a third of these late arrivals

were a direct result of the traffic demand exceeding the capacity of the aviation system.

When the aviation system is operating under constrained conditions, any reduction in sys-

tem performance leads to significant flight delays causing inconvenience and added cost to

passengers and airlines. The potential for significant delays due to reduced system perfor-

mance combined with a predicted increase in air traffic demand calls for the development of

new and enhanced mathematical models that can assist in utilizing the available resources

more efficiently. Air transportation authorities in the United States and Europe are in-

vestigating various technologies which they hope will increase capacity and efficiency in

air transportation. Some of these efforts focus on runway operations planning and include

tactical algorithm development for arrival and departure scheduling, taxiway routing and

gate assignments (Eurocontrol 2011; Federal Aviation Administration 2011).

1

Table 1: Aircraft weight class categories.
Max Certified

Category Takeoff Weight Example

Heavy ≥ 300,000 lbs. B747, B777, and A340

Large
≥ 41,000 lbs.

B737, A320, and ERJ145
< 300,000 lbs.

Small < 41,000 lbs. Most General Aviation and Executive Jets

The runway system is identified as the major source of delay in the departure process

(Idris et al. 1998) and congestion in the terminal area constitutes a significant portion of all

flight delays for arriving aircraft (Balakrishan and Chandran 2010). Consequently, increased

runway capacity is critical to provide increased overall capacity in the air traffic system.

Because infrastructure investments, such as new runways, are very costly and in many cases

not feasible, improved planning and scheduling methods are a vital part to increased runway

capacity.

Given a set of aircraft, whether we consider arrivals, departures or a combination, the

objective of a runway scheduling algorithm is to set the time when each aircraft should begin

using the runway. For arrivals, we denote the time at the runway to be the time of touchdown

and for departures we denote the time at the runway to be the beginning of the takeoff roll.

Each aircraft has an earliest and latest time at which it can be scheduled. In addition

to time windows, separation requirements between each pair of aircraft must be enforced.

In order to ensure safe distances between aircraft, the Federal Aviation Administration

(FAA) mandates separation minima based on wake vortex categories for both arrival and

departure operations. As the wake vortex categories are based on the maximum certified

takeoff weight, the term aircraft weight classes is generally used. There are three aircraft

weight categories specified in the official air traffic specifications document (Federal Aviation

Administration 2010b), with the addition of two special cases concerning specific aircraft

models, Boeing 757 and Airbus A380. The aircraft weight class categories can be seen in

Table 1.

The pairwise minimum separation requirements between aircraft are typically given as a

2

Table 2: Separation requirements, in seconds, for arrival operations on a single runway.
Trailing

H 7 L S

L
ea

d
in

g H 96 138 138 240
7 96 108 108 198
L 60 72 72 162
S 60 72 72 102

distance, but they can be converted to temporal separation requirements using representa-

tive landing and departure speeds. A matrix showing the temporal separation requirements

for arrival operations on a single runway can be seen in Table 2, where the leading operation

is given by the rows, and the trailing operation is given by columns.

As can be seen in Table 2, the separation requirements are not symmetrical. This

asymmetry implies that the sequence of operations determines the time it takes to complete

a set of operations, i.e. the makespan of the sequence. As an example, consider four arrivals,

of which two are heavy (H) and two are large (L). The sequence H-L-H-L gives a makespan

of 336 seconds from the first arrival to the fourth, whereas the sequence H-H-L-L gives a

makespan of 306 seconds. This example shows that an additional 30 seconds of runway

capacity can be gained by simply shifting a single pair of aircraft. This observation, in a

more general sense, is the core of the runway scheduling problem. By taking advantage of

the asymmetric separation requirements, mathematical models for runway scheduling can

generate efficient runway schedules, which lead to increased runway capacity and reduced

delay for the aircraft using the runway. On the other hand, the asymmetrical separation

requirements make the problem NP-hard from a theoretical point of view.

The airport runway scheduling problem does not have a clearly defined objective. On

the one hand, it is important to maximize the throughput on the runway to allow for as

many aircraft as possible to use the available resources. On the other hand, it is important

to impose fairness between all users of the system. This can be achieved by minimizing

delays for individual aircraft. Other objectives exist, but these are the most common ob-

jectives used in runway scheduling models. There are occasions when the two objectives

are in direct conflict. Consider an example where a single aircraft has to be delayed for an

extended amount of time to achieve maximum throughput. All other users of the system

3

experience less delay as throughput is increased, at the expense of the delayed aircraft.

Clearly, this is not desirable from a fairness perspective. In Chapter 3 we develop a global

objective function that captures both objectives simultaneously. More importantly, the

global objective function considers all relevant costs associated with runway scheduling,

including environmental costs and fuel costs. In addition, we compare the impact of in-

troducing environmental cost into the objective function. The global objective function is

later used in the stochastic model developed in Chapter 4.

The problem of scheduling runway operations has received great attention in the litera-

ture over the past 35 years. Despite the fact that more than 60 articles have been published

on the topic of arrival scheduling and planning (scheduling of departure operations has re-

ceived far less attention in the literature), very few of these methods have been implemented

and used in practice (Mesgarpour, Potts, and Bennell 2010). Reasons for this include:

• The problem is theoretically hard to solve, thus, models that include all operational

constraints cannot be used to solve the general problem optimally and sufficiently

fast.

• There is a discrepancy between the decision problem (what is the best way to sched-

ule operations) and the control problem (how can air traffic controllers achieve the

scheduled sequence of operations) that is in many cases overlooked. Researchers often

focus on the decision problem without consideration of the control problem, which

can lead to models giving solutions that cannot be implemented in practice.

• Many of the models presented in the literature focus on the static problem, i.e. when

all the information is known upfront. In reality the runway scheduling problem is

dynamic in the sense that new information is continuously fed to the planner who has

to make decisions in close to real time.

• To assist air traffic controllers, the solution to the runway scheduling problem must

be obtained fast.

The models developed and presented in this thesis do not attempt to overcome the

4

above shortcomings. The objective of this work is rather to investigate an area of runway

planning and scheduling that has received very limited attention in the literature, namely

runway scheduling under uncertainty. Almost all previous work has treated the problem as

a deterministic problem, and assumed that the input parameters are known with certainty

at the time of decision making. However, due to unpredictable factors such as weather,

pilot behavior, surface traffic and other circumstances, deviations from the estimated input

parameters are inevitable.

Given its similarities to other sequencing problems in areas such as manufacturing, the

runway scheduling problems can be framed in terms of machine scheduling terminology.

To simplify the categorization of different types of machine scheduling problems, Graham,

Lawler, Lenstra, and Kan (1979) established the three-field notation α|β|γ to describe differ-

ent versions of machine scheduling problems. The first parameter, α, describes the machine

environment, the second parameter, β describes the job characteristics, and the γ param-

eter indicates what objective is minimized. Even when multiple dependent runways are

considered, the runway scheduling problem can be cast as a machine scheduling problem

on a single machine, i.e. α = 1. The time-windows for specific aircraft (earliest time and

latest time) and the separation requirements are denoted as release time, due dates, and

sequence-dependent setup times, respectively. These characteristics are defined in the β-

field. For the stochastic model developed in Chapter 5 we consider both throughput and

system delay as objective functions in the γ-field.

Arrival and departure operations at airports contain a significant level of uncertainty due

to the probabilistic nature of trajectories and other operational factors. Despite this fact,

stochastic versions of the runway scheduling problem have previously never been considered

in the literature. For the more general machine scheduling problem there exist models that

do take uncertainty into account, but none of these models capture all the complexities

included in airport runway scheduling. The earliest time an aircraft can be scheduled on

the runway is an important input parameter common to all runway scheduling models. Up

to this point, all runway scheduling models considered in the literature have treated the

earliest time at the runway as a deterministic quantity. In reality however, there are several

5

0 to 9
10 to 19

20 to 29

30 to 39

40 to 49

50 to 59

60 to 69

70 to 79

80 to 89

90 to 99
Remaining Flight Time, minutes

10

5

0

5

10

Pr
ed

ic
tio

n
E

rr
or

, m
in

ut
es

Average Prediction Error

(a) Sample mean and sample standard deviation
for arrival prediction observations. The prediction
error is calculated as the estimated arrival time
subtracted from the actual arrival time.

20 0 20 40 60 80
Pushback Delay, minutes

D
en

si
ty

Shifted Lognormal Distribution
Pushback Delay Histogram

(b) Distribution of pushback delay. The push back
delay is calculated as the difference between the
actual turn time and the scheduled turn time for
those flights where there is no arrival delay.

Figure 1: Example of uncertainty levels in arrival prediction and pushback delay.

factors that can delay an aircraft. Arrivals can encounter unanticipated weather conditions

or airspace congestion whereas departures can be delayed at the gate or during taxiing.

Two examples of uncertainty levels can be seen in Figure 1. Figure 1a shows the error in

arrival time prediction as a function of when the prediction was made. The data comes

from FAA’s Enhanced Traffic Management System. A similar study for departures, seen in

Figure 1b, shows the distribution of pushback delay. The analysis was performed using date

from the Bureau of Transportation Statistics database on on-time performance. One year

of operations at a single airport are included in the study. For further details, the reader is

referred to Solveling, Solak, Clarke, and Johnson (2011a).

In this thesis we develop two stochastic programs aimed at improving runway efficiency

and utilization by explicitly considering uncertainty in the runway scheduling models. This

is something that, to the best of our knowledge, never has been done before. These models

are likely to result in better resource utilization than a first-come, first-served policy (FCFS)

or deterministic optimization procedures under certain conditions, i.e. for traffic scenarios

with high demand for arrivals and departures.

In the first model, we develop an efficient solution methodology to improve the solution

of a large scale, stochastic integer programming based scheduling model. Two novel formula-

tions are developed and tight valid inequalities are derived to strengthen these formulations.

6

We also analyze the impact of different objective function structures on computational ef-

ficiency and highlight the implications for similar scheduling problems.

To be able to capture more detailed aspects of the runway scheduling problem, such as

taxiway operations crossing active runways, we also propose a sampling based stochastic

program for the runway scheduling problem and other machine scheduling problems of

similar structure. We propose extensions to an existing solution methodology, which makes

it computationally tractable and can be used as an alternative to existing deterministic

models.

1.2 Stochastic Programming

In contrast to traditional deterministic models, where the input data to the model is con-

sidered to be known, the input data to a stochastic model is not know with certainty at the

time the model is evaluated. A Stochastic Program (SP) is an optimization model where

the uncertain input parameters have known probability distributions. The most common

stochastic programs are recourse models. In a general recourse model, high level decisions

are made before uncertain parameters are realized. After some of the uncertain parameters

have been realized, corrections (recourse) to higher level decisions are made and new, lower

level decisions are made. The simplest, and most studied, recourse model is the two-stage

model, where a first stage decision is made, uncertainty is realized, and a recourse decision

is made in the second stage. In a two-stage stochastic program we are interested in finding

the first stage decision that minimize the expected cost over all possible realizations and

recourse decisions. In Chapter 4 we develop a two-stage stochastic integer program for the

airport runway scheduling problem. Anagnostakis (2004) has identified a decision hierarchy

for this particular type of problem that we exploit further. Recognizing that the makespan

of an aircraft sequence-depends on the aircraft weight classes involved, and not on charac-

teristics of individual aircraft, we find an aircraft weight class sequence in the first stage and

assign individual aircraft to positions in the sequence in the second stage. This gives rise to

a two-stage stochastic integer program, which we solve using scenario decomposition based

on Lagrangian relaxation. In Chapter 5 we use a different approach to solving a stochastic

7

integer program. The stochastic branch and bound algorithm is a sampling based approach

where stochastic upper and lower bounds are generated for first stage decisions. Similar

to deterministic branch and bound algorithms, the solution space is divided into smaller

subsets and organized into a branching tree. In contrast to deterministic branch and bound

algorithms, branches in the tree cannot be pruned as we do not know the exact bounds. We

propose an approach to significantly increase the performance of the algorithm by focusing

the computational effort on the parts of the branching tree that are most likely to contain

the optimal solution.

1.2.1 Two-Stage Stochastic Programming

The structure of a general two-stage stochastic linear program is shown in Model (1)

min
x∈Rn

cTx+ Eξ [Q(x, ξ)]

s.t. Ax = b

x ≥ 0

(1)

where x is the vector of first stage decision variables and ξ = (q, T,W, h) is the data to

the second stage model. The function Q(x, ξ) is the solution to the second stage problem,

defined in Model (2).

Q(x, ξ) = min
y∈Rm

qT y

s.t. Tx+Wy = h

y ≥ 0

(2)

If the probability distribution ξ has finite support, there are only a finite number of outcomes

of the uncertain events. Letting Ω be the set of all possible outcomes, also referred to as

scenarios, the stochastic program in Model (1) can now be formulated as a deterministic

problem, although it generally contains a huge number of decision variables. The new

problem, referred to as the deterministic equivalent problem, can be seen in Model (3),

where the parameter %ω is the probability of scenario ω ∈ Ω.

8

min
x∈Rn

cTx+
∑
ω∈Ω

%ωq
T
ω y

ω

s.t. Ax = b

Tωx+Wωy
ω = hω

x ≥ 0, yω ≥ 0

(3)

Classical solution methods to the large scale Linear Program (LP) in Model (3) are

based on cutting plane algorithms. The first cutting plane algorithm for two-stage stochas-

tic programs is the L-shaped method (Slyke and Wets 1969). This is an adaptation of the

well know Benders’ decomposition (Benders 1962), in which the problem is decomposed

into a master problem representing the first stage decision and several second stage prob-

lems, one for each scenario. Improvements to the solution methodology include multi-cut

algorithms, where several cutting planes are added in each iteration (Birge and Louveaux

1988). More recent algorithms for stochastic linear programs (SLP) are based on the regu-

larized decomposition method (Ruszczyski 1986) and trust-region methods (Kiwiel 1990).

By limiting the step-size in the master problem, improved computational efficiency can be

obtained, thus leading to fewer iterations and faster convergence.

Two-stage Stochastic Integer Programs (SIP) have a structure similar to Models (1) and

(2), with the complicating factor that some or all of the decision variables are restricted

to be integer values. If the integer variables are limited to the first stage only, most of

the theory and methods applicable to SLP can be used, with the exception that a Mixed

Integer Program (MIP) needs to be solved in the first stage. Therefore, SIPs are assumed

to have at least one integer variable in the second stage (Ahmed 2010). Analogous to

SLP, the deterministic equivalent problem of the SIP can be formed and solved as a large

scale MIP where cutting planes are included to take advantage of the problem structure

(Guan, Ahmed, and Nemhauser 2009). Stage-wise decomposition methods for SIP include

the integer L-shaped method (Laporte and Louveaux 1993) for two-stage problems with

binary variables in the first stage. The method is later generalized to handle a first stage

containing arbitrary variables and with integer recourse (Carøe and Tind 1998). Other

9

methods based on stage-wise decomposition have been developed by Sen and Higle (2005),

Sherali and Fraticelli (2002), and Ahmed, Tawarmalani, and Sahinidis (2004).

In the solution methodologies above, the problem is decomposed by stage, i.e. the

decomposition scheme follows the same logical order as the information process. An alter-

native approach to formulate and solve the problem is by means of scenario decomposition.

By creating copies of the first stage variables such that there is one copy for each scenario,

the problem can be decomposed and solved independently for each scenario. However, to

achieve an implementable policy it is required that the first stage variables take the same

values across all scenarios. Model (4) shows a formulation based on scenario decomposi-

tion, where we explicitly add the constraint linking all first stage variables, also called the

non-anticipativity constraint.

min
x∈Rn

∑
ω∈Ω

%ω(cTxω + qTω y
ω)

s.t. Axω = b

Tωx
ω +Wωy

ω = hω

x = xω

xω ≥ 0, yω ≥ 0

(4)

The idea of bundling scenarios for multistage (the generalization of two-stage models)

stochastic programs was introduced by Rockafellar and Wets (1991) and solution methods

based on dualizing the non-anticipativity constraints have been developed in Mulvey and

Ruszczyski (1995) and Rosa and Ruszczyski (1996). Caroe and Schultz (1999) extended the

idea and solution methodology to the case where some (or all) of the second stage variables

are required to be integer. In the solution procedure, the nonanticipativity constraints are

relaxed in a Lagrangian fashion, after which each scenario problem can be solved inde-

pendently to obtain a Lagrangian dual solution. As the final solution requires the first

stage variables to have the same value over all scenarios, this may be attained through

the penalty components represented by the Lagrangian multipliers. The dual subproblem

of finding optimal Lagrangian multipliers is solved using subgradient methods. For most

10

integer problems a duality gap typically exists, requiring procedures to obtain good feasible

first stage decisions.

1.2.2 Stochastic Branch and Bound

A slightly different approach for solving two-stage stochastic integer programs is the stochas-

tic branch and bound algorithm. The algorithm is general in the sense that it does not re-

quire any particular structure on the variables, although it is well suited for problems with

integer requirements on the first stage variables. Furthermore, there are no assumptions

on the probability distributions, other than that samples can be drawn from the distribu-

tion. The initial model was developed for discrete decision variables (Norkin, Ermoliev,

and Ruszczyński 1998) and it was soon thereafter generalized to handle global non-convex

stochastic programs (Norkin, Pflug, and Ruszczyński 1998). Similar to deterministic branch

and bound algorithms, the solution space is partitioned into smaller subspaces and organized

in a branching tree. In contrast to traditional branch and bound algorithms, deterministic

upper and lower bounds for nodes in the search tree are difficult to obtain. Therefore,

stochastic upper and lower bounds are used to estimate the objective in each node.

1.3 Thesis Contribution and Outline

The contributions of this thesis have two dimensions, involving practical and theoretical

issues. For the practical dimension, the contributions of this research are as follows: (1)

Our proposed models aim at improving runway efficiency and utilization by implementing

stochastic optimization procedures that are potentially tractable and implementable. Ex-

cept for some general discussions, such models have not been previously considered in the

literature. These models are likely to result in better resource utilization than FCFS or

deterministic optimization procedures under certain conditions (2) We also note that our

scheduling algorithm is an integrated arrival/departure scheduler with multiple interacting

runways, as opposed to most other studies where only a single runway or a single type

of operation is considered. This makes our models and analyses especially applicable in

complex configurations where runway dependencies have an impact on the throughput of

the dependent sets of runways, such as airport designs with close parallel runways. (3) Our

11

inclusion of the environmental impact and costs in the optimization implementations are

relevant from a sustainability perspective.

In addition to these practical implications, some theoretical contributions of this thesis

are as follows: (1) We focus on computational performance and develop methods to improve

the solution of a large scale, stochastic integer programming based scheduling model. (2)

We develop two novel formulations and derive tight valid inequalities to strengthen these

formulations. (3) We revive the stochastic branch and bound algorithm and propose sta-

tistical methods to dynamically change the computational emphasis for different parts of

the branching tree. These improvements together with a careful implementation lead to a

stochastic solution method for the runway scheduling problem, which can be used in close

to real time for moderate to medium sized problems.

The outline of the thesis is as follows: In Chapter 2, previous work on the runway

scheduling problem and related machine scheduling problems are presented along with a

review of some stochastic models and solution procedures for stochastic models in aviation.

In Chapter 3, we develop comprehensive cost functions for aircraft delay and use these func-

tions to create a global objective function for the runway scheduling problem. The global

objective function is later used in Chapter 4. We also investigate the impact of including

environmental factors into the objective function. A two-stage formulation of the stochas-

tic runway scheduling problem is presented in Chapter 4. We strengthen the formulation

using valid inequalities, and propose a solution methodology based on scenario decompo-

sition. In the computational study section, we evaluate the impact of various formulation

implementations and analyze the value of stochastic scheduling. In Chapter 5, we present

the stochastic branch and bound algorithm along with the proposed enhancements. We

develop a solution strategy for stochastic machine scheduling problems and show that the

algorithm works well for medium sized problems. We tailor the model to several versions of

the stochastic runway scheduling problem and provide computational results showing the

benefit of our proposed approach. A conclusion is provided in Chapter 6, where we also

suggest directions for future research.

12

CHAPTER II

LITERATURE REVIEW

The literature review chapter is divided into three main sections. In the first part, we

review earlier work on airport runway scheduling and attempt to emphasize various aspects

of the scheduling process. The literature review shows that the problem is hard, from

a strict mathematical sense and from a practical point of view. We conclude that the

stochastic version of the runway scheduling problem has received very limited attention in

the literature. In the second section we review models for machine scheduling problems and

note that certain aspects of the runway scheduling problem have been captured in specific

machine scheduling problems. In the last section we present previous work on stochastic

programming models related to the formulations in this thesis and give examples of some

stochastic programs applied to other areas of aviation.

2.1 Airport Runway Scheduling

2.1.1 Deterministic Methods

The deterministic runway scheduling problem has been well studied in the literature over

the past 35 years. Almost all researchers refer to Dear (1976) as the first model published on

the topic of optimized runway scheduling, and more than 60 articles have been published on

the topic of arrival scheduling and planning. Scheduling of arrival operations has received

far more attention in the literature than departure scheduling (Mesgarpour, Potts, and

Bennell 2010).

We begin our literature review by focusing on optimal methods for airport runway

scheduling. Bianco, Rinaldi, and Sassano (1987) and Bianco, Dell’Olmo, and Giordani

(1997) introduce a combinatorial model for the arrival scheduling problem. The model is

formulated as a machine-scheduling problem on a single machine with n jobs (aircraft),

earliest release time for the jobs, and sequence-dependent setup times. In a special case,

their formulation reduces to an Asymmetric Traveling Salesman Problem, showing that the

13

runway scheduling problem is NP-complete (Garey and Johnson 1979).

Beasley, Krishnamoorthy, Sharaiha, and Abramson (2000) present a mixed integer pro-

gram that has served as a base for describing the runway scheduling problem in many

subsequent papers. In addition to providing the base formulation, they give computational

results showing that their formulation works fairly well but that it is not capable of handling

all real world instances within reasonable time limits. The main reason for this limitation

is that the “big-M” construction to model non-convexities results in a weak LP-relaxation,

an undesirable property in most solution methods for integer programs. Therefore, in the

literature, the exact formulation has been used as a reference to compare the performance

of heuristic methods rather than as a practical method to solve the scheduling problem in

real-time.

When the sequence of operations is determined, the problem of optimizing the runway

times, minimizing the objective and maintaining separation requirements, can be solved

using an LP. This observation is explicitly stated in Ernst, Krishnamoorthy, and Storer

(1999), who develop a modified simplex method to solve the timing problem. The modified

simplex method is then embedded in a search heuristic that aims to find good sequences.

Brinton (1992) suggests a branch and bound method where each level of the branching

tree corresponds to a position in the sequence. Given n aircraft to be scheduled, the root

node has n children, where each child corresponds to putting a specific aircraft first in the

sequence. Each of these children then have n − 1 children, corresponding to the second

position, and so on. If no pruning of the tree is made based on the objective bounds,

this method would eventually enumerate all n! sequences. Eun, Hwang, and Bang (2010)

use a similar branch and bound scheme and incorporate a Lagrangian dual-decomposition

method to calculate lower bounds on the objective, which significantly reduces the number

of nodes in the search tree. For departure scheduling, Gupta, Malik, and Jung (2009, 2010)

suggest a mixed integer formulation where aircraft are assigned to positions in the departure

sequence. This formulation is combined with departure queue assignments, for increased

departure throughput.

Recently, Sherali, Ghoniem, Baik, and Trani (2012) developed a MIP considering mixed

14

arrival and departure scheduling on a single runway or on close parallel runways. Given the

structure of the separation constraints, the mixed operation problem is as hard or harder to

solve due to violated triangle inequalities among the separation constraints. In cases where

all separation constraints satisfy the triangle inequality, e.g. in pure arrival (or departure)

scheduling, it is sufficient to consider separation between consecutive operations to enforce

separation between all pairs of operations. This is not the case in mixed operations, which

introduce additional complexity into the formulation.

In contrast to the models presented above, where optimality of a solution can be proven

but the run time is usually long, heuristic methods are able to provide the decision maker

with solutions in real-time or close to real-time. In the dynamic environment faced by air

traffic controllers, fast computation times are necessary if a sequence is to be implemented.

In practice, first-come, first-served is the sequencing method most widely used (Brentnall

and Cheng 2009). In a FCFS scheme, operations on the runway are sequenced based on the

time the aircraft first enters a given point or is expected to reach a point. FCFS is considered

to be a fair way of scheduling aircraft; furthermore, it requires minimal intervention from

air traffic controllers as no re-sequencing is required. On the other hand, FCFS sequences

rarely give sequences with the best throughput and/or minimized aircraft delay (Bennell,

Mesgarpour, and Potts 2011). All practical applications, e.g. Atkin, Burke, Greenwood,

and Reeson (2008); Balakrishan and Chandran (2010); Rathinam, Wood, Sridhar, and Jung

(2009), are based on heuristic solution methods.

Based on the above observations, Dear (1976) developed the concept of Constrained

Position Shifting (CPS) . The core idea is that in a good (optimal or close to optimal)

sequence that can be implemented in practice, the position of each aircraft is shifted by a

limited number of steps from the nominal FCFS sequence. The maximum allowable number

of position shifts is determined through the parameter τ . When τ is small, typically 1,2,

or 3, the search space of sequences is significantly reduced and efficient algorithms can

be developed. CPS algorithms based on dynamic programming are presented in Psaraftis

(1980), Dear and Sherif (1991), Venkatakrishnan, Barnett, and Odoni (1993), and Trivizas

(1998). In the most recent work, the CPS problem is solved as a shortest path problem

15

on a CPS network (Balakrishan and Chandran 2010). An illustration of the CPS network

with six flights and τ = 1 can be seen in Figure 2. The algorithm is able to handle

precedence constraints, time window restrictions, multiple objectives (minimize makespan

or sum of delays). Using a discretized network, the authors extend their formulation to

include arbitrary cost functions and cases where the triangle inequality for the separation

constraint is violated.

Figure1. CPS network for n=6, k=1generated frompossibleaircraft assignments shown on top.

Position 1 2 3 4 5 6

Possible 1 1 2 3 4 5

aircraft 2 2 3 4 5 6

assignments 3 4 5 6

1–2

1–3

2–1
Sink

1–2–3

1–2–4

1–3–2

2–1–3

2–1–4

1–3–4

1–3–5

1–4–3

2–3–4

2–3–5

2–4–3

3–2–4

3–2–5

2–4–5

2–4–6

2–5–4

3–4–5

3–4–6

3–5–4

4–3–5

4–3–6

4–6–5

4–5–6

5–4–6

3–5–6

3–6–5

1–3–4

2–3–4

1–2–3

1–2–4

1–2–5

1–4–5

2–4–5

3–4–5

2–3–5

2–3–6

2–5–6

3–5–6

4–5–6

3–4–5

3–4–6

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Source

2–3

2–3–4

2

1

Note. Nodes shaded in black do not belong to any source-sink path and hencecan bepruned fromthenetwork.

Figure 2: Network used in CPS algorithm presented in Balakrishan and Chandran (2010).

In the dynamic scheduling problem, the decision maker is continuously updated with

new information, which requires re-optimization of the problem. The dynamic problem

was first introduced within the CPS framework in Dear and Sherif (1991) and later in

Venkatakrishnan, Barnett, and Odoni (1993). The problem is explicitly stated in Beasley,

Krishnamoorthy, Sharaiha, and Abramson (2004), who define a displacement function to

link decisions in successive iterations. Not only do solutions need to consider the traditional

operational constraints, but the solution in the previous iteration must also be taken into

account when finding a good sequence of operations. The authors use a genetic algorithm

to solve the dynamic problem.

Genetic algorithms have received increased attention in the last decade as an efficient

16

way to generate good sequences. Examples of genetic algorithms for arrival scheduling can

be found in Hu and Paolo (2008) and Hu and Paolo (2011). In a recent publication (Yu,

X.Cao, and Zhang 2011), cellular automata is embedded in a two-step algorithm. First,

a good sequence of aircraft is found using cellular automata with updating rules aimed to

enforce separation and reach a good objective value. In the second step, a local search

heuristic is applied to set the landing times. Hu and Chen (2005) attempts to link the

static and dynamic problem using a receding horizon method (rolling horizon). They show

how good solutions to the dynamic problem can be obtained by using models for the static

problem.

While there are no papers that study and account for environmental impacts within the

runway scheduling framework, some planning tools aimed at quantifying different compo-

nents of this impact have been proposed in the literature. Kesgin (2006) develops estimation

methods for aircraft landing, take-off and taxi emissions, while Celikel, Hustache, Lepinay,

Martin, and Melrose (2005) study the levels of environmental impact in different opera-

tional scenarios. Monroe, Jung, and Tobias (2008) analyze the environmental effects of

eliminating arrival aircraft stops at active runway crossings using simulation tools. Hsu and

Lin (2005) discuss an airline network design model to determine optimal routes and flight

schedules in response to airport noise charges, while Nero and Black (1998) address the

environmental costs in hub-and-spoke network design. Finally, a departure planning tool

that also accounts for emission costs is proposed by Brinton, Cook, and Atkins (2007).

2.1.2 Robust/Stochastic Runway Scheduling

Almost all of the runway scheduling methods present in the literature assume that the target

runway time (arrivals) or earliest runway time (departures) are known with certainty. The

exceptions include:

• Chandran and Balakrishan (2007) give a CPS algorithm that includes uncertainty

in the estimated time of arrival (ETA) at the runway and attempt to find robust

schedules. The uncertainty is due to (lack of) aircraft equipage, pilot response time

and behavior, and weather. The uncertainty used in the computational study is: ±

17

150 seconds for aircraft with precise Flight Management System (FMS) and ± 300

seconds for aircraft not equipped with precise FMS.

• Hu and Paolo (2008) introduce uncertainty in the dynamic version, between successive

iterations. In the computational study, 20% of the aircraft have their ETA randomly

altered by ± 5 minutes.

• Atkin, Burke, Greenwood, and Reeson (2008) develop a near-time departure planner

where the arrival time to the departure holding area is uncertain. The main purpose

of their paper is to investigate how the uncertainty influences the proposed scheduling

algorithm.

• The potential value of a stochastic approach to scheduling runway operations has

been discussed in some recent studies such as Solveling, Solak, Clarke, and Johnson

(2011a) and Gupta, Malik, and Jung (2011), where the authors in the latter evaluate

the impact of deterministic departure scheduling under uncertainty.

Other than Solveling, Solak, Clarke, and Johnson (2011a), no stochastic models have

been developed and/or applied to the runway scheduling problem. In their work, a simplified

two-stage model is used to establish the value of stochastic runway scheduling. The integer

program uses continuous second stage variables and employs Benders’ decomposition to

solve the model. Due to the simplified structure, the objective function in the second stage

is only an approximation of the true cost. In their study, they find that a stochastic model

has potential to increase runway throughput, especially when the demand exceeds runway

capacity.

2.2 Machine Scheduling under Uncertainty

Given the similarities between the runway scheduling problem and certain machine schedul-

ing problems, some runway scheduling studies describe their approaches based on the lit-

erature in machine scheduling (Bianco, Dell’Olmo, and Giordani 1997; Bianco, Rinaldi,

and Sassano 1987). In particular, the asymmetric separation requirements between air-

craft can be viewed as sequence-dependent setup times in a machine scheduling problem

18

on a single machine. Typical objectives for machine scheduling problems with sequence-

dependent setup times include minimization of the sum of completion times and mini-

mization of total tardiness. When makespan minimization is used as the objective, the

single machine scheduling problem can be transformed into a Traveling Salesman Problem

(TSP) (Zhang and Zheng 1996). Our models of the stochastic runway scheduling prob-

lem correspond to single machine scheduling problem with probabilistic release times (and

due dates) and sequence-dependent setup times. Many machine scheduling models with

sequence-dependent setup times have been considered in the literature. Examples of solu-

tion methods include genetic algorithms (Lee and Asllani 2004), greedy randomized adaptive

search (Gupta and Smith 2006), and simulated annealing (Tan, Narasimhan, Rubin, and

Ragatz 2000). More examples can be found in the survey by Allahverdi, Ng, Cheng, and

Kovalyov (2008). Note that all of these models consider the deterministic case. In relation to

the multi-criteria objective structure developed in Chapter 3, we note that multi-objective

models have been considered for machine scheduling problems as well. For example, Eren

and Güner (2006) minimize a weighted combination of completion times and tardiness for

a single machine problem with sequence-dependent setup times.

Stochastic machine scheduling problems in the literature primarily focus on probabilis-

tic processing times (Cai and Zhou 2005; Skutella and Uetz 2005; Soroush and Fredendall

1994). However, the modeling framework in aircraft sequencing relates to machine schedul-

ing models with probabilistic release times (or due dates). Such models have received very

limited attention in the literature. One of the few examples is Wu and Zhou (2008), where

the authors use a dynamic programming algorithm to solve a single machine scheduling

problem with stochastic due dates and processing times. The model considered in that

study does not include sequence-dependent setup times, and the objective involves only the

minimization of maximum tardiness.

2.3 Stochastic Programming and Applications in Aviation

Applications of stochastic programming range from areas such as energy, telecommunica-

tions, manufacturing, to logistics (Sen and Higle 1999). Although no previous work has

19

been published on stochastic airport runway optimization, there are examples of stochas-

tic models in other areas of aviation. Several models for air traffic flow management have

been developed. Common for all of them is that weather is the uncertain factor. Solution

methods for these stochastic programs include a “fix-and-relax” heuristic for the determin-

istic equivalent problem (Alonso, Escudero, and Ortuno 2000), Lagrangian based scenario

decomposition (Chang 2010), and a “tight” representation of the deterministic equivalent

problem allowing for a direct solution using a commercial solver (Agust́ın, Alonso-Ayuso,

Escudero, and Pizarro 2012).

Several stochastic methods for the ground-holding problems, where aircraft can be held

at their origins due to limited capacity at the destination, have been presented. Ball,

Hoffman, Odoni, and Rifkin (2003) show that their stochastic integer program formulation

can be solved using an LP and still provide integer solutions. Similar characterizations are

made in Kotnyek and Richetta (2006) and Glover (2010). Mukherjee and Hansen (2007)

develop a dynamic stochastic integer program to solve the single- and multiple airport

ground holding problem.

In addition to air traffic flow management and ground holding, stochastic models have

been developed for airline network revenue management (Möller, Römisch, and Weber 2007)

and crew scheduling (Yen and Birge 2006). For the revenue management problem, the

deterministic equivalent problem is solved directly, and for the crew scheduling problem, a

branching algorithm in which the recourse model decides how branching is done is developed.

We conclude the literature review with applications of the stochastic branch and bound

algorithm. The practicality of the algorithm is investigated in Gutjahr, Hellmayr, and Pflug

(1999) and Gutjahr, Strauss, and Wagner (2000). In the former, the stochastic branch

and bound algorithm is applied to a stochastic single-machine-tardiness problem. The

computational results indicate that the algorithm works well for small instances and gives

good approximations for larger instances. A modified version of the algorithm is successfully

used in Gutjahr, Strauss, and Wagner (2000), where the deterministic subproblems are

solved using a heuristic, which allows many more samples to be generated during the course

of the algorithm.

20

CHAPTER III

COST FUNCTIONS FOR REDUCED ENVIRONMENTAL IMPACTS

Several deterministic optimization models have been developed for scheduling arrivals and

departures on a single runway or multiple runways. Given that the problem is combinatorial

in nature, all exact approaches are based on integer models. As discussed in Chapter 1, the

airport runway scheduling problem does not have a clearly defined objective. In this chapter

we develop a global cost function that trades-off the two most commonly used objectives,

runway utilization and system delay. We include all relevant costs, including environmental

cost, in the objective function. We also analyze the impact of considering environmental

costs in airport runway scheduling. The chapter is structured as follows: In Section 3.1 we

present the problem and the optimization model used for the analysis. In Section 3.2 the

global cost function is derived. The simulation used for the analysis is presented in Section

3.3 and the analysis and policy implications are presented in Section 3.4.

3.1 Problem

In this study we assume that the scheduled operations involve two parallel runways with

a crossing taxiway, see Figure 3. This configuration is based on operations at Detroit

Metropolitan Wayne County Airport (DTW), runways 22L and 22R, and is similar to the

configuration at most other major airports. Without loss of generality, we assume that

the outer runway is dedicated to arrivals, while departures take place on the inner runway.

Thus, an arriving aircraft has to cross the departure runway, interacting with departure

operations while taxiing to its assigned gate. In addition, as with many other airports,

we consider the option for an arriving aircraft to go around the departure runway at the

expense of increased taxiing time and costs. It is assumed that the longer route is not

congested, and thus consists of a fixed taxiing time. On the other hand, if an aircraft is

scheduled to cross the departure runway, it may be subject to taxiing speed adjustments or

idling before the crossing. No runway crossing occurs for the departing aircraft.

21

22
R

4L 4R

3L

3R

22
L

21
R

21
L

2
7
R

2
7
L9

R

9
L

Figure 3: A two-runway configuration similar to runways 22L and 22R at DTW.

Given such a general runway configuration, we can consider a set of aircraft A = Arr ∪

Dep, where Arr and Dep represent the sets of arriving and departing aircraft. For each

arriving aircraft a ∈ A, we assume that the following attributes are known at the time of

decision making:

ra : scheduled arrival time for aircraft a ∈ Arr

la : latest possible arrival time for aircraft a ∈ Arr

where the arrival time corresponds to the touchdown time for the aircraft. The latest arrival

times are based on the possible airspeeds for the aircraft and other operational limitations.

We consider a similar characterization for the departing aircraft, where the parameters

are ra, the scheduled departure or wheels-off time for aircraft a ∈ Dep, and la, the latest

possible departure time for aircraft a ∈ Dep. We assume that an aircraft cannot depart

before its scheduled time, and the upper bound la on the delay is imposed to prevent

extensive delays at the gate. Additional parameters and bounds can be defined to model

operational limitations such as maximum taxi times or queue times.

Key inputs for a runway operations scheduler are the separation requirements between

different operations. These are based on safety measures imposed by the air traffic authority,

and depend on the type of aircraft and operation. We define si,j as the minimum required

22

Table 3: Separation requirements (in seconds) for two parallel runways.
Trailing Operation

AH A7 AL AS DH D7 DL DS

L
ea

d
in

g
O

p
er

a
ti

o
n AH 96 138 138 240 15 15 15 15

A7 96 108 108 198 15 15 15 15
AL 60 72 72 162 15 15 15 15
AS 60 72 72 102 15 15 15 15
DH 48 56 56 80 90 90 120 120
D7 48 56 56 80 90 90 120 120
DL 48 56 56 80 60 60 60 60
DS 48 56 56 80 60 60 60 60

Table 4: Separation requirements (in seconds) at runway crossing.
Trailing Operation

AH A7 AL AS DH D7 DL DS

L
ea

d
in

g
O

p
er

a
ti

o
n AH - - - - 10 10 10 10

A7 - - - - 10 10 10 10
AL - - - - 10 10 10 10
AS - - - - 10 10 10 10
DH 35 35 35 35 - - - -
D7 40 40 40 40 - - - -
DL 40 40 40 40 - - - -
DS 100 100 100 100 - - - -

time separation between aircraft operation i followed by operation j, and present the values

of these parameters in Tables 3 and 4.

The separation requirements in Table 3 are defined for operations in Instrument Flight

Rules (IFR) conditions on a configuration with one runway for arrival operations and one

runway for departure operations where the distance between the runways is less than 4300

feet. In Tables 3 and 4, the first letters of the row and column headers represent the type

of operation, i.e. arrival or departure, while the second letters represent the aircraft weight

class. The considered aircraft classes are heavy, Boeing 757, large and small, denoted by H,

7, L and S. Wake turbulence caused by the leading aircraft is the source of the separation

requirements for runway operations (Bly 2005).

The runway scheduling problem consists of minimizing an objective function subject to

these separation requirements. To this end, we define:

23

xi,j : 1 if operation i ∈ A is scheduled before operation j ∈ A, 0 otherwise

ta : time of operation for aircraft a ∈ A

t` : time of the latest arrival or departure operation

An aircraft operation may refer to an arrival, a departure or a runway crossing action. If

we let g(t,x) represent the overall cost function with environmental impact and let M be a

sufficiently large constant, then the runway operations scheduling problem can be expressed

as follows:

min g(t,x) (5)

s.t. ta ≥ ra ∀a ∈ A (6)

ta ≤ la ∀a ∈ A (7)

t` ≥ ta ∀a ∈ A (8)

tj − ti ≥ si,j −M(1− xi,j) ∀i, j ∈ A×A (9)

ti − tj ≥ sj,i −Mxi,j ∀i, j ∈ A×A (10)

t ∈ R+ x ∈ B

Constraint sets (6) and (7) limit the times for which each aircraft can arrive/depart

and constraint set (8) identifies the time for the last activity on the runway. Operations

need to meet the mandated separation requirements, which are defined in a general form

through constraint sets (9) and (10). These constraints are used to model the separation

requirements for the aircraft at the runway-taxiway intersection, as well as the minimum and

maximum taxi idling time at the runway crossing. Treating (5)-(10) as a core model, it is

possible to include additional decisions into the runway-scheduling problem by introducing

new variables and constraints.

3.2 Cost Functions with Environmental Impacts

An accurate and comprehensive representation of function g(t,x) is needed for the validity

of the model. The objectives in the runway-planning problem are twofold: maximization

24

of throughput by re-sequencing the arrival and departure streams, and minimization of

operational and environmental costs associated with deviations from scheduled operation

times. By putting a monetary value on these conflicting objectives, a global cost function

can be constructed that consists of several parts, each of which involves some impact on

the environment.

The overall cost function consists of a number of elements. First, for each arrival aircraft

we consider the cost of deviating from the scheduled arrival time and the cost of deviating

from the fuel-optimal arrival time, if different from the scheduled arrival time. For these

latter aircraft we also consider the cost of additional time spent on the taxiway due to

interactions with the departure operations. The second component captures the delay cost

for departing aircraft that can be incurred either at the gate or on the taxiway. The third

component captures the cost of runway throughput. Hence, we can express the objective

function as:

g(t,x) =
∑
a∈Arr

(Cost of Schedule Deviation + Cost of Taxiway Operations) +

∑
a∈Dep

(Cost of Delay) + Runway Throughput Cost (11)

where the individual parts with an emphasis on environmental cost components are detailed

below.

3.2.1 Components of the Global Cost Function

An important aspect of the global cost function is that it models the cost of deviations

from a nominal schedule, i.e. the additional cost incurred by the scheduling process. Hence,

all components modeling the costs for individual aircraft assume a zero cost if the aircraft

arrives/departs on schedule, taxies according to the pre-assigned route and no delay is

experienced due to runway crossings.

The planning model considers two decisions related to arriving aircraft that need to be

captured in the global cost function. The first is the runway arrival time. The arriving

aircraft is airborne when the decision is made and the deviation is easily calculated as the

difference between the updated optimized arrival time and the scheduled arrival time. Two

25

Active Taxiing
Cost of Extended Taxi Route

Airborne
Cost of Schedule Deviation

Idling at Runway Crossing
Cost of Idling

Fuel
Cost

Emission
Cost

Noise
Cost

Crew
Cost

Passenger
Cost

Fuel
Cost

Emission
Cost

Noise
Cost

Fuel
Cost

Emission
Cost

Noise
Cost

Crew
Cost

Passenger
Cost

(a) Cost components for arrival aircraft.

Departure at Gate
Cost of Schedule Delay

Departure on Taxiway
Cost of Schedule Delay

Fuel
Cost

Emission
Cost

Noise
Cost

Crew
Cost

Passenger
Cost

Gate
Occupancy

Cost

Crew
Cost

Passenger
Cost

(b) Cost components for departure aircraft.

Figure 4: Cost components for arriving (top) and departing (bottom) aircraft.

actions can be taken to achieve the desired deviation, namely speed-change and vectoring.

We assume that both actions are possible in the cruise phase, but only vectoring is allowed

in the descent and landing phase.

The second decision deals with taxiing operations. Each arriving aircraft has a prede-

fined taxi route based on the shortest unimpeded taxi time to the gate. For those aircraft

crossing the departure runway, it may be necessary to idle while waiting for an opportunity

to cross the runway. Based on the cost of idling and the fixed additional cost of taxiing

the longer route around the departure runway, the model can change the initial taxi route.

It is assumed that crew and passenger costs are accounted for in the planning stage of

nominal taxiway operations. The three phases of the arrival operation with corresponding

cost components are presented in Figure 4a.

A similar representation for departing aircraft can be seen in Figure 4b. By assumption,

a departing aircraft cannot be scheduled earlier than the initially scheduled departure time,

and thus, the cost function only needs to consider delays. Delay cost can be incurred either

at the gate or on the runway, depending on whether the aircraft has pushed back from the

gate or not. It is assumed that the engines are turned off when the aircraft is at the gate,

therefore, no fuel, emission or noise cost is considered. Instead there is an opportunity cost

for using the gate. For departures that have already pushed back we assume that the engine

is idling and the delay is experienced on the taxiway.

26

3.2.1.1 Fuel costs

The additional fuel costs are proportional to the amount of additional fuel burned. For

vectoring, taxiing and idling, the fuel flow is obtained for the standard four aircraft weight

classes (Ren and Clarke 2008). Depending on what stage of the process an airborne arrival

aircraft is in, the fuel flow for an appropriate flight level is used.

For speed adjustments, the fuel flow is obtained by calculating the required speed ad-

justment to achieve the deviation. Assuming an instantaneous speed-change, the additional

fuel flow is calculated as the difference between the fuel flow with the new speed and the

fuel flow with the initial speed. If the aircraft does not fly at fuel-optimal speed, a change

in speed can lead to a decrease in fuel flow.

3.2.1.2 Emission costs

For the emission costs, we consider the emission of CO2 caused by the burning of jet fuel, as

well as the emission of other pollutants, such as SO2, NOx, CO, and HC. The emissions of

CO2 are proportional to the fuel flow with a factor of 3.14, i.e. 1 lb of jet fuel emits 3.14 lb of

CO2 (EIA 2009). The cost of CO2 emissions is obtained by multiplying the additional fuel

burn with 3.14cCO2 , where cCO2 is the cost of CO2 emission based on the current market

price on the CO2 emission trading market. In addition, Celikel, Hustache, Lepinay, Martin,

and Melrose (2005) report three levels of estimates for aircraft emission costs by pollutant

type, which are shown in Table 5. We use all three levels of estimates when conducting the

sensitivity analysis of the environmental impact of schedules on variation in these costs.

For other pollutants, the emission rates are based on the Boeing Fuel Flow Method

2 (Dubois and Paynter 2006). Representative equipments in each weight class are used to

approximate the emissions for all phases of the flight, including taxiing and idling (Table 6).

Due to the wide variety of aircraft types in the small weight class, and the relatively small

impact they have on the overall emissions from aircraft, we omit this class when estimating

environmental cost. Instead, a fraction of the emission cost for the large weight class is used

as an approximation. The unit cost for each pollutant is again based on the estimates in

Table 5.

27

Table 5: External costs of aircraft emissions. ($/lb)
Low Base High

CO 0.07 0.09 0.13
CO2 0.007 0.024 0.042
HC 1.7 3.6 5.5
NOx 2.9 4.1 6.9
SO2 1.4 3.9 7.2

Table 6: Emission rates (lb/hr) based on the Boeing Fuel Flow Method 2.

Phase 1 Phase 2 Phase 3
L 7 H L 7 H L 7 H

CO 8.1 5.1 14.6 60.1 503.6 366.4 54.6 455.4 307.9
HC 1.7 4.0 1.9 12.4 6.1 111.9 11.3 6.1 86.9
NOx 53.8 32.2 94.4 4.6 3.2 8.3 5.1 3.8 6.2
SO2 3.7 4.4 7.4 1.0 1.2 1.7 1.1 1.4 1.8

Taxiing Idling
L 7 H L 7 H

CO 43.4 98.9 178.1 52 340.9 225.9
HC 9.0 5.3 40.9 10.8 5.9 56.7
NOx 7.5 9.5 11.5 5.8 4.8 9.0
SO2 1.4 2.4 2.6 1.2 1.6 2.3

Similar to the calculation of fuel flow for arriving aircraft, we divide emission costs into

two components, depending on whether the maneuvers correspond to speed adjustment or

vectoring. While the emission rates in Table 6 are used for vectoring based maneuvers,

emission rates centered on the optimal cruise speed are used to calculate emission costs for

speed adjustments.

In defining the cost of additional noise due to deviation in flight time, we use the esti-

mates of Levinson, Kanafani, and Gillen (1999) who suggest an average noise cost of $0.043

per kilometer traveled. While this is a crude estimation, it enables us to calculate a noise

impact measure based on the time deviation and the average speed of a given aircraft. The

approximation does not directly model the complex relations that use community char-

acteristics and property values in calculating noise costs of runway operations, which are

discussed in Nelson (2004) without any specifics on the dollar amounts for the costs. How-

ever, the use of a linear relationship between flight time and noise costs in our optimization

model can be justified. First our analysis considers the additional cost of operations due

28

Table 7: Noise cost, $/minute, for three different cost levels.
Weight class (passengers)

Level: S (70) L (160) 7 (230) H (270)

Low 1.9 4.4 6.4 7.5
Base 2.8 6.3 9.1 10.7
High 3.6 8.2 11.8 13.8

to inclusion of environmental factors, which are incurred by delaying or speeding the air-

craft mostly through vectoring. The number of operations and aircraft velocities, therefore,

remain constant and only the flight times change due to the vectoring maneuvers. More-

over, these changes are mostly small. Even if an exact relationship between flight time and

noise costs were to be established, these need to be defined individually for each specific

airport. Thus, we utilize the approximation of Levinson, Kanafani, and Gillen (1999) as a

general relationship, and perform sensitivity analysis around that approximation to serve

as a valid input to the runway scheduling algorithm. Using the value as a base cost level,

we also consider low and high noise cost parameters to account for any inaccuracy in the

approximation. The resulting costs can be seen in Table 3.2.1.2.

3.2.1.3 Crew and Passenger costs

To estimate the cost of delays for crew and passengers, we use the information found in

Cook, Tanner, and Anderson (2004). The report includes delay costs for 12 specific aircraft

types under three cost scenarios. For the purpose of estimating crew and passenger costs

we consider the base scenario that includes costs for two types of delays; a short delay of

15 minutes and a long delay of 65 minutes. The costs are shown in Table 8. It is assumed

that any delay of 15 minutes or less does not incur crew and passenger costs, resulting in

the short delay costs being zero. Justifications for the no cost assumption for delays less

than 15 minutes are detailed such that delays below this threshold are typically included as

buffers in schedules. Moreover, the minimum connection time for passengers and minimum

turn around time for aircraft are typically around 30 minutes. It is concluded that any crew

and passenger costs for short delays will be incurred only in rare cases and even then their

impact will be minimal.

29

Table 8: Crew and passenger delay costs. ($/minute)
Crew Cost Passenger Cost

Short Long Short Long

S 0 575 0 1165
L 0 800 0 3344
7 0 893 0 5533
H 0 1926 0 8226

The crew cost portion of costs includes salaries and expenses for flight and cabin crew.

The passenger cost portion includes hard cost (re-bookings, accommodations, etc.) together

with soft cost (e.g. lost market share) for the airline.

Given these cost parameters, we can calculate the marginal cost for a long delay assuming

that marginal delays grow linearly. The marginal cost for any delay is then calculated

through interpolation. The cost of occupying a gate depends on the subsequent use of the

gate, as the delay at the gate can potentially cause a delay for an incoming aircraft. The

gate occupancy cost is based on the idling cost, including crew and passenger cost, for the

incoming aircraft. Since the model only considers the arrival time to the runway, the time

by which the arriving aircraft reaches the gate is approximated using the unimpeded taxi

in time and the expected taxi delay.

3.2.2 Cost of Deviation from Latest Scheduled Operation Time

With a global cost function defined for each aircraft in the data set, a cost function for

runway throughput can be developed. Let A′ be the aircraft succeeding the aircraft in A.

For both sets A and A′, the aircraft are ordered by scheduled departure or arrival time. For

the purpose of constructing the cost function, we let ā ∈ A be the last scheduled aircraft.

Furthermore, we let Γi represent the delay of ā for delay level i. We begin by assuming that

Γ0 = 0, i.e. ā is optimized such that tā = rā and the last aircraft does not experience any

delay.

With this assumption, the aircraft in A′ are scheduled according to a first-come, first-

served policy until the FCFS policy gives a zero delay for an aircraft or all the aircraft in A′

are scheduled. The cost of the delay for each aircraft in A′ is calculated, and adding these

costs together, the cost for violating the last scheduled runway time in A by Γ0 minutes

30

Table 9: Arrival and departure rates for the different schedules.
Length of schedule Arrival rate Departure rate Cumulative rate

[min] [flights/hr] [flights/hr] [flights/hr]

120 21.2 25.8 47.0
105 24.3 29.6 53.9
90 28.5 34.6 63.1
75 34.2 41.6 75.8
60 43.0 52.2 95.2

is obtained. Repeating this with the assumption that the last aircraft in A is delayed

by Γ0,Γ1, . . . ,Γθ minutes, a cost function for runway utilization can be constructed. The

interval lengths Γi and parameter θ can be chosen to achieve a desired level of detail in the

piecewise linear function that is created.

All the components in the global cost function g(t,x) are convex functions. In the

mathematical model we approximate g(t,x) with piecewise linear functions which allows

for modeling using standard techniques.

3.3 Simulations for Environmental Cost Analysis

The input to the simulations are based on actual flight schedules at major airports, and

are representative of conditions during peak periods. More specifically, we initially consider

the arriving and departing traffic at DTW for a 2 hour peak on September 26th, 2006.

Using this schedule as a baseline, we create additional representative schedules for heavier

volumes of traffic by “compressing” the baseline schedule to obtain higher operation rates.

We compress the initial 120 minute schedule to schedules of 105 minutes, 90 minutes, 75

minutes and 60 minutes. The arrival and departure rates for the different schedules are

presented in Table 9.

For each schedule, we simulate 40 randomly generated instances by creating a realiza-

tion of the actual departure/arrival time for each aircraft. The realizations are based on

pushback delay distributions, taxi time distributions, and for arrival aircraft, delay dis-

tributions while in transit. The pushback delay distributions and the transit time delay

distributions are obtained by analyzing the Aviation System Performance Metrics (ASPM)

31

Table 10: Average arrival and departure rates after realization.
Length of schedule Arrival rate Departure rate Cumulative rate

[min] [flights/hr] [flights/hr] [flights/hr]

120 17.2 23.2 40.4
105 18.8 26.4 45.2
90 20.7 29.9 50.6
75 23.2 34.4 57.6
60 27.2 41.4 68.6

and Enhanced Traffic Management System (ETMS) data provided by the FAA, while taxi

time distributions were based on the analysis of Simaiakis and Balakrishan (2009).

The initial schedule for the 2 hour peak is extended with an additional hour of flights to

capture the impact of violating the latest scheduled time. After a schedule has been realized,

the flights in the first 2 hours are included in the optimization, whereas the remaining flights

are used to calculate the delay cost for subsequent operations. Similarly for the compressed

schedules, we include all flights in the first x, x ∈ {105, 90, 75, 60} minutes of the schedule

in the optimization. The simulated arrival and departure rates are presented in Table 10.

As representative aircraft types in each weight class for the schedule, we use Boeing

767-300 for the heavy weight class, Boeing 757-200 for the B757 weight class, and Boeing

737-800 for the large weight class. Due to the wide spectrum of aircraft, e.g. jet and turbo-

prop, in the small weight class we assume that the costs used for this weight class are 70%

of what we use for aircraft in the large weight class.

3.4 Analysis and Policy Implications

3.4.1 Environmental Value of Optimization

The major policy related question involves the value of an optimized schedule from an

environmental perspective. In other words, how much reduction in environmental costs can

be achieved through an optimization based approach over the currently implemented FCFS

system, and how does this value change with increasing schedule density? The response is

given in Figure 5 where the environmental value of optimization is displayed for different

levels of emission cost estimates. The overall savings vary between $8/flight at low operation

rates to more than $25/flight at higher operation rates for the baseline cost estimates.

32

40 50 60 70 80 90 100
Schedule Density (flights/hr)

5

10

15

20

25

30

35

40

45

Av
g.

 S
av

in
gs

 ($
/fl

ig
ht

)

High
Base
Low

Figure 5: Average reduction in environmental costs when an optimization based schedule
is used. The savings are over a FCFS policy.

These numbers can be used to estimate a lower bound on the annual environmental

savings value for any major airport and for the entire air transportation system in the

US during peak operation periods. To this end, we first estimate the annual number of

commercial operations during a 2 hour peak period at 30 major airports based on the 2006

ASPM data shown in Table 3.4.1. Assuming an average savings value based on a peak

operation rate of 40 flights per hour for two runways at each of these airports, we estimate

the annual environmental savings based on the three different emission cost levels. These

calculations suggest that annual savings in environmental costs can be between $9.4 and

$19.1 million depending on the cost estimate level, if an optimization based scheduling

policy is used during peak operation periods at major US airports.

Most environmental savings are realized due to the optimal scheduling of arriving air-

craft. The main reason that arrivals produce most savings is because of the higher rates

of fuel consumption and emissions during the descent phase of a flight. Indeed, despite

the approximately equal rate of arrival and departure operations, the realized costs due to

arrivals are 15 – 20 times higher than that of departures. On the other hand, this does not

imply that the optimization results in significant increases in departure delays to enable de-

creases in arrival delays. Rather, the difference in costs implies that there is more potential

for savings in environmental costs by optimally scheduling arrivals than departures.

Another issue involves the comparison of optimization procedures with and without

33

Table 11: Annual estimate of the environmental value of optimization for 30 major airports
in the U.S.

Savings in Environmental Costs
Peak Period due to Optimization

Airport Operations Low Base High

ATL 121,195 $690,088 $1,012,381 $1,405,256
ORD 120,113 $683,925 $1,003,339 $1,392,706
DFW 96,455 $549,216 $805,717 $1,118,392
DEN 78,942 $449,497 $659,427 $915,331
IAH 74,743 $425,589 $624,353 $866,646
LAX 67,784 $385,966 $566,224 $785,959
DTW 62,728 $357,172 $523,983 $727,325
CLT 59,219 $337,193 $494,673 $686,641
PHX 58,933 $335,567 $492,287 $683,329
PHL 58,015 $330,340 $484,619 $672,685
MSP 54,682 $311,358 $456,772 $634,032
EWR 53,134 $302,544 $443,841 $616,083
CVG 50,377 $286,849 $420,816 $584,123
JFK 48,985 $278,923 $409,189 $567,982
LGA 48,923 $278,567 $408,667 $567,259
BOS 48,787 $277,795 $407,535 $565,687
SLC 48,642 $276,969 $406,322 $564,003
LAS 46,320 $263,747 $386,925 $537,080
IAD 45,947 $261,622 $383,808 $532,752
MCO 43,808 $249,446 $365,945 $507,958
SEA 43,177 $245,852 $360,672 $500,639
MIA 39,679 $225,934 $331,453 $460,080
SFO 38,670 $220,188 $323,022 $448,378
DCA 36,457 $207,588 $304,538 $422,721
BWI 36,109 $205,607 $301,631 $418,685
CLE 34,998 $199,279 $292,349 $405,801
STL 34,937 $198,931 $291,838 $405,092
MDW 33,331 $189,789 $278,426 $386,475
MEM 30,608 $174,285 $255,681 $354,904
PDX 28,403 $161,726 $237,257 $329,330

TOTAL $9,361,551 $13,733,692 $19,063,331

34

40 50 60 70 80 90 100
Schedule Density (flights/hr)

4

6

8

10

12

Av
g.

 E
nv

ir
on

m
an

ta
l C

os
t (

$/
fli

gh
t) Without Env. Consideration

With Env. Consideration

Figure 6: Environmental costs per flight based on schedules optimized with and without
explicit consideration of the environmental factors. The values are according to the base
emission cost estimate.

the environmental components. In other words, what is the value of considering environ-

mental costs explicitly in an optimization model? Is minimizing fuel consumption and

crew/passenger costs alone enough to minimize the environmental impact? To this end,

we compare the environmental costs of optimal schedules in the two cases, and analyze

the difference over the range of schedule densities considered. Explicit inclusion of envi-

ronmental costs in the optimization reduces the environmental cost of the optimal schedule

only minimally for each aircraft, i.e. around $0.3/flight. This result holds for all schedule

densities as shown in Figure 6.

This relatively high environmental value in fuel-optimal schedules is due to the direct

relationship between fuel burn rates and emissions of aircraft. Hence, using optimal policies

based on only the operational costs of airlines, which include fuel costs, will result in sched-

ules that are very close to optimal schedules that account for environmental components.

On the other hand, based on the number of peak period operations in Table 3.4.1, an en-

vironmental cost savings of $0.3 per flight translates to about $470,000 in annual savings

on the environmental impact of airport operations. This amount can be viewed as a lower

bound on the value of explicit consideration of environmental components in optimization

based runway operations planning.

We also consider the relationship between environmental and non-environmental costs in

35

40 50 60 70 80 90 100
Schedule Density (flights/hr)

0

10

20

30

40

50

60

70

80

90

Av
g.

 C
os

t (
$/

fli
gh

t)

FCFS Non-Env.
FCFS Env.
Optimal Non-Env
Optimal Env.

Figure 7: Analysis of environmental and non-environmental costs per flight for optimal and
FCFS schedules.

optimized versus FCFS schedules, as seen in Figure 7. The increase in non-environmental

costs in a FCFS schedule is evident at higher schedule densities. This may be relevant

from an airline’s perspective, as optimization not only reduces its overall relevant costs but

the savings increase almost exponentially at higher operation rates. On the other hand, the

increase in both environmental and non-environmental costs of optimization based schedules

is mostly linear as operation rates rise.

3.4.2 Cost of Environmental Runway Scheduling to Airlines

Under current regulations environmental costs are mostly relevant as a cost to the society,

rather than the airlines. If runway operations are scheduled based on optimization models

that explicitly include environmental costs, it is likely that schedules will not be optimal from

an operational cost perspective. Thus, an important question is the additional operational

costs incurred by airlines under such environmental scheduling policies.

We compare the environmental and non-environmental costs of optimal schedules under

different cost structures. In Figure 8, we show that the additional costs are minimal, and

decrease significantly for heavier traffic volumes. More specifically, for baseline emission

cost rates these additional costs vary between $0.05 and $0.25 per flight. Thus, based on

the peak period operations considered in Table 3.4.1 the cumulative costs for airlines add

up to be between $78,000 and $391,000 annually, if environmental factors are considered in

the optimization of runway schedules.

36

40 50 60 70 80 90 100
Schedule Density (flights/hr)

0.1

0.0

0.1

0.2

0.3

Av
g.

 In
cr

ea
se

 in
 N

on
-E

nv
. C

os
t (

$/
fli

gh
t)

High
Base
Low

Figure 8: Cost of including the environmental impact in optimization.

3.4.3 Structure of Optimal Schedules

One measure in runway scheduling relates to the structure of the schedules. Given the

optimal schedules generated with and without inclusion of the environmental, the issue is

whether these schedules are actually implementable. We consider the number of position

shifts in the optimal schedules when compared with the FCFS schedule and analyze the

magnitude of these deviations to ensure that the schedules are implementable.

The first observation is that the general structure of the optimal schedule based on

maximum position shifts is similar over different levels of environmental cost estimates.

Hence, the environmental components do not lead to significantly different emphasis areas in

the optimization. The average maximum position shifts over all optimization instances are

shown in Figure 9. As expected, due to the differences in cost functions, the re-sequencing

of the arriving aircraft is done in a more conservative way than the departures. Figure 9

shows that the maximum deviation in the arrival sequences is mostly less than six, even

at the highest traffic volumes, while the maximum position shifts in the departures are

typically higher at an average level of 10 over all schedule densities simulated.

The separation requirements used in the optimization models are defined according to

the weight classes of aircraft. Hence, different fleet mixes may result in different patterns in

the optimal schedules. While this is the case, a study of the fleet mixes during peak periods

shows that the ratios of different weight classes are mostly similar at the major airports.

37

40 50 60 70 80 90 100
Schedule Density (flights/hr)

2

4

6

8

10

12

14

16

18

Av
g.

 M
ax

 P
os

iti
on

 S
hi

ft

Departures
Arrivals

Figure 9: Maximum position shifts in the optimized schedule with respect to the FCFS
schedule.

According to the ASPM data, the distribution at these airports is typically around 5%

heavy, 7% Boeing 757, 80% large and 8%small class. These values are consistent with the

distribution used in the simulations.

38

CHAPTER IV

TWO-STAGE STOCHASTIC RUNWAY SCHEDULING

In this chapter we develop and analyze a two-stage stochastic program for airport runway

scheduling. To the best of our knowledge, this is the first formal treatment of the stochas-

tic runway scheduling problem (SRSP). We begin the chapter by describing the two-stage

decision process in Section 4.1 and provide our modeling framework. The close connection

between the SRSP and certain machine scheduling problems is emphasized, and a restricted

version of the full SRSP model is presented in Section 4.2 using machine scheduling nota-

tion. Characteristics attributed to the runway scheduling problem introduces additional

complexities into the SRSP, and we discuss ways to handle these complexities in Section

4.3. The SRSP require the solution of a large scale stochastic program, and we develop

a solution methodology based on scenario decomposition in which we incorporate efficient

lower and upper bounding techniques. The solution methodology is presented in Section

4.4, and the setup for the computational analysis is discussed in Section 4.5. Taking advan-

tage of problems with structures similar to our problem, two distinct formulations for the

SRSP are developed and evaluated in Section 4.6, where we also analyze the practicality of

the proposed solution methodologies.

4.1 Problem Description

In this section, we first describe the two-stage decision process that captures the stochasticity

in scheduling runway operations. We then formally describe a generic modeling framework

which we use to formulate a simpler version of the runway scheduling problem, as some

limiting assumptions are required for SRSP to fit into this framework.

4.1.1 Two-Stage Scheduling Process

It is emphasized in Ernst, Krishnamoorthy, and Storer (1999) that the arrival scheduling

problem at airports can be decomposed into two sequential problems. In this setup, only the

39

sequence of operations is determined in the first stage, while the timing of each operation is

decided in the second planning stage. The authors point out that given a feasible sequence,

optimized arrival times can easily be determined through a linear program.

Focusing on departure operations, Anagnostakis and Clarke (2003) take the two-stage

idea one step further by observing that the runway throughput only depends on the aircraft

weight class sequence, and not on the characteristics of individual aircraft. Their two-

stage scheduling approach is therefore slightly different, where the first stage determines an

aircraft weight class sequence, and the second stage assigns individual aircraft to positions in

the weight class sequence. In Anagnostakis (2004), the author elaborates on the advantages

of this two-stage approach, although the problems in each stage are deterministic and are

solved independently. Primarily, it is computationally efficient to decompose the departure

scheduling problem to allow real time implementation. In addition, the two-stage planning

process is appropriate for stochastic runway scheduling since the information required in

the first planning stage, namely the pool of aircraft weight classes, is more robust than the

scheduled time at runway for individual aircraft, which is the information needed in the

second planning stage. To exemplify, an air traffic controller with a thirty minute look-

ahead window is likely to predict the aircraft weight class mix better than the arrival and

departure times for individual aircraft.

In this research we build upon the two-stage decision concept suggested by Anagnostakis

and Clarke (2003). A similar decision disaggregation method is considered in Solveling, So-

lak, Clarke, and Johnson (2011a), where the authors use a stochastic programming model

based on Benders’ decomposition to find a good weight class sequence to use in the first

planning stage. However, for the Benders’ decomposition method to work, some simplifi-

cations and assumptions are made that do not capture all relevant information, e.g. the

aircraft-to-position assignment in the second stage is based on static position times, and

not on dynamically determined position times in the first stage. To overcome this draw-

back, we suggest a two stage stochastic program that captures all the relevant information

when determining an aircraft weight class sequence in the first planning step, which can be

referred to as an exact formulation of SRSP.

40

4.1.2 A Generic Modeling Framework for a Simplified Version of SRSP

We now describe a generic framework which involves some simplifications over the exact

definition of SRSP. We refer to this version of the problem as the restricted SRSP (SRSP-R).

To emphasis the connection to machine scheduling, we formulate the restricted SRSP using

machine scheduling notation and indicate the mapping to the airport runway scheduling

problem. Additional complexities inherent to airport runway scheduling are presented in

the subsequent section and the notation is adjusted accordingly.

Let I be the set of jobs (we use A when referring to aircraft) that can be scheduled

in a given planning horizon. Furthermore, let K be the set of job categories (aircraft

weight classes) for the jobs in I. The positions in the sequence are represented by the set

P = {1, . . . , n}, where n = |I|. For ease of notation, let Ik ⊆ I (Ak ⊆ A) be the set of jobs

that are of category k ∈ K with nk = |Ik| and let hi ∈ K correspond to the job category

of job i. During the planning stage, each job in I has a release time ri. In airport runway

scheduling, the release times correspond to the estimated time of arrival at the runway for

arrivals (time at runway threshold) and the estimated runway departure time (beginning of

takeoff roll) for departures. When the direction is irrelevant, we simply refer to this as the

runway time.

Sequence-dependent setup times are given by parameters sk1,k2 , where k1 ∈ K is the

job category of the leading job and k2 ∈ K is the job category of the trailing job. In the

runway scheduling framework, we refer to the sequence-dependent setup times as separation

requirements. When a parameter s is indexed by elements i ∈ I, we implicitly mean the

corresponding job category of job i ∈ I. In this application we use four aircraft weight

classes which represent the types of aircraft operating at most major airports: Heavy (H),

Boeing 757 (7), Large (L), and Small (S). Because we consider both arrivals and departures,

we let the elements of K include the type of operation as well, e.g. AH ∈ K denotes the

arrival of an aircraft in the “heavy” weight class, whereas DL ∈ K denotes the departure

operation for a “large” aircraft. The separation requirements for these weight classes when

operating on a single runway are specified by Federal Aviation Administration (2010a), and

are shown in Tables 12 and 13. At airports with close parallel runways there are additional

41

Table 12: Same runway separation requirements for arrival operations.

Trailing
H 7 L S

L
ea

d
in

g H 4 5 5 6
7 4 4 4 5
L 3 3 3 4
S 3 3 3 3

(a) Separation requirements, in
nautical miles, at the runway
threshold.

Trailing
H 7 L S

L
ea

d
in

g H 96 138 138 240
7 96 108 108 198
L 60 72 72 162
S 60 72 72 102

(b) Separation requirements, in sec-
onds, at the runway threshold.

Table 13: Same runway separation requirements, in seconds, for departure operations.

Trailing
H 7 L S

L
ea

d
in

g H 90 90 120 120
7 90 90 120 120
L 60 60 60 60
S 60 60 60 60

separation requirements defined between operations on separate runways, and these are

shown in Table 14.

Now consider the following two-fold objective. The first goal is to find a sequence that

minimizes the sum of setup times, i.e. the makespan of completing the n jobs. On the other

hand, the second goal is to process the jobs as early as possible after their release times,

which translates into determining a sequence of job categories such that the sum of all the

delay imposed on the jobs is minimized. Letting X be the set of all job category sequences,

Table 14: Separation requirements, in seconds, for operations on close parallel runways.
The leading operation is performed on one runway and the trailing operation is on the
parallel runway.

Trailing
H 7 L S

L
ea

d
in

g H 68 68 68 80
7 68 68 68 80
L 62 62 62 80
S 48 55 55 80

(a) Leading arrival followed by de-
parture.

Trailing
H 7 L S

L
ea

d
in

g H 54 58 58 80
7 54 58 58 80
L 54 58 58 80
S 54 58 58 80

(b) Leading departure followed by
arrival.

42

we would like to determine the value minx∈X c(x), where c(x) = λc1(x)+(1−λ)c2(x). Here

c1 captures the cost of the length of the sequence and c2 captures the cost of job delay. The

parameter λ ∈ [0, 1] sets the relative weight of the objectives.

Each element x ∈ X can be described as x = (k(1), . . . , k(n)), where k(p) ∈ K is the job

category in position p. We also let k(0) denote the job category that precedes x. In addition,

if we let ti denote the start time for job i, we can define the job delay as ∆i = ti− rr. With

this notation we can express the overall objective function as:

c(x) = λc1(x) + (1− λ)c2(x) = λ

n−1∑
p=0

sk(p),k(p+1)
+ (1− λ)

∑
i∈I

∆i (12)

To model the uncertainty in the problem framework, we assume that the release times

ri, i ∈ I, are not known with certainty. Furthermore, for tractability and to enable a

stochastic programming approach, we assume that the probability distribution describing

ri i ∈ I is discrete with finite support. Let ξ denote the vector containing stochastic input

to the problem, where ξ can be realized into a finite number of scenarios. Let Ω be the set

of all scenarios, where each scenario ω ∈ Ω has probability %ω and a corresponding vector

ξω = (rω1 , . . . , r
ω
n) with rωi denoting the release time of job i ∈ I in scenario ω.

The objective of the stochastic optimization problem is to find a sequence x ∈ X that

minimizes the expected value Eξ[c(x, ξ)], where the function c(x) is extended to include the

dependency on the probabilistic vector ξ. More specifically, we have c(x, ξ) = λc1(x)+(1−

λ)c2(x, ξ), and the overall objective is:

ν = min
x∈X

Eξ[c(x, ξ)] (13)

Given the described structure of the scheduling problem, the task of finding ν can be

modeled as a two-stage stochastic program. In the first stage a sequence of job categories

is identified, and in the second stage specific jobs are assigned to positions in the sequence.

Naturally, a job in the second stage can only be assigned to positions of the corresponding

job category.

43

4.2 Two Alternative Formulations for SRSP-R and SRSP

In this section, we develop two mathematical formulations that are initially used to model

the restricted version of the stochastic runway scheduling problem, i.e. SRSP-R, and are

then extended to capture the additional complexities in SRSP.

4.2.1 Network Formulation of SRSP-R

Given the general modeling framework, a network flow model can be constructed to capture

the two-stage decision process described in Section 4.1. We first describe the corresponding

structures for the two stages separately, and then summarize the overall network flow-based

stochastic programming formulation for SRSP-R.

The first stage problem in SRSP-R consists of finding a sequence of job categories that

minimizes the makespan of completing all the jobs. This structure can be modeled as a TSP

as follows. Consider a graph where each job is represented as a node with arcs connecting

each pair of nodes, and let the arc costs define setup times between jobs. Note that this

construction creates a node for each job rather than each category of job. It is easy to

show that the optimal TSP tour on this network would correspond to a sequence of job

categories that minimizes the makespan. Once the actual ready times become known, the

second stage problem involves assigning individual jobs to positions in the sequence, which

requires explicit representation of the position information based on the solution of the first

stage problem. However, a drawback of the traditional TSP formulation described above

is that the position of a node on a TSP tour cannot be determined without examining the

complete sequence. Thus, it is not possible to link the first stage and second stage problems

when a standard TSP formulation is used to represent the first stage problem.

Given the need for the position information in the second stage, we model the first stage

problem in SRSP-R as a position dependent TSP, which is also known as time dependent

TSP. The time dependent TSP has been used for machine scheduling problems on a single

machine with sequence-dependent setup times (Bigras, Gamache, and Savard 2008; Picard

and Queyranne 1978). In contrast to the traditional TSP, the cost of traversing an arc

(or the setup time in the context of machine scheduling) depends on the vertices (jobs)

44

Figure 10: Network representation for the flow based formulation

it connects and the position in the sequence. Thus, when using such formulation, the

position of a specific node is explicitly captured, which makes it possible to extract the job

category for that position. To this end, we define the graph G = (V, E) with the set of

vertices V = {vi,p : i = 1, . . . , n; p = 1, . . . , n} ∪ {v0, vn+1}, where a vertex for each job i

and position p is included, and where v0 and vn+1 represent dummy source and sink nodes,

respectively. The set of arcs E is defined as E = {(vi,p, vj,p+1) : i = 1, . . . , n; j = 1, . . . , n; p =

1, . . . , n−1}∪{(v0, vi,1) : i = 1, . . . , n}∪{(vi,n, vn+1) : i = 1, . . . , n}. A visual representation

of the graph G is shown in Figure 10. The setup times si,j are defined between categories

of jobs, i.e. si,j = shi,hj , where hi indicates the category of job i.

To formulate the problem, we also define the following variables:

xp,k : 1 if job category k is assigned to position p, 0 otherwise

`p : time of position p

zp,ωi,j : 1 if there is flow on arc (vi,p, vj,p+1) in scenario ω, 0 otherwise

yωi,p : 1 if job i is assigned to position p in scenario ω, 0 otherwise

σωp : start time of the job assigned to position p in scenario ω

Given this notation, a network flow-based formulation for SRSP-R can be described as

follows.

min Eξ
[
λc1(x) + (1− λ)c2(x, ξ)

]
= λ`n + (1− λ)

∑
ω∈Ω

%ω

 n∑
p=1

σωp − Cω
 (14)

45

s.t.

n∑
j=1

z0,ω
j = 1 ∀ω ∈ Ω (15)

z0,ω
j =

n∑
i=1

z1,ω
j,i j = 1, . . . , n, ∀ω ∈ Ω (16)

n∑
i=1

zp,ωi,j =

n∑
i=1

zp+1,ω
j,i p = 1, . . . , n− 2 j = 1, . . . , n, ∀ω ∈ Ω (17)

n∑
i=1

zn−1,ω
i,j = zn,ωj j = 1, . . . , n, ∀ω ∈ Ω (18)

z0,ω
j +

n∑
i=1

n−1∑
p=1

zp,ωi,j = 1 j = 1, . . . , n, ∀ω ∈ Ω (19)

∑
p∈P

yωi,p = 1 ∀i ∈ I, ω ∈ Ω (20)

σωp ≥ σωp−1 +
n∑
i=1

n∑
j=1

si,jz
p−1,ω
i,j p = 2, . . . , n, ∀ω ∈ Ω (21)

σω1 ≥
n∑
i=1

s0,iz
0,ω
i ∀ω ∈ Ω (22)

σωp ≥ rωi
n∑
j=1

zp,ωi,j ∀i ∈ I, p ∈ P, ω ∈ Ω (23)

yωi,p =

n∑
j=1

zp,ωi,j ∀i ∈ I, p ∈ P, ω ∈ Ω (24)

yωi,p+1 =

n∑
j=1

zp,ωj,i ∀i ∈ I, p ∈ P, ω ∈ Ω (25)

xp,k =
∑

i∈I:hi=k

n∑
j=1

zp,ωi,j p = 1 . . . , n, ∀k ∈ K, ω ∈ Ω (26)

xn,k =
∑

i∈I:hi=k

zn,ωi ∀k ∈ K, ω ∈ Ω (27)

`p ≥ `p−1 +
n∑
i=1

n∑
j=1

si,jz
p−1,ω
i,j p = 2, . . . , n, ∀ω ∈ Ω (28)

`1 ≥ s0,jz
0,ω
j j = 1, . . . , n, ∀ω ∈ Ω (29)

x, z, `, σ ≥ 0; y ∈ {0, 1} (30)

where z0,ω
j and zn,ωj are the flow variables for the arcs leading out of the dummy source and

sink nodes, and Cω =
∑

i∈I r
ω
i is a constant. The objective function (14) corresponds to

a weighted sum of the first stage objective and the expectation of objective function value

46

in the second stage. In Proposition 1 we show that this objective function is equivalent to

(12).

In the formulation above, constraints (15)-(25) correspond to the second stage decisions.

More specifically, constraint (15) forces flow out of the source node, while constraints (16)

to (18) ensure conservation of flow at each node in the network for each scenario. Using

only these four sets of constraints, a flow from the source node to the sink node can be

described. However, we also need to make sure that each job is traversed exactly once.

This is done in constraint (19), which destroys the totally unimodular structure of the

constraint matrix. The equality (20) is a second stage assignment constraint. Constraints

(21) and (22) allow for capturing the time of each position, and constraint (23) ensures that

no job can be scheduled before its earliest time rωi . The flow variables are linked to the

assignment variables through constraints (24) and (25).

The remaining constraints (26)-(29) define the first stage variables in terms of the second

stage decisions for each scenario. In other words, they represent the nonanticipativity

requirements in the stochastic programming problem. Note that with constraint (19) in

place there is a one-to-one correspondence between the flow variables and a job category

sequence x. Hence, constraints (26) and (27) allow the determination of the corresponding

sequence for a given flow. The time of position p, i.e. `p is defined by constraints (28) and

(29).

Finally, the constraints in (30) are the nonnegativity and integrality constraints. Since

the y-variables are defined to be binary, we can drop the integrality constraints for the flow

variables zp,ωi,j , as it can be shown that zp,ωi,j = yωi,py
ω
j,p+1 for scenario ω. Note that it is possible

to eliminate the assignment variables yωi,p altogether, as the job-to-position assignment is

captured in the flow variables. In that case, however, the flow variables must be declared

as binary, and constraints (20) must be expressed in terms of the flow variables. Of the

two options, we use the former as Heilporn, Cordeau, and Laporte (2010a) report that the

formulation with fewer, i.e. O(n2), binary variables has better computational performance

for similarly structured problems, which we verify to hold for our problem as well.

We now show that the formulation used in objective function (14) corresponds to the

47

function defined by equation (12):

Proposition 1. The function given by (14), λ`n + (1 − λ)
∑

ω∈Ω %
ω
(∑n

p=1 σ
ω
p − Cω

)
, is

equivalent to the objective function defined by (12) and (13), adjusted to consider a finite

set of scenarios corresponding to stochastic parameter realizations.

Proof. First we show that λ`n = λ
∑n−1

p=1 sk(p),k(p+1)
. If λ = 0, the result is trivial. When

λ > 0, constraints (28) and (29) hold at equality as we are minimizing `n and no other

constraints interfere with the `-variables. Furthermore, due to the coupling constraints (26)

and (27), the source-to-sink path defined by the z-variables follows the same sequence of

job categories over all scenarios. Since setup times are defined based on job categories, we

have
∑n

i=1

∑n
j=1 si,jz

p−1,ω
i,j =

∑n
i=1

∑n
j=1 si,jz

p−1,ω′

i,j , ∀ω, ω′ ∈ Ω. Thus,

`n =`n−1 +
n∑
i=1

n∑
j=1

si,jz
p−1
i,j = · · · = `1 +

n−1∑
p=1

n∑
i=1

n∑
j=1

si,jz
p
i,j =

n−1∑
p=0

n∑
i=1

n∑
j=1

si,jz
p
i,j =

=
n−1∑
p=0

sk(p),k(p+1)

(31)

where x = (k(1), . . . , k(n)) is the resulting job category sequence.

For the second component, we have for each ω that,∑
i∈I

∆ω
i =

n∑
i=1

tωi − rωi =
n∑
i=1

n∑
p=1

σωp y
ω
i,p − Cω =

n∑
p=1

σωp

n∑
i=1

yωi,p − Cω =
n∑
p=1

σωp − Cω (32)

In (32) we use
∑n

i=1 y
ω
i,p =

∑n
i=1

∑n
j=1 z

p,ω
i,j = 1 for all ω ∈ Ω.

4.2.2 Slot Formulation of SRSP-R

Instead of formulating the problem based on the network structure depicted in Figure 10

and the associated flow variables z, we define another model solely based on the assignment

variables xp,k for the first stage and yωi,p for the second stage, where both the x and y variables

are declared as binary. We refer to this second formulation as the slot formulation. We

later investigate and compare the relative efficiencies of the two formulations.

In contrast to the flow based formulation where a feasible flow gives the weight class to

slot assignments, we explicitly model the assignment decisions in the slot based representa-

tion. The resulting formulation is more compact and can be described as follows:

min (14)

48

s.t.
∑
p∈P

xp,k = nk ∀k ∈ K (33)

∑
k∈K

xp,k = 1 ∀p ∈ P (34)

`p+1 − `p ≥ sk1,k2(xp,k1 + xp+1,k2 − 1) ∀p ∈ P, ∀k1, k2 ∈ K (35)

`1 ≥ sk0,k1x1,k1 ∀k1 ∈ K (36)∑
i∈Ik

yωi,p = xp,k ∀p ∈ P, k ∈ K, ω ∈ Ω (37)

σωp+1 − σωp ≥ `p+1 − `p ∀p ∈ P, ω ∈ Ω (38)

σω1 ≥ `1 ω ∈ Ω (39)

σωp ≥ rωi yωi,p ∀i ∈ I, p ∈ P, ω ∈ Ω (40)

(20)

`, σ ≥ 0;x, y ∈ {0, 1} (41)

In this formulation, constraint (33) requires the correct number of job categories to be

allocated to the positions in the sequence, while (34) ensures that only one category is

assigned to each position. The setup times can be modeled according to constraint sets

(35) and (36). If a job category k1 is assigned to position p and a job category k2 is

assigned to position p+ 1, the expression within parenthesis will take value one, effectively

setting the setup time between position `p+1 and position `p to be at least sk1,k2 units.

The possible job assignments are given by the first stage variable x, and the second stage

assignment variables are linked to the first stage through constraint set (37). Setup times

between jobs are enforced in constraint sets (38) and (39), taking advantage of the already

calculated setup-time between positions and the fact that the ` variables give a “tight”

sequence in an optimal solution. Constraints (37), (38), and (39) form the nonanticipativity

constraints for the problem. Constraint (40) ensures that no job can be scheduled before

its earliest time rωi . Finally, we require each job to be assigned to exactly one position in

the sequence in the second stage, which is enforced by constraint (20) as in the network

formulation.

49

4.2.3 Distinctions of SRSP

As noted above, the restricted framework can be applied to scheduling problems where the

release times are stochastic and the objective is a trade-off between system performance

times and entity wait-times. However, the stochastic runway scheduling problem contains

additional components that are not captured in this generic representation. These complex-

ities also highlight the distinctions between classical scheduling problems and SRSP, and

can be described as follows:

Early arrivals. The estimated time at the runway for aircraft are assumed to be stochas-

tic and defined by a known probability distribution. The uncertainty in estimated runway

times is caused by factors such as aircraft equipage level, pilot behavior and weather for

arrivals, and pushback delay and surface congestion for departures. In the restricted model

it is assumed that the release time in each scenario, i.e. rωi , coincides with the earliest time

a job can be scheduled, implying that a job cannot be scheduled to a time earlier than its

release time. While this is a valid assumption for runway departure scheduling, in practice

it is possible that an arriving aircraft is asked to increase speed to land early. We explicitly

model this in SRSP, which adds to the computational complexity of the problem as the

number of feasible assignments increase.

Violated triangle inequalities. When arrival runway scheduling is performed in isola-

tion, i.e. when only arrival operations are considered, the separation requirements do not

violate the triangle inequality. For given weight classes i, j, and k, the triangle inequality

is:

si,k ≤ si,j + sj,k (42)

The implication of this fact is that all separation requirements can be met by consider-

ing separation between consecutive operations only. The same holds for pure departure

scheduling. However, in mixed operations on the same runway or on close parallel runways

(even if operated as dedicated arrival and departure runways) the triangle inequality does

not always hold. This issue needs to be addressed in the formulation of SRSP.

50

5 0 5 10 15 20 25 30
Deviation [minutes]

0

200

400

600

800

1000

1200

1400

1600

C
os

t [
U

SD
]

Arrivals
Departures

Figure 11: Sample arrival and departure delay cost functions for Boeing 737, representing
the Large aircraft weight class.

Nonlinear cost functions. A complicating factor for SRSP is that the cost of delays

for aircraft that have to wait before using the runway is typically not linear. In Chapter

3, global cost functions that capture all relevant costs for runway scheduling are developed

for different aircraft weight classes. These cost functions account for the impact of delays

on airline fuel, crew and passenger costs, as well as on environmental costs due to increased

emissions. Sample departure and arrival delay cost functions for Boeing 737 representing

the Large aircraft weight class are shown in Figure 11. We note that the remaining flight

time determines the maximum time an arrival aircraft can be early. In the example shown

we consider arrivals with 30 minutes remaining flying time before reaching the airport. Note

that there is no cost for departure delays shorter than 15 minutes as commonly assumed

in the literature. For further details on how the cost functions are developed, the reader is

referred to Solveling, Solak, Clarke, and Johnson (2011b).

Capturing runway times for cost calculations. In sequencing models that consider an

ordering of operations and a cost measure between consecutive operations, such as machine

scheduling problems or the time dependent TSP, it is generally easy to obtain the total cost

from the beginning of the sequence up to a position p. For example, in machine scheduling

problems with sequence-dependent setup times we can add all processing times, setup times

and idle times of all jobs processed in positions 1 to p − 1 to obtain the start time for job

51

p. However, in SRSP distinct cost functions based on individual aircraft (job) delay are

used as part of the objective function. Hence, it is necessary to capture the start time for

each job. From a modeling perspective, getting the start time of a particular job is not that

straight forward, as the position to which the particular job is assigned must be identified.

This results in non-linear models and increased complexity.

4.2.4 Extension of the Two Formulations to SRSP

In this section, we expand the flow and slot formulations of SRSP-R to model the actual

airport runway scheduling problem, i.e. SRSP. In the representation of the SRSP we let

aircraft take the role of jobs and aircraft weight classes replace job categories. We con-

sider each complexity in SRSP separately and discuss how to integrate them into the two

formulations.

Modeling early arrivals. In order to model the possibility of early arrivals for schedul-

ing, we define oa as the largest time by which an aircraft a can be early. We assume that

departure aircraft cannot be scheduled early (i.e. oa = 0, when a ∈ Dep is a departure),

while for arrivals the value of oa is determined by the remaining flight time to the runway.

Hence, we define r̂ωa as the earliest time aircraft a can be scheduled and set r̂ωa = rωa − of

and replace rωa with r̂ωa in constraints (23) and (40).

Modeling violated triangle inequalities. Violated triangle inequalities defined in Eq-

uation (42) constitute a characteristic that clearly distinguishes the general runway schedul-

ing problem from the single machine scheduling problem with sequence-dependent setup

times. When the triangle inequality is satisfied between all pairs of operations, it is suffi-

cient to consider separation between consecutive operations, which reduces the complexity

of the problem. However, the issue becomes relevant when combined arrival and departure

operations are considered.

There exist some proposed approaches in dealing with this complexity. By formulating

the deterministic runway scheduling problem through a different form, the issue of violated

triangle inequalities can be eliminated. Beasley, Krishnamoorthy, Sharaiha, and Abramson

52

(2000) suggest defining the time of operation for aircraft a directly and including all pair-

wise separation constraints. Due to the asymmetric nature of the separation requirements,

this formulation needs additional binary decision variables indicating if aircraft i precedes

aircraft j. A disadvantage with this formulation, which excludes it from being considered

in this thesis, is that we only get the time of operation and not the position in the sequence.

A hybrid approach to overcome violated triangle inequalities is also developed in Sherali,

Ghoniem, Baik, and Trani (2012), where the authors use consecutive position separations

and include pairwise separation constraints for those aircraft that may potentially violate

the triangle inequality.

In our formulation of the SRSP we do not explicitly consider violated triangle inequali-

ties. This is because of the implicit handling of this issue in any potential practical imple-

mentation of the stochastic runway scheduling algorithm. In practice, the aircraft weight

class sequence obtained from the solution of SRSP can be used by air traffic controllers to

sequence arriving and departing aircraft. As uncertainty is realized, a simpler deterministic

model, similar to our second stage model, is solved to set the final aircraft sequence and

enforce all separation constraints. Violated triangle inequalities would be handled in this

simpler model, either through explicit inclusion as in Sherali, Ghoniem, Baik, and Trani

(2012), or through post processing where aircraft are delayed in case of such a violation in

the optimal solution.

Modeling nonlinear cost functions. For the nonlinear cost functions, we note that

the functions are convex, and use standard piecewise linearization techniques to model the

cost components. To that end, let Ma denote the set of linear segments defining the cost

function for aircraft a ∈ A. The slope and intercept of each element m ∈ Ma are given by

γam and ζam, respectively. Similarly, the cost function for runway utilization is defined by

the slope and intersect γm and ζm with linear segments m as elements ofM. Clearly, these

piecewise linear representations result in increases in problem size for SRSP as described

below.

To model the cost functions, we define the continuous variables ∆+
a,ω and ∆−a,ω, for the

53

positive (delay) and negative (early) deviations in each scenario respectively. The cost of

deviation for aircraft a is captured in the continuous variables ρ+
a,ω and ρ−a,ω. Similarly, we

define the continuous variable ρ to capture the cost of runway utilization in the first stage.

The objective function (14) in SRSP is then defined as:

min Eξ
[
λc1(x) + (1− λ)c2(x, ξ)

]
= ρ+

∑
ω∈Ω

%ω

(∑
a∈A

ρ+
a,ω + ρ−a,ω

)
(43)

Note that the relative weights between the two objectives, which was earlier parameterized

by λ, is now eliminated. Instead, the definition of the cost functions gives the absolute

weight for each component.

The first stage runway utilization cost ρ is determined by the time of the latest position

`n through the following constraints:

ρ ≥ `nγm + ζm ∀m ∈M (44)

Similarly, in the second stage, the flight deviation costs are expressed in terms of the devi-

ation variables ∆ as depicted in constraints (45) and (46) below:

ρ+
a,ω ≥ ∆+

a,ωγ
a
m + ζam a ∈ A, ω ∈ Ω, m ∈Ma : γam ≥ 0 (45)

ρ−a,ω ≥ (−∆−a,ω)γam + ζam a ∈ A, ω ∈ Ω, m ∈Ma : γam < 0 (46)

The positive and negative deviations are calculated through constraint (47) as follows:

∆+
a,ω −∆−a,ω = tωa − rωa a ∈ A (47)

Modeling the capturing of runway times for cost calculations. On capturing the

runway times, we note that with the non-linear cost functions in place we cannot use

Equation (32) directly to capture the sum of flight times, i.e.
∑n

a=1 t
ω
a , from the sum of

position times, i.e.
∑n

p=1 σ
ω
p . Thus, we need to explicitly model the relationship between

the position times σωp and the flight times tωa in SRSP. This can be done using constraints

based on the standard big-M type constructs as follows:

tωa ≥ σωp −Ma,p(1− yωa,p) ∀p ∈ P, ∀a ∈ A, ω ∈ Ω (48)

54

tωa ≤ σωp +Ma,p(1− yωa,p) ∀p ∈ P, ∀a ∈ A, ω ∈ Ω (49)

However, these big-M constraints add significant computational complexity to the network

model preventing the exploitation of any flow structure. In Section 4.3, we develop improved

formulations for these constraints by defining some valid inequalities.

With these extensions, both the network and slot formulations defined for the restricted

problem can be used to represent the true stochastic runway scheduling problem. However,

these complexities require that the efficiencies of the models are improved for tractability.

In the next section we describe some improvement procedures to help in that regard.

4.3 Valid Inequalities for SRSP

We improve the modeling of SRSP by tightening the formulations through more efficient

representations of the big-M constructs used in the model. More specifically, we note that

constraints (48) and (49) involve the constants Ma,p to model the link between slot times

and flight times. As the strength of the LP-relaxation depends on the value of Ma,p we are

interested in either minimizing Ma,p (and yet keeping it sufficiently large) or reformulating

the constraint and making it as strong as possible. To this end, we derive some tight valid

inequalities to be applied to each scenario problem in the two formulations we develop.

However, for the clarity of presentation, we omit the index ω when referring to the stochastic

parameters and the second stage variables in this section.

First, we assume that the aircraft are ordered by their estimated time at the runway,

i.e. ra1 ≤ ra2 ≤ · · · ≤ ran . Recall that ra is the realized runway time for aircraft a and

that r̂a ≤ ra. Furthermore, the positions are ordered by time, so that σ1 ≤ σ2 ≤ · · · ≤ σn,

which is modeled through the separation constraint (21). We also have
∑n

p=1 ya,p = 1 for

all a ∈ A.

To derive the valid inequalities, we define Ψ(p, a) as the longest possible sequence with

respect to separation requirements, to position p ≥ 2 when the weight class of aircraft a

is not a part of the sequence. Similarly, we define Φ(κ, a) to be the earliest time possible

for position κ, based on the shortest sequence to κ given that aircraft a is assigned to that

position. Now consider the following reformulations of constraints (48) and (49), where it

55

can be observed that if aircraft a is assigned to position p, i.e. ya,p = 1, then ta = σp.

ta ≥ σp −
p−1∑
κ=1

up,a,κya,κ +

n∑
κ=p+1

µp,a,κya,κ ∀p ∈ P, a ∈ A (50)

ta ≤ σp −
p−1∑
κ=1

µ̄p,a,kya,κ +

n∑
κ=p+1

ūp,a,κya,κ ∀p ∈ P, a ∈ A (51)

Using the notation above, we can state the following result:

Proposition 2. For up,a,κ = Ψ(p− κ, a) + rn and µp,a,κ = Φ(κ− p+ 1, a), constraint (50)

is a valid inequality for SRSP.

Proof. To simplify the proof we make two non-restrictive assumptions:

1. The latest scheduled time, rn, is larger than the maximum separation requirement,

i.e. rn ≥ sk1,k2 for all k1, k2 ∈ K ×K.

2. If an aircraft, a, is scheduled after the estimated runway time, in which case ∆+
a > 0,

a smaller delay is always favorable. If the convex cost function, denoted by ca, is

non-zero, this is natural as ca(∆
+
a,2) > ca(∆

+
a,1) when ∆+

a,2 > ∆+
a,1. In the trivial case

where the function is zero, we assume that ∆+
a,1 is better than ∆+

a,2.

Given these general assumptions, we consider three cases based on the assignment of aircraft

a to position p:

Case-I: If aircraft a is assigned to position p, then ya,κ = 0 for κ = 1, . . . , p − 1, p +

1, . . . , n. This implies that ta ≥ σp as desired.

Case-II: Assume that aircraft a is assigned to position κ > p. From equation (50) and

Case-I, we get ta ≥ σκ. To see that (50) is valid, it is sufficient to show that σp+µp,a,κ ≤ σκ.

This holds since the separation requirements are maintained through constraints (21) and

µp,a,κ defines the shortest possible sequence.

Case-III: Assume that aircraft a is assigned to position κ < p. Similar to the above,

we get ta ≥ σκ. To show that (50) is valid, we need to show that σp − up,a,κ ≤ σκ. After

substitution and rearrangement, we state the required relationship as σκ+Ψ(p−κ, a)+rn ≥

σp.

56

Assume this is not the case, i.e. ς = σκ + Ψ(p− κ, a) + rn < σp for some optimal σ and

t. Let σ′p = σp − ε where ε > 0 is small enough such that ς ≤ σ′p. σ′p is feasible as it is

scheduled after the time of the last scheduled aircraft plus the length of the longest possible

sequence of length p − κ. Note that we do not need to consider the longest sequence of

length p − κ + 1 due to assumption (1) above. Let ta(p) = σp and t′a(p) = σ′p, where a(p)

denotes the aircraft assigned to position p. As both ta(p) > rn and t′a(p) > rn, ∆+
a(p) > 0

in both cases. Moreover, ta(p) > t′a(p) and by assumption (2), this contradicts the fact that

the σ and t are optimal.

Hence, constraint (50) is valid.

In an analogous way to the discussion above, we define Ψ̄(p, a) as the longest possible

sequence to position p when the weight class of aircraft a must be a part of the sequence

and Φ̄(κ, a) as the earliest time possible for position κ given that aircraft a is assigned to

the first position. Then, the following result can be concluded:

Proposition 3. For ūp,a,κ = Ψ̄(κ− p, a) + rn and µ̄p,a,κ = Φ̄(p− κ+ 1, a), constraint (51)

is a valid inequality for SRSP.

Proof. We again consider three cases:

Case-I: If aircraft a is assigned to position p, then ya,κ = 0 for κ = 1, . . . , p − 1, p +

1, . . . , n. This implies that ta ≤ σp as desired.

Case-II: Assume that aircraft a is assigned to position κ < p. From equation (51) and

Case-I, we get ta ≤ σκ. To see that (51) is valid, it is sufficient to show that σκ ≤ σp− µ̄p,a,κ.

This holds since the separation requirements are maintained through constraints (21) and

µ̄p,a,κ defines the shortest possible sequence.

Case-III: Assume that aircraft a is assigned to position κ > p. Similar to the above,

we get ta ≤ σκ. To show that (51) is valid, we need to show that σp + ūp,a,κ ≥ σκ. After

substitution and rearrangement, we state the required relationship as σp+Ψ(κ−p, a)+rn ≥

σκ. This can be shown to hold by reversing the roles of p and κ in Case-III in the proof of

Proposition 2.

Hence, constraint (51) is valid.

57

Given the validity of constraints (50) and (51), an important issue deals with the tight-

ness of these inequalities. We show below that these constraints cannot be made any tighter,

which has implications for the complexity and efficiency of SRSP and SRSP-R.

Proposition 4. If µp,a,κ = Φ(κ − p + 1, a) and up,a,κ = Ψ(p − κ, a) + rn, then constraint

(50) is tight, i.e. µp,a,κ cannot be made larger and/or up,a,κ cannot be made smaller without

violating the validity of the inequality.

Proof. We analyze the bounds on µp,a,κ and up,a,κ separately through two instances.

For µp,a,κ, consider an instance with two aircraft, a1 and a2 scheduled in that order, of

the same weight class. Let the separation between aircraft of this weight class be s∗, clearly

the shortest sequence is of length s∗. The separation constraints together with (50) and (51)

for (p = 1, a1) and (p = 2, a2) give σ1 = 0 = ta1 and σ2 = s∗. Letting µ1,a2,2 = Φ(2, a2) = s∗

we have the constraint ta2 ≥ σ1 +µ1,a2,2ya2,2 = 0+µ1,a2,2 = s∗. Increasing µ by any amount

ε > 0 cuts off the feasible point ts2 = s∗.

For up,a,κ, consider the set of aircraft a1, a2, and a3 of different weight classes k1,k2, and

k3, respectively. Let ra1 = 0, ra2 = 0, and ra3 = 10. Assume that the weight class sequence

in the first stage takes values x1,k2 = x2,k3 = x3,k1 = 1 and that sk2,k3 and sk3,k1 are the

two largest separation requirements, i.e. this is the longest sequence. As the weight classes

are distinct, there is only one way to assign aircraft. We have ya2,1 = ya3,2 = ya1,3 = 1.

Assuming that sk2,k3 ≤ 10, the separation constraint (21) together with the earliest time

constraints, and constraints (50) and (51) for (p = 1, a2), (p = 2, a3) and (p = 3, a1) give

σ1 = ta2 = 0, σ2 = ta3 = 10 and σ3 = ta1 = 10 + sk3,k1 .

For aircraft a2 and position p = 3, (50) gives ta2 ≥ σ3−
∑2

κ=1 u3,a2,κya2,κ = σ3−u3,a2,1 =

σ3 − Ψ(2, a2) − ra3 = (10 + sk3,k1) − (sk3,k1 + 10) = 0. Decreasing u by any amount ε > 0

cuts off the feasible point ta2 = 0.

Proposition 5. If µ̄p,a,κ = Φ̄(p − κ + 1, a) and ūp,a,κ = Ψ̄(κ − p, a) + rn, then constraint

(51) is tight, i.e. µ̄p,a,κ cannot be made larger and/or ūp,a,κ cannot be made smaller without

violating the validity of the inequality.

58

Proof. For µ̄p,a,κ, consider an instance with two aircraft, a1 and a2 scheduled in that order,

of the same weight class. Let the separation between aircraft of this weight class be s∗.

Clearly, the shortest sequence is of length s∗. The separation constraints together with

(50) and (51) for (p = 1, a1) and (p = 2, a2) give σ1 = 0 = ta1 and σ2 = s∗. Letting

µ̄2,a1,1 = Φ(2, a1) = s∗ we have the constraint ta1 ≤ σ2 − µ̄2,a1,1ya1,1 = s∗ − s∗. Increasing

µ̄ by any amount ε > 0 cuts off the feasible point ta1 = 0.

For ūp,a,κ, consider the set of aircraft a1, a2, and a3 of different weight classes k1,k2,

and k3, respectively. Let ra1 = 0, ra2 = 0, and ra3 = 10. Assume the weight class sequence

in the first stage takes values x1,k2 = x2,k3 = x3,k1 = 1 and that sk2,k3 and sk3,k1 are the

two largest separation requirements, i.e. this is the longest sequence. As the weight classes

are distinct, there is only one way to assign aircraft. We have ya2,1 = ya3,2 = ya1,3 = 1.

Assuming that sk2,k3 ≤ 10, the separation constraints (21) together with the earliest time

constraints, and constraints (50) and (51) for (p = 1, a2), (p = 2, a3) and (p = 3, a1) give

σ1 = ta2 = 0, σ2 = ta3 = 10 and σ3 = ta1 = 10 + sk3,k1 .

For aircraft a1 and position p = 1, (51) gives ta1 ≤ σ1+
∑3

κ=2 ū1,a1,κya1,κ = σ1+ū1,a1,3 =

σ1 + Ψ̄(2, a1) + ra3 = 0 + (sk3,k1 + 10) = sk3,k1 + 10. Decreasing ū by any amount ε > 0 cuts

off the feasible point ta1 = 10 + sk3,k1 .

4.4 Solution Methodology for SRSP-R and SRSP

Noting that the deterministic version of the runway scheduling problem is NP-complete by

itself, it is clear that the solutions of SRSP-R and SRSP, which involve several scenario

problems, would require significant computational effort. We further discuss and quantita-

tively demonstrate this issue in Section 4.6. For the solution methodology, we propose a

scenario decomposition procedure coupled within a sampling based approximation method

to obtain good solutions in practically reasonable amounts of time. We especially empha-

size practical implementability due to the dynamic nature of runway scheduling and the

resulting need for fast solutions. Our computational results described in Section 4.6 show

the potential effectiveness of the proposed solution procedures in achieving this.

59

4.4.1 Scenario Decomposition

Our decomposition approach is based on a Lagrangian decomposition framework with spe-

cial improvement procedures. Other decomposition approaches that can potentially be

considered for implementation have several limitations that prevent them from being ap-

plicable. Of these, the classical Benders’ framework is unable to capture the second stage

decision process as discussed in Section 4.1.1, while generalized Benders’ methods (Geof-

frion 1972) are inapplicable due to the problem failing to satisfy a required property for

such implementations. On the other hand, combinatorial Benders’ approaches (Codato

and Fischetti 2006a) are not effective due to the continuous objective function structure in

SRSP. The general procedure we utilize is based on scenario decomposition where we relax

the nonanticipativity constraints for the first stage decision variables.

As part of the decomposition procedure, we slightly revise the described stochastic

programming formulations for SRSP by defining the first stage variables separately for each

scenario ω, i.e. as xωp,k and `ωp , and then by adding explicit nonanticipativity constraints

that would require the values of these variables to be equal for each scenario.

As a simplifying characteristic for SRSP, we note below that it suffices to enforce nonan-

ticipativity only over the assignment variables xωp,k for both flow and slot formulations.

Proposition 6. For any pair of scenarios ω and ω′, if xωp,k = xω
′

p,k, ∀p ∈ P, then `ωp =

`ω
′

p , ∀p ∈ P for both the slot and flow formulations.

Proof. We assume that there is a positive cost associated with `ωn , ∀ω ∈ Ω, where the cost

does not depend on scenarios as otherwise the value of `ωp , ∀p ∈ P, ω ∈ Ω is not relevant.

Since we consider a minimization problem, `ωn is minimized. Thus, constraints (28) and (29)

in the flow formulation and constraints (35) and (36) in the slot based formulation hold at

equality in all scenarios. As the weight class sequence is the same over all scenarios and

the separation requirements only depend on the weight classes, the values of `ωp , ∀ω ∈ Ω are

equal ∀p ∈ P.

This property allows for reduction in the number of Lagrangian multipliers to be op-

timized in the solution of the Lagrangian dual, allowing for improved convergence in the

60

subgradient procedure. Hence, assuming that all first stage variables are indexed by ω, we

include the following constraint in the formulation of SRSP to enforce nonanticipativity:

xωp,k =
∑
ω′∈Ω

%ω
′
xω
′

p,k ∀ω ∈ Ω, p ∈ P, k ∈ K (52)

Note that the structure used in the formulation of constraint (52) accounts for the scenario

probabilities, and prevents the ill-conditioning in the Lagrangian dual, as described by Lou-

veaux and Schultz (2003). Although there are other formulations for the non-anticipativity

constraints, initial experiments indicate that the formulation in Equation (52) gives the best

computational performance for this particular solution methodology. The duality gaps, that

can exist in scenario decomposition methods for integer stochastic programming, are typi-

cally very close to zero in the implementations for the runway scheduling problem, suggesting

the effectiveness of the proposed procedures on this problem.

We let the Lagrangian dual variables be denoted by αωp,k and relax constraint (52) to

form the following two Lagrangians for the updated objective functions of SRSP-R and

SRSP, respectively.

LR(x,α) ≡
∑
ω∈Ω

%ω

λ`ωn + (1− λ)

 n∑
p=1

σωp − Cω
+

∑
p∈P

∑
k∈K

αωp,k

(∑
ω′∈Ω

%ω
′
xω
′

p,k − xωp,k

)

(53)

L(x,α) ≡
∑
ω∈Ω

%ω

(
ρω +

(∑
a∈A

ρ+
a,ω + ρ−a,ω

))
+
∑
p∈P

∑
k∈K

αωp,k

(∑
ω′∈Ω

%ω
′
xω
′

p,k − xωp,k

)
(54)

For given dual vectors α, both LR(x,α) and L(x,α) can be decomposed by scenarios,

which allows for the solution of the corresponding Lagrangian dual problem in each case

by independently solving individual scenario problems, where the Lagrangian dual problem

can be expressed as:

max
α
{Z(x,α) = min{

∑
ω∈Ω

Lω(xω,αω)}} (55)

This follows from the fact that the Lagrangian dual problem is a non-smooth concave

maximization problem, and can be solved by subgradient optimization methods (Hiriart-

Urruty and Lemarechal 1993). At each iteration of these methods, the solution of Z(x,α),

61

which is separable by scenarios, is required to obtain a subgradient. The dual multipliers

are updated at each iteration based on the components of the subgradient vector and a step

size rule until a termination criterion is reached.

The specific implementation that we use for this procedure involves several special steps

and is summarized as follows. Note that α refers to the vector of Lagrange multipliers,

where each component is αωp,k. Moreover, although we refer to SRSP in some steps of the

algorithm, it is implied that the procedure also applies to SRSP-R.

Step 0: Initialization. Set iteration counter q = 1, no-improvement counter i = 0, initial

lower bound L0 = −∞, best lower bound L = L0. Set initial dual multipliers

αq, termination thresholds εabs, εrel, limit ī for no improvement, and the step size

parameters φ and θ. Calculate the parameters used in the valid inequalities (50)

and (51). Calculate the initial upper bound L̄0 as follows:

- For each scenario ω, identify the FCFS sequence FCFSω.

- For each FCFSω, fix x ≡ FCFSω and solve SRSP to obtain candidate upper

bound L̄0
ω.

- Set L̄0 = minω{L̄0
ω}. Set the best upper bound L̄ = L̄0.

Step 1: Lower Bound. Solve Z(x,αq) to obtain candidate lower bound Lq and sequence

xqω. If Lq > L, set L = Lq.

Step 2: Upper Bound. Try to improve L̄ as follows:

- Collect the sequences obtained in Step 1 and list them by number of occur-

rences. Let Xq
UB be the set of sequences with most occurrences.

- For each sequence s ∈ Xq
UB, fix x according to s and solve SRSP to obtain

candidate upper bound L̄qs.

- Set L̄q = mins∈Xq
UB
{L̄qs}. If L̄q < L̄, set L̄ = L̄q.

Step 3: Step Size. Let ΛqL = L̄− L. Update the step size parameter θ as follows:

62

Table 15: Parameters used in the implementation of the scenario decomposition procedure.
SRSP-R SRSP

αq 1 1

εabs 1× 10−3 1× 10−3

εrel 1× 10−3 1× 10−3

ī 5 5
φ 0.1 1
θ 0.25 0.25
π0, π1, π2, π3 0.6,0.2,0.1,0,1 0.6,0.2,0.1,0,1

- If ΛqL > Λq−1
L , then set i← i+ 1, and

- If i = ī, then set θ ← θ/2, i← 0.

Step 4: Step Direction. Set bundled subgradient ĝq as ĝq = π0g
q+π1g

q−1+π2g
q−2+π3g

q−3,

where gk is the subgradient in iteration k.

Step 5: Multiplier Updates. Set multipliers αq+1 = αq + max(φq ,
θ(L̄−Lq)
||ĝq ||)ĝq.

Step 6: Termination. Terminate if

- ΛqL < εabs, or

- ΛqL/L̄ < εrel

Step 7: Iteration. Update q = q + 1, go to Step 1.

The implementation described above involves effective upper and lower bounding proce-

dures, as well as a modified subgradient optimization structure where the step direction is

determined based on a weighted sum of subgradients from previous iterations. As in many

subgradient optimization implementations, the ideal parameters settings for the algorithm

are based on problem characteristics and are determined experimentally. The values used

for the parameters of the algorithm in solving SRSP-R and SRSP are presented in Table

4.4.1 separately.

4.4.2 The Sample Average Approximation Implementation

While the scenario decomposition procedure is effective in getting high quality solutions,

the large number of scenarios in a typical instantiation of SRSP prevents it from being

63

directly applied to solve the exact problem. Hence, we make use of the sample average

approximation (SAA) method (also known as the sample path method), a Monte Carlo

simulation technique that approximates a stochastic program by a set of smaller problems

based on a random sample from the set of possible scenarios (Linderoth, Shapiro, and Wright

2006; Shapiro 2003). Noting that ω1, . . . , ωN is an independent and identically distributed

(i.i.d.) random sample of N realizations of the random vector ω, the SAA problem for

either formulation of SRSP can be defined as:

min
x∈X
{ĉN (x) =

1

N

N∑
l=1

c(x, ωl)} (56)

where c(x, ωl) is the objective function for realization ωl. If ν∗ and ν̂N represent the optimal

values of the “true” and SAA problems respectively Kleywegt, Shapiro, and De-Mello (2002)

show that ν̂N converges to ν∗ at an exponential rate as sample size N is increased. However,

given that the computational complexity of the SAA problem increases exponentially with

the value of N , it is typically more efficient to select a smaller sample size N , and solve

several SAA problems with i.i.d. samples.

We solve M SAA problems with N samples in each, and use ν̂mN and x̂mN , m = 1, . . . ,M ,

to refer to the optimal objective value and solution of themth replication, respectively. Once

a feasible solution x̂mN ∈ X is obtained by solving the SAA problem, the objective value

c(x̂mN) needs to be determined. The value of a given solution can be approximated by the

estimator

ĉN ′(x̂
m
N) =

1

N ′

N ′∑
l=1

c(x̂mN , ω
l) (57)

where N ′ is typically larger than N , as the computational effort required to estimate the

objective value for a given solution is generally less than that required to solve the SAA

problem. The quality of a solution x̂mN is then computed through the optimality gap esti-

mator c(x̂mN) − ν∗, where c(x̂mN) can be calculated exactly or estimated by (57), and ν∗ is

approximated by

ν̄MN =
1

M

M∑
m=1

ν̂mN (58)

Given that the sample sizes would have a significant impact on the accuracy of this

optimality gap estimator, it is essential that the variances of the estimators are taken into

64

account. Using a (1 − $)% confidence level similar to Kleywegt, Shapiro, and De-Mello

(2002), an upper bound on the optimality gap estimator can be defined as

c(x̂mN)− ν∗ + z$

√
Σ2
N ′

N ′
+

Σ2
M

M
(59)

where Σ2
N ′ and Σ2

M are the sample variances for the corresponding estimators.

The sampling procedure can be terminated once the optimality gap estimate is suffi-

ciently small or after performing all M replications, and the best solution among the SAA

solutions can be selected using an appropriate criterion.

In the computations performed, values of N = 8 and N = 12 are investigated. While

these sample sizes can be considered small, this is a limitation caused by the complex

combinatorial structure of the problem, as solving even a single scenario problem may

be difficult for certain instances. When the first stage variables are fixed, the problem

decomposes into separate second-stage problems that can be solved independently from

each other. In our implementation we use N ′ = 200 scenarios when evaluating a first stage

sequence. We use M = 100 as an upper bound on the number of replications.

Effective implementation of the above sampling procedure requires that the SAA prob-

lems can be solved efficiently and the candidate solutions are evaluated accurately. To this

end, the improvements described in Section 4.3 have been analyzed in terms of their im-

pact on achieving higher computational efficiency. These computational experiments are

described in Section 4.5 below.

4.5 Computational Framework and Experimental Setup

In the previous sections of this chapter we have described the stochastic version of a prac-

tical scheduling problem for air traffic flow management, namely the runway scheduling

problem. We noted the restricted and general versions of this problem, and derived alter-

native formulations for the two problem types. Several improvement procedures for the

formulations were also developed. Given this framework, there are some natural questions

that should be explored, such as: (1) Is the flow or slot formulation better for SRSP-R

and SRSP, and considering the solution procedure to be used, does the best formulation

65

Table 16: Overall fleet mix at the 35 OEP airports in 2009. The fleet mix is obtained from
12 months of Aviation System Performance Metrics (ASPM) data.

Weight Class Percentage of Operations

Heavy 6.3%
Boeing 757 7.1%

Large 82.3%
Small 4.3%

Table 17: Description of instance groups used for model evaluation.
Instance Sampled Sampled
Group Arrival Rate Departure Rate Resulting Fleet Mix
Name [flights/hr] [flights/hr] H 7 L S

Group 1 20 20 0.07 0.16 0.72 0.05
Group 2 30 30 0.12 0.12 0.72 0.03
Group 3 40 40 0.07 0.17 0.71 0.05
Group 4 20 0 0.1 0.1 0.79 0.01
Group 5 30 0 0.08 0.08 0.79 0.04
Group 6 45 0 0.1 0.07 0.79 0.04

differ for the deterministic and stochastic instances?, (2) What is the impact of some im-

provement procedures on computational performance of SRSP? (3) How difficult is SRSP

over SRSP-R?, and (4) How implementable is SRSP in practice? We perform numerous

computational tests and try to obtain answers to these questions.

For evaluation of the various formulations, we generate 30 random instances that reflect

realistic runway schedules. The instances are generated from six base cases where each

case is based on a specific arrival and departure rate. Using the given rates we generate

five random schedules for each base case. The schedules are generated assuming a Poisson

arrival process corresponding to exponential inter-arrival times. This assumption has been

commonly used and justified in the literature, for example in Balakrishan and Chandran

(2010).

In each base case we use the fleet mix shown in Table 4.5 when assigning aircraft weight

classes to the sampled flights. The fleet mix is the overall fleet mix at the 35 Operational

Evolution Partnership (OEP) airports for calendar year 2009, and is thus reflective of actual

operational conditions (Federal Aviation Administration 2009). A summary of the sampled

arrival and departure rates together with the resulting fleet mixes for the six base cases are

shown in Table 4.5.

66

Figure 12: Hartsfield-Jackson Atlanta International Airport operates two-pairs of close
parallel runways where 26L and 27R are used for departures, while 26R and 27L are used
for arrivals.

We assume that operations take place on two close parallel runways with a dedicated

runway for arrivals and a runway for departures. This configuration is widely used at major

airports (Doyle and McGee 1998). Currently, nine of the ten busiest airports in the U.S. have

at least one pair of close parallel runways and with the completion of the modernization

plan at Chicago O’Hare Airport, all of the ten busiest airports will have close parallel

runways. Figure 12 shows such a configuration with two pairs of close parallel runways (26L-

26R and 27L-27R) at Hartsfield-Jackson Atlanta International Airport. Computational

experiments also involve several instances where only arriving aircraft are considered. For

those instances, single runway operations are assumed. However, as noted previously, when

operating under instrumental flight rules, the arrival and departure runways cannot be

independently scheduled. In that case, separation requirements defined in Section 4.1.2 for

operations on parallel runways are used.

In the stochastic runway scheduling problem we treat the estimated time of arrival at

the runway as probabilistic. As is customary in stochastic programming, we discretize the

probability distribution of estimated runway arrival times into discrete probability distri-

butions for use in the scenario generation process. In this implementation we use three

different outcomes: a flight can either be early, on-time or late. We use the expected value

of the estimated runway time distribution as the on-time outcome, and the expected value

plus/minus one standard deviation as the early and late outcomes, respectively. For arrival

67

distributions, we analyze historical Enhanced Traffic Management System (ETMS) data

obtained from the Federal Aviation Administration (FAA) to estimate the deviations from

estimated arrival times. For departures we analyze historical push-back delays and use

results found in the literature for taxi delay, which are also described in Solveling, Solak,

Clarke, and Johnson (2011a).

For performance evaluations, we have implemented the various model formulations in

C++ using Concert/CPLEX 12.2. The computations were performed on a quad-core com-

puting cluster whose head node is a 2.66 GHz Xeon X5355 processor.

4.6 Computational Study and Analysis

We perform our computational analysis by considering different configurations and perform-

ing comparisons among these configurations. Our analysis has four major dimensions.

The first dimension involves identifying the best formulation structures for SRSP-R and

SRSP. This dimension has two components consisting of the identification of the best formu-

lation structure for (1) deterministic instances solved through branch-and-bound methods,

and (2) stochastic SAA problem instances with limited number of scenarios which are solved

through decomposition. The complete SAA algorithm implementation was only performed

for SRSP using the best formulation structures.

The second dimension in our analysis deals with the impacts of potential improvement

procedures for each formulation. As part of the third dimension, we consider the best formu-

lations for SRSP-R and SRSP, and then compare the two problem types from an efficiency

and complexity perspective. Finally, we analyze the mathematical models from a practi-

cal implementation perspective. To this end, several practically tractable implementation

alternatives are considered and discussed.

However, we first demonstrate the computational challenges of solving the deterministic

equivalent of a given stochastic programming instance of SRSP. In Figure 13 we show a

comparison of run times when the problem is solved using scenario decomposition versus

when the deterministic equivalent formulation is used directly. In this figure, the solid

lines represent average and median run times when scenario decomposition is used and the

68

0 2 4 6 8 10 12 14
Number of Scenarios

0

500

1000

1500

2000

2500

3000

3500

R
un

tim
e

[S
ec

on
ds

]

Scen. Decomp. - Average
Det. Equiv. - Average
Scen. Decomp. - Median
Det. Equiv. - Median

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 T

im
ed

 O
ut

Scen Decomp - Time Out
Det. Equiv. - Time Out

Figure 13: Comparison of run times when the problem is solved using scenario decom-
position versus when the deterministic equivalent formulation is used directly. The higher
values correspond to the deterministic equivalent solution.

dashed lines show average and median run times when the deterministic equivalent problem

is solved. The higher values correspond to the deterministic equivalent solution. The bars

show the percentage of instances that time out in 1 hour, where 300 instances are used

for each configuration. The exponential increase in the run times for the deterministic

equivalent model is evident in these plots, while the scenario decomposition approach is

clearly more robust to increases in problem size, demonstrating the value and need for a

special solution algorithm.

4.6.1 Analysis-I: Efficiency of Flow vs. Slot Formulations for SRSP-R and
SRSP

We compare the efficiency of the two types of formulations separately for different problem

structures. More specifically, we consider the computational performances of the two for-

mulations for deterministic instances, stochastic instances with limited number of scenarios

and stochastic instances solved using the SAA method. The last configuration is analyzed

only for SRSP.

69

4.6.1.1 Deterministic Problem

SRSP-R. We show in Table 4.6.1.1 the computational performances of the flow and slot

formulations for deterministic instances of SRSP-R, where a run time limit of 1 hour is

used. The results are for a single scenario and show the average and median CPU time,

as well as the average integrality gap for the LP-relaxation at the root node of the branch

and bound tree. The reason we investigate the comparative statistics involving the average

and median CPU times is due to the potential high variance in instance complexities. For

example, a single difficult instance can pull the average CPU time up significantly, while

its effect on the median CPU time would be not so significant. Hence, the two statistics

are considered together, and the difference between the two is used as a proxy measure of

the variance of instance complexity in each configuration. In addition, the integrality gap

at the root node is also used to distinguish between the two formulations as a measure to

diagnose the reasons for the distinctions.

Overall, as seen in Table 19a, it is clear that the flow formulation performs much better

for deterministic SRSP-R, with almost ten times the computational efficiency of the slot

formulation. This efficiency is likely due to the network structure in the flow formulation,

which results in better LP relaxation solutions during the branch and bound implementation

as seen through the smaller integrality gaps. We also note that the median CPU times are

much lower than the average values for both types of formulations, implying that most

instances of the problem are typically solved relatively fast while few instances result in

longer computational times.

It is also important to consider the efficiency of the two formulations over different

number of flights and different schedule densities. An interesting observation seen in Table

19b is that tighter schedules result in faster computational times in the flow formulation,

while the slot formulation displays the exact opposite trend. This holds both for Groups 1-3

where mixed operations are scheduled and for Groups 4-6 where only arrivals are considered.

This non-intuitive result is most likely due to the decrease in the integrality gap as the

network structure becomes more rigid with the introduction of tighter operation windows.

With regard to the performance of the two formulations over different number of flights,

70

Table 18: Computational results comparing the slot based formulation to the network flow
based formulation of deterministic instances of SRSP-R.

Average CPU Median CPU Integrality
Time [s] Time [s] Gap [%]

Slot Flow Slot Flow Slot Flow

707.3 34.4 47.2 4.2 83.4 23.4

(a) Results for all instances

Group Average CPU Median CPU Integrality
Name Time [s] Time [s] Gap [%]

Slot Flow Slot Flow Slot Flow

Group 1 375.1 31.8 27.8 10.6 84.0 35.0
Group 2 891.4 4.4 122.2 3.6 87.3 10.8
Group 3 1495.3 3.9 376.8 2.6 89.3 8.7
Group 4 107.1 86.7 11.6 11.2 78.3 44.8
Group 5 345.0 73.5 39.7 8.3 80.8 28.2
Group 6 1029.9 6.0 151.0 1.8 80.7 12.5

(b) Results aggregated by groups.

Number of Average CPU Median CPU Integrality
Flights Time [s] Time [s] Gap [%]

Slot Flow Slot Flow Slot Flow

8 2.5 0.3 1.8 0.3 79.0 22.3
10 45.6 4.0 13.5 2.9 82.7 23.2
12 692.7 18.9 126.7 10.7 85.2 23.9
14 2088.4 114.3 1639.2 18.1 86.8 24.1

(c) Results aggregated by number of flights.

the exponential increase in computational times is evident in Table 19c, especially for the

slot formulation of SRSP-R. The flow formulation is a bit more robust as the rate of increase

in run times is lower. Overall, it can be concluded that the deterministic instances of SRSP-

R with up to 10 aircraft can be solved in near-real time.

SRSP. Similar results for deterministic instances of SRSP are shown in Table 4.6.1.1,

which suggest a somewhat different performance structure than SRSP-R. The first obser-

vation is that the significant superiority of the flow formulation does not hold for SRSP.

Indeed, the median CPU time for the slot formulation is lower than the flow formulation as

seen in Table 20a. The fact that the average CPU time is higher for the slot formulation

is due to the relative inefficiency of the model in larger instances, also reflected in Table

20c. For smaller instances, i.e. those with 8 or 10 aircraft, the slot formulation is mostly

71

equivalent to flow formulation. This is despite the difference in the integrality gap at the

root node. For larger instances, the median run time for the slot formulation is lower but

the average value is higher. Hence, there does not appear to be a distinctly better formu-

lation for deterministic instances of SRSP. Overall, however, it can be concluded that the

advantage gained by the network structure in SRSP-R is lost due to the more complicated

objective function form in SRSP.

The loss of the network properties is also supported by the observation in Table 20b that

tighter schedules result in worsened computational performance in the flow formulation for

SRSP. There is also a clear distinction between the performances of the two formulations

when schedules consist of arrivals only, as opposed to mixed flight operations. In the former

case, the slot formulation is superior, while flow formulation is observed to be better in the

latter case. A general conclusion is that the slot formulation is expected to perform better

for SRSP instances with only arrivals or with smaller number of aircraft considered. More

complex instances of SRSP are better handled by the flow formulation.

Overall, we conclude that for deterministic instances, the flow formulation is significantly

better for SRSP-R for all types of instances. For SRSP, either formulation may be preferred,

depending on schedule density and the mix of operations.

4.6.1.2 Stochastic Problem with Limited Number of Scenarios

These limited scenario problems correspond to instances where the deterministic equivalent

of the stochastic programming problem is solved using scenario decomposition. This is only

possible if the decomposition procedure can be solved in a reasonable amount of time. The

SAA problems described in Section 4.4 fall into this category as multiple solutions of such

problems are required as part of the iterative SAA method implementation.

SRSP-R. In Table 4.6.1.2, we compare the performance of flow and slot formulations for

the SAA instances of SRSP-R. For each group, schedule density, and number of scenarios,

we report the average and median CPU times, the average number of iterations, in what

iteration the best upper bound was found, and the average optimality gap at termination.

In each stochastic instance the number of flights considered was 8 or 10, while the number

72

Table 19: Computational results comparing the slot based formulation to the network flow
based formulation of deterministic instances of SRSP.

Average CPU Median CPU Integrality
Time [s] Time [s] Gap [%]

Slot Flow Slot Flow Slot Flow

139.4 27.4 7.7 10.0 82.4 56.0

(a) Results for all instances

Group Average CPU Median CPU Integrality
Name Time [s] Time [s] Gap [%]

Slot Flow Slot Flow Slot Flow

Group 1 28.6 19.4 10.7 11.3 54.5 53.2
Group 2 129.2 28.3 31.6 16.5 99.5 71.7
Group 3 637.0 39.3 28.1 13.5 96.8 26.6
Group 4 4.2 7.3 3.1 4.0 79.3 79.3
Group 5 8.5 40.0 5.2 9.5 84.4 71.0
Group 6 28.8 30.3 3.8 7.8 79.9 34.1

(b) Results aggregated by groups.

Number of Average CPU Median CPU Integrality
Flights Time [s] Time [s] Gap [%]

Slot Flow Slot Flow Slot Flow

8 1.6 1.6 1.3 1.5 80.0 49.3
10 8.2 7.0 4.4 5.5 82.6 55.5
12 64.7 18.1 11.1 16.4 84.1 57.2
14 483.1 83.0 33.3 47.4 82.9 62.0

(c) Results aggregated by number of flights.

73

of scenarios was 8 or 12. A run time limit of 2 hours has been used in the implementations.

As expected, we observe in Table 21a that the behavior of the two SRSP-R formulations

in the decomposition based stochastic solutions is somewhat similar to the deterministic in-

stances. First, we note that the flow formulation performs better in general, both in terms

of average and median CPU times. However, the distinction is not as large since it takes

more iterations for the flow formulation to converge. Hence, the slot formulation solutions

provide a better path in the subgradient optimization, but they cost more computationally.

The same pattern can be seen in Tables 21b-21d across different instance configurations.

The flow formulation is more robust as the instances get more difficult, and the overall

performance is thus better. We also note that the tighter schedules result in poorer perfor-

mance in the flow formulation for the stochastic instances. This may be due to the larger

number of iterations performed for tighter schedules.

An interesting observation is that the best upper bound, i.e. the best solution, is

identified quite early in the iterations for both implementations. This is especially the

case for schedules consisting of arrivals only, where the best solution is identified in the

first few iterations. This experimental conclusion suggests that a practical heuristic based

on early termination of the decomposition based solution procedure may be quite effective.

Such a heuristic is discussed and analyzed in Section 4.6.4. Another observation is that while

an increase in computational time is evident in both formulations when more scenarios are

included, this increase is at a lower rate for the slot formulation. This suggests the following

for the efficiency of the two formulations as more complex problems are considered. When

compared to the impact of considering more scenarios in the instances, the impact of higher

scheduled densities is larger on the efficiency of slot formulation of SRSP-R, while the

opposite is true for the flow formulation of SRSP-R.

SRSP. Same types of results for SRSP are shown in Table 4.6.1.2. Overall, the slot

formulation is observed to be superior with respect to most measures, except for schedules

that are tighter, while the flow formulation has improved performance over high schedule

densities. This observation is consistent with the results for the deterministic case for

74

Table 20: Computational results comparing the slot based formulation to the network flow
based formulation of SRSP-R using scenario decomposition.

Average CPU Median CPU Number of Best UB Found Optimality Gap
Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

2509 737 741 99 11.8 21.2 3.4 3.7 0.5 0.1

(a) Results for all instances

Group Average CPU Median CPU Number of Best UB Found Optimality Gap
Name Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

Group 1 1855 900 786 226 17.5 21.7 4.8 4.4 0.1 0.1
Group 2 4205 1541 2075 153 15.0 30.6 5.4 8.2 1.2 0.1
Group 3 4362 1157 5637 212 16.8 52.8 8.5 7.7 1.3 0.1
Group 4 215 146 123 41 4.7 4.7 0.0 0.0 0.0 0.0
Group 5 1451 321 390 108 8.5 8.5 1.3 1.3 0.1 0.1
Group 6 2968 360 452 28 8.2 8.9 0.7 0.7 0.1 0.0

(b) Results aggregated by groups.

Number of Average CPU Median CPU Number of Best UB Found Optimality Gap
Scenarios Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

8 2282 605 673 72 11.4 22.2 4.0 3.6 0.4 0.1
12 2737 870 830 146 12.1 20.2 2.8 3.8 0.5 0.1

(c) Results aggregated by number of scenarios.

Number of Average CPU Median CPU Number of Best UB Found Optimality Gap
Flights Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

8 561 58 344 34 11.8 11.9 2.9 2.5 0.0 0.0
10 4458 1417 4018 360 11.8 30.5 3.9 4.9 0.9 0.1

(d) Results aggregated by number of flights.

75

Table 21: Computational results comparing the slot based formulation to the network flow
based formulation of SRSP using scenario decomposition.

Average CPU Median CPU Number of Best UB Found Optimality Gap
Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

541 786 98 135 18.4 24.8 2.1 1.8 0.2 0.2

(a) Results for all instances

Group Average CPU Median CPU Number of Best UB Found Optimality Gap
Name Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

Group 1 474 1773 149 198 45.5 81.5 4.0 2.8 0.1 0.3
Group 2 1361 1436 238 322 19.2 20.7 3.5 3.3 0.8 0.8
Group 3 1170 856 396 277 14.7 15.4 3.7 3.3 0.1 0.1
Group 4 20 57 13 18 8.2 8.2 0.0 0.0 0.0 0.0
Group 5 120 342 60 163 15.0 15.0 0.9 0.9 0.1 0.1
Group 6 100 254 36 77 8.0 8.0 0.5 0.5 0.0 0.0

(b) Results aggregated by groups.

Number of Average CPU Median CPU Number of Best UB Found Optimality Gap
Scenarios Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

8 449 703 61 109 20.5 32.0 2.2 1.9 0.1 0.1
12 633 870 125 185 16.4 17.5 2.0 1.7 0.3 0.3

(c) Results aggregated by number of scenarios.

Number of Average CPU Median CPU Number of Best UB Found Optimality Gap
Flights Time [s] Time [s] Iterations in Iteration at Termination [%]

Slot Flow Slot Flow Slot Flow Slot Flow Slot Flow

8 92 98 37 70 12.4 12.4 1.6 1.3 0.1 0.1
10 989 1474 188 488 24.5 37.2 2.6 2.3 0.3 0.4

(d) Results aggregated by number of flights.

SRSP. Indeed, it is more evident here that the slot formulation would work better for most

stochastic instances of SRSP due to the fact that it takes more iterations for the flow

formulation to converge.

It is still noticeable that the best solutions are identified early in the procedure, while the

remaining run time is used mostly to improve the lower bound for the problem. In all cases,

the convergence is achieved and the procedure is terminated with a very low optimality gap,

which is typically around 0.2%. This suggests that the quality of the solutions obtained are

verifiably high, despite the duality gap that typically has a negative impact on the quality

of the solutions obtained using Lagrangian decomposition for such integer problems.

Overall, we conclude that the flow formulation should be preferred for SRSP-R to solve

small scale stochastic problems. Similar to the deterministic case, SRSP can be solved more

76

efficiently using the slot formulation, except for cases that involve combined operations and

high schedule densities.

4.6.1.3 Stochastic Problem with Large Number of Scenarios

These problems correspond to those where a sampling based procedure, e.g. the SAA

method, is used due to the large number of scenarios considered in the problem defini-

tion.

Given that the actual problem of interest is SRSP, and the relative differences between

the flow and slot formulations of SRSP-R have been identified above, we perform numerical

tests of the SAA implementation for SRSP only. The results of this analysis are discussed

in Section 4.6.4 along with the performance comparisons made with respect to truncated

run times.

4.6.2 Analysis-II: Impact of Improvement Procedures for SRSP

Given the relative complexity of SRSP over SRSP-R, it is necessary to consider the impact

of computational improvement procedures for SRSP. In this section we implement several

potential improvement procedures for SRSP, and determine their effectiveness in order to

conclude a “best” formulation type for the model. More specifically, we consider both the

flow and slot formulations and analyze the impact of the improvement procedures on each

model.

4.6.2.1 Impact of Valid Inequalities

The impact of using the valid inequalities described in Section 4.3 for SRSP can be observed

in Tables 4.6.2.1 and 4.6.2.1 for the slot and flow formulations, respectively. In these results,

we compare the use of the valid inequalities (50) and (51) with the use of the original

big-M formulation depicted in (48) and (49). The results are for a single scenario and

show the average and median CPU times, as well as the average integrality gaps for the

LP-relaxations. In the tables “V.I.” denotes the model using valid inequalities and “Big

M” denotes the standard formulation. The comparative analysis implies that the valid

inequalities are quite efficient in improving computational performance. As seen in Tables

77

Table 22: Computational results showing the impact of using valid inequalities (50) and
(51) for the slot based formulation of SRSP.

Average CPU Median CPU Integrality
Time [s] Time [s] Gap [%]

Big M V.I. Big M V.I. Big M V.I.

1177.1 506.1 12.1 8.4 94.8 82.4

(a) Results for all instances

Group Average CPU Median CPU Integrality
Name Time [s] Time [s] Gap [%]

Big M V.I. Big M V.I. Big M V.I.

Group 1 2900.0 47.0 21.2 12.0 80.0 54.5
Group 2 512.3 171.1 40.9 32.1 100.0 99.5
Group 3 3368.5 2777.3 39.6 23.4 99.7 96.8
Group 4 13.6 5.2 6.5 3.8 100.0 79.3
Group 5 84.0 11.4 8.3 6.0 100.0 84.4
Group 6 184.4 24.4 6.6 5.1 88.8 79.9

(b) Results aggregated by groups.

Number of Average CPU Median CPU Integrality
Flights Time [s] Time [s] Gap [%]

Big M V.I. Big M V.I. Big M V.I.

8 1.7 1.9 1.6 1.3 95.1 80.0
10 14.3 8.4 7.2 5.4 95.5 82.6
12 335.0 88.6 48.5 14.7 95.7 84.1
14 4357.4 1925.3 540.8 38.9 92.7 82.9

(c) Results aggregated by number of flights.

23a and 24a, the average improvement in CPU time is seen to be around 30% for the slot

formulation, while it is around 83% for the flow formulation.

When performance over different types of instances is considered, for the slot formula-

tion, which typically appears to work better for SRSP, we observe more significant improve-

ment in median CPU times as higher numbers of flights are included in the instances. This

suggests that the overall impact of valid inequalities is significant, but the impact is less in

magnitude for more complex instances. Moreover, the addition of valid inequalities reduce

the integrality gap as expected, and this reduction is higher for lower schedule densities.

For the flow formulation, the impact of the valid inequalities is more significant, as

observed in Table 24a. While the slot formulation for SRSP may performs better in some

cases, there are categories of instances where the flow formulations might be preferred, such

as those involving mixed operations and higher schedule densities. Hence, the significance

of valid inequalities for such instances has practical and algorithmic implications. It is

78

Table 23: Computational results showing the impact of using valid inequalities (50) and
(51) for the network flow based formulation of SRSP.

Average CPU Median CPU Integrality
Time [s] Time [s] Gap [%]

Big M V.I. Big M V.I. Big M V.I.

479.2 27.4 55.9 10.0 76.3 56.0

(a) Results for all instances

Group Average CPU Median CPU Integrality
Name Time [s] Time [s] Gap [%]

Big M V.I. Big M V.I. Big M V.I.

Group 1 331.8 19.4 53.8 11.3 80.0 53.2
Group 2 312.8 28.3 52.9 16.5 78.4 71.7
Group 3 357.4 39.3 111.6 13.5 43.3 26.6
Group 4 257.4 7.3 38.0 4.0 100.0 79.3
Group 5 777.9 40.0 75.6 9.5 93.5 71.0
Group 6 838.3 30.3 57.7 7.8 62.8 34.1

(b) Results aggregated by groups.

Number of Average CPU Median CPU Integrality
Flights Time [s] Time [s] Gap [%]

Big M V.I. Big M V.I. Big M V.I.

8 3.3 1.6 2.7 1.5 71.6 49.3
10 45.9 7.0 23.2 5.5 76.4 55.5
12 399.9 18.1 205.0 16.4 76.3 57.2
14 1467.9 83.0 1173.1 47.4 81.0 62.0

(c) Results aggregated by number of flights.

79

Table 24: Computational results showing the impact of the heuristic upper bound calcula-
tions.

Average CPU Median CPU Number of Time spent in
Time [s] Time [s] Iterations UB Heuristic [s]

SP UB SP UB SP UB SP UB

541 1557 98 58 18.4 58.1 30.6 0.0

(a) Results for all instances using the slot based model.

Average CPU Median CPU Number of Time spent in
Time [s] Time [s] Iterations UB Heuristic [s]

SP UB SP UB SP UB SP UB

786 1757 135 105 24.8 59.3 94.5 0.0

(b) Results for all instances using the network flow based model.

observed in Tables 24b and 24c that the valid inequalities improve the performance more

significantly as higher number of flights are considered. On the other hand, the impact on

performance is somewhat consistent over the range of different schedule densities, similar

to the overall model which is robust to such changes in instance complexity.

4.6.2.2 Impact of Upper Bounds

In order to investigate the impact of the heuristic upper bound calculations in the scenario

decomposition algorithm, we solve the stochastic problem with a limited number of scenarios

using a fixed, optimal upper bound. We set the upper bound to the optimal value (obtained

in earlier runs) in the initialization phase of the algorithm and do not spend any time trying

to improve the upper bound. We compare the run time for this algorithm to the complete

algorithm where upper bound improvement is included as described in Step 2 of the scenario

decomposition implementation in Section 4.4.1. Furthermore, we record the time spent in

the upper bound heuristic during the algorithmic runs. The results can be seen in Table

4.6.2.2. In Table 4.6.2.2, the column denoted “SP” shows the results for the standard

decomposition implementation and the column denoted “UB” shows the result using the

same algorithm but holding the upper bound fixed at the optimal value. The table also

includes the average and median CPU times, the number of iterations and the time spent

by the upper bound heuristic. The time spent by the heuristic is included in the reported

average and median run times.

80

For both flow and slot formulations, the run time for the scenario decomposition proce-

dure is increased when a fixed upper bound, i.e. the optimal objective function value, is used

in determining step sizes. In other words, despite the additional computational time spent

in calculating an upper bound, the use of an upper bound heuristic indeed allows for faster

convergence through fewer iterations. This is likely due to the role that the upper bounds

play in the determination of the step sizes in the subgradient optimization algorithm. In

the case of a fixed upper bound, the dynamics of the search procedure are not reflected in

the iterations, thus resulting in slower convergence. The impact is similar for both types

of formulations. Moreover, it can be observed that the total time spent in calculating the

upper bounds is not that significant when compared to the overall run times.

4.6.2.3 Impact of Prioritization

In order to potentially increase the efficiency of the two formulations of SRSP, we evaluate

the impact of branching priorities for the two sets of binary variables x and y. Recall that

the x-variables represent the first stage decisions and the y-variables represent the second

stage variables. To this end, we considered four cases for analysis purposes as follows. Case

I: The x-variables are modeled as continuous variables, Case II: The x-variables are modeled

as binary variables according to (41), Case III: The x-variables are modeled as binary and

are prioritized, and Case IV: The x-variables are modeled as binary and the y-variables are

prioritized.

For the slot formulation, we find that the impact of prioritization differs in deterministic

and stochastic implementations. As seen in Table 4.6.2.3, prioritization does not have a

positive impact on computational performance in the deterministic case. On the other

hand, when stochastic instances are considered, the prioritization of the x-variables result

in slightly improved performance in run times. This interesting observation is likely due

to the increase in scale and complexity for stochastic instances. As the instances get more

complex, prioritization becomes more effective in the branch and bound procedure.

Similarly, we evaluate the impact of prioritization in the network based SRSP. In the

initial model presented in Section 4.2.1, the first stage x-variables are modeled as continuous

81

Table 25: Computational results for showing the impact of prioritization for the slot based
formulation of SRSP over four different cases.

Average CPU Median CPU
Time [s] Time [s]

I II III IV I II III IV

133.3 132.4 149.3 266.8 7.8 7.8 8.3 8.1

(a) Deterministic problem

Average CPU Median CPU
Time [s] Time [s]

I II III IV I II III IV

795 646 553 1070 107 95 71 122

(b) Stochastic problem with limited number of sce-
narios

Table 26: Computational results for showing the impact of prioritization for the network
flow based formulation of SRSP over four different cases.

Average CPU Median CPU
Time [s] Time [s]

I II III IV I II III IV

26.8 28.8 113.4 31.7 8.3 8.4 10.0 8.0

(a) Deterministic problem

Average CPU Median CPU
Time [s] Time [s]

I II III IV I II III IV

787 776 1335 810 154 125 235 141

(b) Stochastic problem with limited number of scenar-
ios

variables. These variables will be either 0 or 1 in any solution due to their relationship to

the z-variables and y-variables. We model the x-variables as binary which gives the solver

an opportunity to branch on these variables, in addition to the y-variables. Furthermore,

we test the impact of prioritization by considering the four cases described above for the

slot formulation. As part of this analysis, we find for the network formulation of SRSP that

modeling the first stage x-variables as continuous is slightly more efficient than modeling

them as binary, and moreover prioritization is not that effective, except when the y vari-

ables are prioritized. The impact of the different prioritization strategies for the network

formulation is shown in Table 4.6.2.3. Unlike the slot formulation, prioritization plays a

similar role over the deterministic and stochastic instances when the flow formulation is

used.

82

Table 27: Computational results comparing the deterministic model of SRSP-R to the
deterministic model of SRSP for the slot based formulation.

Average CPU Median CPU Integrality
Time [s] Time [s] Gap [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

707.3 139.4 47.2 7.7 83.4 82.4

(a) Results for all instances

Group Average CPU Median CPU Integrality
Name Time [s] Time [s] Gap [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

Group 1 375.1 28.6 27.8 10.7 84.0 54.5
Group 2 891.4 129.2 122.2 31.6 87.3 99.5
Group 3 1495.3 637.0 376.8 28.1 89.3 96.8
Group 4 107.1 4.2 11.6 3.1 78.3 79.3
Group 5 345.0 8.5 39.7 5.2 80.8 84.4
Group 6 1029.9 28.8 151.0 3.8 80.7 79.9

(b) Results aggregated by groups.

Number of Average CPU Median CPU Integrality
Flights Time [s] Time [s] Gap [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

8 2.5 1.6 1.8 1.3 79.0 80.0
10 45.6 8.2 13.5 4.4 82.7 82.6
12 692.7 64.7 126.7 11.1 85.2 84.1
14 2088.4 483.1 1639.2 33.3 86.8 82.9

(c) Results aggregated by number of flights.

4.6.3 Analysis-III: Comparison of SRSP vs. SRSP-R

We use the best configurations described above to determine the relative efficiency of the

SRSP-R and SRSP models. More specifically, we demonstrate that the representation of

the objective function in SRSP results in significant additional computational complexity

for most problem instances. Overall, if cost of delay is not important and only the total

delay is to be minimized, then SRSP-R is sufficient and easier to solve. However, SAA

convergence issues are still a problem for stochastic instances of SRSP-R.

In Table 4.6.3, we compare the deterministic versions of SRSP-R and SRSP based on

the performance of the slot formulation. We note that deterministic instances of SRSP are

solved much more efficiently than SRSP-R if the slot formulation is used. This is mainly due

to the generally poor performance of the slot formulation for SRSP-R, and does not imply

anything on the relative overall complexities of the two problems. The integrality gaps on

the other hand are mostly at similar levels. For the stochastic slot formulations, SRSP

83

Table 28: Computational results comparing the SRSP-R model to the SRSP model for the
slot based formulation.

Average CPU Median CPU Number of Optimality Gap
Time [s] Time [s] Iterations at Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

2509 541 741 98 11.8 18.4 0.5 0.2

(a) Results for all instances

Group Average CPU Median CPU Number of Opt. Gap at
Name Time [s] Time [s] Iterations Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

1 1855 474 786 149 17.5 45.5 0.1 0.1
2 4205 1361 2075 238 15.0 19.2 1.2 0.8
3 4362 1170 5637 396 16.8 14.7 1.3 0.1
4 215 20 123 13 4.7 8.2 0.0 0.0
5 1451 120 390 60 8.5 15.0 0.1 0.1
6 2968 100 452 36 8.2 8.0 0.1 0.0

(b) Results aggregated by groups.

Number of Average CPU Median CPU Number of Opt. Gap at
Scenarios Time [s] Time [s] Iterations Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

8 2282 449 673 61 11.4 20.5 0.4 0.1
12 2737 633 830 125 12.1 16.4 0.5 0.3

(c) Results aggregated by number of scenarios.

Number of Average CPU Median CPU Number of Opt. Gap at
Flights Time [s] Time [s] Iterations Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

8 561 92 344 37 11.8 12.4 0.0 0.1
10 4458 989 4018 188 11.8 24.5 0.9 0.3

(d) Results aggregated by number of flights.

again performs better despite typically taking more iterations to complete. This is a result

of the efficiency achieved in solving the scenario problems in the scenario decomposition

procedure. The corresponding run times are shown in Table 4.6.3.

In Table 4.6.3, we compare SRSP-R and SRSP based on the performance of the flow

formulation. We note that deterministic instances of SRSP-R are solved more efficiently

than that of SRSP when the flow formulation is used. In addition, the reduction in the in-

tegrality gap of SRSP-R when compared to SRSP is evident in the results. When stochastic

flow formulations are considered, the situation involves some additional observations. SRSP

is harder to solve as seen in the results in Table 4.6.3. On the other hand, the best upper

bound is found in earlier iterations in SRSP which makes it more amenable to heuristic

based approaches.

84

Table 29: Computational results comparing the deterministic model of SRSP-R to the
deterministic model of SRSP for the flow based formulation.

Average CPU Median CPU Integrality
Time [s] Time [s] Gap [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

19.1 27.4 4.2 10.0 23.4 56.0

(a) Results for all instances

Group Average CPU Median CPU Integrality
Name Time [s] Time [s] Gap [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

Group 1 31.8 19.4 10.6 11.3 35.0 53.2
Group 2 4.4 28.3 3.6 16.5 10.8 71.7
Group 3 3.9 39.3 2.6 13.5 8.7 26.6
Group 4 39.3 7.3 11.2 4.0 44.8 79.3
Group 5 29.4 40.0 8.3 9.5 28.2 71.0
Group 6 6.0 30.3 1.8 7.8 12.5 34.1

(b) Results aggregated by groups.

Number of Average CPU Median CPU Integrality
Flights Time [s] Time [s] Gap [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

8 0.3 1.6 0.3 1.5 22.3 49.3
10 4.0 7.0 2.9 5.5 23.2 55.5
12 18.9 18.1 10.7 16.4 23.9 57.2
14 53.3 83.0 18.1 47.4 24.1 62.0

(c) Results aggregated by number of flights.

85

Table 30: Computational results comparing the SRSP-R model to the SRSP model for the
network flow based formulation.

Average CPU Median CPU Number of Optimality Gap
Time [s] Time [s] Iterations at Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

737 786 99 135 21.2 24.8 0.1 0.2

(a) Results for all instances

Group Average CPU Median CPU Number of Opt. Gap at
Name Time [s] Time [s] Iterations Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

1 900 1773 226 198 21.7 81.5 0.1 0.3
2 1541 1436 153 322 30.6 20.7 0.1 0.8
3 1157 856 212 277 52.8 15.4 0.1 0.1
4 146 57 41 18 4.7 8.2 0.0 0.0
5 321 342 108 163 8.5 15.0 0.1 0.1
6 360 254 28 77 8.9 8.0 0.0 0.0

(b) Result aggregated by groups.

Number of Average CPU Median CPU Number of Opt. Gap at
Scenarios Time [s] Time [s] Iterations Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

8 605 703 72 109 22.2 32.0 0.1 0.1
12 870 870 146 185 20.2 17.5 0.1 0.3

(c) Results aggregated by number of scenarios.

Number of Average CPU Median CPU Number of Opt. Gap at
Flights Time [s] Time [s] Iterations Termination [%]

SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP SRSP-R SRSP

8 58 98 34 70 11.9 12.4 0.0 0.1
10 1417 1474 360 488 30.5 37.2 0.1 0.4

(d) Results aggregated by number of flights.

86

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Lambda

0

20

40

60

80

100

Av
er

ag
e

C
os

t [
M

in
ut

es
]

Cost Distribution Between Objective Components
Total Cost
Flight Deviation Cost
Runway Utilization Cost

(a) Average contribution to objective function for
optimal solutions of SRSP-R for different values of
λ.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Lambda

100

101

102

103

104

R
un

tim
e

[S
ec

on
ds

]

SRSP-R Runtimes for Varying Lambda
Flow Model - Average
Slot Model - Average
Flow Model - Median
Slot Model - Median

(b) Average runtime for SRSP-R for different val-
ues of λ. Higher curve for each model corresponds
to the averages.

Figure 14: Impact of the objective weights for SRSP-R.

It is important to consider the impact of the objective weights used in the implementa-

tions of the SRSP-R, especially with respect to the run times. The objective function used

in SRSP is based on the actual monetary cost for flight deviations and the cost of runway

utilization. For optimal solutions of SRSP, the flight delay cost contributes to about 37% of

the total cost and the share for runway utilization is around 63%. However, as part of the

objective function in SRSP-R we measure the deviation in minutes, which makes it difficult

to put appropriate weights on runway utilization and flight delay in the objective. In the

case with equal weights, i.e. for λ = 0.5, the resulting cost distribution is 90% for flight

deviation and the remaining 10% percent is for runway utilization. This is expected, as one

minute of flight delay has the same weight of runway delay. As can be seen in Figure 14a,

to achieve the same cost distribution for SRSP-R as SRSP we need λ > 0.9. On the other

hand, we can see from the analysis in Figure 14b that the objective values in SRSP-R are

insensitive to the value of λ, likely due to the degeneracy that may exist in the problem

structure. Similarly, it can be observed that the run times are also insensitive to the value

of λ, and specifically the ratio of run times for flow and slot times remain the same over

different values of λ. This implies that the selection of the value of λ does not play a role

in our comparative analyses of different problem configurations.

87

4.6.4 Analysis-IV: Practical Performance

In this section, we consider the practical implementability of stochastic runway scheduling

in real life operations. This requires that a “good” solution is obtained for a given stochastic

instance in reasonable amount of time. Hence, we limit the run times for the SAA algorithm

and compare the best solutions obtained in truncated runs with those obtained from the

full runs. More specifically, we perform four truncated implementations corresponding to

run time limits of 5, 10, 15 and 20 minutes.

First, in Tables 4.6.4 and 4.6.4 we compare the performance of the complete runs,

implemented using a two-hour time limit, with the 20-minute implementation. The im-

plementations are based on the slot based model which appears to be more effective for

SRSP. In Table 4.6.4 we show the average number of replications (M), the average number

of distinct weight class sequences that are an optimal solution in at least one replication,

and the average relative adjusted optimality gap. It is interesting to note that the relative

adjusted optimality gaps for the two implementations are very close, implying that high

quality solutions can still be obtained with truncated run times. We also note that on aver-

age the same number of potentially optimal solutions are identified in each implementation.

This supports our observations that the structure of the problem allows for identification

of good solutions, even optimal solutions, in the early iterations of the algorithm. Finally,

it is also notable that the relative optimality gap is reduced in both cases as the schedule

densities go up. This is due to the increase in the absolute values of the objective functions

as more aircraft are considered, resulting in larger values for the total cost. Hence, a lower

percent gap is calculated despite the increase in the absolute gaps. This might also be an

indication that the solutions obtained in less dense schedules might also be close to optimal,

but the lower bounds are not tight enough to reflect this in the gap estimates.

In Table 4.6.4, we compare the estimated values of the best solutions obtained in the full

and 20 minute implementations. For each instance we consider the best sequence and note

the number of iterations in which the overall best sequence is the winner, the average number

of samples that are performed for this sequence, the mean, the standard deviation and the

upper limit of the 95% confidence interval of the mean. The closeness of the quality of the

88

Table 31: Computational results comparing the characteristics of the full two hour algo-
rithm to a truncated version that solves the problem in 20 minutes. The slot based model
is used in the implementations.

Average Number Average Number of Relative Adjusted
of Iterations Potential Sequences Optimality Gap [%]

Full 20 min Full 20 min Full 20 min

51.9 23.0 4.5 3.5 5.65 6.14

(a) Results for all instances

Group Average Number Average Number of Relative Adjusted
Name of Iterations Potential Sequences Optimality Gap [%]

Full 20 min Full 20 min Full 20 min

Group 1 54.1 24.1 8.3 5.9 11.49 12.62
Group 2 24.9 12.6 4.4 3.4 6.55 7.33
Group 3 15.4 8.9 4.3 3.8 3.06 3.17
Group 4 89.6 45.0 2.1 1.6 3.72 4.17
Group 5 68.1 25.2 5.9 4.4 7.24 7.40
Group 6 59.4 22.3 2.3 2.0 1.86 2.12

(b) Results aggregated by groups.

Number of Average Number Average Number of Relative Adjusted
Scenarios of Iterations Potential Sequences Optimality Gap [%]

Full 20 min Full 20 min Full 20 min

8 57.0 26.6 5.0 3.7 6.22 6.70
12 46.8 19.4 4.0 3.3 5.09 5.57

(c) Results aggregated by number of scenarios.

Number of Average Number Average Number of Relative Adjusted
Flights of Iterations Potential Sequences Optimality Gap [%]

Full 20 min Full 20 min Full 20 min

8 72.0 29.9 4.2 3.4 4.83 5.13
10 31.8 16.0 4.8 3.6 6.48 7.14

(d) Results aggregated by number of flights.

solutions is evident, especially based on the mean values. The only difference is in the upper

bounds for the 95% confidence interval on the objective function value estimates, where

the full implementation results in lower values as expected. However, even this difference

is not significant. The robustness in the quality of the solutions obtained through the

truncated implementation is observable over different configurations of schedules, number

of flights and number of scenarios. Overall, marginal impact of additional run times is

very minimal, implying that the algorithm can potentially be implemented for practical use

through truncated run times.

Given the efficiency and effectiveness of truncated runs based on a 20 minute limit, a

89

Table 32: Computational results comparing the best sequence found in the full two hour
algorithm compared to the best sequence found in the truncated version that solves the
problem in 20 minutes.

Average Number Average Average Average Upper Confidence
of Samples Mean Std. Deviation Interval on Mean

Full 20 min Full 20 min Full 20 min Full 20 min

7250 3267 1238.7 1239.4 189.0 186.9 1245.3 1248.0

(a) Results for all instances

Group Average Number Average Average Average Upper Confidence
Name of Samples Mean Std. Deviation Interval on Mean

Full 20 min Full 20 min Full 20 min Full 20 min

Group 1 4820 2320 236.2 235.5 87.7 89.8 240.7 241.2
Group 2 3200 1670 787.7 791.3 179.3 180.9 795.9 802.2
Group 3 1590 780 2499.6 2502.4 216.7 217.4 2512.3 2516.5
Group 4 16510 8450 255.3 255.2 119.5 119.7 256.8 257.7
Group 5 6470 2310 832.9 830.8 257.8 246.1 839.5 842.3
Group 6 10910 4070 2820.4 2821.3 216.2 215.8 2826.3 2828.4

(b) Results aggregated by groups.

Number of Average Number Average Average Average Upper Confidence
Scenarios of Samples Mean Std. Deviation Interval on Mean

Full 20 min Full 20 min Full 20 min Full 20 min

8 7690 3713 1238.8 1239.4 188.2 187.1 1244.8 1247.9
12 6810 2820 1238.6 1239.4 189.7 186.6 1245.7 1248.1

(c) Results aggregated by number of scenarios.

Number of Average Number Average Average Average Upper Confidence
Flights of Samples Mean Std. Deviation Interval on Mean

Full 20 min Full 20 min Full 20 min Full 20 min

8 10130 4370 1137.0 1136.7 165.8 165.6 1140.7 1142.3
10 4370 2163 1340.4 1342.1 209.6 206.0 1349.8 1353.8

(d) Results aggregated by number of flights.

Table 33: Computational results comparing the impact of runtime for the truncated SAA
algorithm implementations.

Average Average Average Upper Confidence
Mean Std. Deviation Interval on Mean

I II III IV I II III IV I II III IV

1239.4 1238.7 1239.4 1240.7 186.9 184.6 187.6 196.5 1248.0 1248.2 1249.5 1253.4

90

Table 34: Computational results showing the percentage of instances for which the best
sequence, as identified by the 2 hour run, is found. The increase, relative to the 2 hour run,
in the upper confidence interval limit is also shown for cases where the best sequence is the
same and when it is not.

I II III IV

Instances Where Best Sequence is Found 82.5% 85.8% 82.5% 73.3%

Increase in Optimal Obj. Value Est.
1.3 2.2 2.6 5.0

When Best Sequence is Found

Increase in Optimal Obj. Value Est.
9.6 7.1 11.7 16.6

When Best Sequence is Not Found

natural question involves the efficiency of even shorter run times. This is especially of prac-

tical relevance given the potentially faster decision making process in scheduling runway

operations, specifically when the schedule densities are high. In Table 4.6.4, we report the

performances of truncated implementations based on four different run times, where the

notation is defined as I: 20 minute runtime, II: 15 minute runtime, III: 10 minute runtime,

and IV: 5 minute runtime. For each case we look at the best sequence and note the mean

objective function value, the standard deviation and the upper limit of the 95% confidence

interval of the mean. The results are very promising in terms of the practical implementabil-

ity of the procedures described in this chapter. The difference between the 20 minute and

5 minute runs is very small, and the level of robustness is again the same across different

configurations. As we are looking at the best sequence that is found for each runtime sce-

nario, we note that if the same sequence is found in versions with different run times, the

only difference to the result presented in Table 4.6.4 is the number of samples we can afford

to use to get an estimate of the cost. In Table 4.6.4, we show the percentage of instances

in which the best sequence, as identified by the full 2 hour run, is found. In the same table

we have also separated the cases to evaluate the impact of reduced number of samples in

truncated runs, as given by the increase in the obtained objective function value estimate

with respect to the estimate from the full run. All indications suggest that the problem

formulations and solution methodologies proposed result in effective implementations which

mostly produce high quality solutions in very short run times.

91

CHAPTER V

SINGLE-STAGE STOCHASTIC SEQUENCING

In the previous chapter we presented a stochastic integer program for a certain class of

machine scheduling problem and the airport runway scheduling problem. The two-stage

decision process was motivated by the observation that the makespan of a sequence depend

on the job categories rather than characteristics of individual jobs (aircraft) when demand

exceeds capacity. As is the case for general stochastic integer programs, we assumed a

discrete probability distribution modeling the uncertainty.

A different approach to stochastic integer programming is taken in the stochastic branch

and bound algorithm, which is a Monte Carlo based approached to find a good (ideally opti-

mal) solution while taking uncertainty into account. The idea of the algorithm is to divide

the solution space into smaller subsets and estimate stochastic bounds on the objective

function value in each subset. The subsets are organized into a branching tree. In contrast

to deterministic branch and bound models, branches of the tree cannot be deterministically

pruned since the true bounds are not known. Another significant difference is that there is

no requirement on the probability distribution, other than that samples can be drawn from

it. The stochastic branch and bound algorithm is well suited for sequencing problems due

to the natural partitioning of the solution space based on positions in the sequence. Since

there is only one level of decisions, namely the sequence, the method can be seen as a single

stage stochastic model.

Due to the many applications in manufacturing, in particular machine scheduling, it

is common to frame sequencing and scheduling problems in terms of machine scheduling

notation. We usually consider n jobs which are to be scheduled on m machines. The most

common configuration is to consider a single machine.

When a single machine is considered, we refer to the sequence as the order in which jobs

are processed, and denote this by x. The schedule refers to the timing of each job. For our

92

purpose we are interested in the start time of each job, denoted by t = (t1, . . . , tn), but it is

also common to consider the completion time of the jobs, C. We assume that the schedule

t can easily be found given a sequence x, either through a direct calculation or by solving

a simple auxiliary problem. In the other direction, a schedule implies a sequence.

To simplify the categorization of different types of machine scheduling problems, Gra-

ham, Lawler, Lenstra, and Kan (1979) established the three-field notation α|β|γ to describe

the scheduling problem at hand. The first parameter, α, describes the machine environment,

the second parameter, β describes the job characteristics, and the γ parameter indicates

what objective is minimized. As we are dealing with the single machine problem we always

use α = 1. A common job attribute is the release time ri. It is also common to specify

a due date di, a time by which a job needs to be completed without incurring a penalty.

Some common objectives are to minimize the last completion time, Cmax, or to minimize

the sum of tardiness,
∑

∆i, where ∆i = max{0, Ci − di}.

In this chapter we consider a machine scheduling problem on a single machine where

the processing time for each job, pi, is zero, i.e. pi = 0, i ∈ {1, . . . , n}. The due date

of each job coincide with the release time, ri = di, implying that we ideally would like

to schedule the job as soon as it is released. Furthermore, we have sequence-dependent

setup times that enforce that there is sufficient amount of time between the completion

time of job i, and the start time of job j. We denote this time as si,j . Two different

objectives are used. Maximizing the utilization of the machine is equivalent to minimizing

the completion time of the last job, Cmax. The delay for each job, or the tardiness, is

computed as ∆i = max{0, Ci − di} = max{0, ti + pi − ri} = ti − ri, hence the second

objective is to minimize
∑N

i=1 ∆i. Using the three-field notation, the studied problems are

of the form 1|ri = di, si,j |Cmax and 1|ri = di, si,j |
∑

i ∆i.

Note that the special case where ri = 0, ∀i ∈ {1, . . . , n}, si,j = sj,i and the Cmax ob-

jective is used is an instance of the symmetric traveling salesman problem. Special cases

where the
∑N

i=1 ∆i objective is used can be reduced to the traveling repairman problem

(Heilporn, Cordeau, and Laporte 2010b). These special cases show that both versions of the

93

machine scheduling problem under consideration are NP-hard (Blum, Chalasani, Copper-

smith, Pulleyblank, Raghavan, and Sudan 1994).

The machine scheduling problem presented above is a generalization of the airport run-

way scheduling problem. Clearly, sequencing jobs on a machine correspond to sequencing

aircraft on one or multiple dependent runways. The separation requirements between air-

craft can be seen as sequence-dependent setup times. Furthermore, the earliest time an

aircraft is available for scheduling on the runway corresponds to the release time.

In this chapter we propose several enhancements to the stochastic branch and bound

algorithm. We investigate the computational impact of the proposed enhancements and

apply the methodology to applications in airport runway scheduling.

The chapter is structured as follows: In Section 5.1 the stochastic branch and bound

algorithm tailored to sequencing problems is presented and the proposed enhancements are

discussed in Section 5.2. The remainder of the chapter is divided into two parts. In the first

part, we present the implementation details for the general machine scheduling problem

in Section 5.3. The impacts of the proposed enhancements are evaluated in Section 5.4.

In the second part we shift focus to the runway scheduling problem. Due to additional

complexities in the runway scheduling problem, a new method to estimate upper and lower

bounds is presented in Section 5.5. The computational study for the runway scheduling

problem can be found in Section 5.6.

5.1 Stochastic Branch and Bound

Let I = {1, . . . , n} be the set of jobs that are considered. We want to find a sequence

x ∈ X , where X is the set of all possible job sequences, such that the cost of the sequence,

f(x), is minimized. As we are considering probabilistic release times we denote these by

Ri, i ∈ I, indicating that the release times are random variables. We let R = (R1, . . . , Rn).

All random variables have distributions P1, . . . , Pn, with the requirement that samples can

be drawn from these distributions. To explicitly include the dependency of uncertainty, the

objective is rewritten as f(x, rω) = f(x, ω), where ω ∈ Ω and (Ω,Σ,P) is the probability

space. The vector rω = (rω1 , . . . , r
ω
n) gives the realization of the random variables R in

94

scenario ω. The start times of the jobs are given in the vector t = (t1, . . . , tn).

Formally, we have

f(x, ω) = min g(t, rω)

s.t. tj ≥ ti + si,j if i is before j in x, ∀i, j ∈ I × I, i 6= j

ti ≥ rωi ∀i ∈ I

t ∈ R+

(60)

The function g(t, rω) denotes the cost of the schedule. The two different objective

versions are:

g(t, rω) = max
i∈I

ti (61)

g(t, rω) =
∑
i∈I

∆i =
∑
i∈I

(ti − rωi) (62)

Given the uncertainty in the release times, we would like to find a sequence such that

the expected cost is minimized. We define the overall problem as

min
x∈X

F (x) where F (x) = E(f(x, ω)) =

∫
Ω
f(x, ω)P(dω) (63)

The set X denotes all possible complete sequences, with no further restrictions. A

complete sequence x is defined as x = [x(1), . . . , x(n)] where x(i) is the job assigned to

position i. We also introduce the notion of incomplete sequences. Let Xx(1),...,x(k), where

k ≤ n, be the set of sequences where positions 1, . . . , k have been fixed to use job x(i)

in position i = 1, . . . , k. As an example, consider a set of jobs I = {1, 2, 3, 4}. The

set X consists of all 4! permutations of the possible sequences. One such element of X is

x = (1, 3, 4, 2). The set X2,1 consist of two sequences, namely X2,1 = {(2, 1, 3, 4), (2, 1, 4, 3)}.

5.1.1 Algorithm

The main idea of the stochastic branch and bound algorithm is to:

• Partition subsets of sequences into smaller subsets.

• Estimate lower and upper bounds on the objective in each subset.

95

• Remove subsets that are not promising.

Before the algorithm is presented, some additional notation is needed. Let X s, s =

{1, 2, . . . }, be the subsets that currently divide X , so that X = ∪sX s. At iteration q of

the algorithm, X is divided into partition Pq, where the partition is made up of subsets

X s ∈ Pq, s ∈ {1, . . . , wq}.

For a subset X s, let F ∗(X s) = minx∈X s F (x) be the optimal objective in that subset. It

is assumed that there exists bounds on the optimal objective in each subset, i.e. L(X s) ≤

F ∗(X s) ≤ U(X s). In addition, if X s is singleton, then L(X s) = F ∗(X s) = U(X s). It is also

assumed that for each subset X s, there exist a sequence of random estimates, ξl(X s), l =

0, 1, . . . and ηm(X s),m = 0, 1, . . . of L(X s) and U(X s) respectively, such that:

ξl(X s) a.s.−−−→
l→∞

L(X s)

ηm(X s) a.s.−−−−→
m→∞

U(X s)

In the presentation of the algorithm we let ξl(q)(X s) denote the estimate of the lower

bound in iteration q. Thus, the quantity l(q) [X s] denotes the index in the overall se-

quence ξl(X s), l = 0, 1, . . . to which the estimate in iteration q is inserted. Analogous no-

tation is used for the upper bound estimates ηm(q)(X s) and the sequence of upper bounds

ηm(X s),m = 0, 1,

The Stochastic Branch and Bound algorithm is stated in Algorithm 1.

5.1.1.1 Lower Bound Estimation

To obtain a lower bound L(X s) on F ∗(X s) we interchange the expectation and minimization

operators as suggested in Norkin, Pflug, and Ruszczyński (1998).

F ∗(X s) = min
x∈X s

E(f(x, ω)) ≥ E(min
x∈X s

f(x, ω)) = L(X s) (64)

E(min
x∈X s

f(x, ω)) can be estimated by sampling N = N [l] (X s) realizations ω1, . . . , ωN .

Now,

ξl(X s) =
1

N

N∑
i=1

min
x∈X s

f(x, ωi) (65)

96

Algorithm 1 Stochastic Branch and Bound Algorithm for Sequencing Problems

P0 = X
Set q = 0
while Stopping criterion is not met do

Select the subset with lowest bound, Yq = arg min{ξq(X s)|X s ∈ Pq}
Select an approximate solution xq ∈ X q ∈ arg min{ηq(X s)|X s ∈ Pq}
if Yq is singleton then

Set Pq+1 = Pq
else

Construct a partition of the lowest bound subset Yq = Xx(1),x(2),...,x(k):

Let P ′q(Yq) = {Xx(1),x(2),...,x(k),j |j ∈ A, j 6= x(1), . . . , x(k)}
Construct the new full partition:
Pq+1 = (Pq \ Yq) ∪ P ′q

end if
for all subsets X s ∈ Pq+1 do

Estimate stochastic lower bound, ξq(X s) = ξl(q)(X s)
Estimate stochastic upper bound, ηq(X s) = ηm(q)(X s)

end for
Set q = q + 1

end while

where N [l] (X s) is the number of samples used for estimate l in subset X s, is an unbiased

estimator of L(X s).

5.1.1.2 Upper Bound Estimation

As is the case in all minimization problems, any feasible solution to the problem forms

an upper bound on the objective. Let x∗ ∈ X s be a feasible point in the subset X s, so

U(X s) = F (x∗). Similar to the lower bounds, the upper bounds can be estimated by

sampling M = M [m] (X s) realizations ω1, . . . , ωM . Now,

ηm(X s) =
1

M

M∑
i=1

f(x∗, ωi) (66)

is an unbiased estimator of U(X s). M [m] (X s) denotes the number of samples used in

estimate m for subset X s.

A natural candidate for an upper bound in a general sequencing problem is the solution

to the deterministic expected value problem minx∈X s f(x,E(R)). For the single machine

scheduling problem with sequence-dependent setup times and release times, we suggest a

simpler, and faster, approach. From subset X s = Xx(1),...,x(k), fix the beginning of the

97

X1,2

Figure 15: Example of an incomplete branching tree for 4 jobs.

sequence according to x(1), . . . , x(k). The sequence of the remaining n− k jobs is obtained

by taking the expected value, E(Ri), for each job i that is not fixed and arrange these jobs

in increasing order of expected release time.

5.1.1.3 Convergence

For the algorithm to converge to an optimal solution we need the bound estimates to

converge (Norkin, Ermoliev, and Ruszczyński 1998). This can be achieved by successively

increasing the number of bound estimates in subsets that are no longer partitioned, i.e.

limq→∞ l(q) [X ′] = limq→∞m(q) [X ′] =∞, where X ′ is a subset that is an element of Pq for

infinitely many q. Gutjahr, Hellmayr, and Pflug (1999) discuss how bound estimates can

be reused in consecutive iterations by subsets that are not partitioned. In this application

we use this idea and generate an initial set of observations for newly created subsets and

add more observations to subsets that remain unchanged from the previous iteration.

5.1.2 Partitioning

We are looking to identify the best sequence of operations among all possible sequences

X . The set X is partitioned into subsets X s by considering partial sequences. Consider a

subset X s = Xx(1),...,x(k) defined by the partial (k < n) sequence x = [x(1), . . . , x(k)]. The

subset can be partitioned into n− k new subsets X s′ = Xx(1),...,x(k),x(k+1) where x(k + 1) ∈

{1, . . . , n} \ {x(1), . . . , x(k)}.

An example is provided in Figure 15 where the subsets X s ∈ Pq, s ∈ {1, . . . , wq} are

represented in a tree structure. With the tree structure in place it is natural to refer to

98

the subsets as nodes. Partitioning subset X3 leads to 3 new subsets (nodes), X3,1,X3,2, and

X3,4.

5.2 Algorithm Enhancements

In contrast to many deterministic branch and bound schemes, the node selection rule for

branching is defined as a part of the algorithm. The algorithm always selects the node with

the least lower bound estimate. This way the part of the branching tree which shows promis-

ing subsets is partitioned and explored in greater detail. Another significant difference from

the deterministic branch and bound algorithm is that a node in the stochastic version can-

not be pruned solely based on the condition that the lower bound is worse (greater) than

the best upper bound. The bounds calculated in the algorithm are only estimates of the

true lower and upper bounds, and pruning based on these may lead to the elimination of

the optimal solution.

Branches in the tree can however be deterministically pruned if it is possible to get exact

upper and lower bounds. This is the case when the probability distributions P1, . . . , Pn are

bounded and the variance of the resulting random variables ξl(X s) and ηm(X s) can be

bounded. One such deletion rule is presented in Norkin, Pflug, and Ruszczyński (1998).

In contrast to a pruning rule, we present a strategy to dynamically change the compu-

tational emphasis, i.e. the number of samples used, for various parts of the branching tree.

By focusing the bound estimation on subsets that are likely to contain good or optimal

solutions, we can significantly improve the performance of the algorithm.

5.2.1 Dynamic Sample Size Update and Statistical Testing

In many cases it is difficult to find tight upper and lower bounds on the stochastic variables

ξl(X s) and ηm(X s) to allow for deterministic pruning in the stochastic branch and bound

algorithm. As an alternative, we propose an approach that decreases the number of samples

used to evaluate lower bounds in non-promising nodes. The same approach is used to

determine the number of samples for upper bound estimation.

In the following discussion we focus on the lower bounds, but we treat the upper bounds

in the exact same way, thus keeping the sample size for lower and upper bounds equal.

99

Letting ϕ(X s) (when it is clear from the context which subset is considered we simply use

ϕ) be the iteration in which a given subset Xs is created, we set the initial sample size

N [l(ϕ)] (Xs) = M [m(ϕ)] (Xs) = N0 ≥ 1 and estimate lower and upper bounds ξl(ϕ)(X s)

and ηm(ϕ)(X s) according to Equation (65) and Equation (66). For the remaining active

subsets {X t ∈ Pϕ \ Xs}, we update the lower bound estimate by adding N [l(ϕ)] (Xt)

samples to the estimate obtained in previous iterations and calculate the new estimate

according to Equation (67). In the subsequent iteration q, the sample size used in Xs is

adjusted to a new value N1 > 0 (typically smaller than N0). Note that it is possible that

0 < N1 < 1. In that case we force N1 to be of the form 1/δ and let N [l(q)] (X s) = 1 every

δ iteration and 0 in the intermediate iterations. Letting N ′ [l] (X s) be the total number of

samples included in estimate l, we have:

ξl(q)(X s) =
N ′ [l(q − 1)] (X s)ξl(q−1)(X s) +

∑N [l(q)](X s)
i=1 minx∈X s f(x, ωi)

N ′ [l(q − 1)] (X s) +N [l(q)] (X s)
(67)

During the course of the algorithm, ξl(q)(X s) is updated in every iteration (except when

N1 < 1, in which case it is updated every δ iteration) for all active subsets. The com-

putational effort required to update the bounds is proportional to the number of samples

used. For subsets that are unlikely to contain the optimal (or a good) solution, we succes-

sively decrease the number of samples as long as it is possible to do so. We ensure that

N [l(q)] (X s) > N1
min > 0.

At every qE iteration, all active nodes are compared to the node with the best upper

bound. More specifically, given iteration q in which the sample sizes are reviewed, we have

the subset with least upper bound, X̄ q ∈ arg min{ηq(X s)|X s ∈ Pq}. For all other active

subsets {X t ∈ Pq \ X̄ q} we compare the lower bound ξq(Xt) to ηq(X̄ q) using a statistical

hypothesis test to assert if we can reject the null hypothesis H0 : ηq(X̄ q) < ξq(Xt). We

use the two-sample t-test for equal mean (NIST/SEMATECH 2012). Depending on the

outcome of the test, we update the sample size as

100

N [l(q)] (X s) =

max (N [l(q − 1)] (X s)−N−, 1) if we fail to reject H0

and if N [l(q − 1)] (X s) > 1

max
(
1/(δ +N−), N1

min

)
if we fail to reject H0 and if

N [l(q − 1)] (X s) = 1/δ ≤ 1

N [l(q − 1)] (X s) otherwise

(68)

where N− is the decrease in sample size and N1
min is the minimum sample size. The two-

sampled t-test for equal mean is used with 5% significance level.

Proposition 7. The stochastic branch and bound algorithm converges using the sample size

update rule specified in Equation (68).

Proof. Lemma 1 in Norkin, Ermoliev, and Ruszczyński (1998) states that the convergence

criteria are satisfied if the total number of observations for estimate l(q) is of the form

N ′[l(q)](X s, ω) = N ′[l(q − 1)](X s, ω) + Iq(X s, ω)

with N ′[l(q − 1)](X s, ω) = 0 if X s is newly created, and if

∞∑
q=ϕ(X s)

P{Iq(X s, ω) > 0|X s, N ′[l(q − 1)](X s, ω)} =∞ (69)

for every X s in the current partition. ϕ(X s) is the iteration in which X s was created. An

identical condition exists for upper bound sample sizes.

Using Equation (68), we have Iq(X s, ω) = N [l(q)] (X s), so that P{Iq(X s, ω) > 0|X s, N ′[l(q−

1)](X s, ω)} ≥ N1
min > 0 and Equation (69) is satisfied. An identical argument can be used

for the upper bounds.

5.2.2 Termination Criteria

The stochastic branch and bound algorithm does not have a clearly defined termination

criteria. Termination criteria used in other applications of the algorithm include iteration

count (Gutjahr, Hellmayr, and Pflug 1999), stopping when the first singleton node is found

101

(Norkin, Ermoliev, and Ruszczyński 1998), and total runtime (Gutjahr, Strauss, and Wagner

2000). We introduce an additional criteria that terminates the algorithm when the node

with the least lower bound appear to be recurrent, i.e. when the same node repeatedly gets

selected as the node with least lower bound estimate. Note that only singleton nodes can

be selected multiple times, as non-singleton nodes are partitioned if they contain the least

lower bound estimate. We let the parameter qT denote the maximum number of consecutive

iterations where the node with the least lower bound estimate remains the same.

5.2.3 Heuristic Solution Methods

As is the case for all branch and bound algorithms, the overall problem is simplified by

considering a subset of the full solution space. Nevertheless, to obtain exact lower bounds

for the expected cost in a given node, an NP-hard problem needs to be solved for each lower

bound estimate. Convergence of the algorithm to an optimal solution requires a very large

number of lower bound estimates. Even if the algorithm is terminated with an approximate

solution, a large number of estimates are required for qualitative solutions. To that end, we

use heuristic methods to estimate lower bounds. Note that by using a heuristic solution in

the lower bound estimate we may miss the true lower bound, and therefore overestimate the

lower bound. Overestimation of the lower bound may lead to a subset not being selected

as the least lowest bound subset, and therefore not partitioned. On the other hand, by

using heuristic solution methods, many more samples can be used in an estimate, thus

improving the quality of the estimate. It has been reported (Gutjahr, Strauss, and Wagner

2000) that heuristic lower bounds in certain cases outperform the traditional version of the

stochastic branch and bound algorithm where exact lower bounds are used. Furthermore,

the underlying structure of the deterministic problem to be solved can call for the use of

heuristic solution methods. This is the case for 1|ri = di, si,j |Cmax and 1|ri = di, si,j |
∑

i ∆i.

The heuristic solution methods are presented in Section 5.3.

102

5.3 Implementation Details

5.3.1 Upper Bound Estimation

To estimate an upper bound on the objective minx∈X s F (x) in subset X s = Xx(1),...,x(k) we

use Equation (66) to get an unbiased estimator of U(X s). We let x∗ ∈ X s be a feasible

point, with the intention that U(X s) = F (x∗) gives a good, i.e. a small, upper bound

to F (X s). In Section 5.1.1.2, we described how x∗ = [x(1), . . . , x(k), x(k + 1), . . . , x(n)] is

obtained by fixing the first k positions based on the current subset and order the remaining

jobs in increasing order of expected release time, E(Ri), ∀i ∈ I \{x(1), . . . , x(k)}, such that

E(Rx(k+1)) ≤ · · · ≤ E(Rx(n)).

Given a complete sequence x∗ we can calculate the start times t = (t1, . . . , tn) by the

simple recursion described in Procedure 1. The objective function value is calculated as

f(x∗, ω) = g(t, rω). The function g is defined in Equation (61) or Equation (62), depending

what version of the problem we are solving.

Procedure 1. Given a sequence of jobs, x = [x(1), . . . , x(`)], of length ` and with attributes

rωi denoting the realized release time, the following procedure is used to calculate the start

time of each job.

Given initial job x(0) scheduled at time tx(0)

for i = 1→ ` do

tx(i) = max(rωx(i), tx(i−1) + sx(i−1),x(i))

end for

5.3.2 Lower Bound Estimation

To estimate a lower bound L(X s) on the true optimal objective value F ∗(X s) we use Equa-

tion (65) to calculate an unbiased estimator of L(X s). In doing so we need to solve the

problem

min
x∈X s

f(x, ω) (70)

Letting X s = Xx(1),...,x(k), the first k components of the sequence are fixed, and the corre-

sponding start times can be calculated using Procedure 1. For the remaining jobs we need

103

to find a sequence such that f(x, ω), defined in Equation (60), is minimized.

The problem defined in Equation (60) can be modeled as a mixed integer linear program.

Note that the constraint tj ≥ ti+si,j is only valid if job i is sequenced before job j. Therefore,

a mixed integer program requires a “big-M” construction, effectively disabling the constraint

if job j is scheduled before job i. These kinds of formulations typically show a poor linear

relaxation (Codato and Fischetti 2006b) and are, therefore, notoriously hard to solve using

commercial solvers for mixed integer programming.

To solve the problem minx∈X s f(x, ω) we use a dynamic programming algorithm where

each job can only be shifted by a pre-specified number of positions from a nominal job

sequence. The nominal sequence is constructed by considering release times for each job

and order the jobs in increasing order of earliest release time. The algorithm, which is known

as a Constrained Position Shift (CPS) heuristic, has been extensively studied for aircraft

scheduling problems and used to obtain good quality solutions in a short amount of time

(Balakrishan and Chandran 2010; Dear and Sherif 1991; Psaraftis 1980; Trivizas 1998). We

use the formulations in Balakrishan and Chandran (2010), where the Cmax objective version

can be solved in time that is polynomial in the number of jobs n. Note that the algorithm

is exponential with respect to τ , the parameter describing the maximum allowable number

of position shift, but τ is typically small (1,2, or 3).

The problem 1|ri = di, si,j |
∑

i ∆i is more difficult to solve using traditional dynamic

programming, as it requires that timing is brought into the state space. By discretizing

the release times and setup times to an appropriate level of detail, a dynamic programming

model can be used to find the sequence generating minimum system delay under a con-

strained position shift policy. This version of the CPS heuristic is now pseudo-polynomial,

as the size of the problem depends on the values of the release times and the sequence-

dependent setup time.

In aircraft sequencing applications, the CPS methodology is motivated by the fact that

it is in many cases non-trivial for aircraft to reposition themselves if they are physically

lined up in the nominal sequence. Furthermore, by limiting the number of position shifts,

fairness is maintained between the entities in the system, as no entity can be moved too far

104

from its nominal position.

5.4 Computational Study

The purpose of the computational study is to investigate the impacts of the algorithm

enhancements presented in Section 5.2. More specifically we address the following questions:

• What impact does the sample size (initial sample size and sample size of additional

observations) have on solution quality and runtime?

• What is a good strategy for dynamically updating the sample size? Should we be

aggressive and drastically reduce the sample size for non-promising subsets, or is it

better to gradually decrease the sample size for non-promising subsets? To measure

the solution quality we compare the obtained solutions to the best available estimate

of the optimal solution.

• What is a good termination criteria to use? How will different termination criteria

affect the quality of the solution, e.g. how much optimality (with respect to the best

known estimate) do we lose by terminating the algorithm after a predefined runtime

or when the first full sequence is obtained?

In the remainder of this section we first report on the computational setup used to evalu-

ate the stochastic branch and bound algorithm applied to the machine scheduling problems

1|ri = di, si,j |Cmax and 1|ri = di, si,j |
∑

i ∆i, including the computational enhancements.

We begin the computational study by forming a reference case to which the changes can be

compared.

5.4.1 Experiment Setup

To perform the computational analysis we implement the stochastic branch and bound

algorithm described in Section 5.1 together with the models used to obtain upper and lower

bounds. We also develop a schedule generator that is able to generate instances with given

characteristics. We feed the desired number of jobs, the average inter-release time between

105

Table 35: Sequence-dependent setup times for five categories of jobs, C1,. . . ,C5. The rows
indicate the leading job and the columns indicate trailing job.

Trailing
C1 C2 C3 C4 C5

L
ea

d
in

g

C1 110 140 140 160 250
C2 75 105 110 110 200
C3 75 105 105 105 160
C4 70 80 80 80 105
C5 50 55 60 60 60

jobs, and the distribution of job categories to the schedule generator and it produces a

schedule where each job is given a release time and a category.

Inspired by inter-aircraft separation requirements in aircraft sequencing, we assign a job

category to each job. Sequence-dependent setup times are now defined between job cate-

gories rather than individual jobs, and we are able to specify a smaller matrix of sequence-

dependent setup times. Letting hi be the job category of job i, we have si,j = shi,hj , ∀i, j ∈

I ×I. The specific values can be seen in Table 35. We consider five different job categories,

where we in the schedule generation process assume equal probability between categories.

To simplify the discussion, we assume that the time unit is seconds.

If we assume an even distribution of job categories, the average sequence-dependent

setup time is 106 seconds. In a tight sequence, with no gaps between consecutive jobs,

we would be able to schedule 34.0 jobs in an hour using the average setup time. In the

schedule generation process, we use three levels of job release rates, 30, 40, and 50 jobs

per hour, respectively. Furthermore, we initially use nine different schedule lengths, which

gives 27 different combinations of rates and schedule lengths. Using 15 instances for each

combination, we get a total of 405 jobs for each experiment.

In the stochastic setting, the nominal release time (generated by the schedule generator)

can be viewed as the earliest possible release time for a job. Recall that release times are

considered to be stochastic in this application. For each job i we let P ′i be the distribution

of delay from the nominal release time r0
i . The distribution of release times for job i is

therefore Pi = r0
i + P ′i . For the computational experiments we specify P ′i as a triangular

distribution with lower limit, mode and upper limit as described in Table 36.

106

Table 36: Triangular delay distribution, in seconds, from earliest possible release time r0.
Job Category Lower limit Mode Upper limit

C1,C2,C3 0 60 360
C4,C5 0 60 720

Table 37: Parameters used for the reference experiment.
Parameter Value

Tmax, time limit 30 minutes
qT , iterations without improvement 50
qE , iterations between sample evaluation 10
N0, sample size for newly created subsets 50
N1, sample size for existing subsets 10
N1

min, minimum sample size for existing subsets 1
N−, sample size decrease 2

The algorithm is implemented in C++, and the computations are performed on a quad-

core computing cluster whose head node is a 2.66 GHz Xeon X5355 processor.

5.4.2 Reference Experiment

For comparison purposes we start by presenting the reference experiment, the experiment

to which the forthcoming experiments are compared. For the reference experiment we use

the algorithm parameters specified in Table 37.

The result run can be seen in Figure 16 and Figure 17. For each instance we obtain three

sequences. (1) The sequence producing the minimum (estimated) expected objective using

the stochastic branch and bound algorithm, (2) the optimal deterministic sequence, using r0
i

as earliest time, and (3) the first-come, first-served sequence, also with respect to r0
i . Each

one of these sequences are sampled 1,000 times to get a good estimate of their expected

objective. As there are multiple instances for each schedule length, we show the average

expected objective value in Figure 16. Note that due to the additional complexity in the

lower bound model, we are able to handle fewer jobs in each schedule when the system delay

objective is used. In cases where the algorithm has not found a complete sequence, we use

the best sequence obtained so far. If a sequence obtained from a deterministic model is used

in place of the optimal sequence (obtained by the algorithm) the average makespans increase

by 2% to 4%. Similarly, the FCFS sequence increases the makespans by, on average, 5%

to 7% compared to the optimal sequence. Analogous values for the system delay objective

107

8 10 12 14 16
Number of Jobs

1000

1200

1400

1600

1800

2000

2200

Av
er

ag
e

M
ak

es
pa

n
[S

ec
on

ds
]

Opt. Sequence
Det. Sequence
FCFS Sequence

(a) Makespan objective.

7 8 9 10 11 12 13 14
Number of Jobs

1500

2000

2500

3000

3500

4000

4500

Av
er

ag
e

M
ak

es
pa

n
[S

ec
on

ds
]

Opt. Sequence
Det. Sequence
FCFS Sequence

(b) System delay objective.

Figure 16: Average objective for three different scheduling methods: stochastic branch and
bound algorithm (Opt. Sequence), optimal deterministic sequence (Det. Sequence), and a
FCFS policy (FCFS Sequence). The error bars indicate the 95% confidence interval for the
average objective value.

8 10 12 14 16
Number of Jobs

0

500

1000

1500

2000

R
un

tim
e

[S
ec

on
ds

]

Median Runtime
Average Runtime

0

10

20

30

40

50

Pe
rc

en
t o

f I
ns

ta
nc

es
 T

im
ed

 O
ut

Timed Out

(a) Makespan objective.

7 8 9 10 11 12 13 14
Number of Jobs

0

500

1000

1500

2000

R
un

tim
e

[S
ec

on
ds

]
Median Runtime
Average Runtime

0

5

10

15

20

25

30

35

Pe
rc

en
t o

f I
ns

ta
nc

es
 T

im
ed

 O
ut

Timed Out

(b) System delay objective.

Figure 17: Average (with 95% confidence interval) and median runtime for instances solved
by the stochastic branch and bound algorithm. The bars show the percentage of instances
in which we are not able to find a solution within 30 minutes of runtime.

are 27% to 31% for a deterministic sequence and 15% to 24% when the optimal sequence

is replaced by a FCFS sequence.

The average and median runtimes of the stochastic branch and bound algorithm are

shown in Table 17. The 95% confidence interval is included for the average runtime. We

also show the percentage of instances where we are not able to find a complete sequence

within the allocated run time.

The result presented in Figure 16 validates that the stochastic algorithm is able to

generate sequences with significantly better objective values than deterministic models and

108

FCFS scheduling. Figure 17 illustrates the difference in runtime variability between the two

objectives. When the makespan objective is considered, Figure 17a, there is a significant

difference between the average runtime and the median runtime. This indicates that most

instances with fewer than 14 jobs can be solved fast, and that a small number of instances

contribute significantly to the average runtime. For the system delay objective, Figure 17b,

the runtime variability is small, exemplified by the almost identical median and average

runtime.

5.4.3 Sample Size Selection

We begin the computational study by finding appropriate sample sizes. In the reference

experiment we use N0 = 50 initial samples and N1 = 10 for existing subsets. At termination

of the algorithm, the optimal sequences (as generated by the algorithm) have on average

been estimated using 1950 samples for the makespan objective and 830 samples for the

system delay objective. This appears to be a large number of samples and we are therefore

interested to see if the number of samples used to produce the bound estimates can be

reduced without sacrificing optimality. Tables 38 and 39 show the average objective function

value and the average runtime for different values of N0 and N1. The tables also show the

average number of samples used to estimate the bounds in the optimal sequence, and the

average number of iterations performed.

In Table 38 we can see that the values of the objective function when makespan is con-

sidered do not change with reduced sample size. This indicates that the objective is not very

sensitive to what sequence is found by the algorithm. Since the separation requirements are

defined by job categories, there can potentially be many sequences with the same makespan,

resulting in multiple optimal solutions. By decreasing the initial sample size N0 to 25 or

10 samples, and decreasing N1, a slight reduction in runtime can be achieved. Note that

for small N0, the actual runtime increases. The reason for this is that the actual number

of iterations increases with a small initial sample size. Furthermore, it can be seen that the

number of samples in an optimal solution depends more on N1 than on N0.

For the system delay objective, shown in Table 39, the runtime can be significantly

109

Table 38: Average runtime change (39a) and average objective value change (39b) for the
makespan objective for different values of N0 and N1. The table also shows the average
number of samples used for the optimal sequence (39c) and the average number of iterations
required by the algorithm (39d).

N1

10 5 3 1

N0

50 0.0% -1.8% -3.2% -0.7%
25 3.4% -5.6% -1.6% -6.9%
10 7.7% -0.6% -0.6% -0.4%
5 12.9% 3.3% 3.2% 1.5%

(a) Change in runtime

N1

10 5 3 1

N0

50 0.0% 0.0% 0.0% 0.1%
25 0.0% 0.0% 0.0% 0.1%
10 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.1%

(b) Change in average makespan

N1

10 5 3 1

N0

50 1953 818 551 250
25 1606 810 532 218
10 1707 798 483 219
5 1700 900 504 233

(c) Average number of samples in opti-
mal sequence

N1

10 5 3 1

N0

50 615 592 653 636
25 540 696 714 689
10 579 724 731 738
5 564 724 808 803

(d) Average number of iterations

Table 39: Average runtime change (40a) and average objective value change (40b), for the
makespan objective for different values of N0 and N1. The table also shows the average
number of samples used for the optimal sequence (40c) and the average number of iterations
required by the algorithm (40d).

N1

10 5 3 1

N0

50 0.0% -31.2% -39.7% -37.1%
25 -2.4% -31.6% -39.7% -33.3%
10 -1.3% -23.4% -26.3% -31.8%
5 1.3% -23.6% -17.9% -17.2%

(a) Change in runtime

N1

10 5 3 1

N0

50 0.0% -0.4% -0.4% -0.1%
25 -0.3% -0.3% -0.2% 0.1%
10 0.1% -0.3% -0.1% 0.4%
5 0.2% 0.1% -0.1% 0.3%

(b) Change in average system delay

N1

10 5 3 1

N0

50 832 490 295 148
25 800 474 315 134
10 822 451 278 127
5 863 475 288 124

(c) Average number of samples in opti-
mal sequence

N1

10 5 3 1

N0

50 129 158 157 157
25 132 161 191 180
10 143 177 197 215
5 149 186 205 221

(d) Average number of iterations

110

Table 40: Change in runtime and average system delay for N0 = 10 and different values of
N1.

N1

1/2 1/4 1/8 1/16 1/32

Runtime -13.1% -34.7% -48.8% -59.9% -69.6%
Objective Increase 0.1% 0.2% 0.2% 0.3% 0.4%

decreased by decreasing the sample size. No clear trend can be seen for the change in the

average system delay. Once again, a larger initial sample size results in fewer iterations,

whereas a smaller value for N1 results in fewer number of overall samples and reduced

runtime. Tables 40a and 40b suggest that N1 can be reduced further. In Table 40 we see

that in doing so, the objective is strictly worsened.

5.4.4 Dynamic Sample Size

During the course of the algorithm, the sample sizes used for bound estimation are evaluated

and updated every qE iteration. For subsets that are not promising, i.e. they are not likely

to contain an optimal solution, we successively decrease the sample size to reduce the

computational burden and speed up convergence without sacrificing optimality. We select

the experiment in the previous section with N0 = 10 initial samples, N1 = 3 samples for

existing samples, and N1
min = 1 as the reference for this analysis. Table 41 and 42 show the

computational results for various levels of qE , N1
min, and sample size decrease N−.

For the makespan objective, we first observe that had the sample size not been dynam-

ically updated, i.e. qE = ∞, the runtime would have increased by approximately 19%.

In Table 42b it can be seen that a more aggressive sample size reduction does not impact

the average object function value. This shows that the statistical procedure to reduce the

sample size for non-promising subsets is doing what it is supposed to do. This is further

supported by Table 42c, where we see that the average number of samples for an optimal

sequence remains high even for an aggressive reduction scheme, in particular when qE = 10.

A higher sample size evaluation frequency, i.e. when qE = 5, leads to a slight decrease in

runtime at the expense of the number of samples used to estimate the bounds in the optimal

sequence.

When considering the system delay objective, the runtime can be significantly decreased

111

Table 41: Impact of dynamically changing the sample size for the makespan objective. In
Tables 42a and 42b the change is with respect to the base case with N1

min = 1, N− = 2 and
qE = 10.

qE

N1
min N− 10 5

1 2 0.0% -4.0%
1/10 1 -24.3% -22.0%
1/10 2 -25.2% -28.8%
1/10 4 -24.6% -28.9%
qE =∞ 18.8%

(a) Change in runtime

qE

N1
min N− 10 5

1 2 0.00% -0.02%
1/10 1 -0.02% -0.02%
1/10 2 0.00% -0.03%
1/10 4 -0.01% -0.01%
qE =∞ 0.03%

(b) Change in average makespan.

qE

N1
min N− 10 5

1 2 466 476
1/10 1 457 393
1/10 2 437 341
1/10 4 392 300
qE =∞ 641

(c) Average number of sam-
ples in the optimal sequence.

qE

N1
min N− 10 5

1 2 7.16% 6.42%
1/10 1 5.43% 6.42%
1/10 2 5.68% 5.68%
1/10 4 6.17% 5.43%
qE =∞ 9.63%

(d) Percentage of instances timed
out.

Table 42: Impact of dynamically changing the sample size for the system delay objective.
In Tables 42a and 42b the change is with respect to the base case with N1

min = 1, N− = 2
and qE = 10.

qE

N1
min N− 10 5

1 2 0.0% 9.7%
1/10 1 -42.2% -66.4%
1/10 2 -60.2% -68.3%
1/10 4 -66.9% -74.3%
qE =∞ 55.6%

(a) Change in runtime

qE

N1
min N− 10 5

1 2 0.00% 0.06%
1/10 1 0.07% -0.05%
1/10 2 -0.04% 0.24%
1/10 4 -0.04% 0.19%
qE =∞ 0.39%

(b) Change in average system delay

qE

N1
min N− 10 5

1 2 265 266
1/10 1 295 269
1/10 2 277 281
1/10 4 285 229
qE =∞ 248

(c) Average number of sam-
ples in optimal sequence

qE

N1
min N− 10 5

1 2 2.96% 1.85%
1/10 1 1.48% 0.74%
1/10 2 0.74% 0.00%
1/10 4 0.74% 0.37%
qE =∞ 5.56%

(d) Percentage of instances timed
out

112

Table 43: Change in average objective function value, compared to Tmax = 30, and the
percentage of instances in which no complete sequence was found for different time limits.

Runtime Change in Percentage of
limit, Tmax average instances
(minutes) objective timed out

5 0.08% 11.11%
10 0.03% 9.38%
15 0.00% 8.64%
20 0.00% 8.89%
30 0.00% 7.16%

(a) Makespan objective

Runtime Change in Percentage of
limit, Tmax average instances
(minutes) objective timed out

5 1.49% 18.15%
10 0.46% 5.56%
15 0.35% 5.19%
20 0.02% 2.59%
30 0.00% 2.96%

(b) System delay objective

without increasing the average system delay. However, changing the sample size too aggres-

sively leads to an increase in average system delay when qE = 5. By dynamically changing

the sample size, the percentage of instances in which no complete sequence is found can be

reduced from 3% in the base case to less than 1%.

From the computational results presented above we conclude that by dynamically chang-

ing the sample size we are able to reduce the runtime by 40% and 80% (compared to the case

where qE = ∞) for the makespan objective and system delay objective without increasing

the value of the objective function. We also conclude that evaluating the sample sizes too

aggressively, e.g. qE = 5 and N− = 4, can lead to increased objective function values.

5.4.5 Termination Criteria

In the final section of the computational study we investigate various termination criteria.

For the reference case we use the parameters specified in Table 37, with the exception of

N0 and N1, where we use N0 = 10 and N1 = 3.

Table 43 shows the change in objective function value and the percentage of instances

in which no complete sequence was found, for different runtime limits. Using the makespan

objective we once again see that there are multiple optimal sequences. The algorithm fails

to find sequences with makespan close to the optimal makespan only when a small time

limit is used. For the system delay objective, we can see that a time limit of 20 minutes

gives close to identical objective values as 30 minutes.

So far, the algorithm has terminated when the time limit is reached or if we have not seen

any improvement for qT = 50 iterations. Figure 18 shows the upper and lower bound for

113

0 20 40 60 80 100 120 140 160 180
Iteration

1050

1100

1150

1200

1250

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Upper Bound Estimate
Lower Bound Estimate

(a) qT = 50

0 20 40 60 80 100 120
Iteration

1050

1100

1150

1200

1250

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Upper Bound Estimate
Lower Bound Estimate

(b) qT = 20

Figure 18: Upper and lower bound estimates for an instance with 9 jobs.

Table 44: Change in average runtime, average objective function value and the percentage
of instances in which no complete sequence was found for two different termination criteria.

Change in Change in Percentage
Termination average average of instances

Criteria runtime objective timed out

Base 0.0% 0.0% 7.2%
qT = 20 -10.5% 0.0% 6.9%
Stop at -45.5% 0.3% 7.7%

first sequence

(a) Makespan objective

Change in Change in Percentage
Termination average average of instances

Criteria runtime objective timed out

Base 0.0% 0.0% 3.0%
qT = 20 -34.3% 0.3% 1.9%
Stop at -68.2% 2.3% 2.6%

first sequence

(b) System delay objective

an instance with 9 jobs. This example suggest that qT can be decreased without increasing

the average objective function value. In Table 44, the impact of decreasing qT to 20 is

evaluated. We also show the impact of terminating the algorithm after the first complete

sequence is found, i.e. the algorithm stops as soon as we find the first solution.

From Table 44, we conclude that qT can be decreased for a runtime reduction of 10%

and 34%, respectively. However, terminating the algorithm when the first sequence is found

will lead to an increase in average objective function value.

114

A
rr

D
e
p

Figure 19: The runway configuration in this study consist of a pair of closely spaced parallel
runways with one crossing where arrivals taxiing to the gate cross the departure runway.

5.5 Implementation for Runway Scheduling

In the next two sections we apply the methodology previously developed to an instance of

airport runway scheduling. More specifically, we consider an existing runway configuration

and include the necessary level of detail to accurately model real world operations. Due to

the added complexity from the operational constraints, we propose a different method to

solve the problem minx∈X s f(x, ω) and to calculate the objective of a fixed sequence.

For a more natural description of the problem we switch the terminology from machine

scheduling to airport runway scheduling. Thus, the set of jobs I is replaced by the set of

aircraft, A. The release times rωa , a ∈ A refer to the earliest time an aircraft is available for

scheduling at the runway and the start time ta, a ∈ A are the times by which the aircraft use

the runway. Also, the aircraft separation requirements take the role of sequence-dependent

setup times.

Closely spaced parallel runways are defined as a set of runways whose centerlines are

separated by less than 4,300 ft. Generally, one runway is dedicated for departures and

the other runway is used by arriving aircraft. In this study, we consider a runway layout

depicted in Figure 19, where arriving aircraft bound for the airport terminal need to cross

the departure runway. In addition, we assume that the taxiway between the runways can

only accommodate one aircraft at a time. This configuration can be found for eastbound

operations at Los Angeles International Airport (LAX) using runways 24L and 24R.

5.5.1 Runway Scheduling Model

Observing that advanced sequencing models are most beneficial when traffic loads are high

(Brentnall and Cheng 2009; Solveling, Solak, Clarke, and Johnson 2011a), we design our

115

solution methodology for peak periods with high arrival and departure rates. Therefore,

we consider runway utilization as our primary objective and individual aircraft delays as

a secondary objective. It is important to note that increased runway throughput in cases

where the demand for runway resources is higher than the runway capacity leads to less

overall delay. However, fairness cannot be guaranteed because a subset of aircraft may

experience increased delays.

In addition to the times by which aircraft use the runway, we need to include decisions

for crossing. We denote this by cta, a ∈ Arr, where Arr is the set of all arriving aircraft,

or in vector form as ct.

Thus, in this instance for airport runway scheduling we define the value of f(x, ω) in

Equation (71).

f(x, ω) = min{max
a∈A

ta, max
a∈Arr

cta} (71)

s.t. tj ≥ ti + si,j if i ∈ A is sequenced before j ∈ A in x

∀i, j ∈ A×A, i 6= j (72)

cta ≥ ta + tta ∀a ∈ Arr (73)

cti ≤ tj + βjttj if i ∈ Arr is sequenced before j ∈ Arr in x (74)

ctj ≥ ti + sdci,j if i ∈ Dep is sequenced before j ∈ Arr (75)

tj ≥ cti + scdi,j if i ∈ Arr is sequenced before j ∈ Dep (76)

ta ≥ rωa ∀a ∈ A (77)

cta ≥ 0 ∀a ∈ Arr (78)

The objective function, given in Equation (71), aims to minimize the time of the last

operation. Separation requirements between all operations on the runway are defined in

Constraint (72). The parameter tta denotes the minimum taxi time between touchdown

and the point where the departure runway is crossed. Thus, Constraint (73) enforces the

minimum time between runway arrivals and crossing of the departure runway. The assump-

tion that only one aircraft can be held between the runways is modeled in Constraint (74).

The parameter βa represents the fraction of taxi time aircraft a ∈ Arr spend on the runway.

116

If aircraft i ∈ Arr is scheduled before aircraft j ∈ Arr, then i needs to begin crossing before

aircraft j exits the runway at time tj + βjttj . Note that Constraint (74) implies separation

between consecutive crossings as ctj ≥ cti + (1− βj)ttj .

Constraint (75) enforce separation between departures followed by crossings, where sdci,j is

the minimum separation between departing aircraft i ∈ Dep and crossing aircraft j ∈ Arr.

Similarly, Constraint (76) enforces separation between crossings followed by departures,

scdi,j is the minimum separation between crossing aircraft i ∈ Arr and departing aircraft

j ∈ Dep. In this application, we assume that separation requirements involving crossing

operations are independent of aircraft weight class, and set sdci,j = sdc, ∀i, j ∈ A × A and

scdi,j = scd, ∀i, j ∈ A×A.

Note that the sequence of operations, x, only define arrival and departure operations

on the runway and that crossings are not included in x. Therefore, decisions on where

crossings shall be inserted in the departure stream can be seen as a recourse decision and

we can, in this setting, think of the model as a two-stage stochastic program.

5.5.2 Solution Procedure for Runway Scheduling Model

Given a sequence of operations, x, defining the usage of the arrival and departure runways

and the random outcome ω, we present a method to evaluate the value of f(x, ω). In the

method we take advantage of the assumption that only one aircraft can be held between

the runways. In addition to finding the time of arrival and departure operations t, we also

need to find where in the departure stream crossings need to be inserted to minimize the

latest time of operation.

We begin by defining a procedure to calculate runway operations for the aircraft in A

when runway crossings are not considered.

Procedure 2. Given a sequence of aircraft x = [x(1), . . . , x(`)] with attributes rωa for each

aircraft, the following procedures set the runway times. If present, xArr0 and xDep0 are initial

aircraft scheduled at time tArr0 and tDep0 , respectively.

Set xArr0 , tArr0 , xDep0 , tDep0 if present

for i = 1→ ` do

117

sepA = tArr0 + sxArr
0 ,x(i); sepD = tDep0 + s

xDep
0 ,x(i)

tx(i) = max(rωx(i), sepA, sepD)

if x(i) ∈ Arr then

xArr0 = xi, t
Arr
0 = tx(i)

else

xDep0 = xi, t
Dep
0 = tx(i)

end if

end for

Because we can process the crossings sequentially, we only need to consider sequences of

the form a(1), d(1), . . . , d(n), a(2) where a(1) is the arrival aircraft whose crossing time is to

be determined, a(2) is the subsequent arrival and the sequence of intermediate departures

(which can be empty) is represented by d(1), . . . , d(n).

Given the schedule prior to arrival aircraft a(1) and the time for this aircraft, ta(1), the

departures in the sequence together with the subsequent arrival a(2) (if such exists) are

scheduled according to Procedure 2. Let t̃d(i), i = 1, . . . , n and t̃a(2) be the scheduled times

resulting from Procedure 2.

We now need to find the best position in the departure sequence where we can insert

the crossing of a(1). Let the schedule slack generated by aircraft d(i) be defined as s̃d(i) =

t̃d(i) − t̃d(i−1) − sd(i−1),d(i), i = 2, . . . , n, s̃d(1) = 0, similarly s̃a(2) = t̃a(2) − t̃d(n) − sd(n),a(2).

As separation constraints are enforced in the calculation of t̃ we have that s̃d(i) ≥ 0. Using

the slack, we can calculate how much delay the remaining schedule can absorb without

delaying a(2) (or d(n), if no subsequent arrival exist) to a time later than t̃a(2) (t̃d(n)). We

define this maximum schedule absorption for departure d(j) as p̃d(j) =
∑n

k=j+1 s̃d(j), j =

1, . . . , n− 1, p̃d(n) = sa(2) (p̃d(n) = 0 if a(2) is not present).

Let c̃ta(1),i be the time that aircraft a(1) crosses the departure runway if it is scheduled

to cross immediately before departure d(i). Now, c̃ta(1),i is defined as:

c̃ta(1),i =

max(ta(1) + tta(1), t̃d(i−1) + sdc) if i = 2, . . . , n

max(ta(1) + tta(1), td(0) + sdc) if i = 1

(79)

118

where td(0) is the time of the last departure prior to a(1).

We continue by letting t̂d(i) be the departure time of aircraft d(i) if aircraft a(1) is sched-

uled to cross immediately before departure d(i). t̂d(i) is defined as t̂d(i) = max(t̃d(i), c̃ta(1),i+

scd). For each departure d(i), i = 1, . . . , n we let δ̃d(i) be the delay from t̃d(i) if a(1) is

scheduled to cross immediately before d(i), δ̃d(i) = t̂d(i) − t̃d(i).

Starting with d(1), we can sequentially try to schedule the crossing before departure d(i).

If δ̃d(i) ≤ 0, we can let the arrival cross at time c̃ta(1),i without delaying the next departure.

If δ̃d(i) ≤ p̃i we can schedule the crossing at time c̃ta(1),i without delaying a(2) (d(n) if

a(2) is not present) and worsen the objective. If no departure can be found where any of

the previous statements hold, we choose to schedule the crossing arrival before departure

j = arg mini=1,...,n(δ̃d(i)− p̃d(i)), with a total delay of δ̃d(j)− p̃d(j) units for the last departure.

We also check if it is beneficial to schedule the crossing after the departure of aircraft d(n).

Once we have decided where to insert the crossing, we need to update the schedule

accordingly. If we schedule the crossing prior to departure d(j), we get the crossing time

cta1 = c̃ta(1),j . We set td(i) = t̃d(i), i = 1, . . . , j − 1, we set td(j) = t̂d(j), and we schedule the

remaining aircraft, including a2 if it exists, according to Procedure (2). If ta(2) violate (74),

we set ta(2) = cta(1) − βa(2)tta(2)

5.5.3 Lower Bound Estimation

To estimate the lower bound we need to repeatedly solve the minimization problem defined

in Equation (70). In Section 5.3, we use a dynamic programming heuristic to approxi-

mately solve the problem for the portion of the sequence that is not fixed. Due to the

additional complexities introduced by runway crossings, we are not able to use the dynamic

programming algorithm, and we, therefore, propose a different solution method.

The heuristic we propose is a hybrid between partial enumeration and the CPS heuristic

used in Section 5.3. Rather than finding a solution to Equation (70) directly, we implicitly

generate a subset of aircraft sequences and look for the best sequence among these. The

process of finding a subset of aircraft sequences is a two-step process where we first generate

a subset set of weight class sequences and then extract the aircraft sequences. Using the

119

two-step process we avoid generating aircraft sequences that are dominated by other aircraft

sequences and thus give a worse objective.

Given a branching node with the corresponding subset X s = Xx(1),...,x(k), we perform

the lower bound estimation according to Procedure 3.

Procedure 3. Procedure to estimate lower bound in iteration q for subset X s = Xx(1),...,x(k).

Generate a set of aircraft weight classes, W ′w(1),...,w(k). (Section 5.5.3.1)

Let N = l(q) [X s]

for i = 1→ N do

for w ∈ W ′w(1),...,w(k) do

Generate an aircraft sequence x from w (Section 5.5.3.2)

Evaluate f(x, ωi) (Section 5.5.2)

end for

Store the best objective as minx∈Xs f(x, ωi)

end for

Update the lower bound ξl(q)(X s) (according to Equation (67))

In Procedure 3 above, W ′w(1),...,w(k) ⊆Ww(1),...,w(k), where Ww(1),...,w(k) denote the set of

all possible aircraft weight class sequences when positions 1 through k have fixed weight

classes w(1), . . . , w(k).

The motivation behind the use of aircraft weight class sequences in the algorithm stems

from the fact that separation requirements are defined for aircraft weight classes and not

individual aircraft. Thus, we can limit our search for good aircraft sequences to good weight

class sequences. Defining K as the set of aircraft weight classes present in A and W as the

set of all possible weight class sequences corresponding to the aircraft of A, we see that

|X | = n! whereas |W| = n!/Πk∈K(nk!) where the number of aircraft of weight class k ∈ K

is given by nk. Clearly, unless nk = 1, ∀k ∈ K, |W| << |X |.

5.5.3.1 Generating Weight Class Sequences

Because we are using an enumerative approach to solve formulation (70), it is important

that we select a good set of weight class sequences W ′w(1),...,w(k) to evaluate. Of course,

120

if |Ww(1),...,w(k)| is small, we can use W ′w(1),...,w(k) = Ww(1),...,w(k), otherwise we need to

generate the set W ′w(1),...,w(k). Once again (see Section 5.3) we make use of the constrained

position shift idea, although now we use the CPS heuristic in a different manner. Instead

of using the CPS network to solve the dynamic program, we enumerate all possible weight

class sequences given parameter τ to form the set W ′w(1),...,w(k). If implemented carefully,

the creation and enumeration of CPS networks is fast relative to the time spent evaluating

samples.

5.5.3.2 Obtaining Aircraft Sequence from Weight Class Sequence

Although we potentially could generate a set of aircraft sequences directly, many of these

sequences would be dominated by other sequences. For each new sample we would either

have to evaluate a large number of aircraft sequences or spend time eliminating dominated

sequences. Instead, we create a pool of weight class sequences, W ′w(1),...,w(k), and use these

to generate non-dominated aircraft sequences after the runway times have been realized.

Given a sample ω with the associate runway times rω and a fixed weight class sequence

w′ = [k(1), . . . , k(κ), . . . , k(n)] , w′ ∈ W ′w(1),...,w(κ) we use the following steps to extract a

non-dominated aircraft sequence. We begin by ordering the aircraft in non-decreasing order

of rω. Starting from the first position, we put the first available aircraft of weight class k(i)

in position i. The procedure is formally defined as Procedure 4

Procedure 4. Let w =
[
k(1), . . . , k(n)

]
be a weight class sequence and let A be a set of

aircraft such that |A| = n. Each aircraft a has an earliest time rωa . The procedure defined

below builds an aircraft sequence x from the weight class sequence w.

x = ()

A(k) = {a ∈ A : ha = k}

for i = 1→ n do

x̄(i) = {a ∈ A(k(i)) : rωa ≤ rωa′ , a′ ∈ A(k(i))}

if |x̄(i)| > 1 then

Break ties arbitrarily to obtain a single aircraft x̄(i)

end if

121

x = x + x̄(i) (Appended to the end)

A(k(i)) = A(k(i)) \ x̄(i)

end for

In the procedure we use ha to denote the weight class of aircraft a.

In Proposition 8, we show that Procedure 4 gives the optimal aircraft sequence with

respect to delays for individual aircraft, which is our secondary objective. With this result

we have an efficient way to generate aircraft sequences from weight class sequences that are

optimal with respect to delay for individual aircraft. To show the result we make use of the

following Lemma:

Lemma 1. Let f be a convex function and let λ1 < λ2 ≤ λ3 < λ4. Furthermore, let

λ1 + λ4 = λ2 + λ3. Then f(λ1) + f(λ4) ≥ f(λ2) + f(λ3).

Proof. To prove the result we show that f(λ4) − f(λ3) ≥ f(λ2) − f(λ1), or equivalently,

f(λ4)−f(λ3)
λ4−λ3 ≥ f(λ2)−f(λ1)

λ2−λ1 .

Expressing λ2 as a convex combination of λ1 and λ4 we have λ2 = λ4−λ2
λ4−λ1λ1 + λ2−λ1

λ4−λ1λ4.

By convexity of f , f(λ2) ≤ λ4−λ2
λ4−λ1 f(λ1) + λ2−λ1

λ4−λ1 f(λ4). After rearranging we get

f(λ4)− f(λ1)

λ4 − λ1
≥ f(λ2)− f(λ1)

λ2 − λ1
(80)

Similarly, by expressing λ3 as a convex combination of λ1 and λ4, using convexity of f

and rearranging we get

f(λ4)− f(λ3)

λ4 − λ3
≥ f(λ4)− f(λ1)

λ4 − λ1
(81)

The result is obtained by combining (80) and (81).

Proposition 8. Assume that all aircraft have a convex function describing the cost of

delay. Furthermore, assume that all aircraft within the same weight class have the same

function describing the delay. Then, given a weight class sequence w ∈ W and realization

rω, Procedure 4 gives an aircraft sequence with minimum cost solution with respect to the

delay cost function for each aircraft.

122

Proof. Assume that this is not the case. Then w.l.o.g. there exist an aircraft sequence x

such that aircraft b is scheduled before aircraft a but ra ≤ rb, which has a cost that is strictly

smaller than the sequence obtained in Procedure 4. (For clarity we drop the superscript ω.)

Let ta and tb be the scheduled times in sequence x for aircraft a and b, respectively, where

tb < ta. Define the delay from the earliest time as

∆a = ta − ra

∆b = tb − rb

Consider a modified schedule x′ obtained from Procedure 4, where the order of oper-

ations for aircraft a and b are interchanged, but everything else remains the same. Let t′i

be the scheduled time for aircraft i, i = a, b in schedule x′, all other aircraft keep their

scheduled time from sequence x. We have t′a = tb and t′b = ta. The delay is defined as

∆′a = t′a − ra = tb − ra

∆′b = t′b − rb = ta − rb

The sum of delays in both sequences are equal, i.e. ∆a + ∆b = ∆′a + ∆′b. As ta > tb, we

have ∆a > ∆′a. Similarly, ∆′b > ∆b. Also, as rb ≥ ra, we have ∆a ≥ ∆′b and ∆′a ≥ ∆b.

Applying Lemma 1 with ∆a = λ4 and ∆b = λ1 we get f(∆a) + f(∆b) ≥ f(∆′a) + f(∆′b).

This contradicts the fact that the cost of x is strictly less than the cost of x′.

5.5.4 Upper Bound Estimation

In order to get a complete aircraft sequence x∗ to use in Equation (66), we extend the given

sequence x = [x(1), . . . , x(κ)] by ordering the remaining aircraft by their expected time at

the runway, E(Ri), ∀i ∈ I \{x(1), . . . , x(k)}, such that E(Rx(k+1)) ≤ · · · ≤ E(Rx(n)). With

this complete sequence, we estimate the upper bound of subset Xs by repeatedly solving

f(x∗, ω) for different realizations ω. We evaluate f(x∗, ω) using the heuristic approach

described in Section 5.5.2.

5.6 Computational Study for Runway Scheduling

The primary objective of the computational study for the runway scheduling implementa-

tion is twofold. First, we investigate the quality of the solutions generated by the stochastic

123

Table 45: Aircraft weight class distributions used for schedule generation.
Aircraft Weight Class Probability

Heavy 0.4
Large 0.3
Small 0.3

branch and bound algorithm applied to runway scheduling and compare it to solutions ob-

tained from deterministic models. By sampling the aircraft sequences obtained from the

various models we can compare the quality of the solutions. When sampling the complete

aircraft sequences we use the same procedure as when we estimate the upper bound. Sec-

ond, we record the runtime requirements for our stochastic branching algorithm. We also

incorporate promising strategies and termination criteria from the analysis in Section 5.4.

In addition to the analysis introduced above, we investigate the sensitivity in the stochas-

tic distributions describing the delay from the earliest possible runway time. By changing

the parameters for the distribution, we can evaluate the performance and solution quality

for different levels of uncertainty.

5.6.1 Input Data and Parameters

For the computational experiments we reuse the earlier developed schedule generator to

generate flight schedules. We generate an equal number of arrivals and departures and use

the aircraft weight class distribution specified in Table 45.

In each experiment we generate schedules with 8 to 16 flights and arrival and departure

rates varying between 30 and 50 flights per hour and runway. In total, 405 random schedules

are generated for each experiment.

The distribution of runway times for aircraft a is, similar to the previous study, defined

as Pa = r0
a+P ′a, where r0

a is the earliest possible runway time for aircraft a. For P ′a we use a

triangular distribution with parameters shown in Table 46. In Section 5.6.2.3, we evaluate

the sensitivity of these parameters. In this study, the delay distributions P ′a, ∀a ∈ A

are independent from each other. This is a valid assumption if the airport configuration

allow independent taxiway operations for departures, or arriving aircraft are using different

arrival streams. At airports where operations are not independent, distributions capturing

124

Table 46: Triangular delay distribution, in minutes, from earliest possible release time r0.
Direction Lower Limit Mode Upper Limit

Arrival 0 1 6
Departure 0 1 12

Table 47: Parameters used in the algorithm applied to runway scheduling.
Parameter Value

Tmax, Time limit 20 minutes
qT , iterations without improvement 50
qE , iterations between sample evaluation 5
N0, sample size for newly created subsets 50
N1, sample size for existing subsets 5
N1

min, minimum sample size for existing subsets 1
N−, sample size decrease 2
tt, travel time from touchdown to runway crossing 45 seconds

Sdc, separation between departure followed by a crossing 60 seconds

Scd, separation between crossing followed by a departure 30 seconds
β, fraction of taxi time spent on runway 0.5

the dependency need to be used. Note that the algorithm only requires that samples can

be drawn from the distributions, there is no requirement that realizations among different

aircraft are independent.

There are a number of parameters that define the behavior of the stochastic branch and

bound algorithm. These parameters are presented in Table 47. In addition, we use the

separation requirements specified in Tables 12, 13, and 14 for operations on close parallel

runways.

5.6.2 Configuration 1: General Layout

The implementation details in Section 5.5 and the parameters presented in this section are

given for a runway configuration with two close parallel runways using a single crossing for

arrivals to cross the departure runway. We begin our analysis by comparing the sequence

obtained from the stochastic branch and bound algorithm to aircraft sequences obtained

from a FCFS policy and a deterministic scheduling algorithm.

5.6.2.1 Solution Quality

To assess the quality of the solution obtained from the stochastic branch and bound proce-

dure, we extract the best sequence generated by the algorithm and estimate the makespan

125

Table 48: Comparison between aircraft sequences obtained from the stochastic branch
and bound algorithm (Opt.), the deterministic scheduling model (Det.) and the FCFS
scheduling policy (FCFS).

Number of Avg. Makespan Avg. Makespan Change % H0 rejected
Flights Opt. Opt. to Det. Opt. to FCFS Det. FCFS

8 14.72 7.80% 13.81% 0.00% 0.00%
9 15.97 6.13% 13.04% 4.44% 0.00%
10 16.99 6.43% 14.55% 6.67% 0.00%
11 18.21 7.17% 12.80% 0.00% 0.00%
12 19.55 6.27% 15.94% 8.89% 0.00%
13 20.44 6.65% 16.29% 2.22% 0.00%
14 21.65 5.83% 16.08% 8.89% 0.00%
15 23.12 5.16% 16.18% 4.44% 0.00%
16 24.14 5.20% 16.63% 11.11% 0.00%

H0 : Opt. makespan < Det./FCFS makespan

of the sequence through sampling. Note that makespan estimation is a part of the algo-

rithm, but since we have no way of controlling the number of samples used for the optimal

sequence we simply re-estimate the makespan for the optimal sequence using 1,000 samples.

For the estimation, we use Equation (66) with x∗ set to the optimal sequence. Similarly,

we find an optimal deterministic sequence and a FCFS sequence, where we in both cases

use r0
a as the earliest time an aircraft can be scheduled, and estimate the makespan of these

two sequences. In Table 48, we can see that the sequence obtained from a deterministic

model increase the average makespans by 5% to 8% compared to the optimal sequence from

the algorithm. Similarly, the FCFS sequence increases the makespans by, on average, 13%

to 16% compared to the optimal sequence obtained in the stochastic branch and bound

algorithm. The result is visualized in Figure 20.

In Table 48, we record the percentage of instances in which the null hypothesis H0 :

Estimated Makespan of Opt. Sequence < Estimated Makespan of Ref. Sequence is rejected.

In the table, we use the deterministic and FCFS sequence as reference sequences. There is

only a small number of instances in which the null hypothesis is rejected.

5.6.2.2 Runtime Requirements

The efficiency of the algorithm is not only defined by the quality of the solution, but also

by the computational time required. For practical applications it is important to have a

relatively short runtime, so that the recommended aircraft sequence can be implemented

126

8 10 12 14 16
Number of Flights

15

20

25

30

Av
er

ag
e

M
ak

es
pa

n
[M

in
ut

es
]

Opt. Sequence
Det. Sequence
FCFS Sequence

Figure 20: Average makespan for three different scheduling methods: stochastic branch
and bound algorithm (Opt. Sequence), optimal deterministic sequence (Det. Sequence),
and a FCFS policy (FCFS Sequence). The error bars indicate the 95% confidence interval
for the average makespan.

before the scheduled activity takes place. In Figure 21, we show the average and median

runtimes for various number of flights. We also indicate the 95% confidence interval for the

average. In Figure 21, we also show the percentage of instances where we are not able to

find a feasible solution within 20 minutes of available runtime.

Note that the runtimes for the runway application in this section is a magnitude smaller

than the runtimes reported in Section 5.4. This is due to the different heuristics that are

used. In Section 5.4, a dynamic program is solved for every sample, whereas we in this

application generate a pool of sequences for each node and then enumerate over this pool to

estimate (heuristic) lower bounds. Despite the fact heuristic lower bounds are used, Figure

20 and Table 48 indicate that we are obtaining high quality solutions.

5.6.2.3 Sensitivity in Stochastic Input

In the analysis up to this point we have used the probabilistic distributions defined in

Table 46. To evaluate the impact of the probability distribution describing the delay, we

run the base algorithm for three different triangular distributions and for the completely

deterministic case where P ′ = 0 w.p. 1. In the triangular distributions, we keep the lower

limit and mode fixed at 0 and 1, respectively. We alter the shape of the distribution by

127

8 10 12 14 16
Number of Flights

0

50

100

150

200

250

R
un

tim
e

[S
ec

on
ds

]

Median Runtime
Average Runtime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Pe
rc

en
t o

f I
ns

ta
nc

es
 T

im
ed

 O
ut

Timed Out

Figure 21: Average (with 95% confidence interval) and median runtime for instances solved
by the stochastic branch and bound algorithm. The bars show the percentage of instances
in which we were not able to find a solution within 20 minutes of runtime.

Table 49: Change in average makespan when using a deterministic model compared to using
the stochastic branch and bound algorithm for four different input distributions. Distr. 1
has no uncertainty whereas Distr. 4 has the highest level of uncertainty.

Number of Flights Distr. 1 Distr. 2 Distr. 3 Distr. 4

8 -1.97% 4.79% 7.80% 8.35%
9 -1.36% 3.84% 6.13% 6.33%
10 -1.45% 3.60% 6.43% 7.52%
11 -3.07% 4.14% 7.17% 8.03%
12 -2.84% 3.01% 6.27% 7.79%
13 -3.51% 2.76% 6.65% 8.12%
14 -3.01% 1.91% 5.83% 7.63%
15 -3.51% 1.28% 5.16% 7.27%
16 -3.59% 1.67% 5.20% 7.58%

changing the upper limit. For arrivals, we consider upper limits of {3,6,9} and for departures

we use {6,12,18} as upper limits. We denote the four different input distributions by Dist.

1 through Dist. 4, in increasing order of uncertainty level. The outcome can be seen in

Figure 22 with some additional details in Table 49. Table 49 shows, as expected, that the

benefits of a stochastic scheduling algorithm increase as the level of uncertainty increases.

However, even at relatively low levels of uncertainty, e.g. Distr. 2, the stochastic branch

and bound algorithm generates significantly better solutions than a deterministic model.

128

8 10 12 14 16
Number of Flights

10

15

20

25

30

Av
er

ag
e

M
ak

es
pa

n
[M

in
ut

es
]

Opt. Sequence
Det. Sequence
FCFS Sequence

(a) Arrival Distribution: No uncertainty.
Departure Distribution: No uncertainty.

8 10 12 14 16
Number of Flights

10

15

20

25

30

Av
er

ag
e

M
ak

es
pa

n
[M

in
ut

es
]

Opt. Sequence
Det. Sequence
FCFS Sequence

(b) Arrival Distribution: Triangular (0,1,3)
Departure Distribution: Triangular (0,1,6).

8 10 12 14 16
Number of Flights

10

15

20

25

30

Av
er

ag
e

M
ak

es
pa

n
[M

in
ut

es
]

Opt. Sequence
Det. Sequence
FCFS Sequence

(c) Arrival Distribution: Triangular (0,1,6)
Departure Distribution: Triangular (0,1,12).

8 10 12 14 16
Number of Flights

10

15

20

25

30

Av
er

ag
e

M
ak

es
pa

n
[M

in
ut

es
]

Opt. Sequence
Det. Sequence
FCFS Sequence

(d) Arrival Distribution: Triangular (0,1,9)
Departure Distribution: Triangular (0,1,18).

Figure 22: Average makespan for different levels of uncertainty around the nominal runway
time. The triangular distributions are given as (lower limit, mode, upper limit)

129

5.6.3 Configuration 2: Departure Scheduling with Crossings

The second configuration is motivated by the work presented in Gupta, Malik, and Jung

(2010) and Gupta, Malik, and Jung (2011), where the authors consider departure scheduling

with taxiing arrivals crossing the departure runway, i.e. the sequencing and scheduling of

arrivals is given. In this configuration, we assume that there is more than one runway

crossing. We also assume that the decision maker is free to select any runway crossing for

taxiing aircraft, but each taxiway leading up to the runway crossing can only hold a single

aircraft.

Similar to Configuration 1, we treat the runway operations as a first stage decision

and let the crossing operations be a recourse decision handled in the second stage. As we

only consider departure operations in this configuration, the first stage solution space is

significantly smaller, resulting in a smaller branching tree. To determine when crossings

will occur, we use a simple decision rule for the second stage. Runway crossings take

place when there is a gap in the departure stream that is large enough to allow crossings

without interfering with departures, or if all taxiways leading up to the runway crossings

are occupied. In the latter case, departures are held to clear all aircraft waiting to cross.

Due to the smaller solution space and the simple decision rule for when arrivals can

cross, the algorithm allows for a larger set of aircraft to be included. To that end, we

consider instances with 12 to 20 aircraft. Although the improvement in solution quality

is relatively small as compared to a deterministic model or a FCFS policy, the results in

Figure 23 and Table 50 indicate that there is benefit in using the stochastic branch and

bound algorithm. The reason for the small improvement is that half of the first stage

problem, i.e. sequencing of arrivals, has been eliminated. As the number of aircraft in an

instance increases, the benefit of using the stochastic model also increases. This benefit can

be seen both in terms of the average makespan increase for both the deterministic sequence

and the FCFS sequence, and the percentage of instances in which H0 is rejected.

In Figure 24, it is clear that this configuration is significantly easier to solve. This stems

from two facts. First, in the first stage we only consider departing aircraft, which results in

a much smaller branch and bound tree. Second, we use a simple decision rule in the second

130

12 14 16 18 20
Number of Flights

18

20

22

24

26

28

30

32

34

Av
er

ag
e

M
ak

es
pa

n
[M

in
ut

es
]

Opt. Sequence
Det. Sequence
FCFS Sequence

Figure 23: Average makespan for three different scheduling methods in the special case
where only departures and runway crossings are considered: stochastic branch and bound
algorithm (Opt), optimal deterministic sequence (Det), and a FCFS policy (FCFS). The
error bars indicate the 95% confidence interval for the average makespan.

Table 50: Comparison between aircraft sequences obtained from the stochastic branch
and bound algorithm (Opt.), the deterministic scheduling model (Det.) and the FCFS
scheduling policy (FCFS). The result is for the special case when only departure operations
and crossings are considered.

Number of Avg. Makespan Avg. Makespan Change % H0 rejected
Flights Opt. Det. to Opt. FCFS to Opt. Det. FCFS

12 20.04 1.58% 3.60% 37.78% 22.22%
13 21.89 1.90% 3.77% 31.11% 20.00%
14 22.45 1.74% 3.30% 35.56% 26.67%
15 23.86 2.62% 4.36% 40.00% 17.78%
16 24.83 2.61% 5.00% 37.78% 13.33%
17 26.19 3.17% 5.23% 28.89% 8.89%
18 27.44 3.56% 5.76% 24.44% 8.89%
19 28.98 4.54% 6.53% 17.78% 4.44%
20 30.37 3.62% 5.27% 24.44% 13.33%

H0 : Opt. makespan < Det./FCFS makespan

131

10 12 14 16 18 20
Number of Flights

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

tim
e

[S
ec

on
ds

]

Median Runtime
Average Runtime

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t o

f I
ns

ta
nc

es
 T

im
ed

 O
ut

Timed Out

Figure 24: Average (with 95% confidence interval) and median runtime for instances solved
by the stochastic branch and bound algorithm. The bars show the percentage of instances
in which we were not able to find a solution within 20 minutes of runtime. The result is for
the special case when only departure operations and crossings are considered.

stage which simplifies the evaluation of the second stage. This configuration gives us room

for computational enhancements, both in terms of the number of aircraft we can include

and the complexity of the second stage decision.

132

CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This thesis addresses the stochastic airport runway scheduling problem in which a set of

aircraft are to be scheduled on one or multiple dependent runways. In the literature review,

we conclude that while the deterministic runway scheduling problem has received significant

attention in the literature, the stochastic version has received no formal treatment. Solvel-

ing, Solak, Clarke, and Johnson (2011a) present the first two-stage stochastic programming

formulation of the problem and propose a solution methodology based on Benders’ decom-

position. The model is simplified and does not capture all relevant aspect of the runway

scheduling problem. Despite this fact, simulations performed in their study indicate that

the proposed stochastic program adds value to the scheduling problem, when compared to

deterministic models.

In Chapter 4, we propose a two-stage formulation that remedies the shortcomings of

the model developed in Solveling, Solak, Clarke, and Johnson (2011a). The formulation,

which captures all relevant information, results in a large scale stochastic program to which

a solution methodology based on scenario decomposition is developed.

A second, sampling based, stochastic program tailored to sequencing problems is devel-

oped in Chapter 5. We enhance the stochastic branch and bound algorithm to generate run-

way schedules whose expected objective function values outperform deterministic scheduling

models. Further discussions regarding the two proposed models and their performance are

presented in subsequent subsections.

In the first part of the thesis we investigate the environmental value of optimization

in runway scheduling, based on a global scheduling model that captures several complex-

ities inherent in runway operations planning. The first complexity involves the trade-off

between (sometimes conflicting) objective functions, and the second complexity involves

the integrated cost structure associated with the re-sequencing of aircraft. To this end, we

133

explicitly consider emission costs including CO2 and several other pollutants, as well as

noise costs. The cost functions developed in this chapter are later used in the two-stage

model developed in Chapter 4.

We find that optimization based scheduling with explicit consideration of the environ-

mental costs produce significant savings for both airlines and society. We also find that even

if the environmental components are not directly included in the optimization, but instead

a fuel-consumption based objective is used, the environmental savings over a FCFS policy

are still significant. This implies that the additional operational costs incurred by airlines

due to optimal schedules with reduced environmental impact are very minimal, especially

at higher traffic volumes.

6.1 Conclusion for Two-Stage Sequencing Model

In Chapter 4, we consider the stochastic runway scheduling problem (SRSP) under un-

certainty and propose two alternative stochastic programming formulations for this and

other similarly structured scheduling problems. We analyze the two formulations from a

computational efficiency perspective and develop tight valid inequalities to improve com-

putational performance. As an efficient solution methodology, a Lagrangian decomposition

scheme is used within a sample average approximation implementation with several special

improvement steps. Using this framework, a detailed computational analysis is performed

to demonstrate the challenges associated with SRSP and to identify the best formulations

under different types of problem setups. In Table 6.1, we list the most efficient formulation

for each problem category based on the experimental studies performed. The computational

tests suggest that very high quality solutions can be obtained for SRSP when heuristic im-

plementations based on truncated runs are used. This is especially relevant for practical

implementability, as the efficiency and tractability of stochastic approaches have been the

main reason for such approaches not being considered in the literature.

As potential procedures for further improvement in the algorithmic framework, some

other upper bounding heuristics can be considered and analyzed within the Lagrangian

decomposition scheme. A more specific quantitative measure can also be developed to

134

Table 51: The preferred models with respect to run times for the restricted SRSP (SRSP-R)
and SRSP for different input schedules.

Problem Characteristics SRSP-R SRSP

Deterministic
Problem

Small Number of Aircraft Flow Flow/Slot
Large Number of Aircraft Flow Flow/Slot
Mixed Operations (all rates) Flow Flow
Arrivals Only Flow Slot

Stochastic Problem
With Limited Number
of Scenarios

Small Number of Aircraft Flow Slot
Large Number of Aircraft Flow Slot
Mixed Operations (Lower Rate) Flow Slot
Mixed Operations (Higher Rate) Flow Flow
Arrivals Only Flow Slot

represent the relationship between run times and the value achieved from the runs, which

may help better represent the tradeoffs involved. Also related to the practical aspect,

detailed simulations comparing the performances of practical implementations of the FCFS,

deterministic and stochastic scheduling procedures can be considered.

6.2 Conclusion for Single Stage Model

In Chapter 5.4, we use the stochastic branch and bound method to solve the runway schedul-

ing problem and related machine scheduling problems with uncertain input parameters.

More specifically, we assume that the time by which a job is available for scheduling is

given in the form of a probability distribution. Given an input schedule and specified dis-

tributions describing the uncertainty, the algorithm generates a sequence of jobs (aircraft

operations) that minimize the expected makespan or the expected system delay.

In order to obtain solutions in a short amount of time, we propose several enhancements

to the stochastic branch and bound algorithm. By dynamically changing the number of

samples used to estimate the upper and lower bounds during the course of the algorithm,

we can place less emphasis on parts of the branch and bound tree that are unlikely to

contain good solutions. Furthermore, we ensure that the algorithm always terminates with

the best solution obtained so far, even if we have not found a complete sequence. With

these enhancements, we are able to obtain high quality solutions using less than 10 minutes

of computation time.

135

For a machine scheduling problem with sequence-dependent setup times and probabilis-

tic release times, the proposed algorithm is able to reduce the makespan by up to 4% when

compared to a deterministic model. Total system delay for sequences obtained by the al-

gorithm can be reduced by up to 26% compared to sequences obtained from deterministic

models. The proposed enhancements to the algorithm are able to reduce runtime by up to

30% for the makespan objective and up to 70% when system delay is considered.

In the later part of the chapter, the algorithm is applied to two instances of the stochastic

airport runway scheduling problem. The computational results in this study indicate that

the makespan decreases by 5% to 8% when using the stochastic branch and bound algorithm

as compared to an aircraft sequence obtained from a deterministic model. This represents

a significant saving if the result can be translated to a longer planning horizon.

In this work, we assume that the deviation from earliest runway time is independent

between aircraft, whereas in reality there are several cases where delay is dependent. As an

example, consider a sequence of departing aircraft taxiing along the same taxiway. If the

first aircraft is delayed, the remaining aircraft are likely to be delayed as well. The impact

of dependent aircraft operations is a direction of future research.

One major challenge in the stochastic branch and bound algorithm is to estimate good

lower bounds in a short amount of time. In this application we use a partial enumeration

scheme, taking advantage of heuristics incorporating constrained position shifts. It is not

within the scope of this thesis to explore the trade-off between runtime and solution quality

for different lower (and upper) bound models, rather, we suggest that as another direction

of future research.

6.3 Directions for Future Research

The work presented in this thesis focuses on improved solution methodologies for the airport

runway scheduling problem and similarly structured problems. This is an important area

due to the dynamic environment faced by air traffic controllers, where decision support

systems need to produce good quality solutions fast. Directions for future research in this

area include continued development of both heuristic and optimal scheduling methods.

136

Future research efforts also need focus on various aspects of the control problem, i.e.

how can air traffic controllers achieve the recommendations provided by a decision support

system. There are several issues that need to be investigated in order to use stochastic

runway scheduling methods in practice. For example, can the recommended sequence be

achieved given the current status of the system? If not, the models need to take these

constraints into account. How should traffic be managed to achieve a specific weight class

sequence before the weight class sequence has been determined? What recourse actions

are available if a weight class sequence is not achievable? Questions like these need to be

further investigated before a two-stage model can be used in practice. We also suggest a

deeper analysis of the stochastic characteristics inherent to the problem, e.g. what happens

when we remove the assumption of independent aircraft operations.

137

REFERENCES

Agust́ın, A., Alonso-Ayuso, A., Escudero, L., and Pizarro, C. (2012). “On Air
Traffic Flow Management with Rerouting. Part II: Stochastic Case”. European Journal
of Operational Research vol. 219, no. 1, pp. 167–177.

Ahmed, S. (2010). “Two-Stage Stochastic Integer Programming: A Brief Introduction”.
In: Wiley Encyclopedia of Operations Research and Management Science. Ed. by J. J.
Cochran, L. A. Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith. John
Wiley & Sons, Inc.

Ahmed, S., Tawarmalani, M., and Sahinidis, N. (2004). “A Finite Branch-and-Bound
Algorithm for Two-Stage Stochastic Integer Programs”. Mathematical Programming
vol. 100, no. 2, pp. 355 –377.

Allahverdi, A., Ng, C., Cheng, T., and Kovalyov, M. (June 2008). “A Survey of
Scheduling Problems with Setup Times or Costs”. European Journal of Operational
Research vol. 187, no. 3, pp. 985–1032.

Alonso, A., Escudero, L. F., and Ortuno, M. T. (2000). “A Stochastic 01 Program
Based Approach for the Air Traffic Flow Management Problem”. European Journal of
Operational Research vol. 120, no. 1, pp. 47–62.

Anagnostakis, I. (2004). “A Multi-Objective, Decomposition-Based Algorithm Design
Methodology and its Application to Runway Operations Planning”. PhD thesis. Mas-
sachusetts Institute of Technology.

Anagnostakis, I. and Clarke, J.-P. (Jan. 2003). “Runway Operations Planning: A Two-
Stage Solution Methodology”. In: Proceedings of the 36th Hawaii International Confer-
ence on System Sciences. Honolulu, HI.

Atkin, J., Burke, E., Greenwood, J., and Reeson, D. (2008). “On-line Decision Sup-
port for Take-off Runway Scheduling with Uncertain Taxi Times at London Heathrow
Airport”. Journal of Scheduling vol. 11, no. 5, pp. 323–346.

Balakrishan, H. and Chandran, B. (Nov. 2010). “Algorithms for Scheduling Runway
Operations Under Constrained Position Shifting”. Operations Research vol. 58, no. 6.

Ball, M. et al. (2010). Total Delay Impact Study – A Comprehensive Assessment of the
Costs and Impacts of Flight Delay in the United States. Tech. rep. NEXTOR.

Ball, M. O., Hoffman, R., Odoni, A. R., and Rifkin, R. (Mar. 2003). “A Stochastic In-
teger Program with Dual Network Structure and Its Application to the Ground-Holding
Problem”. Operations Research vol. 51, no. 1, pp. 167–171.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y., and Abramson, D. (2004). “Dis-
placement Problem and Dynamically Scheduling Aircraft Landings”. Journal of the
Operational Research Society vol. 55, pp. 54–64.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y. M., and Abramson, D. (May 2000).
“Scheduling Aircraft Landings–The Static Case”. Transportation Science vol. 34, no. 2,
pp. 180–197.

138

Benders, J. F. (1962). “Partitioning Procedures for Solving Mixed-Variables Programming
Problems”. Numerische Mathematik vol. 4, pp. 238 –252.

Bennell, J., Mesgarpour, M., and Potts, C. (2011). “Airport Runway Scheduling”.
4OR: A Quarterly Journal of Operations Research vol. 9, pp. 115–138.

Bianco, L., Dell’Olmo, P., and Giordani, S. (1997). “Scheduling Models and Algorithms
for TMA Traffic Management”. In: Modeling and Simulation in Air Traffic Management.
Ed. by L. Bianco, P. Dell’Olmo, and A. Odoni. Berlin, Germany: Springer-Verlag,
pp. 139–167.

Bianco, L., Rinaldi, G., and Sassano, A. (1987). “A Combinatorial Optimization Ap-
proach to Aircraft Sequencing Problem”. In: Flow Control of Congested Networks. Ed.
by A. Odini, L. Bianco, and G. Szego. Vol. 38. NATO ASI Series, Series F: Computer
and Systems Science. Berlin, Germany: Springer-Verlag, pp. 323–339.

Bigras, L.-P., Gamache, M., and Savard, G. (2008). “The Time-Dependent Traveling
Salesman Problem and Single Machine Scheduling Problems with Sequence Dependent
Setup Times”. Discrete Optimization vol. 5, pp. 685–699.

Birge, J. R. and Louveaux, F. V. (1988). “A Multicut Algorithm for Two-Stage Stochastic
Linear Programs”. European Journal of Operational Research vol. 34, no. 3, pp. 384
–392.

Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., and
Sudan, M. (May 1994). “The minimum latency problem”. In: Proceedings of the
Twenty-Sixth Annual ACM Symposium on the Theory of Computing. Montreal, QC,
Canada, pp. 163–171.

Bly, E. (2005). “Effects of Reduced IFR Arrival-Arrival Wake Vortex Separation Minima
and Improved Runway Operations Sequencing on Flight Delay”. M.S. thesis. Mas-
sachusetts Institute of Technology.

Brentnall, A. and Cheng, R. (2009). “Some Effects of Aircraft Arrival Sequence Algo-
rithms”. Journal of the Operational Research Society vol. 60, pp. 962–972.

Brinton, C. (Oct. 1992). “An Implicit Enumeration Algorithm for Arrival Aircraft Schedul-
ing”. In: Proceedings of the 11th IEEE/AIAA Digital Avionics Systems Conference.
Seattle,WA.

Brinton, C., Cook, L., and Atkins, S. (2007). “Collaborative Airport Surface Metering
for Efficiency and Environmental Benefits”. In: Proceedings of Integrated Communica-
tions, Navigation and Surveillance Conference. Herndon, VA.

Cai, X. and Zhou, X. (2005). “Single-Machine Scheduling with Exponential Processing
Times and General Stochastic Cost Functions”. Journal of Global Optimization vol. 31,
pp. 317 –332.

Caroe, C. and Schultz, R. (1999). “Dual Decomposition in Stochastic Integer Program-
ming”. Operations Research Letters vol. 24, pp. 37–45.

Carøe, C. and Tind, J. (1998). “L-shaped Decomposition of Two-Stage Stochastic Pro-
grams with Integer Recourse”. Mathematical Programming vol. 83, no. 1, pp. 451 –
464.

139

Celikel, A., Hustache, J.-C., Lepinay, I., Martin, K., and Melrose, A. (2005). “En-
vironmental Tradeoffs Assessment Around Airports”. In: Proceedings of the 6th USA/
Europe ATM Seminar. Baltimore, MD.

Chandran, B. and Balakrishan, H. (July 2007). “A Dynamic Programming Algorithm
for Robust Runway Scheduling”. In: Proceedings of the American Control Conference.
New York, NY.

Chang, Y.-H. (2010). “Stochastic Programming Approaches to the Air Traffic Flow Man-
agement Under the Uncertainty of Weather”. PhD thesis. Georgia Institute of Technol-
ogy.

Codato, G. and Fischetti, M. (2006a). “Combinatorial Benders’ Cuts for Mixed-Integer
Linear Programming”. Operations Research vol. 54, no. 4, pp. 756–766.

Codato, G. and Fischetti, M. (2006b). “Combinatorial Benders Cuts for Mixed-Integer
Linear Programming”. Operations Research vol. 54, no. 4, pp. 756 –766.

Cook, A., Tanner, G., and Anderson, S. (2004). Evaluating the True Cost to Airlines of
One Minute of Airborne or Ground Delay. Tech. rep. Eurocontrol Performance Review
Unit.

Dear, R. (1976). The Dynamic Scheduling of Aircraft in the Near Terminal Area. Tech.
rep. Massachusetts Institute of Technology.

Dear, R. and Sherif, Y. (1991). “An Algorithm for Computer Assisted Sequencing and
scheduling of Terminal Area Operations”. Transportation Research: Part A vol. 25, no.
2-3, pp. 129–139.

Doyle, T. and McGee, F. (1998). Air Traffic and Operational Data on Selected U.S.
Airports with Parallel Runways. Tech. rep. NASA/CR-1998-207675. Langley Research
Center, Hampton, VA 23681: National Aeronautics and Space Administration.

Dubois, D. and Paynter, G. (Aug. 2006). “Fuel Flow Method 2 for Estimating Aircraft
Emissions”. In: Society of Automotive Engineers. 400 Commonwealth Dr, Warrendale
PA 15096, USA.

EIA (Sept. 2009). Energy Information Administration: Voluntary Reporting of Greenhouse
Gases Program. http://www.eia.doe.gov/oiaf/1605/coefficients.html.

Eren, T. and Güner, E. (Aug. 2006). “A Bicriteria Scheduling with Sequence-Dependent
Setup Times”. Applied Mathematics and Computation vol. 179, no. 1, pp. 378–385.

Ernst, A., Krishnamoorthy, M., and Storer, R. (1999). “Heuristic and Exact Algo-
rithms for Scheduling Aircraft Landings”. Networks vol. 34, no. 2, pp. 229–241.

Eun, Y., Hwang, I., and Bang, H. (June 2010). “Optimal Arrival Flight Sequencing
and Scheduling Using Discrete Airborne Delays”. IEEE Transactions on Intelligent
Transportation Systems vol. 11, no. 2, pp. 359–373.

Eurocontrol (2011). SESAR Research: ATM Operations and System Validation. http://-
www.eurocontrol.int/articles/atm-operations-and-systems-validation. Accessed in July
2011.

140

Federal Aviation Administration (2009). Report to Congress: National Plan of Inte-
grated Airport Systems (2009-2013). Tech. rep. Federal Aviation Administration.

Federal Aviation Administration (2010a). Federal Aviation Administration Order JO
7110.65T Air Traffic Control. Effective February 11, 2010.

Federal Aviation Administration (2010b). Order JO 7110.65T Air Traffic Control.
Effective February 11, 2010.

Federal Aviation Administration (2011). NextGen Portfolio. http://www.faa.gov/-
nextgen/portfolio/. accessed in March 2011.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY: W. H. Freeman and Company.

Geoffrion, A. (1972). “Generalized Benders Decomposition”. Journal of Optimization
Theory and Applications vol. 10, no. 4, pp. 237–260.

Glover, C. (2010). “Computationally Tractable Stochastic Integer Programming Models
for Air Traffic Flow Management”. PhD thesis. University of Maryland.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. (1979). “Optimization
and Approximation in Deterministic Sequencing and Scheduling: a Survey”. Annals of
Discrete Mathematics vol. 5, pp. 287 –326.

Guan, Y., Ahmed, S., and Nemhauser, G. L. (Mar. 2009). “Cutting Planes for Multistage
Stochastic Integer Programs”. Operations Research vol. 57, no. 2, pp. 287–298.

Gupta, G., Malik, W., and Jung, Y. (Sept. 2009). “A Mixed Integer Linear Program for
Airport Departure Scheduling”. In: Proceedings of the 9th AIAA Aviation Technology,
Integration, and Operations Conference (ATIO). Hilton Head, South Carolina, USA.

Gupta, G., Malik, W., and Jung, Y. (Aug. 2010). “Incorporating Active Runway Cross-
ings in Airport Departure Scheduling”. In: Proceedings of the AIAA Guidance, Naviga-
tion, and Control Conference. Toronto, ON.

Gupta, G., Malik, W., and Jung, Y. (Sept. 2011). “Effect of Uncertainty on Deter-
ministic Runway Scheduling”. In: Proceedings of the 11th AIAA Aviation Technology,
Integration, and Operations Conference (ATIO). Virginia Beach, VA.

Gupta, S. R. and Smith, J. S. (2006). “Algorithms for Single Machine Total Tardiness
Scheduling with Sequence Dependent Setups”. European Journal of Operational Re-
search vol. 175, pp. 722 –732.

Gutjahr, W., Hellmayr, A., and Pflug, G. (1999). “Optimal Stochastic Single-Machine-
Tardiness Scheduling by Stochastic Branch-and-Bound”. European Journal of Opera-
tional Research vol. 117, pp. 396–413.

Gutjahr, W., Strauss, C., and Wagner, E. (2000). “A Stochastic Branch-and-Bound
Approach to Activity Crashing in Project Management”. INFORMS Journal on Com-
puting vol. 12, no. 7, pp. 125–135.

Heilporn, G., Cordeau, J.-F., and Laporte, G. (2010a). “The Delivery Man Problem
with Time Windows”. Discrete Optimization vol. 7, pp. 269–282.

141

Heilporn, G., Cordeau, J.-F., and Laporte, G. (2010b). “The Delivery Man Problem
with Time Windows”. Discrete Optimization vol. 7, pp. 269–282.

Hiriart-Urruty, J.-B. and Lemarechal, C. (Oct. 1993). Convex Analysis and Mini-
mization Algorithms I. Springer. isbn: 0387568506.

Hsu, C. and Lin, P. (2005). “Performance Assessment for Airport Noise Charge Policies
and Airline Network Adjustment Response”. Transportation Research Part D vol. 10,
no. 4, pp. 281–304.

Hu, X. and Chen, W. (June 2005). “Receding Horizon Control for Aircraft Arrival Se-
quencing and Scheduling”. IEEE Transactions on Intelligent Transportation Systems
vol. 6, no. 2, pp. 189–197.

Hu, X. and Paolo, E. D. (June 2008). “Binary-Representation-Based Genetic Algorithm
for Aircraft Arrival Sequencing and Scheduling”. IEEE Transactions on Intelligent
Transportation Systems vol. 9, no. 2, pp. 301–310.

Hu, X. and Paolo, E. D. (2011). “A Ripple-Spreading Genetic Algorithm for the Aircraft
Sequencing Problem”. Evolutionary Computation vol. 19, no. 1, pp. 77–106.

Idris, H. et al. (Aug. 1998). “Identification of Flow Constraints and Control Points in
Departure Operations at Airport Systems”. In: Proceedings of the AIAA Guidance,
Navigation, and Control Conference. Boston, MA.

Kesgin, U. (2006). “Aircraft Emissions at Turkish Airports”. Energy vol. 31, pp. 372–384.

Kiwiel, K. C. (1990). “Proximity Control in Bundle Methods for Convex Nondifferentiable
Minimization”. Mathematical Programming vol. 46, no. 1, pp. 105 –122.

Kleywegt, A., Shapiro, A., and De-Mello, T. (2002). “The Sample Average Approxi-
mation Method for Stochastic Discrete Optimization”. SIAM Journal on Optimization
vol. 12, no. 2, pp. 479–502. issn: 1052-6234. doi: http://dx.doi.org/10.1137/
S1052623499363220.

Kotnyek, B. and Richetta, O. (May 2006). “Equitable Models for the Stochastic Ground-
Holding Problem Under Collaborative Decision Making”. Transportation Science vol.
40, no. 2, pp. 133–146.

Laporte, G. and Louveaux, F. V. (Apr. 1993). “The Integer L-shaped Method for
Stochastic Integer Programs with Complete Recourse”. Operations Research Letters
vol. 13, no. 3, pp. 133 –142.

Lee, S. M. and Asllani, A. A. (2004). “Job scheduling with dual criteria and sequence-
dependent setups: mathematical versus genetic programming”. Omega vol. 32, pp. 145
–153.

Levinson, D., Kanafani, A., and Gillen, D. (1999). “Air, High Speed Rail or Highway:
A Cost Comparison in the California Corridor”. Transportation Quarterly vol. 53, no.
1, pp. 123–132.

Linderoth, J., Shapiro, A., and Wright, S. (2006). “The empirical behavior of sampling
methods for stochastic programming”. Annals OR vol. 142, no. 1, pp. 215–241.

142

Louveaux, F. and Schultz, R. (2003). “Handbooks in Operations Research and Manage-
ment Science”. In: ed. by A. Ruszczynski and A. Shapiro. Vol. 10. Elsevier Science.
Chap. 4, pp. 213–266.

Mesgarpour, M., Potts, C., and Bennell, J. (June 2010). “Models for Aircraft Landing
Optimization”. In: Proceedings of the 4th International Conference on Research in Air
Transportation. Budapest, Hungary.

Möller, A., Römisch, W., and Weber, K. (2007). “Airline Network Revenue Manage-
ment by Multistage Stochastic Programming”. Computational Management Science vol.
5, no. 4, pp. 355–377.

Monroe, G., Jung, Y., and Tobias, L. (Aug. 2008). “Analysis of Environmental Impact of
Eliminating Arrival Hold Short Operations for Runway Crossings at Dallas/Ft. Worth
Airport”. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference.
Honolulu, HI.

Mukherjee, A. and Hansen, M. (Nov. 2007). “A Dynamic Stochastic Model for the Single
Airport Ground Holding Problem”. Transportation Science vol. 41, no. 4, pp. 444–456.

Mulvey, J. M. and Ruszczyski, A. (May 1995). “A New Scenario Decomposition Method
for Large-Scale Stochastic Optimization”. Operations Research vol. 43, no. 3, pp. 477
–490.

Nelson, J. (Jan. 2004). “Meta-Analysis of Airport Noise and Hedonic Property Values”.
Journal of Transport Economics and Policy vol. 38, no. 1, pp. 1–27.

Nero, G. and Black, J. (1998). “Hub-and-spoke Networks and The Inclusion of Envi-
ronmental Costs on Airport Pricing”. Transportation Research Part D vol. 3, no. 5,
pp. 275–296.

NIST/SEMATECH (2012). e-Handbook of Statistical Methods. http://www.itl.nist.gov-
/div898/handbook/. Access date: 4/18/2012.

Norkin, V. I., Ermoliev, Y., and Ruszczyński, A. (1998). “On Optimal Allocation of
Indivisibles under Uncertainty”. Operations Research vol. 46, no. 3, pp. 381–395.

Norkin, V. I., Pflug, G., and Ruszczyński, A. (1998). “A Branch and Bound Method
for Stochastic Global Optimization”. Mathematical Programming vol. 83, pp. 425–450.

Picard, J.-C. and Queyranne, M. (Jan. 1978). “The Time-Dependent Traveling Salesman
Problem and its Application to the Tardiness Problem in One-Machine Scheduling”.
Operations Research vol. 6, no. 1, pp. 86–110.

Psaraftis, H. (1980). “A Dynamic Programming Approach for Sequencing Groups of
Identical Jobs”. Operations Research vol. 28, pp. 1347–1359.

Rathinam, S., Wood, Z., Sridhar, B., and Jung, Y. (Aug. 2009). “A Generalized Dy-
namic Programming Approach for a Departure Scheduling Problem”. In: Proceedings
of the AIAA Guidance, Navigation, and Control Conference. Chicago, IL.

Ren, L. and Clarke, J.-P. (2008). “Flight-Test Evaluation of the Tool for Analysis of
Separation and Throughput”. Journal of Aircraft vol. 45, pp. 323–332.

143

Rockafellar, R. T. and Wets, R. J.-B. (Feb. 1991). “Scenarios and Policy Aggregation
in Optimization under Uncertainty”. Mathematics of Operations Research vol. 16, no.
1, pp. 119 –147.

Rosa, C. and Ruszczyski, A. (1996). “On Augmented Lagrangian Decomposition Methods
for Multistage Stochastic Programs”. Annals of Operations Research vol. 64, no. 1,
pp. 289 –309.

Ruszczyski, A. (1986). “A Regularized Decomposition Method for Minimizing a Sum of
Polyhedral Functions”. Mathematical Programming vol. 35, no. 3, pp. 309 –333.

Sen, S. and Higle, J. L. (Mar. 1999). “An Introductory Tutorial on Stochastic Linear
Programming Models”. Interfaces vol. 29, no. 2, pp. 33 –61.

Sen, S. and Higle, J. L. (2005). “The C3 theorem and a D2 algorithm for large scale
stochastic integer programming: Set convexification”. Mathematical Programming vol.
104, no. 1, pp. 1 –20.

Shapiro, A. (2003). “Inference of statistical bounds for multistage stochastic programming
problems”. Mathematical Methods of Operations Research vol. 58, pp. 57–68.

Sherali, H., Ghoniem, A., Baik, H., and Trani, A. (2012). “A Combined Arrival-
Departure Aircraft Sequencing Problem”. Submitted Manuscript.

Sherali, H. and Fraticelli, B. (2002). “A Modification of Benders’ Decomposition Al-
gorithm for Discrete Subproblems: An Approach for Stochastic Programs with Integer
Recourse”. Journal of Global Optimization vol. 22, no. 1, pp. 319 –342.

Simaiakis, I. and Balakrishan, H. (Aug. 2009). “Queuing Models of Airport Departure
Processes for Emissions Reduction”. In: Proceedings of the AIAA Guidance, Navigation,
and Control Conference. Chicago, IL.

Skutella, M. and Uetz, M. (2005). “Stochastic Machine Scheduling with Precedence
Constraints”. SIAM Journal on Computing vol. 34, no. 4, pp. 788 –802.

Slyke, R. M. V. and Wets, R. (1969). “L-Shaped Linear Programs with Applications to
Optimal Control and Stochastic Programming”. SIAM Journal on Applied Mathematics
vol. 17, no. 4, pp. 638 –663.

Solveling, G., Solak, S., Clarke, J., and Johnson, E. (2011a). “Runway Operations
Optimization in the Presence of Uncertainties”. Journal of Guidance, Control, and
Dynamics vol. 34, no. 5, pp. 1373–1382.

Solveling, G., Solak, S., Clarke, J., and Johnson, E. (2011b). “Scheduling of Runway
Operations for Reduced Environmental Impact”. Transportation Research Part D vol.
16, no. 2, pp. 110–120.

Soroush, H. M. and Fredendall, L. (1994). “The stochastic single machine scheduling
problem with earliness and tardiness costs”. European Journal of Operational Research
vol. 77, pp. 287 –302.

Tan, K.-C., Narasimhan, R., Rubin, P. A., and Ragatz, G. L. (2000). “A Comparison
of Four Methods for Minimizing Total Tardiness on a Single Processor with Sequence
Dependent Setup Times”. Omega vol. 28, pp. 313 –326.

144

Trivizas, D. (1998). “Optimal Scheduling with Maximum Position Shift Constraints”.
Journal of Navigation vol. 51, no. 2, pp. 250–266.

Venkatakrishnan, C., Barnett, A., and Odoni, A. (Aug. 1993). “Landings at Logan
Airport: Describing and Increasing Airport Capacity”. Transportation Science vol. 27,
no. 3, pp. 211–227.

Wu, X. and Zhou, X. (Oct. 2008). “Stochastic Scheduling to Minimize Expected Maximum
Lateness”. European Journal of Operational Research vol. 190, no. 1, pp. 103–115.

Yen, J. W. and Birge, J. R. (Feb. 2006). “A Stochastic Programming Approach to the
Airline Crew Scheduling Problem”. Transportation Science vol. 40, no. 1, pp. 3–14.

Yu, S., X.Cao, and Zhang, J. (2011). “A real-time schedule method for Aircraft Landing
Scheduling problem based on Cellular Automation”. Applied Soft Computing vol. 11,
pp. 3485–3493.

Zhang, L. and Zheng, W. (1996). “On Some Single-Machine Scheduling with Sequence De-
pendent Set-up Times”. In: Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics. Vol. 2. Beijing , China, pp. 1162–1165.

145

