
USING LOGIC-BASED APPROACHES TO EXPLORE SYSTEM

ARCHITECTURES FOR SYSTEMS ENGINEERING

A Dissertation
Presented to

The Academic Faculty

by

Aleksandr A. Kerzhner

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
August 2012

USING LOGIC-BASED APPROACHES TO EXPLORE SYSTEM

ARCHITECTURES FOR SYSTEMS ENGINEERING

Approved by:

Dr. Christiaan J. J. Paredis, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

 Dr. Leon F. McGinnis
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Berdinus A. Bras
School of Mechanical Engineering
Georgia Institute of Technology

 Dr. Godfried L. Augenbroe
College of Architecture
Georgia Institute of Technology

Dr. Charles Eastman
College of Architecture
Georgia Institute of Technology

 Date Approved: April 23, 2012

iii

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support, guidance, and

friendship of an entire community of people. I cannot describe it in any other way, from

many who passed through Georgia Tech the same time I was here, graduating and

leaving for bigger and better things, and those who have been here the entirety of my

journey.

First I would like to thank my advisor Dr. Chris Paredis for his continued insight

and support, for always keeping an open mind but also staying critical, and for always

showing me there’s no substitute for hard work. I would also like to thank Dr. Leon

McGinnis for serving on both this committee and my master’s committee, for always

reminding me to keep an eye on practical matters, and reminding me it is important to ask

tough questions. I would also like to thank the rest of my committee, Drs. Bert Bras,

Godfried Augenbroe, and Charles Eastman for their guidance and advice.

I would also like to thank Richard Malak and Stephanie Thompson for being

excellent role models when I was just beginning my graduate career, along with the rest

of the members of MARC 266 and MARC 264: Jonathon Jobe, Tommy Johnson, and

Aditya Shah for their support and insight and also for prior work that provided the

foundation for this dissertation; Benjamin Lee for always being a good friend, even when

I was not; Jackie Branscomb. Kevin Davies, and Brain Taylor for their friendship,

support; Bergen Helms, Sebastian Herzig, Axel Reichwein, and Ahsan Qamar for giving

the lab some international flair; and Isabelle Bouchard, Jayme Walton, Kevin Wright, and

Marc Pare` for providing the enthusiasm and dedication that can only spring from

undergraduate researchers.

 iv

 In addition, I would like to acknowledge my many (former) labmates in the (now

disbanded) Systems Realization Laboratory: Jamal Wilson, John Reap, Greg Graf,

Nathan Young, Amit Jariwala, Jane Kang, Jiten Patel, Dazhong Wu, Yuri Romaniw,

Andrew Hyder, Patrick Chang, Julie Bankston, and many more that I am sure I have

forgotten. I also owe my gratitude to the rest of my labmates from the Model-Based

Systems Engineering Center: Edward Huang, Kysang Kwon, George Thiers, and Ola

Batarseh.

I would also like to thank my compatriots in the Georgia Tech-branch of the

Center for Compact and Efficient Fluid Power (CCEPF) and also the members of the

Intelligent Machine Dynamics Lab (IMDL) for their friendship and support: Hannes

Daepp, Mark Elton, Nick Earnhart, Heather Humphreys, Brian Post, Aaron Enes, and

Ryder Winck.

Maybe most importantly, I would like to gratefully acknowledge the ERC for

Compact and Efficient Fluid Power, supported by the National Science Foundation under

Grant No. EEC-0540834 for funding this work.

Finally, I would like to thank my mother, Inna Kerzhner-Haller, for her love and

support; without her none of this would be possible.

 v

TABLE OF CONTENTS

Page

Acknowledgements .. iii

List of Tables .. xii

List of Figures .. xiii

Summary .. xviii

Chapter 1: Introduction ... 1

 1.1 What is this Research About? ... 1

 1.2 Why is this important? .. 4

 1.3 Why is this challenging? ... 6

 1.4 Desired Characteristics of the Approach .. 10

1.4.1 Guide the designer in making rational decisions 10

1.4.2 Based on Computer-Interpretable Models .. 11

1.4.3 Efficient Search ... 12

1.4.4 Flexible formulation.. 14

1.4.5 Knowledge reuse at different levels of abstraction 15

1.4.6 On adding value .. 16

 1.5 Gap & Vision .. 18

 1.6 Research Questions ... 21

1.6.1 Information Models and Domain Specific Language 22

1.6.2 Model Libraries & Model Transformations 24

1.6.3 Mixed-Integer Linear Programming ... 25

1.6.4 Managing Complexity and Supporting Scalability 28

 vi

 1.7 Expected Contributions ... 30

 1.8 Investigation Roadmap ... 31

Chapter 2: Prior and Related Work ... 35

 2.1 Current Systems Engineering Practice.. 35

2.1.1 Systems Engineering Processes .. 35

2.1.2 System Architecting .. 42

2.1.3 Software Architecting ... 44

 2.2 Evaluation and Decision Making .. 44

2.2.1 Qualitative approaches .. 45

2.2.2 Sizing techniques .. 46

2.2.3 A Foundation for Modeling Architecture Explorations 47

2.2.4 Surrogate Models .. 48

2.2.5 Predictive Models ... 49

2.2.6 Optimization in Systems Design ... 49

 2.3 Computational Design Synthesis .. 50

2.3.1 Function-Based Approaches ... 51

2.3.2 Grammatical Approaches.. 52

2.3.3 Constraint-Based Approaches ... 54

2.3.4 Adaptation-Based Approaches.. 55

2.3.5 Knowledge Capture .. 56

2.3.6 Searching the Design Space .. 57

 2.4 Summary ... 58

Chapter 3: Representing Architecture Exploration Problems ... 60

 vii

 3.1 Prior and Related Work in Modeling Designer Knowledge Explicitly 64

3.1.1 Capturing Variants .. 64

3.1.2 Domain Specific Languages ... 66

 3.2 Foundation for Modeling Architecture Exploration Problems 68

 3.3 What is an Architecture Selection Decision? .. 72

 3.4 Defining a Language for Architecture Selection Decisions 76

3.4.1 Defining Tests ... 85

3.4.2 Defining the Space of Solutions ... 89

3.4.3 Capturing Domain Knowledge ... 94

 3.5 Discussion ... 97

 3.6 Summary ... 99

Chapter 4: Model Libraries and Composition .. 100

 4.1 Prior Work in Modularity and Composition ... 102

 4.2 Capturing reusable Analysis Knowledge in a Model Library 105

4.2.1 A Library of Components ... 107

4.2.2 A Library of Analyses ... 109

4.2.3 A Library of Aspects ... 109

4.2.4 Fine-Grained Design-Analysis Relationships 110

 4.3 Implementation in SysML .. 112

4.3.1 Component taxonomy ... 114

4.3.2 Aspect taxonomy .. 118

4.3.3 Library of Analysis Models .. 119

4.3.4 Establishing Fine-Grain Mappings ... 121

 viii

4.3.5 Parameter Maps .. 121

4.3.6 Interface Maps .. 123

 4.4 Automated Composition of Analysis Models ... 123

4.4.1 An Illustrative Example .. 124

4.4.2 Creating the Analysis Model .. 127

 4.5 Referencing external models in a model library 133

 4.6 Discussion ... 135

 4.7 Summary ... 137

Chapter 5: Architecture SElection Using Mathematical Programming 138

 5.1 Desired Characteristics of the Search Process .. 140

 5.2 Choice of Solution Approach.. 143

5.2.1 Constraint Satisfaction Approaches .. 148

5.2.2 Boolean Satisfaction ... 150

5.2.3 Mathematical Programming.. 152

5.2.4 Agent-Based Approaches.. 155

 5.3 Structure of an Architecture Exploration Problem in MIP 155

 5.4 Defining the Structure ... 159

5.4.1 Describing System Behavior... 160

5.4.2 Optional Constraints ... 164

5.4.3 Interpolation .. 165

 5.5 Representing Algebraic Analysis Models in SysML 171

 5.6 Discussion ... 174

 5.7 Summary ... 176

 ix

Chapter 6: Problem Transformation ... 177

 6.1 Defining Model Transformations ... 179

 6.2 Transformation Issues ... 182

6.2.1 Practical Considerations.. 184

 6.3 Transformation Process – First Stage ... 187

 6.4 Generating AIMMS Code ... 199

 6.5 Import-Export SysML ... 200

 6.6 Summary ... 201

Chapter 7: Excavator Example ... 203

 7.1 Defining the example in SysML ... 207

7.1.1 Comparison to other architecture exploration problems 215

 7.2 Outline of Optimizations... 217

 7.3 The Mathematical Programming Framework ... 219

 7.4 Verification Examples .. 223

 7.5 Full Excavator Example .. 232

7.5.1 Optimizing for Total Cost ... 235

 7.6 Constrained Example .. 237

 7.7 Unsized Solutions ... 242

 7.8 Comparison with Similar Approaches .. 243

 7.9 Summary ... 251

Chapter 8: Contributions, Limitations and Open Questions ... 252

 8.1 Review of the Research .. 252

 x

 8.2 Summary of Contributions .. 259

8.2.1 Modeling Architecture Exploration Problems 259

8.2.2 Architecture Exploration and Computational Design Synthesis 260

8.2.3 Mathematical Programming.. 261

 8.3 Limitations .. 262

8.3.1 Cost of Modeling .. 262

8.3.2 Creating Model Libraries .. 263

8.3.3 Uncertainty .. 263

8.3.4 Scalability ... 264

8.3.5 Accuracy of Analyses – Using Only Linear Constraints 264

8.3.6 Non-Unique Architectures .. 266

8.3.7 Debugging the Formulation .. 266

 8.4 Practical Implementation .. 267

 8.5 Open Questions and Opportunities for Future Research 268

8.5.1 Practical Aspects of Modeling an Architecture Selection Decision 268

8.5.2 Practical Aspects of Solving an Architecture Selection Decision .. 270

8.5.3 Extensions ... 271

8.5.4 Informing Designers ... 272

 8.6 Summary ... 272

Appendix A : Model Libraries .. 275

A.1 Component-level structural models. ... 275

A.2 Component-level analysis models. ... 277

A.3 Functional Units .. 287

 xi

A.4 Connection Templates ... 289

Appendix B : Sample Aimms Code .. 295

References ... 338

 xii

LIST OF TABLES

Page

Table 7.1: Results from optimization runs where number of points in the interpallent are

varied... 232

Table A.1: Commercial off-the-shelf pumps. ... 276

Table A.2: Commercial off-the-shelf cylinders. ... 276

Table A.3: Commercial off-the-shelf engines. ... 276

Table A.4: Maximum torque (Nm) for a given normalized speed for the engines. 276

Table A.5: Fuel consumption (kg/W) for a given normalized speed for the engines. 277

 xiii

LIST OF FIGURES

Page

Figure 1.1: Conceptual overview of a multi-staged solution approach. 29

Figure 3.1: A combination of UML profiles and metamodel based technologies 68

Figure 3.2: Breakdown of a Decision into its basic features. ... 70

Figure 3.3: Decision Process adapted from Hazelrigg. (Hazelrigg, 2012) 72

Figure 3.4: Classic description of an architecture selection decision. 74

Figure 3.5: Modular representation of the architectures considered in the architecture

selection decision. ... 75

Figure 3.6: SysML Profile that defines the additional stereotypes needed to represent an

architecture selection decision. ... 78

Figure 3.7: Profile for additional constructs added for defining the architecture selection

decision. .. 80

Figure 3.8: SysML profile for defining testable requirements. .. 83

Figure 3.9: Relationship between testable requirements and test cases 84

Figure 3.10: Simple test case. The system under test is connected to two testing probes

(sensors). ... 86

Figure 3.11: Utilizing readSelf and readStructuralFeature actions to compare the value of

var1 to a test value. ... 88

Figure 3.12: Simplified definition of a potential system .. 91

Figure 3.13: Simplified definition of a potential subsystem ... 92

Figure 3.14: Simplified connection template between two components 93

 xiv

Figure 3.15: An amalgamation of models related to the structural cylinder. These

different relationships are represented using AssociationBlocks. 95

Figure 4.1: Profile for capturing correspondences between structure and analysis models.

... 114

Figure 4.2: A partial view of the Component hierarchy. .. 115

Figure 4.3: Component hierarchy of pumps ... 116

Figure 4.4: Sub-system taxonomy, sometimes referred to as functional units. 117

Figure 4.5: Relation between the subsystem taxonomy and the component taxonomy . 118

Figure 4.6: Package structure for aspect taxonomy. ... 119

Figure 4.7: Overview of algebraic behavior analysis models. .. 120

Figure 4.8: AssociationClass linking structural model of a double acting cylinder to an

analysis model. .. 121

Figure 4.9: Parameter map between parameters of the double acting cylinder and the

structural model. ... 122

Figure 4.10: Interface map between the ports of the cylinder's analysis model and the

structural model. ... 123

Figure 4.11: Example hydraulic circuit's structural model. .. 126

Figure 4.12: Test context describing the simulation and analysis model to be generated.

... 127

Figure 4.13: Resulting analysis model. ... 133

Figure 4.14: Profile for defining external models and libraries. 134

Figure 4.15: Resulting Modelica code. ... 135

Figure 5.1: Visualization of the design space. .. 141

 xv

Figure 5.2: One dimensional interpolation. .. 167

Figure 5.3: Unscaled interpellant. The red points are true data and the surface is the

interpellant. ... 169

Figure 5.4: Unscaled versus scaled interpellants. ... 171

Figure 5.5: Profile for representing algebraic models in SysML 174

Figure 6.1: Generic structure of model transformations. Adapted from Czarnecki

(Czarnecki, 2006). ... 180

Figure 6.2: Relations between the QVT languages (Object Management Group, 2007).

... 181

Figure 6.3: The structural definition of a simplified model fragment 188

Figure 6.4: The internal definition of the simplified model fragment 189

Figure 6.5: The internal definition of the OCPowerUnit functional unit. 191

Figure 6.6: Components resulting from flattening of the original space definition........ 193

Figure 6.7: Flattened view with corresponding connectors. ... 195

Figure 7.1: Excavator, taken from (Haga, 2001) .. 203

Figure 7.2: A Requirement Diagram for the Hydraulic System that also includes the

proposed testable requirements ... 209

Figure 7.3: Test context for excavator subsystem including the IBD for the hydraulic

subsystem. ... 210

Figure 7.4: Test cycle for the actuation subsystem ... 211

Figure 7.5: Visualization of the test cycle for each cylinder. ... 212

Figure 7.6: Block definition diagram representing the entire excavator structure. 213

 xvi

Figure 7.7: SysML Internal Block Diagram of the excavator showing the partially

specified hydraulics subsystem. .. 214

Figure 7.8: Structure for the verification example. Only one type of each component is

included. .. 223

Figure 7.9: Resulting architecture from simple verification example. 225

Figure 7.10: Verification example with two of each component. 226

Figure 7.11: Internal structure of the second verification example. 227

Figure 7.12: Verification example with one pump and one prime mover. 229

Figure 7.13: Verification example with two pumps and two prime movers. 230

Figure 7.14: Architecture resulting from optimization of cost. 235

Figure 7.15: Architecture found when minimizing life-time cost. 237

Figure 7.16: Structure of the constrained example. .. 239

Figure 7.17: Internal structure of the constrained example. ... 239

Figure 7.18: Architecture found when minimizing cost. .. 240

Figure 7.19: Architecture found when minimizing fuel consumption. 242

Figure A.2: Engine analysis model ... 279

Figure A.3: Illustration of the valve's schematic.. .. 280

Figure A.4: Open center valve with neutral pass through analysis model. 282

Figure A.5: Schematic for the closed center valve. .. 283

Figure A.6: Analysis model for the closed center valve. .. 284

Figure A.7: Fixed-displacement pump analysis model... 286

Figure A.8: Fixed-displacement power unit. .. 287

Figure A.9: Open center valve block. ... 288

 xvii

Figure A.10: Closed center valve block. ... 289

Figure A.11: Connection templates represented in the component library 290

Figure A.12: Connection template between a fixed-displacement power unit and an open-

center valve block. .. 291

Figure A.13: Connection template between an open-centered valve block and another

open-center valve block. ... 292

Figure A.14: Connection between a fixed-displacement power unit and an open-centered

valve block .. 292

Figure A.15: Connection between a prime mover (engine) and a (generic) power unit. 292

Figure A.16: Connection between a cylinder and a (generic) valve block. 293

Figure A.17: Connection between a motor and a (generic) valve block. 294

 xviii

SUMMARY

This research is focused on helping engineers design better systems by supporting

their decision making. When engineers design a system, they have an almost unlimited

number of possible system alternatives to consider. Modern systems are difficult to

design because of a need to satisfy many different stakeholder concerns from a number of

domains which requires a large amount of expert knowledge. Current systems

engineering practices try to simplify the design process by providing practical approaches

to managing the large amount of knowledge and information needed during the process.

Although these methods make designing a system more practical, they do not support a

structured decision making process, especially at early stages when designers are

selecting the appropriate system architecture, and instead rely on designers using ad hoc

frameworks that are often self-contradictory.

In this thesis, a framework for performing architecture exploration at early stages

of the design process is presented. The goal is to support more rational and self-consistent

decision making by allowing designers to explicitly represent their architecture

exploration problem and then use computational tools to perform this exploration. To

represent the architecture exploration problem, a modeling language is presented which

explicitly models the problem as an architecture selection decision. This language is

based on the principles of decision-based design and decision theory, where decisions are

made by picking the alternative that results in the most preferred expected outcome. The

language is designed to capture potential alternatives in a compact form, analysis

knowledge used to predict the quality of a particular alternative, and evaluation criteria to

differentiate and rank outcomes. This language is based on the Object Management

 xix

Group’s System Modeling Language (SysML). Where possible, existing SysML

constructs are used; when additional constructs are needed, SysML’s profile mechanism

is used to extend the language.

Simply modeling the selection decision explicitly is not sufficient, computational

tools are also needed to explore the space of possible solutions and inform designers

about the selection of the appropriate alternative. In this investigation, computational

tools from the mathematical programming domain are considered for this purpose. A

framework for modeling an architecture selection decision in mixed-integer linear

programming (MIP) is presented. MIP solvers can then solve the MIP problem to identify

promising candidate architectures at early stages of the design process. Mathematical

programming is a common optimization domain, but it is rarely used in this context

because of the difficulty of manually formulating an architecture selection or exploration

problem as a mathematical programming optimization problem. The formulation is

presented in a modular fashion; this enables the definition of a model transformation that

can be applied to transform the more compact SysML representation into the

mathematical programming problem, which is also presented. A modular superstructure

representation is used to model the design space; in a superstructure a union of all

potential architectures is represented as a set of discrete and continuous variables.

Algebraic constraints are added to describe both acceptable variable combinations and

system behavior to allow the solver to eliminate clearly poor alternatives and identify

promising alternatives.

The overall framework is demonstrated on the selection of an actuation subsystem

for a hydraulic excavator. This example is chosen because of the variety of potential

 xx

architecture embodiments and also a plethora of well-known configurations which can be

used to verify the results.

 1

CHAPTER 1:

INTRODUCTION

 What is this Research About? 1.1

This research is focused on helping engineers design better systems by supporting

their decision making for choosing an appropriate system architecture. When engineers

design a system, they have an almost unlimited number of possible system alternatives to

consider. Designers undertake a systematic design process to prune this space of system

alternatives to arrive at a single system specification. This specification consists of two

parts: the specification of the architecture and the specification of the components in this

architecture. The architecture describes the types of components or subsystems that are

contained in the system, their interfaces, and how the components are connected through

these interfaces. The specification of components provides more detailed information

about each component’s sizing.

During this process, designers need to make two different types of decisions:

• Architecture Selection Decisions: Decisions between different types of systems.

In this work, this is described as selecting between different system architectures.

These can be considered as decisions made between a discrete set of potential

architecture alternatives.

• Requirements Allocation Decisions: Often referred to as requirements flow-down

or component sizing, these decisions determine the appropriate specifications or

sizes of the components of a particular system architecture (Often referred to as

sizing the system). Here, the decision is made over a continuous space of choices,

although sometimes component availability can make certain discrete choices

 2

clearly desirable. Some previous work refers to requirements allocation decisions

as compromise decisions (e.g., (Bras, 1993, Karandikar, 1989, Shupe, 1987)) or

parametric design. Labeling these as requirements allocation decisions is based on

previous work by Malak and Paredis (Malak, 2010) .

Usually these decisions are made in a top-down, hierarchical progression. First,

designers make decisions about the type of architecture using their expertise and design

intuition. After the architecture has been selected, they drill down into the requirements

allocation and select the appropriate components and sizes.

As an example, when designing a car’s power train, a designer can choose a

purely mechanical implementation, a purely electric implementation, or a hybrid

implementation. Simply choosing the purely mechanical architecture is not sufficient to

specify the system. The designer also needs to choose sizing parameters such as the

volume, power, or torque of the engine or the gear ratios of the transmission. These

choices are usually made after the architecture has been selected. The choice of power

train is between discrete choices; it would be meaningless to choose a system which lies

“between” these alternatives. On the other hand, the parameters such the gear ratio or

engine torque can be varied continuously, although the parameters cannot be selected

independently and are constrained by the available technology.

The process that designers take to arrive at the system specification is architecture

exploration. As part of this exploration, architectures are synthesized and evaluated to

move toward the “best” system alternative. Going back to the previous example, it would

be difficult to choose between the mechanical or electrical architecture without

considering potential embodiments; while looking at the structure of the architecture may

 3

allow designers to make generic statements about its performance, these support only

obvious differentiations. In order to evaluate an architecture more accurately, the

designer needs to determine and evaluate the “best” instance of that architecture. Since

changes in the design context can affect the best instance, to quantitatively differentiate

architectures rationally a nested optimization is needed at each step of the architecture

exploration process to choose the best instance of each architecture.

Although this is a difficult process, practicing designers are very capable of

designing good systems; they routinely design cars, airplanes, construction machinery,

computers, robots and other complex devices. The problem is that shifting consumer

preferences have placed additional expectations on the performance of these systems

making them more difficult to design; therefore, designers are finding it more difficult to

complete a design project without cut corners or budget overruns (Sage, 2000a). As a

means to reduce the overall time of the design process, designers try to quickly make

system selection decisions and then expend most of their effort on requirements

allocation decisions. It is not that designers lack the necessary knowledge to make the

system selection decisions; instead they lack the necessary tools to apply this knowledge

in an efficient manner during their design processes.

The goal of this research is to provide designers with computational tools, both

for modeling and performing architecture explorations, so they can get more out of their

limited resources. This will allow designers to more broadly explore the architecture

space early on in the design process and also help them design better systems by allowing

for more rational and quantitative decision-making earlier in a project than is currently

practical.

 4

 Why is this important? 1.2

The underlying assumption in this research is that architecture exploration is

important because more exploration leads to better designs. There are three possibilities

for how performing additional exploration will affect the outcome of the design process:

the quality of the final design will decrease, the quality of the final design will stay the

same, or the quality of the final design will increase. For the sake of this discussion,

assume that the quality of a design can be quantified. There is always the opportunity that

more exploration will decrease the quality of the final design; since there is uncertainty

involved when choosing the final design, by considering more designs there is the

possibility that a new design will appear better using the defined metrics but perform

worse in reality. A bad outcome can be the result of any decision, what is important is the

quality of the decision. Another possibility is the additional exploration does not change

the choice of final design because the final design is in the original set of designs.

Although the final design does not change, this should increase designer confidence in

the final design. The other possibility is that increased exploration will identify a new

design that is better than the original design. The probability of the case where the final

design is worse can be reduced by improving the quality of the analyses used during the

design process, although this is not considered as part of this investigation. This leaves

the other two cases where either that the exploration will not change the final design or

that the exploration will result in a new design that is better than the original design. Both

of these situations would add value to the design process, but would also incur the

additional exploration cost. This suggests that a tradeoff exists between the space of

solutions explored and the time and cost of exploration those solutions, and also that

 5

performing an architecture exploration adds value as long as it can offset the time and

cost of preforming the exploration.

Performing such a broad exploration is important in many product domains. It is

important in domains where there are a large number of plausible architectural

alternatives, none of which is clearly better in all contexts (dominant). This, for instance,

can be the result of considering existing technologies in new applications. One example is

the recent adoption of electrical components in hydraulic systems, which traditionally

have included mainly mechanical and hydraulic components. Whereas in the past,

designers could rely on prior experience in these domains, the influx of new technology

requires designers to gain additional knowledge by evaluating new options and

comparing them with previous alternatives. Until the holes in the domain knowledge

have been filled, a thorough exploration of the new, previously unexplored architectures

is important. Given the rate of technology adoption, these “holes” in the domain

knowledge may never be filled and as some are filled, others may appear.

In addition, competitors can often differentiate themselves by creating innovative

products that go beyond simply resizing previously used architectures. Architecture

exploration in these domains needs to be efficient because they usually require short

development cycles as a result of changing technology and a need to reach the market

first.

Although overall, quantitative data to support the value and impact of improving

the quality of architecture selection decisions is limited, one source of evidence is in the

success of Toyota Motor Company; this success is attributed in some part to their unique

approach for making architecture selection decisions. The decision making process at

 6

Toyota is usually referred to as set-based concurrent engineering; in this approach

multiple potential solutions (often the choice of appropriate architecture) are investigated

during the design process and the selection between them is delayed (Sobek Ii, 1999).

The suggestion is that by considering more solutions than is common in other firms,

Toyota is able to achieve better designs; this suggests that picking the appropriate

architecture is important, not just optimization of the component sizings.

Although broader exploration of the design space is likely to lead to better

resulting designs, the difficulty is more exploration results in the design process incurring

additional cost. Therefore, even with several compelling reasons for broad exploration, in

current design practice designers only investigate a few candidate architectures. They

select these architectures based on previous experience (Gero, 1996) or by quickly

narrowing the solution space using focused ideation methods (Pahl, 2007). Most of the

focus and effort is then applied to choosing the appropriate sizing for the components

within these architectures. With current practices, broad architecture exploration is not

pursued because it is too time-consuming or prohibitively expensive. Instead, ideating

possible architectures is left almost entirely to a human designer with minimal

computational assistance. By providing designers with better computational tools, more

of the design space can be explored before a decision is made as to the correct

architecture.

 Why is this challenging? 1.3

The current state of the art includes a number of well accepted systems

engineering processes available to support the design of a system. These processes

provide clear steps that designers can go through when designing a system. Although

 7

each process is slightly different (Buede, 2000, Parnell, 2011), the steps can be

generalized as:

1. Identification of the performance objectives and requirements: During this step,

the various stakeholders involved with the system come to a consensus of how the

system should perform, what are the desired functions and behavior, and so on.

2. Preliminary Design: Designers focus on making high-level system selection

decisions, such as the selection of the architecture. This phase is often broken

down into multiple steps including the definition of a logical (sometimes referred

to as a platform independent or functional) architecture and then the synthesis of

the actual physical architecture based on this logical architecture.

3. Detailed Design: Here, the focus is on the design of individual system

components, which also includes writing the necessary software to control the

system.

4. Integration of components into the system: After the appropriate components are

selected, purchased, or manufactured, they need to be integrated together into a

completed system.

5. Testing of the final system: The system is tested thoroughly to insure it is capable

of meeting the requirements prescribed in the first step. This process can be very

time-consuming and the systems deficiencies that are identified during this step

are costly and difficult to fix.

This investigation is primarily focused on the 2nd step where designers are focused

on making system selection decisions. Providing designers support early on in the design

process is challenging because of the scope of modern design problems and the inherent

 8

uncertainty present during early design stages. The fundamental problem is how to model

the knowledge associated with an architecture exploration then efficiently utilize that

knowledge to support designers’ decision making.

During traditional design processes, most of the problems that arise are because of

organizational complexity, not direct technology concerns affecting individual

subsystems or specific physical science areas. When trying to provide computational

support in this area, the issues are driven by the same problem of managing complexity

and insuring methods can scale sufficiently as to be useful. Many of the challenges that

arise are driven by the sheer scale of the design problem. Designers have a myriad of

potential architectures to consider, and for each of the architectures there is an almost

infinite combination of applicable component sizings.

 Because of the size of this space, many traditional design exploration processes

only consider it implicitly. Instead, the desired architecture is chosen in an ad hoc process

by gathering a large group of highly-skilled domain experts who use their knowledge and

experience to ideate and evaluate a handful of potential candidate solutions.

Because of the diverse performance requirements placed on a system, many

aspects of a system need to be evaluated; therefore, in addition to the need for domain

knowledge that spans a large number of different architectures, there is a need for in-

depth knowledge about each architecture.

As a result, there is a large amount of domain specific knowledge that these

designers are using during the process, but this knowledge is often only available in the

designers’ minds. This domain knowledge is often varied in form and difficult to

represent; the challenge is that without capturing this knowledge in a form that is

 9

computer interpretable it is very difficult for computational tools to support the design

process.

In addition to the large amount of domain knowledge that comes with such a large

space of potential alternatives, the size of the space makes it very difficult to search it

effectively. In addition, as alluded to in Sections 1.2, the search process is complicated by

the difficulty of distinguishing between different candidate architectures. Simply

generating a large number of solutions is difficult for human designers to process and it is

also not clear how well these generated solutions truly span the space of all potential

alternatives.

Analyzing these alternatives is also difficult; using current approaches designers

expend a large amount of effort on creating system-level analysis models that can be used

to size a particular architecture. Doing this during the preliminary design stage can

greatly slow the process because different analyses are needed for each system

architecture.

As can be seen from the description of the systems engineering process, after the

preliminary design stage where many of the system-level decisions are made, there is still

a significant design effort remaining. Also, most of the effort and resources that are

allocated to the design process will be used after this stage. As a result, at the preliminary

design stage there is significant uncertainty about the performance of any potential

architecture. Whichever architectures are selected in this phase (in almost all traditional

processes, only one architecture is selected) will receive significant attention and design

effort to insure that the final system is able to meet the prescribed requirements. These

challenges make providing computational tools difficult.

 10

 Desired Characteristics of the Approach 1.4

Considering these challenges, this section provides an overview of the desired

characteristics for an approach to efficiently and effectively utilize domain knowledge in

selecting between architectures during preliminary design. These characteristics are a

matter of perspective and different people may identify different characteristics or assign

the emphasis differently.

1.4.1 Guide the designer in making rational decisions

The most important characteristic of any approach is providing support for the

designers to make better system selection decisions. Therefore, the approach should be

internally consistent and not result in selections that are contrary to stated preferences or

the available knowledge. Decision theory provides well-established principles for

decision making (Hazelrigg, 2012). The decision process can be broken into four main

steps (which are illustrated in Figure 3.3 on p. 72):

1. Formulate the decision in terms of a solution-independent objective. There are a

number of approaches for creating this objective, such as Multi-Attribute Utility

Theory (Keeney, 1976) or Value-Driven Engineering (Castagne, 2009).

2. Identify the different alternatives that are being considered.

3. Predict the potential consequences or outcomes of choosing an alternative.

4. Evaluate each alternative outcome relative to the objective and identify the most-

preferred, thereby selecting the most preferred alternative.

These steps can help inform the correct structuring of an architecture selection

decision where the designer is making a decision between multiple potential

architectures, as in an architecture exploration. Guaranteeing an approach truly helps

 11

designers make consistent decisions is very difficult. Because of the scale of an

architecture exploration problem, capturing and applying all available knowledge to

predict the potential outcomes is impossible with current technology. For any approach to

be practical, significant simplifying assumptions are needed. Making simplifying

assumptions results in models with incomplete information which can lead to unsound

decision-making. Therefore, it is important to also understand the potential impact these

simplifying assumptions may have on the final result. Also, it is likely that the

architecture selection decision will need to be broken down into a set of simpler

sequential decisions.

Another significant issue is that decision theory is only applicable for situations

where there is a single decision maker and there is no scheme for aggregating together

the preferences of multiple decision-makers and still guaranteeing rationality and self-

consistency (Arrow, 1963). As will be discussed more thoroughly in Chapter 3, by

explicitly expressing domain knowledge in a form where it can be reviewed and

consensus can be reached by designers along with a definition of the exploration and

relevant objective, it may be possible to create a suitable facsimile of a single decision

maker. In current processes, these decisions are usually made by teams of engineers using

ad hoc selection criteria (Hazelrigg, 2012, Parnell, 2011) and one goal of this work is to

drive these processes toward more rational decisions.

1.4.2 Based on Computer-Interpretable Models

Traditional systems engineering processes rely heavily on designer insight or

intuition (hence-forth referred to as mental models) during architecture exploration.

These mental models often lack the fidelity to truly distinguish between alternatives and

 12

are subject to personal biases. For the kind of complex problem that is common in

systems engineering, it is also very difficult for a person to internalize and rationally

consider the plethora of choices.

In addition to a reliance on mental models, the architecture exploration is

recorded in paper documents. This means that the different stakeholder requirements and

objectives and the results of a multitude of analyses are in a form that is difficult to

review and apply.

Instead, it is desirable for the approach to capture as much of the architecture

exploration as possible in a form where it can be used to support the decision making

process. In order to accomplish this, computer-interpretable models are needed. Many of

these models take the form of information models which can be used to explicitly define

the scope of the exploration, the needed objectives, and analyses.

1.4.3 Efficient Search

Because of the large number of potential solutions, there is a very large search

space within which the best system architecture needs to be identified. Part of the

difficulty is in evaluating which architecture is truly the best. The other is in searching

this very large space in an efficient manner where results can be delivered to designers in

a reasonable amount of time. As mentioned earlier, a design project is constrained by

limited resources, which include available computer time. Also, any solver chosen needs

to be able to handle this large search space.

Although in traditional processes designers are seen as ideating the potential

architecture, this can be thought of as designers applying their domain specific

 13

knowledge to first eliminate architectures that they recognize as clearly poor and then

selecting the best remaining alternative.

In order to compare between different architectures, the performance of each

architecture needs to be predicted. Here, varying amounts of designer knowledge can be

used in predicting the expected performance of the architectures and trying to compare

them. In early design stages, the performance is usually described qualitatively by

making generic statements of how each of the architectures will perform (Parnell, 2011,

Sage, 2000a). As the process progresses, these performance estimates shift toward

quantitative predictions based on more concrete analyses. By slowly increasing the

fidelity of the analyses that designers perform, they are attempting to more efficiently

utilizing their scarce resources by managing the scope of the problem.

Taking this into consideration, a similar search approach could be desirable where

early on in the solution process only a subset of the domain knowledge would be used to

create analysis which would be useful in eliminating clearly inferior designs (for

example, one could eliminate architectures that would not provide desired functionality

given the desirable objectives and context).

Then, more effort could be used in evaluating more promising architectures. This

could entail using a variable-fidelity or variable-accuracy approach which is quite

common for problems where analyses take a long time to execute (Thompson, 2010). The

difference here is that instead of simply using multiple existing models that produce

results with different accuracies, these models will need to be constructed for each

potential architecture.

 14

1.4.4 Flexible formulation

Complex systems appear in a large number of domains, from aerospace to

construction equipment to computers. There is a very diverse set of potential components

and connections that can appear in these systems.

Any approach must be flexible enough to handle these very diverse constructs and

also facilitate the addition of new components and connections as technology advances.

This eliminates approaches where most of the domain knowledge is hard-coded and

difficult to change because applying such approaches is unlikely to be practical.

The formulation also needs to be accessible to domain experts so they can encode

their own domain knowledge, because it is unlikely that the captured knowledge will

sufficiently cover their domain and asking non domain experts to capture this knowledge

increases the opportunity for errors and omissions.

To provide support for these process, it is important to be able to represent the

definition of the architecture exploration problem in a generic and flexible manner where

a large amount of disperse domain knowledge can be incorporated.

Also, this representation needs to be sufficiently solution independent so that the

same domain knowledge can be reused at different levels of abstraction during disperse

phases of the solution process. Knowledge about the problem also needs to be captured in

a form that is independent from a particular architecture instance so that different aspects

of the problem definition can be composed to evaluate a particular architecture

alternative.

 15

1.4.5 Knowledge reuse at different levels of abstraction

During an architecture exploration, there is a need for a large number of analysis

models. Usually, for each individual architecture a different analysis is needed. Even if

this is not the case and multiple architectures can be considered with the same analysis

model, a large amount of domain knowledge will need to be synthesized to create these

analysis models. Also, as discussed previously, the scope and nature of architecture

exploration problems is constantly changing with the addition of new customer

expectations or new available technology. As a result, it is important the designers are

able to reuse any knowledge they have captured in computer-interpretable models.

It is also desirable to reuse domain knowledge across multiple architectures. Many

current systems engineering approaches express domain knowledge relative to a single

architecture (Estefan, 2007). Instead, since architectures are composed of common

components modularity could be utilized to capture domain knowledge at the component-

level and then composed into system-level models. Also, this would allow designers to

tweak the exploration problem early on when the design process can be plagued by

shifting expectations and objectives.

In order to support composability, the component-level models need to be

declarative in nature. There are two main approaches for defining and executing analysis

models: a declarative approach and an imperative approach. In an imperative approach

(also referred to as a procedural approach), the execution sequence needed to solve the

models is explicitly captured. This means that the procedure for executing the model is

included in the definition of the model. Often, the definition of the model is implicitly

captured in the computer code. For instance, consider MATLAB (Mathews, 1998)

 16

models where the solution process simply involves executing each line of code

sequentially. In such cases, it is difficult to simply compose multiple imperative code

fragments into working code. Because the execution order is explicitly defined in the

code fragment fixing the input/output relationship between the variables in the code, if

the code fragment is used in a different context it may no longer be applicable. For

instance, if a piece of code computes the pressure produced by a pump when given inputs

of torque and angular velocity, this code would not be applicable for computing the

torque or angular velocity given the pressure. Potentially, a root-finding algorithm could

be included in the code execution to reverse the causality, but this would add unnecessary

complexity to the model. On the other hand, in the declarative approach the analysis

model is defined without this explicit sequence, instead only the various equations (or

constraints) and variables are defined, and the simulation procedure determines the

appropriate sequence for solving or simulating these models. This makes is possible to

compose multiple model fragments; how to solve these fragments can then be determined

by the solver.

1.4.6 On adding value

When considering the previously enumerated characteristics, it is important to

consider how these add value to a design process in terms of allowing designers to

choose better designs and sustain a competitive advantage while also considering the

additional cost of each of these characteristics and insuring that the net result is a positive

one.

For instance it is desirable that a design method is self-consistent and rational, but

this usually makes the method more difficult to implement in practice (Hazelrigg, 2012).

 17

Eliciting the designer knowledge necessary and handling uncertainty can come at a high

cost, especially since designers are not adequately trained in statistics, uncertainty, or

decision theory. In current practice, one of the key enablers of the adoption of a design

methodology is that it is easy to apply with principles that are easy to understand, even if

they are not correct or rigorous (Hazelrigg, 2012).

Capturing the relevant designer knowledge in computer-interpretable models

increases the cost of modeling the problem, although it enables knowledge reuse. There

can be significant additional cost in training designers to represent their knowledge in

models and also significant overhead in creating these models. This is especially true if a

flexible formulation is used because it is often the case that designers must use generic

constructs to represent their knowledge, which is more cumbersome than if these

constructs were tailored to be domain-specific. Also, in order for these models to be

reusable across multiple iterations of the same project or even different projects, they

must be semantically rich and syntactically consistent enough to insure they are correctly

interpreted. Although reuse can greatly reduce the cost of the modeling effort in future

projects, there is also significant overhead in initially creating such reusable models.

To enable an efficient search process, it is usually necessary to constrain the

nature of the search space. Usually, efficient search is enabled by making assumptions

about this search space. Therefore, although certain search algorithms may be extremely

effective on a particular type of problem, formulating that type of problem may require

the exclusion of certain domain knowledge.

 18

When each of these characteristics is considered for the approach, it is important

that their implementation actually adds value to the design process and that the additional

costs incurred are offset by this added value.

 Gap & Vision 1.5

This research examines an approach to explicitly model architecture exploration

problems using information models and then an approach to transform this representation

into a number of analyses that can support designers when performing an exploration.

This approach relies on model transformation and composition of information models,

and the use of mathematical programming optimization tools to provide the efficient

search capability needed to support the exploration process.

Although information modeling is becoming more common in systems

engineering with such efforts as Model-Based Systems Engineering (MBSE)

(Friedenthal, 2008), in this research the push is toward using these models to support

better decision-making. In order to accomplish this, the approach needs to provide

designers with the tools to explore more potential architecture alternatives than is

currently possible.

There exists a number of computational synthesis approaches focused on the

generation of potential solutions, but this goal cannot be achieved through simply

exploring more solutions, because if these solutions are poor solutions it is unlikely that

the final design will improve in quality. Instead, the assumption is that by exploring and

evaluating additional promising candidate architectures, there is a greater probability that

the designer will choose a better design.

 19

For the approach to focus the investigation on promising solutions, not just

possible solutions, it is important to allow designers to encode their knowledge about the

domain so that promising solutions can be separated from poor solutions. By providing

designers with the means to encode their pre-existing knowledge about the nature of the

solution space, they can identify regions that are indeed promising. Depending on the

problem context the domain knowledge and promising solution space will change, so it is

important that this knowledge is flexible and easy to maintain. To support this, in this

research an approach for capturing the domain-specific analysis knowledge (the

knowledge needed to analyze a particular system alternative) in information models will

be investigated. By using information models, the domain knowledge can be stored in a

form that is reviewable and modifiable by the designer which is not true when this

domain knowledge is captured with hard-coded custom code as is common in many other

approaches.

Previous approaches rely on custom imperative code as a means to encode the

domain knowledge needed for the analysis or simulation of different alternatives

(Antonsson, 2001, Koza, 2010). In this research, instead of implicitly encoding the

representation of the architecture exploration problem in this custom code, the focus is on

using declarative models that are composed using model transformations into (potentially

multiple) analyses. By separating the problem definition from the analyses that guide the

solution process, multiple analyses at different levels of abstraction could be created from

the same problem definition.

In order to allow generic transformations, the information models must be defined

using a semantically rich language; to support the goals this language must also be

 20

accessible to designers. In order to accomplish this, in this research the definition of a

novel domain-specific modeling language will be investigated. This language will be an

extension of the Object Management Group’s Systems Modeling Language (OMG

SysMLTM or SysML for shorthand purposes) (Friedenthal, 2008, Object Management

Group, 2006). Since SysML is gaining popularity among practicing systems engineers,

using it as the basis and extending it means these practitioners will need to learn only a

handful of new concepts.

Just defining the problem definition in information models is not sufficient, it is

also important to identify the appropriate analyses that should be used to guide the

solution process. These analyses can be thought of as applying the designers domain

knowledge to guide the exploration. The nature of the solution process also informs the

structure of the problem definition because the domain knowledge that is necessary

during the process must be encoded. Analysis knowledge is needed to distinguish

between different architectures, but capturing this analysis knowledge for every potential

architecture is extremely time-consuming. To circumvent this, many approaches only use

very generic knowledge to differentiate architectures or focus only on encoding

knowledge about the desired structure of an architecture. Although this can provide

coarse differentiation of solutions, it is very difficult to include the design context with

such approaches and the design context informs the choice of the best architecture.

In this research, an alternative approach is investigated where analysis knowledge

is captured at the component-level; to evaluate an architecture, component-level models

are composed into system-level analyses. To allow for the composition of models in this

 21

way, the models must be captured in a declarative form that can then be interpreted and

modified by a solver.

To perform the exploration at early stages, this research will investigate the use of

the mathematical programming optimization tools as a means for efficient search to

identify potentially promising solutions. Mathematical programming is chosen because of

the availability of high-quality solvers that can efficiently perform very large

mathematical programming optimizations and the availability of languages that allow

mathematical programming problems to be represented in a form that is solver

independent so that multiple solvers (and multiple solution approaches) can be applied to

the same problem. Mathematical programming is rarely used in this domain because of

the difficulty of manually generating the necessary problem code that can be interpreted

by a solver. Instead, many methods create custom solvers that are tied directly to the

problem representation. To address this concern, this code will be automatically

generated through the use of transformations. Previous work has shown that

mathematical programming is relevant to this domain by using small-scale mathematical

programming optimizations to support the design of simple chemical networks. In this

research, the investigation will focus on applying the technique to much larger system

design problems because automatically generating the code will allow the creation of

significantly larger optimizations.

 Research Questions 1.6

To support architecture exploration processes that can be applied to real-world

design problems, the emphasis needs to be on the capture and use of the designer’s

 22

domain knowledge. This leads to the following research question that summarizes the

motivation of this investigation:

RQ: How should designers best represent, manage, and apply knowledge for

efficient exploration of system architectures?

This question is too broad to be answered in a single study. Instead, it can serve as

a starting point to identify several more focused research questions. There are four main

research questions:

RQ1. How should the designer define an architecture exploration problem?

RQ2. How can domain-specific synthesis and analysis knowledge be

captured and organized effectively to allow for composition and

reuse?

RQ3. What optimization framework is best suited for identifying promising

architectures?

RQ4. How should problem scale be managed?

1.6.1 Information Models and Domain Specific Language

When designers perform an architecture exploration process in typical systems

engineering processes, designers do not explicitly define the exploration problem.

Instead, the focus is often on explicitly capturing the results of their efforts in design

documents so that a large number of stakeholders can understand and internalize the final

specification. The main strength of documents, that they are easily accessible to humans

 23

because they require minimal training to use and modify, also makes them difficult for

computers to interpret.

One could argue the exploration problem is captured implicitly in the analysis

models used during the design process. Although it is true that these analysis models

have a particular architecture implicitly encoded, to explore architectures not considered

by the particular analysis requires manual modification of the analysis. Also, if a different

analysis is needed for a particular architecture, this analysis must also be created

manually.

These existing approaches are insufficient for explicitly defining the architecture

exploration problem. Instead, the following hypothesis, which corresponds to RQ1, is

studied in this research:

H1: Designers can represent their architecture exploration problem in information

models as an architecture selection decision consistent with decision theory using a

domain-specific language.

Although there is a growing trend of documenting the results of a design process

in information models, often referred to as Model-Based Systems Engineering, these

models lack the necessary detail to support a designer’s decision making process. Instead,

a novel representation for architecture exploration problems as selection decisions is

presented in Chapter 3. To validate this representation, it is applied to the design of the

hydraulic subsystem for a hydraulic excavator in Chapter 7.

This representation bases the definition of an architecture selection decision on

the structure of decisions from decision theory. It includes a description of the space of

potential solutions, domain knowledge that can be used to predict the performance of

 24

these solutions (so-called analysis knowledge), and also evaluation criteria to allow

different solutions to be ranked. These parts of the problem definition are captured in

computer-interpretable information models so that model transformations can be applied

to transform the appropriate aspects of the problem definition into a particular analysis.

To define the metamodel for the representation, a novel domain-specific language

will be defined that extends SysML (introduced in Section 1.5) will be used. SysML is a

very generic systems modeling language designed to represent many of the important

aspects that go into the definition of an architecture exploration problem. SysML contains

concepts for capturing system requirements, behavior, and structure. A major gap in the

constructs and best practices that exist with SysML is that previous emphasis has been on

documenting systems engineering processes instead of capturing knowledge and utilizing

that knowledge to help guide designers during those processes. As a result, some

additional language constructs are needed to represent the space of potential solutions,

how a potential solution should be evaluated, and how the exploration problem should be

framed. In some of these cases, the meaning of existing constructs can be slightly altered;

in other cases, additional constructs are added through the use of SysML’s profile

mechanism.

1.6.2 Model Libraries & Model Transformations

A significant issue with explicitly modeling the architecture exploration is

encoding the significant amount of knowledge needed. Even in MBSE methodologies,

the knowledge that is explicitly captured is specifically about a single architecture.

Instead, in this investigation the following hypothesis that relates to RQ2 is investigated:

 25

H2: Designers could use modularity and composition along with model transformations

to reuse knowledge encoded in models.

An organizational scheme for component-level model libraries and generic model

transformations is described in Chapter 4. To demonstrate the composition process,

generic model transformations are then used to compose these component-level models

into system-level analyses. To support the hypothesis, the generic transformations are

used to generate both mathematical programming optimizations (in Chapter 6 & 7) and

differential equation-based dynamic behavior models (in Chapter 4). The conditions

necessary to compose models through model transformations are considered in Chapter 4.

It is important to explicitly capture the relationships between models and also include

meta-data so that that the appropriate models can be identified and composed.

When representing the problem and constructing the transformations, the enabling

characteristic is the commonality in structure of different system architectures and also

different types of system architectures. Although the examples in this investigation are

from the fluid power domain, some discussion on the commonality between different

system architecture’s structure is presented in Chapter 3 & 4.

1.6.3 Mixed-Integer Linear Programming

Once an architecture exploration is defined, the appropriate analyses need to be

applied to guide the decision making process. In many previous approaches, because of

the nature of the solution space genetic algorithms or similar techniques are used to

search the space (Koza, 2010).

 26

Instead, in this investigation the following hypothesis related to RQ3 is studied:

H3. Designers could use mathematical programming optimization tools to identify

promising solutions early in the exploration. Mixed-Integer Linear Programming should

be used for architecture selection.

Mathematical programming is not commonly used for this application, although

as mentioned earlier some prior work has established that it is relevant (Biegler, 1997).

The current drawback of mathematical programming tools is the difficulty in manually

creating the large mathematical programming formulations necessary to represent

architecture exploration problems. In this investigation, the transformation approach

described in the previous section will be used to automatically generate the text-based

models necessary.

This allows further investigation into using mathematical programming in this

domain. In Chapter 5, a representation of an architecture selection decision as a

mathematical programming problem is represented along with a qualitative comparison

of mathematical programming with other potential search approaches. This includes a

novel model transformation that includes simplification of certain aspects of the problem

definition so they can be represented in the mathematical programming formalism. The

underlying assumptions of this mapping are addressed in Chapter 6 to establish that the

resulting mathematical programming formulation matches the problem definition. The

hypothesis is further supported with examples using the approach to support the design of

an excavator’s actuation subsystem is described in Chapter 7.

The difficulty in performing an architecture exploration derives from the large

variability in a potential system and the large number of potential architectures that could

 27

be explored. Confounding this problem is that these architectures exist in a discrete

space.

Where others have attempted to describe this discrete space through generative

grammars (Schmidt, 1997, Schmidt, 1998), the approach here is to define this space using

constraints. This sort of problem can be described as Boolean satisfaction problem

(Creignou, 2001) or a weighted MAXSAT problem (Domingos, 2008b), but the size of

the optimization problem and the desirability to allow the representation of continuous

variables drives the selection of mixed-integer programming from the mathematical

programming domain (Williams, 1999).

To represent mathematical programming problems, the AIMMS modeling system

is utilized (Bisschop, 2006). There are a number of similar systems such as the General

Algebraic Modeling System (GAMS) (Brooke, 1998) or A Mathematical Programming

Language (AMPL) (Fourer, 1990a). These systems provide a textual language for

representing mathematical programming problems and a supporting toolset for applying

solvers to these definitions. To solve mixed-integer linear programming problems, IBM’s

CPLEX (International Business Machines Corp, 2009) is used. Using only linear

equations to describe a designer’s knowledge about component and system behavior is

limiting, but at early stages of the process it is crucial to make appropriate simplifications

so that the solver is able to handle the scale of the problem.

Although not thoroughly addressed in this investigation and left as future work, in

the following design stages, the same problem formulation along with the knowledge

gained during this initial step could be used to generate a more accurate mixed-integer

 28

nonlinear programming optimization or an optimization involving more accurate

simulations which would search a reduced design space.

1.6.4 Managing Complexity and Supporting Scalability

In order for an approach to be applicable to real-world problems, it needs to be

able to scale. This is a drawback with many current computational synthesis approaches,

because they rely on a single kind of analysis or level of abstraction. Therefore, in this

investigation, one of the central issues is how the approach can be scaled to real world

examples. Even in a simplified form, the excavator example provides a good case study

for the approach in terms of how well it will scale.

To manage the complexity of a given problem, two separate approaches are

considered in this investigation, but they are applied only as necessary in the example

problems.

The first is to allow the designer to easily restrict the space of considered

solutions so that the search process is only focused on important aspects. For instance, in

the excavator example the configuration of the valves could be fixed and the focus could

on selecting the appropriate number and configuration for the pumps. This example will

be provided along with the main excavator in Chapter 7.

The second is to break down the search process into multiple steps where more

accurate analyses are used as the process progresses and the space of solutions is reduced.

Although this approach is not highlighted in the examples, how multiple analyses can be

created is discussed in Chapter 4 and 6. This is practical in this approach because the

same architecture selection problem definition can be used in conjunction with different

model transformations to generate analyses with different accuracies. There are multiple

 29

ways in which the knowledge captured in the problem definition can be recombined and

each of these recombinations results in a different set of analyses. A conceptual overview

of such an approach is shown in Figure 1.1 where the same problem definition is used as

basis for the creation of multiple analyses. In this example, three types of analyses are

considered with each type focused on a different stage of the exploration process. In this

investigation, the focus is on demonstrating mixed-integer linear programming can be

used to synthesize potential architectures by exploring the solution space and combining

different components into meaningful configurations as described in the previous section.

To more accurately size promising architecture, mixed-integer nonlinear programming

could be used (Åkesson, 2010a, Shah, 2010c). This allows the inclusion of more complex

equations that can provide more accurate predictions about the optimal sizing of a

candidate architecture. The final type of analysis could be based on differential algebraic

equations that can be used to truly model the dynamics of a system as is consistent with

many current optimization approaches. Demonstrating not only that these approaches can

be applied but how they should be applied to manage the complexity found in large

problems is left for future work.

Figure 1.1: Conceptual overview of a multi-staged solution approach.

 30

 Expected Contributions 1.7

During the investigation of the research questions, it is expected that a novel

framework for solving architecture exploration problems will be developed. A new

domain-specific language will be developed to provide systems engineers with the means

to represent architecture exploration problems explicitly in a compact and flexible

fashion. To simplify the definition of the problem, the use of reusable model fragments

will be explored. These fragments will be stored in model libraries along with explicit

representations of the relationships between the fragments. The goal of developing this

framework is to demonstrate the value that can be added to a design process by explicitly

representing an architecture exploration problem with the overall goal of facilitating more

rational decision making during the design of a system. By explicitly representing the

problem and using model transformations to automatically create analyses needed to

solve the problem, the goal is to demonstrate that using information models during the

design process can allow for new decision-support capabilities, not just the

documentation of a systems engineering process.

Another expected contribution of this work is to demonstrate the creation of

analysis models through composition for the architecture exploration process. To allow

the representation of the knowledge in the architecture exploration problem as a

mathematical programming optimization problem, a composable formulation for this

knowledge will be developed. This will also facilitate the definition of a transformation

from the architecture exploration problems captured in the domain-specific language into

the mathematical programming formulation. In current systems engineering practice and

in the previous work in computational design synthesis (that will be discussed in Section

 31

2.3), the creation of analysis models is a manual exercise that often needs to be repeated

for each architecture under consideration. The composition approach developed during

this investigation would facilitate the automation of this process and could significantly

decrease the time and resources needed by designers and domain experts to create these

analysis models.

An implementation of this transformation will be created from the domain-

specific language into the mathematical programming representation. This will allow the

automatic generation of mathematical programming optimizations from the more

compact representation of an architecture exploration problem. This transformation will

demonstrate a composition approach to automatically create system-level analysis

models. Example problems generated using the transformation will allow the testing of

mathematical programming solvers, specifically IBM’s CPLEX, to demonstrate that

mathematical programming techniques are applicable to solving this type of problem. In

current practice, mathematical programming techniques are rarely used in the systems

design domain. This will demonstrate the applicability of these solvers to the systems

design domain, with the overall goal to move towards more widespread application of

these existing techniques to systems engineering applications. Also, the automatic

creation of the mathematical programming optimizations from component-level analysis

models that are composed will demonstrate that by using the appropriate abstraction

level, large mathematical programming problems can be created efficiently.

 Investigation Roadmap 1.8

The rest of the thesis is broken into several focus areas, each one with one or

more associated chapters. As an aside, if the reader wants only a cursory description of

 32

the investigation and relevant results, it is recommended to read Chapter 3 from the

beginning through Section 3.4.2, Chapter 4 from the beginning through Section 4.3,

Chapter 5 starting at Section 5.3 through 5.5, Chapter 7, and finally Chapter 8. This skips

the comprehensive presentation of prior and related work in Chapter 2, but each chapter

includes relevant related works to establish the context. Also, this skips some

intermediate results and discussion presented in the chapters with the goal of moving

quickly to the final results.

The first area, of which this chapter is a part, introduces the research and prior art

in this field. These chapters can be summarized as follows:

• Chapter 1 is a high-level introduction to architecture exploration, describing

current difficulties and the aims of this research. It contains the overall vision for

how designers can model and perform these explorations by representing

architecture selection decisions in information models and transforming these

models into a mixed-integer linear programming formulation where mathematical

programming optimization tools can be used to perform the exploration. This

chapter also includes the key research questions and how they will be addressed.

• Chapter 2 is a presentation of the problem background in greater detail. The

current state of the art in systems engineering is described to identify how this

method fits into the broader field. This includes a review on prior work with

system and (to a less-extent) software architectures and architecture design. Also,

previous approaches for performing computational design synthesis, a field in

which this investigation also fits, are discussed along with their limitations.

 33

The second area shifts to the problem of capturing design knowledge in various

formulations and transforming between those formulations. This is presented to enable

the exploration of the research questions. This focus consists of four chapters:

• Chapter 3 provides a description of how the designers’ knowledge can be

formulated into an architecture selection decision and captured within information

models. The language used to define these information models is based on

SysML, with SysML’s profile mechanism used to extend the language where

necessary. The foundation for representing an architecture selection decision in a

form that is consistent with decision theory is also presented.

• Chapter 4 is a discussion focused on model reuse and composition. The goal is to

describe how relevant domain knowledge can be captured in reusable component-

level model fragments that are organized into model libraries. To illustrate that

these model fragments can then be composed, a transformation is presented and

demonstrated from an architecture selection decision where the architecture is

known into a dynamic analysis of that architecture.

• Chapter 5 is a description of the formulation of an architecture selection decision

as a mixed-integer linear programming optimization problem. Mathematical

programming is also compared to other potential search approaches. In order to

make the definition of the problem applicable to the composition approach, it is

presented in a modular fashion where each element of the architecture selection

decision is mapped into a single construct or set of constructs from the

mathematical programming domain.

 34

• Chapter 6 is a description of the transformation from the model-based problem

definition described in Chapter 3 into the mathematical programming form

described in Chapter 5. This transformation enables the practical representation of

architecture selection decisions in a form that is consistent with the representation

in Chapter 5.

The next area focuses on illustrative examples that support the hypotheses:

• Chapter 7 is a presentation of an engineering example where architecture

exploration is performed to select the hydraulic subsystem for an excavator. This

problem demonstrates the applicability and scalability of this solution approach

when dealing with real-world type problems.

The final chapter brings closure to the research:

• Chapter 8 is a description of the contributions and limitations of the research, and

also includes the open questions raised during this investigation.

Also, two appendices of interest are included:

• Appendix A is a compilation of the domain knowledge included in the SysML

model libraries.

• Appendix B contains sample AIMMS code generated by the transformation

presented in Chapter 6.

 35

CHAPTER 2:

PRIOR AND RELATED WORK

This chapter is a review of prior and related work in systems engineering and

computational design synthesis. An examination of the limitations of current practice in

systems engineering as it relates to the context of system architecting is also included

along with a review how current state-of-the-art design synthesis approaches fail to

address these limitations.

Section 2.1 is a review of current decision making practices in systems

engineering including the limitations of current practices. The goal is to establish the

limitations of current approaches and build a case for using computational tools to

support decision making at the conceptual design stage.

Section 2.2 considers potential analysis and evaluation approaches used and how

they relate to the conceptual design stage.

Section 2.3 is a review of current computational design synthesis approaches,

along with the limitations of these approaches and why they are currently not capable of

supporting designers’ selection of an approach systems architecture.

 Current Systems Engineering Practice 2.1

2.1.1 Systems Engineering Processes

Systems engineering is an interdisciplinary field focused on the design,

maintenance, and operation of complex systems (Sage, 2000a). Systems engineering

provides various systematic processes and frameworks that help deal with the complexity

of modern systems. Because of the complexity of these systems, systems engineers

usually focus on designing the architecture of a system and delegate the design of

 36

individual components to domain experts. Although there is not one universal definition

for a system architecture, it usually represents the structure of the system (the physical

architecture) and its expected behavior (the functional architecture) (Buede, 2000).

Systems engineering provides several methodologies or frameworks for designing

and maintaining a system (Estefan, 2007). These methodologies provide a systematic

approach for decomposing the system design problem into simpler sub-problems. There

is also a growing trend in these methodologies towards model-based approaches and the

use of models throughout a systems engineering problem. One such approach is Model-

Based Systems Engineering (Fisher, 1998) where models are used instead of documents

as the design artifacts used during and resulting from the systems engineering process.

One of the benefits of this trend toward formal modeling is the emergence of well-

defined modeling languages such as the Systems Modeling Language (SysML) for

modeling systems engineering problems (Friedenthal, 2008). By leveraging these

modeling languages for representing the knowledge needed to synthesize and analyze

architectures, the hope is that these representations will be more intuitive to systems

engineers and also allow leveraging other tools that rely on these languages. The current

limitation of the systems engineering languages is they fail to provide features for

capturing spaces of alternatives.

Since this research is focused on supporting designer decision-making, namely

helping designers make ”good decisions,” it is important to understand the characteristics

of a “good decision” before delving into systems engineering and systems engineering

practice. Many in the design community recognize decision making as a central aspect of

 37

engineering design (Bras, 1993, Hazelrigg, 1998, Olewnik, 2006, Thurston, 1991) and

this recognition is spreading into systems engineering and systems design (Parnell, 2011).

A decision is normally defined as an irreversible allocation of resources. Strictly

speaking, it is impossible to “un-make” a decision, one may make a subsequent decision

to reverse the effect of a previous decision. It is difficult to characterize the goodness of a

decision, for decisions are made in the present but result in outcomes in the future

(Hazelrigg, 2012) These outcomes are affected not only by the decision but by uncertain

events (since the future cannot be perfectly predicted, there is uncertainty in the decision

making process). This means that rational decisions may result in bad outcomes while

less rigorous decision making approaches may actually result in good outcomes.

Therefore, judging the decision purely on outcome is not the desired approach. The best

that designers can hope for is to make rational decisions, decisions that are consistent

with the designer’s beliefs and preferences.

Von Neumann and Morgenstern proved that any decision maker whose behavior

is consistent with the axioms of rationality has a real-valued utility function that is such

that the behavior of the decision maker can be explained as maximizing the expected

value of this utility function (von Neumann, 1980). Such utility functions thus provide a

mathematical formalism for expressing rational behavior and a designer should strive to

maximize this expected utility. Although there are some challenges to utility theory, most

revolve around whether a decision maker is truly rational (Hazelrigg, 2012). There is a

growing consensus that the only proper way to formulate the objective of a systems

design problem is to use utility theory where the utility function is an expression of a

designer’s or firm’s preference with regard to profit (Castagne, 2009, Hazelrigg, 2012)}.

 38

With this objective defined, the designer should then go about ideating potential

solutions, computing this objective for those solutions, and then selecting the best

solution. The reality is, in systems engineering and systems design, this is rarely done.

As originally described in Chapter 1, systems engineering design processes use a

top-down hierarchical decomposition approach to make decisions which has a number of

distinct steps:

1. Identification of the performance objectives and requirements: During this step,

the various stakeholders involved with the system come to a consensus of how the

system should perform, what are the desired functions, and so on.

2. Preliminary Design: Designers focus on making high-level system selection

decisions, such as the selection of the architecture. This phase is often broken

down into multiple steps including the definition of a logical (sometimes referred

to as a platform independent) architecture and then the synthesis of the actual

physical architecture based on this logical architecture.

3. Detailed Design: Here, the focus is on the design of individual system

components, which also includes writing the necessary software to control the

system.

4. Integration of components into the system: After the appropriate components are

selected, they need to be integrated together into a completed system.

5. Testing of the final system: The system is tested thoroughly to insure it is capable

of meeting the requirements prescribed in the first step. Issues identified in this

step are usually solved in an ad hoc which the goal being to make the system

 39

work. This process can be very time-consuming and the systems deficiencies that

are identified during this step are costly and difficult to fix.

Although it is likely that the overall structure of the process can improve, this

structure is the result of significant real-world application and testing. In this

investigation, the focus is not on changing the structure of the overall process, but instead

on improving the results of common tasks undertaken within the context of this process.

To summarize the relevant steps, the design of the system architecture is usually

accomplished by starting at stakeholder concerns. These concerns are then transformed

into a set of requirements. An architecture that is capable of satisfying the requirements is

then created and that architecture is carried forward into subsequent steps. This set of

requirements defines the solution space and designers are tasked with creating a

candidate solution that is capable of achieving these requirements. There are a number of

different approaches for performing the transformation from requirements to a candidate

architecture; each company or even design team usually has an ad hoc approach that is

favored that relies heavily on designer experience and intuition. In current practice,

computational tools are rarely utilized, although the lack of utilization should not be used

as the indicator that the process is poor. Usually, ideation techniques are employed that

can range from brainstorming to morphology matrices and function-based decomposition.

In the ideation phase, one goal is to broaden the space of considered alternatives and

often designers are encouraged to consider untraditional solutions. This is often done by

providing them external guidance using methods such as bio-inspired design (Parnell,

2011).

 40

Then, some evaluation criteria are established to differentiate the potential

solutions. This evaluation criterion may be quantitatively stated as a mathematical

equation, as in utility theory or value-driven engineering (Castagne, 2009), or stated

qualitatively as is common in Pugh Matrices (Pugh, 1990), Quality Function Deployment

(Akao, 2004), and others. These qualitative approaches are the most commonly used

when pairing down potential alternatives. They are driven by reaching consensus among

a large number of experts, each of which has a large amount of domain knowledge about

also personal biases and potentially incorrect preconceptions.

Because the design of systems is complex, often involving numerous stakeholders

and design engineers, much effort is taken to decompose the design problem into a set of

simpler problems. This is often accomplished using ad hoc approaches where the design

of the system begins at a high-level of abstraction and detail is slowly added. During such

a process, designers begin at high-level stakeholder concerns and slowly decompose the

problem into a growing set of requirements. In the same way, the system is specified by

adding detail; as new components or subsystems are included in the system specification,

new requirements are also added. Sometimes this is done in a multi-stage process where a

logical or platform independent architecture is created based on the requirements, and

then this architecture is used as a guideline for the creation of the actual candidate

architecture (Friedenthal, 2008). This is similar to function-based design, where the goal

is to delay the system specification and reduce designer biases about a particular

component technology.

The use of requirements allows certain aspects of the design process to be

delegated; the subsystem under design needs to meet the prescribed requirements. These

 41

requirements are often written as shall statements, i.e. “the system shall contain a power

subsystem” or “the system shall have a mass less than 500 kg.”

There are numerous issues with this approach, from the practical difficulties of

managing and verifying a potentially large number of requirements (it is not uncommon

for modern systems to have tens of thousands of such requirements) to the mathematical

soundness of decomposing the problem in this manner. The decisions being made by

designers during this process are embedded in the resulting requirements, and are

difficult to review. Early in the process these decisions are made using qualitative

approaches such as those previous mentioned. Even when value-driven or quantitative

metrics are established for evaluating a design, these are not employed until late in the

process when the architecture and many of the component choices have already been

made. There are several reasons for this, including the difficulty of analyzing such

complex systems at early design stages and the cost of creating necessary analyses for a

number of different architectures. The quantitative trade-studies or optimizations used

focus more on a small number of parameters because formulating such optimizations is

significantly simpler. Usually, such optimizations already implicitly include the entire

structure of the system, and therefore cannot be used during early conceptual design

stages.

Recent work in systems engineering, even work in Model-Based Systems

Engineering, has focused mainly on the practical concerns (Estefan, 2007, Hazelrigg,

2012, Parnell, 2011, Sage, 2000a). There is limited literature in the systems engineering

domain on the decision making process (Parnell, 2011).Value-driven design, where the

goal is to design the system to maximize a system value (such as organizational profit or

 42

tactical effectiveness), has called into question the use of performance requirements when

designing a system (Castagne, 2009). Requirements can be seen as constraining the

design space, and the argument is that simply constraining the design space does not lead

to better designs. Value-driven design is being applied during the F6 Program (Castagne,

2009).

To facilitate an approach such as value-driven design where system-value is

maximized, several significant improvements to the current state of the art are needed:

the ability of quantitatively evaluate architectures during early stages of the design

process, the ability to generate these quantitative analyses for a large number of candidate

architectures, and the ability to use these analyses to search a potentially large space of

promising candidate architectures.

2.1.2 System Architecting

Although the systems engineering discipline encompasses an entire system’s life

cycle, since the focus of this investigation is on supporting decision making when

choosing between multiple architectures it is important to consider the related literature in

system architecting. System architecting can be defined as the art and science of

designing and building systems (Maier, 2000). In current practice, system architecting is

considered a qualitative and inductive process that is performed very early in the design

cycle. Most often, only very abstract models are used during this phase, with much of the

decision making based on experience and simple heuristics, such as reducing the number

of components or connections or reducing coupling. Part of the process is only in

identifying

 43

There are a number of frameworks for describing systems architectures, a

comprehensive review can be found in (Emery, 2009). One major framework is the

ISO/IEC 42010 standard (ISO/IEC, 2007), in which a system architecture is defined as

containing the fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, as well as the principles guiding its

design. This definition is consistent with the definition provided in Chapter 1, although

the definition in Chapter 1 is slightly more restrictive because it defines components as

having well-defined interfaces by which they are connected.

One of the major goals during this early phase of system architecting is

identifying the appropriate stakeholders and their relevant concerns in a qualitative sense;

after refinement these are transformed into quantitative descriptions of the objectives for

the system. Also during this phase, there is negotiation with the stakeholders to identify a

feasible set of these concerns based on available technology. During this phase,

experience and various heuristics are employed to identify the potential components and

architecture implementations. Very little quantitative analysis is performed because high

fidelity models are not available (Maier, 2000).

The goal of this investigation is not to replace the human effort expended in

identifying the objectives for the system or in scoping potential implementations. Instead,

the goal is to facilitate more quantitative decision making during this process. By

providing designers with tools to quickly perform trade-studies and identify promising or

infeasible solutions early in the design process, more quantitative decisions can be made

when choosing the overall structure of the architecture.

 44

The architecture representation described in the ISO/IEC 42010 standard

organizes models based on several views; these views correspond to concerns coming

from many different stakeholders (such as engineers, designers, architectures, and so

forth). Each of these views conforms to a specific viewpoint which defines the elements

that can appear in that view. The description of the architecture selection decision

presented in Chapter 3 is informed by this standard, but the description provided there is

only a subset of the information captured in the 42010 standard.

2.1.3 Software Architecting

In addition to the field of system architecting, these is also extensive prior work in

computer science focused on software architecting. In software design, the goal is also to

construct code that is functional, efficient, and easy to maintain. Many of the strategies

used in system architecting originate from software architecting and object-oriented

programming, such as partitioning and encapsulation. A more complete review of these

different approaches can be found in (Gamma, 1995). Also, in the review of

computational synthesis approaches in Section 2.3, approaches geared toward the

generation of software architectures are also considered.

 Evaluation and Decision Making 2.2

There is significant prior art focused on evaluating incomplete designs during

stages of the design process which is applicable to the evaluation of candidate

architectures. Many of these methods focus on making system-level design decisions and

how to model these decisions at the system-level. Before discussing the quantitative

approaches, the next section provides a review of qualitative approaches and their

inherent limitations. In Chapter 1, the argument was made that the appropriate way to

 45

evaluate an architecture is to choose the best instance of the architecture and evaluate the

best instance; this approach will be contrasted with those found in previous work.

2.2.1 Qualitative approaches

Although a primary concern of this research is to apply designer’s knowledge

captured in quantitative models to support system-level decision making, quantitative

models are not the only approach that could be taken. Capturing knowledge in

quantitative modes can be difficult and time consuming, so it is necessary to establish

conditions when this is desirable. There is the potential to use mental models if designers

feel confident enough with their ability to assess the outcomes of their decision

alternatives; for example, formulating the problem using utility theory and then using

tacit understanding to assign each alternative with an approach value.

The design literature also contains several other selection methods which are

commonly employed to make sure of design expertise to evaluate alternatives that are not

based on utility-theory. This includes Pugh selection (Pugh, 1991), Quality Function

Deployment (Akao, 2004), various rating matrix approaches and the analytic hierarchy

process (Saaty, 1990). Although these methods have well-defined and easy to follow

approaches for implementation (they are prescriptive and not normative), there is

significant doubt as to whether these approaches lead to the selection of the most

preferred alternatives. As mentioned previously, these approaches are also the most

common in systems engineering, largely out of necessity. This illustrates a clear gap

between current best practice and normative theory.

By relying on qualitative mental models, an architecture exploration would also

require significant human input. Even if computational support is provided to generate a

 46

large number of potential solutions, designers would need to use their expertise to

evaluate this solution population, and possibly evaluate a number of poor solutions.

Another approach is to use computational qualitative reasoning (Bobrow, 1984,

Hunt, 1993). In qualitative reasoning, instead of quantitatively solving equations,

qualitative statements are made (for instance, the sign of certain terms (either positive or

negative) or relative magnitudes). This has the advantage of not requiring exact data or

exact models during the reasoning process and can also significantly speed up analysis.

The EDISON system is a qualitative reasoning tool to support design improvisation

(Hodges, 1992), it uses a qualitative reasoning framework to support the synthesis of

machine primitives into simple mechanical systems. A significant issue was the inclusion

of appropriate qualitative constructs and machine primitives to allow the system to

correctly infer the behavior of a particular system. This is true of any logical system,

where a major shortcoming is forcing designers to describe their knowledge about the

system in logical statements. The construction of these logical statements is difficult if

the goal is for them to describe a systems performance.

2.2.2 Sizing techniques

Another common approach used in systems design is to avoid optimizing for the

best instance of a candidate architecture and instead to apply a sizing procedure to choose

the appropriate sizing parameters. The engineering product literature contains several

examples of these so-called component sizing procedures. A sizing procedure is a

sequence of computational steps through which a designer can identify the appropriate

component sizes (and often the appropriate component model-number) for a candidate

architecture. Essentially, this simplifies the resource allocation or sizing decision by

providing fixed mathematical relationships for the sizes; the drawback is these

 47

mathematical relationships are based on a large number of simplifying assumptions

which may not hold in every context. It also prevents desires from performing tradeoffs

between such factors as performance and cost.

One can find procedures such as these in the literature associated with many

domains. Parker Hannifin publishes a guide for how to size pumps and other hydraulic

components (Parker, 2002). Given assumptions about the engine, loading characteristics,

gearing and design requirements (e.g., lifetime), they define a procedure for determining

the suitable pumps and motors. Eaton and Sauer-Danfoss, competing companies, also

publish a similar documents for their hydraulic pumps and motors (Eaton, 1998, Sauer-

Sunstrand, 1997). This reveals another limitation of sizing procedures, that they are

tailored to the context of one product line or one company’s products.

2.2.3 A Foundation for Modeling Architecture Explorations

The mechanical design literature provides a number of quantitative frameworks

for decision making during the design process. Decision making and optimization

methods are also closely linked in the design literature.

One such approach is decision-based design, where decision-making is the central

activity being performed during the design process. This approach is normative and

prescribes that decision makers should formulate and solve decision problems in a

mathematically consistent and rational manner. The limitation of normative frameworks

is they describe how designers should make decisions; they rarely tackle the practical

details of how designers can make decisions.

Then, the task is to formulate the appropriate decisions and organize the relevant

information. One such formulation technique is the Decision Support Problem Technique

in which the design problem is formulated as a Decision Support Problem (DSP). A DSP

 48

is a template for structuring various types of decision problems. The one of most interest

to this work is the compromise DSP (cDSP) (Bras, 1993, Karandikar, 1989).

Although these frameworks provide a rich (textual) language for designers to

represent their problems, they lack a clear approach to defining the system alternatives.

Defining the decision in a form that is convenient to designers is a major focus of this

investigation; whereas previous approaches have established mathematical

representations for the decision problem, in this work a domain-specific language is

defined to allow designers to conveniently capture the relevant knowledge. Also, the

optimizations are based on low-level system variables which relate to the physical

construction of a system. When these approaches are demonstrated in prior work, the

selection of the architecture has already occurred.

2.2.4 Surrogate Models

A difficulty in evaluating potential architectures is the computational expensive of

running the necessary analysis models. To alleviate this issue, another commonly used

approach is to replace these expensive computational models with surrogate models

(sometimes also called a meta-model or a reduced order-model). One achieves this by

constructing a more complex model, sampling this model, and then fitting a simpler

model to the data. There are several example of surrogate modeling, such as Bayesian

techniques, Radial-Basis Functions, splines and Kriging models.

Kriging models have their origins in geo-statistical applications that involve

spatially and temporally correlated data (Matheron, 1963). Because a kriging model is an

interpolation model, it fits all given data points exactly. Kriging models were used in the

context of the optimization of a hydraulic excavator in (Conigliaro, 2009) and by

Simpson to estimate subsystem uncertainties (Gano, 2006).

 49

There are other interpolation methods, such as radial basis (Dyn, 1995) or splines

(Friedman, 1991) which could also be used in these applications. There exist several

surveys of surrogate modeling techniques being applied in a design context (Jin, 2003,

Simpson, 2001, Wang, 2007).

The difficulty in using surrogate models is they rely on input-output data from

existing models; these models still must be constructed by designers. Also, surrogate

models often assume that the model being approximated is continuous; this is not the case

when considering multiple candidate architectures, therefore a new surrogate model is

needed for every candidate architecture.

2.2.5 Predictive Models

Instead of attempting to evaluate an architecture using low-level component

parameters such as bore diameter or gear ratio, another approach is to predict the

architectures performance based only on higher-level parameters such as mass or cost

(Malak, 2010). To accomplish this, Pareto dominance analysis is used to eliminate

inferior components and then a surrogate model is fit to the remaining data points. This

surrogate model describes a relationship not between low-level component attributes but

instead items such as cost or mass. In this investigation, this concept is used to simplify

the sizing approach by considering mainly higher-level parameters.

2.2.6 Optimization in Systems Design

There is extensive prior art in applying optimization in the context of design, but

often optimization is applied to a particular subsystem or after a significant portion of the

design is already fixed. Of particular interest to this investigation is optimization methods

focused on system-wide optimization. There are two major frameworks which fit into

system-wide optimization, collaborative optimization, where a system-level optimization

 50

coordinates several component-level optimizations, and multidisciplinary design

optimization (MDO) (Sobieszczanski-Sobieski, 1997) where the system analysis is

decomposed by various disciplines (static, dynamics, thermal, acoustics, and so forth)

instead of components. One top-level optimizer is used to manage multiple sub-

optimizers which are optimizing across different disciplines or components. The top-level

optimizer guides the sub-optimizers and also insures that they are operating on a

consistent description of the current solution. The issue with these optimization methods

is that they are designed to occur after the system architecture has already been fixed.

 Computational Design Synthesis 2.3

A key issue with approaches from mechanical design is they rely heavily on the

expertise of human designers during the architecture selection stage. On the other hand,

there is significant work in the research community on computational design synthesis,

where computational tools are used to transform the definition of a design problem (often

stated as a set of requirements) into potential solutions. For many computational design

synthesis approaches, the focus is directly on synthesizing potentially promising

candidate architectures (Agarwal, 1999, Cagan, 2005, Helms, 2009, Yeomans, 1999),

although rarely do design synthesis methods differentiate between synthesizing the

architecture and sizing this architecture.

The advantage of computational design synthesis methods revolves around the

promise that they can explore a wider range of solutions than human designers and they

can also reduce the tedium of some design tasks leaving designers more time to perform

other, more creative, activities.

These supporting arguments are similar to those made in the first chapter. In

addition, computational tools should not be thought of only for supporting the exploration

 51

of additional solution or the reducing of tedious tasks, but also for supporting a designer’s

decision making process in choosing the appropriate architecture.

Previous work on design synthesis usually focuses on a particular domain, such as

gears (Starling), shapes (Agarwal, 1999), or chemical networks (Biegler, 1997). Systems

engineering problems are by definition interdisciplinary, so it is important to consider

how to represent the problem of architecture synthesis in a form where knowledge from

various disciplines can be easily incorporated. Some approaches represent alternatives by

having designers enumerate every combination which for most systems would be

intractable because of a combinatorial explosion of possible combinations. Other

approaches use custom code to create the data structures used to express possible design

solutions (Agarwal, 1999). Because of the wide range of possible domains in systems

engineering, it is important to consider a more general approach where designers can

express their knowledge in flexible data structures that are more consistent with the shift

toward model-based approaches.

2.3.1 Function-Based Approaches

In early stages of a systems design process, designers often elicit and decompose

the functions of a system. The end result is a functional architecture; designers use this

functional architecture as a basis for designing the physical architecture by choosing

structural components that embody the appropriate functions. Function-based approaches

attempt to support this process with computational tools by creating repositories of

common functions, their inputs and outputs, and compatibility between functions and

then use these repositories as a basis for automatically generating functional

architectures.

 52

Designers represent their knowledge about potential functions and also their

embodiments within a repository (Bohm, 2008, Bryant, 2005). Designers provide a

description of the functions of the system, and the tool synthesizes functions from the

repository until the functional architecture is able to achieve these functions.

Compatibility between functions is then often used to prune infeasible results. Functions

are represented as transforming inputs into outputs; they are also usually atomic building

blocks of systems, for example elements that transform energy.

The significantly limiting factor of these frameworks is they focus only on the

functional representation; assuming that a functional representation is the appropriate

abstraction when designing a system is a very limiting assumption.

Also, the embodiment design (creating the physical architecture) must still be

accomplished by human designers, and this includes sizing the components. Although

identifying systems that are functional is important, it does not help designers choose

between these system because designers must still use traditional methods to choose

between these functional designs.

2.3.2 Grammatical Approaches

Various methods are presented in the literature for using design grammars to

provide automated synthesis to explore the design space of a particular problem. The

design grammars are defined through the use of graph transformations. Just like the

English grammar specifies which sentences are allowed, a design grammar specifies how

design alternatives can be structured. Design grammars have been commonly used in

building design (Stiny, 1980), software engineering (Agrawal, 2002, Le Metayer, 1998)

and engineering design (Alber, 2002, Baker, 1990, Campbell, 2003, Haq, 2005,

Heisserman, 1994, Mullins, 1991b, Rinderle, 1991, Schmidt, 1996). Although in most of

 53

the work in engineering design the emphasis has been on geometry design rather than

systems structure, systems design in terms of configuration design is addressed in

(Schmidt, 1997, Schmidt, 1998) and specifically for the design of hydraulic systems in

(da Silva, 1998, da Silva, 2000, Westman, 1987).

Many of these methods use graph grammars (Nagl, 1979) as the formalism for

representing a space of possible design alternatives. Often, each alternative is represented

using a graph where nodes represent specific components and edges represent

connections between those components. Graph transformations are then used to generate

new alternatives by rewriting existing graphs that represent either completely or partially

specified alternatives. Graph grammars provide a formal language for specifying the

design space (Mullins, 1991a), but often this design space is specified in an ad hoc

manner. Graph grammars have been successfully used in a number of applications, but

the transformations can be difficult to define (Bolognini, 2007, Starling, 2005). Although

the data structures and transformations approaches can be based on custom code,

computer-aided software engineering tools have been used recently to simplify their

specification (Fischer, 1998, Königs, 2006). Also, grammars are usually only used for

creating topologies and a completely separate approach is used to solve for component

parameters. One notable exception is attribute grammars (Mullins, 1991a) where

configuration and parametric design is considered a part of the grammar. The drawback

of using graph transformations is that there is a need for a large number of

transformations that must be specified manually. Insuring that the result of a

transformation is still within the space of alternatives is also difficult and requires the

transformations to be defined very precisely. These limitations make it difficult for

 54

designers to encode their knowledge within such transformations. Also, analysis

knowledge cannot be included in the transformation process; instead the alternatives

themselves need to be analyzed in a separate step.

2.3.3 Constraint-Based Approaches

Another set of methods can be classified as constraint-based approaches; usually

the constraints are specified as either a set of equations or using a custom constraint

language. Mathematical programming approaches have been used for automatically

synthesizing chemical reactor networks (Biegler, 1997, Yeomans, 1999). The chemical

network is represented as a superstructure; a superstructure is the union of all possible

alternatives. It is a conglomeration of all potential architectural options. Decision

variables are used to represent which options of a superstructure are included in a

particular alternative. Constraints are then added to specify which sets of options specify

valid alternatives and to specify the expected behavior of a particular alternative. The

constraints are represented as a set of algebraic nonlinear constraints.

These approaches demonstrate the potential for the application of mathematical

programming to architecture exploration and also demonstrate the ability to use the same

framework both to select and size an architecture. The selection of mixed-integer

programming for consideration in this investigation was based largely on this earlier

work. In addition, previous approaches have also demonstrates that mathematical

programming problems can be represented using object-oriented modeling languages

which are then flattened (Åkesson, 2010a). In this prior work by Åkesson, the goal was to

optimize the controller of a fixed-system.

In Model-Driven Engineering (MDE) (Chanron, 2006), metamodels and

constraint languages are being used for synthesizing the structure of software. A

 55

metamodel in this context is a model that defines the possible entities and relationships

that can be used in conforming models. It defines a space of conforming models;

although the number models in this space can be infinite. By specifying additional

constraints in a constraint language such as the object constraint language (OCL)

(Warmer, 2003) or Alloy (Jackson, 2002), constraint-satisfaction approaches (Kumar,

1992) can be used to generate software alternatives that both conform to the metamodel

and satisfy the constraints (Saxena, 2010).

Others have found that designers can learn to use constraints to define a design

space, and that only a small number of different constraint types are needed when

defining such a space (Wyatt, 2012). The current limitation is that the constraints being

used are hard constraints on the systems structure which can make it very easy to over

constrain the design space and requires iteration by designers to correctly specify the

space. This results in designers to representing their knowledge, running a search process,

analyzing the results, and then adjusting their representations which was found to be very

time consuming. Since the structure and goals of this approach are similar to the

approach in this investigation, how it compares is discussed more thoroughly in Section

7.8 after the presentation of the example problem.

Constraint-based approaches have been used specifically for the automatic design

of hydraulic systems. Constraint-satisfaction has been used for choosing the sizing

parameters of a system (Leweling, 2000), but the systems architecture was considered to

be known a priori.

2.3.4 Adaptation-Based Approaches

Case-based reasoning (Vong, 2002) has also been used to attempt to retrieve

hydraulic circuits that satisfy some design requirements. In case-based reasoning, a

 56

catalog of generic cases is created along with the relevant solutions. When a new case is

presented to the case-based reasoner, it locates the nearest cases in the catalog and then

selects the matching solutions. Case-based reasoning has the disadvantage of needing a

large number of cases to produce good solutions for varied cases. Also, there is the

underlying assumption that case-based reasoning approaches are incapable of arriving at

truly novel solutions because they are based on capturing the characteristics of existing

solutions and selecting the appropriate existing solution.

2.3.5 Knowledge Capture

Computational methods can also be categorized by the domain knowledge the

method tries to capture. Generally, methods can be grouped into one of two major

categories: broad and focused methods. Broad methods are designed to be applied to a

wide-variety of problems and attempt to explore a very large space by using very generic

knowledge about a domain, for instance mechanical systems. Part of the issue with these

broad exploration methods is that although they are suitable to a large class or problems,

they do not allow designers to effectively encode their knowledge.

Focused methods on the other hand are designed specifically geared toward

solving a small set of problems, and although they can be specifically constructed to be

effective on this sort of problem, they often require a large amount of custom code or do

not allow designers to easily represent additional knowledge about the domain. Previous

work in synthesizing hydraulic systems has investigated using a focused method to

perform architecture exploration (Pedersen, 2007). Here, knowledge about the hydraulic

domain is encoded in custom analysis models and a multi-level genetic algorithm-based

approach is used to search the space. Because of the relevance of this method to this

 57

investigation, how it compares is discussed in Section 7.8 after the presentation of the

example problem.

The limitations of these previous approaches stem from a failure to effectively

capture and use a designer’s knowledge about the solution domain. Others have

recognized this problem and recommend the use of formal modeling to capture this

domain-specific knowledge (Antonsson, 2001).

These methods still fall short because they do not completely encode the

architecture exploration problem; architecture synthesis is considered separately from

component sizing, and the analysis knowledge needed to evaluate the architecture is not

captured or used within the same framework as synthesis knowledge. Instead, constraints

on the architectures topology are applied to constrain the design space until only

plausible solutions are generated. Having systems engineers represent their knowledge in

rigid structures such as formal grammars (Antonsson, 2001) or structural constraints

(Wyatt, 2012) can be difficult, with user studies showing the need for repeated iterations

to define an appropriate design space (Wyatt, 2012). Finally, because analysis knowledge

is not used during the synthesis step to guide the exploration, these approaches are

inefficient. Therefore, they work well for toy examples but are unlike to scale to typical

systems design problems.

2.3.6 Searching the Design Space

An efficient search method is needed to explore the space of possible solutions.

Searching a design space of complex systems can be both expensive and time-consuming

because of the cost of generating a large number of alternatives and the cost of executing

detailed simulations to evaluate them. Genetic programming techniques are a very

common method for searching the design space when synthesizing alternatives. They

 58

have been shown to generate high quality solutions in a number of fields, for example

electric circuit design, mechanical systems, and optical lens systems(Koza, 2010). The

mutation and cross-over operations used in genetic algorithms usually modify existing

solutions making genetic algorithms a commonly used search technique for grammar-

based approaches (Emmerich, 2001).

Others have used agent-based approaches to search the design space (Agarwal,

1999), specifically for simple electromechanical systems (Campbell, 2000). By

employing independent computational agents, design synthesis algorithms can be

decomposed and distributed across multiple computers. If these agents are considered as

models of individual members of the design team, agent-based approaches can be used

for design exploration. Agents usually have different roles, such as adding or subtracting

components or evaluating an alternative. The drawback of such approaches is that they

can be inefficient when searching a large design space because each agent performs

elementary operations. Usually these frameworks also rely on custom representations for

communicating between agents, making it difficult to incorporate additional features.

 Summary 2.4

In current systems engineering practice, the task of creating a system architecture

and to a lesser degree designing a system is the role of systems engineers and systems

architects. As part of the design process, domain experts are also engaged in more

detailed design steps. There is significant prior research into how systems engineers and

designers should design systems. In current practice, much of this process is ad hoc with

qualitative methods being employed by designers. Others have identified the need for

more structured and quantitative processes, specifically in the field of computational

 59

design synthesis where computational tools are used to synthesize potential alternatives.

Current tools lack effective formulations of the architecture exploration problem, current

formulations usually lack the ability to encode both knowledge of the design space and

analysis knowledge to analyze and evaluate alternatives. Because of the nature of the

problem, they also often rely on inefficient search methods. This is a gap in current

methods, with the need for a more complete problem formulation and more efficient and

effective search methods.

 60

CHAPTER 3:

REPRESENTING ARCHITECTURE EXPLORATION PROBLEMS

In this chapter, the focus is on how designer’s knowledge can be formulated to

describe an architecture exploration problem as an architecture selection decision. The

goal is to describe a generic language in which designer knowledge can be encoded; this

language is then illustrated with the excavator example in Section 7.1. Describing the

structure of the language without providing concrete guidelines to utilize the language

often makes it difficult to understand how the language will be used in practice.

The goal of this chapter is to support H1:

H1: Designers can represent their architecture exploration problem in information

models as an architecture selection decision consistent with decision theory using a

domain-specific language.

The argument supporting the hypothesis is structured in two ways: first an

argument is made for describing the exploration problem as an architecture selection

decision, and then a domain-specific language is presented to represent architecture

selection decisions. The structure of an architecture selection decision is based on two

important factors: the structure of a decision from decision theory and the assumption

that systems are composed of well-defined components that are connected together by

well-defined interfaces. As will be demonstrated, this significantly simplifies how the

problem is represented.

Deciding on a system architecture is a non-trivial task, and it usually involves a

large number of stakeholders. These stakeholders bring their unique concerns,

viewpoints, and also domain knowledge to the problem. This leads to a large amount of

 61

available knowledge that relates to an architecture exploration problem and also a number

of considerations that must be taken into account when designing the final system. No

one person can internalize all of these considerations and ideate the appropriate

architecture. It is essential for these experts to be able to communicate effectively with

one another and also for the large amount of available knowledge to be reviewed and

applied. Therefore, the problem needs to be defined in a consistent manner that is both

sufficiently unambiguous and easy to use.

The overall goal of this research is not to simply provide a better documentation

approach for the exploration problem; this in itself does not add much value to the

process. Instead, the goal is focused on improving the decision making process at early

conceptual design phases, specifically when making architecture-level selection

decisions. The first step (described in this Chapter and Chapter 4) is to clearly define

these decisions in a formal representation that is computer interpretable; then once the

decision is defined, computational tools can be applied to support the decision making

process (described in Chapter 5, 6, and 7).

Traditionally, the architecture exploration process itself is not formally

documented. Instead, most of the documentation efforts focus on the results of the

process, although it is true that sometimes rational is included, this is usually an

afterthought. Also, often the system specification is captured through requirements that a

system must meet. These requirements are derived by decomposing more abstract

requirements. This process for decomposition and its impact on the quality of the final

design is not well understood. Since the decomposition process is based mostly on best

practices and not on a strong theoretical framework, it is also not standardized and often

 62

occurs in an ad hoc way. From a theoretical point of view, requirements are constraints

that reduce the size of the potential solution space. Decomposing from top-level

requirements actually reduces the likelihood that designers are able to meet the top-level

requirements because it places additional (possibly unnecessary) constraints on the

system (Hazelrigg, 2012). Also, requirements provide no means to distinguish between

potential solutions that meet the requirements. Therefore, they can only help in picking a

good enough system, not the best system. Clearly, this obfuscates whether the selected

architecture is truly the best architecture for the particular case. The reason that

requirements decomposition is so common in practice is because it is easier to implement

than more rigorous approaches; it allows systems engineers to reduce the complexity of

designing a system by breaking down the problem and assigning different pieces to

different design teams.

An alternative approach that is gaining support is value-driven design (Castagne,

2009). In value-driven design, instead of describing requirements the system should meet,

an objective is formulated and the goal is to find the system that maximizes that

objective. Often, the objective is something that is easily agreed upon, such as the

maximization of profit. Value-driven engineering is based on utility theory and provides

a fundamentally sound foundation but is difficult to implement.

In this chapter, an information modeling language is presented for using

information models to define an architecture exploration problem in a form that is

consistent with decision theory by representing it as an architecture selection decision;

this is done to allow designers to use more formal and structured architecture exploration

processes. This language allows designers to capture the system alternatives being

 63

considered, evaluation criteria, and the analysis knowledge needed to evaluate each

architecture relative to the evaluation criteria. To model an architecture exploration

problem, it is necessary to model many aspects of the system along with the associated

plethora of domain-specific knowledge and such a model will need to be represented in a

sufficiently flexible formalism. Systems engineering provides a foundation because it is

an encompassing discipline specifically focused on managing the knowledge associated

with a systems engineering process. Therefore, it is natural for this investigation to build

on existing systems engineering practices.

Classically, to capture the wide range of knowledge that was needed during a

systems engineering process, paper documents would be used. These provided engineers

with a very flexible formalism that was accessible to the various stakeholders. The

problem with documents was they are difficult to review and maintain, and the cross-

cutting dependencies between different viewpoints are difficult to represent.

As a result, there has been a trend in the systems engineering community toward

Model-Based Systems Engineering (MBSE) (Fisher, 1998). In MBSE, instead of using

paper documents, systems engineers use information models to document their systems

engineering processes. As a result of the MBSE trend, the Systems Modeling Language

(SysML) has emerged as a general-purpose visual language designed to capture many of

the different facets needed to describe a systems engineering problem (Object

Management Group, 2006). The difficulty in moving from documents into models is that

models are by their nature less accessible to shareholders and also much less flexible.

Part of this difficultly can be reduced by using SysML as the basis for this approach

because the existing expertise that systems engineers have with SysML can be leveraged

 64

(Karban, 2008). Also, there exist a number of high quality commercial authoring tools for

SysML models, making the language more accessible.

However, simply using SysML as the basis is not sufficient. With the growing

trend in the systems engineering community toward Model-Based Systems Engineering,

others have recognized the need to capture the potential solution space for system

architectures. The drawback with most of these methods is the focus on the variability of

potential component concepts within a (mostly) fixed system architecture. Using

component variability can express whether some components are included or not within

the architecture, but how those components connect also has to be captured. This is a

significant shortcoming because much of variability potential arises from the ability to

connect the same components in unique ways.

The rest of this chapter is outlined as follows. Section 3.1 presents prior and

related work focused on the capture of designers’ domain knowledge in information

models. Section 3.2 discusses the foundation for modeling architecture exploration

problems as architecture selection decisions. Section 3.3 describes an architecture

selection decision and how modularity can be used to simplify the specification. Section

3.4 describes the language for defining these decisions. Sections 3.5 and 3.6 wrap up this

chapter with some further discussion of the method.

 Prior and Related Work in Modeling Designer Knowledge Explicitly 3.1

3.1.1 Capturing Variants

Available modeling languages, such as SysML, are currently used to capture concrete

artifacts such as a single candidate design. SysML is designed to capture many aspects

about a system, from numerous requirements to analyses to behavior and so forth,

 65

although these are captured in relation to a single system; although hierarchy, abstraction,

and other techniques are commonly used to model the system, the final result is still a

model of only a single system.

This poses a problem for defining an architecture selection decision because

instead of modeling a single candidate design, a designer must model a space of potential

solutions. Others have also identified the need to extend SysML to allow a space of

solutions to be modeled (Trujillo, 2010). Usually, this space of solutions is actually a

product platform and the solutions being modeled share many common elements with

only some included components varying. These approaches are not sufficient for

modeling an architecture selection decision because they are not suited for capturing a

multitude of component configurations.

Dauenhauer et al. (Dauenhauer, 2009) motivate the need for variability in

automation systems and propose implementing reusable model fragments coupled with

model transformations to construct potential solutions. Although the authors provide a

high-level overview and motivation for the approach, they do not provide either a

concrete language or a reference implementation in which variability can be modeled.

This investigation builds on a similar motivation (Kerzhner, 2009) for using model

fragments captured in SysML coupled with model transformations.

Also, previous approaches model system variability apart from other aspects. In

the approach provided here, the goal is to define a model that includes the relationship

between the space of potential solutions and the analysis knowledge needed to evaluate

those solutions.

 66

3.1.2 Domain Specific Languages

To address the lack of a language to model system variability, one option is to define a

domain-specific language for capturing architecture exploration problems. A domain-

specific language (DSL) is a language that is tailored to describe a particular problem

domain. The use of DSLs to define the models has the advantage of providing designers,

who have expert knowledge about a particular domain, with languages that are not only

unambiguous but also easily interpretable. This is not always true of more general

languages because they are often more abstract.

There are several approaches to define DSLs (Weisemoller, 2007) but, in general,

an abstract and concrete syntax need to be defined. The initial step to defining a DSL is

creating a metamodel. A metamodel defines the abstract syntax of a domain specific

language; it defines in an abstract way the constructs of the language and their

relationships. A metamodel represents the structure of the language independent of any

particular representation or encoding. Every model described by the DSL is an instance

of the DSL’s metamodel; a metamodel describes a model just as a model describes a

“real world” element (Fisher, 1998). After the metamodel is defined, the DSL is

implemented by defining the concrete syntax. This syntax consists of the textual or

graphical constructs with which the modeling is done.

The architecture selection decision DSL is a major part of the research presented

in this dissertation. There are several standard ways that DSLs are defined in model-

driven software development and other software development processes. (Weisemoller,

2007). OMG has introduced profiles as a light-weight mechanism to extend UML. Also,

OMG provides the Meta Object Facility (MOF) (Object Management Group, 2007) as a

metamodeling language for the definition of domain-specific languages.

 67

When combined with constraint languages, profiles provide extensive

expressivity. Also, they are widely supported by current UML tools. Unfortunately, in

general constraint languages are difficult to use because there are ambiguities concerning

inheritance between stereotypes and high-quality tool support is not available for

common constraint languages such as the Object Constraint Language (OCL)

(Weisemoller, 2007).

UML can also be extended through the use of a MOF tool and the merge concept

from the UML Infrastructure (ISO/IEC, 2005). This allows more expressivity than simply

using a UML profile but is not widely supported by UML tools.

Finally, a totally new metamodel can be defined for the DSL using a MOF tool.

This has the advantage of being the most expressive and flexible method to defining a

DSL. Unfortunately, additional steps need to be taken to implement the concrete syntax

of the DSL.

An approach to combining the definition of the metamodel for the DSL with adaption of

existing tools to use the DSL is also presented by (Weisemoller, 2007). This approach is

illustrated in Figure 3.1. The general steps taken are:

1. The abstract syntax of a DSL is defined in a MOF-compliant metamodeling tool.

2. A UML Profile is sued to define the concrete syntax of the new language with

constructs similar to those used by UML.

3. An implementation of Query/View/Transform based on Triple Graph Grammars

(Königs, 2006) is used to translate the stereotyped UML model into an instance of

the metamodel. More on these transformation approaches can be found in Section

6.1.

 68

This approach has the benefit of being both expressive and quickly implementable

to provide tool support.

Here, the approach will be to use SysML constructs when possible, and extend

SysML using the profile mechanism as needed. This profile along with the SysML profile

and underlying UML metamodel comprise the metamodel for this new language. This

will define a DSL which is largely based on SysML, leveraging existing experience with

SysML and reducing the number of new constructs designers will need to learn.

 Foundation for Modeling Architecture Exploration Problems 3.2

Before continuing with the description of the approach, it is important to

understand the knowledge that needs to be encoded in an architecture exploration

problem. After characterizing the knowledge, requirements are derived to guide the

creation of the modeling framework described in the following sections.

Current architecture exploration efforts are ad hoc in nature and rely heavily on

designer expertise and intuition. The goal of this work is to improve the rationality of the

architecture exploration process by improving the decisions that designers’ make. Seeing

Figure 3.1: A combination of UML profiles and metamodel based technologies

 69

the architecture explore process as a chain of decisions, as is common in mechanical

design, is necessary to provide a strong theoretical foundation (Donndelinger, 2006).

When the architecture exploration process is seen as a chain of decisions,

decision-based design (DBD) can provide a formal, structured, and rational framework

for making these decisions (Hazelrigg, 1998 , Thompson, 2010). In DBD, a design

problem is broken down into a set of decisions where the formulation of each decision is

based on decision theory. When picking an architecture, the designer is making a

decision (or a set of decisions) based on his knowledge and beliefs. This decision can be

structured using decision theory, where the designer is picking from a set of potential

alternatives. For each alternative, the designer is predicting how well the alternative will

perform (its outcome) by using his knowledge and beliefs about the alternative. Finally,

once the outcome of each alternative is understood, the designer chooses the most

preferred outcome using some selection criterion which contain his preferences.

The classic structure for a decision is shown in Figure 3.2. A decision is made

among choices A1, A2, A3. Each choice leads to potential outcomes and there is

uncertainty involved in the mapping between choices and outcomes. Alternatives can

only be evaluated based on their outcomes, with some evaluation metric (utility theory)

applied to rank these outcomes. The expectation of the utility of the outcomes is then

taken to determine the alternative that is expected to deliver the best result.

 70

Figure 3.2: Breakdown of a Decision into its basic features.

Using DBD and decision theory as the basis for understanding the architecture

exploration process does have several drawbacks. In order for designers to make rational

decisions, decision theory stipulates that each decision is made by a single decision

maker.

This is completely contrary to current systems engineering practice, where a large

number of designers are involved in choosing the architecture. Input is considered from

many sources, including human experts, and in current systems engineering practice there

is not a consensus of how to bring together these different views. The other difficulty

with using decision theory as the basis is that it assumes that a choice is being made over

known alternatives. At early conceptual design stages, a significant task of designers is to

simply ideate potential architectures.

 71

Considering these drawbacks, decision theory still provides a very strong

foundation for what knowledge needs to be captured to formalize an architecture

exploration problem. Also, if the architecture exploration problem is represented as a

decision, then it can be represented in a form that is consistent with decision theory which

is a first step toward improving the rationality of the architecture exploration process.

Based on the structure of the decision in Figure 3.2, the model needs to capture the

potential alternatives, how well those alternatives perform (their outcomes), and some

selection criteria to sort the outcomes and pick the best. A framework for what is

modeled and how these relate to each other is illustrated in Figure 3.3. The blue boxes

represent elements that are captured while the green oval represents the goals of the

optimization process. Simply modeling each of these aspects is not sufficient, in addition

any representation has to not only be unambiguous and computer interpretable, but also

convenient for a designer. If capturing the designer’s knowledge about the problem in

this form is exceedingly difficult or time consuming, it will detract for the probability that

such a method will be implemented in current practice. In order to efficiently capture the

space of potential architectures, a compact formalism is needed to represent a very large

space of alternatives.

 72

The components that are included in a system may come from a number of

different domains, i.e. mechanical, electrical, and so forth. Also, different stakeholder

concerns require different system analyses, which also require domain-specific analysis

knowledge. Instead of formulating a language that is specifically geared toward one

domain in particular, the goal should be to create a representation that is flexible enough

to cover the entire range of potential architecture selection decisions. Instead of

structuring the representation for a particular domain such as mechanical or thermal

systems, the entire domain of systems is considered by identifying commonalities in the

structure of a system architecture, regardless of the domain.

 What is an Architecture Selection Decision? 3.3

Before continuing, it is important to provide a clear understanding of an architecture

selection decision and the simplifying assumptions used in this investigation to allow the

representation of an architecture selection decision in a compact and modular fashion.

Figure 3.3: Decision Process adapted from Hazelrigg. (Hazelrigg, 2012)

 73

When considering an architecture selection decision, the alternatives are different

system architectures. In classic systems engineering processes, an architecture is selected

during the preliminary design phase, and this architecture is carried forward into more

detailed design stages where the focus is on sizing the different components. This type of

decision breakdown is illustrated in Figure 3.4 as a sequential decision. First, a decision

is made between the different architectures, and then once a particular architecture is

chosen sizing decisions are made to size particular components. This is represented by

the set of arrows following each architecture, with a1, b1, and so forth representing

particular sized versions of component types A, B, and C. As presented, this implies the

sizing process is one of picking between existing components but nothing about the

structure as presented precludes the inclusion of new or custom made components. In

order to make a rational decision given this sequential structure and pick the appropriate

architecture, DBD specifies that the utility of each leaf (each completely sized

architecture) is evaluated and then the best path is chosen (i.e., the selection of the best

architecture based on the best sized instance). As mentioned previously, this style of

decision making is not used in current practice, instead ad hoc selection criteria are

applied to the architecture selection decision, and not until after this decision is made is

sizing considered. The other issue is that even representing the architecture selection

decision using this tree-like structure where each individual architecture is enumerated is

very difficult. For even a small space, asking a designer to explicitly represent each

architecture in this fashion would be time consuming and difficult.

 74

By employing the assumption that a system architecture contains well-defined

components and subsystems that are connected together into more complex systems,

structuring the decision can be simplified because instead of representing each alternative

separately, the entire space can be represented as a union of potential components and

connections.

This significantly simplifies the representation of the problem because instead of

encoding each individual alternative, the problem can be defined modularly with a focus

on capturing the structure of the individual components and connections and the

composition relationships between them. This is similar to composition approaches for

generating analysis models (Kerzhner, 2010, Kerzhner, 2011, Shah, 2010a), but here

Figure 3.4: Classic description of an architecture selection decision.

 75

instead of generating a single analysis for a particular architecture candidate, the goal is

to represent the design space modularly and then if needed generate an analysis (or a set

of analyses) that encompasses all possible candidate architectures. A possible modular

representation of the space presented in Figure 3.4 is shown in Figure 3.5. Instead of

enumerating each architecture, an abstract system is represented as an empty system

boundary. This abstract system can then be composed of the different components as

restricted by the related multiplicities which are assignments of the potential number of

each component.

Figure 3.5: Modular representation of the architectures considered in the

architecture selection decision.

This representation is sufficient for representing the different components that can

be included in the design space, but the connections must also be modeled. These are not

represented in the figure and the modeling of these is discussed more thoroughly in the

next section. If the goal is to consider as many architectures as possible, then any

 76

component interface could potentially connect to any other component interface. In

previous approaches, emphasis is placed on modeling the compatibility between

interfaces (even of the same type). In this investigation, a slightly different approach is

taken. Instead of relying on explicit structural constraints to describe interface

compatibility, connections are allowed between any interface of the same type and then

analysis of the system’s behavior is used to deduce whether this connection is

appropriate. Common connections are captured in connection templates to reduce the

number of spurious connections that need to be investigated.

Now that the structure of the decision has been establish, the next section

describes a language for representing that decision.

 Defining a Language for Architecture Selection Decisions 3.4

In the previous section, a foundation for modeling an architecture selection decision was

presented. In this section, a language is defined to capture the different elements needed

to model the decision as well as the relationships between these elements. It is absolutely

crucial to capture the relationship between the elements because these relationships are

needed when fragments in the model are composed or reused. More discussion on the

necessary relationships and how to compose models is presented in Chapter 4.

The first step to defining a language is to express its metamodel. Here, the Unified

Modeling Language (UML) metamodel is used as the foundation, along with the SysML

profile. When additional elements are needed, the profile mechanism is used to add

additional elements and relationships. This is similar to the approach prescribed in

(Weisemoller, 2007).

 77

To support the modeling process, additional elements are needed to clearly

identify each element of the decision. SysML provides Blocks to model the structure of

the decision and illustrate that it contains alternatives, analyses, and an evaluation

criteria. To codify this structuring, a profile is created to clearly define each of these

elements. This profile is shown in Figure 3.6. Stereotypes are defined to identify the

decision, the space of potential solutions, the analyses that are needed to predict the

outcomes of a particular solution, and the evaluation criteria to order the outcomes. The

decision problem includes multiple analyses that describe how alternatives behave. These

analyses are independent of the evaluation criteria in which preferences are included to

rank order alternatives. The evaluation criteria should include some objective (a value

property which can be constrained using parametrics) along with a search direction. In

addition, SysML requirements can be included as part of the evaluation criteria to filter

alternatives. These stereotypes can be applied to modeling elements to highlight that

they are part of a particular architecture selection decision and also represent the

relationships between these different elements.

 78

Figure 3.6: SysML Profile that defines the additional stereotypes needed to

represent an architecture selection decision.

To model potential system alternatives, SysML provides a number of constructs

such as the Block and Block Definition Diagram (BDD) for modeling system structure.

The problem with the current practice is that the system structure modeled has been

specified and is largely fixed while in this case the structure of the architecture is variable

and largely unknown. It is possible that some of the architecture has been fixed, and only

a part is being considered; this can occur when the design is broken down into a sequence

of decisions as described earlier.

 79

Existing SysML constructs can be utilized to represent the space of architecture

alternatives in a form that is consistent with the representation in Figure 3.5, although this

is a significant departure from current practice. When defining the alternative space,

instead of completely specifying the structure, the approach taken here is to use the

isAbstract property to identify elements that are not fully specified and to use

multiplicities to capture variability in the number of included components just as in

Section 3.3. Using this approach, an extensive space of potential configurations can be

constructed and the potential structural components that appear in these configurations

are clearly identified. Current SysML constructs are insufficient to define the potential

connections that appear in the configurations. For this, two additional constructs are

added, an «OptionalConnector» stereotype to describe that certain connectors are not

always included in an alternative but are merely optional, and the «ConnectionTemplate»

stereotype to group together commonly occurring optional connectors so that designers

do not need to define them individually. The definition of these constructs is shown in

Figure 3.7, along with stereotypes that can be used by a transformation process when

flattening the modular representation into a single or set of candidate architectures. The

«FlattenedComponent» and «FlattenedValueProperty» are used to specify the

relationships between the original representation and any flattened representations. The

use of these stereotypes along with the «OptionalComponent» stereotype is more

thoroughly covered along with the transformation implementation discussed in Chapter 6.

 80

Figure 3.7: Profile for additional constructs added for defining the architecture

selection decision.

As for modeling the analyses, there has been significant prior work on modeling

analyses in SysML, including dynamic simulations (Paredis, 2010, Qamar, 2009),

algebraic models (Peak, 2007), and various federated analyses (Min, 2011). A common

approach is to use existing modeling features to capture the structure of the analysis and

then define a profile to clearly distinguish these elements from the rest of the model.

Often SysML parametrics are used when modeling the structure of the analyses. Some

behavioral features of the analysis, for instance a particular execution sequence, can be

 81

encoded using a wide-variety of SysML constructs, such as activities, state-machines, and

so forth. More on the modeling of the analyses is described in Chapter 4.

A similar approach can be taken to model the evaluation criteria. SysML provides

a number of constructs for modeling textual requirements and relating these requirements

to other elements in the model. As discussed earlier, requirements alone are not sufficient

to evaluate an architecture but they can be used to constrain the design space and

eliminate clearly poor designs but they are not appropriate for distinguishing between

good solutions. Requirements in textual form are not sufficient because verifying them

requires human input. In this language, the requirements concept is extended to include

the «TestableRequirements» stereotype, i.e. requirements that bound a certain

performance attribute of the system which can be tested. These requirements have

SysML properties associated with them that relate to represent the performance attribute.

In addition, to define how each performance attribute should be measured, virtual Tests

are defined. These tests are defined to be independent of any system alternative. When

defining a test, the assumption is made that all considered systems will provide the same

interface to the environment. This interface is the interface referred by the tests when

describing interactions with the system. The values “measured” by these tests can then

be included not only in the requirements but also in the evaluation criteria. This also

provides a clear definition of the performance attributes that can go into the evaluation

criteria and also the analyses that should be generated to execute these tests. This is

described in more detail in Section 4.4.

The tests are broken into two categories: those that measure performance

attributes that relate only to the structure of the system, for example its cost or weight,

 82

and those that measure performance attributes that relate to the systems behavior over

time, for example how quickly the arm actuates. Structural tests are defined by

identifying the relevant structural aspects and how they can be composed into a single

metric. Tests that relate to behavior are considered state-based tests, each state places

some constraints on the systems behavior, and states are combined together to describe

the system’s behavior through time. This is similar to the state analysis concept (Ingham,

2006). These state-based tests have two parts: a test context where the structure of the test

is defined and a test process where the execution order of the test is defined. The test

structure is represented using SysML structural constructs while the process is defined

using activity diagrams or state machines. The profile for defining

«TestableRequirements» and «Tests» is shown in Figure 3.8. A simple requirements

diagram showing the relationships between these two constructs is shown in Figure 3.9.

In this figure, a high-level requirement is decomposed into two testable requirements, the

mass and cost of a system. These are verified by tests. The performance attributes

totalMass and totalCost are actually properties of the tests. The performance attributes

are owned by the test because although these values are related to the system alternative,

the test contains the definition of how these properties are measured.

 83

Figure 3.8: SysML profile for defining testable requirements.

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Test CasesTestCases[Profile] pkg []

+performanceAttribute : ValueProperty
+condition : ConditionEnumeration
+value : Real

«stereotype»

Testable

[Class]

+stateCount : Integer
+startingStateCount : Integer
+endingStateCount : Integer

«stereotype»

StateBasedTest

[Class]

lt
gt
eq

«enumeration»

ConditionEnumeration

«stereotype»

EngineeringModel

[Class]

«stereotype»

Requirement

[Class]

«stereotype»

Block

[Class]

«stereotype»

Test

[Class]

Constraint (Low Fidelity)

 84

Figure 3.9: Relationship between testable requirements and test cases

To distinguish between good solutions, a value-driven design approach where an

objective function is maximized (or minimized) is more appropriate than relying on

requirements. To model the objective function, SysML parametrics are used. Parametrics

are used to define how relevant performance criteria are transformed into a single

overarching objective, whether through multi-attribute utility theory or some form of

demand modeling. To address this in the language definition, the evaluation criteria can

be both a set of requirements and an objective function. The requirements can be used in

conjunction with some analyses to eliminate clearly poor solutions so that further

computational resources need not be wasted (Moore, 2011). The next section provides

more detail on the test definition.

 85

3.4.1 Defining Tests

In order to clearly represent how a performance attribute is measured, the «Test»

construct is defined. The «Test» construct defines a virtual test; the test defines the

environment around the candidate architecture during the test (the inputs to the test) and

which performance attributes should be measured (the outputs). The test owns the

performance attributes or metrics it measures. These attributes are directly influenced by

the context the test defines and are therefore owned by the test model instead of the

system model. A test may relate to multiple testable requirements or the performance

attributes may be included as part of a more comprehensive overall objective. Therefore,

there are usually multiple tests that need to be executed for any particular architecture

alternative.

One important characteristic of a test is that it is defined independently of any

particular architecture. Instead, the test refers to the abstract system. The abstract system

captures the interfaces any candidate architecture will have with the environment. The

test consists of two parts. The first part is a definition of the test’s structure that captures

how the abstract system interacts with the outside world and where virtual sensors would

appear. A simplified test context example is shown in Figure 3.10. The system being

designed is labeled an abstract system; this is an abstract block with no defined internal

structure. The definition does include interfaces which are common among all potential

system instantiations. These interfaces are connected to test probes which measure some

aspect of the system. To provide this some real world context, imagine these probes are

similar to connecting a flow meter in line with a pipe to measure the flow.

 86

Figure 3.10: Simple test case. The system under test is connected to two testing

probes (sensors).

The second part is a test procedure (often called a test protocol) which is executed

to run the test. This procedure describes the dynamic behavior of the test: how the inputs

to the system change over the course of the test and when to measure certain performance

attributes. For the excavator, to measure the amount of fuel consumed during a certain

operation, the test procedure would include the definition of the desired behavior during

the operation and also when to measure the fuel in the tank (at the beginning and end of

the test). Simply specifying that the attribute of interest is the fuel in the tank is not

sufficient; the context is just as important.

A particular candidate architecture is modeled as specializing the abstract system;

therefore the candidate alternative has the same interfaces to the environment as the

abstract system and the procedure defined on the abstract system can be translated to

apply to the candidate architecture because they share the same inputs and outputs.

The limitation with using the abstract system concept is that it requires all

potential architectures have the same interface to the environment. This works well for

the excavator example because all potential architectures must be able to suitably actuate

the excavator’s digging arm and always connect to the digging arm in the same locations

regardless of the structure of the alternative. If an even broader space of architectures is

 87

considered, the question becomes whether such a system boundary could be defined for

that entire space. One option is to include a union of all potential interfaces as part of the

abstract system and then each architecture could realize only the appropriate interfaces.

The problem with this approach is that some of the interfaces would be left unrealized

and tests that reference those interfaces could potentially be incorrectly specified for

those architectures. Another option is to redraw the abstract system to include only

common interfaces. This would require some refactoring of the boundary definition, but

it seems like the more promising option.

The tests are defined in SysML using two very different formalisms. The structure

of a test is defined using SysML Blocks along with the relevant constructs that usually

appear on block definition or internal block diagrams. The procedure for the test is

defined using UML activities. Since multiple tests may use the same structure and vary

only in the process definition, the test structure can be defined in a reusable way using a

test context. Then, any test using the same structure can specialize the test context and

inherit this structure. This structure can also be slightly redefined as necessary using

SysML’s redefinition constructs. To define the test procedure, a SysML activity is

created which encompasses the entire procedure. SysML actually supports multiple

formalisms which would be suitable for defining the test’s behavior, but the activity

formalism was chosen because it seems to be the most intuitive to designers and also

because constructs exist to relate the activity elements to the test context.

The SysML activity is defined to be the classifier behavior of a particular test. In

the activity, the procedure of the test is defined using various actions. The activity

formalism also has primitive actions that are included in SysML and derived from UML.

 88

These primitive actions provide constructs that are used to reference features of the test

structure, for instance the readSelf and readStructuralFeature constructs allow the

activity to read the value of particular properties in the test structure. The

addStructuralFeatureValue allows the activity to set the values of particular properties in

the test structure at the appropriate stage during the test.

In a test procedure, there are some patterns that are used repeatedly. Again, these

patterns are organized into their own activities and referenced using callBehaviorActions.

These same patterns may also appear across multiple test procedures. In order to facilitate

this reuse, some of the activities are owned by the test context and inherited by the actual

test definition. An example activity for reading a particular value of the text context is

shown in Figure 3.11.

The definition of the tests explicitly captures the evaluation criterion and this

criterion directly affects the choice of the promising (or the best) architecture. Therefore,

it is important to correctly choose the appropriate tests and specify these tests in a manner

that is consistent with the designers’ expectations for the system. In current systems

engineering processes, test engineers design tests to verify that a particular system

alternative performs as expected. The question is whether test engineers and other

Figure 3.11: Utilizing readSelf and readStructuralFeature actions to compare the value of

var1 to a test value.

 89

domain experts can formulate tests in an architecture independent fashion. In Chapter 7,

tests for a hydraulic excavator are created in a fashion that is independent from any

particular hydraulic subsystem implementation by specifying the behavior of the system

without constraining how this behavior is achieved. A similar approach could be used in

other domains to specify what the system is expected to accomplish. The ideation of this

system behavior (or use cases) is already a part of traditional systems engineering

processes and the knowledge created during the process could be used to inform the

creation of the tests.

3.4.2 Defining the Space of Solutions

Once the designer has created the requirements and selection criteria, the next

step is to define the space of potential solutions. When defining the space of

architectures, the designer needs to capture two basic facets: all of the potential

components that can be used as part of the architecture and all possible connections

between these components. Here, the language uses existing SysML constructs to define

these. As in traditional systems engineering processes, the statement of requirements can

guide the designer in defining this space of solutions and choosing the appropriate

components to include. Unlike traditional processes, instead of needing to pick a

particular set of components that will meet all requirements, the designer only needs to

pick potential components that are applicable.

For the components, SysML offers the Block construct to define the potential

component types. These potential types are captured in a component library so they can

be reused for different architecture selection decision definitions; these components and

the model library are discussed more thoroughly in the next chapter, Chapter 4. There are

two distinct parts to the definition of a space of solutions:

 90

1. The potential components that can be included in the solution. These are represented

by using aggregation Associations from the abstract system to particular

components. The multiplicity of the component side of the Association describes the

number of potential components that can be included. In addition, if the included

component is an abstract type, the implicit assumption is that any concrete type

specializing that component could also be included in the system, although for each

usage of an abstract component only one concrete component can appear in the final

system specification.

2. The potential connections between components that can appear in the solution. In

this representation, these are captured in connection templates so that designers do

not need to specific each potential connection separately. These connection templates

take the form of AssocationClasses between components.

As an example, consider Figure 3.12 where an abstract system is defined to

include some number of abstract components. This defines a very broad design space,

namely that the abstract system can include almost any potential components. This is

defined by the aggregation Association between AbstractSystem and Component.

 91

To contrast this, consider the more refined design space definition in Figure 3.13.

Here, instead of considering the whole system the problem has been scoped to only

include a subsystem of interest with the other subsystems being fixed. This is represented

by the other subsystems not having the isAbstract property (in SysML syntax, this means

the names are not italicized). While the abstract system may still include any number of

components, it must now also include exactly one frame component. Using these

mechanisms, the potential components included in the system can be scoped to be as

broad or refined as desired by the designer.

Figure 3.12: Simplified definition of a potential system

 92

In some cases, it is also desirable to group multiple components into more

complex functional units; these function units reflect common combinations of

components. By gathering together common components, the designer can facilitate

reuse at a higher-level of abstraction while also simplifying the resulting exploration

problem because the solver does not need to rediscover these common configurations

each time. In the hydraulics domain, pumps are often connected to hydraulic tanks which

store the hydraulic fluid. By combining these into a single “Power” functional unit, the

designer does not need to include both the pump and tank in the configuration each time.

In addition, the common configuration between the pump and tank can be applied in each

potential architecture configuration; during the solution process this configuration does

not need to be rediscovered. More discussion on combining multiple components into

functional units and subsystems is discussed in Chapter 4.

To define common connections between different component types,

AssocationClasses are used. Within the AssociationClass, fine-grained relationships

Figure 3.13: Simplified definition of a potential subsystem

 93

between the individual interfaces of the components can be defined. These

AssociationClasses can appear between both abstract and concrete component types.

These are stereotyped with the «ConnectionTemplate» stereotype to allow them to be

easily identified. An example is shown in Figure 3.14.

As will be more thoroughly discussed in Section 4.2.1, components can be

defined at various abstraction levels. For instance, a generic pump component type may

be specialized into a fixed-displacement or a variable-displacement pump component

type based on functionality, or a gear pump or vain pump based on implementation. The

same is true for the definition of the connection templates. For example, one connection

template may capture that any pump is always connected to a tank. Another might

capture that a load-sensing variable-displacement pump can only be connected to a

certain type of load-sensing directional control valve. Allowing connections at different

abstraction levels and allowing more specific components to inherit connection templates

related to more abstract components reduces the difficulty for designers in encoding

potential combinations. In this example, the potential connection from pump to tank

would only need to be defined once, not for every specific pump type.

Figure 3.14: Simplified connection template between two components

 94

Although not explicitly considered in this investigation, there is also the

opportunity to explicitly capture constraints between different components and

connections as part of the space of solutions. These constraints could be represented as

first-order logic which is more thoroughly discussed in Section 5.2.2.

3.4.3 Capturing Domain Knowledge

Once the evaluation criteria and space of potential solutions are defined, the next step is

to capture the designer’s knowledge about how a potential solution performs so that it can

be evaluated relative to the provided criteria. In traditional SE processes, domain experts

would manually create the necessary analyses in order to evaluate a particular solution

(Sage, 2000a). Since there is a potentially huge space of solutions, having a designer

manually create the necessary analyses would be extremely time consuming. Instead, the

approach taken here is based on modularity and composition: the expert represents her

knowledge about the domain in component-level models. These component-level

analysis models are related to the structural definitions of the components. When the

structural components are composed into a particular architecture, the component-level

analysis models can also be composed.

 95

The component-level analysis models are defined within SysML using SysML

blocks. It is important to capture the analyses within SysML because this allows the

analyses to be related to the structural definitions in a single common model. More

discussion on the topic of using SysML as a common model can be found in work by

Shah et al. (Shah, 2010c). In some cases, these blocks actually refer to analyses external

to SysML. Since SysML was designed to be used as documentation, it cannot be used in

a stand-alone way to perform analyses. Therefore, additional profiles have been defined

for SysML to allow the representation of analysis models that can be transformed into

representations that are then solved in external tools. One such example of this is the

SysML-Modelica specification where Modelica models can be represented in SysML and

then exported to a Modelica solver (Paredis, 2010).

Figure 3.15: An amalgamation of models related to the structural cylinder. These

different relationships are represented using AssociationBlocks.

 96

To link the structural component models to the component-level analysis models,

SysML AssociationBlocks are used. These blocks also contain connectors that link the

parameters and interfaces of the analysis model with the corresponding parameters and

interfaces of the structural model. For each type of structural model, there may be

multiple relevant analysis models that are linked that capture different aspects of the

components behavior. For instance, a number of properties for a hydraulic cylinder can

be analyzed, the cost, mass, dynamic performance, or heat generated. Each of these might

require different analyses which are related to the cylinder. The models related to the

cylinder via AssociationBlocks are shown in Figure 3.15. In order to generate a system-

level analysis model, the appropriate component-level models must be composed. In

order to differentiate between the different analysis models, a classification scheme is

used based on aspects (Kerzhner, 2011). The aspects are made up of orthogonal

characteristics that can describe an analysis model, such as the representation syntax or

analysis type. These aspects are organized into a hierarchy which can be expanded as

needed by the designer. More discussion on the definition of aspects is provided in

Section 4.2.3. The relationships between structural and analysis models are stereotyped

with the «Structure2Analysis» stereotype. These relationships are also associated with the

appropriate aspects. This facilitates finding all the appropriate AssociationBlocks that

relate to a particular aspect when it is time to compose analysis models from the

structural model. Capturing and composing domain knowledge is the focus of the next

chapter, Chapter 4. Also, the domain knowledge included in the model libraries as part of

this investigation can be found in Appendix A.

 97

 Discussion 3.5

The goal of this research is in part to shift the use of SysML and similar modeling

languages from simply documenting the deliverables in a systems engineering process to

supporting designer decision-making during the process. In order to accomplish this,

designers must be able to clearly represent the decisions they are considering, the

alternatives they are selecting over, knowledge about the outcomes, and their personal

evaluation criteria. From this representation, model transformations can be used to

generate a number of different analyses that can guide the design making during the

design process as will be demonstrated in the following chapters.

The other important issue to consider is how this representation supports the

rationality of designer’s decision making. As described previously, decision theory

provides a strong theoretical foundation for rational decision making. The difficulty is in

implementing decision theory in real-world design processes. Some of the difficulty is in

managing the number of available alternatives and relevant analysis knowledge, which

has been the main focus of this Chapter.

For decision theory to be applicable, decisions must be made by a single decision

maker. Arrow proved that any aggregation scheme that aggregates preferences (which is

not a dictatorship) can lead to inconsistent results (Arrow, 1963). Therefore, multiple

designers using some aggregation scheme such as voting to make decisions about a

design alternative has the potential to lead to poor results. Current research into

addressing this problem provides two potential solutions: a game theory-based approach

(Hurwicz, 1960) or an aggregation approach. In the game theory-based approach, a single

decision maker sets the rules of a “game” in which other designers make their own

 98

decisions, but because of the structure of the game maximize the utility of the original

decision maker. Here the decision is not in selecting a particular design alternative but in

selecting the structure of the game. In the aggregation approach, knowledge from

multiple experts is aggregated together into predictive models and then a single decision

maker uses that knowledge to make a final decision.

The modeling approach presented here is needed to serve as the foundation of an

aggregation-based decision approach. The explicitly modeled decision gives domain

experts a starting point for capturing their knowledge and aggregating this knowledge

into a single model. The best process for accomplishing this aggregation is not considered

in this investigation and is left as an open question.

The other difficulty in applying decision theory is in creating the necessary

predictive models. This is not the focus of this research, but it should be considered how

predictive models could potentially fit into such a framework. This framework relies

heavily on modularity and composition; composing together predictive models is more

challenging than composing together deterministic models. One approach is to compose

deterministic models as described and then use a Monte Carlo-based approach to sample

these models and generate a prediction of system performance. Clearly, in early stages of

the design process, employing Monte Carlo-based methods where many function

evaluations are needed on a wide variety of solutions can be very computationally

expensive. The other option is to formulate the models as predictive models by using the

expectation operator throughout. This would require different composition rules in order

to compose component-level predictive models into system-level predictive models, but

 99

may be more tractable computationally. Either approach could be added to this

framework.

 Summary 3.6

In this chapter, a language for modeling architecture exploration problems as architecture

selection decisions was presented. The constructs included in this language are

specifically tailored to model the knowledge needed to make the decision, such as the

alternatives being considered, how to analyze those alternatives, and how to evaluate the

outcomes of the analyses. Modeling the problem is the first step toward the use of

computational tools to support the selection of system architectures.

 100

CHAPTER 4:

MODEL LIBRARIES AND COMPOSITION

In this chapter, a generic approach is presented for capturing reusable analysis

model fragments and using them to compose analysis models. This approach is based in

part on previous work by Jobe et al (Jobe, 2008, Kerzhner, 2011), where reusable model

fragments were organized into multi-aspect component models (MAsCoMs). Although

the previous work provided some foundation for reusing model fragments, in this chapter

many of the practical issues encountered by this earlier work are addressed in an

operational approach. The goal of this chapter is to address RQ2:

RQ2. How can domain-specific synthesis and analysis knowledge be captured

and organized effectively to allow for composition and reuse?

The previous chapter has focused on providing a language for modeling architecture

selection decisions explicitly in information models. Without addressing RQ2, utilizing

this modeling framework for real-world examples is not practical. There are two major

considerations:

1. Significant effort is required to model the knowledge that is included in the

architecture selection decision and there is significant overhead in creating the model,

but this overhead can be mitigated by reusing some of the encoded knowledge over

different problems.

2. In order to analyze each potential architecture alternative, an executable simulation or

optimization is needed. When searching a space of architectures, if these analyses are

 101

not automatically generated then a designer needs to manually create an analysis for

each alternative.

To address these issues, hypothesis 2 is presented:

H2: Designers could use modularity and composition along with model

transformations to reuse knowledge encoded in models within and across design

problems.

To support this hypothesis, a framework is presented for capturing knowledge in

reusable model fragments that are organized into model libraries. This framework is then

used to compose knowledge from these fragments into a system-level analysis model.

The basis for this hypothesis is applying the concepts of modularity, reuse, and

composition to shift the cost-benefit balance in favor of explicitly modeling the problem

by reducing the modeling costs.

The focus is specifically on the reuse of analysis knowledge, the knowledge used

to create analysis models from the structural representation of a system. Analysis models

are ubiquitous in current systems engineering practice; they are used for predicting the

behavior of components and systems from different viewpoints. They are interesting from

a reuse perspective because they can be reused not only from one design problem to the

next, but also in multiple design iterations within a single design problem. This chapter

presents a framework in which analysis knowledge is systematically encoded. It then

supports the composition of this analysis knowledge to generate system-level analysis

models from system-level structural representations.

In this chapter, the focus is on how to capture reusable fragments in libraries, how

to organize these fragments, and then how to identify the appropriate fragments and

 102

compose them together. As a starting point, the problem is viewed for the case of only a

single architecture. In Chapter 6, the concepts are extended into a transformation

approach that transforms the architecture selection decision into a mathematical

programming problem. This transformation approach and the illustrative examples

presented in Chapter 7 provide further support of hypothesis 2.

The rest of the chapter is outlined as follows: the next section describes previous

and related work related to modularity and reuse in systems engineering. Then the

approach used in this investigation to capture reusable knowledge in model libraries is

presented. Section 4.3 presents the implementation of this approach in SysML. Section

4.4 presents the transformation approach for composing models. Then Section 4.4.1

presents a practical example with a simple hydraulic circuit.

 Prior Work in Modularity and Composition 4.1

Many have recognized that design elements are often modular and have the

potential to be reused. Baldwin and Clark (Baldwin, 1999) consider the use of a design

structure matrix, task structure matrix, and modular operators to capture design

modularity. Eppinger et al. (Eppinger, 2000) also identify that many systems can be

decomposed into modules, although they note that some systems are integrative in nature

and cannot be decomposed. Integrative systems avoid the overhead of modular interfaces

which can improve performance (Ulrich, 1991) but may be more difficult to maintain and

also are less likely to have reusable elements. Gershenson et al. (Gershenson, 1999)

consider modularity as it applies to the entire life-cycle of a product design. They claim

that all components that are of the same form (based on function and interface) will

undergo the same life-cycle processes. The abstract level of the component being

 103

considered has an effect on the commonality between life-cycle processes. This also

holds true for the selection of a modular analysis model to predict the behavior of a

structural component.

There has also been a shift toward analysis modeling approaches which are

modular in nature. Usually these approaches allow designers to develop their models in a

hierarchical fashion, constructing more complex models by combining and connecting

simpler models at their interfaces. This can be seen in the multi-domain dynamic

simulation area with declarative, object-oriented modeling languages such as Modelica

(Modelica Association, 2005). Similarly, in the discrete-event simulation area, models are

connected via well-defined inputs and outputs using formalisms such as the Discrete

Event System Specification (DEVS) (Zeigler, 1999) or tools such as ARENA (Kelton,

2002).

The idea of reusing design knowledge by storing the knowledge in a repository

has also been proposed in the past. The NIST Design Repository (Szykman, 1998) was

one of the first efforts in this area. Further development of the knowledge representation

underlying the NIST Repository resulted in the Core Product Model (CPM) (Fenves,

2008). The CPM is a high-level meta-model in which the core elements for representing

products in design (i.e., form, function, and behavior) are identified and related to each

other. The goal of the CPM is to provide a common foundation for product

representation that can then be further refined as needed, e.g., for engineering analysis

(Bajaj, 2007a, b), for manufacturing process planning, for functional decomposition

(Kopena, 2003, Stone, 2000), or for assembly planning (Rachuri, 2005). The models

developed in this chapter are informed by the concepts of the CPM, although the focus is

 104

on more specific constructs for system behavior. Here, behavior is to be interpreted as

any type of characteristic that can be predicted based on the form, distinguishable by

many behavioral aspects, including function.

The goal of the CPM and the information modeling part of this investigation can

be loosely described as defining an ontology for design (or more specifically in this

investigation systems design), although the design domain is very broad and it is

unlikely that any single ontology will sufficiently capture it. An ontology is a formal data

model for the concepts and the relationships between these concepts in a certain domain

of discourse — the domain of design in this case. Most of the research in this area shares

the perspective that at the foundation, one should distinguish between form, function and

behavior. Examples include the work by Umeda et al. (Umeda, 1990), Kitamura and

Mizoguchi (Sasajima, 1995), and Horváth et al. (Horváth, 1998). However, system

behavior has been the focus of investigation in only a few previous publications.

The most extensive previous research on characterizing behavior in engineering

analyses was performed by Grosse and coauthors (Grosse, 2005). They organize the

knowledge about engineering analyses models into an ontology, which includes both

meta-data (e.g., author, documentation, etc.) and meta-knowledge, such as model

idealizations and the corresponding justifications. A similar, although less extensive,

meta-model for engineering analysis models has been developed by Mocko et al.

(Mocko, 2004).

In this section, this past work is expanded to enable reuse of engineering analyses

in the context of large systems engineering efforts. In this respect, two extensions are

important: First, the engineering analyses need to be related to the form (e.g., component

 105

geometry or system architecture) at a fine-grained level (Peak, 1998). Second, the

analysis models for components and subsystems must be formulated in a fashion that

allows for composition so that a large number of different system architectures can be

explored quickly (Paredis, 2001).

Relating analysis models to structural form has been addressed in work on

Design-Analysis Integration (DAI) (Peak, 1998), although these relationships are not

captured in a form that is conducive to automated composition of analysis models. Peak

et al. relate the parameters of analysis models to parameters of design models when using

Constraint Objects (COBs) or, more recently, using SysML parametric diagrams (Peak,

2007). In this investigation, the relationship between structural models and analysis

models is captured at the level of individual components (see section on Fine-Grained

Design-Analysis Relationships). These relationships are maintained when the

components are composed into larger systems, providing a template for reuse. To enable

composition, additional knowledge is needed both about the model interfaces and about

the composition process. Wallace et al. (Wallace, 1998) also consider composable

models. They note that a modular, composable analysis approach allows multi-

disciplinary problems to be broken down into modules that can be assigned to specialized

teams.

 Capturing reusable Analysis Knowledge in a Model Library 4.2

A model library contains useful model fragments and information which can be

composed into more complex models. In this case, the model library contains knowledge

at a component-level about analysis models. The multi-aspect component model

 106

(MAsCoM) is used as the basis for the specification and organization of this model

library.

Several key pieces of knowledge are captured in this model library:

1. An enumeration of the available analysis models.

2. A mapping between the available analysis models and the corresponding

structural models.

3. How the parameters and interfaces of the analysis models related to the

parameters and interfaces for the structural components.

4. Which analysis models can be connected together and how they should be

connected together via their interfaces.

The organization of this library takes into account the general view of systems

engineering problems used throughout this investigation, that systems contain

components that are connected together via their interfaces. Analysis models are

organized by component type because it follows naturally from the definition of an

architecture selection decision and also allows designers to conveniently view and review

the library. Whenever a particular component is chosen, a designer will immediately be

able to identify all the analysis models that have been previously used to analyze that

component or describe its behavior in a larger system. The components themselves are

organized in a taxonomy so that the user can easily browse from general classes down to

very specific instances of components. At each level, the component model can be linked

to all the relevant engineering analysis models.

However, the number of such models could be very large, so that an additional

method of organization is desirable. To facilitate the task of selecting and composing

 107

analysis models further, the analysis models are characterized based on one or more

aspects. In Aspect-Oriented Software Development (Tzilla, 2001) modularity is achieved

by implementing cross-cutting concerns separately so that they can be woven into a

variety of different software classes. In this context, rather than weaving models

together, what is important is to identify which models are compatible with each other so

that they can be composed into system-level models.

In this composition approach, for models to be compatible it is necessary that they

characterize the components in a system from a similar perspective, in a compatible

mathematical formalism and in the same executable language. By using a formal

taxonomy of aspects, the semantics of the individual analysis models are characterized in

a computer interpretable and searchable fashion.

In the remainder of this section, the details are provided for how analysis models

are organized into model libraries. In addition to discussing taxonomies of components

and aspects, it is explained how analysis models are tightly linked to structural

components at a very fine-grained level.

4.2.1 A Library of Components

To enable the composition and reuse of analysis models, the first step is to

identify and store common component and subsystem models in a model library. In this

framework, these individual components and subsystems are organized into a taxonomy

starting with the most abstract definitions and progressing to particular types of

components and finally to particular component instances (for example, particular off-

the-shelf components from a manufacturer).

 108

The organization of the components into a hierarchy simplifies the definition of

the architecture selection decision. In the definition of the decision, the designer can

include components at any level of abstraction. The implication is that the design space

would include the concrete instantiations of the (potentially abstract) components.

Organizing the components into a taxonomy also supports traditional systems

engineering processes where components or subsystems are selected and defined in an

iterative fashion. After a functional architecture is defined in classic systems engineering

process, functions are assigned to components in a physical architecture (Sage, 2000b)

(or, equivalently working principles and working structures are identified (Pahl, 2007)).

The focus is initially on the selection of broad classes of components that share the same

functionality. For instance, to implement the function of converting electrical to

mechanical energy, the broad class of motors could be identified. In subsequent

iterations, this broad class of components is gradually refined until a particular

component is identified. At each step along the way, analysis models at different levels

of abstraction are used. As the definition of the components still under consideration

becomes more and more detailed, the corresponding analysis models also need to become

more detailed such that the selection can continue to be narrowed down further. For

instance, since an axial piston pump is a type of displacement pump, the models for the

general class of displacement pumps (the parent) also apply to axial piston pumps (the

child). However, constructing more detailed models of the children should be possible

because more detailed knowledge is available about their structure, size, or other design

properties.

 109

4.2.2 A Library of Analyses

To enable the composition and reuse of analysis models, it is also necessary to

also capture them in a model library in a reusable form. There is the potential to include

analysis models in this library at many different structural levels; for instance, analysis

models of an entire system could be stored in the library and then reused when the same

system is analyzed in future design problems. At the other end of this spectrum, the

analysis models representing fundamental behavior could be included and reused when

modeling the behavior of a particular component. Representing such low-level model

fragments would certainly increase the opportunity for reuse, but the composition process

between these low-level fragments would be more complex. In this investigation, the

focus is on component-level analysis models, those which model the components of a

system. Any time the same component appears in a system, there is the opportunity for

reuse. This matches with the current definition of the architecture selection decision

wherein the architectures are composed of different subsets of the same set of

components. Again, these analysis models are organized in a hierarchical taxonomy

similar to the component models. Defining them hierarchically simplifies the definition

process because less abstract analysis models can inherit many of the same properties and

equations (or constraints). Also, it simplifies the establishment of connections between

the structural and analysis libraries because less abstract components can inherit some of

the relationships.

4.2.3 A Library of Aspects

When attempting to reuse the models related to a particular component, one needs

to recognize the appropriate analysis model. To help support this process, models are

 110

characterized using aspects. Since there are a large number of potential aspects, it is

helpful to organize them in a taxonomy. The taxonomy also emphasizes that the aspects

represent independent directions along which a model can be characterized. As a result, a

model is typically characterized by multiple aspects simultaneously. For example, a

pump model could be characterized simultaneously by the fact it models dynamic

behavior, has hydraulic interfaces, and is also represented by the Modelica representation

syntax.

These aspects characterize the model and thus succinctly provide the basic

information needed to select an appropriate model. Additional information about the

model can be defined as meta-data that is less structured, such as model documentation,

development history, or prior usage scenarios. In addition, when composing multiple

component models into a system-level model, the aspects provide necessary information

to determine compatibility between models. For instance, to be composed, models need

to be expressed in compatible mathematical formalisms and levels of discretization—it is

usually not meaningful to combine a steady-state behavior model with a partial

differential equation behavior model. Models that are composed also need to share

compatible engineering disciplines. One set of models may describe the hydraulic

behavior of a system while another may describe its mechanical structure. Having formal

representations of these different aspects available is particularly important when

automating the composition process.

4.2.4 Fine-Grained Design-Analysis Relationships

When attempting to compose a system-level analysis model, it is important to

consider what knowledge is needed in addition to a structural view of the system. Even

 111

though in a variety of engineering disciplines it is common to describe systems as

compositions of components in a schematic diagram, the question is: what additional

knowledge is needed to automatically instantiate and configure the corresponding

system-level analysis models?

It is not sufficient to simply have a library of analysis models, even labeled with

appropriate aspects and linked to the appropriate structure components. This only allows

the identification of the appropriate analysis models; it does not allow them to be

composed. In a schematic diagram, components are usually connected via their interfaces

(ports), so without understanding how these interfaces relate to the interfaces of the

analysis model, it is impossible to connect the analysis models in similar fashion. The

same is true for properties (or variables) in the structural description. Without

understanding how they relate to the properties of the analysis model, it is impossible for

the analysis model to contain the same values as the structural model.

 In order to support the representation of this knowledge, two additional mapping

definitions are included in the modeling approach: parameter maps and interface maps.

These capture additional knowledge about the relationship between the interfaces and

parameters of the structural models and analysis models.

Parameter maps bind the parameter values of analysis models to the related

parameters of the corresponding structural model. In the context of systems engineering,

the values for the parameters need to be related to the properties of the system alternative

that is currently being analyzed. Since we have associated the analysis models with

components in the component taxonomy, it becomes possible to establish these

 112

relationships also in a reusable fashion. How this is accomplished using SysML

parametric diagrams is explained in Section 4.3.3.

Interface maps support the configuration of analysis models for individual

components into system-level analysis models. Similar to the composition of structural

models into a system schematic, analysis models can be configured into networks

through well-defined port-based interfaces (Paredis, 2001), as is implemented in tools

such as SimulinkTM (Simulink (The Mathworks), 2008), and in languages such as

Modelica. Recently, the ability to compose analysis models has even become feasible for

finite element models (Bajaj, 2007a, Simmetrix Inc., 2006). As mentioned earlier, this is

also the case for discrete-event models. In order to configure the analysis models, one

needs to define how the ports of the analysis models relate to the ports in the structure

models. This is accomplished through interface maps as is further explained in the next

section.

 Implementation in SysML 4.3

In this section, we present how this framework (including model libraries and

relationships between model libraries) is implemented in SysML. Components are

organized into a component taxonomy described in Section 4.3.1. The classification of

analysis models using aspects is covered in Section 4.3.2. How the descriptive

component models are related to the analysis models is shown in Section 4.3.3.

Both the structural and analysis models are represented in SysML. This allows

SysML to act as a common language in which correspondences between the models can

be explicitly defined. In addition, when composing new analysis models,

correspondences can be created to allow traceability to the original structural model.

 113

Using SysML as the common language does have the disadvantage of requiring an

additional mapping from SysML into a language that can be interpreted by a particular

simulation tool, but there are a growing number of such mappings emerging to support

tool interoperability, such as between SysML and Modelica (Johnson, 2008, Paredis,

2008), SysML and eM-Plant (Huang, 2007), and SysML and the General Algebraic

Modeling System (GAMS), which is similar to AIMMS (Shah, 2010b). The mapping

between SysML and Modelica has recently been adopted as an official OMG

specification: the SysML-Modelica Transformation specification (Object Management

Group, 2010).

In order to represent the aspects for characterizing models and the relationships

between structural and analysis models, some additional concepts not available in SysML

are needed. Just as in Chapter 3, the profile mechanism is used to add these new

constructs through the addition of several stereotypes to the model. Since SysML is

defined specifically to support systems engineering, it includes modeling constructs that

directly support the definition of physical architectures and engineering analyses so

additional constructs are not needed for these elements. The created profile is shown in

Figure 4.1. There are three new concepts added: the «EngineeringModel» stereotype to

allow both structural and analysis models to be associated with aspects; the

«Structure2Analysis» stereotype for identifying the links between structural component-

level models and the corresponding analysis models; and the «Aspect» stereotype for

marking aspects. This profile will be used through the following sections.

 114

4.3.1 Component taxonomy

The component taxonomy is represented in SysML using packages and blocks

with generalization relationships to represent inheritance. Flow ports owned by the blocks

are used to describe the interfaces of the components and value properties are used to

describe properties of the components that can be assigned a value.

In addition to the component-level taxonomy, the component-level models can

then be composed into more complex sub-systems which are organized into a different

taxonomy. This simplifies the definition of the selection decision because a designer can

then include a particular sub-system in the solution space instead of including all the

constituting components. In addition, this simplifies the search process because the solver

does not need to consider these components and connections separately.

A small section of the component taxonomy is shown in Figure 4.2; this

taxonomy contains only component-level structural models. The between component

models and sub-system models is a choice made by the modeler.

Figure 4.1: Profile for capturing correspondences between structure and analysis models.

 115

Figure 4.2: A partial view of the Component hierarchy.

 116

As mentioned earlier, the components are organized into a taxonomy making

them easier to specify and also easier to include entire classes of components in the

selection decision. For instance, there are many pumps that can specialize the more

general “pump” concept and those pumps inherit the same attributes and ports. All

pumps are modeled as having a mechanical input, a housing to mount the pump, and then

a minimum of two fluid ports (load sensing pumps often have three). An example of such

a component breakdown is shown in Figure 4.3. The general pump is specialized into a

specific type of pump (fixed displacement) and then into a specific vendor pump.

Figure 4.3: Component hierarchy of pumps

 117

Components from this taxonomy are then composed into the system-level

structural models that are then transformed into system-level analysis models.

In addition, components that are commonly used together can be grouped together

into subsystems which are then also stored in the model library in the same fashion. The

taxonomy for the subsystems is shown in Figure 4.4. In this case, considering these

combinations of components as subsystems seems odd because they contain only a

handful of components and are incapable of operating separately, instead they are labeled

functional units. Figure 4.5 shows the relationship between the two taxonomies. A similar

hierarchy exists in both taxonomies, with more concrete components being included in

the more concrete functional units. These functional units can also be composed into the

structural models.

Figure 4.4: Sub-system taxonomy, sometimes referred to as functional units.

 118

4.3.2 Aspect taxonomy

The aspects are organized using a similar approach as the component taxonomy.

The aspects are defined using SysML blocks. Specializations are used to order aspects

from most abstract to least abstract. Each aspect is stereotyped using the «Aspect»

stereotype from the previously defined profile. This simplifies identifying aspects during

the transformation process. There are many aspects that could be considered; only a small

portion of the aspect taxonomy is highlighted in Figure 4.6. As an example, the aspects

categories provided describe the representation syntax of an analysis model or the type of

system behavior the analysis model is capturing.

When analysis models are composed, they need to be chosen so as to have the

appropriate aspects. For instance, two analysis models need the same representation

syntax to be composed. Further investigation is needed to consider exactly which aspects

need to match in general.

Figure 4.5: Relation between the subsystem taxonomy and the component taxonomy

 119

4.3.3 Library of Analysis Models

In addition to capturing potential components in a model library, analysis models

for these components are also needed. These analysis models can again be defined in a

hierarchical fashion where less abstract models inherit many of the values and equations

Figure 4.6: Package structure for aspect taxonomy.

 120

of more abstract models. In this investigation, two different kinds of analyses are

considered. The first are analyses directly represented in SysML, included in this set are

the algebraic component models used in the mathematical programming formulation

described in the next chapter. A high-level overview of the behavioral algebraic models is

shown in Figure 4.7. How these models are defined is more extensively covered in the

next chapter and a full listing of these models and included constraints can be found in

Appendix A.

The second types of analyses are only referenced from SysML. These include any

Modelica models mentioned in this investigation. A more complete discussion of these

analyses is found in Section 4.5

Figure 4.7: Overview of algebraic behavior analysis models.

 121

4.3.4 Establishing Fine-Grain Mappings

SysML AssociationClasses are used to link an analysis model to a structural

component model. These AssociationClasses are stereotyped with the

«Structure2Analysis» stereotype so they can easily identified during the transformation

process. A different correspondence is needed between every corresponding structure and

analysis model. The relationship between the structural model of a double-acting cylinder

and a corresponding analysis model is shown in Figure 4.8. These AssociationClasses are

established by the designer for explicitly describing the relationships between a particular

structural model and a particular analysis model. As there are a large number of potential

connections between structural and analysis models, it would be beneficial to consider

how computational support could be provided to automatically establish these

connections, but this is left for future work.

4.3.5 Parameter Maps

Model parameters from the component models are linked to parameters of the

analysis model using binding connectors which are a standard construct of the SysML

Figure 4.8: AssociationClass linking structural model of a double acting cylinder to an

analysis model.

 122

language, the standard definition is they equate the two properties that have been

connected together. They can also be combined with SysML constraints to capture

algebraic relationships between the parameters. For example, a diameter in the structural

model may need to be passed to an analysis model as a radius, so a constraint is used to

specify this relationship. An example parameter map for the double acting cylinder is

shown in Figure 4.9. Although some of the parameters of the structural model are linked

one-to-one with parameters of the analysis model, this is not always the case. Since there

are a large number of potential analysis models for a given structural model, there may be

some parameters of the structural model that are not mapped to the analysis model. For

example, parameters describing the thermal behavior of the system may not be

considered when modeling the dynamics of the system.

Figure 4.9: Parameter map between parameters of the double acting cylinder and the

structural model.

 123

4.3.6 Interface Maps

Just as parameter maps bind model parameters, interface maps are used to capture

the mapping between the interfaces of the component and analysis models. The mapping

between individual interfaces (modeled as ports within SysML) are also captured using

connectors.

These fine grain connections between ports are established using SysML

connectors as illustrated for the cylinder in Figure 4.10. These fine grain connections

allow the creation of appropriate connections between analysis model interfaces.

 Automated Composition of Analysis Models 4.4

In this section, an approach is presented for composing analysis models with

appropriate aspects from a representative model of the systems structure (whether the

system is a physical system or not; this model will be referred to as a structural model)

along with the knowledge captured within the model libraries. The approach relies on the

Figure 4.10: Interface map between the ports of the cylinder's analysis model and the structural

model.

 124

use of model transformations applied to the structural model to generate an appropriate

analysis model.

In order to accomplish this, this transformation relies on the correspondences

encoded as part of the model library described in Section 4.3.4. Without the models being

represented in the same common language, defining these correspondences explicitly

would be more difficult. Since these correspondences exist as explicit relationships, they

can be traced during the composition process to relate the appropriate model fragments.

Without these relationships, the transformation would have to rely on a more ad hoc and

less flexible technique such as name matching to identify the appropriate parameters or

interfaces. This composition approach can be used because the problem is being

considered as being characterized by the composition of known components into more

complex systems .

4.4.1 An Illustrative Example

The illustrative example involves the composition of an analysis model for the

example system shown in Figure 4.11. The structural model is a system composed of the

modular component (or subsystem) models, these models are either usages of models

from the component (or subsystem) taxonomy or locally-redefined versions of those

components. Locally-redefined versions are still specializations of models in the

component taxonomy, so they inherit the appropriate relationships. When this

specialization relationship is needed, SysML blocks representing the component models

are linked to models in the taxonomy using SysML specialization relationships.

The models are connected via their interfaces, these connections are modeled as

SysML connectors between SysML ports owned by the structural model; these

 125

connections are maintained when the corresponding analysis model is generated. As an

aside, it is not necessary for components in the structural model to be in the previously

described taxonomy; the taxonomy has the advantage of facilitating component definition

through the use of SysML’s inheritance mechanism but components can be defined apart

from the taxonomy. The only stipulation is that the components are related to the

appropriate analysis models via AssociationClasses; if this is not the case, when the

analysis model is composed they will not be included.

In the example, the circuit presented, illustrated in Figure 4.11 contains only a

single pump, valve, cylinder and tank for its hydraulic subsystem. Also, it contains an

engine to power the pump and a translational load that the cylinder actuates along with a

controller for the valve. For example, the connector between the engine’s “flange” port

and the pump’s “rotational” port represents a physical connection between the drive-

shaft of the engine and the pump.

 126

It is also important to capture exactly which analysis model should be composed

from the defined structural model. In general, a single structural model may translate to a

large number of possible analysis models. To capture this relationship between the

structural model and the desired analysis model, a test context is used as illustrated in

Figure 4.12. The test is associated with a set of aspects as well as the template structural

model, the one shown in Figure 4.11. The definition of the test is based on the definition

described in 3.4.1. When the corresponding system-level analysis model is composed;

component-level models classified with the appropriate aspects are used based on the

aspects corresponding to the test. The test can also prescribe the simulation parameters

and specify the variables of interest as described previously.

Figure 4.11: Example hydraulic circuit's structural model.

 127

4.4.2 Creating the Analysis Model

Once component-level analysis models are constructed within SysML, model

transformations are used to automatically compose them into system-level analyses and

then transform them into executable simulations. Because a SysML model can be thought

of as a labeled and directed graph, graph-based model transformations are used in this

chapter. This transformation is broken up into two steps: first, from the simulation

context into a set of system-level analysis models and second, from the set of analysis

models into executable simulations. Once the analysis models are created in SysML,

another transformation is used to create an executable simulation in a format compatible

with a domain-specific modeling tool. As mentioned in the introduction, this chapter

presents the transformation for a single system alternative, not for the full architecture

Figure 4.12: Test context describing the simulation and analysis model to be generated.

 128

selection decision. The goal of the remaining sections in this chapter is to demonstrate the

applicability and practicality of a composition approach. This serves as the basis for the

more complete approach presented in Chapter 6. As a result, the transformation in

Chapter 6 is presented in significantly more detail; here the goal is on presenting the

general structure of the transformation and the artifacts that result.

In order to automatically create the model, a model transformation is used to

compose the necessary analysis models from the system-level design alternative’s

structural model. Once the analysis model is created in SysML, it still needs to be

transformed into a form that is interpretable by a specific tool. The first step is described

in this section, while the second step is presented in the following section.

In order to compose the models, first the AssociationClass linking the structure

and analysis view must be identified. Then a new usage of the component-level analysis

model is included in the system-level model. Finally, based on the context of the

component-level model in the structural view, composition relationships need to be

instantiated in the system-level analysis model. This investigation identified three major

types of composition:

1. Only the components present are important, such as with analysis models related

to mass or cost, and the connections are irrelevant. Here, the appropriate

attributes simple need to be appropriately aggregated.

2. Only the components and connections are important, such as in reliability chains.

Here, the appropriate connections need to be instantiated but no additional

information is needed.

 129

3. The component and connections are important, but additional information is

needed, for example in models where causality must be assigned or certain types

of connections need to be replaced with nodes.

In its current form, the transformation only considers the first two categories.

Additional research is needed in how to generally capture the additional information

needed for the third case, although it could potentially be specified as meta-data related to

the AssociationClasses, and is left for future work.

To simplify the definition, the transformation is decomposed into three distinct

parts each applied to a different level of the structural model. The first transformation

creates a new system-level analysis model that is consistent at the system level with the

original structural model; i.e., the transformation creates a system-level analysis model

that is composed of the models with the same component types present in the structural

model. The second transformation maintains consistency at the component level; it

creates the parameters and interfaces for each analysis model. The third transformation

creates the appropriate connections between interfaces.

In previous work (Kerzhner, 2011), this transformation was implemented in a

triple-graph grammar (TGG) styled approach where the transformations were defined

with a meta-computer aided software engineering tool called MOFLON (Amelunxen,

2006). When the complete transformation is described along with the implementation in

Chapter 6, it is done completely in Java. The basis for this change is discussed in that

chapter.

Graph transformations are classically defined using a pre-condition, the part of the

graph that is matched, and a post-condition, the replacement graph. For the system-level

 130

transformation, the pre-condition is the structural model along with the appropriate model

libraries.

The input to the transformation is a single model that includes the simulation

context and any applicable model libraries. For each simulation context, a single system-

level analysis model is constructed. To accomplish this, the transformation matches each

component owned by the structural description of the system included in the simulation

context. For each component, the transformation selects an appropriate component-level

analysis model and adds it to the system-level analysis. The appropriate component-level

analysis is selected by matching the aspects associated with the test to an analysis model

with the appropriate aspects and correspondence relationship. This particular

correspondence relationship relates the cylinder component with a model described the

cylinder's behavior. Properties from the cylinder, such as the stroke, are equated to

particular properties of the analysis.

The component-level transformation ensures consistency of component model

parameters and interfaces. For the component-level transformation, the interface and

parameter maps provide the majority of the information. This is first accomplished by

replicating the parameters and interfaces of the analysis model in the library. The

interfaces of the library models along with the previously mentioned parameter maps

provide the templates for this transformation.

Once all the component-level analysis models are instantiated, they need to be

correctly connected to other component-level models as well as to the inputs and outputs

of the system-level analysis model. The first step is to instantiate new connections in the

system-level analysis model for any connections between the interfaces of two

 131

corresponding components. These connections are instantiated by using information

contained in the «Structure2Analysis» AssociationClasses, which provide a

correspondence between the structural and analytical models. Based on these

relationships, the corresponding ports of the structural and analytical models are matched.

If two ports in the structural model are connected, then that same connection is created in

the analytical model by following the correspondence from both of the structural ports to

the corresponding analytical ports. It is often the case that analysis models have

additional parameters that are not present in the structural models. This can include initial

conditions, simulation specific parameters, or other similar properties. These values are

instantiated in the analysis models with their default values. Additional work may be

needed to tweak these parameters based on the analysis model. A simple inheritance rule

is defined to handle inherited properties being locally redefined.

Currently these transformations are applied in a batch-type operation; an entire

system-level analysis model is composed through the application of the transformations.

Future work will investigate how the use of correspondence objects will allow

incremental updates of the system-level analysis model from modifications to the

structural model.

There are several considerations when defining compositions between interfaces.

In general, the assumption is that structural interfaces connected using SysML connectors

correspond to connecting the interfaces of the analysis model with connectors. But, for

several types of analyses this assumption does not hold. Simpler cases are easily included

in this presented definition, if the analysis models being composed require only

information about a models position or no connectivity information at all (for example

 132

mass, moment of inertia) this is easily captured using the presented framework. Capturing

compositions where additional structure is required, such as replacing connection

configurations that result in interfaces having cardinality not equal to one with nodes

forcing the interfaces to have a cardinality of one, is more difficult because these unique

compositions need to be captured unambiguously. The implication is that this additional

knowledge must either be included as part of the connection templates or as part of the

transformation specification. Ideally, this knowledge would be encoded as composition

rules using a generic language and included as part of the definition of the connection

templates. This would require that the transformation is capable of interpreting these

composition rules, which would make the transformation specification more difficult to

create. If there are only a small number of composition rules that are unlikely to change,

then it could be more practical to directly encode these as part of the transformation

specfication.

The resulting analysis model is shown in Figure 4.13. This model is structurally

similar to the model shown in Figure 4.11, but the structural models have been replaced

with external analysis models. Also, one can see that the names of the ports for instance

have changed, yet the correct connections are still present. This model can be mapped

into Modelica concrete syntax to allow for simulation. Because Modelica is an object-

oriented modeling language, the transformation into Modelica is straightforward: the

appropriate class types need to be instantiated and then connected together via their

interfaces. The code generator takes each part property in the composed model and

generates code to instantiate the appropriate model type from the Modelica library. Then

connect statements are generated based on the connectors present in the SysML model.

 133

This resulting model is shown in Figure 4.15. A similar approach for doing discrete-event

modeling in SysML has been demonstrated in Huang (Huang, 2007).

 Referencing external models in a model library 4.5

In this case, only part of the component-level analysis models is represented in

SysML. Most of the definition, such as the equations and internal workings, are

represented in Modelica code which is captured external to the SysML authoring tool. To

enable this separation of representation in SysML and model definition, additional

elements are added to SysML to allow the encoding of so-called library models. This

allows for the use of pre-existing models that have been defined outside of SysML, in this

instance Modelica models that could come from the Modelica Standard Library. This has

the advantage of referencing existing or legacy analysis models without requiring the

manual effort of redefining these models within SysML.

Each model in the library is a “black box”; it references an existing model outside

of the SysML tool. In order to create such a “black box” model and subsequently

Figure 4.13: Resulting analysis model.

Circuit_view Circuit_view[Synthesis] ibd []

«ExternalLibraryModel»

directionalValve : 6Way3PosOCSeries

P1_in AT2_out B uP2_in

«ExternalLibraryModel»

pump : FixedDisplacementPump

flange_a

portT

portP

«ExternalLibraryModel»

cylinder : DoubleActingCylinder

flange_b

port_b port_a

«ExternalLibraryModel»

load : TranslationalLoad

flange_a

«ExternalLibraryModel»

command : Command

y

«ExternalLibraryModel»

tank : Tank

port_a port_b

«ExternalLibraryModel»

engine : Engine

flange

 134

reference an external model, several pieces of information are needed. These are captured

within the «ExternalLibrary» and «ExternalModel» stereotypes. The «ExternalLibrary»

stereotype requires the “url” tag where information pointing to the location of the library

is stored. The «ExternalModel» stereotype requires the “ref” tag which stores information

about the location of that particular model within the library. The stereotype also needs

either the “library” tag which points to the associated library or a “url” tag. The

definition of these stereotypes is shown in Figure 4.14.

Using these external libraries along with a pretty-printer that goes from the

SysML representation into Modelica code, executable Modelica code can be generated

from the SysML analysis model. The pretty printer is based on the previous work

(Johnson, 2012). This resulting model is illustrated in Figure 4.15.

Figure 4.14: Profile for defining external models and libraries.

 135

 Discussion 4.6

Although in this section only a single analysis model is considered, it is possible

to apply the same approach for different types of analyses in different domains. For

instance, from a single structural model, one could generate a cost model, a reliability

model, a mass model, or an algebraic steady-state model. In general, defining the

transformation rules for composing dynamic analysis models from structural models is

non-trivial. A significant problem is the selection of causality assignments; that is: which

of the variables describing the behavior of a component should be considered as inputs

and outputs when combining the model with other component models? Through recent

advances in symbolic manipulation of Differential-Algebraic Equations (DAE)

(Beltrame, 2006), several simulation tools now support causality assignment (and even

index reduction) in an automated fashion. These tools are based on declarative, object-

oriented modeling languages such as Modelica (Mattsson, 1998), VHDL-AMS (Christen,

1999), or SimScape.

Figure 4.15: Resulting Modelica code.

 136

In addition to the automated composition of continuous dynamics models, it is

possible to define similar transformations for discrete-event simulation models. Several

hierarchical, object-oriented modeling languages and tools have been developed for

discrete-event simulation (Garrido, 2001, Varga, 2008, Zeigler, 1987). Recently, Huang

et al. (Huang, 2007), have already considered integrating discrete-event models into

SysML, so that discrete-event models can be closely tied to corresponding descriptive

models. In their approach, the SysML language has been extended using stereotypes to

represent different types of manufacturing assets. These semantically-rich models

contain all the information to convert a logical or structural description of a

manufacturing line into a corresponding simulation model in eM-Plant (Heinicke, 2000).

Although there are clear benefits to automating the process of generating analysis

models in an automated fashion, there also some costs associated with it. For instance,

there is overhead in capturing both the analysis models and structural models formally

within SysML. There is also overhead in linking these models together in a form that

allows the automatic generation of system-level analysis models. Some of this overhead

is mitigated because there is an opportunity for reuse of the models for future problems.

Some of the opportunity for reuse comes from the modular nature in which the

correspondences between analysis and structural models are captured independent of

system-level considerations. Further research is necessary to evaluate carefully how the

costs of defining the models in a more formal fashion tradeoff against the benefits of

using these models at a much reduced cost.

 137

One aspect that has not been considered is situations where additional knowledge

is needed to compose the analysis model or where additional knowledge is needed to

appropriately configure the simulation.

 Summary 4.7

In this chapter, an approach for capturing reusable model fragments in model

libraries is presented. The focus is specifically on reusing analysis models, although

structural and analysis models are captured in libraries. Capturing reusable fragments

does not add value to the modeling process without a practical approach to actually

reusing these fragments. Having the structural models available has the additional benefit

of simplifying the definition of the architecture selection decision as described in the

previous chapter. In addition, the second part of this chapter presents a transformation

approach for composing together component-level analysis models into system-level

analysis models. Although in this chapter this is demonstrated for only one architecture

alternative, in Chapter 6 this transformation approach is extended to the entire space of

solutions.

 138

CHAPTER 5:

ARCHITECTURE SELECTION USING MATHEMATICAL

PROGRAMMING

In the previous two chapters, the focus was on representing an architecture exploration

problem as an architecture selection decision, which includes both domain knowledge

and a designer’s intuition about the design space. Starting with this chapter, the focus

shifts toward performing an architecture exploration process to guide designers in making

an architecture selection decision. In this chapter the focus is on RQ 3:

RQ3. What mathematical framework is best suited for identifying promising

architectures?

In this chapter, the focus is on how the knowledge that is needed for an

architecture selection decision can be encoded in the mathematical programming domain.

The goal is to lay the foundation for supporting H3 by demonstrating how the relevant

knowledge can be encoded as a mathematical programming optimization problem, then

Chapter 7 provides an illustrative example where mathematical programming

optimization tools are applied to support an architecture exploration process. As a

reminder, H3 is as follows:

H3: Designers could use mathematical programming techniques to identify

promising solutions early in the exploration. Mixed-Integer Linear Programming should

be used for architecture selection.

In addition, early on in the design process when the solution space is large and

difficult to search, one way to improve the solution speed is to use mixed-integer linear

programming; by utilizing a MIP representation instead of a MINLP representation

should make the approach for scalable. The issue is that even early on in the design

process when very inaccurate models are being used, nonlinear effects may have a

significant impact both on feasibility and optimality. Therefore, in this chapter there is

 139

also some discussion on how inherently nonlinear behavior can be approximated in a

MIP representation.

The approach to modeling the architecture selection decision is presented in a

modular framework for modeling architecture exploration problems. Within this

framework, which components and connections can be included in a potential alternative

and also analysis knowledge that can be used to identify feasible and promising

alternatives is represented. Although using mixed-integer linear programming can be

restrictive, by appropriately structuring the equations it is argued that the formulation is

sufficient in early stages of architecture exploration.

The justification for using mathematical programming, specifically mixed-integer

linear programming, is the availability of high-quality commercial solvers that can be

applied to this problem. Because they are designed for large-scale global optimization,

these solvers can take advantage of the structure of the problem to improve solution times

and also provide some assurances about the quality of the solution. A linear formulation

is selected instead of a nonlinear formulation because in general linear problems are

easier to solve and the solvers are more robust. Previous experience with nonlinear

solvers such as the Branch and Reduce Optimization Navigator (BARON) (Sahinidis,

1996) showed that if variables were not well-bounded, the solver could incorrectly

characterize a feasible design space as infeasible (Shah, 2010c).

The rest of this chapter is outlined as follows. First, some desired characteristics

for identified for an effective solution approach in Section 5.1. Once these characteristics

have been delineated, some alternative approaches are considered from the perspective of

the requirements in Section 5.2. After establishing the limitations with current

 140

approaches, the mathematical programming-based approach is presented in Section 5.3.

The goal of this chapter is to describe how a mathematical programming problem for a

particular architecture selection decision can be composed. This process is considered

composition because there is a clear mapping between certain parts of the architecture

selection decision and resulting mathematical programming constructs. To construct the

full mathematical programming problem, these different parts are composed into a single

problem formulation as is described in Chapter 6.

 Desired Characteristics of the Search Process 5.1

Although in Chapter 1, some desired characteristics for the overall method were

presented, in this section the specific desired characteristics for the search process is

described. These characteristics are derived from both the problem description presented

in Chapter 3 and also general desired characteristics for common design processes. In

part, these characteristics are supposed to combat the difficulties that arise when

searching a space of a large number of potential system embodiments with different

architectures.

Early in the design process, there are a large number of alternatives to consider;

each alternative is the sized embodiment of a potential architecture. If one were to

visualize the search space, it might look like Figure 5.1. In this figure, the space of

architectures is shown on the left. For each architecture, there is a continuous space

where sizing occurs, as illustrated on the right. If these two views were flattened into a

single space, alternatives with the same architecture but different component sizings

create continuous regions in the space, but alternatives with different architectures would

appear in discrete regions. In order to define this design space both continuous and

 141

discrete variables are needed. Although it would be desirable for the framework to handle

both variable types, discrete variables are the most important because they are needed to

differentiate between architectures. Continuous variables are still important but early on

in the process the goal is to identify promising architectures and sizing is a secondary

concern; also, continuous variables can be discretized into a set of discrete choices if

needed although this can influence solution times.

Because of current computational imitations, both in process speed and available

memory, it is necessary to scope the exploration so that solutions can be found in a

reasonable amount of time. This can be done in two ways, by reducing the number of

potential solutions that are being considered or by reducing the accuracy of the analysis

performed during the solution process. Although removing clearly inferior or infeasible

solutions from the search space would help the search, the goal is to consider a wide

Figure 5.1: Visualization of the design space.

 142

range of solutions. The more appealing approach is to reduce the accuracy of the analyses

used to differentiate solutions. This factors into how domain knowledge is represented

throughout the process. Early on, there is the potential to use a significant number of

simplifying assumptions and represent the domain knowledge in a simplified form to

reduce the complexity of the problem formulation, but simplifying assumptions reduce

the chance that the best candidate architecture identified during early exploration is truly

the optimal solution. For example, instead of evaluating systems based on their dynamic

behavior and representing the problem as a set of differential equations, the steady state

behavior can be used instead and the problem can be simplified into a set of algebraic

equations.

Since it is unlikely that the solution to a simplified problem is truly the optimal

solution, the solution framework must be able to generate multiple solutions which can be

further explored. Since the goal is to identify several promising architectures, it is also

important these solutions embody different architectures. There are many approaches to

generating multiple solutions, for instance with a genetic algorithm approach, any

feasible solution can be recorded in a solution pool and some fitness criteria can be used

to eliminate solutions from this pool.

Another important factor is the time it takes for the solution process to identify

promising solutions; it is important that any solution process can finish in a reasonable

amount of time and not cause a bottleneck in the design process. Currently, one major

factor that prevents designers from exploring a wide range of architectures is the limited

time that designers are budgeted to work on a certain project.

 143

Because an exploration is made up of a large alternative space, where many of the

alternatives may be infeasible, such a search is usually very time consuming. Therefore, it

is important to identify problem formulations and solution approaches that can handle the

problem efficiently. Also, if the goal is to serve as a support tool for designers, it might

be beneficial for designers to execute the exploration multiple times using different

available components or objectives to perform trade-studies early in the process. Solution

time is very important in enabling such tasks. One common approach to reducing the

solution time is to employ parallelization. This requires additional computation resources,

but reduces the amount of time designers wait for solutions.

Also, it is desirable to use knowledge about an architecture’s behavior (even if it

is at an abstract, functional level) early in the process. Creating metrics based purely on

the structure of the architecture is difficult because generic mappings between an

architectures structure and its performance are not readily available. Previous work has

attempted to use artificial neural networks to perform classifications and differentiate

architectures, but this proved to be difficult because of a lack of training data. There are a

number of generic complexity metrics (Summers, 2010) which try to describe an

architecture by the number and nature of components and connections, but such metrics

make significant assumptions about the architectures behavior. Also, making generic

statements like less “complex” architectures are always better is not always meaningful.

 Choice of Solution Approach 5.2

In this section, an exploration of potential solution approaches is presented.

Although rarely referred to as supporting architecture selection decisions, there are a

number of previous approaches for identifying feasible architectures for a given problem

 144

or context. Most of these methods are referred to as computational design synthesis

approaches, with the focus on synthesizing feasible candidate architectures from ad hoc

representations of the problem. A review of these approaches was provided in Section

2.3, the most relevant are again highlighted here. One important characteristic of this

investigation that distinguishes it from previous approaches is that the problem

formulation contains designer knowledge about synthesizing candidate solutions as well

as analyzing and evaluating them; all three are included in a single comprehensive

framework.

These previous approaches can be classified into either grammar-based

approaches or constraint-based approaches. Graph grammars provide a formal language

for specifying the design space (Mullins, 1991b), but often this design space is specified

in an ad hoc manner. They have been successfully used in a number of applications, but

the transformations can be difficult to define (Bolognini, 2007, Starling, 2005). Although

the data structures and transformations approaches can be based on custom code,

computer-aided software engineering tools have been used recently to simplify their

specification (Amelunxen, 2006, Fischer, 1998). Also, grammars are usually only used

for creating topologies and a completely separate approach is used to solve for

component parameters. One notable exception is attribute grammars (Mullins, 1991a)

where configuration and parametric design is considered a part of the grammar. The

drawback of using graph transformations is that there is a need for a large number of

transformations that must be specified manually. Insuring that the result of a

transformation is still within the space of alternatives is also difficult and requires the

transformations to be defined very precisely (Wyatt, 2012).

 145

In the grammatical approaches, generating an architecture usually involves a set

of transformations and the evaluation of a particular architecture is completely separate

from synthesizing that architecture. This makes it significantly more difficult to guide the

solver because it is difficult to characterize how changes to which transformations are

applied effects the resulting architecture. Since grammatical approaches only provide a

representation of the design space, a separate search approach is needed to evaluate

solutions and explore the space. A common approach is to use some form of a genetic

algorithm or some other stochastic search algorithm and consider the knowledge encoded

in the grammar and related analyses as a black box.

Genetic Algorithms (GAs) (Goldberg, 1989, Holland, 1992) are a very common

technique for searching discrete spaces. In a genetic algorithm, a fitness function is

calculated but the analyses that are executed to evaluate this fitness function are treated as

a black-box. Instead of considering only a single candidate solution, GAs rely on a

population of solutions. New solutions are created by modifying this population;

commonly mutation or cross-over operations are applied to the population of solutions to

generate new candidate solutions. Then some selection criteria is used (most often a

Russian roulette style approach) to choose which solutions are included in the solution

pool for the next iteration (the pool is commonly referred to as a generation).

The problem with classical GAs is that the search space is defined as a set of

binary variables with generic cross-over and mutation operators. For certain optimization

problems (specifically when searching for feasible architectures), most of the solutions

resulting from these classic cross-over or mutation operations are not feasible or very

poor making the search process inefficient.

 146

To address this issue, there are a number techniques which include domain

knowledge about the search space (or the search domain) in the representation of

solutions or in the cross-over and mutation operators; genetic algorithms that include this

additional domain knowledge are often referred to as evolutionary programs.

Evolutionary programs have been shown to generate high quality solutions in a number

of fields, for example electric circuit design (Koza, 2001). Some form of GAs is often

used with grammar-based approaches, especially those relying on graph transformations

(Emmerich, 2001). The potential solution is represented as a graph (which is a natural

representation for a system architecture) and the mutation and cross-over operations can

be implement as graph transformations.

GAs are a global stochastic optimization technique that are largely problem

independent, although as mentioned in the previous section domain knowledge can be

included to make them more efficient for certain problems. GAs can be used on discrete

search spaces without well-defined distance metrics because only the fitness function is

needed to compare solutions. Genetic algorithms do not attempt to understand the

relationship between inputs and the objective function; instead the cross-over and

mutation operators are applied at random. Because of this inherent randomness, genetic

algorithms should converge over time to the global optima(s) of a continuous or discrete

search space as long as some sequence of mutation or cross-over operations will allow

the algorithm to move between any two points in the space. Issues can arise when the

algorithm is not able to move from one feasible solution to another because of a highly

constrained space or ineffective mutation operators. In that case, each generation may

remain in the same general regions and not truly explore the space. This can partially be

 147

offset by starting with a large randomly generation initial population, but this slows the

speed of the search process.

Most other methods (and the approach presented in this investigation) can be

classified as constraint-based approaches; usually the constraints are specified as either a

set of equations or using a custom constraint language. Previous approaches have

demonstrated the applicability of mathematical programming approaches in this area,

with Biegler et al. demonstrating the automatic synthesis of chemical reactor networks

(Biegler, 1997, Yeomans, 1999). The chemical network is represented as a superstructure

which is a union of all possible alternatives; it is a conglomeration of all potential

architectural options. Decision variables are used to represent which options of a

superstructure are included in a particular alternative. Constraints are then added to

specify which sets of options specify valid alternatives and to specify the expected

behavior of a particular alternative. Wyatt et al. describe the structure of the system using

a small set of constraints, and then synthesize alternatives by modifying an existing

solution and checking the feasibility of the new solution using the constraints. The

constraints are placed directly on the system structure, and alternatives are evaluated

purely on their structure (Wyatt, 2012).

In this investigation, a mixed-integer linear programming optimization problem is

used to represent the architecture selection decision and IBM’s CPLEX (International

Business Machines Corp, 2009) is used to solve it. CPLEX is a mixed-integer linear

programming optimizer; it has been extensively used in the mathematical programming

domain. The search process employed by CPLEX can be generically described as

follows. It uses a branch and bound approach for handling the binary variables; in this

 148

approach is creates a search tree whose nodes include different combinations of the

binary variables. For some of these nodes, a relaxed linear programming problem is

solved. The results of this relaxed problem are used to guide the addition and deletion of

nodes on the search tree.

The use of mathematical programming techniques is similar to the chemical

network approach, although the scope of the formulation presented here is much more

complete. In the chemical network examples, the structure of the network is fixed with

only several optional components. Here, the entire structure of the architecture can be

variable. Also, the formulation described here can be defined in a modular fashion which

supports the automatic generation of this formulation from a generic problem definition.

As mentioned earlier, the major difference is in the scale of the problem. Since a

constraint satisfaction-based approach is chosen for this investigation, the next sections

describe the characteristics of constraint satisfaction approaches and also further support

the choice of mathematical programming.

5.2.1 Constraint Satisfaction Approaches

In a constraint satisfaction (CSP) formulation, the definition of the objective

function and accompanying constraints are no longer a black-box. Instead, they are

codified in a way that can be interpreted by the solver so that the solver can consider the

structure of the constraints and manipulate these constraints into simpler problems with

the knowledge gained being used to guide the search process. This makes this class of

approaches particularly attractive for use during an architecture exploration process

because of the promise to efficiently explore very large spaces.

 149

The other advantage of constraint satisfaction approaches is that the definition of

the problem is separated from the solution mechanism. In many previously mentioned

approaches, the algorithm operated on a black-box with pre-defined inputs and outputs;

in order to perform an architecture exploration using these approaches, custom analyses

are needed that appropriately map inputs to outputs, making the approach difficult in

practice. With a constraint satisfaction approach, the constraint satisfaction solver can

“perform” the relevant analyses as long as these analyses can be formulated in the

language of the solver.

In this section, several constraint satisfaction approaches are recognized that may

be appropriate for the solution process. These approaches are compared qualitatively and

the rationale for selecting mathematical programming, specifically mixed-integer linear

programming is presented. This selection is based on the current state of the art; in the

future, a hybrid method that mixes solution techniques commonly used in mathematical

programming with solution techniques from other constraint satisfaction approaches may

provide the best results (Yunes, 2010).

Constraint satisfaction approaches can be categorized by the types of variables

and constraints that can be handled by the solver. Some solvers can handle only

continuous variables, while others can handle only discrete variables while others can

consider both. Also, the structure of the constraints used varies from logical statements to

purely linear equalities and inequalities to nonlinear equalities and inequalities. There are

a number of different constraint satisfaction approaches and a more complete survey can

be found in previous work by Kumar (Kumar, 1992).

 150

Previous work has used constraint satisfaction approaches to perform engineering

analyses, usually to select appropriate sizing parameters for a fixed architecture.

Constraints are used to define the feasible combinations of the sizing parameters and to

capture an objective function which is maximized (minimized) by the solver. For

example, Decision Support Problems (DSPs) provide a number of templates for modeling

common designer decisions in this form (Bascaran, 1989). Although there are many

different types of DSPs, the most common is the compromise DPP (cDSP) where the

objective is to minimize a weighted average deviation of the solution from prescribed

targets. In this investigation, the concept is extended to not only include sizing

parameters but also variables that describe the structure of the architecture.

5.2.2 Boolean Satisfaction

Boolean satisfaction is a class of constraint satisfaction approaches where only

Boolean variables are considered and logical statements constrain these Boolean

variables. The solver’s goal is to then identify a set or sets of Boolean variables that do

not invalidate any of these constraints.

The logical statements are often based on either first-order or descriptive logic. To

give the reader a better idea about the nature of these logical statements, a brief overview

of first-order logic follows. In this investigation, one of the justifications for choosing

mathematical programming (with algebraic constraints and continuous variables) over an

approach based on a logical system (with logical constraints and discrete variables) is the

ease in which designers can represent their analysis knowledge.

 First-order logic (FOL) (Smullyan, 1995) is a formal logical system which is

more general than propositional logic or descriptive logic. FOL allows for formulas

 151

constructed with four types of symbols: constants, variables, functions, and predicates.

Descriptive logic is a subset of first-order logic.

• Constants represent the objects in the domain of interest.

• Predicates represent relationships between objects in the domain and can be either

true or false.

• Functions represent a mapping from objects to objects

• Variables represent an instance of a particular type of constant.

An atom is a predicate symbol applied to a tuple of terms. Atoms are used to

construct more complex formulates using logical connectives and quantifiers such as

conjunction (ᴧ, and), disjunction (v, or), implication (⇒), equivalence (⇔), universal

quantification (∀), and existential quantification (∃).
Formulas can be converted to a conjunctive normal form where they can be

rewritten as algebraic constraints in an integer programming formulation (Blair, 1986a).

Therefore, mathematical programming solvers can also be used to solve problems

involving first-order logic.

A major drawback of a Boolean satisfaction formulation is that even a single

spurious statement can eliminate all possible solutions. Identifying spurious constraints is

often very difficult and when no solution can be found, one cannot simply look at which

constraints are violated or cannot be met, because in trying to satisfy the spurious

constraints the solver may violate a number of correct constraints.

One way to address this problem is to use probability constraints in a formulation

such as Markov Logic Networks (Domingos, 2008a). Here, instead of specifying only a

set of constraints, weights are added to differentiate between constraints. As a result, a

 152

solver is given guidance on which constraints are important and which can be violated;

therefore a set of inconsistent constraints no longer eliminate all possible solutions.

Another drawback of Boolean satisfaction approaches is the lack of support for

continuous variables. As a result, any analysis of the systems performance requires

significant simplification to allow the analysis to be represented as a set of logical

statements. This is a significant issue because engineering knowledge is rarely captured

in logical statements; therefore, domain experts would need to take significant effort to

capture their knowledge in this form. Also, with only logical constraints it is difficult to

differentiate between different architectures. One way to address this issue is to allow the

solver to find a large number of potential solutions; another approach would be to include

additional constraints based on knowledge gained later in the search process.

In order to add these constraints automatically, the solution process could use

machine learning techniques to identify common patterns in promising architectures and

add these as constraints to the problem definition. The difficulty with using machine

learning on this type of problem is the lack of training data.

5.2.3 Mathematical Programming

To address the drawbacks of Boolean satisfaction, one avenue is to move toward

mathematical programming. The mathematical programming domain includes a wide

variety of problem types which can handle both discrete and continuous variables.

Instead of requiring additional analyses to provide an evaluation of a candidate

architecture, continuous variables with algebraic constraints can be utilized for this

purpose and included as part of the problem definition. Mathematical programming tools

provide a number of high-quality commercial solvers. Also, there exist a number of

 153

modeling languages for expressing mathematical programming problems in a form that is

independent of any particular solver such as the General Algebraic Modeling System

(GAMS) (Brooke, 1998), Another Mathematical Programming Language (AMPL)

(Fourer, 1990b) or AIMMS (Bisschop, 2006). Therefore, the same formulation can be

tested with multiple solvers. For example, with only slight modification a particular

problem formulation can change from using only linear constraints to a non-linear

formulation which uses a different solver and also better approximates the systems

performance. In this investigation, the AIMMS modeling system is chosen, but the

approach would be similar with only slight modifications if GAMS or AMPL were used

instead. AIMMS is chosen because it currently provides a better user-interface and more

debugging tools. The problem with using these languages is they are not well suited to

engineering applications.

The most general form of mathematical programming is mixed-integer nonlinear

programming (MINLP) where the problem is defined as follows:

min 	 = ��, �)
�. �.			��, �) ≤ 0,
 ∈ ℤ�, � ∈ ℝ�.

The functions f and g map x and y into ℝ and ℝ� respectively. The advantage of

representing design synthesis problems in MINLP form is the flexibility of the

representation along with the ability to solve the problem using sophisticated, existing

algorithms. Also, the definition of the problem is separated from the solution approach

making it easier to explore the performance of different solvers on the specific examples

considered in this research. There are a number of techniques to solve these types of

 154

problems, such as brand and bound, cutting-plane methods, and reduction techniques

(Tawarmalani, 2004). Although MINLP provides the most flexibility, MINLP problems

are the most difficult to solve. If the architecture exploration can be represented using

simpler equations, then there is an opportunity for faster solution times and improved

solution results. In this investigation, the goal is to formulate a simplified version of the

architecture exploration problem as a Mixed-Integer Linear Programming (MIP)

problem. Instead of including nonlinear equations, the modeling of the systems behavior

is simplified so that only linear equations are used. This is done in part because of the

difference in robustness between linear and nonlinear solvers. When considering

nonlinear problems, it is common that several solvers may find a feasible solution while

others may not (Lastusilta, 2007). Since part of the goal of this investigation is to

establish that mathematical programming optimization tools can be used on large

exploration problems, it was decided that the more robust nature and better solution

speeds of linear solvers made them more desirable.

Using MIP has several advantages and disadvantages. The main disadvantage is

that the problem needs to be represented in a language that can be interpreted by a MIP

solver. Also, since the goal is to use existing commercial solvers, there is not an

opportunity as part of this investigation to tweak the optimization algorithms to this type

of problem. For a MIP solver to be able to handle the architecture exploration problem,

the problem must be represented in a set of integer and continuous variables and purely

linear algebraic constraints. When nonlinear or dynamic behavior is considered, it will

need to be approximated using linear algebraic constraints. The advantage of employing

 155

MIP is the availability of a number of high quality solvers and a number of very efficient

techniques to solve MIP problems.

5.2.4 Agent-Based Approaches

As an aside, there is an opportunity to parallelize many of the presented

approaches across multiple computational nodes. Some of the processes can be directly

parallelized, for instance constraint satisfaction solvers that employ a search tree

mechanism can split this search process over multiple nodes and explore different parts

of the tree in parallel (as is the case with CPLEX). Another common approach is to break

up the tasks during the solution process and allocate these tasks to multiple agents each

running on a different compute node. Others have used agent-based approaches to search

the design space (Agarwal, 1999), specifically for simple electromechanical systems

(Campbell, 2000). By employing independent computational agents, design synthesis

algorithms can be decomposed and distributed across multiple computers. If these agents

are considered as models of individual members of the design team, agent-based

approaches can be used for design exploration. Agents usually have different roles, such

as adding or subtracting components or evaluating an alternative. The drawback of agent-

based approaches that use elementary agents in that they are very inefficient.

 Structure of an Architecture Exploration Problem in MIP 5.3

Mixed-Integer Linear Programming (MIP) is rarely used in the context of

architecture exploration in systems engineering. There is previous work by Biegler et al.

(Biegler, 1997) in using mathematical programming techniques to support the design of

chemical networks. These problem formulations included both an optimization of the

architecture and an optimization of the sizing variables. Discrete variables were used to

 156

describe the structure of a potential alternative; the set of discrete variables covered all

potential solutions and a particular alternative is one particular solution combination. The

mathematical programming problems created were relatively small, consisting of

approximately 20 total variables. Because of the size of the formulation, nonlinear

equations were included and the chemical networks had only a single usage phase.

These small problem formulations demonstrated the applicability of mathematical

programming techniques for small architecture exploration problems, but do not provide

a framework for formulating and performing architecture exploration processes on more

complex systems. In order to extend mathematical programming into the broader domain

of systems engineering, it is important to investigate how well mathematical

programming problem definitions will scale and how well existing solvers will perform

on these problems. Whereas the chemical networks had a largely fixed structure with

only a few possible component configurations (in the examples provided, approximately

10), performing an architecture exploration requires considering systems with thousands

of feasible configurations. Also, there is the added complication that these systems must

perform adequately in a number of different use cases. These characteristics result in

mathematical programming formulations that are very large, often including thousands of

variables and constraints.

In order to formulate more complex mathematical programming problems, it is

important to use concepts from object-oriented modeling (Paredis, 2001) such as

modularity. In this section, the goal is to identify common structural features of a system

architecture selection decision which can be clearly partitioned, describe how those

features can be captured in a generic way within the mathematical programming

 157

modeling language, and then compose these fragments into a single problem formulation

that a solver can operate on.

In mathematical programming, the potential solution domain is explicitly defined

in a set of variables before the solution process begins. Since this definition needs to

happen initially, the size of the mathematical programming problem is potentially very

large. This is unlike modification based approaches (most grammatical approaches)

where a current solution is modified through a set of transformations (for example,

mutation operations in an evolutionary program) to generate a new solution; the entire

space of solutions does not need to be represented and instead only a set of current

solutions needs to be stored along with the set of allowable transformations. The tradeoff

is that if the search space is explicitly defined a priori, the solver then has a clear

definition of this space and can make assertions about how thoroughly this space has

been searched when returning a solution.

In addition to capturing the space of solutions, the mathematical programming

problem needs to include the analysis knowledge to evaluate a particular solution. This

knowledge is represented as a set of variables and algebraic constraints; these constraints

need to be satisfied in order for a solution to be feasible.

Further, one of these variables can represent the selection criterion which is used

to evaluate and rank solutions. Based on the selection of variables which describe the

architecture, certain constraints will either be applicable or not included.

Sometimes, it is appropriate to differentiate between different kinds of constraints.

While some truly define the feasible solution space, others constrain intermediate

variables to support calculating the objective. These constraints can be considered lazy

 158

constraints because they are usually trivially true. Identifying these constraints can

improve the solution process.

In this investigation, a mathematical programming formulation of an architecture

selection decision includes:

• Potential components and connections represented by a set of binary variables.

These binary variables represent all potential components and connections.

• The sizings of all potential components described using a set of both continuous

and discrete variables. This set of variables is usually continuous but discrete

variables are used if off-the-shelf components are being used.

• The static performance attributes, for instance the mass or cost, of all potential

components captured as a set of continuous and discrete variables. In addition,

some variables are included to capture the aggregation of these component-level

variables into a single system-level variable.

• The behavior or dynamic performance of all potential components represented

using a set of continuous and discrete variables. Each variable definition is

actually a set of indexed variables that allow the values to change with time or use

scenario.

• To restrict feasible combinations of components directly, a set of constraints

applied directly to combinations of binary variables. These can be considered

logical constraints on the structure of the architecture.

• To further restrict the feasible combinations by considering behavior, a set of

constraints describing the relationships between the behavioral variables. These

indirectly describe feasible combinations of binary variables.

 159

• The use scenarios and evaluations criteria captured with a set of variables and

constraints.

This definition of the problem is more comprehensive than previous approaches.

 Defining the Structure 5.4

The first step is defining the set of binary variables that express the space of

architecture. Looking back to Section 5.3, these binary variables represent whether

certain components or connections exist in the architecture. For instance, a particular

variable will represent whether a specific connection between a certain pump’s port and a

certain valve’s port exists. Instead of referring to a single connection or a single

component, a particular variable may refer to a set of connections and/or components that

are commonly used together; this reduces the overall number of variables and simplifies

the problem.

This approach to defining the architecture is based on the superstructure approach

where binary decision variables are used to represent possible system alternatives

(Grossmann, 2002). In previous superstructure approaches, these binary variables are

used to describe which components are included in a particular alternative. The

connections between the components are defined statically based on whether a particular

component exists or not. In this approach, these variables are used to represent the entire

structure of the system which includes both the components in the system as well as how

they are connected together via their interfaces.

Once these variables are defined, constraints are needed to define the feasible

combinations of these variables. There are two different aspects to this. First, FOL

statements are used to describe which combinations of binary variables represent valid

 160

architectures by defining relationships strictly between these variables. Additionally,

algebraic constraints are added to describe the system’s performance in qualitative terms.

These constraints also dictate which combinations of variables constitute a feasible

architecture, but do so indirectly. The inclusion of system behavior, even in a very

abstracted form, separates this approach from many others that use only constraints on

the systems structure.

The FOL statements have the effect of specifying a domain-specific language for

valid architectures, much like a metamodel or ontology. In order to represent these FOL

statements within the mathematical programming problem, they need to be converted into

linear constraints. First, the statements are converted into a normal form and then into a

set of linear constraints. For instance, � → � (A implies B) in normal form is	~� ∨ �

which becomes �1 − �) + 	� ≥ 1 as a linear constraint where A and B are binary

variables which can be either 0 or 1. To full description of such conversions can be found

in (Blair, 1986b).

5.4.1 Describing System Behavior

Once the structural description is established, the next step is to model the

system’s behavior. To accomplish this, additional algebraic constraints are added that

include both the binary decision variables described in the previous section along with

continuous variables that represent behavior of a particular component. In addition,

algebraic constraints are added to describe potential connections in the system

architecture. These constraints are only active when the appropriate components or

connections are considered as part of the solution, i.e. the appropriate binary variables

 161

have a value of one. More on these so-called optional constraints is presented in Section

5.4.2.

These algebraic constraints cannot predict how the system will behave without

some knowledge of different usage scenarios. To describe usage scenarios, additional

constraints are imposed on the boundary of the system. For the hydraulic excavator

example, this includes specifying desired force and velocity produced by the systems

actuators at several points in time; these usage scenarios are actually also a part of the

tests described in Section 3.4.1. The implied assumption is that any solution that the

solver finds to be feasible will be able to accomplish the desired use scenarios. This acts

as a de facto low-accuracy screening process that eliminates solutions which are not

capable of even performing the tests.

The algebraic constraints related to the system behavior can be defined in a

number of ways. As described earlier, algebraic constraints are defined at a component

(or subsystem) level. These algebraic constraints are supplemented with constraints that

describe the connections between these components or subsystems.

Before these constraints can be specified, the appropriate variables are needed.

For each potential component in the system, there are several sets of variables. Some

describe the size of the component, for the pump it’s mass, cost, or displacement. These

variables can be picked by the solver but also need to be constant throughout the use

scenarios. On the other hand, there are variables that describe the dynamic behavior, for

instance in the pump there is a pressure differential that changes with different scenarios.

Each of these variables is actually a set of multiple individual variables, one for each

scenario. Because most mathematical programming languages are not object oriented,

 162

each of these variables need to be defined separately for each component. Most

mathematical programming languages do allow for quick definition of certain sets of

variables. In this approach, variables from different components that capture the same

quantity, for instance a components mass, are grouped into such sets. This also allows the

quick definition of certain operations over these sets, for instance the summation of mass

variables into a single system-level mass variable.

To be able to compose the components in this fashion, they are “connected” via

well-defined interfaces (Paredis, 2001). Each component has additional variables that

describe the interfaces of the component. Because of the structure of mathematical

programming languages, the interfaces themselves are not modeled, instead only the

related variables are captured. For the pump, that would include sets of variables that

describe the pressure and flow at the intake and outtake ports along with variables that

describe the torque and velocity at the pump’s input shaft.

Algebraic constraints are then used to relate these variables. These constraints are

the same for each component of a particular type and can be defined modularly and

copied for every instance of the component.

A similar approach is used for connectors. Kirchhoff’s Laws are used to describe

the connections between components so that the component connections can be modeled.

Each interface is described as defining exactly two variables: an across variable that

describes the effort across the interface and a through variable that describes the flow

through the interface. For instance, in the mechanical domain, the across variable is

velocity and the through variable is force. This across and through formulation is

common in many simulation languages, such as Modelica (Fritzson, 2004).

 163

Connections between interfaces then translate into a set of algebraic equations

which describe how the across and through variables relate to each other. The advantage

of using this approach is it is independent of the actual across and through variables. As

long as the variables can be distinguished, the source domain and their individual nature

are not important. Kirchhoff’s Laws state at a node the across variables should be equated

and the through variables should sum to zero. Here, the interface is viewed as the node.

For each interface, the across variable is equated to the across variable of any

other connected interface. Therefore, for each interface there is a set of equations for the

across variable; this set of equations is the same size as the number of connections to the

interface. Each equation takes the form:

&A = &B

where pA and pB represent the across variable at interface A and interface B respectively.

In order to define the relationships between through variables, additional variables

are needed; it is not possible to use only the previously defined interface variables. For

each connection an additional variable is added to describe the flow of the through

variable through that connection. At each interface, only a single equation is needed

where the connector flow variables are summed with the interface’s through variable and

equated to zero. This equation takes the form:

)A +)AB +)AC = 0

where QA is the through variable of the interface (the flow into the interface) and QAB is

the flow from interface A to interface B and QAC is the flow from Interface A to interface

C. At interface B or C, these variables would also be present but with the opposite sign,

i.e.:

 164

)C −)AC = 0

In other domains where Kirchhoff’s laws might be inappropriate, other

composition rules can be used as long as the composition can be represented as algebraic

equations.

5.4.2 Optional Constraints

Although specifying the connection equations in this form is sufficient for

connections that will always be present in a solution alternative, some connections in the

problem definition are only included in a specific alternative. There are several ways to

handle this. In classic mathematical programming approaches, a big M formulation can

be used to approximate the if-then statements needed (Lee, 2011). For example, a

statement such as if a certain connection exists in this architecture, than this constraint

must be true. The problem with the big M formulation is it requires careful selection of

upper and lower bounds.

Some solvers, specifically CPLEX, have built-in optional constraints, often

referred to as indicator constraints. These are used in this formulation to handle any

optional constraints; in the big M formulation bounds need to be intelligently chosen

when formulating an if-then statement. By using indicator constraints, CPLEX manages

the formulation automatically reducing the burden on the designer (or the transformation

approach). For each potential connection, an additional constraint is added as follows:

)�� = 0

where QAB is the flow from interface A to interface B. An indicator constraint is added to

specify that this constraint is active only when the connection does not exist. In addition,

 165

an indicator constraint is included with the across constraint to specify that relationship is

only active when the connection exists.

Similarly, indicator constraints are also used in conjunction with equations which

are only applicable when the component is included in the formulation. For example, if a

component is not included in the formulation, a similar set of constraints is added which

describes that no flow can enter or leave the component.

5.4.3 Interpolation

Restricting the formulation to purely linear equations can be difficult, especially if

there is nonlinear behavior that is important in the problem. For instance, in the excavator

example in Chapter 7, the fuel consumption is approximately based on the power used by

the engine, to calculate the power the product of torque and angular velocity is needed.

To handle this situation, piecewise interpolation is used to approximate the nonlinear

behavior; this allows the nonlinear behavior to be represented in a set of mixed-integer

linear constraints.

Two different types of interpolation are presented here: a generic method to

approximate 1-dimensional nonlinear functions and a generic method to approximate

products between two variables. These two methods can be used in conjunction to

approximate more complex functions; also, the concepts described here can be extended

to create more complex interpellants. These approximations are common tricks in the

mathematical programming community (Bisschop, 2006) but here the focus is

specifically on when and how they should be applied when describing the problem.

 166

One-dimensional interpolation requires as a design input only a data set of input

and output value combinations. For an unknown variable y which is a function of x, i.e.

y=F(x), the interpellant is as follows:

� = �+,+ + �-,- +⋯+ ��,�

 = +,+ + -,- +⋯+ x0λ0

1 = ,+ + ,- +⋯+ ,� (1)

where x1..n are the given inputs and y1..n are the corresponding outputs and λ1..n are

unknown and chosen by the solver. The other constraint is that only 2 adjacent λs can be

nonzero; in most mathematical programming languages this can be represented

specifying that equation 1 is a special order set (SOS) 2 condition.

To better understand this interpellant, an example is shown in Figure 5.2. The red

curve represents the true function, the points the set of input data. The interpolation is

represented by the black line segments, with a particular interpolated value is highlighted

with the red star.

This interpellant can approximate both convex and non-convex nonlinear

constraints. For approximation of purely convex constraints, the SOS 2 condition is not

needed and the interpolation can be made up of only linear constraints with no binary

variables. For non-convex linear constraints, the SOS 2 condition is required. The SOS 2

condition can be thought of as adding binary variables to the formulation of the

interpellant so that the interpellant includes both linear constraints and these integer

variables. This is an interpolation that is often used in the operations research community,

and CPLEX can automatically handle the SOS 2 condition.

 167

The SOS2 constraint insures that the interpolation remains on the line segment

bounds. If this constraint is left out, then the interpolated value can be anywhere within

the shaded region. It should be clear from the figure that that more input/output

combinations that are provided, the more accurate the interpellant, the trade-off is that the

inclusion of additional variables makes the problem more difficult to solve.

If instead of an equality constraint, an inequality constraint is being interpolated,

there is the chance that the SOS2 constraint is not needed. As can be seen in the in the

example figure, as long as the function is convex and one is interested a less than case, or

the function is concave and one is interested in a greater than case, then the SOS2

constraint can be excluded. This slightly simplifies the set of equations used which can

improve solve time.

To interpolate a product, a different formulation is used. This formulation is more

complex because it needs to accommodate two input variables.

Figure 5.2: One dimensional interpolation.

 168

For an unknown variable z which is a product of x and y, i.e. z = x · y, the

interpellant is as follows:

2 = 	12 � + �)

4 = 12 � − �)

5 = 2- − 4-

where a and b are intermediate variables and the values of a2 and b2 are approximated

using the previous interpellant:

22 ≅	212,11 + 222,12 +⋯+ 272,17
42 ≅	412,21 + 422,22 +⋯+ 472,27
2 = 2+,++ + 2-,+- +⋯+ 2�,+�

4 = 4+,++ + 4-,+- +⋯+ 4�,+�

Using these various interpellants allows the approximation of most nonlinear

constraints. By including additional input-output combinations in interpellant, the

nonlinear function is approximated more accurately. The tradeoff is that the inclusion of

additional points also requires the inclusion of additional λ variables which must be

chosen by the solver. Another important factor revolves around the nonlinear constraint

being approximated. If it is an inequality constraint, then the SOS 2 constraint placed on

equation 1 can be relaxed reducing the difficulty of solving the problem.

The issue with this second interpellant is scaling; accurately computing 2- − 4-

when the magnitudes of x and y are significantly different requires either a large number

of interpolation points or for the points to be intelligently selected. Using a large number

of points is intractable because this also results in a large number of lambda variables

 169

which the solver must accurately choose. As an example, in Figure 5.3 an interpolation of

��, �) = ∙ � where x is between 0 and 0.01 and y is between 0 and 10 is shown with

both 2-and 4-being interpolated with 5 points each; these points are evenly spaced

between 2�9�and 2�:; and 4�9�and 4�:; The red points represent the true value of ∙ �

where as the surface represents the interpolated values. Although intuitively it makes

more sense to visualize the interpellant as a set of points and the true data as a surface,

representing the interpellant as a surface in this case allows it to be visualized more

clearly. As expected, near the choice of input/output combinations, the interpellant is

fairly accurate (as reflected by the surface nearing the points), but the accuracy quickly

decreases away from these sampled points.

Figure 5.3: Unscaled interpellant. The red points are true data and the surface is the

interpellant.

 170

This can be a significant issue in engineering problems where it is common for

variables of significantly different magnitudes to be multiplied. To provide an example

from the hydraulic systems domain, when computing the force at the cylinders it is

common to multiply the a cylinder area (the rod or bore side) which is usually less than .1

m2 with the pressure applied across that surface which is usually on the order of 107 Pa to

find the force in N. Since the common magnitudes of these variables are known and it is

usually possible to express upper and lower bounds for these variables, one way to

address this issue is to scale x and y so the magnitudes are similar. Also, by centering the

a and b variables around zero, the symmetric nature of squares can be used to cut the

number of points needed for the same accuracy by almost half. To implement this

scaling, the x and y variables are scaled to be between -1 and 1. As a result, the values of

a and b are between -1 and 1. The scaling is performed as follows:

< = 2 − �9�
��:; − =>0) − 1

�< = 2 � − ��9�
���:; − �=>0) − 1

To unscale the result and find ��, �) = ∙ � from < ∙ �<the following is used:

��, �) = ?14 �< ∙ �<) +
1
2 < +

1
2�< +

1
4A ∙ ��:; − �9�) ∙ ���:; − ��9�) +

1
2 �< + 1)

∙ ��:; − �9�) ∙ ��9� + 12 ��< + 1) ∙ ���:; − ��9�) ∙ �9� +	��9� ∙ �9�

where < ∙ �< is approximated using the interpellant and the rest are known values. To

compare, in Figure 5.4, the left plot shows the original unscaled result, on the right the

result of the scaled interpellant.

 171

These two interpellants are sufficient for any constraints that can be represented

as a set of functions. On the other hand, if the nonlinear behavior being approximated is

that of a lookup table, the one-dimensional interpellant may need to be extended to

multiple dimensions. This is a trivial extension, although the number of , variables is

equal to the number of data points used. In multi-dimensional cases, this can lead to a

very large number of variables which can significantly impact the solution time of the

solver. Therefore, if possible it is desirable to represent such interpolations as a set of the

1-D interpellant and the interpellation of products.

 Representing Algebraic Analysis Models in SysML 5.5

In order to enable the transformation approach presented in the next chapter, it is

necessary to also represent the algebraic component models within SysML. Stereotyped

SysML constraint blocks can serve this purpose, along with constraints, properties, and

ports. The modeling approach is based on prior work by Shah et al. (Shah, 2010c) where

General Algebraic Modeling System (GAMS) models were stored in an object-oriented

form within SysML. In this prior work, a profile was defined for representing the GAMS

Figure 5.4: Unscaled versus scaled interpellants.

0

0.005

0.01

0

5

10

-2

-1.5

-1

-0.5

0

0.5

0

0.005

0.01

0

5

10

0

0.02

0.04

0.06

0.08

0.1

 172

models; this profile is generalized in this work to include algebraic models generically.

This is possible because of the similarities in the modeling languages used between the

different mathematical programming modeling tools, such as AIMMS, GAMS, and

Another Mathematical Programming Language (AMPL). The profile used is shown in

Figure 5.5; the «MPModel» stereotype is used to identify mathematical programming

models. These models can consist of constraints, ports, and properties. Properties can be

stereotyped as «MPVariables» which transfer into variables. Constraints also have

several stereotypes that can be applied. Three stereotypes are of particular interest here,

the «InterpConstraint» stereotype for representing constraints that need to be interpolated

using 1-D interpolation when linear programming is used. This stereotype allows the

inclusion of data points with the constraint which specify the interpolation. Also, if these

data points are not fixed but instead depend on the component being modeled, this can

also be specified. In that case, these values will come from values found in the structural

component library described in Chapter 4. In addition is the «MultiplicationConstraint»

which specifies constraints that need to be approximated using the multiplication

interpolation presented in the previous section. Also, the «MPConditionalConstraint»

allows the specification of constraints that are only sometimes active. This is used in the

specification of valves for instance, where there are multiple potential use phases and

different equations associated with each phase.

By providing a language for representing algebraic analysis models in SysML,

designers and domain experts can encode their domain knowledge and then use

composition to reuse this domain knowledge across multiple projects. The addition of

stereotypes to facilitate the transformation of nonlinear constraints into linear constraints

 173

during the transformation process described in Chapter 6 also reduces the effort required

to capture these models An important precursor to model reuse is to create the necessary

model libraries and verify that they are accurate. One issue with the creation of analysis

model libraries is that in order for the analysis models to be reusable the assumptions and

context must by similar or generic. A generic library model may include a number of

user-specified options that change the nature of the equations used in the model and

therefore the related assumptions. When comparing to the current state of practice, the

creation of commercially available model libraries is common. One instance is Simulink,

where the tool-vendor (MathWorks) provides the model libraries to make their tool easier

to use (Mathworks, 2008). Another instance is the Modelica community, where the

model libraries are created by community members. Some of these members are

companies that sell the model libraries (Modelica Association, 2012).

 174

 Discussion 5.6

Here, the approach is to formulate an architecture selection decision as a

mathematical programming problem. The problem is simplified by restricting all the

constraints to linear constraints. This choice to use linear constraints is supported by the

argument that using only linear constraints makes the problem easier to solve. Although

this is often the case, because much of the system’s behavior is approximated using

interpolation which introduces additional variables, it is possible that using the original

Figure 5.5: Profile for representing algebraic models in SysML

 175

nonlinear equations with a mixed-integer nonlinear solver which could potentially have

better results. This tradeoff will be explored more closely in future work.

The other consideration is generating this mathematical programming

representation. As will be seen in the example problem in Chapter 7, asking human

designers to take the time and effort to accurately and efficiently create large

mathematical programming problems, interrupting the design process to do so, is not

practical. This is one of the major barriers of using mathematical programming

approaches in the current state of the art. In this chapter, a foundation for model

transformations is provided by decomposing the architecture selection problem

modularly, and describing how each piece of the problem maps into the mathematical

programming domain. These described mappings are used as the basis of the

transformation in the next chapter. The key enabling feature is considering the selection

problem as involving the composition of well-defined components into more complex

systems. By providing a clear mapping between the problem definition and the

mathematical formulation, model transformations can be applied to automatically

generate the problem.

Previous approaches have shown that model transformations are capable of

transforming semantically rich information models into a number of different analysis

formulations (Czarnecki, 2006). By employing these techniques, using a mathematical

programming approach is no longer impractical. This allows the opportunity for

significant experimentation of this approach, and allows engineers working in this area

access to a number of high-quality commercial solvers which appear well suited to

 176

support this type of decision making but are currently not used for the reasons previously

described.

 Summary 5.7

In this chapter, a framework for describing an architecture selection decision

within a mathematical programming problem is presented. The framework is

demonstrated on the selection of an actuation subsystem for an excavator. An important

characteristic of this approach is the selection decision is represented modularly which

simplifies the problem definition. For each type of element found in the problem

definition, the mapping into the mathematical programming formulation is described. By

providing a structured approach to generating this mathematical programming

representation, model transformations can be applied to automatically generate a specific

formulation for a specific problem description.

The goal of this chapter is to provide support for H3 by demonstrating how the

same concepts behind the SysML representation can be represented in mathematical

programming. In the next chapter, a transformation between these two representations

will be presented because although it is possible to manually create the formulation as

described in this chapter, for even small architecture selection decisions it is not practical.

One of the enabling aspects of the transformation is the so-called modular approach in

which the mathematical programming constructs are used. This allows the transformation

to identify the appropriate part of the SysML model and compose the mathematical

programming representation by converting small sections of the model into the

appropriate code.

 177

CHAPTER 6:

PROBLEM TRANSFORMATION

In this chapter, a transformation approach from the problem definition described

in Chapters 3 and 4 to a corresponding mathematical programming problem as described

in Chapter 5 is presented.

The aim of this section is multi-fold. The first is to provide further infrastructure

for addressing RQ3 and RQ4 because an approach is needed to quickly generate number

of different executable problem statements from the same problem definition. Recall:

RQ3. What mathematical framework is best suited for identifying promising

architectures?

RQ4. How should problem scale be managed?

The second is to further illustrate the value of explicitly defining the architecture

selection decision as described in Chapter 3 by demonstrating that the mathematical

programming problem can be automatically composed from the definition. Automatically

creating this representation has several potential advantages, although there is some

additional overhead in explicitly modeling the architecture selection decision:

1. Mitigation of the additional effort required to explicitly model the architecture

selection decision through the reduction of non-value added effort resulting from

duplication of design knowledge between the SysML model and the

mathematical programming representation.

2. The ability to model and generate larger mathematical programming models for

architecture selection than is possible with current state of the art mathematical

programming systems.

 178

3. Increased opportunity for reuse of knowledge between different architecture

selection decisions.

4. Opportunity to perform error detection and consistency checking on the object-

oriented SysML model.

There is the alternative of manually creating the mathematical programming

representation by referring the SysML formulation. As will be illustrated in this chapter

and in the examples, it is not desirable for designers or engineers to create these

representations directly because of their sheer scale and the opportunity for error.

Although to truly validate this statement, user studies are needed, in this investigation

only a logical argument is developed based on the quality of available tools and the size

of the models.

There are several alternatives in implementing this transformation based

approach. These will be discussed in the next section, Section 6.1. Then, the structural

differences between the object-oriented model represented in SysML and the flattened

mathematical programming representation are highlighted along with other

transformation issues in Section 6.2; these structural differences significantly increase the

complexity of the transformation process. Then the transformation process is presented

with discussion on how it addresses these issues in Section 6.3. The transformation is

accomplished in two stages, in the first stage most of the structural differences are

resolved in a new model and in the second stage, presented in Section 6.4, this new

model is used to pretty-print code that is interpretable by AIMMS. Because most

mathematical programming systems use similar languages to define mathematical

programming problems, this second stage can be easily modified to target a different tool.

 179

 Defining Model Transformations 6.1

The automated transformation procedure presented in this chapter is implemented

using Java code. There are a number of model transformation approaches for defining

this transformation, many of which promise the explicit modeling of the transformation

specification making it easier to review and maintain. As the majority of this

investigation has favored explicit modeling, it is contradictory to not use model

transformation approaches to define and execute this transformation. The justification for

representing the transformation directly in Java stems from the quality and maturity of

existing model transformation tools and approaches along with the ease in which these

approaches can interface with the chosen SysML authoring tool, in this case NoMagic’s

MagicDraw UML (MD) (No Magic Inc., 2012). MD provides an extensive Java

interface that can interface with a number of Eclipse based tools such as an

implementation of the Object Management Group’s Query/View/Transform (QVT)

standard.

In general, model transformation approaches can be generically described as

transforming between models, with the actual specification of the transformation

occurring at the metamodel level. A metamodel describes the possible structure of

models that conform to it; it defines the potential constructs of the modeling language

along with the potential relationships between these constructs. An alternative view of a

metamodel is that it defines a modeling language that other models can use. This generic

description is illustrated in Figure 6.1. In the future, model transformations are expected

to play an important role in MBSE for modeling and implementing interfaces between

the plethora of tools used by designers when designing a system (Stahl, 2006).

 180

Current applications of model transformations include model synchronization and

the generation of low-level models/code from high-level models. Many methods exist for

implementing these transformations; two common approaches are OMG’s

Queries/Views/Transformations (QVT) (Object Management Group, 2007) and Triple

Graph Grammars (TGGs) (Schürr, 1994).

The QVT specification provides a set of languages for querying a source model

that complies with a source metamodel and transforming it into a target model that

complies with a target metamodel. Two QVT languages, Relations and Core, are used to

model declaratively the relationships between the source and target metamodels. The

Operational Mappings language is then used to describe imperative transformations

based on the relationships depicted in the Core or Relations languages. The relations

between the QVT languages are depicted Figure 6.2. Since QVT is an OMG standard, the

definition of the language is both a standard and comprehensive. The issue is in the tools

implementing the language.

Figure 6.1: Generic structure of model transformations. Adapted from Czarnecki

(Czarnecki, 2006).

 181

Figure 6.2: Relations between the QVT languages (Object Management Group,

2007).

Overall, QVT is a widely accepted model transformation language; however,

there is a lack of tool support to execute the language. Also, until very recently, the

integration between MD and these QVT tools has been difficult. In the latest version of

MD there is a built-in integration for operational QVT, but this capability was not

considered as part of this investigation.

TGGs are similar to QVT in intent but are declarative by nature. Accordingly,

TGGs are particularly useful for completing complex, bidirectional model

transformations; however, others have shown that QVT is equally expressive and capable

(Greenyer, 2007). In a TGG, two modeling languages (metamodels) are defined as

graphs. The mapping between the two metamodels is then represented by an

intermediary graph called the correspondence metamodel. This third graph is essential

for defining graph transformation rules and maintaining traceability links between the

two models. A practical implementation of TGGs is also demonstrated extensively by

Königs (Königs, 2006). The issue with TGGs is they significantly constrain the types of

transformation rules that can be specified. They are extremely effective in areas where

the mapping is one-to-one, but they remain difficult to apply when significant

modification of the structure is needed.

 182

 Transformation Issues 6.2

As mentioned in the introduction, the structure of a mathematical programming

problem is significantly different than the structure of a SysML model; this makes the

transformation between the two significantly more difficult than if they were structurally

similar. In the OMG’s SysML-Modelica specification (Paredis, 2010), one of the

simplifying factors was the object-oriented nature of both SysML and the Modelica

language. The flattening, pretty printing, and compiling that occurs to transform a model

specified in the Modelica language into executable simulations is handled by the

individual Modelica tools (Åkesson, 2010b).

Although a mathematical programming tool does do some post-processing on the

defined mathematical programming problem before it is interpreted by a solver, the

provided mathematical programming language (from AIMMS and also other tools) is

completely flat with a relatively small number of constructs specifically geared toward

describing a set of variables and constraints. The modeling language is described as flat

because there is only one namespace, elements cannot be organized in a hierarchical

fashion, and common object-oriented concepts like inheritance or redefinition are not

available.

To simplify the transformation, the SysML model could be restricted to look

structurally similar to the mathematical programming formulation or only a few object-

oriented concepts could be included in the transformation process (Shah, 2010c). This is

also similar to the s-COMMA GUI approach where mathematical programs are

represented in a simple object-oriented language similar to UML (Chenouard, 2008).

From the representation presented in Chapter 3, it should be clear that the goal of this

 183

investigation is not simply to represent mathematical programming problems in an

object-oriented fashion. Instead, the goal is to provide designers with a convenient

language to represent their architecture selection decisions and automatically transform

that representation into a form where an architecture exploration search process can be

executed. Attempting to force this language to be structurally similar to the mathematical

programming domain would require engineers to explicitly model many of the

constraints that are automatically handled in a generic fashion in this approach. Åkesson

demonstrated an approach for generating flattened nonlinear mathematical programming

optimization problems for AMPL from a more abstract and object-oriented Modelica

representation of the analysis (Åkesson, 2010a). This suggests that performing the

flattening process as part of a transformation is feasible.

The additional difficulty is that mathematical programming provides only a few

types of constructs and, unlike in SysML, these constructs cannot be easily extended.

Therefore, the knowledge present in the SysML model must be mapped onto only the

available constructs. This is partially the goal of the work presented in the previous

chapter, where the focus was on how to represent various aspects of the architecture

selection decision in the mathematical programming domain.

An additional consideration that arises from these structural differences is that

translating knowledge from a mathematical programming model into the SysML

representation is difficult. This is not considered here because it is unlikely that an

engineer or designer would rather represent his or her knowledge in the mathematical

programming domain because of the significant restrictions. In real-world applications,

there may be some instances where large mathematical programming problems already

 184

exist, but it is likely that if these problems are represented modularly like the architecture

selection decision they would be significantly smaller in the SysML formulation. Still, an

importer could be built to import some of the equations into SysML structural elements,

but this is left for future work.

6.2.1 Practical Considerations

The fact that both the SysML representation and the mathematical programming

representation are derived from the same structuring of an architecture selection decision

enables the definition of the transformation. In addition, there are some practical

considerations which must be taken into account when performing the transformation.

Because of the lack of hierarchical structure in the mathematical programming domain, it

is important to eliminate potential name collisions. In SysML, because of the hierarchical

structure there are multiple namespaces (a container for a set of identifiers, names). In

mathematical programming languages, the flat structure does not contain multiple

namespaces which introduces the possibility for elements having the same identifier

resulting in name collisions. Also, many mathematical programming languages impose

limits on the length of names so often times a hashing process is needed to replace the

names used in the SysML model with shorter placeholders in the mathematical

programming problem. This also can make it difficult to identify the instance-level

mapping between the SysML and the mathematical programming formulation; this

correspondence between the original constructs in SysML and the renamed constructs

needs to be explicitly captured. In addition to the renaming, because the description of a

particular architecture is represented as a set of binary variables in the MIP problem, it is

difficult for a designer to visualize the result of the optimization. A process is needed to

transform the set of values returned by the optimizer into architecture description that can

 185

be understood by the designer. Therefore, there is also the need to translate the results of

the mathematical programming problem back into SysML (the approach taken as part of

this investigation as will be seen in the next chapter) or into another form where they can

be easily visualized and reviewed by the designer.

In instances where there are multiple usages of the same type in the SysML

model, the definition of the type must be copied separately each time in the mathematical

programming formulation or indexed constraints must be used. When there are multiple

components of the same type included in the problem definition, in the SysML model the

type is only defined once and then each usage references the original type. In the

mathematical programming definition, the definition of the type must be separate for

each usage, which means that designers must include copies of the type definition within

the problem formulation or create additional sets related to the usages and use indexed

variables and constraints. Also, some structural elements in SysML that implicitly

represent variables or constraints to enhance usability need to be transformed into explicit

definitions of those variables or constraints. For example, the binary variables related to

the selection of a particular architecture are implicitly defined through the use of

connection templates and multiplicities in the original SysML model. The definition of

the problem only implicitly defines these variables, so the transformation process needs

to identify these variables and make them explicit. Another option would be to adjust the

problem definition to explicitly define the variables, but this would make defining,

modifying, and reviewing the problem more cumbersome.

Also, because most mathematical programming languages do not support

inheritance, any inheritance and redefinition in the SysML model must be resolved into a

 186

flattened form where inheritance or redefinition does not appear. This is done by

explicitly defining any inherited or redefined constructs from the SysML model when

representing them in the mathematical programming language, similar to the flattening

process that occurs with Modelica (Åkesson, 2008, 2010b). Resolving this inheritance is

one of the most difficult aspects of the transformation because the usage and resolution of

the inheritance and redefinition constructs within SysML is still not standardized. As a

result, there are a large number of different use cases the transformation must take into

account.

The need to flatten the very complex structure of the original model requires that

a large number of correspondences are maintained between the new and original model.

Maintaining these correspondences between the SysML model and textual code is very

difficult. Considering the correspondences implicitly or trying to capture the

correspondences using low-level coding concepts such as hash or tree maps is also

difficult.

Therefore, in this transformation approach an intermediate model is created in

SysML with a structure similar to the mathematical programming code that needs to be

generated. The correspondence between this model and the original problem definition

can then be explicitly captured. In addition, during the definition of the transformation

process this intermediate model is more easily reviewable to provide confidence that the

transformation is performing as expected.

This intermediate model has some other important benefits which make a two-

stage transformation process the more desirable than the one-stage approach. The most

important aspects center around how easy the transformation is to create, review,

 187

maintain, and modify. By generating an intermediate model in SysML, the bulk of

structural transformations can be reviewed, often visually, without need to parse large

amounts of resulting textual code. Also, the same intermediate model could be used to

generate different types of executable models such as either linear or nonlinear

mathematical programming modes. Also, the intermediate model can serve as the basis

for visualizing the results because it contains the same variables that are present in the

mathematical programming problem along with the relationship between those variables

and the structural features in SysML.

 Transformation Process – First Stage 6.3

The transformation is performed in two distinct steps beginning with a SysML

model and ending with code that can be executed by AIMMS. Although the final goal is

to generate code that can be interpreted by a mathematical programming modeling

system (in this case, AIMMS), an intermediate step is taken to generate a flattened model

that is structural similar to the resulting code. This flattened model is also captured in

SysML but is simply a bi-product of the transformation. This simplifies the code

generation process because no structural changes are needed. Instead, the code generator

(pretty printer) can simply print the appropriate equations for each element in the

intermediate model. The first transformation step is the most difficult because the in the

transformation requires a significant structural change to the model.

To help illustrate the transformation, a very simple partial model fragment is used.

The SysML definition of this fragment is shown in Figure 6.3. Because it is only a model

fragment, it is difficult to describe it as an architecture selection decision. Instead, the

main aspect captured is that the potential circuit contains a power unit (which includes a

 188

pump and tank) and a valve block (which includes an open-centered valve along with a

check valve). The reason this particular example is included is to highlight how the

object-oriented structure of the SysML model is transformed into a flattened structure and

finally to AIMMS code. Since this is a model fragment the resulting AIMMS code that is

created during the transformation will also be incomplete.

Figure 6.3: The structural definition of a simplified model fragment

 189

Figure 6.4: The internal definition of the simplified model fragment

The intermediate model created by the first transformation step is really a

superstructure of the definition of the selection decision. A superstructure is a union of

all potential architectures with all possible connections and components present (Biegler,

1997), as was discussed in the previous chapter. In addition, the components included in

any tests are also in the superstructure. Not only does the superstructure contain all

possible components and connections, but it includes them in a flattened form separate

from the original problem definition.

The elements contained within the superstructure are specializations of the

original model elements. In addition, these elements contain a copy of the appropriate

subset of variables and constraints from the relevant elements in various analysis

libraries. Also, additional variables are added to describe a single potential architecture in

the superstructure.

 190

The first step to generating the superstructure is to identify all the potential

components. First the structure of the abstract system (in this case the abstract circuit

block) is traversed (the transformation starts at the root of the hierarchical model

structure and searches this structure using a depth-first search) and the concrete atomic

components (or types) are identified for inclusion in the super structure; the definition of

an abstract system was described in Chapter 3 and is illustrated Figure 6.3. An atomic

component is one that does not contain further structural definition and therefore cannot

be further subdivided. A composite component on the other hand contains atomic types

or other composite types so it can be further subdivided. In the case that an included

component is abstract, the algorithm identifies specializations of that component which

are not.

In the example model fragment, the potential components include the

OCPowerUnit and OCValveBlock. These components are not atomic types, instead they

each contain further definition. For instance, the OCPowerUnit includes a pump, tank,

and relief valve. The internal structure is illustrated in Figure 6.5.

 191

These components are not contained in the superstructure definition, instead only

the atomic types that make up these components (the pump, tank, and relief valve) are

included. The choice of atomic versus non-atomic components is a modeling decision

that is affected by the problem being modeled and should be chosen by the designer or

modeler. In this example, if the abstract non-atomic component ValveBlock is included

instead of OCValveBlock, then the algorithm would continue after identifying both

OCValveBlock and CCValveBlock.

Each non-abstract atomic component type that is identified is re-declared as a new

type that is referenced by the superstructure. The non-abstract components are re-

declared separately from the problem definition.During this re-declaration, any elements

in the component that are inherited from other component are included in the resulting

flattened type definition. In addition, any equations related to the original type that have

been defined in an analysis library are also included. The actual variables included in this

re-declaration are copied from the analysis library. To identify the appropriate analysis

Figure 6.5: The internal definition of the OCPowerUnit functional unit.

 192

library model elements for each type, the transformation identifies links between

structural and analysis elements that have been encoded in SysML AssociationBlocks.

These association definitions represent re-usable templates that describe how structural

elements relate to analysis elements. The definition of these AssociationBlocks was

described in Section 4.3.4.

Once all the necessary component types for the superstructure have been defined,

the next step is to create all the appropriate usages in the superstructure. Creating the

component usages is a more complex process than creating the appropriate types because

the number of usages is important and also they must be appropriate tracked so that

connections can be added in the next stage. Also, each single usage in the original

definition maps to some number of usages in the superstructure depending on the

multiplicity of the usage. Also only atomic usages are included (usages that are typed by

atomic components). For composite components, several usages are added. For each

usage of an abstract type, multiple usages are also added to the superstructure; these

usages are typed to the concrete types that specialize this abstract type. The flattened

usages for this example are shown in Figure 6.6. The usages of the tank, relief valve, and

fixed displacement pump are flattened from the OCPowerUnit and the check valve and

directional valve are from the OCValveBlock.

 193

Once all usages are present in the superstructure, the next step is to add the

corresponding connections. Some of these connections are always present, as described

earlier in Section 3.4.2. These connections are copied into the superstructure by tracing

the correspondence between usages in the superstructure and original definition as in the

transformation presented in Chapter 4. In addition to these mandatory connections, there

are optional connections which are also specified in connection templates captured using

AssociationClasses as described in Chapter 3, Section 3.4.3. Again, these

AssociationClasses can be defined between abstract or composite types so again a

Figure 6.6: Components resulting from flattening of the original space definition

 194

resolution process is needed to insure that all the appropriate optional connectors appear

in the superstructure. For AssociationClasses between composite types, the appropriate

port needs to be identified in the flattened structure by tracing the connection between the

interface of the composite type and the interface on the constituting component. Then, the

links between this constituting component in the definition and the possible multiple

instances that result in the superstructure are then traced to identify which ports should be

connected. A similar process is used for abstract types where the flattened usages

resulting from the abstract type are traced and connectors are instantiated. The flattened

view with connectors for the running example is shown Figure 6.7. Some of the

connectors are always present and simply directly copied, for instance the connectors

between the relief valve and fixed displacement pump which are based on the structure of

the OCPowerUnit. Others, stereotyped with «OptionalConnector» (this stereotype was

defined in the profile shown on Figure 3.6 (on pg. 78), are included because of relevant

connection templates. For instance, the connections running from the pump to the valve

are part of connection template 3 from Appendix A.

 195

Once the superstructure is constructed, it contains all possible components and

connections. The next step is to include variables that capture whether particular

components and connections exist within a particular alternative. These variables, labeled

decision variables in the previous chapter, are added to the superstructure during the

transformation process by identifying areas in the problem definition where there is

potential for an alternative’s structure to vary. These variables, which were more

thoroughly described in the previous chapter, are included in the generated code and

Figure 6.7: Flattened view with corresponding connectors.

 196

values for them are selected by the solver during the search process. Whereas in the

previous chapter the choice of these variables is considered known, here the variables are

only implicitly encoded in the structure of the design problem and need to be explicitly

defined. The selection of these variables is important because they must accurately

describe the design space as captured by the encoded architecture selection decision. On

the other hand, the more variables that are included in the formulation, the more difficult

it is to search the space.

The first step is to identify the decision variables related to optional connectors.

Groups of connectors are assigned a single decision variable based on the connection

templates. For instance, in Figure 6.7, most of the connections running from the pump to

the valve are flattened from the T3 connection template and therefore have the same

decision variable. If multiple pumps or valves were included in this model fragment

example, connections running from each pump to each valve would be assigned to

different decision variables.

In addition to the optional connectors, there is also other structural variability in

the model. For instance, when usages typed to abstract types in the model are replaced

with multiple concrete usages and types, and only one usage is present in any

architecture. Therefore, additional decision variables are needed to capture this fact. Also,

throughout the definition of the architecture, there are optional components that are

included within the Functional Units (as described in Section 4.3.1). For each of these

optional components, a decision variable is added.

The next step is to incorporate the knowledge captured in the tests into the

superstructure. As discussed in Section 3.4.1, there are two types of tests. The first type

 197

of test simply requires some composition of component attributes into a single system-

level attribute. In this case, an additional variable is added to the superstructure to

represent the system-level attribute. In addition, a constraint is added which is owned by

the superstructure which describes which component-level attributes should be

composed. One example of such a test is a mass test where the composition involves

adding up the mass attribute of each component into a single system-level mass.

Including knowledge from the other type of test is more complex. Here, both the

test structure and test procedure need to be incorporated into the superstructure. The first

step is to include the test structure as a part of the superstructure. Then, the test procedure

is converted into a set of constraints and this set is added to the superstructure.

To add the test structure to the superstructure, the same process that adds potential

components to the superstructure is used. For each type of test component in the test

structure, a new local re-declaration is created. The model properties and constraints from

the relevant analysis models are copied into this new model as described previously.

Then, for each usage of the component in the test structure, a corresponding component

usage is created in the superstructure and typed to the new re-declaration. Then,

connectors are created for any connections that exist in the test structure between test

components or between the test components and the interfaces of the system boundary.

For connections between test components, the connector connects the appropriate

interfaces. Because the interfaces of the system boundary do not exist in the

superstructure, the connections between the test components and the superstructure’s

interfaces become connectors between the appropriate test component interface and the

appropriate interface of a potential system component. In order to identify the appropriate

 198

interface, all connections and potential connections that exist between the system

boundary interface and component interfaces within the system are traversed. If the

interface is on an atomic component which has no further internal structure, the

corresponding interface in the superstructure is used. If the interface is on a functional

unit or some other composition of components, the process continues until it identifies an

atomic component.

One important consideration, as mentioned in Section 3.4.1, is that multiple tests

may reuse the same structure. Therefore, it is important to identify which structural

elements have already been included in the superstructure so as not to re-include these

elements. This is true for both the test components and also the connections.

As is apparent from the transformation process, there are a large number of

potential links between elements in the superstructure and the original problem definition.

These potential links are important not only for documentation purposes but also to help

identify certain elements in the superstructure during the transformation process. To

capture these links, certain superstructure elements are stereotyped using the

«FlattenedComponent» or «FlattenedValueProperty» stereotypes (also defined in Figure

3.6, pg. 78). These elements can then use the flattenedFrom tag value to refer to the

original component or value property. Another possibility for modeling these

correspondences would be to simply use SysML connectors between elements.

Stereotypes were chosen in this case because visually it was easy to identify which

superstructure elements corresponded to which problem definition elements by just

looking at the superstructure elements. In the connectors’ case, the user would need to

refer to a separate diagram which included the connectors.

 199

 Generating AIMMS Code 6.4

Once the superstructure is created, the second part of the transformation process is

to generate executable AIMMS code. AIMMS has a textual representation language with

a particular syntax which must be followed when generating this code.

Also, when the generated code is imported into the AIMMS tool, there are some

practical considerations which must be addressed. For instance, the importer does not

allow lines of more than 255 characters, which restricts the length of variable names and

also requires that large constraints or data sets must be broken over multiple lines.

In the superstructure, the individual constraints are not manipulated and instead

are just copied in directly. It is during the pretty printing process where textual

manipulation of the constraints occurs so they conform to the expectations of the AIMMS

interpreter.

There are a number of model-to-text transformation tools that can simplify the

definition of this transformation process. For practical reasons such as the need to adjust

the output text based on the limitations of the AIMMS importer mentioned previously

and also the additional training needed to use these tools, instead of using any of these

tools the pretty printer was written manually.

Even though the superstructure representation has more of the hierarchical

structure of the original representation removed, there is still some flattening that occurs

in this step. In the SysML model, there is a type-usage relationship wherein a particular

variable or constraint is only defined once. In the AIMMS language, this must be

completely flattened and the variable or constraint must be defined each time.

 200

The pretty printing process has the following steps, based on the mathematical

programming representation described in the previous chapter:

1. The number of each type of variable (variables with the same name and type) in

the superstructure is counted and an AIMMS set is printed for each (Although this

could also be grouped by components).

2. AIMMS variables are printed corresponding to the variables. They are indexed by

the appropriate set.

3. Component constraints for each component usage that is present in the component

type are printed as AIMMS constraints. Before printing, variable names in the

constraints are replaced with the appropriate name and index based on step 2.

4. Constraints for the connections (and optional connections) are printed as AIMMS

constraints.

5. Constraints for the tests are printed as AIMMS constraints.

6. The object and other parameters are printed in the AIMMS mathematical program

construct.

 Import-Export SysML 6.5

As an aside, the SysML representation relies heavily on model libraries which

contain reusable domain knowledge that are independent of the problem definition and

can be leveraged for different design problems. Once these model libraries are defined

and available to a designer, the cost of creating the problem definition is greatly reduced.

But, defining these model libraries is not a trivial task. One approach would be to import

the knowledge into SysML from existing sources.

 201

It is always important to consider how knowledge represented in a legacy format

or in existing models can be imported into SysML. Also, simply asking the engineer to

represent all of his knowledge within SysML manually has a number of inherent

disadvantages. Many times, domain-specific tools offer a more effective user interface

and a more natural presentation of the engineer’s knowledge. Also, many times the

engineer has significant training and experience with a particular domain-specific tool

making the tool much easier to use. Transitioning to SysML would require significant re-

training of the engineer which would come at significant cost. A better approach would

be to allow the engineer to represent his knowledge in his native form and then import

that knowledge into SysML.

Most current transformation approaches are focused on transforming a SysML

model into some other representation that is capable of analyzing the model. An

additional issue is maintaining the consistency between the SysML model and the

resulting analyses.

 Summary 6.6

In this chapter, a two-stage transformation approach was presented for

transformation from the SysML presentation of an architecture selection decision into a

mathematical programming optimization problem. A mathematical programming solver

can then operate on this formulation to perform an early stage architecture exploration

and identify feasible or promising solutions as will be demonstrated in the following two

chapters.

This transformation provides some tangential support for hypothesis 3; one of the

current drawbacks with using a mathematical programming based approach to perform

 202

architecture exploration is the difficulty of creating the problems; without the ability to

conveniently generate these formulations the approach is not practical. A transformation

approach, such as the one presented, greatly reduces the difficulty of generating these

problems making the use of a mathematical programming based approach more practical.

 203

CHAPTER 7:

EXCAVATOR EXAMPLE

In this chapter, the excavator example is presented to demonstrate the

applicability of the proposed approach to real-world scale problems. The excavator

example relates to the selection of an architecture for the hydraulic subsystem of an

excavator. An excavator is a piece of off-road construction equipment that is expected to

have the flexibility to perform a number of common tasks, from relocating soil for the

purpose of digging trenches or preparing a landscape for commercial development to

lifting heavy objects. The hydraulic subsystem actuates a four degree-of-freedom

mechanical system that performs each of these tasks. This mechanical system is

connected to four cylinders which actuate the vehicle’s arm and a hydraulic motor which

rotates the structure connected to the undercarriage. An illustration of an excavator is

shown in Figure 7.1; this illustration is taken from (Haga, 2001).

Figure 7.1: Excavator, taken from (Haga, 2001)

 204

The excavator is chosen as an example because of the potential variability in the

hydraulic subsystem. There are a number of candidate architecture configurations, with

potential variability in the number of pumps, valves, and prime movers (engines)

included in the architecture. Although most configurations have the same number of

valves, multiple functions can be combined differently (for instance, in most excavator

architectures a single valve actuates both boom cylinders because they are kinematically

linked)

Here, the focus in on purely open-centered architectures, although traditionally

the architectures can be either open-centered or closed-centered. In an open-center

architecture, the neutral position for the directional control valves allows fluid to pass

through the valve. In such an architecture, the pump can continuously produce flow, so

fixed-displacement (or constant-displacement) pumps can be used. These pumps are

usually cheaper and simpler than variable-displacement pumps. When all of the valves

are in the neutral position, flow from the pump bypasses the valves and goes back to the

tank. In a closed-centered architecture, the neutral position of the valve does not allow

fluid to flow through the valve (the neutral position is closed). In this case, a variable-

displacement pump is needed because in the neutral position there is no path for further

flow. Closed-center architectures are more energy efficient than open-centered

architectures although they are also more complex and have higher component cost.

Because the goal of this section is to provide a proof of concept, only the simpler open-

centered architectures are considered. One objective is to minimize the fuel consumption

while the hydraulic subsystem actuates the cylinders. Fuel consumption is chosen as the

objective because current industry trends and government regulations are pushing for

 205

more economic vehicles. The other objectives considered are to minimize component

cost (facsimile for manufacturing cost) and a life-time cost (component cost plus fuel cost

over the expected lifetime of a vehicle).

The use scenarios for the hydraulic subsystem are also considerably simplified.

As mentioned earlier an excavator is often utilized in a number of scenarios, including

approximations of each of these scenarios as part of the architecture exploration problem

would make it very difficult solve. Instead only five use phases are considered; these use

phases are fairly generic but cover of the scenarios an excavator would perform

generically. These five phases are: one where no cylinders move, three where each

cylinder (degree of freedom, both boom cylinders are always actuated together) is

actuated separately (the swing is neglected), and one where all four cylinders (three

degrees of freedom) are actuated together. This insures that any candidate architecture

that is considered feasible by the solver is able to perform the rudimentary tasks needed

for the excavator to function. More comprehensive analysis of the system’s performance

can then be performed in future steps.

The goal of this chapter is to demonstrate that the approach is applicable to real

world problems in order to test and support hypothesis 1 and hypotheses 3:

H1. Designers can represent their architecture exploration problem in

information models using a domain-specific language consistent with decision theory.

 H3. Designers could use mathematical programming techniques to identify

promising solutions early in the exploration. Mixed-Integer Linear Programming should

be used for architecture selection.

 206

Because common architectures of the hydraulic excavator are well known in

industry, the design of the excavator provides an excellent case study for the method.

Since an extensive array of knowledge about potential system architectures for this

system exists, it is easier to quickly identify whether the solution process is indeed

identifying feasible solutions. The more difficult problem is to ensure that the resulting

solutions truly span the potential design space. Although significant prior exploration into

the design of excavators does provide some guidance about feasible and promising

architectures, without conducting an exhaustive search, it is impossible to determine if

the solution approach has truly identified all possible promising candidates. The other

consideration is what makes a particular solution candidate a promising candidate: is it

simply that a particular candidate solution is able to perform all of the prescribed use

scenarios or should the solution also meet a certain threshold for the objective value? In

this investigation, a candidate solution that is capable of performing the prescribed use

scenarios is considered to be promising.

To better understand how this chapter fits in with the rest of the thesis, the goal is

to build on the work presented in Chapters 3-6. The underlying approach to formulating

the problem in SysML along with the necessary modeling constructs was presented in

Chapter 3. To generate the mathematical programming problems, the code used to

implement the approach in Chapter 6 is used. Unlike Chapter 5 where the mathematical

programming formulation is presented in a generic form, in this chapter there is

additional focus on providing a more concrete example of the process and highlighting

the issues that arise during this particular problem formulation. How these issues are

 207

resolved can be used as a generic starting point or a set of best practices for other

problems.

The rest of the chapter is outlined as follows. The definition of the excavator

example using the SysML representation from Chapters 3 and 4 is presented in the next

section. An outline of the considered optimization problems and how the excavator

problem is represented as a mathematical programming optimization is considered in

Sections 7.2 and 7.3. Some simplified versions of this problem definition are used as

verification examples in Section 7.4. The optimizations for the full version of the

problem are presented in Section 7.5. Then, two potential approaches for mitigating

scaling issues are demonstrated in Sections 7.6 (where the problem is further constrained)

and 7.7 (where system sizing is neglected). Based on the results of this chapter, the

overall approach is compared to two other related approaches in Section 7.8.

 Defining the example in SysML 7.1

To help illustrate the language presented in Chapter 3, it will be used to define the

architecture selection decision being considered in this chapter. In the design of a

hydraulic excavator, the mechanical subsystem is rarely changed because of the high cost

necessary to change the manufacturing process for the mechanical structure. Also, the

excavator’s hydraulic subsystem has much greater opportunity for variability in terms of

the desired architecture, whereas in the mechanical structure only the geometry of the

components would change. Taking this into consideration, in the problem definition

presented here the definition of the mechanical subsystem is considered to be fixed and

the definition of the hydraulic subsystem is left unspecified.

 208

To begin the definition of the architecture exploration problem, it is important to

capture the requirements and selection criteria for the candidate architectures. Based on

the evaluation criteria, the designer can then define an appropriate space of candidate

solutions that will be explored and the appropriate evaluation criteria for each of these

solutions.

There are a number of different ways to define selection criterion, but the criterion

chosen must be able to rank-order each of the different architectures. Part of the difficulty

in evaluating the architectures is their changing structure; to not bias the exploration

process, the selection criterion must be sufficiently independent of a particular

architecture alternative. For instance, it would not make sense to compare an all-electric

vehicle to a traditional vehicle using a metric such as gasoline consumption. When trying

to minimize the fuel consumption, any electric vehicle would be evaluated to be superior

even though it may use require significantly more energy and from a broader perspective

would be the poorer choice.

A sample requirements diagram for the actuation subsystem is shown in Figure

7.2. In this requirements diagram, the requirements on the hydraulic subsystem are

broken down by performance, cost, and mass. In the example mathematical programming

formulations, the mass requirement is neglected because cost and mass are so strongly

correlated (in this domain).

 209

Once the requirements are defined, the next step is to define the various related

test cases. In the previous diagram, three test cases are considered, a lifting test, a mass

test, and a cost test. The lifting test is defined through the use a test context, because it is

likely that a real-world specification would include multiple different test cases for

dynamic behavior, although each of these test cases would be based on the same

structure. A test context for the excavator subsystem is shown in Figure 7.3. Here, the

subsystem is connected to loads, which can be specified by the test procedure. Also, a

fuel tank is connected to the subsystem to allow the fuel consumption to be measured.

Figure 7.2: A Requirement Diagram for the Hydraulic System that also includes

the proposed testable requirements

 210

To define the test procedure, a SysML activity is created which encompasses the

entire procedure. SysML actually supports multiple different formalisms which would be

suitable for defining the test’s behavior, but the activity formalism was chosen because it

seems to be the most intuitive to designers and also because there are constructs to relate

the activity elements to the test structure.

The test cycle for the lifting test is shown in Figure 7.4. This test cycle can be broken

down into 5 distinct operating phases, as is visualized in Figure 7.5. There is a stage

where none of the cylinders move, a stage where each cylinder moves independently, and

finally a stage where all of the cylinders more together.

Figure 7.3: Test context for excavator subsystem including the IBD for the hydraulic subsystem.

 211

Figure 7.4: Test cycle for the actuation subsystem

 212

Once the designer has created the requirements and selection criteria, the next

step is to define the space of potential solutions. When defining the space of

architectures, the designer needs to capture two basic facets: all of the potential

components that can be used as part of the architecture and all possible connections

between these components. The potential connections have been defined by the

connection templates found in Appendix A.

In this example, the excavator has 4 cylinders, which are used to actuate the

different parts of the arm, and then a swing motor to swing the cab. These are fixed parts

of the hydraulic subsystem which are always included. In addition, the subsystem has

some number of prime movers (engines), pumps, and directional valves.

The potential components that can be included are shown in Figure 7.6. The

hydraulic subsystem is composed mostly of functional units, which reflect common

combinations of components. In the hydraulics domain, pumps are often connected to

Figure 7.5: Visualization of the test cycle for each cylinder.

 213

hydraulic tanks which store the hydraulic fluid. By combining these into a single “Power”

functional unit, the designer does not need to include both the pump and tank in the

configuration each time. In addition, the common configuration between the pump and

tank can be applied in each potential architecture configuration; during the solution

process this configuration does not need to be rediscovered. The pump type has

properties and interfaces that would be common between different pumps categorized by

this type. It does not have any values that clearly represent a single pump instance, for

example no knowledge is captured about the size of the pump or a particular pump brand.

The internal specification of the hydraulic subsystem is shown in Figure 7.7. The

connections between the cylinder interfaces and the interfaces of the hydraulic subsystem

are fixed. The rest of the structure is left undefined. The multiplicities on the part

properties represent the number of each component.

Figure 7.6: Block definition diagram representing the entire excavator structure.

 214

The set of potential components and connections defines the space of candidate

architectures. Although in this form the space is very difficult to visualize, it does provide

a very compact representation for a large number of potential solutions.

Figure 7.7: SysML Internal Block Diagram of the excavator showing the partially

specified hydraulics subsystem.

 215

7.1.1 Comparison to other architecture exploration problems

In this investigation, the example problems come from the hydraulics domain. It

is important to consider how this would approach would apply to other domains. It is also

important to consider how the problem definition changes for other examples.

For this example problem, the assumption is that model libraries are available.

These model libraries include structural component libraries that include available

hydraulic components, libraries that include available off-the-shelf components, algebraic

analysis models, and the correspondences between the structural and analysis models. On

the other hand, the statement of requirements and related tests as well as the definition for

the space of solutions is unique to the excavator problem. Although significant

investment is needed to create the hydraulic domain libraries, within an institution that is

designing hydraulic equipment these domain libraries could be used on other hydraulics

related projects.

The hydraulics domain has several interesting characteristics which make it a

good fit for the approach used in this investigation. Another important consideration is

how the approach would apply to other domains. In this investigation, one of the

underlying assumptions to the approach was that an architecture exploration problem is a

choice between systems which are defined as a composition of well-defined components.

In the hydraulics domain, components are modular in nature, the types of components are

well known, and hydraulic systems are often described as a composition these known

components. This is not the case in every domain, but when considering current practice

in systems engineering, it is common for systems to be represented as a composition of

known components.

 216

The major issue when applying this approach to other domains is the applicability

of the composition process, in particular the composition of component-level analysis

models into system-level analysis models. A number of analysis tools and languages

(such as Modelica) rely on a similar composition process to reduce modeling effort,

where model library fragments are composed into more complex analysis models. These

previous approaches have demonstrated that such a composition approach works for

physics-based behavior models in a number of domains, such as simulating the dynamic

behavior of mechanical or electrical systems.

The other consideration is whether such an approach is useful for a particular

problem or problem domain. When considering the overhead of explicitly modeling the

architecture exploration problem, this approach is the most applicable for problems where

designers are interested in exploring a large number of system architectures. In those

cases, the upfront effort of explicitly modeling the problem is mitigated by the time

savings of not manually creating the related analysis models. If the number of

architecture configurations that a designer wants to consider is small, the initial

investment of time may not be mitigated by future time savings. That being said, even for

such problems there is value in explicitly modeling the problem.

To apply this approach in other domains, the first step would be to create the

relevant model libraries. Although this is described as an upfront process, in practical

applications it is likely that this would be an iterative process where components would

be added as needed during the definition of the problem. To create the model libraries

(and other models that include domain-specific knowledge) the relevant domain experts

would need to be engaged. In conjunction with the definition of the model libraries,

 217

systems engineers would define the objectives and requirements for the system. Test

engineers would then create the architecture independent tests. Then, systems engineers

in conjunction with the domain experts would define the space of possible solutions. This

would complete the definition of the architecture exploration problem.

 Outline of Optimizations 7.2

In this section, the plan for supporting H3 in this chapter is outlined. Before

considering the full excavator example, several smaller examples will be considered to

establish that the mathematical programming formulation is indeed applicable and that

the solvers are capable of solving this type of problem. Also, the smaller examples allow

for more comprehensive checking and verification of the code that results from the model

transformations than the full excavator example. These smaller examples will also allow

for a more comprehensive number of experiments to test the approach and understand

how the inclusion of different knowledge from the problem definition affects solution

time and solution quality. For the full-fledged excavator example experimentation is

limited to demonstrate that for a single version of problem, the CPLEX solver is capable

of finding feasible solutions in a reasonable amount of time and also capable of

optimizing the problem with respect to cost and fuel consumption. A constrained version

of the excavator example is also presented; this version is presented to support the

argument that by constraining the problem one can reduce the optimization time while

still maintaining much of the interesting space. Also, a version of the optimization is

presented where sizing is not performed, demonstrating another potential avenue for

managing scale.

 218

The first step of in each section is to use the solution approach to generate a

feasible candidate architecture. If the solution approach is incapable of this first step,

further testing is not necessary. Also, verifying that a candidate architecture is feasible

can be accomplished by comparing it to existing known configurations because in

practice there are a range of well-known architectures for both the simpler examples and

the hydraulic excavator. After it is shown that the approach is capable of generating a

feasible architecture, the next step is to attempt optimization. Using the solution approach

to generate feasible candidate solutions and optimized solutions is strong support for

hypothesis 3.

When considering the size of this optimization problem and the speed in which

solutions are generated and comparing it to current state-of-the-art approaches being

employed for computational design synthesis, it appears that this search approach is

better. The validity of this statement is discussed along with the supporting arguments

with the full excavator example problem. Although this is only for this particular example

problem, when comparing to real-world systems engineering problems, the size and

scope of the examples presented here do provide an approximation of real world

applications.

Another issue is that these examples stem from the hydraulic systems domain, and

there is a lack of focus on designing the controller for the system and only a few

components from other domains. Although controller design is neglected, optimal control

often uses mathematical programming techniques to design controllers (Sager, 2012).

 219

 The Mathematical Programming Framework 7.3

Although Chapters 5 and 6 present a structured approach to generating a

mathematical programming formulation from the related SysML description of an

architecture selection decision, in this section some additional discussion is provided on

the mathematical programming optimization problem specifically for the excavator

example.

In the example problem, the selection is between a number of different

configurations that include a variable number of pumps, valves and engines. The number

of cylinders is a fixed set because the assumption is that these are the only option to

actuate the system. The search space could be further extended by considering different

cylinder types, for instance both single-acting and double-acting cylinders instead of

simply double-acting cylinders.

The description of the problem leads to a number of binary variables: one set to

describe potential connections between these components and one set to describe optional

components. When connections are grouped together and only common connection types

are included (pumps connected to valves, valves to cylinders, engines to pumps) there are

104 binary variables. These binary variables will be referred to as decision variables

because the set represents the alternative choices.

For each potential component, there are a number of variables and constraints that

are needed. To simplify the definition, the variables for the component interfaces are

instantiated first. In this example, that includes the flow and pressure at every hydraulic

port along with the force and velocity produced at the cylinders and the torque and

 220

angular velocity out of the engines and into the pumps. Each of these variables is indexed

by the system states; in each usage scenario the values of these variables will change.

For each component there are a number of other variables; these can be grouped

loosely into two sets: those that describe the components sizings (its sizing parameters)

and those that describe internal component behavior. For each cylinder, its sizing

parameters include the stroke length, and the areas on the rod and bore side. Classically,

these are represented as the rod and bore diameter, but that would involve a (simple)

nonlinear constraint so instead they are represented by the areas.

In addition, there are variables that describe the internal component behavior. For

the cylinder this may include the pressure differential across the piston or the force

differential produced by the cylinder. Unlike the sizing parameters, these vary with the

system states.

The algebraic constraints found in this section and throughout the algebraic

library are derived from the Parker Hannefan Design Handbook (Parker, 2002) for

hydraulic components and the McCandlish model for pumps and motors (McCandlish,

1984). Component sizes are based on the databases used by Shah in previous work (Shah,

2010c). A full listing of these can be found in Appendix A.

 221

Now the algebraic constraints that describe the behavior need to be considered.

As a reminder, each cylinder has two ports, labeled A and B. In this model, these

constraints are steady-state equations based on first-principles. For the cylinder, the

equations are:

∀�	�B< = �C&D,E − �F&G,E)
∀���C)D,E + �F)G,E = 0)

∀���CH< =)D,E)
where s represents the different use scenarios, these equations are active for all use

scenarios, B< is the output force for each use scenario, H< is the velocity of the cylinder for

each use scenario, Ab and Ap are the bore-side and rod-side area respectively (note, the

rod-side area is the effective area that the fluid pushes against on the rod side, not the area

of the rod), pA and pB represent the pressures at ports A and B, and QA and QB the follows

through ports A and B. As presented, these equations are nonlinear because both the

potential areas and pressure and flows and velocity are unknown variables and are used in

products. There are several ways to address this issue; for instance, these products can be

approximated using the interpellants described previously. In this problem, a different

approximation technique is used that relies on the fact that Ab and Ar are sizing

parameters and there are a limited number of discrete choices for them (based on the

available components considered in Appendix A). For each potential combination of Ab

and Ar, an optional constraint (an indicator constraint) is added with a given value for

these two variables removing the product of two variables. Part of the consideration is

scaling, usually the areas are very small quantities while the pressures are large. A set of

binary variables are added to describe which of the potential combinations are selected.

 222

The same can be done for any sizing situation where known components are being

considered.

For the engine, the equations are slightly more complex. Since fuel consumption

is an important characteristic of the system, it needs to be approximated. Also, the engine

must produce torque that is constrained by the torque curve. The equations for the engine

are:

∀sJΤE 	≤ ��L<)M
∀��L=>0 ≤ L< ≤ L=NO)
∀��Τ�9� ≤ TE ≤ Τ=NO)
∀��QE = ΤE ∙ LE)
∀�JR< = ��L<)M

∀���STU< = R< ∙ Q<)

�STUVWV =X�STU<
<

	

where Τ is the torque produced by the engine, L is the angular velocity, P is the power, r

represents the fuel consumption per power at a given angular velocity, and fuel is the fuel

consumption per time and fueltot is the total fuel consumed. The units of total fuel uses

depends on the units of r, in this case r is selected to be approximately (depending on

angular speed) 0.5 kg/W (r is based on common brake specific fuel consumptions for

engines).

The equations for Τ and r are rewritten using the 1-D interpellant (described in

Section 5.4.3) along with known values based on existing engines. The products can be

 223

rewritten using the 2-D product interpellant (described in Section 5.4.3). As mentioned

earlier, a full set of equations can be found in Appendix A.

 Verification Examples 7.4

To generate the simplified examples, subsets of the excavator problem were

taken. Instead of including all 4 cylinders and so forth, the first example (Labeled E1)

includes only a single type of each component.

Although this is a simple example with only one feasible configuration and only

32 possible configurations, most of them not unique, it provides an excellent verification

example for both the transformation process and the constraints used to model the

components. The resulting mathematical programming problem is small enough that each

transformation output can be manually checked. Also since there is only one feasible

architecture configuration, it is easy to check that the solver is finding the appropriate

configuration. If the solver finds a different (actually infeasible) configuration or if it

finds that there is no feasible solution, then this is clear indicator that the constraints are

wrong. In more complex problems, it is possible that the solver is simply incapable of

Figure 7.8: Structure for the verification example. Only one

type of each component is included.

 224

finding a feasible solution in a reasonable amount of time. The mathematical

programming problem generated from this definition is still relatively large,

approximately 2000 lines of AIMMS code. This formulation is shown in Appendix B.

It takes CPLEX 0.28 seconds to a find a feasible solution. This found solution is

shown in Figure 7.9. This is indeed the only feasible configuration. In the illustration of

the solution, the valve blocks and power unit have been flattened into their atomic

components. In this configuration, the prime mover (engine) provides power to the pump.

This pump provides hydraulic flow to the valve, which modulates the flow. When the

cylinder needs to move, the valve moves to the on position (represented by an on binary

variable in the problem formulation) and flow (and pressure) are provided to move the

cylinder. When this is not the case, the cylinder is in the off position (presented by an off

binary variable) where flow is allowed to pass back to tank. If the cylinder needs to move

in reverse, the valve can be switched to a reverse position (represented by a back binary

variable).

 225

The second verification example is more complex, including two of each type of

component. This allows for a slightly larger number of feasible configurations, 3 unique

in total, and more variability specifically in the number of pumps and engines used in the

architecture. Unlike the previous problem, the search space is significantly large, with 220

configurations (although not all of these configurations are unique). An illustration of this

problem is shown in Figure 7.10 and Figure 7.11.

Figure 7.9: Resulting architecture from simple verification example.

 226

Figure 7.10: Verification example with two of each component.

 227

With this verification example, the goal is to insure that the solver can find

architectures that include both a single pump powering each valve and also architectures

Figure 7.11: Internal structure of the second verification

example.

 228

where the valves are connected in series. Unlike the previous example, an optimization is

run to minimize the fuel consumption where the objective function is:

�STUYZY:[=X X �STU< ∙ �
\�]9�\<<

where � is the number of scenarios, T7�^7T� is the set of engines, � is the time of

each scenario (the assumption is each scenario takes an equal amount of time so this can

be neglected or chosen to be an appropriate constant), and �STU is the amount of fuel

used by the particular engine during that particular scenario (�STU	is defined in the engine

model described in the previous section). Since the goal is not to optimize fuel

consumption, but instead to insure that the solver can indeed span the space of solutions,

the solver time is limited in each example to 30 seconds. The first solution found is

shown in Figure 7.12. In this example, there is one prime mover and one pump with the

valves connected in series.

 229

Once this example architecture was found, the next step was to add constraints to

the problem and find other potential architectures. These constraints take the form:

X�1− _9)
9∈`a

+	X _9
9∈`b

≥ 1

where cYis the set of indices for decision variables which are true, cdis the set of

indices for decision variables which are false, and _ is an array of decision variables.

Each time a new architecture is found, a new constraint is added. Then the solver is rerun

Figure 7.12: Verification example with one pump and one prime mover.

 230

for 30 seconds. After 7 runs the two pump, two prime mover architecture is found, this

architecture is shown in Figure 7.13.

Other configurations included 2 pumps both powered by the same prime mover, 2

prime movers powering the same pump (such a configuration would need an additional

clutch between the prime movers but since here the only enforcement is Kirchhoff’s laws

it is not included by the solver), and both prime movers powering both pumps (this

configuration would also need a clutch). The fact that the solver is able to identify these

solutions implies that it is indeed searching the entire space of solutions.

To understand the effect of the approximations used during the optimization

process, the optimization was rerun multiple times, each time with a different number of

points as part of the interpolation of multiplications. The formulation was changed to

include only one engine; this was done to simplify the determination of the relative error

in the power consumption. Also, the number of component instances that were

considered was decreased to improve solution times. The architecture was optimized for

Figure 7.13: Verification example with two pumps and two prime movers.

 231

fuel consumption (as grams per hour of gasoline). The expected result is that as the

number of points increase, both accuracy of the interpolations and solution times will

increase. The results from these optimization runs are shown in Table 7.1. The relative

error refers to the relative error in the interpolation of the power provided by the engine,

i.e. the relative error between the actual value of the product and the interpolated result.

The power is calculated as the product of the torque and angular velocity produced by the

engine. The general trend is as expected, as the number of interpolation points increases

the relative error decreases will the solution time increases. When 17 points were

included, the solver was not able to find the optimal before a resource interrupt after 2

hours, the best found objective value is reported. When considering the relative error in

the multiplications and the change in the objective function, the error introduced by the

interpolation is small. With as few as 5 interpolation points the relative error in the

multiplication is less than 1%; when considering the other simplifications and

assumptions made during the construction of the analysis models along with the

uncertainty at preliminary design stages, the interpolation error is reasonable.

 232

Table 7.1: Results from optimization runs where number of points in the interpallent are

varied.

points Find solution (s) Find optimal (s) obj value (g/hour) # of vars relative error

3 2.98 3.23 5071.42 1312 -0.0407

5 0.42 3.67 5200.29 1412 -0.0126

7 0.51 3.14 5151.09 1512 -0.0032

9 2.4 4.76 5125.40 1612 0.0014
11 2.78 10.68 5176.88 1712 0.0020
13 3.6 2127.18 5155.23 1812 0.00024
15 4.01 38.41 5158.85 1912 -4.4E-05
17 4.8 N/A 5347.68 2012

19 4.99 10.48 5148.71 2112 0.00085

21 7.11 41.39 5148.41 2212 0.00038

 Full Excavator Example 7.5

The full excavator example is based on the problem description in Section 7.1. The

complete excavator exploration problem contains 104 decision variables, 34 for

component inclusion and 70 for potential connections. This leads to 2+ef

(20,282,409,603,651,670,423,947,251,286,016 ~ 2x1031) possible combinations. Of

course, this does not mean that each of these combinations represent a unique

architecture, many of these combinations are symmetrically identical. In addition, not

every possible combination is feasible; most of these combinations are actually

infeasible, junk solutions. This is the type of problem that would be difficult to solve

using black-box stochastic methods such as genetic algorithms. Considerable domain

knowledge would need to be added to the mutation and cross-over operations to enable a

genetic algorithm to find feasible solutions in this space.

 233

The objective of the first optimization is to minimize cost. When minimizing the

overall cost, the objective function is:

gYZY = ghZ��Z�\�Y< + ghZ��\hY9Z�<
where

ghZ��Z�\�Y< = X g:i]
hZ��Z�\�Y<

	 ∙ _hZ��Z�\�Y

ghZ��\hY9Z�< =	 X g:i] ∙
hZ��\hY9Z�<

_hZ��\hY9Z�

The component cost is the sum of the included components and the connection

cost is the sum of the included connections. Based on the structure of the architecture

selection decision and previous known architectures, the expectation is for the found

structure to include a single pump and single engine. The component costs can be found

in Appendix A for most of the considered components, when a cost is not available the

component or connection was assigned a cost of $100 dollars.

The optimization took approximately 16 hours. The best found configuration is

shown in Figure 7.14. This configuration includes a single pump and engine, as expected.

In addition, one interesting feature is that both boom cylinders have been connected to

the same valve, as is the case with actual configurations. When looking at the sizing of

the architecture, the largest pump (CPB-060) and engine (E3) in the library were selected.

This is likely influenced by the amount of flow needed when all of the cylinders are

moving.

In the generated solution, the engine provides power to the pump. The pump then

provides flow the valves. The valves are connected in series, when a particular valve is

closed the flow passes through the neutral pass through to a valve that is open (and

 234

causing a cylinder to move). When all of the valves are open, the fluid leaving the

cylinder is actually used to actuate the next cylinder. In this case, the ordering of the

valves is important based on the desired priority, but this is not considered in this

investigation. In addition, when the cylinder reaches the end of travel the valve should be

closed to allow the flow to pass through via the neutral pass through. This does create a

bit of a controllability issue, but it should be easy to design the appropriate controller

based on location of the cylinder (or the human operator can simply switch the valve

from on to off).

 235

7.5.1 Optimizing for Total Cost

In the previous example, the excavator architecture was optimized for component

cost. The next optimization performed was to minimize the life-time cost, which includes

both the component cost and fuel costs. This objective function can be states as follows:

gYZY:[= gYZY + �STUYZY:[∙ $4	 ∙ 10,000	ℎlSR�

Figure 7.14: Architecture resulting from optimization of cost.

 236

where gYZY and �STUYZY:[are the quantities from the previous section. The units on the

fuel consumption rate are chosen so that the fuel total is in gallons per hour. The brake

specific fuel consumption refers to the weight of the fuel consumed, so the specific

gravity of gasoline (719.7 kg/m3) is used to perform the conversion The final total is then

converted from m3 into gallons (264.17 gallons/m3). The fuel cost is estimated to be $4

dollars a gallon based on current prices. Also, the average lifetime of a machine is

approximately 10,000 hours.

 The optimization ran for approximately 36 hours at which it was ended due to a

resource interrupt. This interrupt was caused by the solver hitting the maximum number

of iterations. The found solution is illustrated in Figure 7.15, with a single prime mover

powering multiple pumps. Again, the boom cylinders have been grouped together. The

boom cylinders are powered by one fixed-displacement pump and then the arm and

bucket are powered by another fixed-displacement pump. Since this is the result after a

resource interrupt, the solver only asserts that this is the best solution found during the

search. In previous optimizations, minimizing the fuel consumption would push the

solution toward one with multiple pumps while minimizing cost would push the solution

toward one with a single pump. It he solver has selected a compromised where two

pumps instead of a possible four are included.

 237

Figure 7.15: Architecture found when minimizing life-time cost.

An optimization that takes 36 hours is a significant computational investment, even if

computational resources are cheap. In the next sections, how to manage this overall

computational cost is considered along with how this compares to other methods.

 Constrained Example 7.6

To demonstrate one potential avenue for managing scalability, a constrained

version of the hydraulic subsystem selection decision is considered in this section.

Instead of allowing up to 4 different pumps and 4 different prime movers, instead only 2

pumps and 2 prime movers are considered. In addition, the connections between the

valves and cylinders are fixed.

Although significantly more constrained than the previous version, this example

is more consistent with the types of explorations that would be performed in practice. In

current design practice, it is unlikely for engineers to completely redesign an entire

 238

architecture from scratch without reusing any previous structure. Instead, an alternative

approach is to fix most of the architecture and consider varying only the most important

aspects.

This greatly reduces the number of solutions that need to be considered, but even

though the exploration process is simplified it is still a complex and interesting example.

Even with the constrained design space, there are still 2me(1,125,899,906,842,624 ~ 1 x

1015) combinations.

The structure of the constrained example is shown in Figure 7.16 and Figure 7.17.

 239

Figure 7.16: Structure of the constrained example.

Figure 7.17: Internal structure of the constrained example.

 240

Two different optimizations are performed with the constrained example, one

where the overall cost of the system is minimized and one where the fuel consumption of

the system is minimized. The objective function for cost was discussed in Section 7.5.

The best architecture found after ~2 hours of optimization time is shown in Figure

7.18. The optimization times are provided as approximate estimates because CPLEX is

run in opportunistic mode where randomness is included in the optimization. As

expected, there is a single engine powering a single fixed displacement pump.

Figure 7.18: Architecture found when minimizing cost.

 241

The second optimization is in minimizing fuel consumption. The objective

function is:

�STUYZY:[=X X �STU ∙ �
\�]9�\<<

where � is the number of scenarios, T7�^7T� is the set of engines, � is the time of each

scenario (the assumption is each scenario takes an equal amount of time), and �STU is the

amount of fuel used by the particular engine during that particular scenario. Unlike the

minimize cost example, the best architecture is not as apparent. Previous work in

hydraulic architectures suggests that the best configuration will use multiple pumps; also

the structure of the pump equations suggests that minimizing the pressure inside each

pump reduces the losses for that particular pump. This also suggests that multiple pumps

are more fuel efficient. For the use scenarios, the structure of the equations would also

suggest that multiple smaller engines would be more fuel efficient than a single larger

engine.

The found architecture after approximately 5 hours of optimization is illustrated

in Figure 7.19; as expected this architecture includes both multiple pumps and engines.

The pumps are highlighted in green and the engines in red.

 242

These solution times are significantly smaller than in the previous excavator

example.

 Unsized Solutions 7.7

Another potential avenue to decrease the computational cost is to generate

unsized solutions and then size them in a subsequent step. This avenue is not extensively

explored in this investigation, but the capability is demonstrated with further

investigation left as a possible extension. With unsized solutions, the analysis of the

behavior can be significantly simplified, which also simplifies the constraints used in the

formulation. Instead of needing to accurately choose variables related to pressures, flows,

Figure 7.19: Architecture found when minimizing fuel consumption.

 243

losses, and so forth, these variables can generically capture whether flow is or is not

present or high pressure is available. One feature of the presented framework is that it can

also be used for generating unsized solutions. New algebraic models can be created by

using the existing models and then simplifying or removing appropriate algebraic

constraints. There is the potential for this process to function automatically, but in this

case it was done manually. Any sizing variables were removed from constraints, losses

and constraints related to losses were removed, and the torque interpolations in the engine

were also removed to capture that the engine could produce torque.

These new models were used to optimize the two cylinder verification example

for cost. The architecture in Figure 7.14 was found as the optimal solution in 5 seconds.

In addition, CPLEX supports the generation of a solution pool which can contain multiple

solutions. This optimization was enabled for the example and an additional 500 solutions

were generated in less than 30 seconds. Unlike the previous example of generating

multiple architectures in Section 7.4 where constraints are used to prevent the solver from

selecting the same architecture, with the solver’s current capabilities it is not possible to

specify that each of these solutions should have a different architecture. Among the first

50 solutions, 10 different architectures were present (although not all of these are

unique). Further investigation is needed into this area to efficiently generate multiple

architectures, but it holds significant promise.

 Comparison with Similar Approaches 7.8

This section provides a decision on the benefits of the presented method over

current state-of-the-art computational design synthesis approaches and also the

limitations in regards to those approaches. In Chapter 2 and Chapter 5, a broad listing of a

 244

number of different solution approaches is provided. A detailed comparison to every

computation design synthesis or architecture exploration approach is impossible because

both are active and ever expanding fields, each with a huge number of potential

approaches. Instead, this comparison will highlight two approaches: a constraint-based

approach by Wynn et al (Wyatt, 2012) with a flexible schema for defining the constraints

for a particular problem, and a multi-stage genetic algorithm based approach by Pederson

(Pedersen, 2007) where more domain-specific knowledge is captured (this approach is

more directly focused on optimizing hydraulic systems).

This comparison is informed by the examples presented in this chapter. Although

the examples from this chapter are different than those presented in the other two

approaches, the commonality in terms of goals, the structuring of system architectures,

and system size allows for comparison.

The first considered approach will be labeled the Wynn approach. In this

approach, a designer is free to specify the space of architecture by specifying the

potential components and relationships between these components. This is very similar to

the approach presented in Chapter 3, except in the Wynn approach the relationships are

defined between components whereas in this approach connections are defined between

interfaces. In some ways this is a minor semantic difference, but in this approach

specifying the connections between interfaces allows the inclusion of analysis

knowledge.

To further define the search space in the Wynn approach, network structures

constraints are used to define what relationships and components exist in feasible

 245

configurations. These network structure constraints apply directly to the structure of a

particular architecture. The constraints included are as follows:

• Component number constraint: limits the number of each particular component

that can be included in the architecture.

• Direct connection constraint: requires a direct connection between two particular

component types.

• Fan out constraints: requires that a particular component has a certain number of

incoming or outgoing constraints of a certain type.

• Indirect connection constraint: requires a path between two particular component

types, but multiple components and relationships can be present for this path. The

exact number of intermediate elements can also be constrained.

The first three constraint types are easily defined in MIP or in a SAT based

approach, but the fourth type of constraint is more difficult to define. As a result, in the

Wynn approach, the search process starts at a known solution (or will attempt to generate

an initial guess by choosing the minimum number of each type of component and

relationships), attempts to mutate that solution by adding components or connections, and

then checks if the mutated solution is still feasible. In the prior work, the approach is

shown to be capable of generating feasible architectures for several mechanical systems.

These feasible architectures then serve as the input to the next stage of the design process

where designers could manually prune the results and begin the sizing process. Since

only an architecture’s structure is considered, complexity metrics are used to sort

potential architectures, for instance the number of components and connections.

 246

This approach has two interesting characteristics. First, the modeling language for

representing the design space is tailored specifically to representing only components,

relationships, and the types of constraints described in a simple visual form. This makes

the approach easy for designers to use because they only need to learn a few constructs

and the complete definition of a design space is relatively small. Second, since the solver

is specifically designed for architecture exploration it is easy to identify unique

architectures and store these feasible architectures during the search process.

The tailored modeling language makes it significantly easier for designers to

capture their design space in the Wynn approach than with the language described in this

investigation. This can be attributed to two important factors: in the Wynn approach the

authoring tool is specifically designed for the language, and in the Wynn approach less

knowledge is encoded as part of the design space definition. On the other hand, the

modeling language in Chapter 3 has the advantage of being based on a standardized

language, SysML, which allows this approach in this investigation to be more easily

integrated with other MBSE efforts. Also, an authoring tool could be constructed

specifically for the modeling language in Chapter 3 instead of SysML in general. This

tool could force the user into a workflow consistent with the architecture selection

decision definition presented in Section 3.4 and could reduce the number of constructs

the user would need to understand.

The other consideration is could the modeling language in Chapter 3 be simplified

to include less designer knowledge and still be adequate. This consideration is more

difficult to address, because identifying whether the constructs selected indeed make up

the simplest version of the language is not considered in this investigation. However, the

 247

excavator example does illustrate a significant shortcoming in the Wynn approach and

suggests that more designer knowledge is needed as part of the formulation.

One important characteristic of the excavator architectures identified by the solver

is that the two boom cylinders are connected to the same valve while the other cylinders

are connected to their own valve. Capturing this distinction using the Wynn approach

would be difficult (although this structure could be directly encoded and enforced, which

would work for this example because the structure is well known, but in general would

over-constrain the design space). Specifying that any valve could connect to up to two

cylinders would require designers to prune a huge number of (actually) infeasible

architectures after the solution process finishes. The reason that the approach in this

investigation can identify that the boom cylinders should connect to the same valve is that

multiple use scenarios can be included as part of the definition of the architecture

exploration problem and how the components operate is also captured and taken into

account. This suggests that although the Wynn representation is significantly simpler, it

does not include all of the knowledge needed for effectively modeling architecture

exploration problems.

In addition, the Wynn approach lacks a method for handling architecture sizing.

For the resulting feasible architectures that are identified by the search process, analysis

models would be needed to analyze and sizing these architectures. Either these would

need to be defined manually, or a composition approach similar to that in Chapter 4

would be needed. If an automated approach is used, designers would need to encode

additional analysis knowledge in a way that is very similar to the approach in this

investigation.

 248

The previous factors suggest that although the Wynn approach is simpler, this

approach is more comprehensive. That being said, the choice of best approach is

dependent on the architecture exploration problem being considered. For simpler

problems, the lower modeling cost present in Wynn’s approach could make it more

desirable. On the other hand, for problems where the modeling of use scenarios is

necessary (such as the excavator example), or system sizing is important, the approach in

this investigation would be more desirable.

The second approach considered is labeled the Pederson approach. In this

approach, the designer can represent search spaces which are composed entirely of

hydraulic components. The representation schema is geared specifically to hydraulics,

although interfaces are only implicitly represented. Different use scenarios can be also be

included. Designers cannot encode their analysis knowledge in the framework; instead

the analysis knowledge is hardcoded a priori. In some ways, this is a facsimile of the

model libraries considered in this investigation. That being said, there are multiple types

of analyses included, for instance cost, noise, and so forth. An objective function can be

defined that combines the results of these analyses in a multi-attribute objective function

where the attributes are weighted and then summed together. (As an aside, the goal of

this investigation is to support rational decision making. The inclusion of such a multi-

attribute objective function can lead to inconsistent results if preferential independence is

not established, but this is a discussion best left alone in this investigation).

In order to find optimal solutions, Pederson uses a multi-layered genetic algorithm

based-approach where architecture selection parameters are modified by a genetic

algorithm in the first layer, and sizing is done by tailored optimization approaches in the

 249

subsequent layers. Since only hydraulic architectures are considered, the subsequent

optimizers can be (and are) specifically tailored to accurately and efficiently size a

particular architecture.

When comparing to Pederson’s work, the overall approach is significantly

different. Pederson’s approach is specifically tailored to hydraulic systems, whereas this

approach is more general although applied exclusively to hydraulic examples.

The large example provided in Pederson’s work is the optimization of the

hydraulic architecture of a forklift. This example is very similar to the excavator example

provided here, it has four actuators that need to be supplied with hydraulic fluid. Unlike

the excavator, only one motor is available to power the system.

Tailoring the schema for hydraulic systems does have the advantage of making

the schema easier to use and unlike the Wynn approach the same types of designer

knowledge are captured in the Pederson approach and the approach presented in this

investigation. In the Pederson approach, significant effort was invested in encoding and

verifying the analysis knowledge included. This is especially necessary when it is

difficult for users to change their analysis knowledge. It also makes it difficult to include

new technology in the problem formulation.

In this investigation, all of the designer knowledge included in the architecture

selection decision is represented using the same modeling language. Designers are free to

adjust any aspect of this definition, including the analysis knowledge or types of

components. When new technology emerges, it can be added to the definition of an

architecture selection decision as long as its behavior can be modeled in a representation

 250

that is consistent with the method described in Chapter 5, i.e. using mixed-integer linear

algebraic constraints.

The other major difference between this approach and the Pederson approach is in

the search process. Pederson uses well known optimization algorithms which are then

hard-coded as part of his framework, in general these are fairly simple algorithms that are

tuned for sizing hydraulic systems. In this approach the goal is to transform the definition

of the architecture exploration problem into a form which can be understood by more

sophisticated solvers.

It is difficult to truly compare the two methods because the Pederson approach

relies on black-box simulation models to describe the dynamics of the system. Unlike this

approach, these models are both static and pseudo-dynamic (they statically approximate

dynamic behavior using finite differences), whereas in this approach only static behavior

is considered. Also, in Pederson’s approach a greater number of hydraulic components

were considered, including closed center architectures that include both fixed

displacement and variable displacement pumps.

The more accurate analyses that Pederson performs may be useful for inclusion in

this framework after the initial architecture exploration phase. Since Pederson does not

report solution times, it is difficult to compare the two solution approaches. Since the

solvers used in this approach can explicitly account for the structure of the problem, it is

likely that they are more efficient. There is anecdotal evidence for this statement, in

Pederson’s verification examples, the genetic algorithm only runs for 10 generations and

convergence is not demonstrated. This suggests that the solution process is very

computationally expensive, and that the solutions found by the genetic algorithm are

 251

suboptimal. In addition, since the approach relies on the algorithm to mutate existing

feasible initial guesses, it is likely that the solutions are found near previous solutions and

a true exploration of the space is not being performed. Pederson does not present any

evidence that the solution approach is actually able to move around the space, and the

constrained nature of hydraulic systems raises concerns that the genetic algorithm is not

able to move from one feasible solution to another.

 Summary 7.9

In this chapter, the architecture selection of the hydraulic subsystem for an

excavator is presented. Before the full selection is presented, several smaller verification

examples were presented in Section 7.4. The goal of these verification examples was to

establish the capability of the mathematical programming solver to find solutions for the

formulation presented in 7.3 and also to demonstrate the solver could indeed identify the

interesting solutions in the space. This is done by running the optimization multiple

times, each time adding constraints to eliminate previously discovered architectures.

Once this was established, the full excavator example was presented along with a

constrained version. The constrained version was presented to address one potential

method for managing problem scale, namely restricting the design space but restricting it

in a meaningful way so that the results were still interesting to the designer. Using the

synthesis of unsized architectures was also considered as a ways to mitigate scalability

concerns. Also, in Section 7.8, the approach in this investigation was compared to other

similar approaches.

 252

CHAPTER 8:

CONTRIBUTIONS, LIMITATIONS AND OPEN QUESTIONS

This chapter is a review of the material from the previous chapters. The main

objective is to reexamine the research questions and hypotheses and identify the insights

gained from the results presented in the previous chapters.

 Review of the Research 8.1

The broad motivation for this research was expressed in Chapter 1 in the

following research question:

How should designers best represent, manage, and apply knowledge for

efficient exploration of system architectures?

The research objective was to study a particular approach to representing and

performing architecture explorations which was outlined in Section 1.6.

In this approach an architecture exploration problem is represented as an

architecture selection decision using an information modeling language. This

representation is then transformed to generate solution specific formulations that can be

interpreted by various solvers. The focus is specifically on generating corresponding

mathematical programming optimization problems which can be solved by mathematical

programming solvers.

The overall research question was broken down into four more manageable

questions that need to be solved before the overall question can be addressed. These

questions are as follows:

 253

RQ1. How should the designer define an architecture exploration problem?

This question was address by hypothesis 1:

H1: Designers can represent their architecture exploration problem in information

models as an architecture selection decision consistent with decision theory using a

domain-specific language.

The main evidence in support for this hypothesis is as follows:

• The literature in decision-based design establishes that the design process can be

modeled as a set of decisions and decision theory can serve as a prescriptive

framework for designers. As discussed in Chapter 2, the current selection methods

used for architecture selection decisions are very ad hoc and can lead to

inconsistent and self-contradictory decision making. On the other hand, decision

theory provides a prescriptive approach which if followed is guaranteed to result

in decisions which are consistent with a decision maker’s beliefs and preferences.

• The literature also establishes Model-Based Systems Engineering as an emerging

trend in the systems engineering community. In MBSE, information models form

the basis for documenting the artifacts produced during systems engineering

processes. This suggests that information models are a good starting point for

representing the architecture exploration problem.

• Based on this prior work, the justification for modeling an architecture

exploration problem as an architecture selection decision is presented in Section

3.2. This justification is based on previous work in decision-based design where

engineering design is represented as a set of sequential decisions.

 254

• An information modeling language for representing architecture selection

decisions is presented in Section 3.4. This modeling language is a domain-specific

language that extends the established and standardized SysML language,

demonstrating the concepts necessary for

• The modeling language is used to define the architecture exploration problem for

the hydraulic excavator in Section 7.1. This demonstrates that the modeling

language can be used to represent architecture exploration problems of some

scale.

RQ2. How can domain-specific synthesis and analysis knowledge be captured and

organized effectively to allow for composition and reuse?

This question was addressed by hypothesis 2:

H2: Designers could use modularity and composition along with model

transformations to reuse knowledge encoded in models.

The main evidence in support of this hypothesis is as follows:

• The literature establishes that analysis models can be composed into more

complex analysis models via well-defined interfaces as long as they are

imperative analysis models. A review of the related literature is provided in

Section 4.1.

• In Section 4.2, an approach for capturing reusable fragments in model libraries is

presented. This approach is based on storing composable model fragments in

model libraries and tagging these fragments with meta-data in the form of aspects.

 255

• One enabling characteristic of the composition process is the use of explicit

relationships to capture the correspondence between component-level structural

models and component-level analysis models. This process is described in Section

4.2.4.

• In Section 4.3, how the model libraries can be represented in SysML is described.

Without the ability to represent both the architecture selection decision and the

relevant model libraries in the same language, it would be more difficult to

represent the connections described in Section 4.2.4.

• Transformation approaches are demonstrated for generating two different types of

analyses, a dynamic analysis in Chapter 4 and the mathematical programming

optimization formulation in Chapter 6 and 7. These transformation approaches

operate on SysML models which conform to the language definition in Chapter 3

and 4.

• The transformation approach for mathematical programming is verified in Section

7.4 by using it to generate AIMMS code based on the presented examples. This

code is reviewed to insure that it matches the expected result and is also used to

identify the architectures found in this section.

• The transformation approach is used to generate the AIMMS code used for the

Excavator example in Section 7.5, this demonstrates the scalability of the

approach. Also reusing the same models between different examples illustrates

the potential for reusability.

 256

RQ3. What optimization framework is best suited for identifying promising

architectures?

This question was addressed by hypothesis 3:

H3: Designers could use mathematical programming techniques to identify promising

solutions early in the exploration. Mixed-Integer Linear Programming should be used

for architecture selection.

The main evidence in support of this hypothesis is as follows:

• The literature establishes mathematical programming as potentially applicable to

architecture exploration with one important consideration being the availability of

high-quality commercial solvers.

• A modular approach for representing an architecture selection decision within a

mathematical programming language as a mixed-integer linear programming

problem is presented in Chapter 5. This description is based on the structure of an

architecture selection decision presented in Section 3.3. This approach provides a

framework for representing architecture selection decisions in mathematical

programming terms.

• In addition, some discussion on how to represent nonlinear behavior as linear

constraints is described in Section 5.4.3. Without being able to represent nonlinear

behavior it would significantly restrict the analysis knowledge that could be

encoded in the framework and therefore would significantly reduce the accuracy

of the initial exploration step. Also, this would likely make the framework

impractical for architecture exploration problems were nonlinear behavior is

important to the selection of a candidate architecture.

 257

• Example problems are provided in Chapter 7 where CPLEX, a mixed-integer

linear programming solver, is used to identify promising solutions based on a

particular objective. The example problems demonstrate several capabilities of

CPLEX, including the ability to identify feasible solutions, identify promising

solutions, and create solution pools.

• The mixed-integer linear programming results are compared with other similar

approaches in Section 7.8. Although the results presented in this investigation do

not conclusively demonstrate that mixed-integer linear programming and mixed-

integer linear programming solvers are always the best approach, the results do

show that it is applicable to sizeable problems and compares favorably with other

methods.

RQ4. How should problem scale be managed?

Unlike the previous research questions, this research question is not directly answered

with a hypothesis. Throughout this study, how problem scale should be managed was

central to the choice of relevant technologies or the formulation of a particular approach.

The practices identified in this work can be summarized as follows:

• The object-oriented nature of the modeling language for architecture selection

decisions simplifies the representation of the decision because inheritance,

redefinition, and usage concepts can be used.

• Model libraries are used to capture reusable model fragments which can be used

when specifying a particular architecture selection decision. This simplifies the

definition of subsequent problems once the model libraries have been created.

 258

• Connection templates allow designers to group together common connections

types, instead of assigning a decision variable to each connection this allows a

single decision variable to be assigned to the entire connection template. This

reduces the number of variables in the resulting mathematical programming

formulation, which reduces the number of combinations the solver must

investigate.

• The same is true for the inclusion of functional units/subsystems which combine

together components and their connections into well-established groupings. This

has two effects, instead of requiring a designer to include all of the components

and connections in the description of the architecture selection decision, only the

functional unit needs to be included. Also, the number of decision variables

related to the functional unit greatly decreases because of instead of requiring a

decision variable for each component and potential connection, the entire

grouping can be related to one (or a small number if there are optional

components) decision variable.

• Another major simplification made is to use only linear equations in the

mathematical programming formulation. Linear solvers are usually able to handle

much larger mathematical programming problems.

• In Chapter 7, it was demonstrated how a potentially unwieldy problem can be

scoped by reducing the search space and constraining parts of the architecture.

• In Chapter 7, it is also demonstrated how the same framework can be used to

quickly generate a space of unsized solutions which could be sized using more

conventional techniques.

 259

• The scaling approach for interpolation outline in Section 5.4.3 reduces the number

of data points (and therefore the number of variables) required for each

interpellant reducing the size of the problem.

 Summary of Contributions 8.2

8.2.1 Modeling Architecture Exploration Problems

The use of information models in systems engineering is gaining popularity,

especially with the continued adoption of Model-Based Systems Engineering. The goal of

this research is to extend the basic scope of MBSE to also include supporting decision

making during these processes. The current state of the art is focused on the

documentation of systems engineering problems and processes in information models.

As discussed in Chapter 2, current systems engineering processes are very ad hoc;

they rely largely on previous experience and qualitative metrics to steer the design of the

system at early stages. Facilitating quantitative evaluation at these early stages provides a

significant tool not currently available to designers. Also, the explicit representation of

the architecture selection problem within information models is a first step toward more

rational design processes at early stages of system design. As discussed in Chapter 3,

decision theory is only applicable when there is a single decision maker, and when

multiple decision makers are present there is no rational approach for aggregating their

ordering of potential alternatives without the presence of a dictator (i.e., a single decision

maker situation masquerading as a group decision). By providing a team of designers an

explicit information model where beliefs can be recorded and consensus reached, there is

the opportunity for more rational decisions than previously possible by approximating a

single decision maker situation. For instance, this could allow the aggregation of

 260

multiple designers’ beliefs about outcomes, which could then be rank ordered by a single

decision maker which would be consistent with decision theory.

In addition, this research has demonstrated in a new potential application of

SysML. Although SysML has been previously used in an extensive array of applications,

most of these have been driven by documenting existing artifacts of the design process.

The SysML representation of an architecture selection decision is a significant departure

from these earlier goals, but does fit in with work by the INCOSE MBSE Model

Management Working Group to include the definition of variants as part of the SysML

language. The results of this investigation should inform that effort to standardize the

definition of spaces of potential solutions, specifically in terms of the need to represent

potential connections.

8.2.2 Architecture Exploration and Computational Design Synthesis

The representation of the space of potential architectures has important

implications within the domain of computational design synthesis. The concept of

representing the design space in a modular fashion where composition can be used to

generate analysis models and simulations can be used to support and improve most

architecture exploration or computational design synthesis approaches.

When looking at past approaches, one limitation is the failure to include of both

the synthesis of potential alternatives and the analysis of these alternatives in a single

framework. As discussed in Chapter 1 and Chapter 2, many previous methods rely

heavily on encoding knowledge only about allowable system structure and use only this

knowledge to synthesize alternatives. Although it is important for designers to be able to

encode this knowledge about the structure of a potential system, without an approach to

 261

analyze potential systems it is difficult to distinguish between promising, feasible, and

infeasible solutions by only considering the structure. Designers are simply implicitly

encoding their previous experience and beliefs about how the system operates instead of

explicitly encoding it as analysis knowledge. On the other hand, inclusion of analysis

knowledge also is based on previous experience and beliefs, but the argument here is that

knowledge how to predict system behavior is less susceptible to bias.

In addition, the framework presented can both identify feasible (or promising)

architectures (what are the components, how are they connected together?) and also

initial sizings for each of the components in the architecture. The fact that both

architecture selection and component sizing is handled in the same framework (using the

same analysis knowledge) is a departure from previous frameworks where the

identification of potential architectures is separate from sizing those architectures. The

advantage of this approach is that the more analysis knowledge included in the

representation, both the selection of potential architectures and the selection of

component sizings become more accurate.

8.2.3 Mathematical Programming

This work has also further established the relevance of mathematical

programming to the domain of mechanical design and systems engineering. One of the

major hurtles to the wide-spread adoption of mathematical programming techniques (and

the use of the existing, high-quality commercial solvers that are available) is the difficulty

for engineers and designers to represent their knowledge and problem descriptions in

mathematical programming. From the examples in Chapter 7, the mathematical

programming problems often contain thousands of constraints and variables. Even simply

 262

expressing these in a visual or object-oriented fashion is insufficient. In this research,

many of these constraints or variables are implicitly defined in the information models

because they are at a higher level of abstraction; this is a conscious decision to abstract

away these constructs for the convenience and ease of use of a designer. This

demonstrates the benefit of creating high-level more abstract constructs to capture this

knowledge, and then transforming these more abstract representations into low-level

mathematical programming languages.

 Limitations 8.3

There are several limitations or caveats associated with the presented approach.

The following is a summary of the most notable.

8.3.1 Cost of Modeling

As discussed throughout this thesis, one of the major cost drives is that the

explicit modeling of the architecture selection decision comes at a higher initial time

investment than previous methods. One of the major advantages of previous document

approaches is the accessibility of design documents, only minimal training is needed to

understand and create these documents. With information models, designers and

engineers need additional training in authoring tools, such as MagicDraw (No Magic Inc.,

2012), and in the SysML language.

A company adopting MBSE principles will have a significant initial investment in

workforce training (and to a lesser extent the appropriate tools). In order for MBSE to be

a value-added endeavor, the cost of this initial investment must be offset by the gain in

future productivity or in the overall efficiency or effectiveness of the design process. This

can take many forms, for instance although there is significant initial investment, model

 263

transformations could be used to automatically generate analyses later in the design

processes which otherwise might need to be created by hand. In this investigation, how to

reduce the modeling cost between projects is demonstrated through reuse. Also, there is a

significant reduction in design effort by using composition to generate various analyses

needed during the design process.

8.3.2 Creating Model Libraries

While employing model libraries and reusing fragments from these model

libraries can significant reduce the modeling cost for a particular problem or project,

creating these libraries does require significant upfront investment. In order for the

potential to reuse these libraries to exist in a practical context, the knowledge included in

the libraries must be in a form where it is applicable to a wide variety of potential

situations but also extensively verified. One of the drawbacks of using the constraint-

based approach as described is that an incorrectly formulated library model can cause

problems with the entire search process.

8.3.3 Uncertainty

Design decisions are not made with perfect knowledge; there is a significant

amount of inherent uncertainty throughout the design process. In the presented

framework, the discussion of uncertainty is largely neglected because the use of

deterministic instead of predictive analysis models greatly simplifies the definition of the

analyses and objective function.

This leads to a significant fundamental issue: is it appropriate to only consider

uncertainty implicitly when the magnitude and effect of uncertainty likely has the most

effect of any point in the design process? The other consideration is how this work could

 264

be extended to include uncertainty, and whether this inclusion will significantly change

the structure of the framework.

8.3.4 Scalability

As with any architecture exploration approach, a primary concern is scalability.

The problem with discussing “scalability” is that the scale of a problem has many

dimensions. In this work, the scale of a particular architecture selection decision has been

described by the number of constraints and variables that are present in the mathematical

programming formulation.

The larger the mathematical programming formulation becomes in these terms,

the more difficult it is for the solver to find feasible or optimal solutions. This difficulty

usually translates into longer solve times; if these solution times become unmanageable

then the value added is significantly decreased.

The other issue is the limitation on CPU power and memory availability. The

CPLEX solver stores the search tree in memory, as this tree grows in size so does the

memory footprint. For some of the experiments run in Chapter 7, the tree’s footprint

could grow to be as large as 8 gigabytes. This is partially offset because the cost of

computational resources continues to decrease. Additional investigation into how the

problem can be rationally decomposed may be a better way to address this issue.

8.3.5 Accuracy of Analyses – Using Only Linear Constraints

Another issue that is strongly tied with scalability is the accuracy of the analyses

used during the exploration process. The analyses used in this investigation are based on

linear algebraic constraints that approximate steady-state behavior; while this was

adequate for the examples provided in Chapter 7, there are other domains or other types

 265

of exploration problems were more accurate analyses or more comprehensive analyses

are desirable.

In the examples in Chapter 7, the analyses focused on approximating fuel

consumption and component costs. Fuel consumption is an important factor in the current

consumer climate because of increasing fuel prices and also more stringent

environmental regulation. That being said, there are other contexts where the important

technical characteristics of a design may have more to do with reliability, some other

measure of efficiency, or overall functionality/performance. In this context, the

functionality of the system being designed is well-known and if a potential architecture is

unable to accomplish the basic functionality it is considered to be a poor solution which

is discarded. The addition of other analyses to the mathematical programming

formulation means the inclusion of additional constraints and variables, which makes the

problem more difficult to solve.

The inclusion of more accurate analyses has the same effect. One of the major

assumptions is that the behavior being modeled can be approximated using linear

constraints. In Chapter 5 an interpolation approach for approximating nonlinear behavior

was presented, but the accuracy of this approximation is a function of the number of data

points included in the interpellant. With each additional data point comes additional

variables that the solver must consider. Also, with the inclusion of more complex

nonlinear behavior, the number of interpolations will rise. Overall, this will increase the

size of the mathematical programming problem making it more difficult or potentially

impossible to solve.

 266

8.3.6 Non-Unique Architectures

In this investigation, the representation for a particular architecture Is not unique.

In both the SysML formulation and the mathematical programming formulation, an

architecture is described by its set of components and connections. Each component is

assigned a particular binary variable and each connection is assigned a particular binary

variable, if these binary variables are true the connection or component is included in the

architecture. The union of all the binary variable values describes a particular

architecture.

The issue is that the same architecture can be described by different unions of

binary variables. For example, if the design space restricts architectures to a maximum of

4 pumps, then a different binary variable will be created for each pump:�+, -, n, f).
An architecture with 2 pumps could be represented as �0,0,1,1) or �1,1,0,0) and so forth.

This becomes a significant issue during the solution process; the solver must

either search through a large number of identical architectures or intelligently identify the

symmetry in the structure of the constraints and eliminate redundant nodes from the

search tree.

Another way to address this issue is to constrain the formulation so that these

identical architectures are not included or can be quickly eliminated by the solver.

8.3.7 Debugging the Formulation

As is often the case with large simulations or optimizations, identifying mistakes

in the formulation is difficult. For instance, an incorrectly formulated constraint in an

analysis model or connection template can result in the design space including no feasible

 267

solution. Identifying these spurious constructs can be difficult in formulations with

thousands of variables and constraints.

In addition, since a transformation approach is being used to transform between

the information model-based representation of the problem and AIMMS code, there is the

potential that this transformation process introduces unidentified errors. On the other

hand, employing the transformation approach means that the formulation can be checked

in the information models. There are a number of approaches for identifying errors in

SysML and UML models (Alawneh, 2006), which could also be extended to the

modeling approach presented in Chapter 3.

Also, the solvers are treated largely as black-box during this investigation. There

are a number of tuning parameters and other mathematical programming specific tricks

that could potentially change how a solver performs for a given problem, but these

require experience in the mathematical programming domain.

 Practical Implementation 8.4

It is important to consider how this approach could be implemented in the current

environment found in industry. The major concern is whether existing team members

(design engineers, test engineers, domain experts, and so on) have sufficient knowledge

and expertise to make implementation of the presented framework feasible. Another issue

is that as currently described, the framework has only an implicitly specified workflow.

The transformation approach implies that users are first defining the exploration problem

in SysML and then using the presented framework to transform that SysML model into a

MIP optimization. The workflow for defining the SysML model is also only implicitly

presented. In part, this is because it is likely that the workflow will need to be tailored to

 268

the company implementing this framework. One potential workflow which was used to

generate the models in this investigation was to begin with the definition of requirements,

use the requirements to define the space of potential solutions, and then use both of those

in the creation of the tests. In a commercial setting, it is likely that these tasks would be

distributed to a team of systems engineers. The project workflow would also depend on

the availability of model libraries. If all of the components being included in the system

are already a part of the model library, then systems engineers can include those

components in the formulation. If the components are not present, then domain experts

need to be engaged as part of the process to help develop models (both structural and

analytical) for the components that are not available in a model library. When comparing

to other analysis tools that rely on model libraries to reduce the modeling effort, it is

common for these model libraries to be created by the original tool vendor (such is the

case with Simulink), a community of users and commercial companies (such as the case

with Modelica) or by companies using the tool.

 Open Questions and Opportunities for Future Research 8.5

8.5.1 Practical Aspects of Modeling an Architecture Selection Decision

One of the goals of this work is in establishing the potential value of explicitly

modeling an architecture selection decision using information models. Realizing this

potential value requires address several theoretical and practical questions:

What is the appropriate language for modeling an architecture selection

decision? In this investigation, SysML was used to represent the architecture selection

decision because of its availability and relatively universal acceptance within the MBSE

community. SysML is a still evolving language with foundations in software design and

 269

engineering, and it may not be the most suitable language for supporting system design

during early phases of the design process. More investigation is needed on the tradeoffs

between using SysML, adding the additional constructs proposed here as a normative or

non-normative extension to SysML, or simply creating a language specifically tailored

for representing these sorts of problems.

How can modeling tools be improved to support the modeling process?

Current model authoring tools for SysML and similar languages are usually very generic.

This has the advantage of allowing these tools to be used in a wide variety of different

modeling methodologies in a wide range of domains. On the other hand, it makes

constructing information models such as those presented in Chapters 3,4, and 7 more

difficult.

How can the model best be visualized or represented to allow review by a

number of diverse stakeholders? As mentioned earlier, one of the issues with using

information models is accessibility to a wide-variety of stakeholders. One way to address

this issue is through a transformation based approach where the transformations result in

domain-specific artifacts that can be easily understood by the relevant stakeholder(s).

The issue with a transformation approach is that separate transformations are needed for

each artifact. A more potentially tractable solution would be to create a generic view-

based partitioning approach where the aspects of the model could be quickly highlighted

or removed as necessary.

How should emerging technology be included in the formulation? In Chapter

1, it was argued that design processes in domains with an influx of new technology have

the potential to be significantly improved by employing expansive architecture

 270

exploration processes. On the other hand, one way presented to reduce the modeling cost

is to lean heavily on model reuse.

8.5.2 Practical Aspects of Solving an Architecture Selection Decision

Is mathematical programming the best path forward? In this work,

mathematical programming solvers are shown to be capable of performing architecture

exploration. Also, judging by the size of the problems considered, there is support for the

hypothesis that they are more capable than the current state-of-the-art in architecture

exploration or computational design synthesis. That being said, a more thorough

comparison is needed.

What is the appropriate mathematical programming representation? In this

work, the elements of the architecture selection decision were mapped to the

mathematical programming domain, specifically mixed-integer linear programming, but

only one potential representation was considered. One advantage of the transformation

approach is that it can be easily modified to generate different representations which

could then be characterized based on the solution times and quality of the solution(s)

generated.

How can scale of the problem be further managed? In this investigation, some

simple tricks were demonstrated for managing the scale of the problem. In general, these

reduced the size of the mathematical programming problems which raises the issue: what

is the right approach to decomposing the exploration problem so that it is manageable but

can also support consistent decision making?

What is the right information to extract from the solver? In this investigation,

the solver was queried for final solutions to the mathematical programming formulation.

 271

It would also be interesting for designers to have access to the internal search tree of the

solver, for instance which constraints are usually active.

What is the best way to characterize and visualize the results? In this

investigation, the results of the optimization were presented as a single optimization

modeled in SysML. When considering a pool of solutions, the issue becomes how to

visualize that space of solutions. Because only a few architectures are considered in

current explorations, the best way to represent a large space of possible architectures is

not considered.

8.5.3 Extensions

What other types of analyses can be generated using the transformation

approach to support the exploration process? As presented, the transformation and

composition approach is fairly generic. As demonstrated in Chapter 4 and 6, it can be

used both dynamic Modelica simulations and the mathematical programming

formulation. There is the potential to use the same composition and flattening code to

generate a number of other analyses from the architecture selection decision, for instance

cost models.

How effective is the approach when applied to other application domains? In

the current investigation, the focus was on hydraulic systems. These fit well with the

approach because in the hydraulic domain components are modular and they have well-

defined interfaces. This makes hydraulic components easy to compose using the

technique presented in this research. There are many other domains where components

are modular, so it is likely that the approach would be similarly applicable. One

 272

additional complication is that in many domains the interfaces between the components

are more complex.

What about controllers and software? In the current investigation, the

controller and necessary software is excluded. The assumption is that cost of designing

the software or controller is largely consistent across different architectures. This is

obviously not always the case, so the question is how the controller or software design

can be modeled in this framework. The difficulty is that up to this point, the types of

models considered are algebraic models. How would the discrete nature of software or a

controller fit with these algebraic models?

8.5.4 Informing Designers

Although anecdotally mentioned throughout the investigation, the overall goal of

informing designer decision making is not tackled directly. Although the presented

approach is capable of generating a single or multiple architectures from the prescribed

formulation, user studies need to be performed to understand the impact that these results

can have on changing the decisions a designer would make while designing a system.

There is a dearth of such studies in the current literature for a number of reasons, from the

limitations of current tools when applied to real-world problems to skepticism and lack of

acceptance of computational tools into a process that is often considered an art.

 Summary 8.6

This research is an investigation into using information models and mathematical

programming to support decision making about the appropriate system architecture by

facilitating architecture exploration. An information modeling language was created to

represent architecture exploration problems as architecture selection decisions. Although

 273

current trends in systems engineering have pushed designers from representing their

design artifacts (requirements, architecture descriptions, and so forth) as documents to

representing them as models, this investigation has pushed that boundary by not

documenting a particular architecture or why it was selected but instead explicitly

modeling the domain knowledge needed model an architecture exploration problem and

select an appropriate architecture. This knowledge includes which alternatives should be

considered and how to analyze and evaluate them. This allows designers to more

explicitly represent their architecture exploration problem, to reach consensus about the

knowledge that is included, and then to apply computational tools to this representation to

help them select the best architecture.

The computational tools considered come from the mathematical programming

domain. Since the architecture exploration process is an optimization process, the

question becomes what is the appropriate representation of an architecture selection

decision as an optimization problem and then what are the appropriate solvers. Because

of the scope and discrete nature of the architecture space along with the need for

continuous variables to size of a particular architecture, the mathematical programming

domain is chosen as the domain of investigation because of the presence of languages

that allow the solver independent encoding of the optimization problem and also high-

quality commercial solvers to perform the optimization. In the current state-of-the-art,

mathematical programming tools are not used during the system design process because

of the difficult to formulate the optimization problem. To simplify this formulation

process, this investigation considers representing the different pieces of the optimization

problem in a modular fashion that can be composed. Using this framework as a template,

 274

an automated transformation process is defined to convert the information model

representation into mathematical programming optimization problems. Then the high-

quality commercial solvers can be used on this problem.

Although there are currently significant limitations as outlined in Section 8.3, the

contributions from this research are significant in the context of informational modeling

as applied to Systems Engineering, utilizing composition and modularity to simplify the

evaluation of architectures for architecture exploration and computational design

synthesis, and also employing mathematical programming to perform the architecture

exploration.

Whether the approach is the best solution is still unclear, however the

contributions made in this research are useful points along the path toward an effective

solution to the problem.

275

APPENDIX A:

MODEL LIBRARIES

In this appendix, the component models for the individual components, the

analysis models used for the individual components, and the connection templates are

presented.

A.1 Component-level structural models.

This section contains the commercial off-the-shelf components included in the

component library. In this section, they are presented in tabular form; in the SysML

model library each row corresponds to a separate Block with properties which are given

default values. These models were automatically generated by importing the information

represented in the table from files that contained the comma separated data. The

information for the pumps and cylinders is based on previous component data available

from Malak (Malak, 2008). The pumps considered are shown in Table A.1. The cylinders

are shown in Table A.1. The data for the engines was synthesized specifically for the

examples because accurate information about the brake specific fuel consumption is

difficult to find for commercially available engines. The engines are shown in Table A.3.

The interpolation values used to estimate the maximum torque are shown in Table A.4.

The interpolation values for the fuel are shown in Table A.5.

 276

ID Displacement (m3) Max Pressure (Pa) Max Speed (RPM) Mass (kg) Cost ($)

CPB-020 3.29E-05 24821126.24 3200 8.7496 837.8

CPB-023 3.67E-05 24821126.24 3200 8.8902 843.95

CPB-026 4.16E-05 24821126.24 3200 9.0718 850.21

CPB-030 4.79E-05 24821126.24 3200 9.2986 858.56

CPB-032 5.15E-05 24821126.24 3200 9.4803 866.67

CPB-035 5.57E-05 24821126.24 3200 9.6611 871.34

CPB-040 6.36E-05 24821126.24 3200 10.0661 883.77

CPB-045 7.16E-05 24821126.24 3000 10.4375 897.61

CPB-050 7.95E-05 22752699.06 2750 10.1688 907.37

CPB-055 8.78E-05 20684271.87 2500 11.5001 921.06

CPB-060 9.57E-05 18615844.68 2500 11.7315 934.97

ID Mass (kg) Cost ($) Bore Area (cm
2
) Rod Area (cm

2
)

HMW-5008 32.60422 158.75 0.012668 0.0104

HMW-4008 18.50203 96.53 0.008107 0.006656

HMW-3508 14.80072 81.63 0.006207 0.005096

HMW-3008 11.20373 69.31 0.00456 0.003744

HMW-2508 9.003809 61.96 0.003167 0.0026

HMW-2008 6.100817 57 0.002027 0.001664

HMW-1508 5.202704 61.39 0.00114 0.000936

ID Mass (kg) Cost ($)

E1 19.05 1200

E2 30.14 2000

E3 30.39 2000

Normalized Speed 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E1 9.4 13.7 17.3 20.3 22.7 24.4 25.6 26.0 25.9 25.1 23.7

E2 33.3 36.1 38.3 39.9 41.0 41.5 41.4 40.8 39.6 37.9 35.6

E3 24.3 29.8 34.4 38.1 40.9 42.9 44.0 44.2 43.5 42.0 39.6

Table A.1: Commercial off-the-shelf pumps.

Table A.2: Commercial off-the-shelf cylinders.

Table A.3: Commercial off-the-shelf engines.

Table A.4: Maximum torque (Nm) for a given normalized speed for the engines.

 277

Table A.5: Fuel consumption (kg/W) for a given normalized speed for the

engines.

Normalized Speed 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E1 0.5 0.5 0.5 0.5 0.49 0.45 0.49 0.5 0.5 0.5 0.5

E2 0.5 0.5 0.5 0.5 0.49 0.45 0.49 0.5 0.5 0.5 0.5

E3 0.5 0.5 0.5 0.5 0.49 0.45 0.49 0.5 0.5 0.5 0.5

A.2 Component-level analysis models.

In Figure A.1, the analysis model for the cylinder is illustrated. The cylinder has

four interfaces (hydraulic ports a and b of type Hydraulic and translational ports out and

fixed of type Translational), four variables (boreArea, the effective area on the bore side

of the cylinder; rodArea, the effective area on the rod side of the cylinder; force, the

force generated by the cylinder, and velocity, the velocity of the cylinder) , and three

constraints. Each variable is stereotyped with «MPVariable», the force and velocity are

tagged as variable (i.e., they change with the use scenarios) whereas boreArea and

rodArea are tagged as parameters (i.e., they change with a particular design but not over

the scenarios. The constraints are based on a force and flow balance at the piston. These

constraints can be stated as:

∀�J&:,< ∙ �o − &o,< ∙ �p + �ZqY,< = 0M
∀��):,< ∙ �o −)o,< ∙ �p = 0)

∀��):,< = HZqY,< ∙ �o)
where � is the set of use scenarios, &:,< and &o,< are the pressures at a and b,):,<

and)o,<are the flows at a and b, �pand �oare the rodArea and boreArea, �ZqY,< is the

output force, and HZqY,<is the output velocity.

 278

The analysis model for the engine is illustrated in Figure A.2. This model is a

crude approximation of engine performance. It relies mostly on interpolating engine

torque curves and brake specific fuel consumption maps. The maximum torque the

engine produces is considered to be a function of the engine speed.

Figure A.1: Cylinder analysis model.

 279

A schematic for the open center valve is shown in Figure A.3; this valve is an

open-center neutral pass-through valve. Unlike a traditional open-center valve, it has six

instead of four interfaces to accommodate the neutral pass-through. The valve has three

operating modes, which have been labeled on, off, and back.

Figure A.2: Engine analysis model

 280

The analysis model for the valve is shown in Figure A.4, valve losses have been

neglected and the emphasis has been placed on insuring that Kirchhoff’s laws are

correctly enforced during each operating mode. This is done by using conditional

indicator constraints that are active during only the appropriate operational mode.

Equations describing the general flow are always active:

∀��)r,< +)rs,< +)rt,< = 0)
∀��)u,< +)us,< +)ut,< = 0)
∀��)s,< +)rs,< +)us,< = 0)

∀��)t,< +)rt,< +)ut,< = 0)
∀��)ru+,< +)ru-,< = 0)

Figure A.3: Illustration of the valve's schematic. The valve has three operating modes.

Each mode is in a different quadrant. Also, the red arrows indicate high pressure flow and

blue arrows indicate low pressure flow.

 281

where)r,<,)u,<,)s,<,)t,<,)ru+,<,)ru-,< are the flows at ports P, T, A, B, PT1,

and PT2 respectively.)rs,<,)us,<,)rt,<,)ut,<are the flows between ports P and A; Ports

T and A; ports P and B; and ports T and B, respectively.

 For the off operating mode, the following flow equations are specified:

∀��)rs,< = 0)
∀��)rt,< = 0)
∀��)us,< = 0)
∀��)ut,< = 0)

assuring that flow is only possible through the neutral pass-through. For the on

operating mode, the following flow equations are specified:

∀��)ru+,< = 0)
∀��)rt,< = 0)
∀��)us,< = 0)

assuring that flow is only possible between P and A, and T and B. For the back

operating mode, the following equations are specified:

∀��)ru+,< = 0)
∀��)rs,< = 0)
∀��)ut,< = 0)

Assuring that flow is only possible in the other direction. A similar set of

equations is used for the pressures; when there is potential for flow between two ports the

pressures of these ports are equated. This neglects pressure losses across the valve (which

is a major source of energy loss in real systems).

 282

The schematic for the closed center valve is shown in Figure A.5. This schematic

is similar to the open center neutral pass-through valve, but lacks a neutral pass-through.

The analysis model for the closed-center valve considered is the same as the analysis

model for the open-center valve, except the interfaces and constraints for the pass-

through are removed. This analysis model is shown in Figure A.6.

Figure A.4: Open center valve with neutral pass through analysis model.

 283

Figure A.5: Schematic for the closed center valve.

 284

The analysis model for the pump is shown in Figure A.7. This analysis model

only captures the pumps behavior in the forward pumping phase. It is based on the

McCandlish pump equations(McCandlish, 1984). The pump model has three interfaces

which are inherited from a generic model of a pump, hydraulic interfaces p1 and t1 for

fluid to flow into and out of the pump and rotational interface in1 where the pump can be

connected to a prime mover (such as an engine or motor). The pump also has the disp (D)

Figure A.6: Analysis model for the closed center valve.

 285

parameter which describes the size of the pump, along with a number of parameters that

are used to calculate the losses in the pump. These parameters are as follows: B is the

fluid bulk modulus, cf (vd) is the Coulomb friction coefficient, cs is the slip coefficient

(v<), cv (vi) is the viscous friction coefficient, Vr (wp) is the volume ratio, and mu (x) is

the fluid absolute viscosity. These are also parameters that depend on the particular pump

(and fluid) selected. The rest of the variables are intermediate variables used during the

determination of pump behavior. The pump constraints can be expressed as follows:

)�+,< = c ∙ yL9�+,< − v< ?&�+,<x A − zL9�+,< ∙ &�+,<� { ∙ �wp + 1)|

Τ9�+,< = c ∙ }&�+,< + viJx ∙ L9�+,<M + vd ∙ &�+,<~
with the assumption that the load dependent friction is independent of the

displacement. For the most part, these constraints contain parameters multiplied by

variables and therefore do not need to be approximated with interpolation. On the other

hand, the multiplication of L9�+,< ∙ &�+,< is approximated using the interpolation described

in Section 5.4.3.

 286

Figure A.7: Fixed-displacement pump analysis model.

 287

A.3 Functional Units

In this section, the functional units that are included in the functional units library

are presented. These functional units include components which are commonly

combined. A fixed-displacement power unit (this functional unit is often referred to as an

open center power unit because it is usually combined with open center valves) is shown

in Figure A.8, this functional unit includes a fixed-displacement pump, a tank, and a

relief valve across the pump to insure that the pump side pressure does not exceed the

maximum pressure. An open center valve block is shown in Figure A.9; this valve block

includes an open center valve which has been paired with a check valve to prevent

cavitation. The same is true for the closed center valve block shown in Figure A.10; it

contains a closed-center valve and a check valve to prevent cavitation.

Figure A.8: Fixed-displacement power unit.

 288

Figure A.9: Open center valve block.

 289

A.4 Connection Templates

In this section, the connection templates that are included are presented. These

connection templates describe how the components are traditionally connected together.

The different connection templates that are included are summarized in Figure A.11.

Figure A.10: Closed center valve block.

 290

Figure A.11: Connection templates represented in the component library

 291

 Figure A.12, Figure A.13, and Figure A.14 describe connections between specific

functional units. For instance, the connection between an open center power unit and an

open center valve block. On the other hand, Figure A.15, Figure A.16, and Figure A.17

describe more generic connections. Instead of worrying about the type of power unit

(open center, closed center, etc.), the template between a prime mover (engine) and

power unit is done at a generic level. The assumption is that any specialization of these

generic components is then connected in the same way. Therefore, the designer does not

need to define a

Figure A.12: Connection template between a fixed-displacement power unit and an open-

center valve block.

 292

.

Figure A.13: Connection template between an open-centered valve block and another

open-center valve block.

Figure A.14: Connection between a fixed-displacement power unit and an open-centered

valve block

Figure A.15: Connection between a prime mover (engine) and a (generic) power unit.

 293

Figure A.16: Connection between a cylinder and a (generic) valve block.

 294

Figure A.17: Connection between a motor and a (generic) valve block.

 295

APPENDIX B:

SAMPLE AIMMS CODE

1. MAIN MODEL View
2. DECLARATION SECTION
3. PARAMETER:
4. identifier : pi
5. definition : 4*arctan(1);
6. SET:
7. identifier : states
8. indices : s
9. definition : data {'1','2' };
10. SET:
11. identifier : cots
12. indices : cotsIndex
13. definition : data {'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19' };
14. SET:
15. identifier : components
16. indices : c
17. definition : data {'1','2','3','4','5','6','7','8','9','10' };
18. VARIABLE:
19. identifier : cotsVar
20. index domain : cotsIndex
21. range : binary;
22. PARAMETER:
23. identifier : cotsWeights
24. index domain : cotsIndex
25. definition : data {1 : 1,2 : 2,3 : 3,4 : 4,5 : 5,6 : 6,7 : 7,8 : 8,9 : 9,10 : 10,11 : 11,12 : 12,13 :

13,14 : 14,15 : 15,16 : 16,17 : 17,18 : 18,19 : 19};
26. PARAMETER:
27. identifier : cotsBound
28. definition : 1e6;
29. CONSTRAINT:
30. identifier : s0
31. property : SOS1
32. sos weight : cotsVar(cotsIndex) : cotsWeights(cotsIndex)
33. definition : -1+ cotsVar('1')+ cotsVar('2')+ cotsVar('3')+ cotsVar('4')+ cotsVar('5')+

cotsVar('6')+ cotsVar('7')+ cotsVar('8')+ cotsVar('9')+ cotsVar('10')+ cotsVar('11') = 0;
34. CONSTRAINT:
35. identifier : s1
36. property : SOS1
37. sos weight : cotsVar(cotsIndex) : cotsWeights(cotsIndex)
38. definition : -1+ cotsVar('12') = 0;
39. CONSTRAINT:
40. identifier : s2
41. property : SOS1
42. sos weight : cotsVar(cotsIndex) : cotsWeights(cotsIndex)
43. definition : -1+ cotsVar('13')+ cotsVar('14')+ cotsVar('15')+ cotsVar('16')+ cotsVar('17')+

cotsVar('18')+ cotsVar('19') = 0;
44. SET:
45. identifier : ports
46. indices : p

 296

47. definition : data
{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','23','24' };

48. SET:
49. identifier : translational
50. indices : t
51. definition : data {'19','20','23','24' };
52. SET:
53. identifier : rotational
54. indices : r
55. definition : data {'1','16' };
56. SET:
57. identifier : hydraulic
58. indices : h
59. definition : data {'2','3','4','5','6','7','8','9','10','11','12','13','14','15','17','18','21','22' };
60. SET:
61. identifier : decisions
62. indices : d
63. definition : data {'1','2','3','4','5','6','7' };
64. /*c0:
65. 1=>disp
66. 2=>qLossOmegaP
67. 3=>pDiff
68. 4=>B
69. 5=>tLossP
70. 6=>qLossP
71. 7=>cs
72. 8=>pOmega
73. 9=>Vr
74. 10=>cv
75. 11=>mu
76. 12=>omega
77. 13=>prdiff
78. 14=>tLossOmega
79. 15=>cf
80. 16=>displacement
81. 17=>maxOpSpeed
82. 18=>maxOpPr
83. 19=>cost
84. 20=>mass
85. c1:
86. c2:
87. c3:
88. 21=>back
89. 22=>on
90. 23=>ctrl
91. 24=>off
92. 25=>flowPA
93. 26=>flowPB
94. 27=>flowTA
95. 28=>flowTB
96. 29=>pressureLoss
97. 30=>cost
98. 31=>mass
99. 32=>maxFlow
100. 33=>maxPr
101. c4:

 297

102. c5:
103. 34=>power
104. 35=>tau
105. 36=>omega
106. 37=>maxTau
107. 38=>normalizedSpeed
108. 39=>fuelConsumption
109. 40=>fuelRate
110. 41=>maxSpeed
111. 42=>minSpeed
112. 43=>minTau
113. 44=>cost
114. 45=>mass
115. 46=>rpmMin
116. 47=>rpmMax
117. 48=>a0
118. 49=>a1
119. 50=>a2
120. 51=>thermalEff
121. c6:
122. 52=>force
123. 53=>velocity
124. 54=>boreArea
125. 55=>rodArea
126. 56=>boreDiameter
127. 57=>strokeLength
128. 58=>mass
129. 59=>cost
130. 60=>maxPressure
131. 61=>rodDiameter
132. 62=>v0
133. 63=>v1
134. 64=>v2
135. 65=>v3
136. 66=>v4
137. c7:
138. c8:
139. c9:
140. 67=>force
141. 68=>velocity
142. c0:
143. 1=>in1
144. 2=>p1
145. 3=>t1
146. c1:
147. 4=>in
148. 5=>out
149. c2:
150. 6=>high
151. 7=>low
152. c3:
153. 8=>p
154. 9=>t
155. 10=>a
156. 11=>b
157. 12=>pt1

 298

158. 13=>pt2
159. c4:
160. 14=>in
161. 15=>out
162. c5:
163. 16=>out1
164. c6:
165. 17=>a
166. 18=>b
167. 19=>out
168. 20=>fixed
169. c7:
170. 21=>in
171. 22=>out
172. c8:
173. 23=>flange
174. c9:
175. 24=>flange
176. 1=>reliefvalve0
177. 2=>checkvalve0
178. 3=>T3.1
179. 4=>T9.1
180. 5=>T5.1.1
181. 6=>T4.1
182. 7=>T7.1.1
183. */
184. VARIABLE:
185. identifier : force
186. index domain : (t, s)
187. range : free;
188. PARAMETER:
189. identifier : forceBound
190. definition : 1e9;
191. VARIABLE:
192. identifier : velocity
193. index domain : (t, s)
194. range : free;
195. PARAMETER:
196. identifier : velocityBound
197. definition : 1e9;
198. VARIABLE:
199. identifier : angularVelocity
200. index domain : (r, s)
201. range : free;
202. PARAMETER:
203. identifier : angularVelocityBound
204. definition : 1e9;
205. VARIABLE:
206. identifier : torque
207. index domain : (r, s)
208. range : free;
209. PARAMETER:
210. identifier : torqueBound
211. definition : 1e9;
212. VARIABLE:
213. identifier : pressure

 299

214. index domain : (h, s)
215. range : nonnegative;
216. PARAMETER:
217. identifier : pressureBound
218. definition : 1e9;
219. VARIABLE:
220. identifier : flow
221. index domain : (h, s)
222. range : free;
223. PARAMETER:
224. identifier : flowBound
225. definition : 1e9;
226. SET:
227. identifier : ctrlVariableSet
228. indices : ctrlVariableSetIndex
229. definition : data {'23' };
230. VARIABLE:
231. identifier : ctrlVariable
232. index domain : (ctrlVariableSetIndex,s)
233. range : free;
234. SET:
235. identifier : qLossOmegaPVariableSet
236. indices : qLossOmegaPVariableSetIndex
237. definition : data {'2' };
238. VARIABLE:
239. identifier : qLossOmegaPVariable
240. index domain : (qLossOmegaPVariableSetIndex,s)
241. range : free;
242. PARAMETER:
243. identifier : massParameter
244. definition : 1;
245. SET:
246. identifier : pressureLossVariableSet
247. indices : pressureLossVariableSetIndex
248. definition : data {'29' };
249. VARIABLE:
250. identifier : pressureLossVariable
251. index domain : (pressureLossVariableSetIndex,s)
252. range : free;
253. SET:
254. identifier : powerVariableSet
255. indices : powerVariableSetIndex
256. definition : data {'34' };
257. VARIABLE:
258. identifier : powerVariable
259. index domain : (powerVariableSetIndex,s)
260. range : free;
261. SET:
262. identifier : onVariableSet
263. indices : onVariableSetIndex
264. definition : data {'22' };
265. VARIABLE:
266. identifier : onVariable
267. index domain : (onVariableSetIndex,s)
268. range : binary;
269. SET:

 300

270. identifier : flowPAVariableSet
271. indices : flowPAVariableSetIndex
272. definition : data {'25' };
273. VARIABLE:
274. identifier : flowPAVariable
275. index domain : (flowPAVariableSetIndex,s)
276. range : free;
277. SET:
278. identifier : tLossOmegaVariableSet
279. indices : tLossOmegaVariableSetIndex
280. definition : data {'14' };
281. VARIABLE:
282. identifier : tLossOmegaVariable
283. index domain : (tLossOmegaVariableSetIndex,s)
284. range : free;
285. SET:
286. identifier : fuelRateVariableSet
287. indices : fuelRateVariableSetIndex
288. definition : data {'40' };
289. VARIABLE:
290. identifier : fuelRateVariable
291. index domain : (fuelRateVariableSetIndex,s)
292. range : free;
293. SET:
294. identifier : flowPBVariableSet
295. indices : flowPBVariableSetIndex
296. definition : data {'26' };
297. VARIABLE:
298. identifier : flowPBVariable
299. index domain : (flowPBVariableSetIndex,s)
300. range : free;
301. PARAMETER:
302. identifier : maxFlowParameter
303. definition : 1;
304. PARAMETER:
305. identifier : minTauParameter
306. definition : 1;
307. SET:
308. identifier : normalizedSpeedVariableSet
309. indices : normalizedSpeedVariableSetIndex
310. definition : data {'38' };
311. VARIABLE:
312. identifier : normalizedSpeedVariable
313. index domain : (normalizedSpeedVariableSetIndex,s)
314. range : free;
315. PARAMETER:
316. identifier : thermalEffParameter
317. definition : 1;
318. SET:
319. identifier : cvParameterSet
320. indices : cvParameterSetIndex
321. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
322. PARAMETER:
323. identifier : cvParameter
324. index domain : cvParameterSetIndex

 301

325. definition : data {1 : 2E3,2 : 2E3,3 : 2E3,4 : 2E3,5 : 2E3,6 : 2E3,7 : 2E3,8 : 2E3,9 : 2E3,10 :
2E3,11: 2E3 };

326. PARAMETER:
327. identifier : costParameter
328. definition : 1;
329. SET:
330. identifier : omegaVariableSet
331. indices : omegaVariableSetIndex
332. definition : data {'12','36' };
333. VARIABLE:
334. identifier : omegaVariable
335. index domain : (omegaVariableSetIndex,s)
336. range : free;
337. SET:
338. identifier : csParameterSet
339. indices : csParameterSetIndex
340. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
341. PARAMETER:
342. identifier : csParameter
343. index domain : csParameterSetIndex
344. definition : data {1 : 3E-9,2 : 3E-9,3 : 3E-9,4 : 3E-9,5 : 3E-9,6 : 3E-9,7 : 3E-9,8 : 3E-9,9 : 3E-

9,10 : 3E-9,11: 3E-9 };
345. SET:
346. identifier : rodAreaParameterSet
347. indices : rodAreaParameterSetIndex
348. definition : data {'1','2','3','4','5','6','7' };
349. PARAMETER:
350. identifier : rodAreaParameter
351. index domain : rodAreaParameterSetIndex
352. definition : data {1 : 0.010399546,2 : 0.00665571,3 : 0.005095778,4 : 0.003743837,5 :

0.002599887,6 : 0.000935959,7: 0.001663927 };
353. SET:
354. identifier : maxSpeedParameterSet
355. indices : maxSpeedParameterSetIndex
356. definition : data {'1' };
357. PARAMETER:
358. identifier : maxSpeedParameter
359. index domain : maxSpeedParameterSetIndex
360. definition : data {1: 377 };
361. SET:
362. identifier : tauVariableSet
363. indices : tauVariableSetIndex
364. definition : data {'35' };
365. VARIABLE:
366. identifier : tauVariable
367. index domain : (tauVariableSetIndex,s)
368. range : free;
369. SET:
370. identifier : tLossPVariableSet
371. indices : tLossPVariableSetIndex
372. definition : data {'5' };
373. VARIABLE:
374. identifier : tLossPVariable
375. index domain : (tLossPVariableSetIndex,s)
376. range : free;
377. SET:

 302

378. identifier : dispParameterSet
379. indices : dispParameterSetIndex
380. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
381. PARAMETER:
382. identifier : dispParameter
383. index domain : dispParameterSetIndex
384. definition : data {1 : 3.29E-05,2 : 3.67E-05,3 : 4.16E-05,4 : 4.79E-05,5 : 5.15E-05,6 : 5.57E-

05,7 : 6.36E-05,8 : 7.16E-05,9 : 7.95E-05,10 : 8.78E-05,11: 9.57E-05 };
385. SET:
386. identifier : cfParameterSet
387. indices : cfParameterSetIndex
388. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
389. PARAMETER:
390. identifier : cfParameter
391. index domain : cfParameterSetIndex
392. definition : data {1 : .094,2 : .094,3 : .094,4 : .094,5 : .094,6 : .094,7 : .094,8 : .094,9 : .094,10 :

.094,11: .094 };
393. SET:
394. identifier : qLossPVariableSet
395. indices : qLossPVariableSetIndex
396. definition : data {'6' };
397. VARIABLE:
398. identifier : qLossPVariable
399. index domain : (qLossPVariableSetIndex,s)
400. range : free;
401. SET:
402. identifier : pDiffVariableSet
403. indices : pDiffVariableSetIndex
404. definition : data {'3' };
405. VARIABLE:
406. identifier : pDiffVariable
407. index domain : (pDiffVariableSetIndex,s)
408. range : free;
409. PARAMETER:
410. identifier : maxOpSpeedParameter
411. definition : 1;
412. PARAMETER:
413. identifier : a0Parameter
414. definition : 1;
415. SET:
416. identifier : BParameterSet
417. indices : BParameterSetIndex
418. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
419. PARAMETER:
420. identifier : BParameter
421. index domain : BParameterSetIndex
422. definition : data {1 : 1.66E9,2 : 1.66E9,3 : 1.66E9,4 : 1.66E9,5 : 1.66E9,6 : 1.66E9,7 :

1.66E9,8 : 1.66E9,9 : 1.66E9,10 : 1.66E9,11: 1.66E9 };
423. SET:
424. identifier : pOmegaVariableSet
425. indices : pOmegaVariableSetIndex
426. definition : data {'8' };
427. VARIABLE:
428. identifier : pOmegaVariable
429. index domain : (pOmegaVariableSetIndex,s)
430. range : free;

 303

431. PARAMETER:
432. identifier : maxPressureParameter
433. definition : 1;
434. SET:
435. identifier : minSpeedParameterSet
436. indices : minSpeedParameterSetIndex
437. definition : data {'1' };
438. PARAMETER:
439. identifier : minSpeedParameter
440. index domain : minSpeedParameterSetIndex
441. definition : data {1: 104.2 };
442. PARAMETER:
443. identifier : displacementParameter
444. definition : 1;
445. PARAMETER:
446. identifier : boreDiameterParameter
447. definition : 1;
448. PARAMETER:
449. identifier : a1Parameter
450. definition : 1;
451. SET:
452. identifier : velocityVariableSet
453. indices : velocityVariableSetIndex
454. definition : data {'53','68' };
455. VARIABLE:
456. identifier : velocityVariable
457. index domain : (velocityVariableSetIndex,s)
458. range : free;
459. PARAMETER:
460. identifier : a2Parameter
461. definition : 1;
462. SET:
463. identifier : prdiffVariableSet
464. indices : prdiffVariableSetIndex
465. definition : data {'13' };
466. VARIABLE:
467. identifier : prdiffVariable
468. index domain : (prdiffVariableSetIndex,s)
469. range : free;
470. PARAMETER:
471. identifier : VrParameter
472. definition : 1;
473. SET:
474. identifier : backVariableSet
475. indices : backVariableSetIndex
476. definition : data {'21' };
477. VARIABLE:
478. identifier : backVariable
479. index domain : (backVariableSetIndex,s)
480. range : binary;
481. SET:
482. identifier : muParameterSet
483. indices : muParameterSetIndex
484. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
485. PARAMETER:
486. identifier : muParameter

 304

487. index domain : muParameterSetIndex
488. definition : data {1 : .017,2 : .017,3 : .017,4 : .017,5 : .017,6 : .017,7 : .017,8 : .017,9 : .017,10 :

.017,11: .017 };
489. SET:
490. identifier : fuelConsumptionVariableSet
491. indices : fuelConsumptionVariableSetIndex
492. definition : data {'39' };
493. VARIABLE:
494. identifier : fuelConsumptionVariable
495. index domain : (fuelConsumptionVariableSetIndex,s)
496. range : free;
497. PARAMETER:
498. identifier : maxOpPrParameter
499. definition : 1;
500. SET:
501. identifier : maxTauVariableSet
502. indices : maxTauVariableSetIndex
503. definition : data {'37' };
504. VARIABLE:
505. identifier : maxTauVariable
506. index domain : (maxTauVariableSetIndex,s)
507. range : free;
508. PARAMETER:
509. identifier : maxPrParameter
510. definition : 1;
511. PARAMETER:
512. identifier : rodDiameterParameter
513. definition : 1;
514. SET:
515. identifier : offVariableSet
516. indices : offVariableSetIndex
517. definition : data {'24' };
518. VARIABLE:
519. identifier : offVariable
520. index domain : (offVariableSetIndex,s)
521. range : binary;
522. SET:
523. identifier : flowTBVariableSet
524. indices : flowTBVariableSetIndex
525. definition : data {'28' };
526. VARIABLE:
527. identifier : flowTBVariable
528. index domain : (flowTBVariableSetIndex,s)
529. range : free;
530. PARAMETER:
531. identifier : rpmMaxParameter
532. definition : 1;
533. SET:
534. identifier : boreAreaParameterSet
535. indices : boreAreaParameterSetIndex
536. definition : data {'1','2','3','4','5','6','7' };
537. PARAMETER:
538. identifier : boreAreaParameter
539. index domain : boreAreaParameterSetIndex
540. definition : data {1 : 0.012667687,2 : 0.00810732,3 : 0.006207167,4 : 0.004560367,5 :

0.003166922,6 : 0.001140092,7: 0.00202683 };

 305

541. SET:
542. identifier : forceVariableSet
543. indices : forceVariableSetIndex
544. definition : data {'52','67' };
545. VARIABLE:
546. identifier : forceVariable
547. index domain : (forceVariableSetIndex,s)
548. range : free;
549. SET:
550. identifier : flowTAVariableSet
551. indices : flowTAVariableSetIndex
552. definition : data {'27' };
553. VARIABLE:
554. identifier : flowTAVariable
555. index domain : (flowTAVariableSetIndex,s)
556. range : free;
557. PARAMETER:
558. identifier : rpmMinParameter
559. definition : 1;
560. VARIABLE:
561. identifier : decisionVars
562. index domain : d
563. range : binary;
564. CONSTRAINT:
565. identifier : c0
566. index domain : s
567. definition : torque('16',s) = -tauVariable('35',s);
568. CONSTRAINT:
569. identifier : c1
570. index domain : s
571. definition : tauVariable('35',s) <= maxTauVariable('37',s);
572. CONSTRAINT:
573. identifier : co2
574. index domain : s
575. property : IndicatorConstraint
576. activating condition : cotsVar('12') = 1
577. definition : omegaVariable('36',s) = (minSpeedParameter('1') +(maxSpeedParameter('1')-

minSpeedParameter('1'))*normalizedSpeedVariable('38',s));
578. SET:
579. identifier : lambdaSet1
580. indices : ls1
581. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
582. PARAMETER:
583. identifier : lambdaWeights1
584. index domain : ls1
585. definition : data {1 : 1,2 : 2,3 : 3,4 : 4,5 : 5,6 : 6,7 : 7,8 : 8,9 : 9,10 : 10,11 : 11 };
586. VARIABLE:
587. identifier : lambdaVariable1
588. index domain : (ls1,s)
589. range : [0, 1];
590. PARAMETER:
591. identifier : normalizedSpeedInterpValues1
592. index domain : ls1
593. definition : data {1 : 0,2 : 0.1,3 : 0.2,4 : 0.3,5 : 0.4,6 : 0.5,7 : 0.6,8 : 0.7,9 : 0.8,10 : 0.9,11 : 1};
594. PARAMETER:
595. identifier : maxTauInterpValues1

 306

596. index domain : ls1
597. definition : data {1 : 0, 2 : 2.34, 3 : 8.3, 4 : 13.4, 5 : 19, 6 : 35, 7 : 40, 8 : 42, 9 : 40, 10 : 35, 11 :

20};
598. CONSTRAINT:
599. identifier : interpCom3
600. index domain : s
601. definition : maxTauVariable('37',s) = maxTauInterpValues1('1') * lambdaVariable1('1',s)

+maxTauInterpValues1('2') * lambdaVariable1('2',s) +maxTauInterpValues1('3') *
lambdaVariable1('3',s) +maxTauInterpValues1('4')

602. lambdaVariable1('4',s) +maxTauInterpValues1('5') * lambdaVariable1('5',s)
+maxTauInterpValues1('6') * lambdaVariable1('6',s) +maxTauInterpValues1('7') *
lambdaVariable1('7',s) +maxTauInterpValues1('8')

603. lambdaVariable1('8',s) +maxTauInterpValues1('9') * lambdaVariable1('9',s)
+maxTauInterpValues1('10') * lambdaVariable1('10',s) +maxTauInterpValues1('11') *
lambdaVariable1('11',s) ;

604. CONSTRAINT:
605. identifier : interpCom4
606. index domain : s
607. definition : normalizedSpeedVariable('38',s) = normalizedSpeedInterpValues1('1') *

lambdaVariable1('1',s) +normalizedSpeedInterpValues1('2') * lambdaVariable1('2',s)
+normalizedSpeedInterpValues1('3') * lambdaVariable1('3',s)

608. +normalizedSpeedInterpValues1('4') * lambdaVariable1('4',s)
+normalizedSpeedInterpValues1('5') * lambdaVariable1('5',s)
+normalizedSpeedInterpValues1('6') * lambdaVariable1('6',s)

609. +normalizedSpeedInterpValues1('7') * lambdaVariable1('7',s)
+normalizedSpeedInterpValues1('8') * lambdaVariable1('8',s)
+normalizedSpeedInterpValues1('9') * lambdaVariable1('9',s)

610. +normalizedSpeedInterpValues1('10') * lambdaVariable1('10',s)
+normalizedSpeedInterpValues1('11') * lambdaVariable1('11',s) ;

611. CONSTRAINT:
612. identifier : interpCom5
613. index domain : s
614. definition : lambdaVariable1('1',s) +lambdaVariable1('2',s) +lambdaVariable1('3',s)

+lambdaVariable1('4',s) +lambdaVariable1('5',s) +lambdaVariable1('6',s)
+lambdaVariable1('7',s) +lambdaVariable1('8',s) +lambdaVariable1('9',s)

615. +lambdaVariable1('10',s) +lambdaVariable1('11',s) = cotsVar('12') ;
616. CONSTRAINT:
617. identifier : interpCom6
618. index domain : s
619. property : SOS2
620. sos weight : lambdaVariable1(ls1,s) : lambdaWeights1(ls1)
621. definition : lambdaVariable1('1',s) +lambdaVariable1('2',s) +lambdaVariable1('3',s)

+lambdaVariable1('4',s) +lambdaVariable1('5',s) +lambdaVariable1('6',s)
+lambdaVariable1('7',s) +lambdaVariable1('8',s) +lambdaVariable1('9',s)

622. +lambdaVariable1('10',s) +lambdaVariable1('11',s) = 1 ;
623. CONSTRAINT:
624. identifier : c6
625. index domain : s
626. definition : angularVelocity('16',s) = -omegaVariable('36',s);
627. PARAMETER:
628. identifier : scalingXMin0
629. definition : 0;
630. PARAMETER:
631. identifier : scalingXMax0
632. definition : 50;
633. PARAMETER:

 307

634. identifier : scalingYMin0
635. definition : 107;
636. PARAMETER:
637. identifier : scalingYMax0
638. definition : 300;
639. SET:
640. identifier : interpVarASet0
641. indices : interpVarASetIndex0
642. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
643. PARAMETER:
644. identifier : interpVarAValues0
645. index domain : interpVarASetIndex0
646. definition : data {1 : -1.0,2 : -0.8,3 : -0.6000000000000001,4 : -0.4000000000000001,5 : -

0.20000000000000007,6 : -5.551115123125783E-17,7 : 0.19999999999999996,8 :
0.39999999999999997,9 : 0.6,10 : 0.8,11 : 1.0};

647. SET:
648. identifier : interpVarBSet0
649. indices : interpVarBSetIndex0
650. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
651. PARAMETER:
652. identifier : interpVarBValues0
653. index domain : interpVarBSetIndex0
654. definition : data {1 : -1.0,2 : -0.8,3 : -0.6000000000000001,4 : -0.4000000000000001,5 : -

0.20000000000000007,6 : -5.551115123125783E-17,7 : 0.19999999999999996,8 :
0.39999999999999997,9 : 0.6,10 : 0.8,11 : 1.0};

655. SET:
656. identifier : interpVarA2Set0
657. indices : interpVarA2SetIndex0
658. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
659. PARAMETER:
660. identifier : interpVarA2Values0
661. index domain : interpVarA2SetIndex0
662. definition : data {1 : 1.0,2 : 0.6400000000000001,3 : 0.3600000000000001,4 :

0.16000000000000006,5 : 0.04000000000000003,6 : 3.0814879110195774E-33,7 :
0.03999999999999998,8 : 0.15999999999999998,9 : 0.36,10 : 0.6400000000000001,11

663. : 1.0} ;
664. SET:
665. identifier : interpVarB2Set0
666. indices : interpVarB2SetIndex0
667. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
668. PARAMETER:
669. identifier : interpVarB2Values0
670. index domain : interpVarB2SetIndex0
671. definition : data {1 : -1.0,2 : -0.6400000000000001,3 : -0.3600000000000001,4 : -

0.16000000000000006,5 : -0.04000000000000003,6 : -3.0814879110195774E-33,7 : -
0.03999999999999998,8 : -0.15999999999999998,9 : -0.36,10

672. : -0.6400000000000001,11 : -1.0} ;
673. VARIABLE:
674. identifier : interpVarA0
675. index domain : s
676. range : free;
677. VARIABLE:
678. identifier : interpVarB0
679. index domain : s
680. range : free;
681. VARIABLE:

 308

682. identifier : scaledVarX0
683. index domain : s
684. range : free;
685. VARIABLE:
686. identifier : scaledVarY0
687. index domain : s
688. range : free;
689. CONSTRAINT:
690. identifier : scaledConA7
691. index domain : s
692. definition : tauVariable('35',s) = scaledVarX0(s) * (scalingXMax0- scalingXMin0) +

scalingXMin0;
693. CONSTRAINT:
694. identifier : scaledConB7
695. index domain : s
696. definition : omegaVariable('36',s) = scaledVarY0(s) * (scalingYMax0- scalingYMin0) +

scalingYMin0;
697. CONSTRAINT:
698. identifier : interpA7
699. index domain : s
700. definition : interpVarA0(s) = 1/2*(scaledVarX0(s) + scaledVarY0(s));
701. CONSTRAINT:
702. identifier : interpB7
703. index domain : s
704. definition : interpVarB0(s) = 1/2*(scaledVarX0(s) - scaledVarY0(s));
705. VARIABLE:
706. identifier : interpVarA20
707. index domain : s
708. range : free;
709. VARIABLE:
710. identifier : interpVarB20
711. index domain : s
712. range : free;
713. SET:
714. identifier : lambdaSet2
715. indices : ls2
716. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
717. VARIABLE:
718. identifier : lambdaVariableA2
719. index domain : (ls2,s)
720. range : [0, 1];
721. VARIABLE:
722. identifier : lambdaVariableB2
723. index domain : (ls2,s)
724. range : [0, 1];
725. CONSTRAINT:
726. identifier : lambdaSumA8
727. index domain : s
728. definition : sum(ls2, lambdaVariableA2(ls2,s)) = 1;
729. CONSTRAINT:
730. identifier : lambdaSumB8
731. index domain : s
732. property : SOS2
733. sos weight : lambdaVariableB2(ls2,s) : interpVarBValues0(ls2)
734. definition : sum(ls2, lambdaVariableB2(ls2,s)) = 1;
735. CONSTRAINT:

 309

736. identifier : interpVarACon8
737. index domain : s
738. definition : interpVarA0(s) = lambdaVariableA2('1',s) *

interpVarAValues0('1')+lambdaVariableA2('2',s) *
interpVarAValues0('2')+lambdaVariableA2('3',s) *
interpVarAValues0('3')+lambdaVariableA2('4',s) *
interpVarAValues0('4')+lambdaVariableA2('5',s)

739. interpVarAValues0('5')+lambdaVariableA2('6',s) *
interpVarAValues0('6')+lambdaVariableA2('7',s) *
interpVarAValues0('7')+lambdaVariableA2('8',s) *
interpVarAValues0('8')+lambdaVariableA2('9',s)

740. interpVarAValues0('9')+lambdaVariableA2('10',s) *
interpVarAValues0('10')+lambdaVariableA2('11',s) * interpVarAValues0('11') ;

741. CONSTRAINT:
742. identifier : interpVarBCon8
743. index domain : s
744. definition : interpVarB0(s) = lambdaVariableB2('1',s) *

interpVarBValues0('1')+lambdaVariableB2('2',s) *
interpVarBValues0('2')+lambdaVariableB2('3',s) *
interpVarBValues0('3')+lambdaVariableB2('4',s) *
interpVarBValues0('4')+lambdaVariableB2('5',s)

745. interpVarBValues0('5')+lambdaVariableB2('6',s) *
interpVarBValues0('6')+lambdaVariableB2('7',s) *
interpVarBValues0('7')+lambdaVariableB2('8',s) *
interpVarBValues0('8')+lambdaVariableB2('9',s)

746. interpVarBValues0('9')+lambdaVariableB2('10',s) *
interpVarBValues0('10')+lambdaVariableB2('11',s) * interpVarBValues0('11') ;

747. CONSTRAINT:
748. identifier : interpVarA2Con8
749. index domain : s
750. definition : interpVarA20(s) >= lambdaVariableA2('1',s) *

interpVarA2Values0('1')+lambdaVariableA2('2',s) *
interpVarA2Values0('2')+lambdaVariableA2('3',s) *
interpVarA2Values0('3')+lambdaVariableA2('4',s) *
interpVarA2Values0('4')+lambdaVariableA2('5',s)

751. interpVarA2Values0('5')+lambdaVariableA2('6',s) *
interpVarA2Values0('6')+lambdaVariableA2('7',s) *
interpVarA2Values0('7')+lambdaVariableA2('8',s)

752. interpVarA2Values0('8')+lambdaVariableA2('9',s) *
interpVarA2Values0('9')+lambdaVariableA2('10',s) *
interpVarA2Values0('10')+lambdaVariableA2('11',s) * interpVarA2Values0('11') ;

753. CONSTRAINT:
754. identifier : interpVarB2Con8
755. index domain : s
756. definition : interpVarB20(s) >= lambdaVariableB2('1',s) *

interpVarB2Values0('1')+lambdaVariableB2('2',s) *
interpVarB2Values0('2')+lambdaVariableB2('3',s) *
interpVarB2Values0('3')+lambdaVariableB2('4',s) *
interpVarB2Values0('4')+lambdaVariableB2('5',s)

757. interpVarB2Values0('5')+lambdaVariableB2('6',s) *
interpVarB2Values0('6')+lambdaVariableB2('7',s) *
interpVarB2Values0('7')+lambdaVariableB2('8',s)

758. interpVarB2Values0('8')+lambdaVariableB2('9',s) *
interpVarB2Values0('9')+lambdaVariableB2('10',s) *
interpVarB2Values0('10')+lambdaVariableB2('11',s) * interpVarB2Values0('11') ;

759. CONSTRAINT:

 310

760. identifier : c8
761. index domain : s
762. definition : powerVariable('34',s) >= (interpVarA20(s) + interpVarB20(s)) * (scalingXMax0 -

scalingXMin0) * (scalingYMax0 - scalingYMin0) + scaledVarX0(s) * (scalingXMax0-
scalingXMin0) * scalingYMin0 + scaledVarY0(s)

763. (scalingYMax0 - scalingYMin0) * scalingXMin0 + scalingXMin0 * scalingYmin0 ;
764. PARAMETER:
765. identifier : scalingXMin1
766. definition : 0;
767. PARAMETER:
768. identifier : scalingXMax1
769. definition : .2;
770. PARAMETER:
771. identifier : scalingYMin1
772. definition : 0;
773. PARAMETER:
774. identifier : scalingYMax1
775. definition : 20000;
776. SET:
777. identifier : interpVarASet1
778. indices : interpVarASetIndex1
779. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
780. PARAMETER:
781. identifier : interpVarAValues1
782. index domain : interpVarASetIndex1
783. definition : data {1 : -1.0,2 : -0.8,3 : -0.6000000000000001,4 : -0.4000000000000001,5 : -

0.20000000000000007,6 : -5.551115123125783E-17,7 : 0.19999999999999996,8 :
0.39999999999999997,9 : 0.6,10 : 0.8,11 : 1.0};

784. SET:
785. identifier : interpVarBSet1
786. indices : interpVarBSetIndex1
787. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
788. PARAMETER:
789. identifier : interpVarBValues1
790. index domain : interpVarBSetIndex1
791. definition : data {1 : -1.0,2 : -0.8,3 : -0.6000000000000001,4 : -0.4000000000000001,5 : -

0.20000000000000007,6 : -5.551115123125783E-17,7 : 0.19999999999999996,8 :
0.39999999999999997,9 : 0.6,10 : 0.8,11 : 1.0};

792. SET:
793. identifier : interpVarA2Set1
794. indices : interpVarA2SetIndex1
795. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
796. PARAMETER:
797. identifier : interpVarA2Values1
798. index domain : interpVarA2SetIndex1
799. definition : data {1 : 1.0,2 : 0.6400000000000001,3 : 0.3600000000000001,4 :

0.16000000000000006,5 : 0.04000000000000003,6 : 3.0814879110195774E-33,7 :
0.03999999999999998,8 : 0.15999999999999998,9 : 0.36,10 : 0.6400000000000001,11

800. : 1.0} ;
801. SET:
802. identifier : interpVarB2Set1
803. indices : interpVarB2SetIndex1
804. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
805. PARAMETER:
806. identifier : interpVarB2Values1
807. index domain : interpVarB2SetIndex1

 311

808. definition : data {1 : -1.0,2 : -0.6400000000000001,3 : -0.3600000000000001,4 : -
0.16000000000000006,5 : -0.04000000000000003,6 : -3.0814879110195774E-33,7 : -
0.03999999999999998,8 : -0.15999999999999998,9 : -0.36,10

809. : -0.6400000000000001,11 : -1.0} ;
810. VARIABLE:
811. identifier : interpVarA1
812. index domain : s
813. range : free;
814. VARIABLE:
815. identifier : interpVarB1
816. index domain : s
817. range : free;
818. VARIABLE:
819. identifier : scaledVarX1
820. index domain : s
821. range : free;
822. VARIABLE:
823. identifier : scaledVarY1
824. index domain : s
825. range : free;
826. CONSTRAINT:
827. identifier : scaledConA9
828. index domain : s
829. definition : fuelConsumptionVariable('39',s) = scaledVarX1(s) * (scalingXMax1-

scalingXMin1) + scalingXMin1;
830. CONSTRAINT:
831. identifier : scaledConB9
832. index domain : s
833. definition : powerVariable('34',s) = scaledVarY1(s) * (scalingYMax1- scalingYMin1) +

scalingYMin1;
834. CONSTRAINT:
835. identifier : interpA9
836. index domain : s
837. definition : interpVarA1(s) = 1/2*(scaledVarX1(s) + scaledVarY1(s));
838. CONSTRAINT:
839. identifier : interpB9
840. index domain : s
841. definition : interpVarB1(s) = 1/2*(scaledVarX1(s) - scaledVarY1(s));
842. VARIABLE:
843. identifier : interpVarA21
844. index domain : s
845. range : free;
846. VARIABLE:
847. identifier : interpVarB21
848. index domain : s
849. range : free;
850. SET:
851. identifier : lambdaSet4
852. indices : ls4
853. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
854. VARIABLE:
855. identifier : lambdaVariableA4
856. index domain : (ls4,s)
857. range : [0, 1];
858. VARIABLE:
859. identifier : lambdaVariableB4

 312

860. index domain : (ls4,s)
861. range : [0, 1];
862. CONSTRAINT:
863. identifier : lambdaSumA10
864. index domain : s
865. definition : sum(ls4, lambdaVariableA4(ls4,s)) = 1;
866. CONSTRAINT:
867. identifier : lambdaSumB10
868. index domain : s
869. property : SOS2
870. sos weight : lambdaVariableB4(ls4,s) : interpVarBValues1(ls4)
871. definition : sum(ls4, lambdaVariableB4(ls4,s)) = 1;
872. CONSTRAINT:
873. identifier : interpVarACon10
874. index domain : s
875. definition : interpVarA1(s) = lambdaVariableA4('1',s) *

interpVarAValues1('1')+lambdaVariableA4('2',s) *
interpVarAValues1('2')+lambdaVariableA4('3',s) *
interpVarAValues1('3')+lambdaVariableA4('4',s) *
interpVarAValues1('4')+lambdaVariableA4('5',s)

876. interpVarAValues1('5')+lambdaVariableA4('6',s) *
interpVarAValues1('6')+lambdaVariableA4('7',s) *
interpVarAValues1('7')+lambdaVariableA4('8',s) *
interpVarAValues1('8')+lambdaVariableA4('9',s)

877. interpVarAValues1('9')+lambdaVariableA4('10',s) *
interpVarAValues1('10')+lambdaVariableA4('11',s) * interpVarAValues1('11') ;

878. CONSTRAINT:
879. identifier : interpVarBCon10
880. index domain : s
881. definition : interpVarB1(s) = lambdaVariableB4('1',s) *

interpVarBValues1('1')+lambdaVariableB4('2',s) *
interpVarBValues1('2')+lambdaVariableB4('3',s) *
interpVarBValues1('3')+lambdaVariableB4('4',s) *
interpVarBValues1('4')+lambdaVariableB4('5',s)

882. interpVarBValues1('5')+lambdaVariableB4('6',s) *
interpVarBValues1('6')+lambdaVariableB4('7',s) *
interpVarBValues1('7')+lambdaVariableB4('8',s) *
interpVarBValues1('8')+lambdaVariableB4('9',s)

883. interpVarBValues1('9')+lambdaVariableB4('10',s) *
interpVarBValues1('10')+lambdaVariableB4('11',s) * interpVarBValues1('11') ;

884. CONSTRAINT:
885. identifier : interpVarA2Con10
886. index domain : s
887. definition : interpVarA21(s) >= lambdaVariableA4('1',s) *

interpVarA2Values1('1')+lambdaVariableA4('2',s) *
interpVarA2Values1('2')+lambdaVariableA4('3',s) *
interpVarA2Values1('3')+lambdaVariableA4('4',s) *
interpVarA2Values1('4')+lambdaVariableA4('5',s)

888. interpVarA2Values1('5')+lambdaVariableA4('6',s) *
interpVarA2Values1('6')+lambdaVariableA4('7',s) *
interpVarA2Values1('7')+lambdaVariableA4('8',s)

889. interpVarA2Values1('8')+lambdaVariableA4('9',s) *
interpVarA2Values1('9')+lambdaVariableA4('10',s) *
interpVarA2Values1('10')+lambdaVariableA4('11',s) * interpVarA2Values1('11') ;

890. CONSTRAINT:
891. identifier : interpVarB2Con10

 313

892. index domain : s
893. definition : interpVarB21(s) >= lambdaVariableB4('1',s) *

interpVarB2Values1('1')+lambdaVariableB4('2',s) *
interpVarB2Values1('2')+lambdaVariableB4('3',s) *
interpVarB2Values1('3')+lambdaVariableB4('4',s) *
interpVarB2Values1('4')+lambdaVariableB4('5',s)

894. interpVarB2Values1('5')+lambdaVariableB4('6',s) *
interpVarB2Values1('6')+lambdaVariableB4('7',s) *
interpVarB2Values1('7')+lambdaVariableB4('8',s)

895. interpVarB2Values1('8')+lambdaVariableB4('9',s) *
interpVarB2Values1('9')+lambdaVariableB4('10',s) *
interpVarB2Values1('10')+lambdaVariableB4('11',s) * interpVarB2Values1('11') ;

896. CONSTRAINT:
897. identifier : c10
898. index domain : s
899. definition : fuelRateVariable('40',s) >= (interpVarA21(s) + interpVarB21(s)) * (scalingXMax1

- scalingXMin1) * (scalingYMax1 - scalingYMin1) + scaledVarX1(s) * (scalingXMax1-
scalingXMin1) * scalingYMin1 + scaledVarY1(s)

900. (scalingYMax1 - scalingYMin1) * scalingXMin1 + scalingXMin1 * scalingYmin1 ;
901. SET:
902. identifier : lambdaSet6
903. indices : ls6
904. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
905. PARAMETER:
906. identifier : lambdaWeights6
907. index domain : ls6
908. definition : data {1 : 1,2 : 2,3 : 3,4 : 4,5 : 5,6 : 6,7 : 7,8 : 8,9 : 9,10 : 10,11 : 11 };
909. VARIABLE:
910. identifier : lambdaVariable6
911. index domain : (ls6,s)
912. range : [0, 1];
913. PARAMETER:
914. identifier : normalizedSpeedInterpValues6
915. index domain : ls6
916. definition : data {1 : 0,2 : 0.1,3 : 0.2,4 : 0.3,5 : 0.4,6 : 0.5,7 : 0.6,8 : 0.7,9 : 0.8,10 : 0.9,11 : 1};
917. PARAMETER:
918. identifier : fuelConsumptionInterpValues6
919. index domain : ls6
920. definition : data {1 : 0.219, 2 : 0.21, 3 : 0.2, 4 : 0.2, 5 : 0.2, 6 : 0.194, 7 : 0.2, 8 : 0.2, 9 : 0.2, 10

: 0.21, 11 : 0.219};
921. CONSTRAINT:
922. identifier : interpCom11
923. index domain : s
924. definition : fuelConsumptionVariable('39',s) = fuelConsumptionInterpValues6('1') *

lambdaVariable6('1',s) +fuelConsumptionInterpValues6('2') * lambdaVariable6('2',s)
+fuelConsumptionInterpValues6('3') * lambdaVariable6('3',s)

925. +fuelConsumptionInterpValues6('4') * lambdaVariable6('4',s)
+fuelConsumptionInterpValues6('5') * lambdaVariable6('5',s)
+fuelConsumptionInterpValues6('6') * lambdaVariable6('6',s)

926. +fuelConsumptionInterpValues6('7') * lambdaVariable6('7',s)
+fuelConsumptionInterpValues6('8') * lambdaVariable6('8',s)
+fuelConsumptionInterpValues6('9') * lambdaVariable6('9',s)

927. +fuelConsumptionInterpValues6('10') * lambdaVariable6('10',s)
+fuelConsumptionInterpValues6('11') * lambdaVariable6('11',s) ;

928. CONSTRAINT:
929. identifier : interpCom12

 314

930. index domain : s
931. definition : normalizedSpeedVariable('38',s) = normalizedSpeedInterpValues6('1') *

lambdaVariable6('1',s) +normalizedSpeedInterpValues6('2') * lambdaVariable6('2',s)
+normalizedSpeedInterpValues6('3') * lambdaVariable6('3',s)

932. +normalizedSpeedInterpValues6('4') * lambdaVariable6('4',s)
+normalizedSpeedInterpValues6('5') * lambdaVariable6('5',s)
+normalizedSpeedInterpValues6('6') * lambdaVariable6('6',s)

933. +normalizedSpeedInterpValues6('7') * lambdaVariable6('7',s)
+normalizedSpeedInterpValues6('8') * lambdaVariable6('8',s)
+normalizedSpeedInterpValues6('9') * lambdaVariable6('9',s)

934. +normalizedSpeedInterpValues6('10') * lambdaVariable6('10',s)
+normalizedSpeedInterpValues6('11') * lambdaVariable6('11',s) ;

935. CONSTRAINT:
936. identifier : interpCom13
937. index domain : s
938. definition : lambdaVariable6('1',s) +lambdaVariable6('2',s) +lambdaVariable6('3',s)

+lambdaVariable6('4',s) +lambdaVariable6('5',s) +lambdaVariable6('6',s)
+lambdaVariable6('7',s) +lambdaVariable6('8',s) +lambdaVariable6('9',s)

939. +lambdaVariable6('10',s) +lambdaVariable6('11',s) = cotsVar('12') ;
940. CONSTRAINT:
941. identifier : interpCom14
942. index domain : s
943. property : SOS2
944. sos weight : lambdaVariable6(ls6,s) : lambdaWeights6(ls6)
945. definition : lambdaVariable6('1',s) +lambdaVariable6('2',s) +lambdaVariable6('3',s)

+lambdaVariable6('4',s) +lambdaVariable6('5',s) +lambdaVariable6('6',s)
+lambdaVariable6('7',s) +lambdaVariable6('8',s) +lambdaVariable6('9',s)

946. +lambdaVariable6('10',s) +lambdaVariable6('11',s) = 1 ;
947. CONSTRAINT:
948. identifier : c14
949. index domain : s
950. definition : tauVariable('35',s) >= 0;
951. CONSTRAINT:
952. identifier : c15
953. index domain : s
954. definition : flow('2',s) + flow('3',s) = 0;
955. PARAMETER:
956. identifier : scalingXMin2
957. definition : 0;
958. PARAMETER:
959. identifier : scalingXMax2
960. definition : 1e8;
961. PARAMETER:
962. identifier : scalingYMin2
963. definition : -250;
964. PARAMETER:
965. identifier : scalingYMax2
966. definition : 250;
967. SET:
968. identifier : interpVarASet2
969. indices : interpVarASetIndex2
970. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
971. PARAMETER:
972. identifier : interpVarAValues2
973. index domain : interpVarASetIndex2

 315

974. definition : data {1 : -1.0,2 : -0.8,3 : -0.6000000000000001,4 : -0.4000000000000001,5 : -
0.20000000000000007,6 : -5.551115123125783E-17,7 : 0.19999999999999996,8 :
0.39999999999999997,9 : 0.6,10 : 0.8,11 : 1.0};

975. SET:
976. identifier : interpVarBSet2
977. indices : interpVarBSetIndex2
978. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
979. PARAMETER:
980. identifier : interpVarBValues2
981. index domain : interpVarBSetIndex2
982. definition : data {1 : -1.0,2 : -0.8,3 : -0.6000000000000001,4 : -0.4000000000000001,5 : -

0.20000000000000007,6 : -5.551115123125783E-17,7 : 0.19999999999999996,8 :
0.39999999999999997,9 : 0.6,10 : 0.8,11 : 1.0};

983. SET:
984. identifier : interpVarA2Set2
985. indices : interpVarA2SetIndex2
986. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
987. PARAMETER:
988. identifier : interpVarA2Values2
989. index domain : interpVarA2SetIndex2
990. definition : data {1 : 1.0,2 : 0.6400000000000001,3 : 0.3600000000000001,4 :

0.16000000000000006,5 : 0.04000000000000003,6 : 3.0814879110195774E-33,7 :
0.03999999999999998,8 : 0.15999999999999998,9 : 0.36,10 : 0.6400000000000001,11

991. : 1.0} ;
992. SET:
993. identifier : interpVarB2Set2
994. indices : interpVarB2SetIndex2
995. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
996. PARAMETER:
997. identifier : interpVarB2Values2
998. index domain : interpVarB2SetIndex2
999. definition : data {1 : 1.0,2 : 0.6400000000000001,3 : 0.3600000000000001,4 :

0.16000000000000006,5 : 0.04000000000000003,6 : 3.0814879110195774E-33,7 :
0.03999999999999998,8 : 0.15999999999999998,9 : 0.36,10 : 0.6400000000000001,11

1000. : 1.0} ;
1001. VARIABLE:
1002. identifier : interpVarA2
1003. index domain : s
1004. range : free;
1005. VARIABLE:
1006. identifier : interpVarB2
1007. index domain : s
1008. range : free;
1009. VARIABLE:
1010. identifier : scaledVarX2
1011. index domain : s
1012. range : free;
1013. VARIABLE:
1014. identifier : scaledVarY2
1015. index domain : s
1016. range : free;
1017. CONSTRAINT:
1018. identifier : scaledConA16
1019. index domain : s
1020. definition : prdiffVariable('13',s) = scaledVarX2(s) * (scalingXMax2- scalingXMin2) +

scalingXMin2;

 316

1021. CONSTRAINT:
1022. identifier : scaledConB16
1023. index domain : s
1024. definition : omegaVariable('12',s) = scaledVarY2(s) * (scalingYMax2- scalingYMin2) +

scalingYMin2;
1025. CONSTRAINT:
1026. identifier : interpA16
1027. index domain : s
1028. definition : interpVarA2(s) = 1/2*(scaledVarX2(s) + scaledVarY2(s));
1029. CONSTRAINT:
1030. identifier : interpB16
1031. index domain : s
1032. definition : interpVarB2(s) = 1/2*(scaledVarX2(s) - scaledVarY2(s));
1033. VARIABLE:
1034. identifier : interpVarA22
1035. index domain : s
1036. range : free;
1037. VARIABLE:
1038. identifier : interpVarB22
1039. index domain : s
1040. range : free;
1041. SET:
1042. identifier : lambdaSet7
1043. indices : ls7
1044. definition : data {'1','2','3','4','5','6','7','8','9','10','11' };
1045. VARIABLE:
1046. identifier : lambdaVariableA7
1047. index domain : (ls7,s)
1048. range : [0, 1];
1049. VARIABLE:
1050. identifier : lambdaVariableB7
1051. index domain : (ls7,s)
1052. range : [0, 1];
1053. CONSTRAINT:
1054. identifier : lambdaSumA17
1055. index domain : s
1056. property : SOS2
1057. sos weight : lambdaVariableA7(ls7,s) : interpVarAValues2(ls7)
1058. definition : sum(ls7, lambdaVariableA7(ls7,s)) = 1;
1059. CONSTRAINT:
1060. identifier : lambdaSumB17
1061. index domain : s
1062. property : SOS2
1063. sos weight : lambdaVariableB7(ls7,s) : interpVarBValues2(ls7)
1064. definition : sum(ls7, lambdaVariableB7(ls7,s)) = 1;
1065. CONSTRAINT:
1066. identifier : interpVarACon17
1067. index domain : s
1068. definition : interpVarA2(s) = lambdaVariableA7('1',s) *

interpVarAValues2('1')+lambdaVariableA7('2',s) *
interpVarAValues2('2')+lambdaVariableA7('3',s) *
interpVarAValues2('3')+lambdaVariableA7('4',s) *
interpVarAValues2('4')+lambdaVariableA7('5',s)

1069. interpVarAValues2('5')+lambdaVariableA7('6',s) *
interpVarAValues2('6')+lambdaVariableA7('7',s) *

 317

interpVarAValues2('7')+lambdaVariableA7('8',s) *
interpVarAValues2('8')+lambdaVariableA7('9',s)

1070. interpVarAValues2('9')+lambdaVariableA7('10',s) *
interpVarAValues2('10')+lambdaVariableA7('11',s) * interpVarAValues2('11') ;

1071. CONSTRAINT:
1072. identifier : interpVarBCon17
1073. index domain : s
1074. definition : interpVarB2(s) = lambdaVariableB7('1',s) *

interpVarBValues2('1')+lambdaVariableB7('2',s) *
interpVarBValues2('2')+lambdaVariableB7('3',s) *
interpVarBValues2('3')+lambdaVariableB7('4',s) *
interpVarBValues2('4')+lambdaVariableB7('5',s)

1075. interpVarBValues2('5')+lambdaVariableB7('6',s) *
interpVarBValues2('6')+lambdaVariableB7('7',s) *
interpVarBValues2('7')+lambdaVariableB7('8',s) *
interpVarBValues2('8')+lambdaVariableB7('9',s)

1076. interpVarBValues2('9')+lambdaVariableB7('10',s) *
interpVarBValues2('10')+lambdaVariableB7('11',s) * interpVarBValues2('11') ;

1077. CONSTRAINT:
1078. identifier : interpVarA2Con17
1079. index domain : s
1080. definition : interpVarA22(s) = lambdaVariableA7('1',s) *

interpVarA2Values2('1')+lambdaVariableA7('2',s) *
interpVarA2Values2('2')+lambdaVariableA7('3',s) *
interpVarA2Values2('3')+lambdaVariableA7('4',s) *
interpVarA2Values2('4')+lambdaVariableA7('5',s)

1081. interpVarA2Values2('5')+lambdaVariableA7('6',s) *
interpVarA2Values2('6')+lambdaVariableA7('7',s) *
interpVarA2Values2('7')+lambdaVariableA7('8',s)

1082. interpVarA2Values2('8')+lambdaVariableA7('9',s) *
interpVarA2Values2('9')+lambdaVariableA7('10',s) *
interpVarA2Values2('10')+lambdaVariableA7('11',s) * interpVarA2Values2('11') ;

1083. CONSTRAINT:
1084. identifier : interpVarB2Con17
1085. index domain : s
1086. definition : interpVarB22(s) = lambdaVariableB7('1',s) *

interpVarB2Values2('1')+lambdaVariableB7('2',s) *
interpVarB2Values2('2')+lambdaVariableB7('3',s) *
interpVarB2Values2('3')+lambdaVariableB7('4',s) *
interpVarB2Values2('4')+lambdaVariableB7('5',s)

1087. interpVarB2Values2('5')+lambdaVariableB7('6',s) *
interpVarB2Values2('6')+lambdaVariableB7('7',s) *
interpVarB2Values2('7')+lambdaVariableB7('8',s)

1088. interpVarB2Values2('8')+lambdaVariableB7('9',s) *
interpVarB2Values2('9')+lambdaVariableB7('10',s) *
interpVarB2Values2('10')+lambdaVariableB7('11',s) * interpVarB2Values2('11') ;

1089. CONSTRAINT:
1090. identifier : c17
1091. index domain : s
1092. definition : pOmegaVariable('8',s) = (interpVarA22(s) - interpVarB22(s)) * (scalingXMax2 -

scalingXMin2) * (scalingYMax2 - scalingYMin2) + scaledVarX2(s) * (scalingXMax2-
scalingXMin2) * scalingYMin2 + scaledVarY2(s)

1093. (scalingYMax2 - scalingYMin2) * scalingXMin2 + scalingXMin2 * scalingYmin2 ;
1094. CONSTRAINT:
1095. identifier : co18
1096. index domain : s

 318

1097. property : IndicatorConstraint
1098. activating condition : cotsVar('1') = 1
1099. definition : qLossPVariable('6',s) = csParameter('1') * prdiffVariable('13',s) *

(1/muParameter('1'));
1100. CONSTRAINT:
1101. identifier : co19
1102. index domain : s
1103. property : IndicatorConstraint
1104. activating condition : cotsVar('2') = 1
1105. definition : qLossPVariable('6',s) = csParameter('2') * prdiffVariable('13',s) *

(1/muParameter('2'));
1106. CONSTRAINT:
1107. identifier : co20
1108. index domain : s
1109. property : IndicatorConstraint
1110. activating condition : cotsVar('3') = 1
1111. definition : qLossPVariable('6',s) = csParameter('3') * prdiffVariable('13',s) *

(1/muParameter('3'));
1112. CONSTRAINT:
1113. identifier : co21
1114. index domain : s
1115. property : IndicatorConstraint
1116. activating condition : cotsVar('4') = 1
1117. definition : qLossPVariable('6',s) = csParameter('4') * prdiffVariable('13',s) *

(1/muParameter('4'));
1118. CONSTRAINT:
1119. identifier : co22
1120. index domain : s
1121. property : IndicatorConstraint
1122. activating condition : cotsVar('5') = 1
1123. definition : qLossPVariable('6',s) = csParameter('5') * prdiffVariable('13',s) *

(1/muParameter('5'));
1124. CONSTRAINT:
1125. identifier : co23
1126. index domain : s
1127. property : IndicatorConstraint
1128. activating condition : cotsVar('6') = 1
1129. definition : qLossPVariable('6',s) = csParameter('6') * prdiffVariable('13',s) *

(1/muParameter('6'));
1130. CONSTRAINT:
1131. identifier : co24
1132. index domain : s
1133. property : IndicatorConstraint
1134. activating condition : cotsVar('7') = 1
1135. definition : qLossPVariable('6',s) = csParameter('7') * prdiffVariable('13',s) *

(1/muParameter('7'));
1136. CONSTRAINT:
1137. identifier : co25
1138. index domain : s
1139. property : IndicatorConstraint
1140. activating condition : cotsVar('8') = 1
1141. definition : qLossPVariable('6',s) = csParameter('8') * prdiffVariable('13',s) *

(1/muParameter('8'));
1142. CONSTRAINT:
1143. identifier : co26
1144. index domain : s

 319

1145. property : IndicatorConstraint
1146. activating condition : cotsVar('9') = 1
1147. definition : qLossPVariable('6',s) = csParameter('9') * prdiffVariable('13',s) *

(1/muParameter('9'));
1148. CONSTRAINT:
1149. identifier : co27
1150. index domain : s
1151. property : IndicatorConstraint
1152. activating condition : cotsVar('10') = 1
1153. definition : qLossPVariable('6',s) = csParameter('10') * prdiffVariable('13',s) *

(1/muParameter('10'));
1154. CONSTRAINT:
1155. identifier : co28
1156. index domain : s
1157. property : IndicatorConstraint
1158. activating condition : cotsVar('11') = 1
1159. definition : qLossPVariable('6',s) = csParameter('11') * prdiffVariable('13',s) *

(1/muParameter('11'));
1160. CONSTRAINT:
1161. identifier : co29
1162. index domain : s
1163. property : IndicatorConstraint
1164. activating condition : cotsVar('1') = 1
1165. definition : tLossOmegaVariable('14',s) >= cvParameter('1') * muParameter('1') *

omegaVariable('12',s);
1166. CONSTRAINT:
1167. identifier : co30
1168. index domain : s
1169. property : IndicatorConstraint
1170. activating condition : cotsVar('2') = 1
1171. definition : tLossOmegaVariable('14',s) >= cvParameter('2') * muParameter('2') *

omegaVariable('12',s);
1172. CONSTRAINT:
1173. identifier : co31
1174. index domain : s
1175. property : IndicatorConstraint
1176. activating condition : cotsVar('3') = 1
1177. definition : tLossOmegaVariable('14',s) >= cvParameter('3') * muParameter('3') *

omegaVariable('12',s);
1178. CONSTRAINT:
1179. identifier : co32
1180. index domain : s
1181. property : IndicatorConstraint
1182. activating condition : cotsVar('4') = 1
1183. definition : tLossOmegaVariable('14',s) >= cvParameter('4') * muParameter('4') *

omegaVariable('12',s);
1184. CONSTRAINT:
1185. identifier : co33
1186. index domain : s
1187. property : IndicatorConstraint
1188. activating condition : cotsVar('5') = 1
1189. definition : tLossOmegaVariable('14',s) >= cvParameter('5') * muParameter('5') *

omegaVariable('12',s);
1190. CONSTRAINT:
1191. identifier : co34
1192. index domain : s

 320

1193. property : IndicatorConstraint
1194. activating condition : cotsVar('6') = 1
1195. definition : tLossOmegaVariable('14',s) >= cvParameter('6') * muParameter('6') *

omegaVariable('12',s);
1196. CONSTRAINT:
1197. identifier : co35
1198. index domain : s
1199. property : IndicatorConstraint
1200. activating condition : cotsVar('7') = 1
1201. definition : tLossOmegaVariable('14',s) >= cvParameter('7') * muParameter('7') *

omegaVariable('12',s);
1202. CONSTRAINT:
1203. identifier : co36
1204. index domain : s
1205. property : IndicatorConstraint
1206. activating condition : cotsVar('8') = 1
1207. definition : tLossOmegaVariable('14',s) >= cvParameter('8') * muParameter('8') *

omegaVariable('12',s);
1208. CONSTRAINT:
1209. identifier : co37
1210. index domain : s
1211. property : IndicatorConstraint
1212. activating condition : cotsVar('9') = 1
1213. definition : tLossOmegaVariable('14',s) >= cvParameter('9') * muParameter('9') *

omegaVariable('12',s);
1214. CONSTRAINT:
1215. identifier : co38
1216. index domain : s
1217. property : IndicatorConstraint
1218. activating condition : cotsVar('10') = 1
1219. definition : tLossOmegaVariable('14',s) >= cvParameter('10') * muParameter('10') *

omegaVariable('12',s);
1220. CONSTRAINT:
1221. identifier : co39
1222. index domain : s
1223. property : IndicatorConstraint
1224. activating condition : cotsVar('11') = 1
1225. definition : tLossOmegaVariable('14',s) >= cvParameter('11') * muParameter('11') *

omegaVariable('12',s);
1226. CONSTRAINT:
1227. identifier : co40
1228. index domain : s
1229. property : IndicatorConstraint
1230. activating condition : cotsVar('1') = 1
1231. definition : tLossPVariable('5',s) >= cfParameter('1') * prdiffVariable('13',s);
1232. CONSTRAINT:
1233. identifier : co41
1234. index domain : s
1235. property : IndicatorConstraint
1236. activating condition : cotsVar('2') = 1
1237. definition : tLossPVariable('5',s) >= cfParameter('2') * prdiffVariable('13',s);
1238. CONSTRAINT:
1239. identifier : co42
1240. index domain : s
1241. property : IndicatorConstraint
1242. activating condition : cotsVar('3') = 1

 321

1243. definition : tLossPVariable('5',s) >= cfParameter('3') * prdiffVariable('13',s);
1244. CONSTRAINT:
1245. identifier : co43
1246. index domain : s
1247. property : IndicatorConstraint
1248. activating condition : cotsVar('4') = 1
1249. definition : tLossPVariable('5',s) >= cfParameter('4') * prdiffVariable('13',s);
1250. CONSTRAINT:
1251. identifier : co44
1252. index domain : s
1253. property : IndicatorConstraint
1254. activating condition : cotsVar('5') = 1
1255. definition : tLossPVariable('5',s) >= cfParameter('5') * prdiffVariable('13',s);
1256. CONSTRAINT:
1257. identifier : co45
1258. index domain : s
1259. property : IndicatorConstraint
1260. activating condition : cotsVar('6') = 1
1261. definition : tLossPVariable('5',s) >= cfParameter('6') * prdiffVariable('13',s);
1262. CONSTRAINT:
1263. identifier : co46
1264. index domain : s
1265. property : IndicatorConstraint
1266. activating condition : cotsVar('7') = 1
1267. definition : tLossPVariable('5',s) >= cfParameter('7') * prdiffVariable('13',s);
1268. CONSTRAINT:
1269. identifier : co47
1270. index domain : s
1271. property : IndicatorConstraint
1272. activating condition : cotsVar('8') = 1
1273. definition : tLossPVariable('5',s) >= cfParameter('8') * prdiffVariable('13',s);
1274. CONSTRAINT:
1275. identifier : co48
1276. index domain : s
1277. property : IndicatorConstraint
1278. activating condition : cotsVar('9') = 1
1279. definition : tLossPVariable('5',s) >= cfParameter('9') * prdiffVariable('13',s);
1280. CONSTRAINT:
1281. identifier : co49
1282. index domain : s
1283. property : IndicatorConstraint
1284. activating condition : cotsVar('10') = 1
1285. definition : tLossPVariable('5',s) >= cfParameter('10') * prdiffVariable('13',s);
1286. CONSTRAINT:
1287. identifier : co50
1288. index domain : s
1289. property : IndicatorConstraint
1290. activating condition : cotsVar('11') = 1
1291. definition : tLossPVariable('5',s) >= cfParameter('11') * prdiffVariable('13',s);
1292. CONSTRAINT:
1293. identifier : c51
1294. index domain : s
1295. definition : pressure('2',s)=prdiffVariable('13',s);
1296. CONSTRAINT:
1297. identifier : co52
1298. index domain : s

 322

1299. property : IndicatorConstraint
1300. activating condition : cotsVar('1') = 1
1301. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('1'))*(VrParameter+1);
1302. CONSTRAINT:
1303. identifier : co53
1304. index domain : s
1305. property : IndicatorConstraint
1306. activating condition : cotsVar('2') = 1
1307. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('2'))*(VrParameter+1);
1308. CONSTRAINT:
1309. identifier : co54
1310. index domain : s
1311. property : IndicatorConstraint
1312. activating condition : cotsVar('3') = 1
1313. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('3'))*(VrParameter+1);
1314. CONSTRAINT:
1315. identifier : co55
1316. index domain : s
1317. property : IndicatorConstraint
1318. activating condition : cotsVar('4') = 1
1319. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('4'))*(VrParameter+1);
1320. CONSTRAINT:
1321. identifier : co56
1322. index domain : s
1323. property : IndicatorConstraint
1324. activating condition : cotsVar('5') = 1
1325. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('5'))*(VrParameter+1);
1326. CONSTRAINT:
1327. identifier : co57
1328. index domain : s
1329. property : IndicatorConstraint
1330. activating condition : cotsVar('6') = 1
1331. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('6'))*(VrParameter+1);
1332. CONSTRAINT:
1333. identifier : co58
1334. index domain : s
1335. property : IndicatorConstraint
1336. activating condition : cotsVar('7') = 1
1337. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('7'))*(VrParameter+1);
1338. CONSTRAINT:
1339. identifier : co59
1340. index domain : s
1341. property : IndicatorConstraint
1342. activating condition : cotsVar('8') = 1
1343. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('8'))*(VrParameter+1);
1344. CONSTRAINT:
1345. identifier : co60
1346. index domain : s

 323

1347. property : IndicatorConstraint
1348. activating condition : cotsVar('9') = 1
1349. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('9'))*(VrParameter+1);
1350. CONSTRAINT:
1351. identifier : co61
1352. index domain : s
1353. property : IndicatorConstraint
1354. activating condition : cotsVar('10') = 1
1355. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('10'))*(VrParameter+1);
1356. CONSTRAINT:
1357. identifier : co62
1358. index domain : s
1359. property : IndicatorConstraint
1360. activating condition : cotsVar('11') = 1
1361. definition : qLossOmegaPVariable('2',s)=-

(pOmegaVariable('8',s)/BParameter('11'))*(VrParameter+1);
1362. CONSTRAINT:
1363. identifier : c63
1364. index domain : s
1365. definition : angularVelocity('1',s)=-omegaVariable('12',s);
1366. CONSTRAINT:
1367. identifier : co64
1368. index domain : s
1369. property : IndicatorConstraint
1370. activating condition : cotsVar('1') = 1
1371. definition : torque('1',s) = dispParameter('1') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1372. CONSTRAINT:
1373. identifier : co65
1374. index domain : s
1375. property : IndicatorConstraint
1376. activating condition : cotsVar('2') = 1
1377. definition : torque('1',s) = dispParameter('2') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1378. CONSTRAINT:
1379. identifier : co66
1380. index domain : s
1381. property : IndicatorConstraint
1382. activating condition : cotsVar('3') = 1
1383. definition : torque('1',s) = dispParameter('3') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1384. CONSTRAINT:
1385. identifier : co67
1386. index domain : s
1387. property : IndicatorConstraint
1388. activating condition : cotsVar('4') = 1
1389. definition : torque('1',s) = dispParameter('4') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1390. CONSTRAINT:
1391. identifier : co68
1392. index domain : s
1393. property : IndicatorConstraint
1394. activating condition : cotsVar('5') = 1

 324

1395. definition : torque('1',s) = dispParameter('5') * (prdiffVariable('13',s) +
tLossPVariable('5',s)+tLossOmegaVariable('14',s));

1396. CONSTRAINT:
1397. identifier : co69
1398. index domain : s
1399. property : IndicatorConstraint
1400. activating condition : cotsVar('6') = 1
1401. definition : torque('1',s) = dispParameter('6') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1402. CONSTRAINT:
1403. identifier : co70
1404. index domain : s
1405. property : IndicatorConstraint
1406. activating condition : cotsVar('7') = 1
1407. definition : torque('1',s) = dispParameter('7') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1408. CONSTRAINT:
1409. identifier : co71
1410. index domain : s
1411. property : IndicatorConstraint
1412. activating condition : cotsVar('8') = 1
1413. definition : torque('1',s) = dispParameter('8') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1414. CONSTRAINT:
1415. identifier : co72
1416. index domain : s
1417. property : IndicatorConstraint
1418. activating condition : cotsVar('9') = 1
1419. definition : torque('1',s) = dispParameter('9') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1420. CONSTRAINT:
1421. identifier : co73
1422. index domain : s
1423. property : IndicatorConstraint
1424. activating condition : cotsVar('10') = 1
1425. definition : torque('1',s) = dispParameter('10') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1426. CONSTRAINT:
1427. identifier : co74
1428. index domain : s
1429. property : IndicatorConstraint
1430. activating condition : cotsVar('11') = 1
1431. definition : torque('1',s) = dispParameter('11') * (prdiffVariable('13',s) +

tLossPVariable('5',s)+tLossOmegaVariable('14',s));
1432. CONSTRAINT:
1433. identifier : co75
1434. index domain : s
1435. property : IndicatorConstraint
1436. activating condition : cotsVar('1') = 1
1437. definition : dispParameter('1')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1438. CONSTRAINT:
1439. identifier : co76
1440. index domain : s
1441. property : IndicatorConstraint
1442. activating condition : cotsVar('2') = 1

 325

1443. definition : dispParameter('2')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -
qLossOmegaPVariable('2',s)) = flow('2',s);

1444. CONSTRAINT:
1445. identifier : co77
1446. index domain : s
1447. property : IndicatorConstraint
1448. activating condition : cotsVar('3') = 1
1449. definition : dispParameter('3')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1450. CONSTRAINT:
1451. identifier : co78
1452. index domain : s
1453. property : IndicatorConstraint
1454. activating condition : cotsVar('4') = 1
1455. definition : dispParameter('4')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1456. CONSTRAINT:
1457. identifier : co79
1458. index domain : s
1459. property : IndicatorConstraint
1460. activating condition : cotsVar('5') = 1
1461. definition : dispParameter('5')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1462. CONSTRAINT:
1463. identifier : co80
1464. index domain : s
1465. property : IndicatorConstraint
1466. activating condition : cotsVar('6') = 1
1467. definition : dispParameter('6')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1468. CONSTRAINT:
1469. identifier : co81
1470. index domain : s
1471. property : IndicatorConstraint
1472. activating condition : cotsVar('7') = 1
1473. definition : dispParameter('7')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1474. CONSTRAINT:
1475. identifier : co82
1476. index domain : s
1477. property : IndicatorConstraint
1478. activating condition : cotsVar('8') = 1
1479. definition : dispParameter('8')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1480. CONSTRAINT:
1481. identifier : co83
1482. index domain : s
1483. property : IndicatorConstraint
1484. activating condition : cotsVar('9') = 1
1485. definition : dispParameter('9')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1486. CONSTRAINT:
1487. identifier : co84
1488. index domain : s
1489. property : IndicatorConstraint
1490. activating condition : cotsVar('10') = 1

 326

1491. definition : dispParameter('10')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -
qLossOmegaPVariable('2',s)) = flow('2',s);

1492. CONSTRAINT:
1493. identifier : co85
1494. index domain : s
1495. property : IndicatorConstraint
1496. activating condition : cotsVar('11') = 1
1497. definition : dispParameter('11')*(angularVelocity('1',s)*2*pi- qLossPVariable('6',s) -

qLossOmegaPVariable('2',s)) = flow('2',s);
1498. CONSTRAINT:
1499. identifier : c86
1500. index domain : s
1501. definition : pressure('21',s)=0;
1502. CONSTRAINT:
1503. identifier : c87
1504. index domain : s
1505. definition : pressure('22',s)=0;
1506. CONSTRAINT:
1507. identifier : c88
1508. index domain : s
1509. definition : flow('6',s)=0;
1510. CONSTRAINT:
1511. identifier : c89
1512. index domain : s
1513. definition : flow('7',s)=0;
1514. CONSTRAINT:
1515. identifier : c90
1516. index domain : s
1517. definition : pressure('4',s)=0;
1518. CONSTRAINT:
1519. identifier : c91
1520. index domain : s
1521. definition : pressure('5',s)=0;
1522. CONSTRAINT:
1523. identifier : co92
1524. index domain : s
1525. property : IndicatorConstraint
1526. activating condition : cotsVar('13') = 1
1527. definition : pressure('17',s)*boreAreaParameter('1')-pressure('18',s)*rodAreaParameter('1') +

force('19',s) = 0;
1528. CONSTRAINT:
1529. identifier : co93
1530. index domain : s
1531. property : IndicatorConstraint
1532. activating condition : cotsVar('14') = 1
1533. definition : pressure('17',s)*boreAreaParameter('2')-pressure('18',s)*rodAreaParameter('2') +

force('19',s) = 0;
1534. CONSTRAINT:
1535. identifier : co94
1536. index domain : s
1537. property : IndicatorConstraint
1538. activating condition : cotsVar('15') = 1
1539. definition : pressure('17',s)*boreAreaParameter('3')-pressure('18',s)*rodAreaParameter('3') +

force('19',s) = 0;
1540. CONSTRAINT:
1541. identifier : co95

 327

1542. index domain : s
1543. property : IndicatorConstraint
1544. activating condition : cotsVar('16') = 1
1545. definition : pressure('17',s)*boreAreaParameter('4')-pressure('18',s)*rodAreaParameter('4') +

force('19',s) = 0;
1546. CONSTRAINT:
1547. identifier : co96
1548. index domain : s
1549. property : IndicatorConstraint
1550. activating condition : cotsVar('17') = 1
1551. definition : pressure('17',s)*boreAreaParameter('5')-pressure('18',s)*rodAreaParameter('5') +

force('19',s) = 0;
1552. CONSTRAINT:
1553. identifier : co97
1554. index domain : s
1555. property : IndicatorConstraint
1556. activating condition : cotsVar('18') = 1
1557. definition : pressure('17',s)*boreAreaParameter('6')-pressure('18',s)*rodAreaParameter('6') +

force('19',s) = 0;
1558. CONSTRAINT:
1559. identifier : co98
1560. index domain : s
1561. property : IndicatorConstraint
1562. activating condition : cotsVar('19') = 1
1563. definition : pressure('17',s)*boreAreaParameter('7')-pressure('18',s)*rodAreaParameter('7') +

force('19',s) = 0;
1564. CONSTRAINT:
1565. identifier : co99
1566. index domain : s
1567. property : IndicatorConstraint
1568. activating condition : cotsVar('13') = 1
1569. definition : flow('17',s)*boreAreaParameter('1')+flow('18',s)*rodAreaParameter('1') = 0;
1570. CONSTRAINT:
1571. identifier : co100
1572. index domain : s
1573. property : IndicatorConstraint
1574. activating condition : cotsVar('14') = 1
1575. definition : flow('17',s)*boreAreaParameter('2')+flow('18',s)*rodAreaParameter('2') = 0;
1576. CONSTRAINT:
1577. identifier : co101
1578. index domain : s
1579. property : IndicatorConstraint
1580. activating condition : cotsVar('15') = 1
1581. definition : flow('17',s)*boreAreaParameter('3')+flow('18',s)*rodAreaParameter('3') = 0;
1582. CONSTRAINT:
1583. identifier : co102
1584. index domain : s
1585. property : IndicatorConstraint
1586. activating condition : cotsVar('16') = 1
1587. definition : flow('17',s)*boreAreaParameter('4')+flow('18',s)*rodAreaParameter('4') = 0;
1588. CONSTRAINT:
1589. identifier : co103
1590. index domain : s
1591. property : IndicatorConstraint
1592. activating condition : cotsVar('17') = 1
1593. definition : flow('17',s)*boreAreaParameter('5')+flow('18',s)*rodAreaParameter('5') = 0;

 328

1594. CONSTRAINT:
1595. identifier : co104
1596. index domain : s
1597. property : IndicatorConstraint
1598. activating condition : cotsVar('18') = 1
1599. definition : flow('17',s)*boreAreaParameter('6')+flow('18',s)*rodAreaParameter('6') = 0;
1600. CONSTRAINT:
1601. identifier : co105
1602. index domain : s
1603. property : IndicatorConstraint
1604. activating condition : cotsVar('19') = 1
1605. definition : flow('17',s)*boreAreaParameter('7')+flow('18',s)*rodAreaParameter('7') = 0;
1606. CONSTRAINT:
1607. identifier : co106
1608. index domain : s
1609. property : IndicatorConstraint
1610. activating condition : cotsVar('13') = 1
1611. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('1');
1612. CONSTRAINT:
1613. identifier : co107
1614. index domain : s
1615. property : IndicatorConstraint
1616. activating condition : cotsVar('14') = 1
1617. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('2');
1618. CONSTRAINT:
1619. identifier : co108
1620. index domain : s
1621. property : IndicatorConstraint
1622. activating condition : cotsVar('15') = 1
1623. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('3');
1624. CONSTRAINT:
1625. identifier : co109
1626. index domain : s
1627. property : IndicatorConstraint
1628. activating condition : cotsVar('16') = 1
1629. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('4');
1630. CONSTRAINT:
1631. identifier : co110
1632. index domain : s
1633. property : IndicatorConstraint
1634. activating condition : cotsVar('17') = 1
1635. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('5');
1636. CONSTRAINT:
1637. identifier : co111
1638. index domain : s
1639. property : IndicatorConstraint
1640. activating condition : cotsVar('18') = 1
1641. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('6');
1642. CONSTRAINT:
1643. identifier : co112
1644. index domain : s
1645. property : IndicatorConstraint
1646. activating condition : cotsVar('19') = 1
1647. definition : flow('17',s)= velocity('19',s)*boreAreaParameter('7');
1648. CONSTRAINT:
1649. identifier : c113

 329

1650. index domain : s
1651. definition : pressure('14',s)=pressure('15',s);
1652. CONSTRAINT:
1653. identifier : c114
1654. index domain : s
1655. definition : flow('14',s)=-flow('15',s);
1656. CONSTRAINT:
1657. identifier : c115
1658. index domain : s
1659. definition : forceVariable('67',s)=force('24',s);
1660. CONSTRAINT:
1661. identifier : c116
1662. index domain : s
1663. definition : velocityVariable('68',s)=velocity('24',s);
1664. CONSTRAINT:
1665. identifier : c117
1666. index domain : s
1667. definition : flow('8',s) + flowPAVariable('25',s)+ flowPBVariable('26',s) = 0;
1668. CONSTRAINT:
1669. identifier : c118
1670. index domain : s
1671. definition : flow('9',s) + flowTAVariable('27',s) + flowTBVariable('28',s) = 0;
1672. CONSTRAINT:
1673. identifier : c119
1674. index domain : s
1675. definition : flow('10',s) - flowPAVariable('25',s) - flowTAVariable('27',s)= 0;
1676. CONSTRAINT:
1677. identifier : c120
1678. index domain : s
1679. definition : flow('11',s) - flowPBVariable('26',s) - flowTBVariable('28',s) = 0;
1680. CONSTRAINT:
1681. identifier : c121
1682. index domain : s
1683. property : IndicatorConstraint
1684. activating condition : offVariable('24',s) = 1
1685. definition : flowPAVariable('25',s) = 0;
1686. CONSTRAINT:
1687. identifier : c122
1688. index domain : s
1689. property : IndicatorConstraint
1690. activating condition : offVariable('24',s) = 1
1691. definition : flowTBVariable('28',s) = 0;
1692. CONSTRAINT:
1693. identifier : c123
1694. index domain : s
1695. property : IndicatorConstraint
1696. activating condition : offVariable('24',s) = 1
1697. definition : flowPBVariable('26',s) = 0;
1698. CONSTRAINT:
1699. identifier : c124
1700. index domain : s
1701. property : IndicatorConstraint
1702. activating condition : offVariable('24',s) = 1
1703. definition : flowTAVariable('27',s) = 0;
1704. CONSTRAINT:
1705. identifier : c125

 330

1706. index domain : s
1707. definition : flow('12',s)=-flow('13',s);
1708. CONSTRAINT:
1709. identifier : c126
1710. index domain : s
1711. property : IndicatorConstraint
1712. activating condition : onVariable('22',s) = 1
1713. definition : flow('12',s) = 0;
1714. CONSTRAINT:
1715. identifier : c127
1716. index domain : s
1717. property : IndicatorConstraint
1718. activating condition : offVariable('24',s) = 1
1719. definition : (pressure('12',s)-pressure('13',s)) = 0;
1720. CONSTRAINT:
1721. identifier : c128
1722. index domain : s
1723. property : IndicatorConstraint
1724. activating condition : onVariable('22',s) = 1
1725. definition : (pressure('8',s)-pressure('10',s))= 0;
1726. CONSTRAINT:
1727. identifier : c129
1728. index domain : s
1729. property : IndicatorConstraint
1730. activating condition : onVariable('22',s) = 1
1731. definition : (pressure('11',s)-pressure('9',s)) = 0;
1732. CONSTRAINT:
1733. identifier : c130
1734. index domain : s
1735. property : IndicatorConstraint
1736. activating condition : backVariable('21',s) = 1
1737. definition : (pressure('10',s)-pressure('9',s)) = 0;
1738. CONSTRAINT:
1739. identifier : c131
1740. index domain : s
1741. property : IndicatorConstraint
1742. activating condition : backVariable('21',s) = 1
1743. definition : (pressure('8',s)-pressure('11',s)) = 0;
1744. CONSTRAINT:
1745. identifier : c132
1746. index domain : s
1747. definition : pressureLossVariable('29',s) <= 0;
1748. CONSTRAINT:
1749. identifier : c133
1750. index domain : s
1751. definition : onVariable('22',s) + backVariable('21',s) + offVariable('24',s) = 1;
1752. CONSTRAINT:
1753. identifier : c134
1754. index domain : s
1755. property : IndicatorConstraint
1756. activating condition : backVariable('21',s) = 1
1757. definition : flowPAVariable('25',s) = 0;
1758. CONSTRAINT:
1759. identifier : c135
1760. index domain : s
1761. property : IndicatorConstraint

 331

1762. activating condition : backVariable('21',s) = 1
1763. definition : flowTBVariable('28',s) = 0;
1764. CONSTRAINT:
1765. identifier : c136
1766. index domain : s
1767. property : IndicatorConstraint
1768. activating condition : onVariable('22',s) = 1
1769. definition : flowPBVariable('26',s) = 0;
1770. CONSTRAINT:
1771. identifier : c137
1772. index domain : s
1773. property : IndicatorConstraint
1774. activating condition : onVariable('22',s) = 1
1775. definition : flowTAVariable('27',s) = 0;
1776. CONSTRAINT:
1777. identifier : c138
1778. index domain : s
1779. property : IndicatorConstraint
1780. activating condition : backVariable('21',s) = 1
1781. definition : flow('12',s) = 0;
1782. SET:
1783. identifier : connectorSet
1784. indices : cs
1785. definition : data {'1','2','3','4','5','6','7','8','9','10','11','12','13','14' };
1786. VARIABLE:
1787. identifier : flowVariable
1788. index domain : (cs,s)
1789. range : free;
1790. CONSTRAINT:
1791. identifier : flowC0
1792. index domain : s
1793. property : IndicatorConstraint
1794. activating condition : decisionVars('5') = 1
1795. definition : (angularVelocity('1',s) - angularVelocity('16',s)) = 0;
1796. CONSTRAINT:
1797. identifier : flowC1
1798. index domain : s
1799. property : IndicatorConstraint
1800. activating condition : decisionVars('5') = 0
1801. definition : flowVariable('9', s) = 0;
1802. CONSTRAINT:
1803. identifier : flowC2
1804. index domain : s
1805. definition : torque('1',s) = flowVariable('9',s);
1806. CONSTRAINT:
1807. identifier : flowC3
1808. index domain : s
1809. definition : (pressure('2',s) - pressure('6',s))= 0;
1810. CONSTRAINT:
1811. identifier : flowC4
1812. index domain : s
1813. property : IndicatorConstraint
1814. activating condition : decisionVars('3') = 1
1815. definition : (pressure('2',s) - pressure('13',s)) = 0;
1816. CONSTRAINT:
1817. identifier : flowC5

 332

1818. index domain : s
1819. property : IndicatorConstraint
1820. activating condition : decisionVars('3') = 0
1821. definition : flowVariable('5', s) = 0;
1822. CONSTRAINT:
1823. identifier : flowC6
1824. index domain : s
1825. property : IndicatorConstraint
1826. activating condition : decisionVars('3') = 1
1827. definition : (pressure('2',s) - pressure('14',s)) = 0;
1828. CONSTRAINT:
1829. identifier : flowC7
1830. index domain : s
1831. property : IndicatorConstraint
1832. activating condition : decisionVars('3') = 0
1833. definition : flowVariable('6', s) = 0;
1834. CONSTRAINT:
1835. identifier : flowC8
1836. index domain : s
1837. definition : flow('2',s) = flowVariable('2',s)+ flowVariable('5',s)+ flowVariable('6',s);
1838. CONSTRAINT:
1839. identifier : flowC9
1840. index domain : s
1841. definition : (pressure('3',s) - pressure('5',s))= 0;
1842. CONSTRAINT:
1843. identifier : flowC10
1844. index domain : s
1845. definition : (pressure('3',s) - pressure('7',s))= 0;
1846. CONSTRAINT:
1847. identifier : flowC11
1848. index domain : s
1849. definition : flow('3',s) = flowVariable('1',s)+ flowVariable('3',s);
1850. CONSTRAINT:
1851. identifier : flowC12
1852. index domain : s
1853. property : IndicatorConstraint
1854. activating condition : decisionVars('3') = 1
1855. definition : (pressure('4',s) - pressure('9',s)) = 0;
1856. CONSTRAINT:
1857. identifier : flowC13
1858. index domain : s
1859. property : IndicatorConstraint
1860. activating condition : decisionVars('3') = 0
1861. definition : flowVariable('7', s) = 0;
1862. CONSTRAINT:
1863. identifier : flowC14
1864. index domain : s
1865. property : IndicatorConstraint
1866. activating condition : decisionVars('4') = 1
1867. definition : (pressure('4',s) - pressure('12',s)) = 0;
1868. CONSTRAINT:
1869. identifier : flowC15
1870. index domain : s
1871. property : IndicatorConstraint
1872. activating condition : decisionVars('4') = 0
1873. definition : flowVariable('8', s) = 0;

 333

1874. CONSTRAINT:
1875. identifier : flowC16
1876. index domain : s
1877. definition : flow('4',s) = flowVariable('7',s)+ flowVariable('8',s);
1878. CONSTRAINT:
1879. identifier : flowC17
1880. index domain : s
1881. definition : (pressure('5',s) - pressure('3',s))= 0;
1882. CONSTRAINT:
1883. identifier : flowC18
1884. index domain : s
1885. definition : flow('5',s) = - flowVariable('1',s);
1886. CONSTRAINT:
1887. identifier : flowC19
1888. index domain : s
1889. definition : (pressure('6',s) - pressure('2',s))= 0;
1890. CONSTRAINT:
1891. identifier : flowC20
1892. index domain : s
1893. definition : flow('6',s) = - flowVariable('2',s);
1894. CONSTRAINT:
1895. identifier : flowC21
1896. index domain : s
1897. definition : (pressure('7',s) - pressure('3',s))= 0;
1898. CONSTRAINT:
1899. identifier : flowC22
1900. index domain : s
1901. definition : flow('7',s) = - flowVariable('3',s);
1902. CONSTRAINT:
1903. identifier : flowC23
1904. index domain : s
1905. definition : (pressure('8',s) - pressure('15',s))= 0;
1906. CONSTRAINT:
1907. identifier : flowC24
1908. index domain : s
1909. definition : flow('8',s) = flowVariable('4',s);
1910. CONSTRAINT:
1911. identifier : flowC25
1912. index domain : s
1913. property : IndicatorConstraint
1914. activating condition : decisionVars('3') = 1
1915. definition : (pressure('9',s) - pressure('4',s)) = 0;
1916. CONSTRAINT:
1917. identifier : flowC26
1918. index domain : s
1919. definition : flow('9',s) = - flowVariable('7',s);
1920. CONSTRAINT:
1921. identifier : flowC27
1922. index domain : s
1923. property : IndicatorConstraint
1924. activating condition : decisionVars('7') = 1
1925. definition : (pressure('10',s) - pressure('17',s)) = 0;
1926. CONSTRAINT:
1927. identifier : flowC28
1928. index domain : s
1929. property : IndicatorConstraint

 334

1930. activating condition : decisionVars('7') = 0
1931. definition : flowVariable('12', s) = 0;
1932. CONSTRAINT:
1933. identifier : flowC29
1934. index domain : s
1935. definition : flow('10',s) = flowVariable('12',s);
1936. CONSTRAINT:
1937. identifier : flowC30
1938. index domain : s
1939. property : IndicatorConstraint
1940. activating condition : decisionVars('7') = 1
1941. definition : (pressure('11',s) - pressure('18',s)) = 0;
1942. CONSTRAINT:
1943. identifier : flowC31
1944. index domain : s
1945. property : IndicatorConstraint
1946. activating condition : decisionVars('7') = 0
1947. definition : flowVariable('13', s) = 0;
1948. CONSTRAINT:
1949. identifier : flowC32
1950. index domain : s
1951. definition : flow('11',s) = flowVariable('13',s);
1952. CONSTRAINT:
1953. identifier : flowC33
1954. index domain : s
1955. property : IndicatorConstraint
1956. activating condition : decisionVars('4') = 1
1957. definition : (pressure('12',s) - pressure('4',s)) = 0;
1958. CONSTRAINT:
1959. identifier : flowC34
1960. index domain : s
1961. property : IndicatorConstraint
1962. activating condition : decisionVars('6') = 1
1963. definition : (pressure('12',s) - pressure('13',s)) = 0;
1964. CONSTRAINT:
1965. identifier : flowC35
1966. index domain : s
1967. property : IndicatorConstraint
1968. activating condition : decisionVars('6') = 0
1969. definition : flowVariable('10', s) = 0;
1970. CONSTRAINT:
1971. identifier : flowC36
1972. index domain : s
1973. property : IndicatorConstraint
1974. activating condition : decisionVars('6') = 1
1975. definition : (pressure('12',s) - pressure('14',s)) = 0;
1976. CONSTRAINT:
1977. identifier : flowC37
1978. index domain : s
1979. property : IndicatorConstraint
1980. activating condition : decisionVars('6') = 0
1981. definition : flowVariable('11', s) = 0;
1982. CONSTRAINT:
1983. identifier : flowC38
1984. index domain : s
1985. definition : flow('12',s) = - flowVariable('8',s)+ flowVariable('10',s)+ flowVariable('11',s);

 335

1986. CONSTRAINT:
1987. identifier : flowC39
1988. index domain : s
1989. property : IndicatorConstraint
1990. activating condition : decisionVars('3') = 1
1991. definition : (pressure('13',s) - pressure('2',s)) = 0;
1992. CONSTRAINT:
1993. identifier : flowC40
1994. index domain : s
1995. property : IndicatorConstraint
1996. activating condition : decisionVars('6') = 1
1997. definition : (pressure('13',s) - pressure('12',s)) = 0;
1998. CONSTRAINT:
1999. identifier : flowC41
2000. index domain : s
2001. definition : flow('13',s) = - flowVariable('5',s)- flowVariable('10',s);
2002. CONSTRAINT:
2003. identifier : flowC42
2004. index domain : s
2005. property : IndicatorConstraint
2006. activating condition : decisionVars('3') = 1
2007. definition : (pressure('14',s) - pressure('2',s)) = 0;
2008. CONSTRAINT:
2009. identifier : flowC43
2010. index domain : s
2011. property : IndicatorConstraint
2012. activating condition : decisionVars('6') = 1
2013. definition : (pressure('14',s) - pressure('12',s)) = 0;
2014. CONSTRAINT:
2015. identifier : flowC44
2016. index domain : s
2017. definition : flow('14',s) = - flowVariable('6',s)- flowVariable('11',s);
2018. CONSTRAINT:
2019. identifier : flowC45
2020. index domain : s
2021. definition : (pressure('15',s) - pressure('8',s))= 0;
2022. CONSTRAINT:
2023. identifier : flowC46
2024. index domain : s
2025. definition : flow('15',s) = - flowVariable('4',s);
2026. CONSTRAINT:
2027. identifier : flowC47
2028. index domain : s
2029. property : IndicatorConstraint
2030. activating condition : decisionVars('5') = 1
2031. definition : (angularVelocity('16',s) - angularVelocity('1',s)) = 0;
2032. CONSTRAINT:
2033. identifier : flowC48
2034. index domain : s
2035. definition : torque('16',s) = - flowVariable('9',s);
2036. CONSTRAINT:
2037. identifier : flowC49
2038. index domain : s
2039. property : IndicatorConstraint
2040. activating condition : decisionVars('7') = 1
2041. definition : (pressure('17',s) - pressure('10',s)) = 0;

 336

2042. CONSTRAINT:
2043. identifier : flowC50
2044. index domain : s
2045. definition : flow('17',s) = - flowVariable('12',s);
2046. CONSTRAINT:
2047. identifier : flowC51
2048. index domain : s
2049. property : IndicatorConstraint
2050. activating condition : decisionVars('7') = 1
2051. definition : (pressure('18',s) - pressure('11',s)) = 0;
2052. CONSTRAINT:
2053. identifier : flowC52
2054. index domain : s
2055. definition : flow('18',s) = - flowVariable('13',s);
2056. CONSTRAINT:
2057. identifier : flowC53
2058. index domain : s
2059. definition : (velocity('19',s) - velocity('24',s))= 0;
2060. CONSTRAINT:
2061. identifier : flowC54
2062. index domain : s
2063. definition : force('19',s) = flowVariable('14',s);
2064. CONSTRAINT:
2065. identifier : flowC55
2066. index domain : s
2067. definition : force('20',s) = 0;
2068. CONSTRAINT:
2069. identifier : flowC56
2070. index domain : s
2071. definition : flow('21',s) = 0;
2072. CONSTRAINT:
2073. identifier : flowC57
2074. index domain : s
2075. definition : flow('22',s) = 0;
2076. CONSTRAINT:
2077. identifier : flowC58
2078. index domain : s
2079. definition : force('23',s) = 0;
2080. CONSTRAINT:
2081. identifier : flowC59
2082. index domain : s
2083. definition : (velocity('24',s) - velocity('19',s))= 0;
2084. CONSTRAINT:
2085. identifier : flowC60
2086. index domain : s
2087. definition : force('24',s) = - flowVariable('14',s);
2088. CONSTRAINT:
2089. identifier : t0
2090. definition : forceVariable('67','1')=0;
2091. CONSTRAINT:
2092. identifier : t1
2093. definition : velocityVariable('68','1')=0;
2094. CONSTRAINT:
2095. identifier : t2
2096. definition : velocityVariable('68','2')>=1;
2097. CONSTRAINT:

 337

2098. identifier : t3
2099. definition : forceVariable('67','2')>=1000;
2100. MATHEMATICAL PROGRAM:
2101. identifier : MP
2102. objective :
2103. direction : minimize
2104. constraints : AllConstraints
2105. variables : AllVariables ;
2106. ENDSECTION ;
2107. PROCEDURE
2108. identifier : MainInitialization
2109. ENDPROCEDURE ;
2110. PROCEDURE
2111. identifier : MainExecution
2112. body :
2113. Solve MP;
2114. ENDPROCEDURE ;
2115. PROCEDURE
2116. identifier : MainTermination
2117. body :
2118. if (CaseSaveAll(confirm:2) = 1) then
2119. return 1;
2120. else
2121. return 0;
2122. endif ;
2123. ENDPROCEDURE ;
2124. ENDMODEL View ;

 338

REFERENCES

Agarwal, M., 1999, Supporting Automated Design Generation: Function Based Shape

Grammars and Insightful Optimization, Thesis.

Agrawal, A., Levendovszky, T., Sprinkle, J., Shi, F., and Karsai, G., 2002, "Generative
Programming Via Graph Transformations in the Model-Driven Architecture,"
Workshop on Generative Techniques in the Context of Model Driven

Architecture, OOPSLA, Nov, 5, pp. 184-195.

Akao, Y., 2004, Quality Function Deployment, Productivity Press, New York, NY.

Åkesson, J., Ekman, T., and Hedin, G., 2008, "Development of a Modelica Compiler
Using Jastadd," Electronic Notes in Theoretical Computer Science, 203(2), pp.
117-131, 10.1016/j.entcs.2008.03.048.

Åkesson, J., Årzén, K. E., Gäfvert, M., Bergdahl, T., and Tummescheit, H., 2010a,
"Modeling and Optimization with Optimica and Jmodelica.Org—Languages and
Tools for Solving Large-Scale Dynamic Optimization Problems," Computers &

Chemical Engineering, 34(11), pp. 1737-1749,
10.1016/j.compchemeng.2009.11.011.

Åkesson, J., Ekman, T., and Hedin, G., 2010b, "Implementation of a Modelica Compiler
Using Jastadd Attribute Grammars," Science of Computer Programming, 75(1–2),
pp. 21-38, 10.1016/j.scico.2009.07.003.

Alawneh, L., Debbabi, M., Hassaine, F., Jarraya, Y., and Soeanu, A., 2006, "A Unified
Approach for Verification and Validation of Systems and Software Engineering
Models," 13th Annual IEEE International Symposium and Workshop on

Engineering of Computer Based Systems, 2006., pp. 10-418.

Alber, R., and Rudolph, S., 2002, "On a Grammar-Based Design Language That Supports
Automated Design Generation and Creativity," Proceedings of IFIP WG5.2

Workshop on Knowledge Intensive CAD (KIC-5), Malta, Malta.

Amelunxen, C., Konigs, A., Rotschke, T., and Schurr, A., 2006, "Moflon: A Standard-
Compliant Metamodeling Framework with Graph Transformations," Lecture

Notes In Computer Science, 4066, pp. 361.

Antonsson, E. K., and Cagan, J., 2001, Formal Engineering Design Synthesis, Cambridge
University Press.

Arrow, K. J., 1963, Social Choice and Individual Values, Wiley, New York, NY, USA.

Bajaj, M., Peak, R. S., and Paredis, C. J. J., 2007a, "Knowledge Composition for
Efficient Analysis Problem Formulation Part 2: Approach and Analysis Meta-
Model," in ASME 2007 International Design Engineering Technical Conferences

 339

& Computers and Information in Engineering Conference, Tzou, H. S. and Jalili,
N., Eds., ASME, Las Vegas, Nevada, USA.

Bajaj, M., Peak, R. S., and Paredis, C. J. J., 2007b, "Knowledge Composition for
Efficient Analysis Problem Formulation Part 1: Motivation and Requirements,"
in ASME 2007 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, Tzou, H. S. and Jalili, N.,
Eds., ASME, Las Vegas, Nevada, USA.

Baker, N. C., and Fenves, S. J., 1990, "Manipulating Shape and Its Function " Journal of

Computing in Civil Engineering, 4(4), pp. 221-238.

Baldwin, C. Y., and Clark, K. B., 1999, Design Rules: Volume 1. The Power of

Modularity, The MIT Press.

Bascaran, E., Bannerot, R. B., and Mistree, F., 1989, "Hierarchical Selection Decision
Support Problems in Conceptual Design," Engineering Optimization, 14, pp. 207-
238.

Beltrame, T., and Cellier, F. E., 2006, "Quantised State System Simulation in
Dymola/Modelica Using the DEVS Formalism," Proceedings of the 5th

International Modelica Conference, Kral, C. and Haumer, A. eds., Vienna,
Austria, pp. 73-82.

Biegler, L., Grossmann, I., and Westerberg, A., 1997, Systematic Methods for Chemical

Process Design, Prentice Hall, Old Tappan, NJ.

Bisschop, J., and Roelofs, M., 2006, Aimms Language Reference, Paragon Decision
Technology, Haarlem, The Netherlands.

Blair, C. E., Jeroslow, R. G., and Lowe, J. K., 1986a, "Some Results and Experiments in
Programming Techniques for Propositional Reasoning," Computers and

Operations Research, 13, pp. 633-645.

Blair, R., 1986b, "Some Results and Experiments in Programming Techniques for
Propositional Logic," Computers & Operations Research, 13(5), pp. 633-645.

Bobrow, D. G., 1984, "Qualitative Reasoning About Physical Systems: An Introduction,"
Artificial Intelligence, 24(1–3), pp. 1-5, 10.1016/0004-3702(84)90036-5.

Bohm, M. R., Stone, R. B., Simpson, T. W., and Steva, E. D., 2008, "Introduction of a
Data Schema to Support a Design Repository," Computer-Aided Design, 40(7),
pp. 801-811, 10.1016/j.cad.2007.09.003.

Bolognini, F., Seshia, A. A., and Shea, A. K., 2007, "A Computational Design Synthesis
Method for MEMS Using COMSOL," COMSOL Users Conference.

 340

Bras, B., and Mistree, F., 1993, "Robust Design Using Compromise Decision Support
Problems," Engineering Optimization, 21(3), pp. 213-239,
10.1080/03052159308940976.

Brooke, A., Kendrick, D., Meeraus, A., and Raman, R., 1998, The General Algebraic

Modeling System, GAMS Development Corporation, Washington, DC, USA.

Bryant, C. R., McAdams, D. A., Stone, R. B., Kurtoglu, T., and Campbell, M. I., 2005,
"A Computational Technique for Concept Generation," ASME Conference

Proceedings, 2005(4742Xa), pp. 267-276.

Buede, D. M., 2000, The Engineering Design of Systems: Models and Methods, John
Wiley & Sons, Inc., New York.

Cagan, J., Campbell, M., Finger, S., and Tomiyama, T., 2005, "A Framework for
Computational Design Synthesis: Model and Applications," Journal of

Computing and Information Science in Engineering, 5, pp. 171.

Campbell, M. I., Cagan, J., and Kotovsky, K., 2000, "Agent-Based Synthesis of
Electromechanical Design Configurations," Journal of Mechanical Design,
122(1), pp. 61-69, 10.1115/1.533546.

Campbell, M. I., Cagan, J., and Kotovsky, K., 2003, "The a-Design Approach to
Managing Automated Design Synthesis," Research in Engineering Design, 14,
pp. 12-24.

Castagne, S., Curran, R., and Collopy, P., 2009, "Implementation of Value-Driven
Optimisation for the Design of Aircraft Fuselage Panels," International Journal of

Production Economics, 117(2), pp. 381-388, 10.1016/j.ijpe.2008.12.005.

Chanron, V., and Lewis, K. E., 2006, "The Dynamics of Decentralized Design Processes:
The Issue of Convergence and Its Impact on Decision Making," Decision Making

in Engineering Design, ASME Press, New York, pp. 281-290.

Chenouard, R., Granvilliers, L., and Soto, R., 2008, "Model-Driven Constraint
Programming," in Proceedings of the 10th international ACM SIGPLAN

conference on Principles and practice of declarative programming, ACM,
Valencia, Spain, pp. 236-246.

Christen, E., and Bakalar, K., 1999, "VHDL-AMS - a Hardware Description Language
for Analog and Mixed-Signal Applications," IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, 40(10), pp. 1263-1272.

Conigliaro, R. A., Kerzhner, A. A., and Paredis, C. J. J., 2009, "Model-Based
Optimization of a Hydraulic Backhoe Using Multi-Attribute Utility Theory," SAE

International Journal of Materials & Manufacturing, 2(1), pp. 298-309.

 341

Creignou, N., Khanna, S., and Sudan, M., 2001, "Complexity Classifications of Boolean
Constraint Satisfaction Problems," Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Czarnecki, K., and Helsen, S., 2006, "Feature-Based Survey of Model Transformation
Approaches," IBM Systems Journal, 45(3), pp. 621-645, 10.1147/sj.453.0621.

da Silva, J. C., 1998, Expert System Prototype for Hydraulic System Design Focusing on

Concurrent Engineering Aspects, Ph.D. Thesis, Department of Mechanical
Engineering, Federal University of Santa Catarina, Florianopolis, Brazil.

da Silva, J. C., and Back, N., 2000, "Shaping the Process of Fluid Power System Design
Applying an Expert System," Research in Engineering Design, 12(1), pp. 8-17.

Dauenhauer, G., Aschauer, T., and Pree, W., 2009, "Variability in Automation System
Models," Formal Foundations of Reuse and Domain Engineering, pp. 116-125.

Domingos, P., Lowd, D., Kok, S., Poon, H., Richardson, M., and Singla, P., 2008a, "Just
Add Weights: Markov Logic for the Semantic Web," Uncertainty Reasoning for

the Semantic Web I, pp. 1-25.

Domingos, P., and Richardson, M., 2008b, "Markov Logic: A Unifying Framework for
Statistical Relational Learning."

Donndelinger, J., 2006, "A Decision-Based Perspective on the Vehicle Development
Process," Decision Making in Engineering Design, American Society of
Mechanical Engineers, New York, pp. 217-225.

Dyn, N., and Ron, A., 1995, "Radial Basis Function Approximation: From Gridded
Centres to Scattered Centres," Proceedings of the London Mathematical Society,
s3-71(1), pp. 76-108, 10.1112/plms/s3-71.1.76.

Eaton, 1998, Pump and Motor Sizing Guide, Eaton Corporation Hydraulics Division,
Eden Prarie, MN.

Emery, D., and Hilliard, R., 2009, "Every Architecture Description Needs a Framework:
Expressing Architecture Frameworks Using ISO/IEC 42010," Software

Architecture, 2009 & European Conference on Software Architecture.

WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on, pp. 31-40.

Emmerich, M., Grotzner, M., and Schutz, M., 2001, "Design of Graph-Based
Evolutionary Algorithms: A Case Study for Chemical Process Networks,"
Evolutionary Computation, 9(3), pp. 329-354.

Eppinger, S. D., Sosa, M. E., and Rowles, C. M., 2000, "Designing Modular and
Integrative Systems," 2000 ASME International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference,
Baltimore, Maryland, USA.

 342

Estefan, J., 2007, "Survey of Model-Based Systems Engineering (MBSE)
Methodologies," Incose MBSE Focus Group, 25.

Fenves, S., Foufou, S., Bock, C., and Sriram, R. D., 2008, "CPM2: A Core Model for
Product Data," Journal of Computing and Information Science in Engineering,
8(1), pp. 014501.

Fischer, T., Niere, J., Torunski, L., and ZÃ¼ndorf, A., 1998, "Story Diagrams: A New
Graph Rewrite Language Based on the Unified Modeling Language and Java,"
Theory and Application of Graph Transformations, pp. 157-167.

Fisher, J., 1998, "Model-Based Systems Engineering: A New Paradigm," INCOSE

Insight, 1(3), pp. 3-16.

Fourer, R., Gay, D. M., and Kernighan, B. W., 1990a, "A Modeling Language for
Mathematical

Programming.," Management Science, 36, pp. 519-554.

Fourer, R., Gay, D. M., and Kernighan, B. W., 1990b, "A Modeling Language for
Mathematical Programming," Management Science, pp. 519-554.

Friedenthal, S., Moore, A., and Steiner, R., 2008, A Practical Guide to SysML: The

Systems Modeling Language, Morgan Kaufmann, Waltham, MA, USA.

Friedman, J. H., 1991, "Multivariate Adaptive Regression Splines," The Annals of

Statistics, 19(1), pp. 1-141.

Fritzson, P., 2004, Principles of Object-Oriented Modeling and Simulation with Modelica

2.1, IEEE Press, Piscataway, NJ, USA.

Gamma, E., 1995, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, New York, NY, USA.

Gano, S., Renaud, J., Martin, J., and Simpson, T., 2006, "Update Strategies for Kriging
Models Used in Variable Fidelity Optimization," Structural and Multidisciplinary

Optimization, 32(4), pp. 287-298, 10.1007/s00158-006-0025-y.

Garrido, J. M., 2001, Object-Oriented Discrete-Event Simulation with Java: A Practical

Introduction, Springer US, New York, NY, USA.

Gero, J., 1996, "Creativity, Emergence and Evolution in Design," Knowledge-Based

Systems, 9(7), pp. 435-448.

Gershenson, J. K., Prasad, G. J., and Allamneni, S., 1999, "Modular Product Design: A
Life-Cycle View," Journal of Integrated Design & Process Science, 3(4),
pp. 13-26.

 343

Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Greenyer, J., Kindler, E., 2007, "Reconciling Tggs with Qvt," in Model Driven

Engineering Languages and Systems, MoDELS 2007, Springer, Berlin /
Heidelberg.

Grosse, I. R., Milton-Benoit, J. M., and Wileden, J. C., 2005, "Ontologies for Supporting
Engineering Analysis Models," Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 19(1), pp. 1-18.

Grossmann, I., 2002, "Review of Nonlinear Mixed-Integer and Disjunctive Programming
Techniques," Optimization and Engineering, 3(3), pp. 227-252.

Haga, M., Hiroshi, W., and Fujishima, K., 2001, "Digging Control System for Hydraulic
Excavator," Mechatronics, 11(6), pp. 665-676, 10.1016/s0957-4158(00)00043-x.

Haq, M., and Rudolph, S., 2005, "A Design Language for Generic Space Frame Structure
Design," 1st IFIP TC5 Working Conference on Computer Aided Innovation, Ulm,
Germany, pp. 201-215.

Hazelrigg, G. A., 1998, "A Framework for Decision-Based Engineering Design," Journal

of Mechanical Design, 120(4), pp. 653-658.

Hazelrigg, G. A., 2012, Fundamentals of Decision Making for Engineering Design and

Systems Engineering, George A Hazelrigg, Washington, D.C.

Heinicke, M. U., and Hickman, A., 2000, "Eliminate Bottlenecks with Integrated
Analysis Tools in Em-Plant," 2000 Winter Simulation Conference, IEEE, 1, pp.
229-231.

Heisserman, J., 1994, "Generative Geometric Design," IEEE Computer Graphics &

Applications, 14(2), pp. 37-45.

Helms, B., Shea, K., and Hoisl, F., 2009, "A Framework for Computational Design
Synthesis Based on Graph-Grammars and Function-Behavior-Structure," ASME

IDETC.

Hodges, J., 1992, "Naive Mechanics: A Computational Model of Device Use and
Function in Design Improvisation," IEEE Expert, 7(1), pp. 14-27.

Holland, J. H., 1992, Adaptation in Natural and Artificial Systems, MIT Press
Cambridge, MA, USA.

Horváth, I., Vergeest, J. S. M., and Kuczogi, G., 1998, "Development and Application of
Design Concept Ontologies for Contextual Conceptualization," 1998 ASME

Design Engineering Technical Conferences, Atlanta, GA.

 344

Huang, E., Ramamurthy, R., and McGinnis, L. F., 2007, "System and Simulation
Modeling Using SysML," in Proceedings of the 39th conference on Winter

Simulation, Tew, J., Ed., IEEE Press, Washington D.C., pp. 796-803.

Hunt, J. E., Lee, M. H., and Price, C. J., 1993, "Applications of Qualitative Model-Based
Reasoning," Control Engineering Practice, 1(2), pp. 253-266, 10.1016/0967-
0661(93)91615-4.

Hurwicz, L., 1960, "Optimality and Informational Efficiency in Resource Allocation
Processes," Mathematical methods in the social sciences, pp. 27-46.

Ingham, M. D., Rasmussen, R. D., Bennett, M. B., and Moncada, A. C., 2006,
"Engineering Complex Embedded Systems with State Analysis and the Mission
Data System," in AIAA Intelligent Systems Technical Conference, Chicago,
Illinois.

International Business Machines Corp, 2009, V12. 1: User’s Manual for Cplex,
ftp://ftp.software.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_u
srmancplex.pdf.

ISO/IEC, 2005, Unified Modeling Language Specification, http://www.omg.org/cgi-
bin/apps/doc?formal/05-04-01.pdf.

ISO/IEC, 2007, "ISO/IEC 42010: 2007-Systems and Software Engineering–
Recommended Practice for Architectural Description of Software-Intensive
Systems," Technical report, International Standardization
Organization/International Electrotechnical Commission

Jackson, D., 2002, "Alloy: A Lightweight Object Modelling Notation," ACM

Transactions on Software Engineering and Methodology (TOSEM), 11(2), pp.
256-290.

Jin, R., Du, X., and Chen, W., 2003, "The Use of Metamodeling Techniques for
Optimization under Uncertainty," Structural and Multidisciplinary Optimization,
25(2), pp. 99-116, 10.1007/s00158-002-0277-0.

Jobe, J. M., 2008, Multi-Aspect Component Models: Enabling the Reuse of Engineering

Analysis Models in SysML, Thesis, Georgia Institute of Technology.

Johnson, T., Kerzhner, A., Paredis, C. J. J., and Burkhart, R., 2012, "Integrating Models
and Simulations of Continuous Dynamics into SysML," Journal of Computing

and Information Science in Engineering, 12(1), pp. 011002.

Johnson, T. A., Paredis, C. J. J., and Burkhart, R., 2008, "Integrating Models and
Simulations of Continuous Dynamics into SysML," in Modelica Conference

2008, Bielefeld, Germany.

 345

Karandikar, H., Srinivasan, R., Mistree, F., and Fuchs, W. J., 1989, "Compromise: An
Effective Approach for the Design of Pressure Vessels Using Composite
Materials," Computers & Structures, 33(6), pp. 1465-1477, 10.1016/0045-
7949(89)90487-2.

Karban, R., Zamparelli, M., Bauvir, B., Koehler, B., Noethe, L., and Balestra, A., 2008,
"Exploring Model Based Engineering for Large Telescopes-Getting Started with
Descriptive Models," 7017, pp. 44.

Keeney, R. L., and Raiffa, H., 1976, Decisions with Multiple Objectives: Preferences and

Value Tradeoffs, Jon Wiley and Sons, New York, NY, USA.

Kelton, W. D., Sadowski, R. P., and Sadowski, D. A., 2002, Simulation with ARENA,
McGraw-Hill, New York, NY.

Kerzhner, A. A., and Paredis, C. J. J., 2009, "Using Domain Specific Languages to
Capture Design Synthesis Knowledge for Model-Based Systems Engineering,"
ASME Conference Proceedings, 2009(48999), pp. 1399-1409.

Kerzhner, A. A., and Paredis, C. J. J., 2010, "Model-Based System Verification: A
Formal Framework for Relating Analyses, Requirements, and Tests," Proceedings

of the 4th International Workshop on Multi-Paradigm Modeling - MPM'10, Oslo,
Norway.

Kerzhner, A. A., Jobe, J. M., and Paredis, C. J. J., 2011, "A Formal Framework for
Capturing Knowledge to Transform Structural Models into Analysis Models,"
Journal of Simulation, 5(3), pp. 202-216.

Königs, A., and Schürr, A., 2006, "Tool Integration with Triple Graph Grammars - a
Survey," Electronic Notes in Theoretical Computer Science, 148(1), pp. 113-150,
10.1016/j.entcs.2005.12.015.

Kopena, J. B., and Regli, W. C., 2003, "Functional Modeling of Engineering Designs for
the Semantic Web," Data Engineering, 26(4), pp. 55-61.

Koza, J., 2001, "Automatic Synthesis of Both the Topology and Numerical Parameters
for Complex Structures Using Genetic Programming," Engineering Design

Synthesis: Understanding, Approaches, and Tools, Springer-Verlag London, pp.

Koza, J., 2010, "Human-Competitive Results Produced by Genetic Programming,"
Genetic Programming and Evolvable Machines, 11(3), pp. 251-284,
10.1007/s10710-010-9112-3.

Kumar, V., 1992, "Algorithms for Constraint-Satisfaction Problems: A Survey," AI

magazine, 13(1), pp. 32.

Lastusilta, T., Bussieck, M. R., and Westerlund, T., 2007, "Comparison of Some High-
Performance MINLP Solvers," Chemical Engineering Transactions, 11.

 346

Le Metayer, D., 1998, "Describing Software Architecture Styles Using Graph
Grammars," IEEE Transactions on Software Engineering, 24(7), pp. 521-533.

Lee, J., and Leyffer, S., 2011, Mixed Integer Nonlinear Programming, Springer Verlag,
New York, NY, USA.

Leweling, K.-U., and Stein, B., 2000, "Hybrid Constraints in Automated Model Synthesis
and Model Processing," Electronic Notes in Discrete Mathematics, 4(0), pp. 68,
10.1016/s1571-0653(05)80107-6.

Maier, M., and Rechtin, E., 2000, The Art of Systems Architecting, CRC Press, Boca
Raton, Florida.

Malak, R. J., 2008, Using Parameterized Efficient Sets to Model Alternatives for Systems

Design Decisions, Thesis, Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA.

Malak, R. J., and Paredis, C. J. J., 2010, "Using Parameterized Pareto Sets to Model
Design Concepts," Journal of Mechanical Design, 132(4), pp. 041007-041011.

Matheron, G., 1963, "Principles of Geostatistics," Economic Geology, 58(8), pp. 1246-
1266, 10.2113/gsecongeo.58.8.1246.

Mathews, J. H., and Fink, K. D., 1998, Numerical Methods Using Matlab, Simon &
Schuster.

Mathworks, S., 2008, "Simulink," vol. 2008.

Mattsson, S. E., and Elmqvist, H., 1998, "An Overview of the Modeling Language
Modelica," Eurosim '98 Simulation congress, Helsinki, Finland.

McCandlish, D., and Dorey, R. E., 1984, "The Mathematical Modelling of Hydrostatic
Pumps and Motors," Proceedings of the Institution of Mechanical Engineers, Part

B: Journal of Engineering Manufacture, 198(3), pp. 165-174,
10.1243/pime_proc_1984_198_062_02.

Min, B. I., Kerzhner, A. A., and Paredis, C. J. J., 2011, "Process Integration and Design
Optimization for Model-Based Systems Engineering with SysML," in the ASME

2011 International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (IDETC/CIE2011), Washington,
D.C., USA.

Mocko, G., Malak Jr., R. J., Paredis, C. J. J., and Peak, R., 2004, "A Knowledge
Repository for Behavioral Models in Engineering Design," ASME Computers and

Information in Engineering Conference, Salt Lake City, UT.

Modelica Association, 2005, "Modelica Language Specification," Linköping, Sweden.

 347

Modelica Association, 2012, Modelica and the Modelica Association
http://www.modelica.org/

Moore, R., Romero, D., and Paredis, C., 2011, "A Rational Design Approach to Gaussian
Process Modeling for Variable Fidelity Models," in Proceedings of the ASME

2011 International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (IDETC/CIE2011), Washington,
D.C., USA.

Mullins, S., and Rinderle, J. R., 1991a, "Grammatical Approaches to Engineering Design,
Part I: An Introduction and Commentary," Research in Engineering Design, 2(3),
pp. 121-135.

Mullins, S., and Rinderle, J. R., 1991b, "Grammatical Approaches to Engineering
Design, Part I: An Introduction and Commentary," Research in Engineering

Design, 2, pp. 121-153.

Nagl, M., 1979, Graph-Grammatiken, Theorie, Implementierung, Anwendungen, Vieweg,
Braunschweig, DE.

No Magic Inc., 2012, Magicdraw UML, http://www.magicdraw.com.

Object Management Group, 2006, OMG Systems Modeling Language (OMG SysML),
V1.0, http://www.omgsysml.org/.

Object Management Group, 2007, Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, http://www.omg.org/docs/formal/08-
04-03.pdf.

Object Management Group, 2010, SysML-Modelica (SyM) 1.0 - Beta 1,
http://www.omg.org/spec/SyM/1.0/Beta1/.

Olewnik, A., and Lewis, K., 2006, "A Decision Support Framework for Flexible System
Design," Journal of Engineering Design, 17(1), pp. 75-97,
10.1080/09544820500274019.

Pahl, G., Beitz, W., Feldhunen, J., and Grote, K.H., 2007, Engineering Design: A

Systematic Approach, Springer, London, UK.

Paredis, C., Bernard, Y., Burkhart, R. M., de Koning, H. P., Friedenthal, S., Fritzson, P.,
Rouquette, N. F., and Schamai, W., 2010, "An Overview of the SysML-Modelica
Transformation Specification," Proceedings of the 2010 INCOSE Symposium,
Chicago, IL, USA, pp. 1-14.

Paredis, C. J. J., Diaz-Calderon, A., Sinha, R., and Khosla, P. K., 2001, "Composable
Models for Simulation-Based Design," Engineering with Computers, 17(2), pp.
112-128.

 348

Paredis, C. J. J., and Johnson, T., 2008, "Using Omg's SysML to Support Simulation," in
Proceedings of the 40th Conference on Winter Simulation, Mason, S., Hill, R.,
Mönch, L., and Rose, O., Eds., Winter Simulation Conference, Miami, Florida,
pp. 2350-2352.

Parker, 2002, Design Engineers Handbook, Parker Hannifin Corporation, Cleveland, OH.

Parnell, G. S., Driscoll, P. J., and Henderson, D. L., 2011, Decision Making in Systems

Engineering and Management, John WIley & Sons, Inc., Hoboken, New Jersey.

Peak, R. S., Fulton, R. E., Nishigaki, I., and Okamoto, N., 1998, "Integrating Engineering
Design and Analysis Using a Multi-Representation Approach," Engineering with

Computers, 14(2), pp. 93-114.

Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., and Kim, I.,
2007, "Simulation-Based Design Using SysML-Part1: A Parametrics Primer," in
INCOSE Intl. Symposium, San Diego, CA.

Pedersen, H. C., 2007, Automated Hydraulic System Design and Power Management in

Mobile Applications, Institut for Energiteknik, Aalborg Universitet, Copenhagen,
DK.

Pugh, S., 1990, Total Design - Integrated Methods for Successful Product Engineering,
Addison-Wesley Publishing Company, Wokingham, England.

Pugh, S., 1991, Total Design: Integrated Methods for Successful Product Engineering,
Addison-Wesley Pub. Co., Reading, MA.

Qamar, A., During, C., and Wikander, J., 2009, "Designing Mechatronic Systems, a
Model-Based Perspective, an Attempt to Achieve SysML-Matlab/Simulink Model
Integration," IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, 2009. AIM 2009., pp. 1306-1311.

Rachuri, S., Baysal, M. M., Roy, U., FouFou, S., Bock, C., Fenves, S., Subrahmanian, E.,
Lyons, K., and Sriram, R. D., 2005, "Information Models for Product
Representation: Core and Assembly Models," International Journal of Product

Development, 2(3), pp. 207-235.

Rinderle, J. R., 1991, "Grammatical Approaches to Engineering Design, Part Ii: Melding
Configuration and Parametric Design Using Attribute Grammars," Research in

Engineering Design, 2, pp. 137-146.

Saaty, T. L., 1990, "How to Make a Decision: The Analytic Hierarchy Process,"
European Journal of Operational Research, 48(1), pp. 9-26, 10.1016/0377-
2217(90)90057-i.

Sage, A. P., and Armstrong, J. E., Jr., 2000a, Introduction to Systems Engineering, John
Wiley & Sons, New York, NY.

 349

Sage, A. P., and Armstrong Jr., J. E., 2000b, Introduction to Systems Engineering, John
Wiley & Sons, New York, NY.

Sager, S., 2012, "A Benchmark Library of Mixed-Integer Optimal Control Problems

Mixed Integer Nonlinear Programming," Springer New York, 154, pp. 631-670.

Sahinidis, N. V., 1996, "Baron: A General Purpose Global Optimization Software
Package," Journal of Global Optimization, 8(2), pp. 201-205.

Sasajima, M., Kitamura, Y., Ikeda, M., and Mizoguchi, R., 1995, "Fbrl: A Function and
Behavior Representation Language," Proc. of IJCAI, 95, pp. 1830-1836.

Sauer-Sunstrand, 1997, Selection of Driveline Components, Sauer-Sunstrand Company,
Ames, IA.

Saxena, T., and Karsai, G., 2010, "Mde-Based Approach for Generalizing Design Space
Exploration," Model Driven Engineering Languages and Systems, Springer Berlin
/ Heidelberg, 6394, pp. 46-60.

Schmidt, L. C., and Cagan, J., 1996, "Configuration Design: An Integrated Approach
Using Grammars," Proceedings of the 8th ASME International Conference on

Design Theory and Methodology, Irvine, CA.

Schmidt, L. C., and Cagan, J., 1997, "GGREADA: A Graph Grammar-Based Machine
Design Algorithm," Research in Engineering Design, 9(4), pp. 195-213.

Schmidt, L. C., and Cagan, J., 1998, "Optimal Configuration Design: An Integrated
Approach Using Grammars," ASME Journal of Mechanical Design, 120(1), pp. 2-
9.

Schürr, A., 1994, "Specification of Graph Translators with Triple Graph Grammars," in
WG'94 Workshop on Graph-Theoretic Concepts in Computer Science.

Shah, A., Kerzhner, A., Schaefer, D., and Paredis, C., 2010a, "Multi-View Modeling to
Support Embedded Systems Engineering in SysML

Graph Transformations and Model-Driven Engineering," Springer Berlin / Heidelberg,
5765, pp. 580-601.

Shah, A. A., 2010b, Combining Mathematical Programming and SysML for Component

Sizing as Applied to Hydraulic Systems, Masters Thesis, Mechanical Engineering,
Georgia Institute of Technology, Atlanta.

Shah, A. A., Paredis, C. J. J., Burkhart, R., and Schaefer, D., 2010c, "Combining
Mathematical Programming and SysML for Automated Component Sizing of
Hydraulic Systems," ASME Conference Proceedings, 2010(44113), pp. 1231-
1245.

 350

Shupe, J. A., Mistree, F., and Sobieszanski-Sobieski, J., 1987, "Compromise: An
Effective Approach for the Hierarchical Design of Structural Systems,"
Computers & Structures, 26(6), pp. 1027-1037, 10.1016/0045-
7949(87)90119-2.

Simmetrix Inc., 2006, Simulation Application Suite,
http://simmetrix.com/products/SimulationApplicationSuite/main.html.

Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F., 2001, "Kriging Models for
Global Approximation in Simulation-Based Multidisciplinary Design
Optimization," AIAA Journal, 39(12), pp. 2233-2241.

Simulink (The Mathworks), 2008, Simulink,
http://www.mathworks.com/products/simulink/.

Smullyan, R., 1995, First-Order Logic, Dover Publications.

Sobek Ii, D. K., Ward, A. C., and Liker, J. K., 1999, "Toyota's Principles of Set-Based
Concurrent Engineering," Sloan Management Review, 40(2), pp. 67-83.

Sobieszczanski-Sobieski, J., and Haftka, R. T., 1997, "Multidisciplinary Aerospace
Design Optimization: Survey of Recent Developments," Structural and

Multidisciplinary Optimization, 14(1), pp. 1-23, 10.1007/bf01197554.

Stahl, T., Voelter, M., and Czarnecki, K., 2006, Model-Driven Software Development:

Technology, Engineering, Management, John Wiley & Sons.

Starling, A. C., and Shea, K., 2005, "A Parallel Grammar for Simulation-Driven
Mechanical Design Synthesis," ASME Conference Proceedings, 2005(4739X),
pp. 427-436.

Stiny, G., 1980, "Introduction to Shape and Shape Grammars," Environment and

Planning B, 7, pp. 343-351.

Stone, R. B., and Wood, K. L., 2000, "Development of a Functional Basis for Design,"
Journal of Mechanical Design, 122, pp. 359-370.

Summers, J. D., and Shah, J. J., 2010, "Mechanical Engineering Design Complexity
Metrics: Size, Coupling, and Solvability," Journal of Mechanical Design, 132(2),
pp. 021004-021011.

Szykman, S., Sriram, R., Bochenek, C., and Racz, J., 1998, "The Nist Design Repository
Project," Advances in Soft Computing - Engineering Design and Manufacturing,
Roy, R., Furuhashi, T., and Chawdhry, P. K. eds., Springer-Verlag, London, pp.
5-19.

 351

Tawarmalani, M., and Sahinidis, N. V., 2004, "Global Optimization of Mixed-Integer
Nonlinear Programs: A Theoretical and Computational Study," Mathematical

Programming, 99(3), pp. 563-591.

Thompson, S. C., and Paredis, C. J. J., 2010, "An Investigation into the Decision
Analysis of Design Process Decisions," Journal of Mechanical Design, 132(12),
pp. 121009-121009.

Thurston, D. L., 1991, "A Formal Method for Subjective Design Evaluation with
Multiple Attributes," Research in Engineering Design, 3(2), pp. 105-122,
10.1007/bf01581343.

Trujillo, S., Garate, J., Lopez-Herrejon, R., Mendialdua, X., Rosado, A., Egyed, A.,
Krueger, C., and De Sosa, J., 2010, "Coping with Variability in Model-Based
Systems Engineering: An Experience in Green Energy," Modelling Foundations

and Applications, pp. 293-304.

Tzilla, E., Robert, E. F., and Atef, B., 2001, "Aspect-Oriented Programming:
Introduction," Communications of The ACM, 44(10), pp. 29-32.

Ulrich, K., and Tung, K., 1991, "Fundamentals of Product Modularity," 1991 ASME

Design Technical Conferences - Conference on Design / Manufacture Integration,
Miami, Florida.

Umeda, Y., Takeda, H., Tomiyama, T., and Yoshikawa, H., 1990, "Function, Behavior,
and Structure," Applications of Artificial Intelligence in Engineering V, Springer-
Verlag, Berlin, Germany, 1, pp. 177-193.

Varga, A., and Hornig, R., 2008, "An Overview of the Omnet++ Simulation
Environment," ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 1-10.

von Neumann, J., and Morgenstern, O., 1980, Theory of Games and Economic Behavior,
Princeton University Press, Princeton, NJ.

Vong, C., Leung, T., and Wong, P., 2002, "Case-Based Reasoning and Adaptation in
Hydraulic Production Machine Design," Engineering Applications of Artificial

Intelligence, 15(6), pp. 567-585.

Wallace, D., Pahng, G. D. F., and Bae, S., 1998, "Web-Based Collaborative Design
Modeling and Decision Support," 1998 ASME Design Engineering Technical

Conferences and Engineering in Information Management Conference, Atlanta,
Georgia, USA.

Wang, G. G., and Shan, S., 2007, "Review of Metamodeling Techniques in Support of
Engineering Design Optimization," Journal of Mechanical Design, 129(4), pp.
370-380.

 352

Warmer, J., and Kleppe, A., 2003, The Object Constraint Language: Getting Your

Models Ready for MDA, Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA.

Weisemoller, I., and Schurr, A., 2007, "A Comparison of Standard Compliant Ways to
Define Domain Specific Languages," Proceedings of the 4th International

Workshop on Software Language Engineering, Nashville, TN, USA, pp. 31-45.

Westman, R., Sargent, C., and Burton, R., 1987, "A Knowledge-Based Modular
Approach to Hydraulic Circuit Design," Computers in Engineering, 1, pp. 37-41.

Williams, H. P., 1999, Model Building in Mathematical Programming, 4th Edition, John
Wiley & Sons Inc., Hoboken, NJ.

Wyatt, D., Wynn, D., Jarrett, J., and Clarkson, P., 2012, "Supporting Product
Architecture Design Using Computational Design Synthesis with Network
Structure Constraints," Research in Engineering Design, 23(1), pp. 17-52,
10.1007/s00163-011-0112-y.

Yeomans, H., and Grossmann, I., 1999, "A Systematic Modeling Framework of
Superstructure Optimization in Process Synthesis," Computers & Chemical

Engineering, 23(6), pp. 709-731.

Yunes, T., Aron, I. D., and Hooker, J. N., 2010, "An Integrated Solver for Optimization
Problems," Oper. Res., 58(2), pp. 342-356, 10.1287/opre.1090.0733.

Zeigler, B. P., 1987, "Hierarchical, Modular Discrete-Event Modelling in an Object-
Oriented Environment," Simulation, 49(5), pp. 219.

Zeigler, B. P., Ball, G., Cho, H., Lee, J., and Sarjoughian, H., 1999, "Implementation of
the DEVS Formalism over the HLA/RTI: Problems and Solutions," in Fall

Simulation Interoperability Workshop, Orlando, FL.

