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SUMMARY

Allocation problems have been central to the development of the theory of

algorithms and also find applications in several realms of computer science and eco-

nomics. In this thesis we initiate a systematic study of these problems in situations

with limited information.

Towards this end we explore several modes by which data may be obfuscated

from the algorithm. We begin by investigating temporal constraints where data is

revealed to the algorithm over time. Concretely, we consider the online bipartite

matching problem in the unknown distribution model and present the first algorithm

that breaches the 1− 1/e barrier for this problem.

Next we study issues arising from data acquisition costs that are prevalent in

ad-systems and kidney exchanges. Motivated by these constraints we introduce the

query-commit model and present constant factor algorithms for the maximum match-

ing and the adwords problem in this model.

Finally we assess the approximability of several classical allocation problems with

multiple agents having complex non-linear cost functions. This presents an additional

obstacle since the support for the cost functions may be extremely large entailing

oracle access. We show tight information theoretic lower bounds for the general

class of submodular functions and also extend these results to get lower bounds for a

subclass of succinctly representable non-linear cost functions.

xi



CHAPTER I

INTRODUCTION

Allocation problems have been intensely studied by the computer science and oper-

ations research community over the last three decades and have been pivotal in the

development of the theoretical underpinnings of these fields. Apart from their math-

ematical elegance these problems are also important from a practical viewpoint as

they arise in a variety of areas ranging from job scheduling to bandwidth allocation.

Furthermore, due to the explosive growth of the Internet these problems have also

taken center stage in several realms of electronic commerce such as ad-auctions and

display advertising.

A common characteristic of real world instantiations of these problems is the lack

of complete and accurate information and as a result traditional models of optimiza-

tion are often found wanting in such situations. Modeling and addressing this chal-

lenge is the central theme of this thesis. Concretely, in this thesis we will investigate

this issue along the following three axes.

1. Temporal Data: These constraints arise when data is revealed to us over time;

whereas at every stage the algorithm is expected to make irrevocable decisions

based on the available information. For example, in ad-serving queries/requests

come online throughout the day and need to be processed as they arrive. Clearly,

we cannot afford to wait for all the data to be available and are therefore required

to make decisions on the fly.

2. Data Acquisition Costs: In some problems the cost of acquiring data can

also dictate our design choices. For example, in kidney exchanges the cost of

medical testing for compatibility is prohibitively large; therefore we must be
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judicious in choosing the tests to be performed. In such situations we cannot

a priori assume access to all the information and need to design cost effective

methods to acquire only the most relevant information to make an informed

decision.

3. Non-linear Objective Functions: A major focus of computer science has

been on the study of linear cost functions owing to their simplicity and mal-

leability. However linear cost functions do not always capture the intricate

dependencies that exist in real-world settings. For example the marginal (incre-

mental) cost of producing a good only decreases with increasing scale of produc-

tion. This property cannot be modeled though linear cost functions. Therefore

linear functions only serve as an approximation to the original functions, thus

even though we may have a good approximation algorithm for solving the linear

optimization problem the output is still suboptimal. In this line of research we

seek to model non-linear objectives and assess the limits of approximability of

classical optimization problems in this paradigm.

1.1 Results and Organization

In this thesis we will address each of the issues mentioned above. Chapter 2 deals

with temporal constraints while Chapters 3, 4 and 5 tackle problems where data

acquisition presents a bottleneck. Finally in Chapter 6 we assess approximability

of allocation problems with non-linear objective functions. A brief summary of our

results is given below.

1.1.1 Temporal Data

In this domain we consider the online bipartite matching problem first studied by

Karp et. al. in [37]. In this problem we are given one of the sides of a bipartite

graph while the vertices from the other side arrive online, one at a time. For each

2



incoming vertex we are revealed its neighbors in the given side and it needs to be

matched irrevocably upon arrival (whenever possible). The objective is to maximize

the number of vertices that get matched.

Our main result deals with the version of this problem when the arriving vertices

are drawn from a fixed but unknown distribution that may have an exponentially

large support. For this problem we present a randomized algorithm that attains a

competitive ratio of 0.656. In fact our results hold in the more general random order

arrival model (incoming vertices arrive in random order). We also show an example

to establish that our analysis was off by a factor of at most 0.03. The above results

are based on joint work with Aranyak Mehta and Chinmay Karande [36].

1.1.2 Data Acquisition Costs

In order to model issues that arise due to data acquisition costs we define the query

commit model. In this model we are given the vertex set of a general graph. For every

pair of vertices we are not told a priori whether there is an edge connecting them,

until we probe/scan this pair. If we scan a pair of vertices and find that there is an

edge connecting them we are constrained to pick this edge and in this case both the

vertices are removed from the graph. However, if we find them to be not adjacent,

they continue to be available to be matched in the future. The goal is to maximize

the number of vertices that get matched.

We present a randomized algorithm for this problem that attains a factor of 0.56.

Our algorithm is a significant improvement on a 15 year old result by Aronson, Dyer,

Frieze, and Suen in [2] where they analyzed a closely related randomized algorithm

and showed that it attained a factor of 0.50000025. From the hardness perspective we

consider a large family of algorithms (called vertex iterative algorithms), that iterate

through the vertices and explore their neighborhood and show that no vertex iterative

algorithm can attain a factor better than 0.75 for this problem.
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We also study a stochastic relaxation of this model where we assume that for every

pair of vertices we are additionally given the probability that they are adjacent. For

this we give a 0.571 factor algorithm using a novel sampling technique that might be

of interest in other domains of approximation algorithms. We also showed that no

randomized algorithm could achieve a competitive ratio greater than 0.896.

Finally we consider the generalized assignment problem (GAP) within the query

commit framework. GAP is a weighted generalization of the matching problem but

unlike the max. matching problem it is known to be NP-hard even in the complete

information setting. Using the sampling technique alluded to above we develop a

1− 1/e factor algorithm for this problem.

The results in this section are based on joint work with Gagan Goel [25] and Kevin

Costello and Prasad Tetali [12].

1.1.3 Non-linear Objective Functions

In the last part of this thesis we explore assignment problems with non-linear ob-

jective functions. In this framework multiple agents wish to collaborate to build a

large combinatorial structure over a given graph whilst minimizing the total cost.

Motivated by properties such as decreasing marginal cost and economies of scale,

we use submodular functions to model the agents’ cost functions. Even though this

model generalizes the classical paradigm of linear cost functions these problems are

not amenable to analysis by traditional techniques of combinatorial optimization.

We study the limits of approximability of the following classical problems in this

paradigm - combinatorial reverse auctions and minimum cost perfect matching - and

present (tight) polynomial information theoretic lower bounds. We observe that the

polynomial information theoretic lower-bounds indicate that it is the lack of infor-

mation and not the combinatorial structure that is impeding the search for efficient

algorithms. To rectify this we also investigate the approximability of these problems

4



in a succinctly representable subclass of submodular cost functions called discounted

cost functions.

The results presented in this section are based on joint work with Gagan Goel,

Chinmay Karande and Lei Wang [23, 26].
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CHAPTER II

ONLINE BIPARTITE MATCHING WITH UNKNOWN

DISTRIBUTIONS

2.1 Introduction

In this chapter we will study the online bipartite matching problem. This is a central

problem in algorithms and has been recently found to be an important and useful

model for allocation of ad space to advertisers. In its basic form, the problem involves

a bipartite graph G(L,R,E), with one side L (ads, jobs, or items to sell, in different

motivating examples) known beforehand to the algorithm, and vertices from the other

side R (ad-slots, job-candidates, or buyers) arriving one by one online. When a vertex

r ∈ R arrives, its incident edges are revealed, and the algorithm can match it to some

currently unmatched neighbor in L. The objective is to maximize the size of the

matching obtained at the end.

The online bipartite matching problem can be studied in different input models

based on the amount of information available about the vertices in R.

Adversarial: The strictest model is the adversarial order model which means that

the algorithm knows L but has no information about R (and therefore E) – this is

the standard model for online algorithms. In this model, a simple Greedy algorithm

achieves a competitive ratio of 1/2 since it produces a maximal matching, and this

is optimal among deterministic algorithms. A simple randomized algorithm which

matches the arriving vertex to a random unmatched neighbor does no better. In a

beautiful result [37], Karp, Vazirani and Vazirani described an optimal randomized

algorithm, which achieves an expected competitive ratio of 1 − 1/e ' 0.632 (see

also, [6, 24] for different proofs for the same result). This algorithm, called Ranking,
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uses correlated randomness to match arriving vertices: pick a random permutation of

L, and match each arriving vertex r ∈ R to the neighbor with the highest rank in the

permutation.

Known Distribution: In Feldman et al. [22], the authors introduced a distributional

input model, which we shall call the known distribution input model. In this model,

the algorithm knows beforehand, a base graph Ĝ(L, R̂, Ê), and a distribution D on

R̂. The arriving vertices are sampled i.i.d. (without replacement) from R̂ according

to D. Each arriving vertex has the same incident edges as its copy in Ĝ. Thus this

is a weaker model, since the algorithm is guaranteed i.i.d. samples, and also knows

the underlying distribution. Clearly, Ranking achieves 1−1/e in this model as well,

since it does so in the adversarial model (for any sequence of inputs, without any

prior information). Feldman et al. [22] provided an algorithm which achieves a factor

strictly greater than 1− 1/e, of 1−2/e2

4/3−2/3e
' 0.670. This was the first algorithm to beat

the 1− 1/e barrier, albeit in a much weaker model.

Unknown Distribution / Random Order:We will study a model that lies in be-

tween these two models in terms of how much information about the arriving vertices

the algorithm has beforehand. In this model, which we call the unknown distribution

model, the arriving vertices are guaranteed to be picked from a distribution on some

base graph, but the algorithm has no knowledge about the base graph and the dis-

tribution. Closely related to this model, but stricter than this model, is the random

order arrival model, in which there is a base graph G(L,R,E), the algorithm only

knows L, and the arriving vertices are guaranteed to be in a random permutation of

R. It can be shown that an algorithm which achieves a competitive ratio of α in the

random order model also has a factor of α in the unknown distribution model (See

Section 2.2.2 for a proof).

The only previous result in this model follows, in fact, from the structure of

the Ranking algorithm. The analysis for Ranking in the adversarial model itself

7



implies that a simple Greedy algorithm (with consistent tie-breaking) achieves a

competitive ratio of 1− 1/e in the random order model. Clearly, Ranking itself also

achieves at least 1−1/e, since it does so on any input sequence and without any prior

information. However, unlike in the case for the known distribution model result

(in which [22] broke through the 1 − 1/e ‘barrier’), and despite considerable effort,

there was no algorithm known to achieve more than 1 − 1/e factor in the unknown

distribution model or in the random order model.

2.1.1 Our Results

We analyze the competitive ratio of the Ranking algorithm in the random order

arrival model. We prove the following three results:

(a) Ranking achieves a factor of at least 0.653 in the random order model (and

hence in the unknown distribution model)1.

(b) There are graphs for which Ranking achieves a ratio of no more than 0.727 in

the random order model.

(c) Ranking achieves a factor of at least 1−
√

1
k
− 1

k2 + 1
n

for graphs which have

at least k > 1 disjoint perfect (or near-perfect) matchings.

Remark 1 No algorithm crossing the 1−1/e barrier in the unknown distribution

or the random order input models was previously known. This answers an open

question in [24].

Remark 2 Since the random order model is stricter than the unknown distribu-

tion model, the positive results (a and c) hold there as well.

Remark 3 The third result (c) above states that if the graph has certain re-

dundancy with respect to optimal matchings then Ranking is almost optimal! If

1We can in fact prove a slightly stronger factor of 0.667 for this problem, but this requires us to
use computational means to minimize a non-convex function over fixed number of variables.
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the underlying distribution is such that with high probability any instance drawn

from the distribution has ω(1) disjoint matchings of size at least n − o(n) then the

Ranking algorithm achieves a factor of 1−o(1). We note that this result is stronger

than the result in [4], which provides an algorithm which achieves 1 − O(1/
√
d) for

d-regular graphs (noting that d regular graphs have d disjoint perfect matchings).

As a additional remark, result (c) resolves a puzzling mystery which is observed

during simulations of Ranking on the graph with the upper triangular matrix as its

adjacency matrix. If the input order is adversarial then the ratio is 1−1/e (this is the

tight example for the algorithm in that model and can be proved analytically [37]),

but with random order input, the ratio is observed to go to 1 as n increases. The mys-

tery is resolved by observing that this graph indeed has many (ω(1)) almost-perfect

matches.

Remark 4 We point out that in the unknown distribution model the support

for the distribution may be exponentially large, whereas all previous work in the

known distribution case assumes that the support is polynomially bounded. So,

e.g., our model allows a distribution on a base graph which is of exponential size

(R̂ is exponential in size), and an exponential sized distribution on this graph. The

algorithm only uses the guarantee that the arriving sequence of n vertices is sampled

i.i.d. from some distribution.

2.1.2 Related Models and Results

As discussed earlier, Karp et. al. [37] gave the Ranking algorithm for the online

bipartite matching problem in the adversarial model, which is the model with the

least amount of information. They showed that Ranking attains a factor of 1− 1/e

and established that this is optimal in the adversarial model.

For the known distribution model, which is the model with the most information,

Feldman et. al. [22] gave an algorithm that beats the 1 − 1/e bound to attain

9



a factor of 1−2/e2

4/3−2/3e
' 0.670. They also showed that the optimal factor for any

online algorithm in this setting was bounded away from 1. Their upper and lower

bounds were subsequently improved by Bahmani and Kapralov [4] to 0.902 and 0.699

respectively in the same setting. They also presented a randomized algorithm that

achieves a competitive ratio of 1 − O(1/
√
d) for d-regular graphs. Subsequently

Mahshadi et. al. [46] provided an improved algorithm with a factor of 0.702 and

proved an upper bound of 0.823. Furthermore, it was proved in [24] that no online

algorithm can achieve competitive ratio better than 5/6 for any of these models. We

summarize the above discussion in Table 1.

Table 1: Summary of Results for Online Bipartite Matching in Various Models
Model Adversarial Input Known Distribution Unknown Distribution

0.67 [22] 1− 1
e

[37]
Lower Bounds 1− 1

e
[37] 0.699 [4] 0.653 [This Chapter] , [44]

(algorithms) 0.702 [46]
0.998 [22] 5/6 [24]

Upper Bounds 1− 1
e

[37] 0.902 [4] 0.823 [46]
(hardness) 0.823 [46]

Besides the results mentioned in earlier, there has been considerable interest in

online matching and allocation problems over the last few years and several variants

and generalizations of the bipartite matching problem have been studied. The case

of weighted edges was considered by Korula and Pal in [39] and they design an 8-

competitive algorithm for this problem. The variant where there are weights on the

incoming vertices was studied by Aggarwal et al. in [1]. The authors present tight

1− 1/e factor algorithms for this problem.

Simultaneously and independent of the result described in this chapter, Mahdian

and Yan [44] also analyzed the performance of Ranking in the random order model,

and also breached the barrier of 1− 1/e by showing that Ranking achieves a factor

of at least 0.696. They find a family of strongly factor revealing LPs for this problem

and solve large LPs in this family computationally to provide a good lower bound on
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the factor.

2.2 Preliminaries

2.2.1 Problem Statement

In this model there is a fixed bipartite graph Ĝ(L, R̂, Ê); one side(L) of the graph

corresponds to a fixed set of vertices and the other side(R̂) represents the set of all

possible vertices that may arrive online. There is also an (unknown) distribution D

over the vertices of R̂. At each time step, a vertex in R̂ is sampled independently

from D (with replacement), and it needs to be matched to an unmatched neighboring

vertex in L upon its arrival. Thus the sample space consists of the different sequences

of vertices obtained by drawing n times from the fixed but unknown distribution. We

call this the unknown distribution model (UD Model). The goal is to maximize the

expected size of the matching.

Let A be an (possibly randomized) online algorithm. For any realization graph

G based on n random samples from D, let ALG(G) be the expected size of the

matching produced by A. Let OPT (G) be the size of the largest matching in G. The

competitive ratio for A is defined to be EG

[
ALG(G)
OPT (G)

]
, where the expectation is over

the realization graphs.

2.2.2 From Unknown Distribution to Random Order Arrival Model

In this section we define a different, stricter model for online bipartite matching called

the Random Order Arrival Model (ROA Model), and establish its relationship with

the Unknown Distribution Model (UD Model). As before, in this model, there is

a fixed bipartite graph G(L,R,E) with vertex set L ∪ R. The vertices of L are

known in advance, while the vertices of R arrive in random order. Whenever a

vertex arrives its incident edges are revealed, and it can be matched off to one of

its available (unmatched) neighbors in R. The goal is to maximize the expected size

of the matching. The ROA Model can be thought of as sampling from the uniform

11



distribution on R without replacement. In the next lemma we show that the ROA

Model is in fact stricter than the UD Model.

Lemma 1. Any online algorithm A that achieves a competitive ratio of α in the ROA

Model also achieves a competitive ratio of at least α in the UD Model. Lower bounds

for the performance of online algorithms in the UD Model carry over to the ROA

Model.

Proof. Consider a problem instance in the UD Model, with n arriving vertices. Divide

the sample space for this instance into classes, each of size n!, such that for each

class, the multi-set of arriving vertices (from R̂) is the same for every sequence in

that class. Each class consists of all the permutations of some set, and furthermore,

the probability of occurrence of each sequence in a class is the same. Thus each class

can be thought of as an instance of a random order arrival input. Since A has a

competitive ratio of α in the ROA Model, it performs at least as well for all samples

in a particular class. Taking expectation over the different classes we get the first

part of the lemma. The second part can be proved by a similar argument.

Hence we will now focus our attention on designing an online algorithm for the

Random Order Arrival Model.

2.2.3 Definitions in the ROA Model

Throughout this chapter, for convenience, we will assume that both bi-partitions L

and R, have equal size n, and the underlying graph has a perfect matching which

we will refer to as OPT (if there are multiple perfect matchings then we choose one

arbitrarily). It is an easy exercise to verify that this assumption is without loss of

generality. We will use u, v ∈ [n] to denote the vertices of R(the streaming side) and

s, t ∈ [n], to index the the vertices of R. For any u ∈ R, we will use u∗ to denote

its match in OPT we will refer to u∗ (resp. u) as the partner of u (resp. u∗) with

respect to OPT .
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We also use the notion of time: time t will denote the event when the tth vertex of

R is revealed to the algorithm. Define ΩR (resp. ΩL) to be the set of all permutations

of R (resp. L). For any permutation ρ of the vertices, we will use ρ(t) to denote

the vertex at the tth position in ρ and ρ−1(u) to denote the position of the vertex

u in ρ. For vertices u, v we say u is above v in ρ if ρ−1(u) is less than ρ−1(v). We

can similarly define the notion of a vertex u being below another vertex v. For any

permutation ρ ∈ ΩL let ρ[u ; s] denote the permutation obtained by moving u to

position s keeping the order of the other vertices unchanged. We will use π ∈ ΩR to

represent the order in which the vertices of R arrive.

The Ranking Algorithm: We will analyze Ranking which was first proposed

in [37]. The algorithm takes an ordering of R as input and produces a matching as

its output. The algorithm is described below.

RANKING

1. Choose a random permutation ρ from ΩL uniformly at random.

2. Apply permutation ρ to L - thereby assigning each vertex a priority or rank.

3. For each arriving vertex from R match it to the vertex (if any) of L, with the

highest rank.

By a slight abuse of notation we will use Ranking(ρ, π) to denote an invocation of

the above algorithm where ρ is the permutation chosen in the first step and π denotes

the arrival order of the vertices in R. For any t ∈ [n] define xt to be the probability

that the vertex ρ(t) ∈ L at position t get matched in Ranking, where the probability

is taken over the random choices of ρ and π.

Events, B, B̂, P -events: For each ρ ∈ ΩL, π ∈ ΩR and every vertex v ∈ L (or

v∗ ∈ R), we define an event to be the tuple (ρ, v, π) (or (ρ, π, v∗)). Thus an event is

simply the specification of what the two permutations are and which vertex we are
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talking about. Note that an event specifies the position of the vertex and its optimal

match.

An event (ρ, v, π) is called a B-event if v is matched in Ranking(ρ, π), and fur-

thermore it is matched to some vertex u∗ 6= v∗ such that π−1(u∗) > π−1(v∗) (i.e., v∗ is

ranked higher than u∗ in π). Informally, a B-event is an event in which v is matched

‘below’ v∗. Note that this also means that v∗ is itself matched.

Symmetrically, an event (ρ, π, v∗) is called a B̂-event if v∗ is matched inRanking(ρ, π),

and furthermore it is matched to some vertex u 6= v such that ρ−1(u) > ρ−1(v) (i.e.,

v is ranked higher than u in ρ).

An event (ρ, v, π) is called a P -event if v is matched to v∗ in Ranking(ρ, π). An

event (ρ, π, v∗) is called a P̂ -event if v∗ is matched to v in Ranking(ρ, π). We define

B (resp. B̂, resp. P ) to be the total probability of B-events (resp. B̂-events, resp.

P -events).

2.2.4 Symmetry of RANKING in the ROA Model

In this section we will present two important lemma’s that distinguish the behavior

of Ranking in ROA Model from the adversarial model considered in [37]. The

first lemma states that the roles of the streaming and the static bipartitions may be

switched without altering the outcome of the algorithm. The second lemma asserts

that for the purpose of analysis, without loss of generality we may assume that the

given graph is symmetric.

Lemma 2. For a given graph G(L,R,E) and for a fixed (ρ, π) ∈ ΩL×ΩR, the output

of Ranking(ρ, π) on G is same as the output of Ranking(π, ρ) on G′(R,L,E) (where

G′ is obtained from G by switching the two partitions).

Proof. Let M be the output for Ranking(ρ, π) for the graph G. Let us simulate

Ranking(π, ρ) over G′. We will prove the above claim by induction on the number of

vertices in the set L from G′ which have arrived at any moment. Suppose the part of
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Ranking(π, ρ) constructed over ρ(1), ..., ρ(t− 1) in our simulation is consistent with

M . Let v = ρ(t) ∈ L be the t’th vertex to arrive. If possible let v be unmatched in

M and suppose it gets matched to u∗ ∈ R in our simulation. By our hypothesis, u∗

must have been matched below position t in M . This yields a contradiction since, u∗

could have matched a higher vertex in M namely v. Similarly, we can argue the case

when v is unmatched in our simulation, but is matched in M .

The only other possibility is that v matches different vertices in M and in our

simulation. Suppose v is matched to w∗ in M and u∗ in our simulation. If π−1(w∗) <

π−1(u∗), then w∗ is also matched, to say z, in our simulation. If ρ−1(z) < t, then

this contradicts the induction hypothesis. On the other hand if ρ−1(z) > t, then v

should have matched w∗ and not u∗. A similar argument works for the case when

π−1(w∗) > π−1(u∗).

Lemma 3. Without loss of generality, we may assume that the worst example for

Ranking in the ROA Model is symmetric.

Proof. Let W (L,R,E) be a worst example for Ranking in the ROA Model. Let

W1(L1, R1, E1) andW2(L2, R2, E2) be two copies ofW . Consider the graphW ′(L′, R′, E ′)

where L′ = L1 ∪ R2, R′ = L2 ∪ R1 and E ′ = E1 ∪ E2. Note that W ′ is a symmetric

graph. Since the two copies are disjoint the competitive ratio for Ranking on W ′ is

just the average competitive ratio for the two components. By Lemma 2, both W1

and W2 attain the same competitive ratio. Hence there exists a symmetric graph W ′

for which Ranking attains its worst competitive ratio.

Lemma 3 yields the following corollary.

Corollary 4. Without loss of generality, we may assume that in the worst example

for Ranking in the ROA Model, B = B̂.
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2.3 Analysis of the RANKING Algorithm

Earlier we mentioned the components missing from previously known analyses of

Ranking, viz. the B-events and P-events. If the order of arrival is arbitrary, they

are irrelevant, because Ranking produces almost no B-events and P-events when

faced with the tight example of the complete upper triangular matrix. In this section

we prove that these components gain significance in the random arrival model, and

help push the approximation factor beyond
(
1− 1

e

)
.

In Section 2.3.1, we consider the special case when the aggregate probability of

a P-event is small and prove a bound on the competitive ratio of Ranking as a

function of this probability. This implies the near optimal result in the case with

many disjoint matchings. In Section 2.3.2, we prove a factor of 0.653 in general.

First we prove a simple but important counting lemma which expresses the gains

of the algorithm above 1/2 in terms of the B, B̂ and P -events. In fact the lemma

holds for Ranking based on any distribution of ρ and π (even for fixed ρ, π).

Lemma 5.

ALG ≥ n

2
+
B

2
+
B̂

2
+
P

2

Proof. We count the total number of vertices matched and divide by two to get the

size of the matching. We have fixed an OPT; for every pair v, v∗ in the OPT matching,

we know that at least one of them is matched in ALG (in every ρ, π). The greedy

property of Ranking implies that (ρ, π, v) and (ρ, π, v∗) cannot simultaneously be

B-event and B̂-event respectively. If both v and v∗ are matched, we pick the vertex

which is not a B-match (resp. B̂-match). If v and v∗ are matched to each other in

a P -event, then we pick v (to break ties). This gives us n matched vertices. Now,

each B-match and B̂-match has not been already counted in these n vertices. So

also, each P -event corresponds to two matched vertices, but we counted only the left

vertex. Thus we can add B + B̂ + P to n to get a lower bound on the total number
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of matched vertices. This proves the lemma.

From the statement of Lemma 5, it is clear that we need to prove that in random

permutation model (with symmetry implied by Corollary 4), B-events, B̂-events and

P -events make a sizeable combined contribution. We achieve this in the following

lemma:

Lemma 6. ∑
t

(t− 1)

n
xt ≤ B̂ + P − P 2

2n

where xt is the probability that the vertex at rank t in L is matched in Ranking.

This lemma is the technical core of our main result. Before moving on to the

proof, we first introduce some notation which will be useful.

Notice that the events that contribute to the xt variables on the LHS are simply

the set of all occurrences of matched vertices, whereas the RHS consists of events

where v∗ ∈ R is matched to u ∈ L such that ρ−1(u) ≥ ρ−1(v). Our proof involves

designing a many-to-many map between the former set of events to the latter.

In order to do that, we need to classify the relevant events into two types with

distinct properties. We need the following definitions: If ρ is any permutation on L,

then ρ−v is the permutation on L−{v} consistent with ρ. As defined in Section 2.2.3,

ρ[v ; s] is the permutation obtained by inserting v into ρ−v at position s. A column

is a collection of n events defined by a permutation ρ−v (on L) and π (on R), by

inserting v into ρ−v at all n positions.

This notion of columns of events has been used in related literature without being

defined explicitly. For example, it forms the basis of analysis of Ranking in the

arbitrary arrival model, as found in [37, 24, 6].

We will use the above property, but in our analysis, we will also look at events in

columns where v is always matched, but v∗ may be unmatched. From this point of

view, we need to classify the columns into two different types.
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Definition 1. A column (ρ−v, π) is said to be a T1 (type 1) column if in the config-

uration (ρ[v ; n], π),

• v is unmatched OR

• (ρ[v ; n], v, π) is a B-event OR

• (ρ[v ; n], v, π) is an A-event and (ρ[v ; n], π, v∗) is also an A-event

Otherwise, the column is said to be a T2 (type 2) column, i.e. if in the configura-

tion (ρ[v ; n], π),

• v is matched to v∗ (P-event) OR

• (ρ[v ; n], v, π) is an A-event and v∗ is unmatched

We will use the following properties, which are simple consequences of the above

definitions and the Ranking algorithm:

• v∗ is always matched in a configuration where v is in a T1 column.

• If v is in a T2 column, then v∗ can match no higher than v.

We can now prove Lemma 6.

Proof. (of Lemma 6) Let X be the set of all events (ρ, u, π), where u = ρ(t) is

matched to v∗ ∈ R. Similarly, B̂, P and P̂ are the sets of all B̂-events, P-events and

P̂ -events respectively. Partition X into two sets: X1 such that (ρ−v, π) is a T1 column

for v and X2 such that (ρ−v, π) is a T2 column for v.

We now define our many-to-many maps. For (ρ, u, π) ∈ X1, consider the situation

of v∗, in the configuration (ρ[v ; s], π) for s < t. In other words, we move v to

all positions above u. We claim that (ρ[v ; s], π, v∗) is a either a B̂-event or a

P̂ -event. The fact that v∗ remains matched in (ρ[v ; s], π) follows from the fact the

configuration is a T1 column for v, and Lemma 9. Let w be the vertex to which v∗ is
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matched in (ρ[v ; s], π). To prove ρ[v ; s](w) ≥ s, observe that if we remove v from

ρ, v∗ may be unmatched, or matched no earlier than its original match u which was at

position t. Now, adding v back to ρ−v at any position s above that of u, can improve

the position of the match of v∗ to no higher than s. This implies that (ρ[v ; s], π, v∗)

is a either a B̂-event (if ρ[v ; s](w) > s) or a P̂ -event (if ρ[v ; s](w) = s).

Hence, we can now map each event (ρ, u, π) ∈ X1 to t− 1 different events (ρ[v ;

s], π, v∗), all which are either B̂-events or P̂ -events. For each (ρ, u, π) ∈ X1, we define:

f(ρ, u, π) = { (ρ[v ; s], π, v∗) | 1 ≤ s < t } ⊆ B̂ ∪ P̂

Let

M =
⊎

(ρ,u,π)∈X1

f(ρ, u, π)

where the
⊎

symbol represents multiset union. Clearly, although each f(ρ, u, π) is a

simple set, the same B̂-event (or P̂ -event) may be part of two different such sets. We

will now quantify this over-counting. First, let us partition M into Mb = M ∩ B̂ and

Mp = M ∩ P̂ .

Any event (ρ, π, v∗) ∈ Mb appears in the maps of at most n distinct events from

X1, those obtained by moving v to all positions from 1 to n, keeping the rest of the

configuration constant. Therefore,

|Mb| ≤ n|B̂1| (1)

where B̂1 is the simple set obtained by discarding duplicates from Mb.

For each P̂ -event (ρ, π, v∗) in Mp, we can form a set Np of the corresponding P-

events: (ρ, v, π). Let P1 be the simple set obtained by discarding duplicates from Np.

Our goal is to count the number of times each event (ρ, v, π) ∈ P1 appears in the

multiset Np. We claim that this number is at most n− U(ρ, v, π) where U is defined

for a P-event (ρ, v, π) as U(ρ, v, π) is the the number of P -events(ρ[v ; s], v, π) in

column(ρ−v, π) such that s < ρ−1(v). This follows from the fact that if (ρ, v, π) and
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(ρ[v ; s], v, π) are both P -events and ρ−1(v) < s then (ρ[v ; s], v, π) does not

appear in f(ρ, v, π). Now for notational convenience, we define:

P (ρ−v, π) = Total number of P -events in column (ρ−v, π)

Therefore, we can now bound the size of Mp as:

|Mp| = |Np|

≤
∑

(ρ,v,π)∈P1

n− U(ρ, v, π)

= n|P1| −
∑

T1(ρ−v ,π)

 ∑
(ρ,v,π)∈(ρ−v ,p)

U(ρ, v, π)


=

n ∑
T1 (ρ−v ,π)

P (ρ−v, π)

−
 ∑

T1 (ρ−v ,π)

[P (ρ−v, π)]2

2

 (2)

First let yt be the probability that an event (ρ, v, π) such that ρ−1(v) = t is in X1.

Using the fact that such an event has |f(ρ, v, π)| = t−1, and using equations (1) and

(2), ∑
t

(t− 1)yt =
|M̂1|

|ΩL × ΩR|
=
|Mb|+ |Mp|
|ΩL × ΩR|

≤ n|B̂1|
|ΩL × ΩR|

+

∑
T1 (ρ−v ,π)

(
nP (ρ−v, π)− [P (ρ−v, π)]2

2

)
|ΩL × ΩR|

(3)

Now, we will deal with events in X2. Since these are events in T2 columns, (ρ, π, v∗)

must already be a B̂-event or a P̂ -event. Let B̂2 be the set of B̂-events (ρ, π, v∗) such

that v∗ is matched to u in the corresponding (ρ, u, π) ∈ X2. By this one-to-one

correspondence, |B̂2| = |X2 − P|. Let P2 = X2 ∩ P . Therefore, |X2| = |B̂2|+ |P2|.

Since the probability that (ρ, u, π) ∈ X2 is xt − yt, we have:∑
t

(xt − yt) =
|B̂2|

|ΩL × ΩR|
+

|P2|
|ΩL × ΩR|

(4)

Let Q be the multiset formed by including each event (ρ, v, π) ∈ P2 a total of

ρ−1(v) times. Then we can multiply the t’th term on the LHS of equation (4) by
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(t− 1) and compensate for the over-counting by (a) raising the coefficient of |B̂2| to

n and (b) by using |Q| instead of |P2|∑
t

(t− 1)(xt − yt) ≤
n|B̂2|

|ΩL × ΩR|
+

|Q|
|ΩL × ΩR|

(5)

Now we will bound |Q|. Every P -event (ρ, v, π) ∈ P2 where appears in Q a total

of ρ−1(v) times. Now ρ−1(v) = n − (n − ρ−1(v)). But for every P -event in a T2

column, there are n − ρ−1(v) P -events (ρ[v ; s], v, π) at positions s > ρ−1(v) in

the same column. Therefore, we can say that each event in (ρ, v, π) ∈ P2 appears

n −W (ρ, v, π) times in Q, where W is defined for (ρ, v, π) ∈ P2 as W (ρ, v, π) is the

number of P -events (ρ[v ; s], v, π) in column (ρ−v, π) such that s > ρ−1(v).

And finally, we will borrow the notation P (ρ−v, π) defined earlier to mean the

total number of P -events in the column.

Following arguments analogous to the proof of equation (3), we can now rewrite

equation (5) as:

∑
t

(t− 1)(xt − yt) =
n|B̂2|

|ΩL × ΩR|
+

∑
T2 (ρ−v ,π)

(
nP (ρ−v, π)− [P (ρ−v, π)]2

2

)
|ΩL × ΩR|

(6)

Next, we observe that B̂1 and B̂2 are necessarily disjoint, since the events in B̂1

have v in a T1 column and events in B̂2 have v in a T2 column. Adding equations

(3) and (6),

∑
t

(t− 1)xt ≤
n(|B̂1|+ |B̂2|)
|ΩL × ΩR|

+

∑
Column (ρ−v ,π)

(
nP (ρ−v, π)− [P (ρ−v, π)]2

2

)
|ΩL × ΩR|

Now, the sum of P (ρ−v, π)− [P (ρ−v ,π)]2

2
over all columns is maximized when P (ρ−v, π)

is equal over all columns. This follows from the fact that the sum of squares of k

numbers with fixed sum is minimized when they are all equal. Therefore, equalizing

the value of P (ρ−v, π) over all columns, we arrive at:∑
t

(t− 1)xt ≤
n|B̂|

|ΩL × ΩR|
+

n|P|
|ΩL × ΩR|

− |P|2

2|ΩL × ΩR|2

21



= nB̂ + nP − P 2

2

2.3.1 The Case with Few Perfect Matches

In this section, we will consider the case that Ranking produces very few perfect

matches. In fact, there exists a class of graphs for which this property holds: Graphs

with many disjoint perfect matchings. If the graph has k disjoint perfect matchings,

then there exists a perfect matching so that Ranking produces at most 1
k

perfect

matches.

Theorem 7. Defining p as the aggregate probability of getting a perfect match (ac-

cording to some fixed optimal matching), Ranking achieves a competitive ratio of

1−
√
p− p2 + 1

n
in the random order input model.

Proof. From Lemma 5, and Corollary 4 we have

ALG =
∑
t

xt ≥
n

2
+ B̂ +

P

2
(7)

Define a = ALG
n

, which is the final competitive ratio and p = P
n

, the aggregate

probability of a perfect match. From Lemma 6 we have:

∑
t

t− 1

n
xt ≤ B̂ + P − P 2

2n

Now we minimize
∑

t
t−1
n
xt by simply top aligning all the

∑
t xt = ALG, to give

∑
t

t− 1

n
xt ≥

ALG(ALG− 1)

2n

So we have B̂ ≥ ALG(ALG−1)
2n

− P + P 2

2n
. Substituting in equation (7) we get:

ALG ≥ n

2
+
ALG(ALG− 1)

2n
− P

2
+
P 2

2n

⇒ 2a ≥ 1 + a2 − a/n− p+ p2
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⇒ (1− a)2 ≤ p− p2 + a/n

⇒ a ≥ 1−
√
p− p2 +

1

n

Corollary 8. If a graph has k > 1 disjoint perfect matchings, then Ranking achieves

a competitive ratio of at least 1−
√

1
k
− 1

k2 + 1
n

Proof. There exists a perfect matching M such that Ranking makes at most n/k

perfect matches according to M.

2.3.2 The General Case

If the aggregate probability of perfect matches p equals 1/2, then the previous result

does not say much (a ratio of 1/2). In this section we prove a more interesting bound

on
∑

t
t−1
n
xt which will help us prove a bound which beats 1− 1/e in general.

The following lemma gives us a sense of the distribution of xt and would be helpful

in proving the main result in this section

Lemma 9.

∀ t : 1− xt ≤
∑

s≤t xs

n

Proof. (Sketch) For fixed ρ and π consider the execution Ranking(ρ, π). Suppose

v = π(t) does not get matched in this simulation. Then clearly v∗ must have been

matched, otherwise v and v∗ would have matched each other. In particular, observe

that v∗ should have matched to a vertex, say u, arriving before v.

Let Π = {π [v ; s] | ∀s ∈ [n]}. We claim that, for all π̃ ∈ Π, v would be matched

no lower than position t in Ranking(ρ, π̃). This is because if v is moved to a position

below π−1(u) then v∗ is already matched by the time v arrives. On the other hand,

moving v to a higher position than π(u)−1 only increases the options available to v∗,

thus can only increase its likelihood of getting matched.
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Let Iρπ(t) be the indicator variable for the event that π(t) is missed inRanking(ρ, π).

Thus from the above arguments we can define a map that takes a miss event at t to

n matches belonging to the set of matches above position t i.e.

n

[∑
ρ,π

1− Iρπ(t)

]
≤
∑
s≤t

∑
ρ,π

Iρπ(s)

Normalizing the above equation proves the lemma.

We now move on to the main result of this section - a bound on
∑

t
t−1
n
xt.

Lemma 10. ∑
t

(t− 1)xt
n

≥ 0.26n− o(1)

Proof. From Lemma 9, we have: ∀ t : 1− xt ≤
∑
s≤t xs

n
. Defining LBt :=

1−
∑
s<t xs
n

(1+ 1
n

)

and rearranging, we have

∀ t : xt ≥ LBt

Thus, we look for the optimal solution to the following linear program:

{
min

∑
t

txt
n

s.t. ∀ t, xt ≥ LBt

}
In the program, we have ignored the lower order term

∑
t xt/n. We now define an

operation which takes one feasible solution to another: If there is a t such that xt < 1

and xt > LBt, and if there is an s < t s.t. xs < 1, then we reduce xt and increase

xs by the same amount, equal to min{xt − LBt, 1 − xs}. This operation keeps the

solution feasible:

• for r < s, there is no change in either xr or in LBr.

• for s ≤ r < t, xr goes up and LBr stays the same.

• xt drops to a value at least the original LBt and LBt goes down.

• for r > t, there is no change in either xr or LBr.
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Furthermore, it is clear that the objective function value goes down.

Given a feasible solution {xt}, we repeatedly apply this operation to obtain an-

other feasible solution with lower value, until we can not apply it any more. This

proves that the optimal solution has the following form: For some t∗ ∈ [1, n],

• for all s < t, xs = 1

• LBt ≤ xt ≤ 1

• for all s > t, xt = LBt.

Thus we know the form of the solution, now we can minimize over t∗. Minimizing

the resulting function gives
∑

t
txt
n
≥ 0.26n.

Theorem 11. Ranking achieves a competitive ratio of at least 0.653 in the random

order input model.

Proof. This proof is a generalization of the proof of Theorem 7. From Lemma 5 and

Corollary 4 we have

ALG ≥ n

2
+ B̂ +

P

2
(8)

Define a = ALG
n

, which is the final competitive ratio, and define p = P
n

, the probability

of a perfect match. From Lemma 6 and Lemma 10 we obtain:

0.26n ≤
∑
t

t− 1

n
xt ≤ B̂ + P − P 2

2n

Substituting in equation (8) we get:

ALG ≥ n

2
+ 0.26n− P +

P 2

2n
+
P

2

⇒ a ≥ 1

2
+ 0.26− p

2
+
p2

2
(9)

Also, from 8 we have

a ≥ 1

2
+
p

2
(10)

Minimizing the maximum of the two bounds obtained in (9) and (10) we get a ≥ 0.653

(for p ' 0.3).
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Figure 1: The 0.75 example

2.4 Upper Bounds

In this section, we introduce two families of graphs which provide upper bounds of

0.75 and 0.727 on the competitive ratio of RANKING in the ROA model. The former

has a simpler analysis, and hence, we present it first.

2.4.1 An Example where RANKING Achieves 0.75

In this section we will present and analyze a graph for which the Ranking algorithm

achieves a factor of 0.75. This will serve as a warm up for the more involved analysis

of the example for which the algorithm attains a factor of 0.727.

Let G be the bipartite graph over n vertices whose adjacency matrix A is defined

below. The graph is shown in figure 1.

A[i][j] =


1 if i = j

1 if i < n/2 , j > n/2

0 otherwise

The rows and columns of A represent the two partitions of vertices of G. For the

purpose of the algorithm we will assume that vertices corresponding the columns of

A arrive in random order, while those represented by the rows are shuffled according

to a uniform random permutation.

For the analysis we will partition the vertices of G in to the following four sets.
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Let C1 be the vertices corresponding to columns 0 through n/2 and let C2 be the

vertices for rest of the columns. Similarly let R1 be the vertices represented by rows

0 through n/2 and R2 be the remaining vertices. For any vt ∈ C1 ∪ C2 we will use

v∗t to denote the partner of vt in the optimal perfect matching. At any time, t let

H(t) be the number of unmatched vertices in C1. This includes vertices in C1 which

are yet to arrive by time t and those vertices of C1 that could not be matched upon

arrival. Define F (t) to be the number of unmatched vertices in R1 at time t.

Note that all vertices in C2 will surely get matched, but some vertices in C1 may

not get matched if their unique neighbor in R1 gets matched to a vertex in C2. Thus

the factor for the algorithm is (|C1|+ |C2| − E [H(n)]) /n = 1− E [H(n)/n].

In Lemma 12 we represent the expected behavior of H(t) in terms of E[F (t)]. In

Lemma 13 we find an explicit formula for the expected behavior of F (t). Combining

these two lemmas gives us a differential equation representing the limiting behavior

of E[H].

For the rest of the analysis we will only consider the vertices that arrive in the

interval [0, n− n0.9]. This is done to make the analysis amenable to concentration

bounds. Furthermore, ignoring the last n0.9 vertices only affects the competitive ratio

by a o(1) factor.

Lemma 12. For all t ∈ [0, n− n0.9],

E [H(t+ 1)−H(t)] ≥ −E [F (t)]

n− t
− o(1/n)

Proof. Let vt+1 be the vertex arriving at time t + 1. H reduces by 1 at time t + 1

if vt+1 belongs to C1 and its unique neighbor in R1 is still unmatched. Let Q(t) be

the number of vertices in C1 that are yet to arrive by time t. By Chernoff bounds

Q(t) is tightly concentrated around its expected value of n−t
2

i.e. Q(t) is less than

(n−t)
2
− 2
√
n log n with probability at most 1/n2. Of the Q(t) vertices in C1 that

are yet to arrive, F (t) are such that their unique neighbor in R1 is still unmatched.
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Hence,

E [H(t+ 1)−H(t)] = −Pr[vt+1 ∈ C1, v
∗
t+1) is still unmatched]

= −1

2
Pr[ v∗t+1) is still unmatched|vt+1 ∈ C1]

= −1

2

E[F (t)]

Q(t)

≥ −1

2

E[F (t)]

(n− t)/2− 2
√
n log n

+ Pr

[
Q(t) <

n− t
2
− 2
√
n log n

]
≥ −E[F (t)]

n− t
− o(1/n)

Lemma 13. For all t ∈ [0, n− n0.9],

E [F (t+ 1)− F (t)] ≤ −2
E [F (t)]

n− t
+ o(1/n)

Proof. Let vt+1 be the vertex arriving at time t + 1. If vt+1 belongs to C1 then F

reduces by 1 iff H falls by 1 at time t + 1. By the proof of Lemma 12 this happens

with probability at most E[F (t)]
n−t + o(1/n). If vt+1 belongs to belongs to C2 then F

reduces by 1 only if vt+1 is matched to a vertex in R1. Next we analyze the probability

of this event.

Consider u∗ ∈ R2 and let u be its unique neighbor in C2. Recall that the Ranking

algorithm randomly permutes the vertices in R1∪R2 and each arriving vertex chooses

the highest unmatched vertex in its neighborhood. Thus if u is to match a vertex in

R1, u∗ must lie below the highest unmatched vertex in R1. Consider the pair (u, u∗)

such that u is yet to arrive by time t and there is an unmatched vertex in R1 that is

ranked higher than u∗. To bound the probability of this event we note that the ver-

tices of R1 are matched starting from the top by vertices in C2, while arriving vertices

in C1 match their only neighbor in R1 whenever possible. Since we started with a ran-

dom permutation of vertices of R1 ∪R2 with R1 constituting half the vertices we can

pessimistically estimate the position of the highest unmatched vertex in R1 by 2∗F (t).
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Therefore the above event happens with probability at least 2E [F (t)] /n. Further-

more the probability that u is yet to arrive by time t+1 is 1−t/n. Combining the above

two statements, we get Pr
[
vt+1 does not match v∗t+1 | vt+1 ∈ C2

]
≥ 2F (t)/(n − t).

Thus we have,

E [F (t+ 1)− F (t)] = Pr
[
vt+1 matches v∗t+1 & vt+1 ∈ C1

]
−Pr

[
vt+1 doesn’t match v∗t+1 & vt+1 ∈ C2

]
≤ −E [F (t)]

n− t
−Pr

[
vt+1 doesn’t match v∗t+1 | vt+1 ∈ C2

]
× Pr [vt+1 ∈ C2]

≤ − F (t)

n− t
− 1

2

2E[F (t)]

n− t
+ o(1/n)

= −2F (t)

n− t
+ o(1/n)

The statement of Lemma 13 becomes clearer if we scale the time by a factor of

n, i.e we let t be the the time when exactly nt vertices have arrived and let F (t) and

H(t) be the fraction of unmatched vertices in R1 and C1 respectively.

Lemma 13 can now be stated as,

E [F (t+ 1/n)− F (t)]

1/n
= − 2F (t)

1− t/n
+ o(1/n) (11)

We claim the random process described by the above equation is well approxi-

mated by the trajectory of the differential equation

df

dt
≤ − 2f

1− t
+ o(1/n) (12)

where this equation has been obtained from equation (11) by replacing the right-

hand side with the appropriate limiting value as n tends to infinity, dy/dt. This

follows easily from known techniques, such as, for example, Kurtz’s theorem (Refer

[40]). To clarify the connection we state a version of Kurtz’s theorem.

29



Theorem 14 (Kurtz’s Theorem [40]). Suppose we are given a finite set of vectors

{e1, e2 · · · ek} in Rd. We consider an initial process
→
x (t) with generator

Lf(
→
x) =

k∑
i=1

λi(
→
x)(f(

→
x +

→
e i)− f(

→
x))

and a scaled process
→
z n (t) with generator

Lnf(
→
x) =

k∑
i=1

nλi(
→
x)(f(

→
x +

→
e i
n

)− f(
→
x))

The limiting operator L∞ satisfies

L∞f(
→
x) =

k∑
i=1

nλi(
→
x)
〈
∇f(

→
x),

→
e i

〉
and corresponds to the deterministic solution

→
z∞ of the equation

d

dt

→
z∞ (t) =

k∑
i=1

λi(
→
z∞ (t))

→
e i (13)

Let λi(
→
x) : Rd → R+ be uniformly bounded and Lipschitz continuous, and let

→
z∞

be the unique solution of equation (13) with
→
z∞ (0) =

→
x (0). For each finite T there

exist a positive constant α1 and a function α2 with

lim
ε↓0

α2(ε)

ε2
∈ (0,∞) and lim

ε↑∞

α2(ε)

ε
=∞

such that, for all n ≥ 1 and ε > 0,

Pr

[
sup

0≤t≤T
| →z n (t)− →z∞ (t)| ≥ ε

]
≤ α1e

−nα2(ε)

Moreover, k1 and k2 can be chosen independently of
→
x.

By applying Kurtz’s theorem, we see that as n goes to infinity, the limiting process

for equation (11) is given by the differential equation (12).

Solving equation (12) we get F (t) ≤ (n−t)2

2n
− o(1). By a similar argument and

substituting in equation (14) the limiting process representing the evolution of H is
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given by the following differential equation,

dh

dt
≥ −n− t

2n
+ o(1/n) (14)

Solving equation (14), we get H(n) ≥ n/4− o(1). Thus the Ranking algorithm

achieves a competitive ratio of at most 0.75 + o(1) for the above graph.

2.4.2 An Example where RANKING Achieves 0.727

In this section we will sketch the analysis of graph for which the Ranking algo-

rithm achieves a factor of 0.727. Let G be the bipartite graph over n vertices whose

adjacency matrix A is defined below. The graph G is shown in figure 2.

A[i][j] =



1 if i = j

1 if i < 0.3n , 0.3n < j ≤ 0.7n

1 if 0.3n < i ≤ 0.7n , j > 0.7n

0 otherwise

As before, for the purpose of the algorithm we will assume that vertices corre-

sponding the columns of A arrive in random order, while those represented by the

rows are shuffled according to a uniform random permutation.

For the analysis we will partition the vertices of G in to the following six sets. Let

C1 be the vertices corresponding to columns 0 through 0.3n; let C2 be the vertices
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for the columns 0.3n to 0.7n and let C3 be the vertices corresponding to rest of the

columns. Similarly let R1 be the vertices represented by rows 0 through 0.3n; let R2

be the vertices corresponding to rows 0.3n through 0.7n and let R3 be the remaining

vertices.

At any time, t let F (t) be the number of unmatched vertices in C1. Define H(t) to

be the number of unmatched vertices in R1; J(t) be the number of unmatched vertices

in R2 at time t and let K(t) be the number of unmatched vertices in R2 whose unique

neighbor in C2 is yet to arrive by time t. By a slight abuse of notation we will use

these variables to denote their corresponding sets as well. The exact meaning would

be apparent from the context. Also let SizeH(t) = n− argmin {ρ−1(v∗) | v∗ ∈ H(t)}

and define Last(t) = argmax {ρ−1(v∗) | v∗ ∈ R2, v
∗ was matched to a vertex in C3}.

Note that all vertices in C3 will surely get matched, but some vertices in C1 and

C2 may not get matched. By symmetry the number of unmatched vertices in C2 is

same as the number of unmatched vertices in R2. Thus the factor for the algorithm

is 1− E
[
F (n)+J(n)

n

]
.

In the subsequent lemmas we will derive equations describing the expected be-

havior of F and H in terms of the variables defined above. Throughout the rest of

the analysis we will assume that at all times t ∈ [0, n− n0.9], the number of vertices

from any of the sets C1, C2, C3 that have arrived is equal to the expected value. This

is by a simple application of Chernoff bounds and as we saw in the earlier proof for

the upper bound this assumption only adds o(1/n) looseness to any of the difference

equations.

We will use lower case letters for each of the discrete variables defined above in the

the differential equations corresponding to their difference equations for the processes.

This is to highlight the fact that we have approximated discrete stochastic variables

by continuous functions in the limit.
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Lemma 15. For all t ∈ [0, n− n0.9],

E [F (t+ 1)− F (t)] ≈ −H(t)

n− t

In the limit the above random process is closely approximated by the trajectory of

the following differential equation.

df

dt
≈ − h

n− t

Proof. The number of vertices belonging to C1 that are yet to arrive is tightly con-

centrated around 0.3(n− t). Of these, only H(t) are such that their unique neighbor

R1 is still unmatched. The vertex arriving at t + 1 belongs to C1 with probability

0.3. Thus the expected decrease(up to o(1/n) terms) in the value of F at time t+ 1

is 0.3× H(t)
0.3(n−t) = H(t)

n−t .

The differential equation follows by applying Kurtz’s theorem by viewing
→
x as a

vector that maintains the current state of the solution from which the values of all

the variables defined earlier can be computed.

Lemma 16. For all t ∈ [0, n− n0.9] such that H(t) is non-negative,

E [H(t+ 1)−H(t)] ≈ −H(t)

n− t
− 0.4

(
1− K(t)

0.4(n− t)

)
−
(
K(t)

n− t

)(
SizeH(t)

n− Last(t)

)
In the limit the above random process is closely approximated by the trajectory of the

following differential equation.

dh

dt
≈ − h

n− t
− 0.4

(
1− k

0.4(n− t)

)
−
(

k

n− t

)(
s

n− `

)
Proof. The first term on the right hand side of the lemma follows from the proof of

lemma 15. The vertex arriving at time t + 1 is from C2 with probability 0.4. Two

cases may arise depending on whether its unique neighbor in R2 is available or already

matched.

If its unique neighbor in R2 is already matched and H(t) is greater than 0, then

the vertex arriving at t+ 1 would match with the highest available vertex in R1. The
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number of vertices belonging to C2 that are yet to arrive by time t + 1 is tightly

concentrated around 0.4(n − t), and of these 0.4(n − t) − K(t) are such that their

unique neighbor in R2 is already matched. These vertices have no choice but to get

matched to a vertex in R1. This happens with probability 0.4
(

1− K(t)
0.4(n−t)

)
.

The third term considers the case when the arriving vertex belongs to C2 and its

unique neighbor in R2 is still available. In this case the arriving vertex would match

to a vertex in R1 only if its unique neighbor in R2 is below the highest surviving

vertex from R1. Next, we find the probability of this event.

By conditional probability,

Pr[ v∗ is unmatched at t, v has not arrived by t, v∗ is below SizeH(t) ]

= Pr[ v∗ is unmatched at t, v has not arrived by t ]

× Pr[ v∗ is below SizeH(t) | v∗ is unmatched by t, v has not arrived by t ]

(15)

For any vertex v ∈ C2 that is yet to arrive by time t, let v∗ be its unique neighbor

in R2. With high probability(using Chernoff bounds and collecting the bad events in

the o(1/n) term) there are 0.4(n − t) such choices of v. Hence, the probability that

v∗ is still unmatched at time t and v is yet to arrive is K(t)
0.4(n−t) .

To calculate the second probability term in equation (15) we note that for this

event to happen v∗ must be below Last(t). Thus the desired probability is given by

SizeH(t)
n−Last(t) .

Combining the above two arguments and using equation (15) for the case when

arriving vertex belongs to C2 and its unique neighbor in R2 is still available, the prob-

ability of matching to a vertex in R1 is given by
(
K(t)
n−t

)(
SizeH(t)
n−Last(t)

)
. The differential

equation follows by applying Kurtz’s theorem.

In the next Lemma we give a difference equation that describes the expected

behavior of K.
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Lemma 17. For all t ∈ [0, n− n0.9]

E [K(t+ 1)−K(t)] ≈ −K(t)

n− t
− 0.3

(
K(t)

J(t)

)(
n− Last(t)

n

)
In the limit the above random process is closely approximated by the trajectory of

the following differential equation.

dk

dt
≈ − k

n− t
− 0.3

(
k

j

)(
n− `
n

)
Proof. We consider two cases based on the type of incoming vertex. If the incoming

vertex belongs to C2 then K would reduce by 1 only if the unique neighbor of this

vertex in R1 is still unmatched. This happens with probability K(t)
0.4(n−t) , ignoring

o(1/n) terms. The arriving vertex is from C2 with probability 0.4. This yields the

first term.

The second term corresponds to the case when the arriving vertex is from the set

C3. This happens with probability 0.3. Let v be the arriving vertex and v∗ be its

unique neighbor in R3. Let u∗ be the vertex that v gets matched to. We wish to find

the probability of the event that u∗ belongs K(t).

The following equations can be derived using conditional probability and based

on our definitions stated earlier.

Pr [K(t) reduces by 1 | v ∈ C3] = Pr [u∗ ∈ K(t)]

= Pr [u∗ ∈ R2] · Pr [u∗ ∈ K(t) | u∗ ∈ R2]

=

(
n− Last(t)

n

)
·
(
K(t)

J(t)

)
The lemma follows from the above arguments. The differential equation follows by

applying Kurtz’s theorem.

In the following two lemmas we will argue about the expected behavior of J and

SizeH as a function of t.
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Lemma 18. For all t ∈ [0, n− n0.9],

E [J(t+ 1)− J(t)] ≈ −0.3

(
n− Last(t)

n

)
−
(
K(t)

n− t

)(
SizeH(t)

n− Last(t)

)
In the limit the above random process is closely approximated by the trajectory of

the following differential equation.

dj

dt
≈ −0.3

(
n− `
n

)
−
(

k

n− t

)(
s

n− `

)
Proof. Two cases may arise depending on the type of the arriving vertex. The two

terms correspond to these cases. Let the arriving vertex be v ∈ C3, and let v∗ be its

unique neighbor in R3. This happens with probability 0.3. v will match to a vertex

in R2 if v∗ is below the highest unmatched vertex in R2 i.e. ρ−1(v∗) ∈ [Last(t), n].

Thus, the total probability of a match in R2 in this case is 0.3
(
n−Last(t)

n

)
.

Now let us consider the case when the arriving vertex is from C2. This happens

with probability 0.4. Clearly the case of interest is when the unique neighbor of v in

R2, say v∗ is still unmatched at t. As before this happens with probability K(t)
0.4(n−t) .

Using conditional probability we have,

Pr [v matches v∗] = 0.4× Pr [v matches v∗|v∗ is unmatched at t]

×Pr [v∗ is unmatched at t]

=

(
K(t)

n− t

)
× Pr [v matches v∗|v∗ is unmatched at t]

=

(
K(t)

n− t

)
×
(

SizeH(t)

n− Last(t)

)
The last line follows from the observation that v∗ is unmatched at time t if

ρ−1(v∗) ∈ (Last(t), n] and v will match v∗ only if it is placed higher than the first

unmatched vertex in R1 i.e. ρ−1(v∗) ∈ [0, SizeH(t)). The differential equation follows

by applying Kurtz’s theorem.

Lemma 19. For all t ∈ [0, n− n0.9] with high probability,

SizeH(t) ≈ nH(t)

0.3(n− t)
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Proof. H is uniformly distributed in the range

[n− SizeH(t), n]. For any vertex in this range the probability that it belongs to R2

and is its unique neighbor in C1 has still not arrived is 0.3(n−t)
n

(ignoring lower order

terms). Such vertices belong to H(t). Thus we have,

H(t)

SizeH(t)
≈ 0.3(n− t)

n

This yields the desired result.

The differential equations described in lemmas 15, 16, 17, 18, representing the ex-

pected behavior of the variables can be solved analytically under the proper boundary

conditions to give F (n)/n ≈ 0.197 and J(n)/n ≈ 0.076. Thus the factor for the al-

gorithm is 1− (0.197 + 0.076) = 0.727.

2.5 Conclusion and Open Problems

In this chapter we studied the online bipartite matching problem when the arriving

vertices are drawn from a fixed but unknown distribution. We demonstrated that

the Ranking algorithm described [37] in the context of adversarial model attains a

factor of 0.656 in the unknown distribution model. Our proof was based on analyzing

the stricter random order arrival model and exploited certain symmetry properties

that are absent in the adversarial model. We also presented a family of graphs for

which Ranking does no better than 0.727.

While our results show that the random order arrival model is strictly more pow-

erful than the adversarial model it is still unknown whether we can establish a similar

separation between the random order arrival model and the more general unknown

distribution model. We leave this question as an open problem.
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CHAPTER III

MATCHING IN THE OBLIVIOUS QUERY COMMIT

MODEL

3.1 Introduction

Several efficient combinatorial algorithms are known for the maximum matching prob-

lem [17, 48] for general graphs; however these algorithms require complete information

about the underlying graph and rely on building global combinatorial structures such

as blossoms. This may not be feasible in some settings where the underlying graph

may be hidden and the algorithm is constrained to make decisions based solely on

locally available information. For example consider the kidney exchange problem -

Often patients with a kidney disease have a family member who is willing to donate

his/her kidney. Unfortunately, sometimes these donors may be blood-type incompat-

ible with the patient. To solve this problem, a kidney exchange is performed in which

patients swap their incompatible donors to get a compatible donor. Owing to the cost

involved in medical tests, incentive issues, and due to ethical concerns, it is desired

that an exchange is performed whenever the test indicates that the exchange is pos-

sible. To increase the efficiency of the kidney exchange program, it is important to

match the maximum number of compatible patient-donor pairs. Refer to [56, 57, 58]

for further background on this problem.

Formally this problem can be modeled as a maximum matching problem in a

general non-bipartite graph where each patient-donor pair represents a node of the

graph and an edge between two nodes indicate if an exchange is possible. For every

pair (u, v) ∈ V ×V we are not told a priori whether there is an edge connecting these

vertices, until we probe/scan this pair. If we scan a pair of vertices and find that
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there is an edge connecting them we are constrained to pick this edge and in this case

both u and v are removed from the graph. However, if we find that u and v are not

connected by an edge, they continue to be available to be matched in the future. The

goal is to maximize the number of vertices that get matched. We refer to the above

as the oblivious query commit model since we are oblivious of the underlying graph

yet are required to commit to choosing an edge as soon as it is discovered.

It is easy to see that any algorithm that probes all permissible edges is a 1/2

approximation since we are guaranteed to pick a maximal matching which is at least

half as big as the largest matching in the underlying graph. One can also construct

examples to show that no deterministic algorithm can do strictly better than 1/2 on

all instances. Thus our only hope is to seek a randomized algorithm that beats the

barrier of 1/2 in expectation.

Arguably the most natural randomized algorithm is the one that tests all vertex

pairs in a random order. However this algorithm can have an approximation factor

as bad as 1/2 + o(1). For example consider a graph over n vertices, such that half

the vertices form a clique, while for the other half of the vertices, each one of them is

adjacent to a unique vertex in the clique. The above algorithm would only attain a

factor of 1/2 + log n/n for such graphs.

Hence, to get a better approximation factor, one could possibly use correlated

randomness (as opposed to sampling edges at random in every step) to determine the

order in which the edges should be scanned. This idea was first used by Aronson,

Dyer, Frieze, and Suen in [3], where they gave the following randomized algorithm

for the maximum matching problem - Pick a vertex at random and match it to one

of its unmatched neighbors uniformly at random. They showed that this algorithm

does marginally better than 0.5 and attains a factor of 0.50000025. Note that this

algorithm can be simulated in the query commit model by first picking a random

vertex u and then scanning pairs (u, v) for all unmatched vertices v ∈ V in a random
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order, until u gets matched or it is established that u cannot be matched with the

remaining unmatched vertices.

3.1.1 Our Results

From the above discussion it is clear that choosing the correct correlated randomiza-

tion to determine the order in which the edges are scanned is critical to get a good

approximation factor. In this work, we propose and analyze the following randomized

algorithm (referred to as Shuffle ): Shuffle the vertices according to a uniformly

random permutation ρ and iterate through them one at a time. If the current vertex

is already matched then ignore it else scan edges incident to it in the order dictated

by ρ until it gets matched or there are no vertices left. Then proceed to the next

vertex.

Note that our algorithm differs from the algorithm given by [3] in the sense that

after picking a random vertex u when we scan all the edges (u, v) for v ∈ V in a

specific order that is given by the randomization used to pick the vertex u itself,

instead of scanning them in a random order, as suggested by [3].

We show the following results:

(a) Shuffle attains a factor of 0.56 for the oblivious query commit problem, and

thus improves upon the 0.50000025-factor algorithm given by Aronson, Dyer,

Frieze, and Suen in [3].

(b) There exists a family of graphs for which Shuffle attains a factor no better

than 0.727.

(c) We show that no randomized algorithm can attain a factor better than 0.7916

for the oblivious query commit problem.

(d) We also show a tighter bound for a large class of algorithms called vertex it-

erative (VI) algorithms. Both Shuffle and the algorithm in [3] fall in this
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class. A VI algorithm considers the vertices one at a time and for every vertex

probes edges incident on it until it gets matched. A vertex may also choose to

“give-up” in which case it plays no further part in the algorithm and we move

on to the next vertex. The order in which the vertices are scanned, and the

sequence in which we scan the edges may be determined adaptively i.e. it can

depend on the past outcomes. For this general class of algorithms we show that

no randomized algorithm can attain a factor better than 0.75.

3.1.2 Related Models and Results

Local Algorithms for Matching: As mentioned earlier, the query commit model

essentially limits us to implement myopic Greedy-like algorithms. Furthermore, since

the greedy algorithms are easy to implement and can be easily adapted to different

environments, for instance distributed setting, they are quite prevalent in practice. As

a result, there is some interest in designing better randomized greedy algorithms that

outperform the 0.5 approximation of a deterministic greedy algorithm. In [16] the

authors studied the greedy algorithm where an edge is picked uniformly at random

among the unmatched vertices. They showed that for general graphs it doesn’t give

any improvement asymptotically, and for sparse graphs it significantly improves the

approximation factor. Later, [3] gave a different randomized greedy algorithm that

achieves a factor 0.50000025 for general graphs.

In other related work, designing fast algorithms for finding approximate maximum

matchings has also received considerable attention recently [53] [66] [15]. However

all these algorithms explicitly exploit the edge structure of the graph and are not

applicable in our setting.

Connection to the Ranking algorithm: The Shuffle algorithm presented in

this chapter is closely related to the Ranking algorithm defined in Section 2. In fact

in Lemma 32 we show that these two algorithms are identical for bipartite graphs.
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Thus both the upper and lower bounds from Chapter 2 carry over to the analysis of

Shuffle in the context of bipartite graphs i.e. Shuffle attains a factor of at least

0.656 for bipartite graphs and there exits a family of (bipartite) graphs for which it

does no better than 0.727.

3.1.3 Technical Contributions

Conquering Non-monotonicity: A vast body of prior work [1, 6, 24, 36, 37, 44]

on online allocation problems has relied on a crucial property called monotonicity.

The property is formally defined in Section 3.2.2, but intuitively it states that adding

new vertices can not cause one of its previously matched neighbors to get unmatched.

This property holds for bipartite graphs for most natural algorithms like Ranking,

but unfortunately as shown in the simple example in Figure 3, it does not hold for

all graphs in general. Observe that at the heart of the example is an odd cycle which

cannot happen in bipartite graphs.

Thus the lack of monotonicity is a massive blow in the quest for an algorithm for

the query commit problem. We overcome this obstacle by defining another property

called stability. This property states that adding a vertex can only alter the match-

ing found by Shuffle by at most a single augmenting path. Using this observation

we show that every time a vertex does not conform to the monotonicity property in

Shuffle it results in a certain types of good-events. Finally we bound the approxi-

mation factor for the algorithm in terms of the number of these good events.

Strongly Factor Revealing Family of Linear Programs: In our analysis we

prove several combinatorial lemmas to lower bound the performance of Shuffle.

We then coalesce them into a large linear program parameterized by the size of the

input, that lower bounds the approximation factor. However the linear program is

quite complicated and not amenable to traditional means of analysis that are used to

study factor revealing linear programs (refer to [47][42][35][45]). Our analysis is based

42



on a technique recently introduced in [44]. In this method we use these parameterized

LPs to derive a new family of LPs (strongly factor revealing family) each of which

lower bounds the approximation factor Shuffle for any given input size. Thus

solving any large enough instance from this family serves to bound the performance

of Shuffle.

Upper Bound using Yao’s Lemma [69]: We consider a general class of algorithms

called vertex iterative algorithms and prove a lower bound on the performance of any

such algorithm using Yao’s Lemma [69]. This entails finding the best deterministic

algorithm for an appropriately chosen distribution over the inputs. Unfortunately it

turns out to be quite difficult to characterize the optimal deterministic algorithm for

the distribution that we consider in our proof. Instead we define a class of fictitious

deterministic algorithms called revealing-algorithms and show that they perform at

least as well as any deterministic vertex iterative algorithm. Then to analyze the

optimal revealing-algorithm for our distribution we define another randomized re-

vealing algorithm and argue that its expected performance is at least as good as the

best deterministic revealing algorithm. Finally we bound the performance of this

randomized algorithm to complete our proof.

3.2 Preliminaries

3.2.1 Problem Statement

Let G(V,E) be a non-bipartite graph where |V | = n. We wish to analyze the perfor-

mance of the following algorithm for the query commit problem.

Shuffle Algorithm

1. Choose a uniformly random permutation ρ of the vertices.

2. Apply permutation ρ to V - thereby assigning each vertex a priority or rank.

3. Process the vertices one at a time in the increasing order of the rank. If the

vertex under consideration, say vertex u, is already matched then ignore it, else
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scan edges incident to it from the unmatched vertices in an increasing order of

their rank until vertex u gets matched. Then proceed to the next vertex.

We will use u, v to denote the vertices of V and s, t ∈ [n], to index the vertices in

V . Let ALG(G) be the expected size of the matching returned by the above algorithm

and let OPT(G) be the largest matching in G. We say that Shuffle attains a factor

of α if ALG(G) ≥ α|OPT (G)| for every graph G.

Let us now recall some notation developed in Chapter 2 that will be useful in our

analysis. Define ΩV to be the set of all permutations of V . For any permutation

ρ of the vertices, we will use ρ(t) to denote the vertex at the tth position in ρ and

ρ−1(u) to denote the position of the vertex u in ρ. For vertices u, v we say u is above

v in ρ if ρ−1(u) is less than ρ−1(v). We can similarly define the notion of a vertex

u being below another vertex v. For any permutation ρ ∈ ΩV let ρ[u ; s] denote

the permutation obtained by moving u to position s keeping the order of the other

vertices unchanged.

For any t ∈ [n] define xt to be the probability that the vertex ρ(t) ∈ V at position

t gets matched in Shuffle, where the probability is taken over the random choices

of ρ. We will use Shuffle(ρ) to denote an invocation of Shuffle with ρ as the

permutation chosen in the first step. In general for any algorithm A and graph G we

will use A(G) to denote the performance of A on G.

3.2.2 Properties of the SHUFFLE Algorithm

In this section we will introduce terminology that would be central to our analysis.

Monotonicity Property: Consider u = ρ(t) that is unmatched by Shuffle(ρ).

Suppose v is another vertex that is adjacent to u, i.e. uv ∈ E, then v is surely

matched to a vertex above u. The monotonicity property strengthens this observation,

by allowing us to translate u to any of the n positions in ρ. Formally, we say a vertex

u satisfies the monotonicity property with respect to v for a given permutation ρ if,
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1. uv ∈ E

2. u is unmatched in Shuffle(ρ)

3. v is matched in Shuffle(ρ)

4. v is matched above position t in Shuffle(ρ[u; s]) for every s ∈ [n]

Non-monotone Event: Unfortunately some vertices may not satisfy the mono-

tonicity property for all choices of s (in the fourth point above). This prompts us

to define a non-monotone event. For a given permutation ρ, a vertex u = ρ(t) is

involved in a non-monotone event with respect to another vertex v and position s if

the following conditions are met.

1. uv ∈ E

2. u is unmatched in Shuffle(ρ)

3. v is matched in Shuffle(ρ)

4. v is matched below position t or unmatched in Shuffle(ρ[u; s])

That is, promoting u in ρ causes one of its previously matched neighbors to match

lower or to get unmatched. We use Γv(s, t, ρ) to be the indicator variable for this event.

For illustration, consider the example shown in Figure 3.

The matched edges are shown in bold while the other edges are indicated by

dashed lines. Here we consider two permutations ρ = [x, y, v, w, u] (Figure 3a) and

ρ′ = [u, x, y, v, w] (Figure 3b). Note that moving u to the start of the permutation ρ

causes one of its previously matched neighbors v to get unmatched in Shuffle(ρ′).

In this case we say u has generated a non-monotone event by moving to position 1,

i.e., Γv(1, 5, ρ) = 1 for the above example.
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x y v w u x y v wu

Matched edge

Unused edge

(a) (b)

Process vertices 
  in this order

Process vertices 
  in this order

Figure 3: Non-monotone event generated by translating u

Observe that {x, y, w, v, u} form a cycle with odd number of vertices. In fact every

non-monotone event can be associated with an odd cycle. This explains why such

events do not occur when the underlying graph is bipartite.

Stability Property: At a high level this property states that for any ρ ∈ ΩV the

execution of Shuffle(ρ) does not change dramatically by altering the position of a

single vertex in ρ. For any graph H(V,E) consider ρ ∈ ΩV . For an arbitrary vertex

u ∈ V let ρ′ = ρ[u ; s]. Consider the execution of Shuffle for graph H and for

any v ∈ V , define M(v, ρ) to be the set of matched edges when v was considered in

Shuffle(ρ). Similarly let M(v, ρ′) be the set of matched edges when v was considered

by Shuffle(ρ′). The stability property is summarized by the following claim that

can be proved by induction.

Claim 1. For all v ∈ V − u, the symmetric difference of M(v, ρ) and M(v, ρ′) has

at most one component, i.e., it is either empty or a path or a cycle.

Good-Events: We will use a notion of good-events to quantify our algorithm’s

improvement over the greedy algorithm that matches exactly half the vertices in the

worst case. A pair of vertices that are matched to each other in the optimal solution

would correspond to some good-events if they both are also matched (even if not
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to each other) in an execution of the algorithm. We will attribute any such pair of

vertices to two types of good events that are defined below.

• Type 1 good-event : For any given permutation ρ ∈ ΩV under consideration, we

say a good-event of type 1 happens at position t if both ρ(t) and its partner(if

any) in OPT(G) are matched by Shuffle(ρ). We will use Good1(t, ρ) as the

indicator variable for this event.

• Type 2 good-event : The second type of good event is defined in a slightly indirect

manner. For a permutation ρ ∈ ΩV we say a good event of type 2 happens at

position t if the following conditions are met

1. u = ρ(t) is matched in Shuffle(ρ). Let w be the vertex that it is matched

to.

2. If w∗ is the partner (if any) of w in OPT(G), then w∗ is matched in

Shuffle(ρ).

3. Consider ρ′ that is produced by deleting u from ρ and keeping the relative

order of all other vertices the same. Then, both w and w∗ are matched to

each other in Shuffle(ρ′).

From the above definitions it is clear that type 2 good events are a subset of type

1 good events. Also note that if OPT(G) matches w to w∗, and both the vertices are

matched in our algorithm for a given permutation, then we generate two good events

of type 1, one at the position of w and other at the position of w∗. On the other

hand, one can show that we will generate at most one good event of type 2, which

will be at the position of the vertex u, where u is matched to the vertex that is first

to be matched among w and w∗.
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3.3 Analysis of the SHUFFLE Algorithm

We divide the analysis into two parts. In the first part, we use combinatorial argu-

ments to set up equations relating the variables defined in Section 3.2.2. In the second

part of the analysis we use these equations to give a lower bound on the performance

of Shuffle through a strongly factor revealing LP.

Intuitively, the input space of graphs has two types - graphs that have few non-

monotone events(such as bipartite graphs) and those that have large number of non-

monotone events. In the first case one can leverage the monotonicity property to show

that the algorithm has a good approximation factor. The analysis for the second type

of graphs is little more involved and relies on the observation that if there are a large

number of good-events then we get a good approximation factor. To show that there

are non-negligible number of good-events we prove a structural lemma - that forms

the core of our arguments - to lower bounds the number of good-events in terms of the

number of non-monotone events. To the best of our knowledge, this is the first work

that relates good-events to non-monotone events for the matching problems (and, in

general, allocation problems), and uses it to show a non-trivial improvement over the

standard greedy algorithm.

3.3.1 Combinatorial Arguments

We begin by proving that the worst examples for Shuffle must have a perfect

matching.

Lemma 20. We may assume without loss of generality that the graphs for which

Shuffle attains the worst factor has a perfect matching.

Proof. LetH(V,E) be the graph for which Shuffle attains the worst factor. Suppose

H does not have a perfect matching. Let v be a vertex in H that is not matched in

the optimal matching and let H ′ = H/v. Thus OPT(H) = OPT(H’). We will prove
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that ALG(H’) ≤ ALG(H), thereby showing that H ′ is also a worst-case example for

Shuffle.

Consider ρ ∈ ΩV and let ρ′ be the permutation produced by deleting v from ρ.

Let M be the matching returned by Shuffle(ρ) and let M ′ be the matching found

by Shuffle(ρ′). We will show that |M | ≥ |M ′|.

Let us consider two cases. If v is unmatched in Shuffle(ρ) then |M | = |M ′|. On

the other hand if v is matched in M then by Claim 1 the symmetric difference of M

and M ′ is a path or a cycle containing v. If the symmetric difference is a cycle then

|M | = |M ′| and we are done. On the other hand if it is a path, say P , then at most

one vertex in P can be unmatched in each of the matchings M and M ′. This together

with the fact that v only belongs to H and is matched in M implies that |M | ≥ |M ′|.

Since removing v does not alter the size of the optimal solution, the performance

of Shuffle on H ′ is no better than its performance on H. We can iteratively remove

all vertices that are unmatched in OPT(H) and by similar arguments as above, show

that this can only degrade the performance of Shuffle.

For the rest of this chapter we will assume that the given graph G has a perfect

matching. Furthermore, for any u ∈ V , we will use u∗ to denote its match in OPT(G)

we will refer to u∗ (resp. u) as the partner of u (resp. u∗) with respect to OPT(G).

Also for brevity we will use Γ(s, t, ρ) to denote Γu
∗
(s, t, ρ) where u = ρ(t). Thus

Γ(s, t, ρ) refers to the non-monotone event where translating an unmatched vertex

u = ρ(t) to position s in ρ causes its partner u∗ (which was previously matched above

t) to get unmatched or to match below t.

The following observation follows easily from the definitions of xt.

Observation 1. ∀t ∈ [n] : xt ≥ xt+1

The next lemma is similar in spirit to Observation 1 above.
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Lemma 21. For any s, t ∈ [n] such that s < t,

∑
ρ∈ΩV

Γ(s, t, ρ) ≤
∑
ρ∈ΩV

Γ(s, t+ 1, ρ)

Proof. Consider ρ ∈ ΩV such that we generate a non-monotone event Γ(s, t, ρ) by

promoting u = ρ(t) to position s. Let ρ′ = ρ[u ; t + 1]. Since u is unmatched

at position t in ρ it will remain unmatched at position t + 1 in Shuffle(ρ′). Also

translating u from position t+1 to s in ρ′ will generate a non-monotone event Γ(s, t+

1, ρ′). Thus we can set up an injective map from non-montone events of the form

Γ(s, t, .) to non-monotone events of the form Γ(s, t + 1, .). This suffices to prove the

above claim.

The following lemma relates xt and Γ(s, t, ρ).

Lemma 22. For every s, t ∈ [n],

|ΩV |(1− xt) ≥
∑
ρ∈ΩV

Γ(s, t, ρ)

Proof. The total number of times the vertex at position t remains unmatched is given

by |ΩV |(1 − xt). Since a necessary requirement(by property 2 in the definition) of a

having a nonmonotone event Γ(s, t, ρ) is that ρ(t) is unmatched in Shuffle(ρ), the

number of such non-monotone events is at most |ΩV |(1− xt).

Lemma 23 follows from similar arguments as above.

Lemma 23. For every t ∈ [n],

1. |ΩV |xt ≥
∑
ρ∈ΩV

Good1(t, ρ)

2. |ΩV |xt ≥
∑
ρ∈ΩV

Good2(t, ρ)

We will now present three bounds on ALG(G). The first follows trivially from the

definition of xt.
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Observation 2.

ALG(G) =
∑
t∈[n]

xt

The next two bounds are slightly more involved and make use of the two types

of good-events defined in Section 3.2.2. These are proved in Lemma 24 and 25 and

illustrate the role of good-events in attaining a factor better than 0.5.

Lemma 24.

ALG(G) =
n

2
+

∑
t

∑
ρ∈ΩV

Good1(t, ρ)

2|ΩV |

Proof. By Lemma 20 we may assume, without loss of generality, that the underlying

graph has a perfect matching. Any algorithm(including Shuffle) that returns a

maximal matching would surely match at least one of w and w∗ for any vertex w ∈ V

and therefore matches at least n/2 vertices.

To find the total number of vertices that get matched we also need to add the

number of pairs (w,w∗) such that both w and w∗ are matched. Since each such pair

contributes twice to the summation
∑

t

∑
ρ∈ΩV

Good1(t, ρ), the expected number of

vertices matched by Shuffle is given by n
2

+
∑
t

∑
ρ∈ΩV

Good1(t,ρ)

2|ΩV |
.

Lemma 25.

ALG(G) ≥ n

2
+

∑
t

∑
ρ∈ΩV

Good2(t, ρ)

|ΩV |

Proof. As before by Lemma 20 we may assume, that the underlying graph has a

perfect matching. Thus any greedy algorithm(including Shuffle) matches at least

n/2 vertices. To bound the total number of vertices that get matched we also need

to add the number of pairs (w,w∗) such that both w and w∗ are matched. We do

this by constructing a map from good-events of type 2 into the set of such pairs.

Consider a good-event Good2(t, ρ) and let u = ρ(t). Let w be the vertex that

u is matched to in Shuffle(ρ). By definition of a good-event of type 2, w∗ is also
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matched in Shuffle(ρ). Thus each type 2 good-event maps to a pair (w,w∗) such

that both w and w∗ are matched. Also observe that this map is one-one, i.e. given

a pair (w,w∗) that lies in the range of this map there is exactly one good-event of

type 2 that could be its preimage. This is because if we define ŵ ∈ {w,w∗} to be

the first among w and w∗ to get matched in Shuffle(ρ) then the neighbor of ŵ in

Shuffle(ρ) uniquely defines the vertex u that if deleted would cause w and w∗ to be

matched.

The following lemma illustrates the connection between nonmonotone events and

good-events. It is the pivotal technical lemma in the analysis. Finally in Lemma 27

we relate the number of non-monotone events bounds to the total number of miss

events.

Lemma 26. For every t ∈ [n],

∑
ρ∈ΩV

Γ(t, n, ρ) ≤
∑
ρ∈ΩV

Good2(t, ρ) +
n
∑

s≤t
∑

ρ∈ΩV
Good1(s, ρ)

t

Proof. The proof of this Lemma relies on setting up two maps that associate good-

events (of type 1 or 2) with every non-monotone event. Let ρ ∈ ΩV such that

Γ(t, n, ρ) = 1. Let u = ρ(n) and ρ′ = ρ[u; t]. Clearly u is matched by Shuffle(ρ′),

let w 6= u∗ be the vertex that it is matched to. Let w∗ be the partner for w in

OPT (G). We consider the following two cases.

Case 1: Both w and w∗ were matched to each other in Shuffle(ρ).

Since we have a non-monotone event when we move u to position t, w∗ should

surely be matched in Shuffle(ρ′). Thus in this case moving u to position t in ρ

generates a good-event of type 2 at position t in Shuffle(ρ′). Thus in this case,

every non-monotone event Γ(t, n, ρ) generates exactly one good event of type 2. This

is represented by the first term on the right-hand side of the above inequality.

Case 2: w and w∗ were not matched to each other in Shuffle(ρ).
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Suppose we move w∗ around in ρ′, i.e. consider ρ′′ = ρ′[w∗ ; s] for s ∈ [n] then

we have the following two claims. The first claim says that w would always stay

matched, while the second claim says that for at least(the top) t positions of w∗ both

w and w∗ will get matched. We defer the proofs to Section 3.5.

Claim 2. w is matched in Shuffle(ρ′[w∗ ; s]) for all choices of s ∈ [n].

Claim 3. w∗ is matched by Shuffle(ρ′[w∗ ; s]) for all choices of s ≤ t, s ∈ [n].

By Claim 2 w stays matched for all positions of w∗. Of the n positions that w∗

can take, it too gets matched for at least t positions. Thus we generate at least t

good-events of type 1 (for the top t positions of w∗) by moving w∗ over ρ′ from every

non-monotone event Γ(t, n, ρ).

However, we may over count while accounting for good-events since the same type

1 good-event can be generated from multiple nonmonotone events. Let us fix t for

which we are writing the equation. Consider a good-event Good1(s, ρ̂) generated as

defined above. Let u = ρ̂(t) and w∗ = ρ̂(s). Let us count the number of nonmonotone

events Γ(t, n, ρ)(characterized by permutation ρ) that may generate this good-event.

The positions of all vertices except w∗ and u are predetermined by their positions in ρ̂.

Now u should surely be at position n in ρ, but the position of w∗ remains ambiguous.

It may be at any of the n positions in ρ. Thus in the worst case there may be n

ways to choose ρ such that the nonmonotone event Γ(t, n, ρ) generates the good-

event Good1(s, ρ̂). Thus every non-monotone event generates t good-events of type 1

and each such good-event may be generated by as many as n non-monotone events.

Substituting the variables gives us the second term in the above inequality.

Lemma 27. For every t ∈ [n],

n(1− xt) ≤
∑
s≤t

xs +

∑
s≤t

∑
ρ∈ΩV

Γ(s, t, ρ)

|ΩV |
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Proof. We will prove this lemma by defining a function that maps a miss event at

position t to n events that are either match events above t or to a non-monotone events

above t. Consider ρ ∈ ΩV such that u = ρ(t) is unmatched. Consider Shuffle(ρ[u;

s]) for all values of s ∈ [n] and suppose we analyse what happens to u∗ in each of

these events. It will either continue to be matched above position t or it may get

matched below position t(or get unmatched). In the former case we generate a match

event above t, while in the latter we generate a non-monotone event at s, Γ(s, t, ρ).

One can check that the set of events generated for distinct miss events are disjoint.

There are |ΩV |(1 − xt) miss events in all and the total number of match events

above t is given by |ΩV |
∑

s≤t xs. Using the above map we have

n|ΩV |(1− xt) ≤ |ΩV |
∑
s≤t

xs +
∑
s≤t

∑
ρ∈ΩV

Γ(s, t, ρ)

Dividing throughout by |ΩV | proves the lemma.

Remark 1. A curious reader may ask about the case when there are no nonmonotone

events, which would render Lemma 26 useless. However, in this case Lemma 27

can be restated as 1 − xt ≤
∑

s≤t xs. Through a simple factor revealing LP, along

with Observation 2, this suffices to show that ALG(G) ≥ n(1 − 1/e). Also recall

that if we have lots of non-monotone events then Lemmas 24, 26, 27 ensure that

Shuffle attains a factor better than 0.5. The remainder of the analysis is focused

on balancing these two effects.

In the next section we will demonstrate how the above structural Lemmas can be

used to show that Shuffle attains a factor of at least 0.560.

3.3.2 Strongly Factor Revealing Linear Program

Let us define gt to be the probability of a type 1 good event at position t, i.e. gt =∑
ρ∈ΩV

Good1(t,ρ)

|ΩV |
. Similarly define ht =

∑
ρ∈ΩV

Good2(t,ρ)

|ΩV |
and γs,t =

∑
ρ∈ΩV

Γ(s,t,ρ)

|ΩV |
. In
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light of the above definitions the results of Section 3.3.1 can be reformulated as the

following linear program.

LP(n) : minimize
ALG

n

Subject to

ALG =
∑
t∈[n]

xt Observation 2(16)

ALG =
n

2
+

1

2

∑
t

gt Lemma 24 (17)

ALG ≥ n

2
+
∑
t

ht Lemma 25 (18)

γt,n ≤ ht +
n
∑

s≤t gs

t
∀t ∈ [n] Lemma 26 (19)

n(1− xt) ≤
∑
s≤t

xs +
∑
s≤t

γs,t ∀t ∈ [n] Lemma 27 (20)

1− xt ≥ γs,t ∀s, t ∈ [n] Lemma 22 (21)

xt ≥ xt+1 ∀t ∈ [n] Observation 1(22)

γs,t ≤ γs,t+1 ∀s, t ∈ [n] Lemma 21 (23)

xt ≥ gt ∀t ∈ [n] Lemma 23 (24)

xt ≥ ht ∀t ∈ [n] Lemma 23 (25)

0 ≤ xt, γs,t, gt, ht ≤ 1 ∀s, t ∈ [n] (26)

Here we are trying to minimize the approximation factor of the algorithm subject

to the constraints derived in Section 3.3.1. The following lemma follows immediately.

Lemma 28. LP(n) lower bounds the performance(approximation factor) of Shuf-

fle on any graph having n vertices.

Table 2 gives the optimal value of LP(n) for different choices of the parameter n.

There are two main approaches towards rigorously estimating approximation factors

using factor revealing LPs. The first method relies on analytically solving the given
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Table 2: Optimal Values of LP(n)
n Optimal Value of LP(n) Factor = LP(n)/n
20 11.124 0.5562
50 27.913 0.5582
100 55.899 0.5588
200 111.870 0.5593
300 157.879 0.5596
400 224.001 0.560

LP for an arbitrary sized input and then arguing about the optimality of the solution

(refer to [47, 42]). The second technique relies on observing patterns in the dual for

the given LP and using these to guess a near optimal dual for an arbitrary program

(e.g. [35, 45]). This approach is usually lossy and fails to attain the optimal ap-

proximation factor. Both of these approaches are infeasible in our context since the

linear program (and its dual) at hand is quite complex and not amenable to analytical

study. Therefore, in order to rigorously establish that Shuffle does attain a factor

of at least 0.560 we will employ a technique inspired by the recent work by [44].

In this technique we construct a family of progressively stronger linear programs

(called a strongly factor-revealing family) such that the solution to any of these pro-

grams lower bounds the approximation ratio of the algorithm. Towards this end we

will in fact prove that the optimal value of LP (k) for any small constant k lower

bounds the optimal value of LP (n) for an any choice of n >> k. Thus our family of

strongly factor-revealing linear programs is simply {LP (1), LP (2) · · ·LP (k)}. Con-

cretely, we will show LP-OPT(k) ≤ LP-OPT(n), where LP-OPT(n) is the optimal

value of LP (n).

Lemma 29. For any fixed constant k dividing n,

LP-OPT(k) ≤ LP-OPT(n)

Proof. Let sn = (ALGn, xn, gn, hn, γn) be the optimal solution for LP (n). We will use

these to construct a feasible solution ŝk = (ÂLG
k
, x̂k, ĝk, ĥk, γ̂k) for LP (k) of value
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LP-OPTn thus proving LP-OPTk ≤ LP-OPTn. Let q = n/k. We will use i, j ∈ [k]

to index variables in ŝk and s, t to index variables in sn. Define

x̂ki =

∑
s:bs/qc=i

xns

q
∀i ∈ [k] (27)

ĝkt =

∑
s:bs/qc=i

gns

q
∀i ∈ [k] (28)

γ̂ki,j =

∑
s:bs/qc=i

∑
t:bt/qc=j

γns,t

q2
∀i, j ∈ [k] (29)

ÂLG
k

=
ALGn

q
(30)

In the following 6 claims we establish that the solution defined above is a feasible

solution to LP (k). We defer the proofs to Section 3.5.

Claim 4. ÂLG
k

=
∑
t∈[k]

x̂kt

Claim 5. ÂLG
k

= k/2 + 1
2

∑
s∈[k]

ĝks

Claim 6. ÂLG
k
≥ k/2 +

∑
s∈[k]

ĥks

Claim 7. γ̂ki,k ≤ 1
k

∑
j≤i

ĝkj + ĥki

Claim 8. k(1− x̂ki ) ≤
∑
j≤i

x̂kj +
∑
j≤i

γ̂kj,i

Claim 9. 1− x̂ki ≥ γ̂kj,i

Constraints (22),(23),(24), (25) and (26) follow trivially. Thus ŝk is a feasible

solution for LP (k). Also observe that the objective value for LP (k) corresponding

to the solution ŝk is ÂLG
k
/k = ALGn/qk = ALGn/n = LP-OPT(n). Since ŝk is a

feasible solution to LP (k), LP-OPT(k) ≤ LP-OPT(n).

Lemma 29 above together with Table 2 suffices to prove the following theorem.

Theorem 30. Shuffle attains a factor of at least 0.560 in expectation.
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3.3.3 Tightness of the Analysis

In this section we study the tightness of our analysis through a reduction to the

analysis of the 2-sided Ranking algorithm presented in Chapter 2 in the context of

online bipartite matching in the Random Order Arrival (ROA) model . Recall that

in this problem we are given one side (say L), of a bipartite graph G(L∪R,E) while

the vertices in the other side arrive online in random order, one vertex at a time. For

each incoming vertex its neighborhood in L is told to us and it needs to be matched

irrevocably upon arrival. In Chapter 2 we analyzed the Ranking algorithm where

we begin by shuffling the vertices in L according to a random permutation thereby

assigning a rank to every vertex. We then match each arriving vertex to the highest

ranked unmatched vertex in L. We showed the following result.

Theorem 31. There exists a family of graphs for which Ranking attains a factor

of 0.727 in the ROA model.

Alternately the above result may be viewed as the analysis of the following ran-

domized algorithm for finding a matching in a given bipartite graph - Randomly

permute both bipartitions according to uniform random permutations to assign a

distinct rank to each vertex. Iterate through the vertices in L(or R) in increasing or-

der of rank and for each vertex match it to the highest ranked unmatched neighbor in

R(or L). We will refer to this algorithm as the 2-sided Ranking algorithm. Lemma

32 given below relates the performance of Ranking and Shuffle.

Lemma 32. For an bipartite graph the expected size of the matching returned by

Shuffle is equal to the expected size of the matching produced by the 2-sided Rank-

ing algorithm.

Proof. Let G(L ∪ R,E) be the given bipartite graph. Let Υ(Ψ) be the set of all

permutations of L(R). An execution of the 2-sided Ranking algorithm can be char-

acterized by the permutations υ ∈ Υ, ψ ∈ Ψ used in the algorithms. Let us denote
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this by Ranking(υ, ψ). Similarly we can define Ω to be the set of all permutations

of L ∪R and any given execution of Shuffle is characterized by a permutation say

ω ∈ Ω will be denoted by denoted by Shuffle(ω). We will prove this result by

exhibiting a uniform many-to-one map from ω to Υ×Ψ.

Consider ω ∈ Ω. If we look at the relative order of vertices of L in ω, it induces a

permutation say υ ∈ Υ. Similarly we can define a permutation ψ ∈ Ψ on the vertices

in R for any given permutation ω. Next we will show that the matching produced by

Ranking(υ, ψ) is identical to the matching produced by Shuffle(ω).

Claim 10. The matching produced by Ranking(υ, ψ) is identical to the matching

produced by Shuffle(ω).

Proof. Let x be the first vertex in ω. Without loss of generality let us assume x ∈ L.

Thus x is the first vertex in υ. Let y be the highest ranked neighbor for x in ω. By the

definition of ψ, y is also the highest ranked neighbor for x in ψ. So both Shuffle(ω)

and Ranking(υ, ψ) will match x to y. The rest of the proof follows easily by induction

on the size of the remaining graph.

Observe that each ω ∈ Ω would be mapped to by the same number of elements in

Υ×Ψ. Thus the expected size of the matching returned by Shuffle is equal to the

expected size of the matching produced by the 2-sided Ranking algorithm.

Theorem 33 follows from Theorem 31 and Lemma 32.

Theorem 33. There exists a family of bipartite graphs for which Shuffle attains a

factor of 0.727.

3.4 Upper Bounds

Theorem 33 stated above bounds the tightness of our analysis of the Shuffle al-

gorithm. In this section we will give an upper bound on the performance of a broad

class of randomized algorithms called vertex-iterative algorithms. This class includes
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the Shuffle algorithm as well as the algorithm in [3]. We will also prove a slightly

weaker bound on the performance of any randomized algorithm as well as for

We call a randomized algorithm for the query commit problem to be vertex-

iterative(VI) if it iterates through the vertices one at a time in a possibly adaptive

sequence and for every vertex scans the edges incident on it in an arbitrary(adaptive)

order until it gets matched. A vertex may also choose to scan only a subset of edges

incident on it before it decides to “give-up”, i.e., after which this vertex will play no

further role in the algorithm.

3.4.1 Upper Bound on the Performance of Vertex Iterative Algorithms

In this section we will show a 0.75-upper bound on the performance of any VI algo-

rithm. Our result uses Yao’s Lemma [69].

Lemma 34. [Yao’s Lemma] The expected worse-case performance of the optimal

randomized algorithm for the query commit problem is upper bounded by the expected

performance for the optimal deterministic algorithm for any given distribution over

input graphs.

Thus, we have to come up with a distribution over input graphs and bound the

performance of the optimal deterministic VI algorithm for this distribution. We will

consider the following family I of n vertex graphs - For any instance I ∈ I, the vertex

set can be divided into two equal parts C(Clique) and P (Pendant). The vertices in

C form a clique while every vertex in P is adjacent to a unique vertex in C. For

any vertex u ∈ C, let u∗ ∈ P be the unique pendant vertex adjacent to it. An

example is shown in Figure 4. We will assume uniform distribution over graphs in

I. Alternately, our distribution may be viewed as the uniform distribution over all

relabellings (φ : [n]→ [n]) of vertices of the graph Γ shown in Figure 4.

Unfortunately, it is quite difficult to characterize the optimal deterministic algo-

rithm over graphs in I. Instead we will devise a class of hypothetical algorithms, called
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Figure 4: Graph Γ = (C ∪ P,E) ∈ I

revealing algorithms whose performance is no-worse than that of any deterministic

VI algorithm and then bound their factor. This class of algorithms is hypothetical

in the sense that it assumes limited access to the underlying graph I = (C ∪ P,E).

It uses a notion of active and inactive vertices and at the start of the algorithm all

vertices are marked to be active.

A revealing algorithm is a VI algorithm that proceeds in several phases. We

begin every phase by choosing an arbitrary active vertex say v. If v ∈ P then it gets

matched to its unique neighbor in v∗ ∈ C and we terminate the phase by marking

both v and v∗ as being inactive. Otherwise if v ∈ C then it starts querying edges

incident to other active vertices (according to a possibly adaptive strategy). If we

query an edge incident to a vertex u∗ ∈ P then the u∗ reveals its unique neighbor

u ∈ C and gets matched to it and both u and u∗ are marked as inactive. However

if v queries another active vertex w ∈ C, then v and w get matched, as required in

the query commit model, and {v, w, v∗, w∗} are marked to be inactive. v may also

choose to give-up after trying a few edges, at which point it is marked as inactive

(we also mark v∗ ∈ P as inactive at this point). The phase ends when v gets marked

as inactive and it is not considered any further by the algorithm. The algorithm

terminates when all vertices are marked to be inactive.

Let O be the optimal deterministic VI algorithm for instances drawn from I. In

Lemma 35, we show that there exists a deterministic revealing-algorithm does at least
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as well as O.

Lemma 35. There exists a deterministic revealing-algorithm that does at least as well

as O on every instance I ∈ I.

Proof. Consider the execution of O on any instance I = (C ∪P,E). We can simulate

the execution of O on I by a revealing algorithm A. The only possible difficulty could

be if O scans an edge incident on a vertex that is already marked to be inactive by

A. This step is not allowed in A, and cannot be simulated. In this case the current

vertex in our simulation immediately gives up and we proceed to the next phase. One

can check that under this simulation A produces a matching that is at least as large

as the one returned by O.

Corollary 36 follows from Lemma 35.

Corollary 36. For an instance drawn uniformly at random from I the expected

performance of the optimal deterministic revealing-algorithm is at least as good as

the expected performance of the optimal deterministic VI algorithm.

Let A be the optimal deterministic revealing-algorithm for graphs drawn from I.

By Lemma 34 and Corollary 36 we only need to bound performance of A. To get

a handle on this we define a randomized revealing algorithm Random-Reveal(RR)

and then in Lemma 37 we show that the expected performance of RR for the graph

Γ shown in Figure 4 is (approximately) equal to the expected performance of A on

graphs drawn uniformly at random from I. Thus we can use the analysis of RR to

upper bound the performance of any VI algorithm.

RR is defined as follows - For any given instance I = (C ∪ P,E) we choose a

random permutation ρ of C∪P . Then we process the vertices one at a time according

to ρ. If the current vertex is inactive then it is ignored else we query edges incident

on it in random order until it gets matched. The algorithm terminates when there

are fewer than n0.9 active vertices.
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Remark 2. The modified termination condition changes the performance of the al-

gorithm by only a negligible factor and is used to simplify the proof.

Lemma 37. For the graph Γ shown in Figure 4

E
ρ

[RR(Γ)] = E
I∈I

[A(I)]

Proof. Without loss of generality we may assume that A is a greedy algorithm in

the sense that it will never cause a vertex to give-up until it gets matched or has

exhausted all its options. The lemma can be proved by establishing the following fact

which follows by induction and using the observation that at the end of any phase,

the induced graph on the set of active vertices is uniformly distributed over graphs

in I but defined over smaller number of vertices.

Fact: The distribution of the induced graphs over unmatched vertices at the end of

the kth phase is identical for both RR and A for every choice of k ∈ [n].

Now we are left to analyze the performance of RR on Γ. We do this in the

subsequent lemma.

Lemma 38. For the graph Γ shown in Figure 4

E
ρ

[RR(Γ)] = 0.75

Proof. Note that Γ has a unique optimal solution where all n vertices get matched,

namely {ww∗ | ∀w ∈ C}. We will argue that for an arbitrary phase, the expected

number of vertices that get matched is 3/4 of the expected number of vertices that

are labeled as inactive during the phase. This will establish the above lemma.

For a given phase let v be the active vertex chosen by RR at the start of this

phase. The proof for this case is based on the following three simple claims.

Claim 11. Pr [v ∈ C] = Pr [v ∈ P ]
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Proof. At any stage of a revealing algorithm the number of active vertices belonging

to C is equal to the number of active vertices in P . The claim follows since v is chosen

at random from all the active vertices.

Claim 12. If v ∈ P , then two vertices get matched by RR in the current phase and

exactly these two vertices are also labeled to be inactive.

Proof. Follows from the definition of a revealing-algorithm.

Claim 13. If v ∈ C, then 4 vertices get matched in expectation and on an average

we label 6 more vertices as being inactive in this phase.

Proof. First observe that since we truncate the execution of the algorithm to the point

when there are at least n0.9 active vertices, v will match v∗ with negligible probability.

We will ignore the probability of this event for the rest of the proof, since this can

only introduce a negligible error.

Recall that in the RR algorithm the given vertex v will randomly probe all its

active neighbors until it gets matched. If it probes a neighbor belongs to P the

neighbor would reveal itself and get matched to its partner in the optimal solution.

Thus v will continue to probe its neighbors until it probes a vertex in C. Since in

any revealing algorithm the number of active vertices belonging to C is equal to the

number of active vertices in P the average number of vertices in P that get probed

by v is given by 1
2

∑
i=1

i
2i

= 1.

Thus on an average v will cause 1 vertex in P to be revealed before it gets matched.

This vertex will go on to match its partner in the optimal solution. So in expectation

we will match 4 vertices (2 edges) in any given phase. By similar arguments it follows

that we will mark at most 6 vertices to be inactive in expectation.This is shown in

Figure 5.

By Claims 11, 12, 13 we see that the the expected number of vertices that get

matched in any phase is given by 2(0.5) + 4(0.5) = 3 while the expected number of
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Figure 5: Expected behavior of RR when v ∈ C

vertices that are marked as inactive is 2(0.5) + 6(0.5) = 4. Thus RR attains a factor

of 3/4.

From Lemmas 35 and 37 we have the following theorem.

Theorem 39. There exists a family of graphs for which no VI algorithm attains a

factor better than 0.75.

3.4.2 Upper Bound on the Performance of any Randomized Algorithm

In this section we establish an upper bound on the performance of any randomized

algorithm. As before our analysis relies on Yao’s lemma. The bound presented

is slightly weaker than that presented for VI algorithms in Theorem 39, though it

applies to any randomized algorithm.

Theorem 40. No randomized algorithm can attain a factor better than 19/24 =

0.7916 for the query commit problem.

Proof. Consider a graph H over 4 vertices a, b, c, d with edge set {ab, bc, ca, da}, i.e. it

looks like a triangle with one pendant vertex. Consider the distribution of graphs pro-

duced by uniformly permuting the labels on the vertices. This results in a distribution

over 4! = 24 isomorphic graphs. Now let us characterize the optimal deterministic

algorithm for this distribution.
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Since in the beginning, the algorithm knows nothing about the graph, without

loss of generality we can assume it queries an arbitrary edge. Two cases may arise,

either the edge is present or not. The first case happens with probability 4/6 = 2/3,

following which the algorithm can only probe the remaining pair of vertices and check

if there is an edge between them. It is not difficult to see that given that the first

edge that is scanned is found to be present, we find the optimal matching (of size

2) with probability 1/2 and return a suboptimal solution (of size 1) with probability

1/2.

On the other hand, if the first edge that is scanned, say αβ, is not present then

it will imply that there is an edge connecting the other pair of vertices (say γ, δ).

Clearly the optimal deterministic algorithm won’t scan γδ as that will give matching

of size 1 only. Thus in the next step, the optimal algorithm will query an edge with

one end-point in {α, β} and the other end-point in {γ, δ}.

Observe that if the second query is also unsuccessful (this happens with probability

1/4), we can identify the pendant vertex and find the optimal solution. On the other

hand if the second query results in a match then the next query can only check for an

edge between the remaining two vertices. In this case, it is not difficult to see that we

get an optimal solution with probability 2/3 and a suboptimal solution with proba-

bility 1/3. Thus the expected size of the solution returned by the optimal determinis-

tic algorithm is 2/3 [2(1/2) + 1(1/2)] + 1/3 [2(1/4) + 0.75(2(2/3) + 1(1/3))] = 19/12.

Since the size of the optimal solution is 2, the optimal deterministic algorithm for

graphs drawn from the aforementioned distribution attains a factor of 19/24. The

result follows by applying Yao’s lemma.
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3.5 Omitted Proofs

Proof of Claim 2

Proof. Since u is unmatched in Shuffle(ρ) and it is adjacent to w(by our assump-

tion), w must be matched in Shuffle(ρ). Let v be the vertex that w gets matched

to. Since we are in Case 2 of Lemma 26, v 6= w∗. Next let us look at Shuffle(ρ′); v

must available when w gets matched to u. Thus when w gets matched in Shuffle(ρ)

it has at least two options i.e. u and v.

Finally lets consider ρ′′ = ρ′[w∗ ; s]. By the stability property (Claim 1) the

matchings produced by Shuffle(ρ′) and Shuffle(ρ′′) at the time when w is being

considered differ by an augmenting path. Thus the number of options available to

w in Shuffle(ρ′) and Shuffle(ρ′′) can differ by at most 1. Recall that both u and

v 6= w∗ were available to w in Shuffle(ρ′). So at least one of them should still be

available in Shuffle(ρ′′). Therefore w will get matched in Shuffle(ρ′′).

Proof of Claim 3

Proof. Let us consider two cases.

Case 1: ρ′−1(w) > t. Since u gets matched to w in Shuffle(ρ′), w should be un-

matched until time t. Clearly the execution of Shuffle(ρ′[w∗ ; s]) and Shuffle(ρ′)

would be identical until time s. Thus when we consider w∗ in Shuffle(ρ′[w∗ ; s]),

w is still unmatched. Therefore w∗ will surely get matched by Shuffle(ρ′[w∗ ; s]).

Case 2: ρ′−1(w) ≤ t. If possible let w∗ not get matched in Shuffle(ρ′[w∗ ; s]).

Let r = ρ′−1(w). In this case Shuffle(ρ′) and Shuffle(ρ′[w∗ ; s]) are identical

until time r. Therefore both u and w∗ must be unmatched when we consider w

in Shuffle(ρ′[w∗ ; s]). Since s ≤ t, w would choose w∗ instead of u which is a

contradiction.
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Proof of Claim 4

Proof.

ÂLG
k

=
ALGn

q
Using equation (30)

=
∑
s∈[n]

xns/q Using equation (16)

=
∑
i∈[k]

∑
s:bs/qc=i

xns/q

=
∑
i∈[k]

x̂ki Using equation (27)

Proof of Claim 5

Proof.

ÂLG
k

=
ALGn

q
Using equation (30)

=

n
2

+ 1
2

∑
s∈[n]

gns

q
Using equation (17)

=
k

2
+

1

2q

∑
t∈[n]

gnt

=
k

2
+

1

2q

∑
i∈[k]

∑
s:bs/qc=i

gns

=
k

2
+

1

2

∑
i∈[k]

ĝki Using equation (28)

Proof of Claim 6

Proof.

ÂLG
k

=
ALGn

q
Using equation (30)

=

n
2

+
∑
s∈[n]

hns

q
Using equation (18)
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=
k

2
+

1

q

∑
t∈[n]

hnt

=
k

2
+

1

q

∑
i∈[k]

∑
s:bs/qc=i

hns

=
k

2
+
∑
i∈[k]

ĥki Using equation (28)

Proof of Claim 7

Proof.

γ̂ki,k =

∑
s:bs/qc=i

∑
t:bt/qc=n

γni,j

q2
Using equation (29)

≤

∑
s:bs/qc=i

γns,n

q
Using equation (23)

≤

∑
s:bs/qc=i

1

n

∑
t≤s

gnt + hns

q
Using equation (19)

=

∑
s:bs/qc=i

∑
t≤s

gnt

qn
+ ĥki

≤

∑
s:bs/qc=i

gns

n
+ ĥki

≤

q
∑
j≤i

ĝkj

n
+ ĥki

≤ 1

k

∑
j≤i

ĝkj + ĥki

Proof of Claim 8

Proof.

k(1− x̂kj ) =

k
∑

t:bt/qc=i

(1− xnt )

q
Using equation (27)
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≤

n
∑

t:bt/qc=i

(∑
s≤t

xns +
∑
s≤t

γns,t

)
q2

Using equation (20)

≤

∑
s≤iq

xns

q
+

∑
t:bt/qc=i

∑
s≤t

γns,t

q2

=
∑
j≤i

x̂kj +
∑
j≤i

γ̂kj,i Using equations (27) and (29)

Proof of Claim 9

Proof.

1− x̂ki =

∑
t:bt/qc=i

1− xnt

q
Using equation (27)

≥

∑
t:bt/qc=i

∑
s:bs/qc=j

γns,t

q2
Using equation (21)

≥ γ̂kj,i

3.6 Conclusion and Open Problems

In this chapter we discussed the oblivious query commit model which attempts to cap-

ture the situation where the lack of information constraints us to implement myopic,

greedy-like algorithms. A simple deterministic greedy algorithm achieves a factor 1/2

which is tight for deterministic algorithms. We took the first steps towards answering

the big open question in this area that whether a randomized greedy algorithm has a

significantly better approximation factor. We analyzed the Shuffle algorithm which

is a generalization of the Ranking algorithm described in Chapter 2, and proved that

it attains a factor of at least 0.56. We also presented upper bounds on performance

of a broad class of randomized algorithms.

70



The main open question left in this line work is whether Shuffle is really the

optimal randomized algorithm for this problem. At a higher level this pertains to the

correct way of infusing randomness in to the greedy algorithm. Also, it is strange that

the worst examples for Shuffle that we could find are bipartite graphs (refer Section

3.3.3), since bipartite graphs actually satisfy the monotonicity property mentioned in

Section 3.2.2. This leaves the tantalizing possibility that Shuffle performs as well

on general graphs as Ranking does on bipartite graphs, and therefore achieves a

much greater than 0.56. Resolving this is an interesting technical challenge.
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CHAPTER IV

MATCHING IN STOCHASTIC QUERY COMMIT MODEL

4.1 Introduction

In this chapter we will discuss a stochastic variant of the Oblivious Query Commit

Model presented in Chapter 3. This is motivated by barter exchange problems where

we have additional stochastic information about the given data. For example in the

Kidney exchange problem mentioned earlier, based on cheap blood tests, it is possible

to estimate the likelihood of two patients being compatible without explicitly testing

for compatibility. We refer the reader to [54, 55] for more details.

Concretely we will study the following problem - For p, a probability vector in-

dexed by pairs of vertices from a vertex set V , let G(V, p) denote an undirected

Erdős-Rényi graph on V . That is, for any (u, v) ∈ V × V , puv = pvu denotes the

(known) probability that there is an edge connecting u and v in G. For every pair

(u, v) ∈ V × V we are not told a priori whether there is an edge connecting these

vertices, until we probe/scan this pair. If we scan a pair of vertices and find that

there is an edge connecting them we are constrained to pick this edge and in this case

both u and v are removed from the graph. However, if we find that u and v are not

connected by an edge, they continue to be available (to others) in the future. The

goal is to maximize the number of vertices that get matched.

We will refer to the above as the Stochastic Query Commit Problem (SQCP), since

whenever we probe a pair of adjacent vertices, we are committed to picking them.

Once again the performance of our algorithm is compared against the optimal offline

algorithm that knows the underlying graph for each instantiation of the problem

and finds the maximum matching in it. Note that since the input is itself random,
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the average performance of the optimal offline-algorithm is the expected size of the

maximum matching in this random graph.

4.1.1 Our Results

It is easy to see that the simple greedy algorithm, which probes pairs in an arbitrary

order, would return a maximal matching in every instance of the problem and is

therefore a factor 0.5 approximation algorithm. We give a sampling based algorithm

for this problem that does better than this and prove the following results.

(a) There exists a randomized algorithm that attains a competitive ratio of at

least 0.575 for the Stochastic Matching with Commitment Problem that runs

in time Õ(n4) for a graph with n vertices. Furthermore, the running time can

be reduced to Õ(n3) in the case where the expected size of the optimal matching

is a positive fraction of the number of vertices in the graph.

(b) No algorithm can attain a competitive ratio better than 0.896 for the SQCP.

Our algorithm uses offline simulations to determine the relative importance of

edges to decide the order in which to scan them. It is based on a novel sampling

lemma that might be of independent interest in tackling online optimization set-

tings, wherein an algorithm needs to make irrevocable online decisions with limited

stochastic knowledge. This sampling trick is explained in section 4.2.3. Even though

the proof for our sampling lemma is based on solving an exponentially large linear

program, we also give a fast combinatorial algorithm for it. As a result our algorithm

can be implemented in time O(n3).

4.1.2 Related Models and Results

The problem has similar flavor to several well known stochastic optimization problems

such as the stochastic knapsack [13] and the shortest-path [50, 52]; refer to [61] for

a detailed discussion on these problems. As stated earlier SQCP is a relaxation of
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the oblivious query commit problem discussed in Chapter 3. Thus the lower bound

of 0.56 presented in Section 3.3 carries over to SQCP.

The SQCP has also been studied in another more general model first introduced

by Chen et al. [11]. In their model every vertex v ∈ V had a patience parameter t(v)

indicating the maximum number of failed probes v is willing to participate in. After

t(v) failed attempts, vertex v would leave the system, and would not be considered

for any further matches. Our model can be viewed as a special case of their setting

where t(v) = n for every vertex. However Chen et. al., and subsequently Bansal et

al. [5], compared their performance against the optimal online algorithm. This was

necessary because if we consider the case of the star graph, where each edge has a

probability of 1/n and t(v) = 1 for every vertex v, then any online algorithm can

match the center of the star with probability at most 1/n, while there exists an edge

incident on the center with probability 1 − 1/e. In contrast, our results are against

the strongest adversary, i.e., the optimal offline omniscient algorithm. Clearly the

performance of the optimal online algorithm can be no better than that of such an

omniscient algorithm.

In their model [11], Chen et al. presented a 1/4 competitive algorithm. Their

results were later extended to the weighted setting by Bansal et al. [5] who used a

linear program to bound the performance of the optimal algorithm and gave a 1/4

competitive algorithm for the general case, and a 1/3 competitive algorithm for the

special case of bipartite graphs. It is interesting to note that the linear program

considered by Bansal et al. has an integrality gap of 2 for general graphs which limits

the best factor attainable by LP based algorithms. Another interesting aspect of their

model is that the optimal online algorithm is a stochastic dynamic program having

exponentially many states, and it is not even known if the problem is NP-hard when

the patience parameters t(.), can be arbitrary.
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4.1.3 Technical Contributions

Observe that the simple algorithm, which weighs (or probes) an edge e according to

probability pe, is not necessarily the best way to proceed. Consider a path having 3

edges such that the middle edge is present with probability 1 whereas the other two

edges are each present with probability 0.9. Even though the middle edge is always

present, it is unlikely to be involved in any maximum matching. Conversely, the outer

edges will always be a part of some maximum matching when they appear.

In order to quantify the relative importance of an edge e, we define the quantity

qe as the probability that the edge belongs to a maximum matching. This can be

calculated by sampling a collection of representative graphs from the given distribu-

tion; we provide further details in Section 4.4.1 on how to implement this efficiently.

Note that this is done as a preprocessing step without probing any of the edges in

the given graph (a necessary requirement, as probing an edge could lead to unwanted

commitments). Clearly the probability that a vertex would get matched in the opti-

mal solution is the sum of q∗e for all edges incident on it and this gives us a way to

approximate the optimal solution.

Similarly we can also calculate the conditional probability that an edge belongs to

the maximum matching, given that it is present in the underlying graph. We use this

as a measure of the importance of the edge. Observe that it is safe to probe edges

where this conditional probability is large, since we are unlikely to make a mistake on

such edges. After we are done probing these edges we are left with a residual graph

where this conditional probability is small for every edge.

Ideally at this point what we would like to do is to simulate the fractional match-

ing given by the q∗e , i.e., include every edge with probability q∗e . However, this is made

impossible by the combination of our lack of knowledge of the graph and the commit-

ments we are forced to make as we scan edges to obtain information about the graph.

To overcome these limitations, we devise a novel sampling technique, described in
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section 4.2.3, that gives us a partial simulation. This sampling algorithm outputs a

(randomized) ordering to scan the edges incident to a given vertex, so as to ensure

that edge e is included with probability at least some large positive fraction of q∗e .

4.2 Preliminaries

4.2.1 Problem Statement

We are given a set of vertices V , and for every unordered pair of vertices u, v ∈ V , we

have a (known) probability puv of the edge (u, v) being present. These probabilities

are independent over the edges. Let D denote this distribution over all graphs defined

by p. Let G(V,E) be a graph drawn from D. We are given only the vertex set V

of G, but the edge-set E is not revealed to us unless we scan an unordered pair of

vertices. A pair (u, v) ∈ V × V may be scanned to check if they are adjacent and if

so then they are matched and removed from the graph. The objective is to maximize

the expected number of vertices that get matched.

We compare our performance to the optimal off-line algorithm that knows the

edges before hand, and reports the maximum matching in the underlying graph. We

say an online algorithm A attains a competitive ratio of γ for the SQCP if, for every

problem instance I = (G(V, .), p), the expected size of the matching returned by A is

at least γ times the expected size of the optimal matching in the Erdős Rényi graph

G(V, p). That is, γ = min
I=(G(V,.),p)

{
E [A(I)]

E [max matching in G(V, p)]

}
.

4.2.2 Definitions

For any graph H drawn from D, let M(H) be an arbitrarily chosen maximum match-

ing on H. We define

q∗uv = Pr
H←D

(u ∼ v in M(H)) .

Clearly q∗uv ≤ puv, since an edge cannot be part of a maximal matching unless

it is actually in the graph. In general, the ratio q∗uv/puv can be thought of as the
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conditional probability that an edge is in the matching, given that it appears in the

graph. For a given vertex u, the probability that u is matched in M is exactly

Qu(G) :=
∑
v

q∗uv.

This of course is at most 1. We will compare the performance of our algorithm against

the expected size of a maximum matching (denoted by OPT) for a graph drawn from

D. Thus we have,

E[|OPT|] = E [|M(H)|] =
1

2

∑
u

Qu(G) =
∑
(u,v)

q∗uv, (31)

where the last sum is taken over unordered pairs. Finally define an unordered pair

(u, v) to be a candidate edge if both u and v are still unmatched and (u, v) is yet to

be scanned. At any stage let F (G) ⊆ V × V be the set of candidate edges, and for

any u ∈ V , let N(u,G) ⊆ F (G) denote the candidate edges incident on u. A vertex

u is defined to be alive if |N(u,G)| > 0.

4.2.3 Sampling Technique

In this section we will describe a sampling technique that will be an important com-

ponent of our algorithm. A curious reader may directly read Corollary 43 and proceed

to Section 4.3 to see an application of this technique. Frequently over the course of

our algorithm we will encounter the following framework: We have a vertex u, whose

incident edges have known probabilities puv of being connected to u. We would like

to choose an ordering on the incident edges to probe accordingly so that each edge

is included(scanned and found to be present) with some target probability of at least

ruv (which may depend on v).

Clearly there are some restrictions on the ruv in order for this to be feasible; for

example the situation is clearly hopeless if ruv > puv. More generally, for each subset

S of the neighborhood of u, it must be the case that the sum of the target probabilities

of vertices in S (the desired probability of choosing some member of S) is at most
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the probability that at least one vertex of S is adjacent to u. As it turns out, these

are the only necessary restrictions.

Lemma 41. Let A1, A2, . . . Ak be independent events having probabilities p1, . . . , pk.

Let r1, . . . , rk be fixed non-negative constants such that for every S ⊆ {1, . . . , k} we

have ∑
i∈S

ri ≤ 1−
∏
i∈S

(1− pi). (32)

Then there is a probability distribution over permutations π of {1, 2, . . . , k} such that

for each i, we have

P(Ai is the earliest occurring event in π) ≥ ri . (33)

Proof. By the Theorem of the Alternative from Linear Duality [18], it suffices to show

that the following system of n! + 1 inequalities in n+ 1 variables {x1, . . . , xn, y} does

not have a non-negative solution:

y −
∑
k

xkrk < 0 (34)

∀π ∈ Sn, y −
∑
k

xkpk
∏
j<k
inπ

(1− pj) ≥ 0 (35)

Assume such a solution exists. Without loss of generality we may assume x1 ≥ x2 ≥

· · · ≥ xn ≥ 0. Combining the first inequality with the inequality from the identity

permutation, we have
n∑
i=1

xipi

i−1∏
j=1

(1− pj) <
n∑
k=1

xkrk. (36)

On the other hand, we have for each k by applying equation (32) to S = {1, 2, . . . k}

that
k∑
i=1

ri ≤ 1−
k∏
j=1

(1− pj).

By weighting each of these equations by (xi− xi+1) and treating xn+1 = 0 (note that

each of these weights are nonnegative by assumption) and adding, we obtain

n∑
k=1

xkrk ≤
n∑
k=1

(xk − xk+1)[1−
k∏
j=1

(1− pj)]. (37)
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It can be checked directly that both the left side of equation (36) and the right hand

side of equation (37) are equal to

∑
S⊆{1,2,...n}

S 6=∅

(−1)|S|−1xmax(S)

∏
i∈S

pi,

implying that the two equations contradict each other. Therefore no such solution

to the dual system can exist, so the original system must have been feasible.

In theory, it is possible to find the desired distribution π using linear programming.

However, it turns out there is a faster constructive combinatorial algorithm:

Lemma 42. A probability distribution π on permutations solving the program (33)

can be constructively found in time O(n2).

We defer the proof of this lemma and a description of the relevant algorithm to

Section 4.6. The following corollary follows immediately from Lemma 42.

Corollary 43. Given a graph G(V,E) and u ∈ V , such that q∗e/pe < α < 1 for every

e ∈ N(u,G), there exists a randomized algorithm for scanning the edges in N(u,G)

in such a way that the probability of including any edge e ∈ N(u,G) in the matching

is at least δ(u,G)q∗e , where

δ(u,G) =
1− exp(−

∑
v∈N(u,G) q

∗
uv/α)∑

v∈N(u,G) q
∗
uv

.

Proof. Note that for any u ∈ V , and S ⊆ N(u,G), 1 −
∏

v∈S(1 − puv) ≥
∑

v∈S q
∗
uv,

since the right side represents the probability q is matched to S in our chosen maximal

matching and the left side the probability that there is at least one edge connecting

q to S. Thus (p, q∗) satisfy the condition for Lemma 41. However, we can do better.

For any given S, if we scale each qe by
(

1 −
∏

v∈S(1 − puv)
)
/
∑

v∈S q
∗
uv, the above

condition still remains satisfied for that S. Since q∗e/pe < α we have

1−
∏

v∈S(1− puv)∑
v∈S q

∗
uv

≥
1− exp(−

∑
v∈S puv)∑

v∈S q
∗
uv

≥
1− exp(−

∑
v∈S q

∗
uv/α)∑

v∈S q
∗
uv

(38a)
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≥
1− exp(−

∑
v∈N(u,G) q

∗
uv/α)∑

v∈N(u,G) q
∗
uv

= δ(u,G) , (38b)

and equation (38b) follows since 1 − exp(−
∑

v∈S q
∗
uv/α)/

∑
v∈S q

∗
uv is a decreasing

function in
∑

v∈S q
∗
uv, thus achieving its minimum value at S = N(u,G). Therefore

we can replace our q∗ by δ(u,G)q∗ and still have the conditions of Lemma 41 hold.

4.3 Matching Algorithm on Unweighted Erdős-Rényi graphs

Our algorithm can be divided into two stages. The first stage involves several itera-

tions each consisting of two steps - Estimation and Pruning. The parameters α and

C will be determined in Section 4.4.

• Step 1 (Estimation): Generate samples H1, H2, . . . HC of the Erdős-Rényi

graph by sampling from D. For each sample, generate the corresponding max-

imum matching M(Hj). For every prospective edge (u, v), let quv be the pro-

portion of samples in which the edge (u, v) is contained in M(Hj).

• Step 2 (Pruning): Let (u, v) be an edge having maximum (finite) ratio

quv/puv. If this ratio is less than α, end Stage 1. Otherwise, scan (u, v). If

(u, v) is present, add it to the partial matching; remove u and v from V , and

return to Step 1; otherwise set puv to 0 and return to Step 1.

We recompute quv every time we scan an edge. Stage 1 ends when the maximum

(finite) value of qe/pe falls below α. Note that at this point we stop recomputing q,

and these values of q will remain the same for each pair of vertices for the remainder

of the algorithm. We now describe the second stage of the algorithm.

The second stage also has several iterations each consisting of two steps. At the

start of this stage define X = V .

• Step 1 (Random Bipartition): Randomly partition X into two equal sized

sets L and R and let B be the bipartite graph induced by L and R.
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• Step 2 (Sample and Match): Iterate through the vertices in L in an arbitrary

order, and for each vertex u ∈ L sample a neighbor in N(u,B) by choosing a

vertex in R using the sampling technique described in Corollary 431. At the

end redefine X to be the set of alive vertices in R and discard the unmatched

vertices in L. Recall that a vertex was defined to be alive if it is still unmatched

and it has at least one candidate edge incident on it.

The algorithm terminates when X becomes empty.

4.4 Analysis of the Sampling based Algorithm

In this section we will analyze the competitive ratio for the algorithm described earlier.

We begin by analyzing Stage 1 of the algorithm. For each iteration in Stage 1, define

the residual graph at the start of the ith iteration to be Gi starting with G1 = G. We

denote by q∗e,i the actual probability that e is contained in the maximal matching on

Gi and qe,i as our estimate calculated in Step 1. We define

εe := max
i
|qe,i − q∗e,i| .

Let the total number of iterations in this stage be k and let G′ = Gk. Let ALG1 be

the set of edges that are matched in Stage 1 and let OPT (Gi) be the optimal solution

in the residual graph at the start of the ith iteration. We have the following lemma.

Lemma 44.

E [|OPT | − |OPT (G′)|] ≤ (2− α)E[|ALG1|] +
∑
e

εe .

Proof. For i ∈ [k], let Gain(i) be 1 if the edge scanned in the ith iteration is

present, and 0 otherwise. We will first show that E [|OPT (Gi)| − |OPT (Gi+1)|] ≤

(2− α)E[Gain(i)]. Three cases may arise during the ith iteration.

1The algorithm described in Corollary 43 requires the exact estimates for q∗e . However we will
show in our analysis that for large enough samples C, qe defined above is a good estimate of q∗e .
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• Case 1: The edge scanned in the ith iteration is not present. Then OPT (Gi) =

OPT (Gi+1) and Gain(i) = 0 thus, |OPT (Gi)| − |OPT (Gi+1)| = Gain(i) = 0.

• Case 2.1: The edge scanned in the ith iteration is present but does not belong

to OPT (Gi+1). This happens with probability pe − q∗e,i. Then |OPT (Gi)| −

|OPT (Gi+1)| = 2 and Gain(i) = 1.

• Case 2.2: The edge scanned in the ith iteration is present and belongs to

OPT (Gi). This happens with probability q∗e,i. Then |OPT (Gi)|−|OPT (Gi+1)| =

1 and Gain(i) = 1.

Summing over all three cases, we see that

E[|OPT (Gi)| − |OPT (Gi+1)|] = 2(pe − q∗e,i) + q∗e,i ≤ pe(2− α) + εe ,

while the expected gain from scanning the edge is simply pe. The result follows from

adding over all scanned edges, and noting for the additive factor that each edge is

scanned at most once in the first stage (and indeed in the whole algorithm).

Analysis of Stage 2: Let us begin by analyzing the first iteration of the second

stage of the algorithm. The analysis for the subsequent iterations would follow along

similar lines. Let G′ be the residual graph at the start of the second stage, where

qe/pe < α for every candidate edge e, and 1/2
∑

uQu(G
′) = E[|OPT (G′)|]. The

following lemma bounds the performance of the first iteration of Stage 2 on G′.

Lemma 45. The expected number of edges that are matched in the first iteration of

Stage 2 of the algorithm is at least
(
1− 1

e

) (
1− e−1/2α

)
|OPT (G′)| −

∑
e εe.

Proof. Let us define an indicator random variable Yu for every u ∈ V that is 1 if

u ∈ R and 0 otherwise and Pr[Yu = 1] = Pr[Yu = 0] = 1/2. Thus E[Yu] = 1/2. We

will use u ∼ v to denote that u and v get matched. The expected number of vertices

in R that will get matched in the first iteration is given by

E [matched vertices in R] (39a)
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= EY

[∑
u

Yu

{
1−

∏
v 6=u

(1− Pr [u ∼ v, v ∈ L | u ∈ R])

}]
(39b)

= EY

[∑
u

Yu

{
1−

∏
v 6=u

(1− Pr [u ∼ v | u ∈ R, v ∈ L] (1− Yv))

}]
(39c)

≥ EY

[∑
u

Yu

{
1−

∏
v 6=u

(1− quvδ(v,B | u ∈ R, v ∈ L)(1− Yv))

}]
(39d)

≥ EY

∑
u

Yu

1−
∏
v 6=u

1− quv(1− Yv)

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwYw/α)∑
qvwYw + quv





(39e)

Equation (39c) follows from conditional probability, and equations (39d) and (39e)

follow from Corollary 43, concerning our sampling technique. Since each of the ran-

dom variables Yu are chosen independently, (39e) can be simplified as below.

E [matched vertices in R] (40a)

≥
∑
u

EY [Yu]EY

1−
∏
v 6=u

1− quv(1− Yv)

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwYw/α)∑
w 6=u6=v

qvwYw + quv




(40b)

=
1

2

∑
u

EY

1−
∏
v 6=u

1− quv(1− Yv)

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwYw/α)∑
w 6=u6=v

qvwYw + quv




(40c)

In the following, (41b) can be derived from (40c) by using the identity 1−x < e−x,

and (41c) is obtained by noting that (1− 1/e)x < 1− e−x for x ∈ [0, 1].

E [matched vertices in R] (41a)
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≥ 1

2

∑
u

EY

1− exp

−∑
v 6=u

quv(1− Yv)

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwYw/α)∑
w 6=u6=v

qvwYw + quv




(41b)

≥ 1

2

∑
u

EY

(1− 1

e

)∑
v 6=u

quv(1− Yv)

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwYw/α)∑
w 6=u6=v

qvwYw + quv



(41c)

=
1

2

(
1− 1

e

)∑
u

EY

∑
v 6=u

quv(1− Yv)

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwYw/α)∑
w 6=u6=v

qvwYw + quv


(41d)

Next observe that both 1− Yv and

1−(1−quv/α)

∏
w 6=u6=v

(1− qvwYw/α)∑
w 6=u6=v

qvwYw + quv
are decreasing

convex functions in Y , thus their product is also a decreasing convex function. Our

next set of simplifications are as follows. Since for any multi-variate convex function

f , E[f(y)] ≥ f(E[y]) we can lower bound equation (41d) by (42b) below. Again (42c)

is minimized when each of the qvw’s are equal. Substituting this and simplifying

we get (42e). Finally 1−e−Qv(G′)/α

Qv(G′)
is a decreasing function in Qv(G

′) that attains its

minimum value when Qv(G
′) = 1. Putting this value in (42f) gives (42g). Further

simplification yields the desired result.

E [matched vertices in R] (42a)

≥ 1

2

(
1− 1

e

)∑
u

∑
v 6=u

quv(1− E[Yv])

1− (1− quv/α)
∏

w 6=u6=v

(1− qvwE[Yw]/α)∑
w 6=u6=v

qvwE[Yw] + quv

(42b)

84



≥ 1

2

(
1− 1

e

)∑
u

∑
v 6=u

quv
2

1− (1− quv/α)
∏

w 6=u6=v

(1− qvw/2α)∑
w 6=u6=v

qvw/2 + quv
(42c)

≈ 1

2

(
1− 1

e

)∑
u

∑
v 6=u

quv
2

1−
∏
w 6=v

(1− qvw/2α)∑
w 6=v

qvw/2
(42d)

≥ 1

2

(
1− 1

e

)∑
u

∑
v 6=u

quv

1− exp

(
−
∑
w 6=v

qvw/2α

)
∑
w 6=v

qvw/2
(42e)

≥ 1

2

(
1− 1

e

)∑
u

∑
v 6=u

quv
1− exp (−Qv(G

′)/2α)

Qv(G′)
(42f)

≥ 1

2

(
1− 1

e

)∑
u

∑
v 6=u

quv
(
1− e−1/2α

)
(42g)

≥ 1

2

(
1− 1

e

)(
1− e−1/2α

)∑
u

∑
v 6=u

quv (42h)

≥ 1

2

(
1− 1

e

)(
1− e−1/2α

)∑
u

Qu(G
′) (42i)

≥
(

1− 1

e

)(
1− e−1/2α

)
|OPT (G′)| −

∑
e

εe . (42j)

Let φ = (1− 1/e)
(
1− e−1/2α

)
. Let ALG2 be the set of edges that are matched

in the second stage of the algorithm. The following lemma lower bounds E[|ALG2|].

Lemma 46.

E[|ALG2|] ≥ E[|OPT (G′)|]

[
φ

1− (1−φ
2

)2

]
−
∑
e

εe .

Proof. Observe that not all candidate edges in G′ have been considered during the

first iteration of Stage 2. In particular, candidate edges with both end points in R

are yet to be considered. For analyzing the subsequent iterations in Stage 2, we will

consider only these candidate edges. Clearly this only lower bounds the performance

of the algorithm.
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Analyzing equation (42i), we notice that we have in fact proved something stronger

in Lemma 45, i.e., we have shown that every vertex v ∈ R is chosen with probability

at least φ Qv(G
′). By slightly altering the algorithm it is easy to ensure that for every

v ∈ R, it is chosen with exactly this probability. Thus any vertex in R survives the

first iteration with probability 1−φQv(G
′) > 1−φ. Since the partitions L and R are

chosen at random, the probability that a vertex is in R and unmatched after the first

iteration is at least µ = (1− φ)/2. Continuing this argument further, the probability

that an ordered pair (u, v) is a candidate edge at the start of the ith iteration is the

probability that both u and v have always been in R in all previous iterations, and

are still unmatched; this probability is at least µ2(i−1).

Let G′i be the residual graph at the start of the ith iteration in Stage 2, with

G′1 = G′. By the above observation and using linearity of expectation, the expected

sum of qe’s on candidate edges in G′i is lower bounded by µ2i−2
∑

e∈F (G′) qe. Appealing

to a similar analysis as in (the proof of) Lemma 45, the expected size of the match-

ing returned by the ith iteration in the second stage is at least φµ2i−2
∑

e∈F (G′) qe.

Summing over all iterations in Stage 2 we have,

E[|ALG2|] ≥
∑
i

φµ2i−2
∑

e∈F (G′)

qe ≥ φ
∑

e∈F (G′)

qe
∑
i=1

µ2i−2 (43a)

= φ
∑

e∈F (G′)

qe
1

1− µ2
=

1

2

∑
u∈G′

Qu(G
′)

φ

1− µ2
(43b)

= |OPT (G′)| φ

1− µ2
= |OPT (G′)| φ

1−
(

1−φ
2

)2 . (43c)

Now all that is left is to balance the factors for both the stages and set the optimal

value of α. In the subsequent theorem we find the optimal value of α.

Theorem 47. The above algorithm attains a factor of at least 0.573 − 2γ where∑
e εe ≤ γE(|OPT |).
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Proof. By Lemma 44, E[|OPT | − |OPT (G′)|] ≤ 2/(1 + α)E[|ALG1|] +
∑
εe. Also

by Lemma 46, E[|OPT (G′)|] ≤ 1−( 1−φ
2

)2

φ
E[|ALG2|] +

∑
εe. Combining these two and

substituting α = 0.255 and φ = (1− 1/e)
(
1− e−1/2α

)
= 0.543 we have,

E[|OPT |] ≤ (2− α)E[|ALG1|] +
1− (1−φ

2
)2

φ
E[|ALG2|] + 2

∑
e

εe (44a)

= 1.74(E[|ALG1|] + E[|ALG2|]) + 2
∑
e

εe (44b)

= 1.74E[|ALG|] + 2
∑
e

εe (44c)

Thus E[|ALG|] ≥ 0.573 E[|OPT |].

4.4.1 Running Time Analysis

In this section we will analyze the running time of our algorithm and determine the

optimal value of parameter C. We will use n to denote the number of vertices and m

to denote the number of edges that have a non-zero probability of being present.

By Lemma 42 it takes O(n2) time to probe the neighborhood of a given vertex,

thus the second stage can be implemented in O(n3) time. Analysis of the first stage is

slightly involved, since in this stage we wish to approximate q∗e,i by repeated sampling.

The following lemma sets the optimal value of C for which the total error caused by

approximating q∗e,i by sampling is small.

Lemma 48. For C = n log6(n) samples in Step 1,
∑

e εe is o(n) with high probability.

Proof. We will give two separate bounds on the size of εe. One will hold in the case

where q∗e,i is not too small, the other for small q∗e,i.

Bound 1: For any given sample, we can think of the event e ∈M(Hj) as a Bernoulli

trial with success probability q∗e,i. By Hoeffding’s bound ([29], see Theorem 1.8 in [65]

for the specific formulation used), it follows that for any given edge and sample we

have

P(|qe,i − q∗e,i| ≥ βq∗e,i) ≤ exp(−Cq∗e,iζ2/4) .
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This bound tells us that for any edge such that Cq∗e,i tends to infinity sufficiently

quickly, the maximum error coming from such an edge will likely be a tiny fraction of

q∗e,i. However, it is possible that some qe could be exponentially small, so we cannot

just take C large enough so that all edges fall in this class. We turn to the second

bound for the remaining edges.

Bound 2: In this case we focus solely on the upper tail. We know from the union

bound that

P(qe,i ≥ q∗e,i + κ) ≤
(

C

Cq∗e,i + κC

)
(q∗e,i)

Cq∗e,i+κC

≤
(

eq∗e,i
q∗e,i + κ

)Cq∗e,i+κC
,

where the first inequality bounds the probability that the edge participates in at least

C(q∗e,i+κ) matchings by the expected number of sets of C(q∗e,i+κ) matchings in which

the edge participates.

Set q0 = log5 n/C where we will use bound 1 for q∗e,i > q0 and bound 2 otherwise.

For q∗e,i > q0 using bound 1, for an arbitrarily small constant ζ we have,

P(|qe,i − q∗e,i| ≥ ζq∗e,i) ≤ exp(− log5 nζ2/4) = o(1/n4) .

Taking the union bound over all edges and trials and adding, we see

P(
∑
q∗e,i≥q0

εe ≤ ζ
∑
e

q∗e) = 1− o(1) .

Thus the total error accrued across all iterations is small with high probability.

Now let us set κ = 2q0. Applying the upper tail bound 2 above, we have for any

q∗e,i < q0 that

P(qe,i ≥ q∗e,i + κ) ≤
(

eq∗e,i
q∗e,i + κ

)Cq∗e,i+κC
≤ (0.92)2 log5 n.
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The corresponding lower bound qe,i ≥ q∗e,i − κ follows trivially from the non-

negativity of qe.

Taking the union bound over all samplings and all edges, we have that with

high probability the total contribution to the error from this case is at most n2κ =

n2 log5 n/C. By Theorem 47, it suffices to make this a small fraction of the maximum

expected matching. Setting C = n log6 n ensures that the total error is o(n) (which

suffices in the case where the matching is a constant fraction of all vertices, while

setting C = n2 log6 n insures the error is o(1) (which works in general) 2

A naive implementation of the algorithm presented in section 4.3 would require

recalculating qe after every iteration in stage 1. This can be quite time consuming

since even the fastest implementation [48] of the maximum matching algorithm takes

O(m
√
n) time. In the following lemma, we explain how to circumvent this bottleneck.

Finally, using Lemma 48 and 49 our algorithm can be implemented in Õ(n4) time.

Lemma 49. Stage 1 of the algorithm can be implemented in Õ(n2C) time.

Proof. Observe that we are not required to find the maximum matching in Step 1.

We can instead work with a matching that is 1− ζ (ζ is an arbitrary small constant)

fraction of maximum matching and lose a small multiplicative factor in our analysis.

This can be done in O(m logm) time using a result by Duan and Pettie et al. [15].

Also note that we can reuse the above matching across multiple iterations in Stage

1. This is because the size of the maximum matching changes by at most 1 across

consecutive iterations.

Concretely, we will modify the algorithm to calculate the approximate maximum

matching using the algorithm in [15] in O(m logm) time. Let Λ be the estimate of

the size of the maximum matching in the residual graph at any point during Stage 1.

2If the expected maximum matching is itself o(1) in size, then it follows from the independence
of the edges that any edge which is scanned and found to be present is with high probability the
only edge in the graph! So any algorithm trivially finds the maximal matching in such a graph.
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We can probe up to Λζ edges that have qe,i/pe > α before recalculating qe,i. This will

induce only a small constant factor (function of ζ) error in our analysis. Hence we

would have at most O(log(m)) iterations in Stage 1 where we would be required to

recompute qe,i. Therefore we can implement Stage 1 in Õ(mC) = Õ(n2C) time.

4.5 Upper Bounds

In this section we will show an upper bound for any algorithm for SQCP by proving

the following theorem.

Theorem 50. No randomized algorithm can attain a competitive ratio better than

0.896 for the SQCP.

Proof. Given any graph along with the probability pe for every edge the optimal

algorithm can be found by writing a stochastic dynamic program. The states of the

program are all possible subgraphs of the given graph and for each state we record

the solution returned by the optimal algorithm. It is easy to see that such a dynamic

program would have exponentially many states and would be quite infeasible to solve

for the general problem. However it can be used to find the optimal algorithm for

small examples.

We considered the complete graph on 4 vertices where each edge is present with

probability p = 0.64. In Lemma 51 we evaluate the performance of the optimal online

algorithm for this graph. Then in Lemma 52 we calculate the expected size of the

maximum matching in this graph.

Lemma 51. The expected size of the matching found by the optimal online algorithm

for SQCP for the Erdős-Rényi graph G(4, 0.64) is 1.607.

Proof. Let us consider the complete graph K4 as shown in Figure 6(a). Without loss

of generality we can assume that the optimal algorithm starts by scanning edge ac.

If this edge is present, which happens with probability p = 0.64, then we are just left
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Figure 6: Intermediate Graphs

with one candidate edge. We can scan this edge next. Thus for this case the optimal

algorithm return a matching of expected size p+ p2.

Now suppose that ac is not present, then we are left with the graph shown in

Figure 6(b). Clearly the optimal algorithm should not probe edge bd since it can

potentially lead to a smaller matching. Without loss of generality we may assume

that the next edge to be scanned is ab. If this edge is present we are again left with

one candidate edge cd that is to be scanned. Hence the expected size of the matching

returned is (1− p)p(1 + p).

Otherwise we are left with the graph shown in Figure 6(c). One can check that

the optimal algorithm must next scan bc or ad. Suppose it scans bc, and finds it to be

present then we are again down to a single candidate ad which can be scanned next.

In this the expected matching returned is of size (1− p)2p(1 + p).

If bc is absent then the residual graph is shown in Figure 6(d). Clearly for the

graph in Figure 6(d) the expected maximum matching is of size 1 − (1 − p)3. The

expected size of the matching returned in this case is therefore (1− p)3(1− (1− p)3).

Computing the expected value across all cases and substituting p = 0.64 we find that

the expected size of the matching returned by the optimal algorithm is 1.607.

Lemma 52. The expected size of the maximum matching in the Erdős-Rényi graph

G(4, 0.64) is 1.792

Proof. The given graph will not have any edge with probability (1− p)6. It will have
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Figure 7: Graphs with unit size matching

a matching of size 1 for the graphs shown in figure 7 and their symmetric rotations.

This happens with probability 4p3(1−p)3 +4p3(1−p)3 +6p(1−p)5 +12p2(1−p)4.

In all other cases the graph will have a matching of size 2 i.e. with probability

1− (1− p)6 − 8p3(1− p)3 − 6p(1− p)5 − 12p2(1− p)4. Thus the expected size of the

maximum matching is 8p3(1−p)3 +6p(1−p)5 +12p2(1−p)4 +2(1− (1−p)6−8p3(1−

p)3 − 6p(1− p)5 − 12p2(1− p)4). Substituting p = 0.64 this is evaluates to 1.792.

Combining the results of Lemma 51 and 52 we conclude that no online algorithm

can achieve a factor better than 1.607/1.792 = 0.896 for the SQCP.

4.6 Combinatorial Algorithm for the Sampling Technique

In this section we will give a complete proof of Lemma 42 and also present a combi-

natorial algorithm for the sampling technique presented in Section 4.2.3.

By Lemma 41, we know that our constraint set is equivalent to

∑
i∈S

ri +
∏
i∈S

(1− pi) ≤ 1 (45)

holding for every S. Suppose S∗ is a non-empty set for which the left hand side of

equation (45) is maximized, and there is some j1 ∈ S and j2 /∈ S. We would then

have

∑
i∈S∗

ri +
∏
i∈S∗

(1− pi) ≥
∑

i∈S∗\j1

ri +
∏

i∈S∗\j1

(1− pi)∑
i∈S∗

ri +
∏
i∈S∗

(1− pi) ≥
∑

i∈S∗∪{j2}

ri +
∏

i∈S∗∪{j2}

(1− pi)
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Rearranging both of the above inequalities yields

∏
i∈S∗

(1− pi) ≤
rj1

1
1−pj1

− 1∏
i∈S∗

(1− pi) ≥
rj2
pj2
.

Comparing these two inequalities, we have

rj2
pj2

≤ rj1
1

1−pj1
− 1

=
rj1(1− pj1)

pj1

≤ rj1
pj1
.

Assume without loss of generality that the events are sorted in decreasing order by

the ratio r/p. By the above, we have proven

Claim 14. The left hand side of equation (45) is always maximized by S = {1, 2, . . . , k}

for some k.

We also note the following:

Claim 15. If equation (45) is satisfied for all S and tight for some S0, then there is

a solution to the program where any permutation having nonzero weight considers all

variables in S0 before any variable outside S0.

This is simply because the left hand side of equation (45) measures the sum of

the probability that an event in S0 is first and the probability that no event in S0

occurs. If the sum is 1, then an event in S0 must always be first if one is present, and

that would not be possible if some other event could appear before it in π. We now

present our algorithm.

Step 0: (pre-processing:) Compute the largest y for which the weights (yri, pi) still

satisfy equation (45). If y < 1, the constraints are infeasible. If y > 1, replace all ri
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by yri, at which point equation (45) is tight for at least one S. This preprocessing

step is only performed once.

Step 1: (slack removal) If there is no k < n for which equation (45) is tight for

S = {1, 2, . . . k}, compute the largest z ≤ 1 such that the program remains feasible

when for all j we replace rj by

r′j :=
rj − zpj

∏
i>j(1− pi)

1− z
.

With probability z, consider the edges in decreasing order of index. Otherwise, con-

sider edges according to a distribution found by solving the problem with rj replaced

by r′j. If z = 1, we are finished.

Step 2: (divide-and-conquer) Find a k < n for which equation (45) is tight for

S = {1, 2, . . . , k}. Solve, without pre-processing, the problems on S (with the original

target distribution) and SC (replacing the targets in SC by r′j := rj/
∏k

i=1(1 − pi)).

Form the distribution by independently sampling from the distributions on S and SC

found by solving the subproblems, and consider all variables in S before the variables

in SC .

For step 0, note that multiplication by y does not change the relative ordering of

ri/pi. This implies that the y in question is the smallest y for which one of the sets

{1, 2, . . . , k} makes equation (45) tight. We can examine all such sets and find the y

in question in linear time by updating
∑
ri and

∏
(1 − pi) each time k increases to

k + 1.

For step 1, note that

r′i
pi
−
r′i+1

pi+1

=
ri − zpi

∏
j>i(1− pj)
pi

−
ri − zpi+1

∏
j>i+1(1− pj)

pi+1

=

(
ri
pi
− ri+1

pi+1

)
+ zpi

∏
j>i+1

(1− pj)

≥ 0.

In other words, replacing rj by r′j again never alters the relative ordering of the ratios.

So again we only need consider n sets to determine z, and can do this in linear time.
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The r′j were chosen such that achieving a target of r′j with probability (1 − z)

corresponds to achieving a target of rj in the original problem, so it is enough to

solve this new problem. The only claim that remains to be checked is that we can

actually find the desired k in Step 2. Since we know by our first claim that the left

hand side of equation (45) is always maximized for some S = {1, 2, . . . , k}, it suffices

to show that we can take k < n.

But for S = {1, . . . , n}, the left hand side of equation (45) is

n∑
j=1

r′j +
n∏
j=1

(1− pj) =

∑n
j=1 rj − z

∑n
j=1 pj

∏
i>j(1− pi)

1− z
+

n∏
j=1

(1− pj)

=

∑n
j=1 rj − z

(
1−

∏n
j=1(1− pj)

)
1− z

+
n∏
j=1

(1− pj)

=

∑n
j=1 rj +

∏n
j=1(1− pj)− z

1− z
≤ 1,

where the last inequality comes from our assumption that equation (45) holds for

S = {1, 2, . . . , n}. Intuitively, this corresponds to how imposing constraints on the

order in which the events are placed (increasing z) has no effect on the probability

at least one event occurs (the left hand side of equation (45) in the case where S is

everything). So at the maximal z (assuming z < 1), some other constraint must also

be tight, which gives us our k.

Since step 1 takes at most linear time, it follows that the whole algorithm takes

at most quadratic time.

4.7 Conclusion and Open Problems

In this chapter we discussed the stochastic relaxation of the query commit model

presented earlier and gave a 0.575 factor algorithm based on a novel sampling tech-

nique (refer Section 4.2.3). We feel that apart from the SQCP this technique might

be useful in several other realms of approximation algorithms. Finally we also show a
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0.896 upper bound on the performance of any randomized algorithm for the stochastic

query commit problem. Closing this gap is an interesting open problem.
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CHAPTER V

ADWORDS IN THE STOCHASTIC QUERY COMMIT

MODEL

5.1 Introduction

In this chapter we will consider a weighted generalization of the stochastic query

commit problem introduced in Chapter 4. This is motivated by the session based

online advertising. The online advertising model has three participants - (a) A search

engine (b) Advertisers who wish to display ads for search queries; and finally (c) the

users of the search engine.

Whenever the search engine receives a query from the user, it may choose to

display ads along with the search results. Typically ad allocation is done by an online

auction whereby the search engine solicits bids from the advertisers for every search

query and the advertiser with the highest bid wins the right to show his ad for the

query. In the cost-per-click model that is prevalent in the industry, the advertiser is

charged the value of his bid only when the user clicks on his ad, after which he is

redirected to the advertiser’s website. Another feature of this model is the presence of

daily budgets. The advertisers can set daily budgets to bound the maximum amount

of money that they would spend in a day.

In the traditional model each search query is treated independently of the others

even if it is issued by the same user. This may lead to unforeseen problems; for

example a user may be shown the same ad (or similar ads) multiple times during a

browsing session. Ideally the search engine should learn from the users choices during

the search session to decide the best set of ads that would maximize the likelihood of

the user clicking on an advertisement. This is difficult to implement in the current
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model where each query is treated as an atomic entity.

A holistic approach towards addressing this problem is to introduce the notion of

session based advertising where we analyze each browsing session to determine the

best series of ads that must be shown to a user. This presents a novel set of challenges

since unlike the traditional model where we only have to select one ad for every query,

we are now required to choose a set of ads for every browsing session and show them

over the course of the browsing session. Furthermore the search engine would like

to maximize the money spent by the advertisers whilst ensuring that no advertiser

spends more than his budget.

Towards this end we study the Generalized Assignment Problem (GAP) in the

query commit model. In this model we are given a bipartite graph where the vertices

on one side represent the advertisers, while the other bipartition represents the active

users. Each vertex corresponding to an advertiser has a budget while each edge

incident on it is weighted to reflect the amount he is willing to bid for a given user.

Based on past user behavior we assume (Bayesian) priors on the edges indicating the

probability that a given user would click on a chosen ad when presented with it during

a search session. Finally we assume that if a user clicks on an ad he navigates away

from the search engine and is lost forever. In this case the search engine charges the

advertiser the smaller of his remaining budget and his bid for the user (weight of the

corresponding edge). The objective for the search engine is to maximize the money

spent by the advertisers.

5.1.1 Our Results

We study the GAP in the query commit model and compare our performance against

an hypothetical adversary who knows the user preferences i.e. for every user the

adversary knows the ads that are relevant to him. We also give this adversary infinite

computational power to compute the optimal allocation using the knowledge of the
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underlying graph. We prove the following results.

(a) There exists an algorithm that attains at least 1−1/e fraction of revenue earned

by the adversary.

(b) For the case when the bids for every advertiser are much smaller than his budget

the same algorithm that gets 1−o(1) fraction of revenue earned by the adversary.

5.1.2 Related Models and Results

Connections to the Adwords Problem: The Adwords problem was first intro-

duced by Mehta et. al. in [47] where they studied an online version of this problem

where the users arrive over time and each user makes a single query. They further as-

sumed that the users arrive in a fixed adversarially chosen order and all bids are very

small with respect to the budgets. For this problem they showed a tight 1−1/e factor

deterministic algorithm. Later, Buchbinder et al. [8] gave a primal dual algorithm

for the same problem.

Understanding the adwords allocation problem in distributional models was an

posed as an open question in [43, 47]. This was addressed by Devanur and Hayes

in [14] where they studied the adwords problem in the unknown distribution model

similar to the one presented in this Chapter 2 and obtained a 1 − o(1) competitive

algorithm for this problem.

We would like to point out that in general the adwords problem with bids much

smaller than the budgets is incomparable to graph matching: It is easier in the sense

of having large budgets (hence mistakes can be rectified in the future), but harder

because of different bid values.

Connections to the GAP: The GAP has been part of operations research and

computer science folklore for several years. It was shown to be NP-hard by Lehmann

et. al in [41] where they also presented a simple 1 − 1/e factor algorithm for this

problem. This factor was later improved by Chakrabarty and Goel [10] to 0.75,
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matching the integrality gap of the natural linear programming relaxation.

The problem is also a special case of the submodular welfare maximization (SWM)

problem first studied by Wolsey in [68], where he showed that a simple greedy algo-

rithm attains a factor of 0.5. In [38] Khot et. al. showed that SWM is hard to

approximate to a factor better than 1 − 1/e and its approximability was finally set-

tled by Vondrak in [67] where he gave an optimal continuous greedy algorithm.

5.2 Preliminaries

5.2.1 Problem Statement

We are given the vertex set L∪R of a bipartite graph G. The vertices in L represent

advertisers while those in R represent active users. For each v ∈ L we are given a

budget Bv > 0. The edges in the graph are not revealed to us, but for every candidate

edge uv, we are told the probability (denoted by puv) that it is present. For every

edge uv we are also given a weight fuv denoting the advertiser’s bid.

We can scan/probe the edges in the graph to check if they are present. Whenever

an edge uv is scanned (i.e. advertiser v shows an ad to user u) one of two things

may happen - Either the edge is found to be present (the ad was relevant to the user)

or the edge is absent in the underlying graph (the user chose to ignore the ad). In

the former case we charge the advertiser v the smaller of his bid and his remaining

budget. The user u is redirected to the advertiser’s website and plays no further part

in the algorithm. In this case the ad-impression is said to be assigned to the user.

For the latter case, we simply note that the edge uv is absent; the user remains active

except that he is not shown any more ads from advertiser v.

The objective is to maximize the total money (also called revenue) that is charged

to the advertisers. We compare our performance against an adversary J who knows

the underlying graph for every instantiation of the problem. As discussed in Section

5.1.2 even with complete knowledge of the underlying graph the given problem boils
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down the GAP which is NP-hard. Thus we also give the adversary J unbounded

computational power to find the optimal ad-allocation in the underlying graph.

We say an online algorithm A attains a competitive ratio of γ, if for every problem

instance I = (G(L∪R, .), p), the expected revenue returned byA is at least γ times the

expected maximum revenue attained by the omniscient computationally unbounded

adversary J i.e. γ = min
I=(G(V,.),p)

{
E [A(I)]

E [ max. revenue found by J for G(L ∪R, p)]

}
.

5.2.2 Properties of the Optimal Solution

There are two obstacles in developing a good understanding of the optimal solution.

The first problem arises due to the stochastic nature of the input while the second

difficulty is due to the inherent hardness of the underlying optimization problem

(GAP). We tackle both these concerns by relaxing the above problem to the following

linear program.

max
∑

u∈R
∑

v∈L xuvfuv (LPAW )∑
v∈L xuvfuv ≤ 1 ∀u ∈ R∑

v∈L xuv ≤ 1−
∏

v∈S(1− puv) ∀u ∈ R, S ⊆ L∑
u∈R xuvfuv ≤ Bv ∀v ∈ L

0 ≤ xuv ≤ 1 ∀u ∈ R, v ∈ L

Here xuv represents whether user u clicked on the ad shown by advertiser v. Note

that this encompasses both the events - v’s ad was shown to u and it was also relevant

to him. Therefore xuv ≤ puv. The second set of constraints is a generalization of this

inequality to arbitrary sets of advertisers. It is easy to see that the first constraint

states that every user clicks on at most one ad in a browsing session, while the third

constraint asserts that no advertiser overshoots his budget.

Let us define x∗uv = Pr [uv is chosen by J ], where the probability is taken over

random bits in the distribution over the edges. It is easy to see that x∗ is a feasible
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solution to LPAW . Thus we have the following observation.

Observation 3. The optimal solution to LPAW is an upper bound on the expected

revenue earned by the adversary J .

5.3 Algorithm for the Adwords in the Query Commit Model

In this section we will explain our algorithm for the Adwords problem. Our algorithm

can be divided in to two stages.

Stage 1: In the first stage we solve LPAW . Since LPAW has exponentially many

constraints we need a separating oracle to find an optimal solution. In Lemma 53 we

explain how to build this separating oracle.

Lemma 53. There exists a polynomial time separating oracle for LPAW .

Proof. Given any solution x the first and third and fourth set of constraints in LPAW

are easy to check. The algorithm for testing the second set of constraints is derived

from the proof of Claim 14 in Chapter 4.

In the second set of constraints we need to verify that for every u ∈ R∑
v∈S

xuv +
∏
v∈S

(1− puv) ≤ 1 ∀S ⊆ L (46)

For the rest of the proof let us fix u ∈ R. Suppose S∗ is a non-empty set for which

the left hand side of equation (46) is maximized. Then equation (46) is violated iff∑
v∈S∗ xuv +

∏
v∈S∗(1− puv) > 1. If there is some v1 ∈ S∗ and v2 /∈ S∗ then we would

have ∑
v∈S∗

xuv +
∏
v∈S∗

(1− puv) ≥
∑

v∈S∗\v1

xuv +
∏

v∈S∗\v1

(1− puv)∑
v∈S∗

xuv +
∏
v∈S∗

(1− puv) ≥
∑

v∈S∗∪{v2}

xuv +
∏

v∈S∗∪{v2}

(1− puv)

Rearranging both of the above inequalities yields∏
v∈S∗

(1− puv) ≤
xuv1

1
1−puv1

− 1
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∏
v∈S∗

(1− puv) ≥
xuv2

puv2

Comparing these two inequalities, we have

xuv2

puv2

≤ xuv1

1
1−puv1

− 1

=
xuv1(1− puv1)

puv1

≤ xuv1

puv1

.

Thus if we sort the edges in the set {uv | v ∈ L} in decreasing order of the ratio

xuv/puv then we only need to check sets that are prefixes of this ordering to verify

equation (46). This can be easily accomplished in polynomial time.

Armed with the above separating oracle we can find an optimal solution x̄ to

LPAW and are now ready to commence the second stage of the algorithm.

Stage 2: Here we use the optimal fractional solution together with the sampling

technique described in Section 4.2.3 to decide the order in which the edges should be

scanned. Recall the sampling lemma from Section 4.2.3

Lemma 54. Let A1, A2, . . . Ak be independent events having probabilities p1, . . . , pk.

Let r1, . . . , rk be fixed non-negative constants such that for every S ⊆ {1, . . . , k} we

have ∑
i∈S

ri ≤ 1−
∏
i∈S

(1− pi). (47)

Then there is a probability distribution over permutations π of {1, 2, . . . , k} such that

for each i, we have

P(Ai is the earliest occurring event in π) ≥ ri (48)

Furthermore this distribution can be found in polynomial time.

Note that for any u ∈ L the set of variables {x̄uv | v ∈ R} satisfy the requirements

for Lemma 54. This follows from the third set of constraints in LPAW . In the second
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stage we iterate through the vertices in L and for each vertex u we use Lemma 54 to

decide the order in which to scan the edges incident on it. We stop when we have

processed all vertices in L.

5.4 Analysis of the Sampling Based Algorithm

In this section we will analyze the performance of the above algorithm. Recall that in

the first stage of the algorithm we found the optimal fractional solution x̄ to LPAW .

For every edge uv, let us associate a Bernoulli random variable Xuv that is 1 with

probability x̄uv and 0 otherwise. Also, let Av be v’s expected contribution to the

revenue. We computer Av in terms of Xuv in Lemma 55.

Lemma 55. For any vertex v ∈ L,

Av = E

[
min

{∑
u∈L

Xuvfuv , Bv

}]

Proof. By linearity of expectation Av = min
{∑

u∈L Pr [u is assigned to v] fuv , Bv

}
Since we use the technique described in Lemma 54 to scan the edges, any edge uv gets

assigned with probability at least x̄uv, therefore Av = E
[
min

{∑
u∈LXuvfuv , Bv

}]
.

Also note that v’s expected contribution the revenue in the optimal solution is

given by Jv = min
{∑

u∈R x̄uvfuv, Bv

}
. By the third set of constraints in LPAW

this is equal to
∑

u∈R x̄uvfuv. Thus we can lower bound the approximation factor

for our algorithm by γ ≥ min
v∈L

{
Av
Jv

}
= min

v∈L

{
E
[
min

{∑
u∈LXuvfuv , Bv

}]∑
u∈R x̄uvfuv

}
. Define

another Bernoulli random varaible Yuv that is 1 with probability x̄uvfuv/Bv. We make

the following observation based on the above definitions.

Observation 4. For every v ∈ L, E
[∑

u∈RXuvfuv
]

= E
[∑

u∈RBvYuv
]

Lemma 56 is a consequence of Observation 4 stated above.

Lemma 56. For every v ∈ L, E
[
min

{∑
u∈RXuvfuv, Bv

}]
≥ E

[
min

{∑
u∈RBvYuv, Bv

}]
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Proof. The lemma follows from the fact that both random variables Yuv andXuvfuv/Bv

have the same expectation but Yuv happens with smaller probability.

Next, in Lemma 57 we use Lemma 56 to show that γ is at least 1− 1/e. Then in

Lemma 58 we prove that γ > 1− o(1) under the assumption that bids (fuv) are much

smaller than the budgets (Bv).

Lemma 57. γ ≥ 1− 1/e

Proof.

γ ≥ min
v∈L

{
E
[
min

{∑
u∈R Yuv, 1

}]
Bv∑

u∈R x̄uvfuv

}
(49)

≥ min
v∈L

{(
1−

∏
u∈R(1− Yuv)

)
Bv∑

u∈R x̄uvfuv

}
(50)

≥ min
v∈L

{(
1− exp(−

∑
u∈R Yuv)

)
Bv∑

u∈R x̄uvfuv

}
(51)

Here, equation (49) follows from Lemma 56. Now two cases may arise.

Case 1:
∑

v∈L Yuv ≤ 1

Using the identity 1− e−z ≥ z(1− 1/e) for z ∈ [0, 1] in equation (51) ,

γ ≥ min
v∈L

{
(1− 1/e)

∑
u∈RBvYuv∑

u∈R x̄uvfuv

}
= min

v∈L

{
(1− 1/e)

∑
u∈RXuvfuv∑

u∈R x̄uvfuv

}
= 1− 1/e

Case 2:
∑

v∈L Yuv ≥ 1

From equation (51) ,

γ ≥ min
v∈L

{
(1− 1/e)Bv∑

u∈R x̄uvfuv

}
≥ 1− 1/e
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Lemma 58. If every fuv is much smaller than Bv then, γ ≥ 1− o(1)

Proof. Recall that for any v ∈ L, E
[∑

u∈R YuvBv

]
=
∑

u∈R x̄uvfuv ≤ Bv. Thus

E
[∑

u∈R Yuv
]
≤ 1. Since each Yuv is much smaller than 1, by Chernoff bounds,

the expected value of
∑

u∈R Yuv is tightly concentrated around its mean. Therefore,

E
[
min

{∑
u∈R Yuv, 1

}]
> 1− o(1). Hence from equation (49)

γ ≥ min
v∈L

{
(1− o(1))Bv∑

u∈R x̄uvfuv

}
≥ 1− o(1)

The results from Lemmas 57 and 58 are summarized in the following theorem.

Theorem 59. The algorithm described in Section 5.3 attains at least 1−1/e fraction

of the optimal revenue. For the case when the bids for every advertiser are much

smaller than his budget the same algorithm that gets 1 − o(1) fraction of optimal

revenue.

5.5 Conclusion and Open Problems

In this chapter we studied the adwords problem in the stochastic query commit model

and gave an algorithm that attains a factor of 1 − 1/e. We also showed that the

performance of the same algorithm improves significantly if the bids are much smaller

than the budget.

A major drawback of the model considered in this chapter is that it assumes that

the set of users is fixed/static. In reality users may arrive and depart throughout the

day. Understanding the online version of the session based advertising model studied

here remains an interesting avenue of future research.
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CHAPTER VI

ALLOCATION PROBLEMS WITH ECONOMIES OF

SCALE

6.1 Introduction

In the previous chapters we considered several allocation problems with linear objec-

tive functions. However linear functions do not always model the complex dependen-

cies that exist in the real world. Motivated by these concerns we will consider a more

general class of valuation functions called submodular functions. Another feature

that arises in practice is the presence of multiple agents, where each agent has her

own cost function. For linear cost functions this does not present any added difficulty

but this is not the case for general cost functions. In this chapter we will study the

limits of approximability two fundamental allocation problems with multiple agents

and non-linear cost functions.

6.1.1 Problem Statement

We consider the situation where there are multiple agents who wish to collectively

perform a certain task, such as building a large combinatorial structure at the mini-

mum possible total cost. Formally, we are given a set of elements X and a collection

C ⊆ 2X . We are also given m agents, where each agent i specifies a cost function

fi : 2X → R+. The goal is to find a set S ∈ C and a partition S1, ..., Sm of S such that∑
i fi(Si) is minimized. We will consider the following general classes of functions to

model the non-linearity of the agents’ costs.

Submodular Cost Functions: Submodular functions form a rich class and capture

natural properties of economies of scale and the law of diminishing returns. A function
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f : 2X → R+ is said to be submodular iff for any two sets S and T ⊆X, f(S)+f(T ) ≥

f(S∪T )+f(S∩T ). Function f is said to be monotone if f(S) ≤ f(T ) for any S ⊆ T ,

and normalized if f(∅) = 0. Note that linear functions, i.e. functions of the form

f(S) =
∑

i∈S ai, are a special and classically studied sub case of submodular functions,

Since a submodular function is defined over an exponentially large domain, we will

work with the value oracle model in which an oracle will return the value of f(S),

when queried with the set S ⊆ X.

Discounted Cost Functions: Unfortunately, many of the assignment problems

that we study turn out to be extremely hard under submodular functions [23, 27,

30, 63]. Thus, from a practical standpoint, the applicability of these results is not

well-founded as the class of submodular functions might too general. Moreover, the

class of submodular functions is defined over an exponentially large domain and thus

requires exponential time to write down the function explicitly which may not be the

case in real-world applications.

Thus, we wish to explore functions that lie between the additive functions and

the general submodular functions, and that are also succinctly representable. In

particular, we study discounted cost functions - We are given an additive cost function

c : X → R+ and a discount function d : R+ → R+ that satisfies the following

properties: (1) d(0) = 0; (2) d is increasing; (3) d(x) ≤ x for all x; (4) d is concave.

The price of any S ⊆ X is defined to be d(c(S)). It is not difficult to see that

discounted price functions form a subclass of submodular functions.

6.1.2 Our Results

We study the following problems in this paradigm for both types of cost functions

described above.

1. Combinatorial Reverse Auction (CRA): We are given a set X of n ele-

ments and we wish to partition this set among m agents to minimize the total
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cost incurred by the agents.

2. Minimum Cost Perfect Matching: We are given an undirected graph

G(V,E) and the agents’ cost functions are over subsets of edges. We are further

told that G has at least one perfect matching. The objective is to find a perfect

matching in G and allocate the edges among the agents so as to minimize the

total cost.

Our results are summarized in Table 3 below. We would like to draw attention

to the fact that the lower bounds for submodular cost functions are information

theoretic (refer to Section 6.2.1 for details) while those for discounted cost functions

are contingent on P 6= NP.

Table 3: Summary of Results for Allocation Problems with Non-linear Cost Functions

Submodular Cost Functions Discounted Cost Functions
Lower bound Upper bound Lower bound Upper bound

Reverse Auction Ω(log n) min(m, log n) Ω(log n)[19] min(m, log n)
Perfect Matching Ω(n) n Ω(polylog(n)) n

6.1.3 Related Models and Results

Submodular functions have been intensely studied from the optimization perspective

in the past. Perhaps, the most fundamental optimization problem concerning sub-

modular functions is the non-monotone submodular function minimization problem.

A sequence of papers in this direction [31, 32, 33, 34, 51, 59] has resulted in fast

strongly polynomial time combinatorial algorithms. On the other hand the related

problem of maximizing non-monotone submodular function is known to be NP-hard

and the best known constant factor algorithm for this problem is by Feige et. al. [20].

Another body of work in optimization over submodular functions deals with wel-

fare maximization [9, 21, 38, 67]. In this context, the reverse auction problem (CRA)
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that we study, can be thought of as submodular welfare minimization. Calinescu et al.

[9] studied submodular function maximization subject to matroid constraints. They

showed that their problem contains many other allocation problems as sub cases,

thus giving a unified framework for studying such problems. Matching information

theoretic lower bounds were established in [49].

Very recently, Svitkina and Fleischer [63] studied submodular objective function

for problems like sparsest cut, load balancing, and knapsack. They gave O

(√
n

logn

)
upper and lower bounds for all these problems, showing that all these problems be-

come much harder under submodular costs. Later Iwata and Nagano [30] studied the

vertex cover, edge cover and set cover under submodular functions.

For the submodular reverse auctions, where a set of n goods has to be allocated to

m agents (i.e. collection set C = {X}) with submodular cost functions to minimize

the overall cost, a simple greedy algorithm is known to have a factor log(n) [28].

Goemans et al. [27] gave an algorithm for constructing explicit approximate submod-

ular functions by querying polynomial number of times to the original submodular

function. It is interesting to note that the construction in [27] used to approximate a

given submodular function belongs to the class of discounted cost functions defined

earlier. Refer to [28, 60, 62, 64, 68] for some other related work in optimization that

uses submodular functions. .

6.2 Submodular Cost Functions

In this section we will consider the case when the agents’ cost functions are monotone

submodular functions. Recall that these functions are defined over all subsets of a

given ground set. We therefore assume value oracle access to the functions. We will

now define the notion of an information theoretic lower bound and develop a general

technique to derive such bounds.
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6.2.1 Information Theoretic Lower Bounds

A problem is said to have information theoretic lower bound of α if any randomized

algorithm that approximates the optimum to a factor α with high probability requires

super-polynomial number of queries to the value oracle.

By Yao’s principle [69], it suffices to establish the lower bounds for deterministic

algorithms acting on an input which is picked randomly from some fixed distribution.

To show these approximation gaps, we follow the general framework which was also

used in [20, 27, 63]. We will outline this framework in the single agent setting.

The idea is to first choose a problem instance which has a suitably large collection

set C ⊆ 2X of interest. For example, for the minimum perfect matching problem, we

choose a graph that has exponentially many perfect matchings. Then we design two

submodular cost functions f and g. Typically, g is deterministically picked, whereas

f is chosen from a distribution. The choice of f and g relies on the following two

properties: a) The optimum values of f and g over C must differ by a large factor,

and b) f and g must be ‘hard to distinguish’ in the sense that, for any deterministic

query Q ⊆ X, both functions return the same value with a high probability.

By the union bound and a computation path argument [20, 63], a deterministic

algorithm making polynomially many number of queries cannot distinguish between

f and g. Combining this with the gap in the optima of f and g, one proves the lower

bound. We summarize the above discussion in the following observation.

Observation 5. To prove an information theoretic lower bound using two two-partition

functions f and g with a gap in their optimum values, it suffices to prove that, for

an arbitrary subset Q ⊆ X, Pr[ f(Q) 6= g(Q) ] is super-polynomially small over the

random choice of subset R ⊆ X.
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6.2.2 Combinatorial Reverse Auctions

In this problem we are given a set X, of n elements and m agents. For each agent i

we have a normalized monotone submodular cost function fi : 2X → R+. We wish

to partition the elements among the agents to minimize the total cost. We prove a

Ω(log n) information theoretic hardness result and provide an algorithm that matches

this bound. We also prove the same algorithm to be m-approximate.

6.2.2.1 Proof of hardness

As discussed in Section 6.2.1, the idea is to construct a deterministic instance and

a random instance of the CRA so that the optimal solution of these two instances

differ by a factor of Ω(log n), and then show that with high probability, a determin-

istic algorithm which uses only polynomially many value queries can not distinguish

between these two instances.

The deterministic instance we will use is the following: There are m agents and

a set X of n = m(m + 1)2/4 elements. The elements are equally partitioned into m

disjoint sets X1, X2, · · · , Xm. We will choose m such that m = 2d − 1, for some d.

Now each number i between 1 and m can be represented as a vector ai in GF [2]d.

Let Gi =
⋃

1≤k≤m, ai·ak=1Xk. For each i, 1 ≤ i ≤ m, agent i is only interested in

elements in Gi. It is easy to see that Gi consists of exactly m+1
2

blocks and for each

block there are (m + 1)/2 agents who are interested in it. Now, we define the cost

function gi : 2X −→ R+ as follows:

gi(S) =

 min{|S|, (m+ 1)2/4} If S ⊆ Gi

∞ Otherwise

Let us analyze the optimal cost of this instance. We say that an agent is marked

if the total size of elements assigned to him is at least (m + 1)2/4. Among all the

optimal solutions, let OPT be the one that maximizes the number of marked agents.
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We claim that at least d agents are marked in OPT. Suppose not, then without loss

of generality, we may assume M = {1, 2, ..., t} to be the set of marked agents and

t < d. The system of linear equations ai · x = 0,∀1 ≤ i ≤ t has at least one solution

x∗ ∈ GF [2]d, since number of equations is less than the number of variables. Let k

be the number between 1 and m corresponding to the vector x∗. This implies that no

agent in M is interested in block Xk. Let Ak = {i1, i2, ..., iw} be the set of agents who

are assigned elements from Xk. Then Ak ∩M = ∅. Therefore, we can mark one more

agent by transferring the elements in Xk from agents i2, i2, ..., iw to agent i1 without

changing the cost of the new solution. This is a contradiction because of the choice

of OPT. Hence, the optimal cost of this instance is at least (m+ 1)2d/4.

Next we will describe the randomized instance which has same the set of agents

and elements as the deterministic instance. Also, each agent is interested in the same

set of elements. However, the cost function for each agent is picked in a randomized

manner. We describe in detail below.

For each element, assign it uniformly at random to one of the agents who is inter-

ested in it. Let Si be the set of elements which agent i gets. Clearly (S1, S2, ..., Sm)

forms a partition of the element set X. We define the cost function fi : 2X −→ R+,

for agent i as follows:

fi(S) =

 min
(
|S ∩ Si|+ min {|S ∩ Si|, (1 + δ)(m+ 1)/2 } , (m+ 1)2/4

)
If S ⊆ Gi

∞ Otherwise

where δ > 0 is a fixed constant.

Now we show that with high probability, a deterministic algorithm using only

polynomially many value queries can not distinguish between f = (f1, f2, ..., fm) and

g = (g1, g2, ..., gm). We prove the following lemma.

Lemma 60. For any subset S of elements and i ∈ [m], Pr[fi(S) 6= gi(S)] = e−Ω(m).
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Proof. Suppose S is a subset of elements and i ∈ [m]. Using our construction we have

fi(S) ≤ gi(S). Therefore Pr[fi(S) 6= gi(S)] = Pr[fi(S) < gi(S)].

First of all, we claim that the above probability is maximized when S ⊆ Gi and

|S| = (m + 1)2/4. For this, if S 6⊆ Gi, then fi(S) = gi(S) = ∞ hence Pr[fi(S) <

gi(S)] = 0. Now suppose S ⊆ Gi and |S| ≥ (m + 1)2/4. Then gi(S) = (m + 1)2/4.

Therefore

Pr [fi(S) < gi(S)] = Pr
[
|S ∩ Si|+ min{|S ∩ Si|, (1 + δ)(m+ 1)/2} < (m+ 1)2/4

]
This probability can only increase when we remove elements from S. For the case

when |S| ≤ (m+ 1)2/4, we get:

Pr [ fi(S) < gi(S) ] = Pr
[
|S ∩ Si|+ min{|S ∩ Si|, (1 + δ)(m+ 1)/2 } < |S|

]
= Pr [ min{|S ∩ Si|, (1 + δ)(m+ 1)/2 } < |S ∩ Si| ]

= Pr [ |S ∩ Si| > (1 + δ)(m+ 1)/2 ]

Thus, this probability can only increase when more elements are added to S. Hence

under the condition S ⊆ Gi, |S| ≤ (m+1)2/4, the probability is also maximized when

|S| = (m+ 1)2/4.

Now we assume S ⊆ Gi and |S| = (m + 1)2/4. In this case, Pr[fi(S) < gi(S)] =

Pr[|S ∩Si| > (1 + δ)(m+ 1)/2], which by a standard Chernoff bound arguments, can

be shown to be bounded by e−Ω(m).

If we define f(S) = (f1(S), ..., fm(S)) and g(S) = (g1(S), ..., gm(S)), then by

a simple union bound, as a corollary of the lemma, we have Pr[f(S) 6= g(S)] =

poly(m)e−Ω(m). Now suppose A is a deterministic algorithm which makes polynomi-

ally many queries to the value oracle. Then by the union bound, with probability at

most poly(m) · e−Ω(m), A can distinguish between f and g. Notice that for the cost

function f = (f1, · · · , fm), the optimal solution is at most (1+δ)m(m+1)/2 achieved

by assigning Si to agent i. However, as we showed, the optimal solution for the cost
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function g = (g1, g2, · · · , gm) has cost at least d(m+1)2/4, thus with high probability,

A can not approximate a CRA instance within factor (m+1)2d/4
(1+δ)m(m+1)/2

' d = c log n for

some c < 1. Finally, by Yao’s principle, we have the following:

Theorem 61. A randomized approximation algorithm for the CRA problem within

factor c log n for some c < 1 needs to make exponentially many value queries.

6.2.2.2 A min(m, log n) approximation algorithm

A log n-approximate algorithm for this problem appeared in [28]. In what follows we

provide a min(m, log n) approximation algorithm. Consider the following LP relax-

ation (LP1) and its dual (LP2).

min
∑
S⊆V

∑
i

xi,Sfi(S) (LP1)∑
S:u∈S

∑
i

xi,S ≥ 1 ∀u ∈ X

xi,S ≥ 0 ∀S ⊆ V, ∀i

max
∑
u∈X

yu (LP2)∑
u∈S

yu ≤ fi(S) ∀S ⊆ V, ∀i

yu ≥ 0 ∀u ∈ X

In LP1, xi,S is used to represent the fraction of set S that is allocated to agent

i. Since fi(S) −
∑

u∈S yu is a submodular function, we can construct a separation

oracle for the dual program using the submodular minimization algorithm as a sub-

routine. Thus we can solve LP1 and LP2 optimally. The following lemma describes

the structure of an optimal solution to LP1.

Lemma 62. There exists an optimal fractional solution to LP1 such that for every

agent i the set Ti = { S : xi,S > 0 } forms a nested family.

Proof. Let x be any feasible solution to LP1. If Ti is not nested, then there exist two

intersecting sets A,B ∈ Ti such that neither is contained in the other. Without loss

of generality we may assume xi,A ≥ xi,B. We will construct another feasible solution

x′ to LP1 as follows:
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• x′i,A∪B = xi,B

• x′i,B = 0

• x′i,S = xi,S ∀ S ⊆ X other than above.

• x′i,A = xi,A − xi,B

• x′i,A∩B = xi,B if A ∩B 6= ∅

• x′j,S = xj,S ∀j 6= i , ∀S ⊆ X

By submodularity, one can verify that the cost of the solution x′ is at most the

cost of x. Let T ′i be the sets in the support of the new solution. Observe that∑
S∈Ti |S|

2 <
∑

S∈T ′i
|S|2. Since

∑
S∈Ti |S|

2 is monotonically increasing we can iterate

the above process polynomially many times until we find a solution whose cost is

no greater that that for x and the sets corresponding to its support form a nested

family.

Let x be an optimal solution of LP1 which satisfies the conditions in Lemma 62

and {Ti | i ∈ [m]} be the corresponding nested families of sets. Our algorithm is

similar to the greedy algorithm for weighted set-cover where the candidate sets are

chosen from T =
⋃
i Ti. It proceeds in several rounds and in each round we allocate

a subset of items to a single agent. Let Zt be the set of unallocated items at the

start of the tth round. Define αt(i, S) = fi(S)/|S ∩Zt|. In each round we pick the set

(i, S) ∈ T having the lowest value of αt(i, S) (let αt be this value) and assign the set

S to agent i. We then update Zt and proceed to the next round. Finally since the

sets in Ti form a nested family each agent can simply pick the largest set assigned to

her and drop all other sets.

Analysis: Let OPT be the cost of the optimal integral solution. Consider the

tth round of the algorithm and let Ht be the set of previously unallocated items that

get assigned to an agent in this round. For the sake of analysis let us divide the

incremental cost of the newly assigned items in this round equally among them i.e.

each newly allocated item costs αt = fi(S)/|S ∩ Zt|.

Next observe that αt is at most OPT/|Zt|. This is because x is fractional solution

that covers the items in Zt and we picked the set (i, S) with the lowest value of
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fi(S)/|S ∩ Zt|. Thus the total cost of covering all items is at most

∑
t

∑
u∈Ht

αt ≤
∑
t

∑
u∈Ht

OPT/|Zt| ≤ log n ·OPT

The last inequality follows since n = |Z1| > |Z2| > · · · > |Zt| and
∑

i∈[n] 1/i =

log n. To prove that this algorithm is also m-approximate, observe that each set

selected has cost at most OPT. Moreover, each agent is assigned at most one set in

the final solution. Thus we have the following theorem

Theorem 63. There is a min {m, log(n)} approximate algorithm for the Combina-

torial Reverse Auction problem for agents with submodular cost functions.

6.2.3 Perfect Matching

In this section, we consider the multi-agent submodular minimum perfect matching

problem. In this problem we are given a bipartite graph G(V,E) where |V | = n,

containing at least one perfect matching and a normalized monotone submodular

function fi : 2E −→ R+ for each agent i. We wish to find a perfect matching M , and

a partition of M into M1,M2, · · · ,Mm such that
∑

i fi(Mi) is minimized. We first

prove an information theoretic lower bound of Ω(n) on the approximability of the

single agent case, which also implies the same bound for the multi-agent case. Then,

we give an n-approximate algorithm for the multi-agent case.

6.2.3.1 Proof of Hardness

As earlier, we proceed by designing two submodular functions that are hard to dis-

tinguish in polynomially many queries but have widely differing optimal values. In

the general framework outlined in Section 6.2.1, this is accomplished by ‘hiding’ a

random element of lower cost from the target collection C in one of the functions. In

this case, C is the set of all perfect matchings. A natural first guess would be to pick

a random perfect matching and hide the edges in it. This however does not serve our

purpose because for a fixed pair of edges, the events that these edges belong to the
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random matching are not independent, thus precluding the use of Chernoff bounds.

We circumvent this problem by using the following result from the theory of random

graphs [7]:

Theorem 64. Let G(n, n, p) be a random bipartite graph on 2n vertices such that

each edge is present independently with probability p. Then

Pr[ G(n, n, p) contains no perfect matching ] = O(ne−np)

Now instead of hiding a randomly chosen perfect matching, we hide a collection

of randomly and independently chosen edges that contains a perfect matching with

high probability. We prove the following theorem.

Theorem 65. Any randomized approximation algorithm for the submodular mini-

mum cost perfect matching problem with factor O
(

n
log2 n

)
needs super-polynomially

many queries.

Proof. Consider the complete bipartite graph Kn,n. We choose a random subset R of

edges by picking each edge independently with probability p = log2 n/n.

Define the following two submodular cost functions fR, g : 2E −→ R+:

fR(Q) = min
{
|Q ∩R| + min{ |Q ∩R|, (1 + δ) log2 n }, n

}
g(Q) = min { |Q|, n }

Here δ is an arbitrary positive constant less than 1. Using Theorem 64, R contains

a perfect matching with probability 1−O(ne− log2 n), and hence the minimum cost of

a perfect matching in fR is at most (1 + δ) log2 n. Therefore the ratio of optima in g

and fR is Ω
(

n
log2 n

)
with high probability.

Now we look at the probability that the algorithm can not distinguish fR and g.

By Observation 5 it suffices to prove that Pr[fR(Q) 6= g(Q)] is super-polynomially

small for an arbitrary query Q. It’s easy to see that fR(S) ≤ g(S), thus these two

functions differ on Q if and only if fR(Q) < g(Q).
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Let Q∗ be the optimal query for which Pr[ fR(Q) < g(Q) ] is maximized. We will

show that |Q∗| = n. First, suppose that |Q| ≥ n, then

Pr[ fR(Q) < g(Q) ] = Pr[ fR(Q) < n ]

= Pr
[
|Q ∩R| + min

{
|Q ∩R|, (1 + δ) log2 n

}
< n

]
which increases as the size of Q is reduced.

Now suppose |Q| ≤ n. In this case,

Pr[ fR(Q) < g(Q) ] = Pr[ fR(Q) < |Q|]

= Pr
[
|Q ∩R| + min

{
|Q ∩R|, (1 + δ) log2 n

}
< |Q|

]
= Pr

[
min

{
|Q ∩R|, (1 + δ) log2 n

}
< |Q ∩R|

]
= Pr[ |Q ∩R| > (1 + δ) log2 n ]

which increases as |Q| is raised. Therefore, the optimal query size is n.

Therefore,

Pr[ fR(Q) < g(Q) ] = Pr[ |Q ∩R| > (1 + δ) log2 n ]

Since E[|Q ∩ R|] = log2 n and edges were picked uniformly at random, we can apply

Chernoff bounds to conclude that this probability is O(e−δ
2 log2 n). This proves the

theorem.

6.2.3.2 A n approximation algorithm

Define a new cost function w over E as we = mini fi({e}) and define w(Z) =
∑

e∈Z we

for all Z ⊆ E. Since w is an additive valuation function we can find a minimum cost

perfect matching in polynomial time. Let M be such a matching. Assign each edge

e ∈M to the agent having the minimum valuation for that edge. Let the cost of this

solution under the original valuation functions be W .

Analysis: We now prove that this is an n-approximate algorithm. By submodu-

larity we have W ≤ w(M). Let M∗ be an optimal solution of MS-MPM having value

OPT. Since M is a minimum weight matching under w, w(M) ≤ w(M∗).

119



Let wmax = maxe∈M0{fi(e) | e assigned to agent i in M∗}. By submodularity of

the cost functions, w(M∗) ≤ n · wmax. By monotonicity we have wmax ≤ OPT .

Therefore,

W ≤ w(M) ≤ w(M∗) ≤ n · wmax ≤ n ·OPT

This yields the following theorem

Theorem 66. There is a n approximate algorithm for the Perfect Matching problem

for agents with submodular cost functions.

6.3 Discounted Cost Functions

In this section we will study the approximability of allocation problems under dis-

counted cost functions. Recall that a discounted cost function is given by an additive

cost function c : X → R+ and a discount function d : R+ → R+ that satisfies the

following properties: (1) d(0) = 0; (2) d is increasing; (3) d(x) ≤ x for all x; (4) d is

concave. The price of any S ⊆ X is defined to be d(c(S)).

6.3.1 Combinatorial Reverse Auction

Since discounted cost functions are a special case of submodular cost functions, the

result from Theorem 63 yields the following theorem.

Theorem 67. There is a min {m, log(n)} approximate algorithm for the Combina-

torial Reverse Auction problem for agents with discounted cost functions.

Next we show a lower bound this problem that is contingent upon P 6= NP and

that follows from a simple reduction from the hardness of Set Cover.

Theorem 68. It is hard to approximate the discounted reverse auction problem within

factor (1− o(1)) log n unless P = NP.

Proof. We reduce set cover to the discounted reverse auction problem to prove this

result. Consider an instance I = (U,C,w) of set cover where we wish to cover all
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elements in the universe U using sets from C and minimize the sum of weights under

the weight function w : C → R+. We define an instance, I ′ of our discounted reverse

auction problem corresponding to I in the following way. Let U be the set of items.

For every set S ∈ C define an agent aS, whose cost function ca assigns the value w(S)

for every element s ∈ S and sets the cost of all other elements in U to be infinity.

The discounted price function for the agent is shown in figure 8. Here the slope of

the second segment is small enough.

Figure 8: Discount function for agent corresponding to set S

Consider a solution for I ′ where we procure at least one item from agent aS; then

we can buy all elements in S from aS without a significant increase in our payment.

So the cost of the optimal solution to I can be as close to the price of the optimal

solution for I ′ as we want. By [19], set cover is hard to approximate to a factor better

than log n unless P = NP. Therefore the discounted reverse auction problem can not

be approximated within factor (1− o(1)) log n unless P = NP.

6.3.2 Perfect Matching

Next we consider the Perfect Matching problem under discounted cost functions.

Once again the trivial algorithm from Theorem 66 carries over and gives the following

theorem.

Theorem 69. There is a n approximate algorithm for the Perfect Matching problem

for agents with discounted cost functions.

As for the lower bound, Theorem 68 immediately gives an O(log(n) lower bound
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for this problem. In Theorem 73 we will amplify this bound to show a polylog(n)

lower bound for this problem. Our amplification technique is somewhat indirect - We

first show a polylog lower bound on the shortest path problem under discounted cost

functions and then show a reduction to the perfect matching problem to complete

the proof.

In the s − t path problem with discounted costs we are given a connected graph

G(V,E) and two chosen vertices s, t ∈ V . There are m agents each having a dis-

counted cost function over E who wish to collectively build a minimum cost path

from s to t. In Theorem 70 we show that unless P = NP, this problem is hard to

approximate to within O(logc n) for any fixed constant c.

Theorem 70. The discounted shortest s − t path problem is hard to approximate

within a factor of O(logc n) for any fixed constant c > 0.

Proof. Our proof proceeds by repeatedly applying a transformation σ on the given

family of problem instances, which amplifies the approximation factor on every ap-

plication. Each application of σ also increases the size of the graph but only by a

polynomial(in n) factor. We now describe the transformation formally.

Consider the following instance (G, s, t,A,U): We are given a graph G = (V,E),

vertices s,t and a set A of agents. We are also given a collection U = {Ua}a∈A. Here

Ua ⊆ E specifies the set of edges that can be assigned to agent a, i.e., ca(e) = 1

for all e ∈ Ua and ca(e) = +∞ otherwise. The discounted price function da is such

that da(x) = x for all x ≤ 1 and 1 for all 1 < x < +∞. Observe that under this

assumption, for any set S of edges, da(S) has value 1 if S ⊆ Ua and ∞ otherwise.

We may assume that the sets Ua for a ∈ A are pairwise disjoint, by replacing a single

edge that can be assigned to multiple agents by parallel edges and assigning them

to each of the agents. In future discussion, we will use F to denote the family of

instances {(G, s, t,A,U)}.

We define the transformation σ : F → F that takes an instance I = (G,A,U)
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in F , and generates another instance I⊗ = (G⊗,A × A,U⊗) as follows. The graph

G⊗ = (V ⊗, E⊗) is constructed from G by replacing each edge (u, v) ∈ E with a copy

of the graph G such that s coincides with u and t coincides with v. Thus any edge

e ∈ E can be identified with a subgraph Ge, of G⊗ that is isomorphic to G. For

any e′ ∈ Ge define ρ(e′) = e and define γ(e′) to be the edge corresponding to e′ in G

under this isomorphism. There are |A|2 agents in the new instance who are indexed by

A×A. We define the elements of U⊗ as U⊗(a1,a2) = {e′ | ρ(e′) ∈ Ua1 and γ(e′) ∈ Ua2}.

Note that |E⊗| = |E|2, i.e. the size of instance I⊗ is bounded by a polynomial

in the size of I. We define σ(F) = {σ(I) | ∀I ∈ F}. In lemma 71, we show that we

can amplify that hardness result from theorem 68 by applying the transformation σ

repeatedly.

Lemma 71. If H = σr(F) is a family of instances for the s − t path problem that

is hard to approximate to a factor better than α then σ(H) is hard to approximate

within factor O(α2).

Proof. Let I = (G, s, t,A,U) be an instance in H. Let us begin by making some

observations about the structure of an optimal solution for σ(I) = (G⊗, s, t,A,U⊗).

Claim 16. If there is a s− t path of price β in G then there is a s− t path in G⊗ of

price at most β2.

Proof. Let P = e1, e2 . . . et be a path of price β in G. We can construct a s− t path in

G⊗ by considering the set of graphs Ge1 . . . Get and picking the edges corresponding

to the edges in P in each of these copies. It can be verified that this gives us a valid

path that has price β2.

Next we note that the converse is also true.

Claim 17. If there is a s− t path of price β2 in G′ then there is a s− t path in G of

price at most β.
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Proof. Let P be a path of price β2 in G⊗. Let Ge1 . . . Get be the copies of G that

have non-empty intersection with P . Two cases may arise. Either the set of edges

{e1 . . . et} belong to at most β distinct agents in A or they belong to more than β

agents in A. Note that the set of edges {e1 . . . et} form a path in G, and in the first

case this path has price at most β. In the second case, the price of edges in P ∩Gei

must be less than β for some copy Gei of graph G. These edges also form a s− t path

in G of price at most β. Thus in both cases we can find a path of price at most β in

G.

Using the observations above, if the price of the optimal solution to I is OPT ,

then the price of the optimal solution to σ(I) is OPT 2. Furthermore, if we can

approximate the optimal solution to σ(I) to within a factor of o(α2) then we can

approximate the optimal solution for I to better than o(α), using the construction in

claim 17. This yields the desired contradiction.

Since F is hard to approximate to within a factor of log n applying lemma 71

repeatedly gives the desired result.

Finally we show that the result of Theorem 70 also carries over to the perfect

matching problem by a reduction from the s− t path problem.

Lemma 72. Let A be a β-approximate algorithm for the perfect matching problem,

then we can get a β-approximation for the s− t path problem using A as a subroutine.

Proof. Suppose we are given a graph G = (V,E). Construct an auxiliary graph G∗

in the following way: Replace every vertex v ∈ V by v′ and v′′ and add an edge

connecting them. The price of this edge is zero for every agent. We replace each edge

uv ∈ E with the gadgets shown in figure 9.

On this graph G∗, use the algorithm A to get the minimum weight matching. Let

M be the matching returned. We can interpret M as a s−t path in G in the following
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Figure 9: Gadgets

way. Let g(uv) be the edges in G∗ corresponding to the edge uv for the gadget shown

in figure 9. Observe that either one or two edges of every such gadget must belong to

M . Let S be the set of edges in G such that two edges in their corresponding gadget

belong to M . One can check that every vertex in V is incident with zero or two edges

from S, whereas s and t are each incident with exactly one edge in S. Therefore S

consists of an s− t path PS and some other circuits. Now the circuits in S must have

cost zero. This is because if a circuit has positive cost then the cost of the matching

can be reduced further by pairing up the vertices in the circuit as shown in figure 10.

Figure 10: Circuits not involving edges in S should have zero costs

Note that the reduction defined in lemma 72 defines a cost preserving bijection

between s − t paths in G to perfect matchings in G∗. Therefore, using Theorem 70

we have the following theorem.

Theorem 73. The discounted perfect matching problem is hard to approximate within

a factor of O(logc n) for any fixed constant c > 0.

125



6.4 Conclusion and Open Problems

In this chapter we initiated a systematic study of allocation problems under non-

linear cost functions. We investigated the approximability of two classical allocation

problems - combinatorial reverse auctions and minimum cost perfect matching - and

showed upper and lower bounds for both of them.

The setting that we have considered in this work is quite general, and is a very

exciting avenue of research. There are many other interesting problems in this class

such as minimum graph cut and edge cover which could be studied in the future

work. We have considered the covering problems in this work, one can ask the same

questions for packing problems. One could also consider even more general functions

like subadditive functions. Extension to multi-agent systems makes a natural con-

nection to Game Theory. Mechanism design of these combinatorial problem also has

interesting applications.

It is surprising to note that CRA which is NP-hard even for linear cost func-

tions does not get much harder for submodular or discounted cost functions. On the

other hand the minimum perfect matching problem can be solved efficiently for linear

cost functions, but it turns out to be extremely hard to approximate for non-linear

functions. It would be interesting to come up with a characterization of problems

whose computational complexity remains unchanged for both linear and non-linear

cost functions.
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