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SUMMARY

This thesis deals with image segmentation problems that arise in various computer vi-

sion related fields such as medical imaging, satellite imaging, video surveillance, recogni-

tion and robotic vision. More specifically, this thesis deals with a special class of image

segmentation technique called Snakes or Active Contour Models. In active contour models,

image segmentation is posed as an energy minimization problem, where an objective en-

ergy function (based on certain image related features) is defined on the segmenting curve

(contour). Typically, a gradient descent energy minimization approach is used to drive the

initial contour towards a minimum for the defined energy. The drawback associated with

this approach is that the contour has a tendency to get stuck at undesired local minima

caused by subtle and undesired image features/edges. Thus, active contour based curve

evolution approaches are very sensitive to initialization and noise.

The central theme of this thesis is to develop techniques that can make active contour

models robust against certain classes of local minima by incorporating global information

in energy minimization. These techniques lead to energy minimization with global consid-

erations; we call these models — ‘Non-local active contours’.

In this thesis, we consider three widely used active contour models: 1) Edge- and

region-based segmentation model, 2) Prior shape knowledge based segmentation model,

and 3) Motion segmentation model. We analyze the traditional techniques used for these

models and establish the need for robust models that avoid local minima. We address the

local minima problem for each model by adding global image considerations.

In Chapter 3, we develop a segmentation model, which constrains the evolving active

xiii



contour to be a global minimum (geodesic) with respect to an edge-based energy through-

out the evolution process and minimize the region-based energy under this edge-based

constraint. Since, the contour remains a geodesic through the entire ‘active’ state, we call

this model the active geodesic model. We use a minimal path approach, based on Fast

Marching technique, to obtain edge-based geodesics. We also discuss the Fast Marching

Method in detail in Chapter 2.

In Chapter 4, we present the traditional level set based shape prior model and then

develop a localized shape prior based segmentation model. The localized shape prior model

utilizes a weighted learning algorithm to learn localized shape variations in global shapes.

By clustering correlated local shape variations, we maximize the ability of our training

model to learn localized shape variations. Using localized shape priors, we generate locally

accurate segmentation curves that avoid a wider class of local minima when compared to

existing global shape prior model. Finally, we combine these locally accurate segmentation

curves to obtain a single hybrid globally accurate segmentation.

In Chapter 5, we consider active contour segmentation models that use motion of inde-

pendently moving objects in any given image sequence to detect object boundaries. Tra-

ditional models strictly incorporate the optical flow constraint, which assumes that the in-

tensity of a pixel, moving in time, remains constant. Strictly following this constraint leads

to occlusion handling problems caused by regions in the background that are occluded by

the moving foreground object. Traditional models impose generic constraints for motion

estimation and curve evolution in these regions, which can generate erroneous pixel corre-

spondences, causing the contour to get stuck in certain local minima. We develop a relaxed

motion segmentation model that uses smooth global approximation of images to relax the

strict optical flow constraint, and thereby avoiding local minima in motion-based curve

evolution.

xiv



CHAPTER I

INTRODUCTION

Image segmentation has been widely researched since the advent of image processing. In a

broad sense, image segmentation can be defined as the task of dividing an image into dis-

joint regions, which exhibit homogeneous properties or delimit object boundaries. Early

approaches for image segmentation were based on detecting edges using filters, such as

Canny filter [21] and Sobel filter [44]. Object boundaries were identified by classifying the

pixels as edge/non-edge pixels based on a threshold. Region growing schemes, split-and-

merge schemes and certain histogram-based techniques were also developed for image seg-

mentation [46]. These approaches are heuristic in nature, and thus they need to be tailored

to each specific application. Further, these approaches are ill-suited for various imaging

applications with noisy images, weak/missing edges, cluttered data, and occlusions.

Curve evolution based image segmentation models were developed later. In curve evo-

lution based approaches image segmentation is posed as an optimization problem. In these

models, an image feature-based energy functional is defined on the curve. Minimizing the

energy drives the curve towards near-by image features generating desired segmentation re-

sults. Such energy optimization based curve evolution models have been used extensively

for image segmentation since their introduction by Kass et al. [51] in their seminal paper,

“Snakes: Active Contour Models”. Further, these models also treat images as continuous

rather than discrete objects, which make them independent of image discretization. These

curve evolution models are also effective over a broad class of images.

The basic idea behind the active contour model developed in [51] is to minimize an

energy functional of the form

Esnake =

∫ 1

0

{Eint(C(s)) + Eext(C(s))}ds, (1)

1



where C(s) = (x(s), y(s)) is the deformable curve with parameter s ∈ [0, 1]. Eint repre-

sents internal energy associated with the curve that governs the smoothness of the curve,

and Eext represents external energy that depends on image features or constraints added by

the user. The energy in (1) can be written as

E(C) =

∫ 1

0

{A1 ‖C ′′(s)‖2
+ A2 ‖C ′(s)‖2

+ P (C(s))}ds, (2)

where C ′ and C ′′ are derivatives of the curve with respect to the parameter s, P ≥ 0 is a

cost function associated with image features, and A1 ≥ 0, A2 ≥ 0 are scalar constants. The

first two terms in the integral in Equation (2) are internal forces associated with the curve,

and the third term is the external image dependent force.

The active contour model in [51] uses a local gradient based edge detector to stop the

evolving curve on object boundaries. A major drawback associated with this model is that

the curve has a tendency to get stuck at subtle (undesired) image features/edges. These sub-

tle features create undesired “local minima” in energy minimization. This drawback makes

the model sensitive to initialization and noise. Further, an explicit parameterization scheme

is used to represent the evolving curve. This explicit scheme requires re-parameterization

of the grid points to avoid over-lapping of marker particles. Also, the evolving contour does

not have the flexibility to undergo topological changes to segment disconnected objects. To

summarize, the classical snakes model has the following three major drawbacks:

1. Parametrization,

2. Difficulty in handling topological changes,

3. Susceptibility to local minima.

Level set [70] based implicit curve evolution approaches were developed in [22,53,54,

65], to overcome two of the major drawbacks of the classical snakes model: parametriza-

tion and difficulty in handling topological changes. But, these techniques are still sensitive

2



to local minima and initialization. So active contour models are typically initialized by the

user with a contour near the desired object of interest to avoid local minima.

The local minima problem has received considerable attention within the field in the

past two decades. One of the earliest approaches proposed to overcome these local minima

and drive the curve towards desired image features was proposed by Cohen in [31]. Cohen

proposed a simple solution to deal with the problem. He proposed including an additional

balloon force to either shrink or expand the contour to drive the contour towards desired

edges. But, one requires prior knowledge of whether the object is inside or outside the

initial contour. Besides, the final contour will be biased towards smaller and larger seg-

mentation while using the shrinking and expanding balloon forces, respectively. Since the

introduction of active contours and the subsequent introduction of the balloon force model,

several variations and modifications have been proposed to alleviate the local minima prob-

lem [11, 18, 25, 30, 31, 69, 73, 76, 81, 93, 99, 104].

In this thesis, we incorporate global image information in certain active contour models

to avoid the above-mentioned undesired local minima in curve evolution. We consider the

following three kinds of active contour models:

1. Edge/Region-based segmentation model,

2. Prior shape knowledge based segmentation model,

3. Motion segmentation model.

We discuss these models in detail and establish the necessity to address the local minima

problem for each model. We overcome the issue of local minima in each of these models by

using global image considerations. Hence the thesis is titled “Non-local Active Contours”.

1.1 Edge- and Region-Based Segmentation

If a monotonically decreasing, positive function of the gradient of the image (g(∇I)) is

used as the cost function in (2), the minimum of the energy drives the curve towards edges

3



in the image. As mentioned earlier, the final segmentation varies with initialization and

parameterization of the curve. Caselles et al. [22] modify the energy functional in (2)

by defining the parameter s as the arc length of the contour. This modification yields

a geometric interpretation to the classical energy minimization problem in (2). Since s

denotes the arc length of the curve, we have ‖C ′(s)‖ = 1. Neglecting the term associated

with the second derivative C ′′(s), we modify (2) as

E(C) =

∫
Ω

{A1 + P (C(s))}ds =

∫
Ω

{τ(C(s))}ds, (3)

where τ = P + A1(⇒ τ ≥ 0). For the given length of the curve, L, the domain becomes

Ω = [0, L]. The internal forces are now included in the cost function τ . Thus, the energy

minimization problem is reduced to finding the minimum path length of a contour in a

Riemannian space.

Using the active contour model described in (3) removes the dependence on parameter-

ization of the curve, but the final segmentation still depends on initialization. Edge-based

segmentation algorithms are very sensitive to noise and spurious edges because the cost

function is defined on the local image gradients. Thus, one has to initialize segmentation

with a contour that lies in close proximity to the desired segmentation.

Cohen and Kimmel [30] converted the energy minimization problem in (3) into a cost

accumulation problem. By treating τ as the traveling cost associated with each point on

the image plane, one can find the minimum of the energy by finding the accumulated cost

(u) in traveling from a given point on the image plane to every other point on the image

plane. According to [30, 33], the accumulated cost u can be found by solving the Eikonal

equation,

‖∇u‖ = τ. (4)

Authors in [2,82] developed a single-pass algorithm to find the accumulated cost u over

the entire image domain, and they named the algorithm, “Fast Marching” technique. The

calculated accumulated cost u, depends only on the location of a given point, and not on
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the geometry of the curve at that point. Thus, transforming the problem of generating open

geodesics into a minimal path problem.

Cohen and Kimmel [30] used the minimal path technique to develop an interactive

edge-based segmentation algorithm, which can be initialized by a single point on the object

boundary, to generate closed geodesics. Later, Appleton and Talbot [11] used minimal

paths to develop a segmentation algorithm, which can be initialized by a single user-given

point inside the object of interest.

In contrast, region-based curve evolution techniques, developed later, define energy

functionals based on region statistics rather than local image gradients. The Mumford-

Shah model [67], which approximates the image with smoothly varying functions, forms

the basis for various region-based segmentation algorithms. Other region-based curve evo-

lution approaches have been developed by authors in [73, 93, 104]. Chan and Vese [25]

developed a mean-curvature-flow-based level set implementation of a specific case of the

Mumford-Shah energy functional, where the mean intensity of the pixels, inside and out-

side the curve, are used as piece-wise constant, smooth approximations for the image. In

general, these region-based active contour models are less sensitive to noise and initializa-

tion in comparison to edge-based active contour models.

Therefore, while region-based segmentation algorithms are less susceptible to local

minima, edge-based segmentation algorithms have a better chance of detecting edges along

the object boundary. Majority of the segmentation algorithms use either edge- or region-

based energy minimization. In [23,73], authors use a linear combination of a region-based

model with the classical edge-based model to exploit the benefits of both approaches. But,

these schemes employ linear combination of edge- and region-based terms which may yield

new classes of local minima that represent unsatisfactory compromises of these two criteria.

In this work, we develop an active geodesic model that minimizes region-based energy with

an in-built edge-based constraint, to exploit the benefits of both approaches.
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1.2 Segmentation Based on Shape Priors

Segmentation purely based on image information becomes difficult when the image has

inherent noise, low contrast, and missing/diffused edges. Such difficult scenarios are very

common in medical images. In such cases, it is desirable to integrate prior shape knowledge

in the active contour model, especially when we have data to train for the shape of the object

of interest in the given environment.

The concept of using prior shape knowledge for image segmentation was introduced

by Cootes et al. [34] in their seminal paper “Active Shape Models - their training and

application”. They used an explicit parametrized curve representation framework for

training, as well as curve fitting. Subsequently, research has been conducted actively in

the last two decades to incorporate prior shape knowledge in image segmentation. Sim-

ilar explicit parameterization based shape prior segmentation models were developed in

[27, 41]. Level set based implicit shape prior segmentation schemes were also developed

later [37, 38, 61, 78, 79, 92].

These traditional prior based segmentation models treat each training shape as a single

global entity. Treating shapes as single entities reduces flexibility of the segmentation

model in dealing with shapes that have severely uncorrelated shape variations in different

parts (segments) of the global shape. This leads to inefficient utilization of training data,

leading to undesirable segmentation results.

Instead, in our work, we introduce localized shape prior based segmentation. We cluster

parts of the global shape that exhibit highly-correlated local shape variations. These local

variations may be independent of the variations in the distant parts of the global shape. To

cluster correlated local shape variations, we divide our image domain into various target

regions prior to the training phase. We then use localized PCA [85] to train on local vari-

ations. Thus, we focus the learning from PCA to these target regions, and maximize the

utility of each principal component (shape prior).

These local shape priors are used to constrain the evolving curve locally within the
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target regions. We can either use these local shape priors in an explicit curve representation

framework, as in the case with the Active Shape models, or we can use them in an implicit

level set based shape prior approach. We generate locally accurate segmentation results

using these localized shape priors to constrain the evolution in each target region. Finally,

we combine various locally accurate segmentation curves, using a variational framework,

to generate a single accurate global segmentation.

1.3 Motion Segmentation

A variational method for optical flow estimation was introduced by Horn and Schunck [48].

Around the same time, Lucas and Kanade [64] also developed an algorithm for optical flow

estimation. Later, various motion-based segmentation algorithms [13, 20, 35, 36, 49, 72, 86,

88] were developed based on the basic principles discussed in [48] and [64].

Optical flow and motion estimation algorithms assume that the brightness (gray value)

of a moving pixel does not change with displacement in time. We can define this brightness

constancy constraint (BCC) as

I1(x, y) = I2(x+ u, y + v), (5)

where I1 : Ω → R and I2 : Ω → R are images defined over a domain Ω ⊂ R2 at two

different time instants t1 and t2, and ~d = (u, v) defines the displacement vector of any

given point (x, y). If we linearize Equation (5) in a differential framework, we get the

famous optical-flow constraint [48] or the differential brightness constancy constraint

Ix · u+ Iy · v + It = 0, (6)

where Ix, Iy and It are partial derivatives of the image intensity and ~V = (u, v) is the

instantaneous velocity at a given point.

Equations (5) and (6) are ill-posed because they have two unknowns. Thus, we need

additional constraints to solve these equations. Horn and Schunck [48] introduced a global
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smoothness constraint, whereas Lucas and Kanade [64] used a local smoothness assump-

tion to solve this problem.

The goal of motion segmentation is to identify the boundary of objects moving inde-

pendently in an image sequence. Because the objects are moving independently, the as-

sumption of smoothness in flow field is strongly violated at the object boundaries. It would

be ideal if we can apply the smoothness assumption locally in the areas corresponding

to the different moving objects, allowing for discontinuities in the flow field at the object

boundaries. But to do so, we would have to identify the object boundaries first. Thus,

motion segmentation comprises of two main tasks, motion estimation and object boundary

detection.

Motion segmentation algorithms use active contour models for boundary optimization

and they tend to stumble upon the local minima problem. In this work, we develop a relaxed

motion segmentation algorithm, which uses global image information to model occluded

regions. This makes our motion-based segmentation algorithm robust against certain local

minima.

1.4 Contributions of this Thesis

The central theme of this thesis is to incorporate global information in certain traditional ac-

tive contour models to make them robust against a large class of local minima. We consider

different kinds of active contour models in this thesis and depending on the segmentation

cue used, we propose novel ways to avoid local minima by incorporating global image con-

siderations in energy minimization. Below, we summarize the major contributions of this

thesis:

• In Chapter 2, we develop two techniques to remove the established problem of direc-

tional bias in the numerical implementation of the traditional fast marching schemes.

The first approach, which we call interpolated fast marching method, interpolates
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the local traveling cost along the front to make the numerical implementation de-

void of any directional bias. The second approach, upsampled fast marching method,

computes the accumulated cost on an upsampled grid to remove the directional bias

caused by overlapping influence areas of the traveling cost at adjacent grid locations.

• In Chapter 3, we present a novel active geodesic model, which constrains an evolv-

ing active contour to continually be a geodesic with respect to an edge-based metric

throughout the evolution process. This model generates segmentation results that

exhibit both local and global behaviors rather than being compromises achieved by

weighted combination of region- and edge-based energies. This is achieved by reduc-

ing the search space in a region-based segmentation model with the edge constraint

and making the optimization problem a finite dimension problem. It also ensures

global edge optimality during the active evolution phase, which makes the model

robust against unwanted local minima. Using this active geodesic model, we also

develop an intuitive user interaction based segmentation algorithm.

• In Chapter 4, we develop a variational framework employing localized shape pri-

ors to learn and fit curves that are effective in capturing local shape variations. We

segment various regions in an image separately and then combine the locally ac-

curate segmentation curves to obtain a single globally accurate segmentation. We

concentrate the efforts of learning within certain target regions by using weighted

PCA based localized shape priors to enhance the utility of PCA as a tool to capture

shape variations.

• In Chapter 5, we propose a novel relaxed motion segmentation model. This model

treats an image sequence as overlapping foreground layer over a background layer,

and estimates these layers with a smoothness constraint using available image in-

formation. These estimates generate a model for the background in the occluded
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regions, thereby addressing the long-standing occlusion problems that severely ham-

per existing motion segmentation models.
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CHAPTER II

NUMERICALLY ISOTROPIC FAST MARCHING SCHEMES

Fast marching method was developed to solve the Eikonal equation (4) using a continuous

(first order) model to estimate the accumulated cost at a given grid point, but uses a dis-

continuous (zero order) model to estimate the traveling cost. As a result the estimate of

the accumulated cost at a given point will vary based on the direction of the arriving front,

thereby introducing an anisotropy into the discrete algorithm, even though the continuous

PDE is itself isotropic. In this chapter, we develop two very different numerically isotropic

schemes to remove this anisotropy. In the first scheme, we interpolate the traveling cost

along the direction of the propagating front to remove the directional bias, and in the sec-

ond scheme, we upsample the traveling cost on a higher resolution grid to overcome the

directional bias.

2.1 Introduction

Eikonal equation (4) is a first-order non-linear partial differential equation (PDE), which

describes propagation of wavefronts in a medium. Solution to the Eikonal equation is useful

in a large number of computer vision applications. Fast marching method was developed as

a computationally efficient, single-pass algorithm to solve the Eikonal equation on Carte-

sian grids, independently, by Sethian [2,82] and Tsitsiklis [95]. Cohen and Kimmel [30,33]

noticed that the minimal cost problem satisfies Eikonal equation, and developed the mini-

mal path approach based on the fast marching method.

The popularity of fast marching in computer vision algorithms has increased since

the introduction of the minimal path approach. Kimmel and Sethian used fast march-

ing for shape from shading and optimal path planning in [57], and recently Petres et
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al. [74] used fast marching for path planning in autonomous underwater vehicles. Min-

imal path approaches have also been used in various medical image segmentation appli-

cations [6, 8, 11, 14]. Kimmel and Sethian extended the use of fast marching to compute

minimal paths on manifolds [56]. Deschamps and Cohen [42] extended minimal path ap-

proach to 3D path extraction and developed a method to extract the path of centered tubular

structures. Later, Li and Yezzi [62] developed fast marching-based minimal 4D paths to

extract 3D tubular surfaces. Kimmel et al. [58] used distance maps for skeletonization and

later Telea et al. [91] developed a skeletonization algorithm based on the fast marching

technique. Fast marching techniques have also been used for image inpainting [90] and 3D

surface extraction [12]. Recently, minimal path approach was used by authors in [52,94] for

autonomous crack detection on asphalt pavement and concrete structure images. Lin [63]

proposed deliberately-anisotropic fast marching, which was later used by Benmansour et

al. [15] for segmentation of tubular structures like vessels.

Typically, Eikonal equation is solved numerically on discrete grids. Thus it is impossi-

ble to find the exact solution. Modifications have been suggested in [28,40,47] to improve

the accuracy of the Fast marching method. Authors in [40,55,75,83,95] also suggest using

an 8-connected neighbor scheme to improve accuracy. All the above-mentioned techniques

use a locally continuous model to estimate the accumulated cost, but assume the traveling

cost to be constant (discretized) around each grid point. In [83], Sethian introduced a

second order fast marching scheme, which uses a second order approximation for the accu-

mulated cost, but still uses a zero-order approximation (discretized) for the traveling cost.

This scheme is very effective in improving the accuracy for fast marching when the trav-

eling cost function is smooth. But in most applications, the desirable image features are

not smooth. Only [40] interpolates τ by shifting it to the center of the grid with a near-

est neighbor interpolation, but it still assumes a discretized shifted grid for τ . We present

two numerically-isotropic fast marching schemes to remove the established problem of

anisotropy in the numerical implementation of the Eikonal equation. In [7], we presented
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some preliminary results of this work.

Various approaches have also been developed to improve the computational efficiency

of the traditional fast marching schemes [7,55,97,98,101,102]. The fast marching schemes

we propose in this chapter, differ from traditional schemes only the treatment of the trav-

eling cost at each grid point. Hence all these computationally efficient techniques can be

readily extended to our approach.

2.2 Conventional Fast Marching Schemes

Ruoy and Tourin [80] proposed a numerical scheme to solve Eikonal equation (4) on dis-

crete 2-D Cartesian grids. For a given location (i, j) with a the traveling cost τi,j , the

accumulated cost ui,j is given by

max(ui,j − ui−1,j, ui,j − ui+1,j, 0)2+

max(ui,j − ui,j−1, ui,j − ui,j+1, 0)2 = τ 2
i,j

(7)

A single-pass algorithm to solve this equation was proposed by Adalsteinsson and

Sethian [2, 82], and Tsitsiklis [95], simultaneously. Both the proposed algorithms accom-

plish this task by introducing an order in the selection of grid points. Adalsteinsson-Sethian

named this single-pass algorithm, Fast Marching Method.

Although Adalsteinsson-Sethian and Tsitsiklis proposed solutions to the same problem,

Adalsteinsson-Sethian used a 4-neighbor scheme, whereas Tsitsiklis used an 8-neighbor

scheme. Tsitsiklis posed the problem of solving Eikonal equation as an optimal trajec-

tory problem, whereas Adalsteinsson-Sethian used an upwind-difference scheme to solve

the Eikonal equation. In this chapter, we deduce solutions to both 4- and 8-neighbor

schemes using optimal trajectory approach. We also discuss the drawbacks of these tra-

ditional schemes. We then propose certain modifications to these fast marching schemes to

overcome their short comings and deduce the modified solutions.
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(a) 4-Connected Neighbors Scheme
(Adalsteinsson-Sethian Scheme).

(b) 8-Connected Neighbors Scheme
(Tsitsiklis Scheme).

Figure 1: Triangulation of grid cells for the traditional fast marching schemes.

2.2.1 4-Connected Neighbor Adalsteinsson-Sethian Scheme

Consider the geometry shown in Figure 1(a), where the front is arriving at the grid point C

from quadrant AB, and intersecting AB at E. The accumulated cost at E can be estimated

by linear interpolation,

uE = uB(1− t) + uAt,

where 0 ≤ t ≤ 1. Now, the accumulated cost at C will be the sum of the accumulated cost

at E and the cost accumulated in traveling along
→
EC with a constant local traveling cost

τC .

uC = min
0≤t≤1

{
uB(1− t) + uAt+ τC

√
t2 + (1− t)2

}
. (8)

The minimization in Equation (8) can be solved either analytically or iteratively. We can

obtain the analytic solution by solving the optimality condition to minimize uC (duC

dt
= 0).

Taking the derivative of (8) with respect to t yields

uA − uB + τC

( 2t− 1√
t2 + (1− t)2

)
= 0. (9)
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Solving this quadratic equation leads to the closed form solution

uC =


1
2

(
uA + uB if uC > uA,uC > uB

+
√

2τ 2
C − (uA − uB)2

)
min(uA, uB) + τC otherwise.

(10)

This is the exact same solution one would obtain by solving the quadratic equation in

(7). Similarly, accumulated cost can be calculated for the remaining three quadrants. The

minimum value of u from the four quadrants is the accumulated cost at C (uC). Accumu-

lated cost on the entire grid can be calculated using a min-heap structure [2]. In all future

references, we call this basic 4-neighbor Adalsteinsson-Sethian scheme, the fast marching

method (FMM).

2.2.2 8-Connected Neighbor Tsitsiklis Scheme

In a similar manner, one can deduce the solution for accumulated cost in the 8-neighbor

scheme. Consider the geometry shown in Figure 1(b), where the front is arriving at the grid

point C from the octant AB, and intersecting AB at E. For 0 ≤ t ≤ 1, the accumulated

cost at C is given by

uC = min
0≤t≤1

{
uB(1− t) + uAt+ τC

√
1 + t2

}
. (11)

Solving duC

dt
= 0, we can derive the optimality condition to minimize uC ,

uA − uB + τC

( t√
1 + t2

)
= 0. (12)

The closed form solution of this quadratic equation can be written as

uC =


uB + τC if uB ≤ uA,

uA +
√

2τC if τC ≤
√

2(uB − uA),

uB +
√
τ 2
C − (uB − uA)2 otherwise.

(13)

Similarly, accumulated cost for fronts arriving from all the eight octants around C are

calculated, and the minimum value is assigned to uC .
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(a) Influence areas of τ . (b) Comparison of minimal paths.

Figure 2: (a) Overlap in influence areas of τB and τC . (b) Comparison of minimal paths
on a random noise image.

2.2.3 Lack of Isotropy in Conventional Schemes

Consider the geometry shown in Figure 2(a). Both conventional schemes described pre-

viously use linear approximation to compute the accumulated cost at point C, but use a

constant local traveling cost τC . Thus, the influence area of the traveling cost given at a

grid point includes all the four quadrants/eight octants around it. The resulting overlap in

the areas of influence for grid points B and C are shown in Figure 2(a). This suggests that

the value of uC will vary with the direction of the arriving front. Ideally, for isotropic fast

marching, the accumulated cost should be independent of the direction of the arriving front.

For the image shown in Figure 2(b), we use the traveling cost τ(x) = I(x), where I(x) is the

intensity at each pixel. The accumulated cost in traveling from A to B should be equal to

the accumulated cost in traveling from B to A. But, there is a difference in the accumulated

costs because of the dependence on marching direction. Figure 2(b) compares the minimal

path obtained using back propagation from B to A with the minimal path obtained by re-

versing the direction of front propagation. The difference in the two paths highlights the

error caused by the directional dependence of the fast marching method.
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We propose two numerically-isotropic fast marching schemes to overcome the above-

mentioned shortcomings. The first method uses a linear/bilinear model (locally) to estimate

τ along the direction of the propagating front, within each grid cell, taking the direction of

arrival into consideration. We also discuss how this scheme can be made truly isotropic

by removing the bias caused by the marching direction. We call this method the Inter-

polated Fast Marching Method. In the second method, we calculate u on an upsampled

grid. In upsampling the grid, τ becomes constant in the neighborhood of each grid point,

which eliminates the need to estimate τ with a continuous model. We call this method the

Upsampled Fast Marching Method.

2.3 Interpolated Fast Marching Method

For interpolated fast marching scheme, we assume τ to be continuous around each grid

point, and use linear/bilinear interpolation to estimate the value of local traveling cost in

each grid cell. In this section, we derive the equations for linear- and bilinear-interpolated

fast marching schemes. To estimate the traveling cost in a grid cell, the bilinear scheme

uses the value of τ from all the grid points associated with the given quadrant. We cannot

accommodate bilinear interpolation in a 4-connected neighbor scheme because a maximum

of two neighbors can be used in each quadrant to calculate u. Thus, we only discuss the

8-connected neighbor scheme with bilinear interpolation.

2.3.1 4-Connected Neighbors Linear Interpolation Scheme

Consider a front arriving at the grid point C from the quadrant AB, and intersecting AB

at E, as shown in Figure 3(a). We use linear interpolation of local traveling cost along the

path
→
EC to compute uC . The accumulated cost at C is

uC = min
0≤t≤1

{
uB(1− t) + uAt+

∫ 1

0

τ(p)

√
t2 + (1− t)2dp

}
. (14)

The linear interpolation of the local traveling cost along
→
EC is

τ(p) = τC + (τA − τC)p(1− t) + (τB − τC)pt,
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(a) 4-Connected Neighbor Scheme. (b) 8-Connected Neighbor Scheme.

(c) Isotropic triangulation.

Figure 3: Triangulation of grid cells for interpolated fast marching schemes.
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where 0 ≤ p ≤ 1. Substituting τ(p) in (14) yields

uC = min
0≤t≤1

{
uB(1− t) + uAt

+

√
t2 + (1− t)2

(
τA + τC

2
+
τB − τA

2
t

)}
.

(15)

To get the necessary optimality condition for the minimum of uC , we solve duC

dt
= 0.

Taking the derivative of (15) with respect to t yields

uA − uB +

√
t2 + (1− t)2

(
τB − τA

2

)
+

2t− 1√
t2 + (1− t)2

(
τA + τC

2
+
τB − τA

2
t

)
= 0.

(16)

Algebraic manipulations on Equation (16) gives us the quartic equation,

t4(16Y 2) + t3(16Y Z − 24Y 2) + t2(4Z2 − 20Y Z + 17Y 2 − 2X2)

+ t(10Y Z − 4Z2 − 6Y 2 + 2X2) + (Z2 − 2Y Z + Y 2 −X2) = 0,

(17)

where X = (uA − uB), Y = τB−τA
2

and Z = τA+τC
2

.

This quartic equation can be solved using Ferrari’s solution [60], which is derived in

Appendix A. If Y = 0 i.e.τB − τA = 0, then (16) reduces to

uA − uB +
2t− 1√

t2 + (1− t)2

(
τA + τC

2

)
= 0, (18)

which can be solved using the closed form solution given in (10).

2.3.1.1 Newton’s Method

We can also solve (16) using Newton’s method. Let us consider a function,

f(t) =uA − uB +

√
t2 + (1− t)2

(
τB − τA

2

)
+

2t− 1√
t2 + (1− t)2

(
τA + τC

2
+
τB − τA

2
t

)
.

(19)

The solution to f(t) = 0, t∗, will give us the locations of minima/maxima of (16). The final

accumulated cost at grid point C is the minimum of the values of uC calculated at t∗ and

the boundaries t = 0, t = 1.

19



The first order derivative of f(t) is given by

f ′(t) =
(2t− 1)(uA − uB)√

t2 + (1− t)2
+ (τA + τC) + (8t− 3)

τB − τA
2

. (20)

We note that for t = 0.5, f ′(0.5) = τC + τB+τA
2

. Thus, f ′(0.5) 6= 0 for non-zero

traveling cost functions. Thus, we can initialize the Newton’s scheme with tinit = 0.5, and

iteratively solve for t using the update equation

tn+1 = tn −
f(t)

f ′(t)
, (21)

given f ′(t) 6= 0. Typically, a single minimum/maximum of (16) lies in the range t ∈ [0, 1].

If the function is monotonic within the range t ∈ [0, 1], (uC)min will lie on the boundary.

There are certain corner cases, including the possibility of multiple minima for t ∈ [0, 1],

which we discuss in detail in Appendix B. A very small number of pixels (< %2 in each of

our test images) fall in this category.

2.3.2 8-Connected Neighbors Linear Interpolation Scheme

Consider the triangulation of a grid cell shown in Figure 3(b) for 8-connected neighbor

scheme. Using linear interpolation to estimate the local traveling cost along
→
EC, the accu-

mulated cost at C becomes

uC = min
0≤t≤1

{
uB(1− t) + uAt+

∫ 1

0

τ(p)
√

1 + t2dp
}
. (22)

Substituting τ(p) = τC + (τB − τC)p+ (τA − τB)pt, where 0 ≤ p ≤ 1, in (22) yields

uC = min
0≤t≤1

{
uAt+ uB(1− t)

+
√

1 + t2
(
τB + τC

2
+
τA − τB

2
t

)}
.

(23)

Again the minimizer of uC can be obtained by solving duC

dt
= 0. Thus, we have

uA − uB +
√

1 + t2
(
τA − τB

2

)
+

t√
1 + t2

(
τB + τC

2
+
τA − τB

2
t

)
= 0.

(24)
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Equation (24) can be factorized to obtain the quartic equation

t4(4Y 2) + t3(4Y Z) + t2(4Y 2 + Z2 −X2)

+ t(2Y Z) + (Y 2 −X2) = 0,

(25)

where X = (uA − uB), Y = τA−τB
2

and Z = τB+τC
2

. This quartic equation can be solved

using Ferrari’s solution [60] (Appendix A). If Y = 0 i.e.τA − τB = 0, then (24) reduces to

uA − uB +
t√

1 + t2

(
τB + τC

2

)
= 0, (26)

which can be solved using the closed form solution given in (13).

2.3.2.1 Newton’s method

To obtain the solution using Newton’s method, we define

f(t) =
√

1 + t2(uA − uB) + (1 + 2t2)
τA − τB

2
+
τB + τC

2
. (27)

Taking the derivative of f(t) we get,

f ′(t) =
t(uA − uB)√

1 + t2
+ 4t(

τA − τB
2

) +
τB + τC

2
. (28)

For t = 0, f ′(0) = τB+τC
2

. Thus f ′(0) 6= 0 for non-zero traveling cost functions, and we

can initialize Newton’s method with tinit = 0 and iteratively solve for t using the update

equation (21). The corner cases with multiple minima are discussed in Appendix C.

2.3.3 Isotropic Linear Interpolation Scheme

Figures 3(a) and 3(b) show the triangulation of a grid cell for 4-neighbor and 8-neighbor

schemes, respectively. Depending on the front direction, one of the quadrants/octants is

chosen to estimate the accumulated cost. This induces a directional bias. To overcome this

directional bias, we have to consider all possible triangulations shown in Figure 3(c). Since

we are solving a minimization problem, the accumulated cost across a grid cell must be

the minimum of the solutions obtained using the 4-neighbor and 8-neighbor schemes. This

makes the marching scheme completely unbiased to direction. We call this scheme - the

Isolinear scheme.
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2.3.4 8-Connected Neighbors Bilinear Interpolation Schemes

The bilinear estimate of the local traveling cost along
→
EC for triangulation of the grid cell

shown in Figure 3(b) is

τ(p) =τA(p)(pt) + τB(p)(1− pt)

+ τC(1− p)(1− pt) + τD(1− p)(pt),

where 0 ≤ p ≤ 1. The bilinear interpolation scheme is inherently independent of any

directional bias within a grid cell. Substituting τ(p) in (22) yields

uC = min
0≤t≤1

{
uAt+ uB(1− t)

+
√

1 + t2
(
τB + τC

2
+
τA − τB

3
t+

τD − τC
6

t

)}
.

(29)

Solving duC

dt
= 0 to minimize uC , yields

uA − uB +
√

1 + t2
(
τA − τB

3
+
τD − τC

6

)
+

t√
1 + t2

(
τB + τC

2
+
τA − τB

3
t+

τD − τC
6

t

)
= 0.

(30)

Equation (30) can be factorized to obtain the quartic equation

t4(4(Y + Z)2) + t3(4W (Y + Z)) + t2(4(Y + Z)2 +W 2 −X2)

+ t(2W (Y + Z)) + ((Y + Z)2 −X2) = 0,

(31)

where X = (uA − uB), Y = τA−τB
3

, Z = τD−τC
6

and W = τB+τC
2

. This quartic equation

can be solved using Ferrari’s solution [60] (Appendix A). If Y = Z = 0 i.e.τA − τB =

τD − τC = 0, then (30) reduces to

uA − uB +
t√

1 + t2

(
τB + τC

2

)
= 0, (32)

which can be solved using the closed form solution given in (13).

2.3.4.1 Newton’s method

To obtain the solution using Newton’s method, we define

f(t) =
√

1 + t2(uA − uB) + (1 + t2)(
τA − τB

3
+
τD − τC

6
)

+ t(
τB + τC

2
+
τA − τB

3
t+

τD − τC
6

t).

(33)

22



Taking the derivative of f(t) we get,

f ′(t) =
t(uA − uB)√

1 + t2
+ 4t(

τA − τB
3

+
τD − τC

6
) +

τB + τC
2

. (34)

We see that for t = 0, f ′(0) = τB+τC
2

. Thus, f ′(0) 6= 0 for non-zero traveling cost

functions and we can initialize Newton’s method with tinit = 0 and iteratively solve for

t using the update equation (21). The corner cases with multiple minima are discussed in

Appendix C.

2.3.4.2 Comparison of Computation Time

Since Newton’s scheme exhibits quadratic convergence for all interpolated fast marching

schemes (Appendix B & C), three iterations were sufficient for convergence. Fixing the

number of iterations in each update step also ensures that we have the same computation

complexity in each update step; making it suitable for hardware implementation. New-

ton’s scheme has fewer (logical and mathematical) operations in comparison to the Ferrari

(analytic) scheme; hence, using Newton’s scheme is computationally efficient. We com-

pare the computation time on a 500x500 random noise image for the Ferrari’s scheme and

Newton’s scheme. The computation time for analytic and Newton’s schemes are listed in

Table 1. We call the 4-connected and 8-connected neighbor linear-interpolated fast march-

ing schemes, Linear-4 and Linear-8 schemes, respectively, and the 8-connected neighbor

bilinear-interpolated fast marching scheme, Bilinear-8. The computation time was mea-

sured on a laptop with a 1.73 GHz processor.

Table 1: Comparison of computation time.
Linear-4 Linear-8 Bilinear-8

Analytic (Ferrari) 1.51s 2.83s 3.23s
Newton’s scheme 0.51s 0.52s 0.65s
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(a) 4-Connected Neighbors
Scheme.

(b) 8-Connected Neighbors
Scheme.

(c) Isotropic Fast Marching
Scheme.

Figure 4: B is the newly accepted grid point and uC is to be computed.

2.3.5 Marching Forward Loop

We differ from traditional marching techniques only in the calculation of accumulated cost

and not in the marching order. Thus, we still follow the main loop of the basic fast marching

scheme [82]. When a trial point is accepted in the min-heap structure, we compute the

value of u from both quadrants/octants that include the newly accepted point, and replace

the newly calculated u with the minimum of the two solutions and the existing value of u

(if the point is marked as trial).

Consider the example shown in Figure 4(a), where B is the newly accepted point, and

the accumulated cost at neighbor C is to be computed. As opposed to the basic fast march-

ing technique, uC does not solely depend on uA,uB,uE and the local traveling cost τC , but it

also depends on the accumulated and traveling costs at all the other 8-connected neighbors.

Thus, using the quadrant containing the minimum of uA and uE will not necessarily guar-

antee the minimum solution to (15). We have to consider both the quadrants that contain

B. If the front also arrives at C from the other two quadrants, they will be considered when

the corresponding neighbors become accepted. The same argument can be extended to the

8-connected neighbor case shown in Figure 4(b). We need to calculate uC from the two

octants containing AB and FB, once point B is accepted. In the isolinear fast marching

scheme, we consider the possibility of front arriving from all quadrants and octants (Figure
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4(c)).

Since we depart from the traditional fast marching method only in the update proce-

dure for the accumulated cost, we can use the various computationally efficient techniques

developed for the traditional fast marching scheme. Fast sweeping methods [101], group

marching method [55], untidy priority queue-based marching [98] and algorithms which

exploit parallel processing, such as [97], can also be readily extended to our approach for

hardware implementation.

2.4 Upsampled Fast Marching Method

In the previous section, we discussed how interpolating traveling cost along the arriving

front can remove the directional bias. In this section, we discuss a second approach to

overcome the problem posed by the overlap in influence areas of τ (Figure 2). Consider

the upsampled grid shown in Figure 5, where the solid circles correspond to grid points

on the original grid. Now, we see that there is no overlap in the influence areas of τ

on the upsampled grid. Since the traveling cost is unique in each grid cell, there is no

directional bias in the calculation of u. We first compute u on the upsampled grid, and then

downsample the output on the original grid.

Figure 5: No overlap in influence areas of τA, τB, τC , τD.
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2.4.1 4-Connected Neighbors Upsampled Scheme

In the upsampled grid, τ is unique in each quadrant around a grid point. The value of τ

chosen to calculate u is unique for a given direction of the arriving front. For example, if

the front arrives at E from the north-west, then we use τA (Figure 5). At the point G, we

use τA for a front arriving from the west and τB for a front arriving from the east. We use

τA to calculate uA, irrespective of the direction of the arriving front. Since the value of τ is

constant along the direction of the front at a sub-pixel level, it is not necessary to assume

a locally continuous model to interpolate τ . Thus, the accumulated cost at E for a front

arriving from the north-west is

uE = min
0≤t≤0.5

{
uF t+ uG(0.5− t) + τA

√
t2 + (0.5− t)2

}
. (35)

This minimization leads to the closed form solution

uE =


(uF +uG+

√
δ)

2
if δ ≥ 0,

min(uF , uG) + τA
2

otherwise,

where δ =
τ2
A

2
− (uF − uG)2.

2.4.2 8-Connected Neighbors Upsampled Scheme

As in the case with 4-connected neighbors scheme, τ is unique in each octant around a

grid point in the upsampled grid. We note that exactly one grid point in each associated

quadrant corresponds to a grid point in the original grid; we use the corresponding value of

τ to compute u.

By following the procedure described in Section 2.3.5, we calculate u from the two

octants that contain the newly accepted point. If F is the newly accepted point, we calculate

uE in the octants containing FA and FD (Figure 5). The solution is the minimum of the

two values obtained. Thus, for a front arriving from north-west, the accumulated cost at E

is

uE = min
0≤t≤0.5

{
uAt+ uF (0.5− t) + τA

√
0.5 + t2

}
, (36)
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which yields the closed form solution

uE =


uF + τA

2
if uF ≤ uA,

uA +
√

2 τA
2

if τA ≤ 2
√

2(uF − uA),

uF +

√
τ2
A−4(uF−uA)2

2
otherwise.

2.5 Numerical Experiments

In this section, we present a few experiments to compare the proposed methods to the

basic fast marching method (FMM) [82], Tsitsiklis scheme [95], shifted-grid fast march-

ing (SGFM) [40] and multi-stencil fast marching (MSFM) [47]. We also compare the 4-

connected neighbor upsampled (Up4) and 8-connected neighbor upsampled (Up8) schemes

with the upsampled version of the SGFM scheme (upSG). All the minimal paths in this sec-

tion are generated using a sub-pixel level back propagation scheme, to minimize potential

errors that can be introduced by the back propagation procedure.

2.5.1 Back Propagation Error and Accuracy

For the two images shown in Figure 6, we calculate u over the entire domain from a ran-

domly chosen point (marked by ‘X’). Then we compare the value of u at each point with

the total cost in propagating a front from that point to the point marked ‘X’. The difference

in the two values is the back-propagation error. The average error over the entire image

domain gives us average back-propagation error (ABPE). The numerical values of ABPE

for the various schemes are listed in the Table 2. For the cardiac image, we use the cost

function τ(x) = 1
1+|∇I|2 , and for the random noise image, we use τ(x) = I(x).

In the next example, we compare the accuracy of the various techniques for the follow-

ing cost functions:

τ1(x, y) = 1/20
√

(sin x
20
cos y

20
)2 + (cos x

20
sin y

20
)2,

τ2(x, y) = 1/10
√

(sin x
20
cos y

10
)2 + (cos x

20
sin y

10
)2.
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(a) Cardiac Data (b) Random noise

Figure 6: Test images used to compute Average Back Propagation Error (ABPE).

The isocontours of analytic accumulated cost, uanalytic, on a 50x50 grid for τ1 and τ2 are

shown in Figure 7. The geodesics to the center (26, 26) of the grid will be straight lines for

τ1, and curved lines for τ2. Since, we have the analytic solution for these cost functions, we

compare the L1, L2 and L∞ norms for each scheme.

(a) Isocontour of u1. (b) Isocontour of u2.

Figure 7: Isocontours of analytic accumulated cost functions.

L1 = mean(|u− uanalytic|),

L2 = mean(|u− uanalytic|2),

L∞ = max(|u− uanalytic|).

The numerical errors are listed in Table 2. Notice that the error norms show significant

improvement for the proposed methods, especially in the case with curved geodesics (τ2).

The isocontours of error for τ2 using FMM, SGFM, isolinear and up8 schemes are shown

in Figure 8.
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(a) FMM (b) SGFM

(c) Isolinear (d) Upsampled-8

Figure 8: Isocontours of errors for cost function τ2.

We enlist computation time for each scheme in the last column of Table 2. We mea-

sured computation time on a 500x500 random noise image using a laptop with a 1.73 GHz

processor.

2.5.2 Segmentation and Minimal Path Results

In Figure 9, we present left ventricle segmentation results on a 2D cardiac image. To seg-

ment the image we pick a point on the boundary of the object and detect all saddle points

(described in detail in Section 3.2.2 of Chapter 3). From each saddle point, we obtain
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Table 2: Error norms for τ1 and τ2, ABPE, and computation time.

τ1 τ2 ABPE Time
L1 L2 L∞ L1 L2 L∞ I1 I2 (s)

FMM 2.5x10−2 6.7x10−4 0.038 4.4x10−2 2.1x10−3 0.106 0.073 0.390 0.27
Tsitsiklis 2.1x10−2 4.9x10−4 0.028 3.8x10−2 1.6x10−3 0.083 0.101 0.435 0.26
MSFM 2.4x10−2 6.1x10−4 0.035 4.2x10−2 1.9x10−3 0.101 0.083 0.357 0.29
SGFM 2.3x10−3 6.3x10−6 0.005 1.3x10−2 2.1x10−4 0.058 0.002 0.028 0.33
Linear4 1.1x10−2 1.7x10−4 0.029 1.7x10−2 4.0x10−4 0.088 0.012 0.104 0.51
Linear8 2.3x10−3 6.8x10−6 0.005 4.4x10−3 3.4x10−5 0.060 0.003 0.036 0.52

IsoLinear 2.3x10−3 6.8x10−6 0.005 4.0x10−3 3.1x10−5 0.060 0.011 0.091 0.91
Bilinear8 2.7x10−3 9.4x10−6 0.005 5.0x10−3 4.1x10−5 0.061 0.003 0.010 0.65

Up4 1.8x10−3 7.6x10−6 0.010 3.1x10−3 2.9x10−5 0.066 0.045 0.19 1.37
Up8 3.0x10−4 2.0x10−7 0.001 1.5x10−3 7.8x10−6 0.029 0.001 0.02 1.42

UpSG 2.0x10−3 4.1x10−6 0.004 1.2x10−2 1.9x10−4 0.057 0.002 0.01 1.42

two minimal paths back to the initial point; each set of two paths gives us a closed seg-

mentation curves. We choose the saddle point whose corresponding closed segmentation

curve has the minimum Chan-Vese [24] energy. Images in Figure 9 show the overlay of

segmentation curves initialized with two different user given points on the boundary. We

see that the segmentation curves are not consistent and they depend on initialization. This

inconsistency is due to the difference in the marching direction, which is exaggerated in the

presence of weak image features. We highlight certain regions in these images to compare

the segmentation results obtained using the different marching schemes.

In Figure 10(a), we present a concrete structure image with a crack. Figure 10(b) shows

the corresponding crack detected manually. For semi-automated crack detection, we pro-

vide two endpoints on the image to detect the crack (using τ(x) = I(x)). We compare the

results generated by various schemes with the manually detected crack in Figure 10.

Next, we compare minimal paths obtained by reversing the marching direction for the

same set of end points (Figure 11). We see that the proposed isolinear fast marching scheme

consistently detects the crack in both directions. The inherent anisotropy in traditional

schemes reduce the consistency in crack detection. Thus, accuracy in crack detection varies

with the marching direction.
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(a) FMM (b) Tsitsiklis

(c) SGFM (d) Isolinear

Figure 9: A comparison of Left Ventricle segmentation with two different initializations.

In Figure 12, we present an asphalt road image with a crack. These images were cap-

tured by an automatic crack sealing machine (ACMS). The ACMS has a robotic arm to

apply sealant to the detected crack, without human intervention [94]. Thus, it is very impor-

tant to detect the crack very accurately, irrespective of the moving direction of the vehicle

housing the ACMS. The low-contrast in the captured image makes this task very challeng-

ing. Figures 12(b-f) compare the consistency in the detected path among the various fast

marching schemes.

In Figure 13, we compare the manually detected crack with the minimal path detected

using the traditional fast marching scheme, isolinear scheme and upsampled fast marching

scheme. As we can see, the accuracy of the traditional schemes vary with the marching

direction.

Finally, we compare the minimal paths obtained on a random 200x200 noise image in
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(a) Concrete Structure (b) Manually detected crack (c) FMM

(d) MSFM (e) SGFM (f) Isolinear

Figure 10: Comparison of crack detection in concrete structures: (a) Initial stage of crack
development in a concrete structure. (b) Manually detected crack. (c-f) Comparison of
minimal paths for crack detection on concrete images with the manually detected crack.
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(a) FMM (b) MSFM

(c) SGFM (d) Isolinear

Figure 11: Comparison of minimal paths for crack detection on concrete images gener-
ated by changing marching direction.
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(a) Asphalt Road Image (b) FMM (c) MSFM

(d) SGFM (e) Isolinear (f) Upsampled

Figure 12: Comparison of minimal paths for crack detection on asphalt road images
generated by changing marching direction.
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(a) Manually detected
crack

(b) FMM. (c) Isolinear (d) Upsampled

Figure 13: Comparison of crack detection results with manually detected crack map: We
compare the manually detected crack (White Path) with the generated minimal path (Cyan
Path).

traveling from point ‘0’ to points ‘1’,‘2’ and ‘3’, with the corresponding minimal paths ob-

tained by reversing the marching direction (Figure 14). We see that the proposed schemes

give consistent paths even in the absence of strong image features. The results also vali-

date the ABPE values listed in Table 2. The ABPE for the Tsitsiklis scheme is the highest

and accordingly, the paths obtained with the Tsitsiklis scheme show a lot of variation. Al-

though the average error for SGFM is low, the minimal paths obtained using SGFM show

significant variations. Interpolation of the cost function in SGFM artificially smooths the

traveling cost, which reduces the significance of the image features.

2.6 Conclusion

We have presented two techniques to remove the established problem of directional bias in

the numerical implementation of fast marching and improve the accuracy of the fast march-

ing method. One approach interpolates the local traveling cost along the front and the other
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computes accumulated cost on an upsampled grid. We showed that combining the 8 and

4-connected neighbor schemes further reduces the inaccuracy by considering all possible

directions of the arriving front. We have compared both our approaches to the existing fast

marching techniques and show significant improvements. Although both our approaches

have higher computation time, they can be implemented efficiently on hardware and they

are practical solutions to eliminate the inaccuracies of existing fast marching techniques.
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(a) FMM (b) Tsitsiklis

(c) MSFM (d) SGFM

(e) Isolinear (f) Bilinear

(g) Upsampled (h) Upsampled shifted grid

Figure 14: Minimal Paths on a random noise image: Comparison of minimal paths ob-
tained by reversing the marching direction.
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CHAPTER III

ACTIVE GEODESICS: A REGION-BASED ACTIVE CONTOUR

MODEL WITH A GLOBAL EDGE-BASED CONSTRAINT

In this chapter, we develop an active geodesic model, which constrains any evolving region-

based active contour to continually be a geodesic with respect to an edge-based metric

through its entire “active” evolution rather than just at its final state (as in the traditional

geodesic active contour models). Since the contour is always a geodesic throughout the

evolution (during its “active” state), we automatically get a degree of global optimality

with respect to the edge-fitting criterion. This enables us to construct a purely region-based

energy minimization model without having to devise arbitrary trade-offs in the combination

of our energy function to balance edge-based terms with the region-based terms. This

approach of integrating edge information as a geodesic constraint while optimizing a purely

region-based energy yields a new class of active contours that exhibit both local and global

behaviors. Additionally, these active geodesics are naturally responsive to intuitive types

of user interaction.

3.1 Introduction

The need to find solutions to active contour models that are less susceptible to local min-

ima has led to the development of various modifications to traditional edge- and region-

based energy minimization models. In the past, various papers have developed com-

plicated schemes and modifications, either to exploit edge information with less sensi-

tivity to local minima [11, 18, 30, 31, 69, 73], or to utilize region-based energy models
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[25,76,81,93,99,104], which can reduce sensitivity to local minima. Although, the region-

based models exhibit far less sensitivity to local minima, they demand contrast and homo-

geneity levels that are often unrealistic for a broad class of imagery. The active geodesic

model developed in this chapter tries to solve the problem by minimizing one form of

energy (region-based) with a global constraint of a second form of energy (edge-based).

The earliest approach that converted the purely edge-based local optimization problem,

introduced in [51], into a global optimization problem was developed by Cohen and Kim-

mel in [30]. They converted the energy minimization problem into a cost accumulation

problem, which can be solved with a single-pass Fast Marching algorithm [2]. This accu-

mulated cost depended only on the location of a given point, and not on the geometry of

the curve at that point. Open geodesics could now be computed as minimal paths between

two specified end points. Using this minimal path approach Cohen and Deschamps [32]

developed an interactive edge-based segmentation algorithm, which is initialized by the

user with a few points on the object boundary. Sun et al. [87] introduced circular shortest

paths, which used the minimal path approach to detect closed curves with coinciding end

points. Later, Appleton et al. [10, 11] introduced the globally optimal geodesic active con-

tour (GOGAC) model, which initializes segmentation with a single user-given point inside

the object of interest.

In contrast to these edge-based active contour models, the region-based curve evolution

techniques, which were developed later, define energy functionals based on region statistics

rather than local image gradients [25, 67, 76, 81, 93, 99, 104]. In general, these region-

based segmentation models are less sensitive to noise and initialization when compared to

the edge-based models. Since these region-based models make strong assumptions about

homogeneity of the image, they fail to capture the relevant edges in certain cases.

Therefore, while region-based segmentation algorithms are less susceptible to local

minima, edge-based segmentation algorithms have a better chance of detecting edges along

the object boundary. Paragios et al. [73] used a linear combination of a probability based
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active region model with the classical edge-based model to exploit the benefits of both

approaches. The final segmentation curve had certain desirable properties of both models.

But a fixed weight for the linear combination may not be suitable for all kinds of images.

Chakraborty et al. [23] introduced a game-theory based approach to combine region- and

edge-based models. In addition to sensitivity to the choice of linear weighting factors, such

energy-based schemes that employ combination of edge- and region-based terms may yield

new classes of local minima that represent unsatisfactory compromises of these two criteria.

All the segmentation models discussed so far treat the image as a continuous function;

the models are defined in the continuum and they converge to either a local or global mini-

mum for a given energy. A second class of image segmentation algorithms view images as

a graph or a collection of discrete points [17, 45, 66, 77, 84]. The intelligent scissors algo-

rithm, described in [66], requires the user to specify several points on the object boundary

to generate a segmentation curve. Algorithms in [17, 45, 89] require the user to specify a

few pixels belonging to the interior and the exterior of the object of interest. Grab cuts [77],

developed later, asks the user to specify a bounding box around the object of interest along

with the labelled pixels. These interactive algorithms can generate arbitrary segmentation

results based on user interactions.

Here, we develop an active geodesic model that constrains the evolving active con-

tour to continually be a geodesic with respect to an edge-based metric through its entire

“active” evolution rather than just at its final state. Thus, we call our model the active

geodesic model as opposed to the traditional geodesic active contour model. With the

closed geodesic constraint in effect during the “active” evolution state we devise a purely

region-based energy minimization model. We use the Chan-Vese [25] (region-based en-

ergy) model in all examples presented here, but our model is generic to all other forms of

statistical region-based energy functions. Since the contour is a closed geodesic during the

entire evolution process, we are guaranteed to have a global form of optimality with respect

to an edge-based metric. Thus, the active geodesic exhibits edge optimality not only in the
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final converged state, but throughout the curve evolution process.

Maintaining global edge optimality throughout the region-based evolution process has

the following powerful advantages over other existing techniques:

1. Edge optimality reduces the search space for region-based optimization by reducing

the number of degrees of freedom (infinite dimensional problem to a finite dimen-

sional problem) to significantly improve the robustness of our algorithm.

2. All intermediate results are geodesics which are globally affected by image edges

rather than arbitrary contours which can respond locally to spurious structure in the

image (including noise). This enables active geodesics to avoid a larger class of local

minima when compared to the traditional geodesic active contour evolution models

that are globally edge optimal only in their final converged state.

3. The final segmentation will be a region-based minimum with the edge constraint,

and not a compromise achieved by an energy model with a weighted combination of

region- and edge-based energies.

In Section 3.4, we also develop an interactive segmentation algorithm based on this

active geodesic model. The user initializes the algorithm by identifying a single point in

the interior of the object of interest. Subsequently the user can interact with the algorithm,

if necessary, by placing additional repellers and attractors to repel or attract the active

geodesic towards desired edges. These repellers and attractors vary the edge-based metric

locally, which in turn has a global effect on the active geodesic. This lends a very intuitive

response and interpretation to the user interaction in our approach.

3.2 Coupling Region- and Edge-based Segmentation

In this section, we describe the coupling of region- and edge-based segmentation using the

minimal path approach [30]. We first discuss an extension of the minimal path approach to
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detect closed geodesics and then incorporate region-based energy to find a globally accurate

segmentation.

3.2.1 Edge-based Segmentation using Minimal Paths

For edge-based minimal paths, we use the Eikonal equation from (4) with an edge-based

travelling cost function of the form

τ(x) = g

(
1

1 + ‖∇I‖

)
+ ε, (37)

where g(·) is a monotonically increasing function, ε > 0 is a regularizer and∇I denotes the

gradient of the image at a given location. In all the examples presented in this chapter we

use the Interpolated Fast Marching scheme (Refer Section 2.3) with a monotonic function

of the form g(x) = xm, where m ≥ 1. To extract the shortest path between two points,

we calculate u by propagating wavefronts from one of the two points (source point) to the

other (end point). Then, by following the gradient descent in the vector field ~∇u, we trace

our path back to the source point. The path obtained is the globally optimal open geodesic

(shortest path) between the two points.

3.2.1.1 Detecting Closed Curves using Minimal Paths

If two different global minimal paths exist between two points on the image, the two open

geodesics complete a closed contour. Now, consider a single source point given in the

image domain. To detect closed curves, we have to find points on the domain from which

two global minimal paths (back to the single source) exist, i.e, the two paths have the

same accumulated cost. These special points are called saddles of u [29] and they can be

interpreted as the points where the propagating fronts collide. The colliding fronts also

indicate that the two open geodesics forming the closed curve have the same tangent at the

saddle point. Note that the two open geodesics may or may not have the same tangent at

the source point. Thus the closed geodesic formed by combining two open geodesics is

guaranteed to be truly geodesic at all the points except at the source point.
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Since two minimal paths form a single closed curve, there will be a unique saddle point

associated with each closed curve. We can associate two descents and two ascents in u to

each saddle point [29]. Thus, we can detect saddle points by calculating the number of

level crossings of u around each point in the domain. Most of the points on the grid have

two level crossings whereas the saddle points will have four level crossings.

Consider the cardiac image shown in Figure 15(a) where the source point (marked ‘X’)

is placed on the boundary of the object of interest. Figure 15(b) shows the level set rep-

resentation of the propagating wavefronts from the source. Figure 15(c) and Figure 15(d)

show the various detected saddle points and closed curves associated with each detected

saddle point, respectively.

(a) (b)

(c) (d)

Figure 15: (a) Cardiac image with source point marked by an ‘X’. (b) Level set represen-
tation of the propagating wavefronts. (c) Saddle point map: The white pixels in the image
indicate the saddle points. The white pixels indicate four level crossings around them, gray
pixels indicate two level crossings and the black pixels indicate zero level crossings. (d)
Closed geodesics associated with each detected saddle point.
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3.2.2 Shock Curves

As we can see in Figure 15(c), several saddle points are obtained for a single source point.

So, we need to find a way to weed out the unwanted saddle points. Authors in [30] present

a technique to weed out the unwanted saddle points by filtering them based on the edge

information in the image. They make an assumption that a saddle point closer to an edge

is relevant. Then they present the reduced set of saddle points to the user, who chooses

the appropriate saddle point to form the closed curve. Instead, we propose an elegant

approach to detect the closed curve by finding the appropriate saddle point without any

user interaction.

Let us first formalize the notion of relevance in the context of saddle points. Consider

a small circle of infinitesimal radius around the source point. The closed geodesic contour

segmenting the object will contain two minimal paths which descend (against the gradient

of u) towards the source, within the circle, from two different directions. Thus, we can

deem a saddle point as relevant if the minimal paths obtained by descent arrive at the

source from two different directions. The closed curve formed by this saddle point is truly

a closed geodesic at all the points except the source point (The two open geodesics may not

have the same tangent at the source).

One way to detect relevant saddle points (closed geodesics) is the brute-force approach.

For numerical implementation of this approach, let us approximate the infinitesimal circle

around the source with the 8 pixel neighborhood around the source point. Now, we generate

minimal paths back to the source from each saddle point and find the saddle points for

which the minimal paths arrive (at the source) from two different neighboring pixels. This

exhaustive approach is computationally expensive.

Another way to find these relevant saddle points (closed geodesics) is by tracking the

fronts as they propagate in different directions from the source. For numerical implementa-

tion, we again approximate the infinitesimal circle with the 8 pixels neighborhood around

the source. We now assign a different label to each of the 8 neighboring pixels. As we
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calculate the accumulated cost u by propagating the front in the upwind direction, we also

propagate the label in the direction of the front.

Figure 16(a) shows an illustration of the fronts emanating out of the source in different

directions. Each gray level indicates a different neighbor of the source point from which

the front at any given location propagated. We also observe that the fronts arriving from

two different directions form shock curves when they meet. By definition, the locations on

these shock curves where the fronts arrive from two exactly opposite directions (collide)

are the saddle points. The minimal paths from saddle points lying on the shock curves

arrive at the source from two different directions, forming closed geodesics. Thus, saddle

points lying on the shock curve are the relevant saddle points. In Figure 16(b) we can see

the shock curves; the saddle points lying on these curves are highlighted in red.

The minimal paths from the other points on the shock curve also arrive at the source

from two different directions, but the two paths do not have the same accumulated cost.

Thus, they form a set of two open geodesics with different tangents at both the end-

points. Saddle points are isolated points on a shock curve which form curves that are

closed geodesic at the shock curve.

3.2.3 Incorporating Region-based Energy

We reduce the number of saddle points under consideration with the aid of shock curves.

Now, the next step is to choose the appropriate saddle point, which segment the object.

We begin with the assumption that the object surrounded by the edge also exhibits certain

region-based properties (homogeneity). We now compare the region-based energy for all

closed geodesics formed by the saddle points. Let us consider the Chan-Vese [25] energy

function of the form

E = (I − µ)2 + (I − ν)2, (38)

where µ is the mean of pixel intensities inside the curve and ν is the mean of pixel in-

tensities outside the curve, respectively. Among all detected closed curves, the curve with
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(a) (b)

(c) (d)

Figure 16: (a) Each gray level indicates a different neighbor of the source point from
which the front at the given location propagated. The intersection of these labelled regions
form the shock curves. (b) Shock curve: Saddle points lying on the shock curve are marked
in red. (c) Closed geodesics associated with the relevant saddle points. (d) Closed geodesic
with minimum region-based energy. The source point is marked by an ‘X’ and the saddle
point is marked by the dot.
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the minimum region-based energy segments the object. From the various closed geodesics

shown in Figure 16(c), the closed geodesic with the minimum region-based energy seg-

ments the left ventricle as shown in Figure 16(d).

Until this point, we assumed that our source point was on the boundary of the object of

interest. This meant that the saddle point associated with the closed geodesic, exhibiting

least region-based energy, also fell on the object boundary. Consider the source point

shown in Figure 17(a), which is placed away from the object boundary. The segmentation

obtained using the approach described previously does not segment the left ventricle. Thus,

for a given source point, we see that the minimal path approach guarantees global edge

optimality, but it does not guarantee that the closed curve also corresponds to a minimum

of the region-based energy.

3.3 Active Geodesic Contour Model: Region-based Active Contours Model
with Global Edge-based Constraints

In this section, we describe the region-based active contour evolution approach with a

global edge-based constraint. Conventional curve evolution models treat energy minimiza-

tion as an infinite dimension problem, where each point on the curve can evolve indepen-

dently. Instead, in our active geodesic model, we perturb the saddle point based on the

region-based energy of the curve. Perturbing the saddle point causes an indirect evolution

of the curve and this curve evolution has only two degrees of freedom, the two co-ordinates

of the saddle point. We treat the new location of the saddle point as our source and detect

closed curves as described in the previous section. We continue evolution until we reach

a minimum for the region-based energy. The minimal path approach ensures global edge

optimality. Thus, our segmentation evolves purely based on the region-based energy, with

an in-built global edge optimality. We show some examples in Section 3.5, which indicate

that we can converge to the final segmentation in a few iterations with our approach. This

is a result of dimensionality reduction in the optimization problem.
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3.3.1 Level set Representation

We seek to represent the curve (geodesic) C obtained with the minimal path approach as a

level set function. For given u, the minimal geodesic is described as the gradient descent

path [11, 30]
∂C

∂s
= − ∇u
|∇u|

, (39)

where s is the arc length parameter.

Consider a level set function ψ that will form the embedding level set function for the

geodesic C. The geodesic C now becomes a level set of this function. By definition, the

value along any level set (geodesic) in ψ is constant. Thus the derivative along a given level

set is ’0’,
∂ψ(C)

∂s
= 0. (40)

Representing the geodesic in two dimensional co-ordinate system, C = (x1, x2), and

using chain rule, we get

∂ψ

∂x1

· ∂x1

∂s
+
∂ψ

∂x2

· ∂x2

∂s
= 0.

⇒ ∇ψ · ∂C
∂s

= 0. (41)

Substituting (39) in (41) we get,

∇ψ ·
(
− ∇u
|∇u|

)
= 0.

⇒ ∇ψ · (−∇u) = 0. (42)

Let S denote the saddle point on the given curve C. The level set corresponding to the

value of accumulated cost at the saddle point, u(S), forms a boundary, ∂RS , to the vector

field −( ~∇u), where

RS = {(x, y) ∈ R2 : u(x, y) ≤ u(S)}. (43)

We parametrize the boundary, ∂RS , with a linear function ψ(x) = p, as shown in Figure

17 (c). The value of ψ varies linearly as we move away from the saddle point. Solving the
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(a) (b) (c)

(d)

(e) (f)

Figure 17: (a) Level set representation of the propagating wavefronts (u). (b) Closed
curve with minimum region-based energy and the associated saddle point. (c) Boundary
∂RS associated with saddle point S parametrized with a linear function ψ(x) = p. (d)
Generated level set function, ψ. (e) Vector field −(∇u). (f) Level set function ψ.
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PDE given in (42), we can propagate ψ in the direction of the characteristics of −( ~∇u),

to form a level set function in the region RS . The level set function ψ forms an implicit

representation of the curve C.

The PDE in (42) can be solved using the standard Fast-sweeping Method [100, 101],

which requires cyclically alternating the order of traversal using the ordering of the rectan-

gular grid for a few iterations, to update the value of ψ. The number of iterations required

depends on how convoluted the trajectories corresponding to the vector field −( ~∇u) are.

A second approach, the Ordered Traversal approach [100], can be used to converge to

the solution with a single sweep across the grid points within region RS . To decide the order

of traversal, we define a length function L, where L(x) is the arc length of the trajectory,

corresponding to the vector field −( ~∇u), between ∂RS and given location x. Such a length

function must satisfy the following first-order linear PDE [100]:

∇L · (−∇u) = 1, with L(∂RS) = 0. (44)

We can solve the PDE in (44) with a min-heap data structure similar to the one used in

Fast Marching schemes [2,7,40]. As we update L(x) at a grid location, we simultaneously

update the value of ψ(x) using (42) at that grid location. Since, the values of L and ψ are

calculated in the order in which the characteristic curves flow from the boundary ∂RS , only

one sweep across all the grid points in region RS is required.

If we choose a function such that ψ(S) = 0, then the closed geodesic C will be embed-

ded as the zero level set of ψ. Figures 17 (d) and (f) show the level set function ψ generated

by solving the PDE in (42) for the gradient vector field−( ~∇u) shown in Figure 17 (e) with

the boundary values in Figure 17 (c).
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3.3.2 Energy Minimization

Our goal is to minimize the region-based energy for the edge-optimal geodesic C. Let us

begin by considering a general class of region-based energy, E, of the form

E(C) =

∫
Ω

f(x)dA. (45)

We can represent the gradient of E(C) w.r.t the parameter p as the line integral

∂E

∂p
=

∫
C

f · ∂C
∂p
· ~Nds, (46)

where s is the arc length parameter of the curve and ~N is the outward normal to the curve

C. Since the level set function ψ is a function of the parameter p, as well as the curve C,

we have

ψ(C, p) = p. (47)

Representing the geodesic as C = (x1, x2), and taking the gradient of (47), we get

∂ψ

∂x1

· ∂x1

∂p
+
∂ψ

∂x2

· ∂x2

∂p
= 1.

⇒ ∇ψ · ∂C
∂p

= 1.

⇒ ∇ψ
‖∇ψ‖

· ∂C
∂p

=
1

‖∇ψ‖
.

⇒ ∂C

∂p
· ~N =

1

‖∇ψ‖
. (48)

Since C is embedded in level set function ψ, both C and ψ have the same outward normal,

~N = ∇ψ
‖∇ψ‖ . Thus, substituting (48) in (46) we get

∂E

∂p
=

∫
C

f

‖∇ψ‖
ds. (49)

The factor of ‖∇ψ‖ in the denominator of the line integral varies the contribution of each

point on the curve. Since, the curve evolution is solely based on saddle point evolution,

the points on the curve closer to the saddle point have higher significance. As we see from
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Figures 17 (d) and (f), the value of ‖∇ψ‖ increases as we move away from the saddle point

on the zero level set (geodesic). Thus, the points on C closer to the saddle point have a

higher contribution to the integral than the points further away.

In the examples discussed here, we use the Chan-Vese [25] energy model (38). For the

Chan-Vese model, f takes the form

f = 2(µ− ν)
{
I − µ+ ν

2

}
. (50)

We now perturb the saddle point S against the gradient ∂E
∂p

, in the direction normal to the

curve. The value of the line integral in (49) governs how we perturb the saddle point.

By definition saddle points are isolated points on the shock curve. Hence, the two open

geodesics back to the source from the new location of the saddle point will not be truly

geodesic at the new location (i.e. tangents will not agree). Thus, we make the saddle point

at the new location our source point. We now recompute u from this new source point.

This generates several saddle points. We weed out the unwanted saddle points using the

procedure discussed in 3.2.2. From the remaining saddle points we pick a saddle point that

satisfies the following two conditions:

1. The associated closed geodesic has a lower region-based energy when compared to

the region-based energy of the closed geodesic obtained prior to perturbing the saddle

point.

2. It lies closest to the previous source point.

The accumulated cost u from the previous iteration is used as the metric to measure

distance from the previous source point and not the Euclidean distance. Picking a saddle

point, which satisfies both conditions ensures that the region-based energy for the closed

geodesic decreases gradually with each iteration. We follow this procedure until we con-

verge to a minimum i.e. when none of the saddle points satisfy the two conditions. This

final curve will be a minima for the region-based energy under the global edge-based con-

straint, respectively.
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3.4 Interactive Segmentation Algorithm

Using the active geodesic evolution model described in the previous section, we present an

interactive segmentation algorithm. The user initializes segmentation by placing a single

point within the desired object of interest. If the segmentation result generated by active

geodesic model is not the desired result, the user can interact with the algorithm by placing

repellers and attractors to repel or attract the active geodesic towards a desired segmenta-

tion.

3.4.1 Attractors and Repellers

For each repeller (P ) and attractor (Z) the user places, we update the travelling cost func-

tion locally by placing a pole and zero, respectively. The updated travelling cost functions

are given by

τ ′(x) = τ(x) ◦ h1

( 1

distance(x, P )

)
, (51)

τ ′(x) = τ(x) ◦ h2

(
distance(x, Z)

)
, (52)

where h1 and h2 are monotonically increasing functions, the ‘◦’ operator represents Hadamard

product1, distance(·, ·) is the Euclidean distance and h1(x) = h2(x) = x2. The regularizer

ε in (37) ensures that a repeller has the desired influence even when placed near strong

edges. By placing these attractors and repellers the user is locally modifying the travelling

cost (edge-based metric). This local variation has a global effect on the active geodesic

evolution as we will see in the examples in Section 3.5.

3.4.2 Algorithm Details

We initialize the algorithm by asking the user to place a single point within the desired

object of interest. We then place a repeller at this location. This artificially placed repeller

serves the following two purposes:

1Hadamard product is the entry-wise product of two matrices. For two given matrices Amxn and Bmxn,
(A ◦B)i,j = (A)i,j · (B)i,j .
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1. It identifies the object of interest.

2. It ensures that the propagating wavefronts wrap around the pole to guarantee that at

least one closed geodesic exists.

Now, we randomly pick a point in the vicinity of the repeller (different from the re-

peller), as the source point, and follow the procedure described in Section 3.3. In the

very first iteration we do not have a reference for source from previous iteration, hence

we choose the saddle point closest to the repeller placed by the user. We move the saddle

point against the gradient∇pE to minimize the region-based energy of the active geodesic.

This saddle point becomes the source for the second iteration. We continue the evolution

described in Section 3.3 until we converge to a minimum. Figure 18 shows the evolving

active geodesic and the final segmentation of the left ventricle for the cardiac image.

Once we converge to a minimum, we present the user with the resultant closed geodesic.

If the user is not satisfied with the segmentation result he can add an attractor or a repeller

to drive the active geodesic towards the desired edges. Consider the segmentation result

shown in Figure 19(a). Placing another repeller inside the closed contour further evolves

the active geodesic away from the new repeller as shown in Figure 19(b).

The repellers placed by the user are classified as interior or exterior repellers based

on their location with respect to the current state of the active geodesic. We choose only

those saddle points that form closed geodesics that separate all the interior repellers from

the exterior repellers. This ensures that a repeller placed inside the closed curve lies inside

the final segmentation and a repeller placed outside the closed curve stays outside the final

segmentation. No such constraint is placed on the active geodesic based on the location of

attractors added by the user.

Placing a few more attractors and repellers, the user can converge to the final desired

segmentation of the right ventricle as shown in Figure 19(b). A brief outline of the algo-

rithm is given in Table 3.
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Table 3: Pseudo-code for the interactive segmentation algorithm.

(1) do
(2) if First iteration = TRUE
(3) Initialize algorithm with a repeller inside the object of interest.
(4) Update the travelling cost function.
(5) Choose a random point other than the repeller as the initial source point.
(6) else
(7) Add a repeller or an attractor and update the travelling cost function.
(8) end
(9) do
(10) if First iteration = FALSE
(11) Perturb the saddle point based on region-based energy and make it the new

source point.
(12) end
(13) Propagate wavefronts from the source point.
(14) Detect shock curves and the associated saddle points.
(15) if First iteration = TRUE
(16) Find the saddle point closest to the repeller.
(17) else
(18) Find the saddle point lying closest to the source in the previous iteration,

which also minimizes region-based energy and separates the interior
and exterior repellers.

(19) end
(20) while Convergence = FALSE
(21) Complete the closed contour using the current source and saddle point to obtain the

converged segmentation.
(22) while Desired Segmentation = FALSE
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(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s)

Figure 18: Left Ventricle segmentation with proposed active geodesic model: (a) Seg-
mentation after the first iteration. (b-r) Evolution of the closed curve to minimize the
region-based energy. (s) Final converged segmentation after 19 iterations.

3.4.3 Computational Complexity

The three major tasks associated with the numerical implementation of the outlined seg-

mentation algorithm are propagating the wavefronts from the source point to generate u,

detecting the saddles of u and generating the level set function ψ. Since the source point

changes in each iteration, we need to recompute u, saddles of u and ψ in each iteration.

The computational complexity of generating u and detecting the saddles of u for an image

with grid size N are O(NlogN) and O(N), respectively [30]. The level set ψ exists only
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(a) (b)

Figure 19: The initial repeller is marked by a black ’X’. (a) Converged segmentation of
the right ventricle with a single repeller inside the ventricle. (b) Converged segmentation
after the user places a second repeller.

in the region RS given in (43). The number of pixels in region RS , which covers only a

fraction of the total grid size, can be denoted by (k ·N), where k < 1. The computational

complexity of calculating ψ with the min-heap data structure described in Section 3.3.1 is

O((k · N)log(k · N)). Thus, the overall computational complexity of our algorithm is of

the order O(NlogN).

3.5 Experimental Results

The active geodesic model combines a global edge-based constraint with a region-based

energy minimization model in a framework that enables intuitive interactions to generate

non-arbitrary segmentation results with a sense of global optimality. Since our model min-

imizes region-based energy with a global edge constraint in an interactive segmentation

algorithm, we compare the results of our method with the following existing segmentation

algorithms:

1. Active Contours Without edges (Chan-Vese Segmentation) model [24]

As opposed to the proposed global edge-constrained active geodesic model, the

Chan-Vese model is an unconstrained region-based energy minimization model. The
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algorithm is initialized with a user specified initial contour. By minimizing the en-

ergy given in (38), we converge to the final segmentation result. Figure 20 shows

segmentation results for the left and right ventricles in the cardiac image shown in

Figure 15 (a). We can see that this purely region-based model fails to segment the

ventricles because it does not take any edge information into consideration.

(a) (b)

(c) (d)

Figure 20: Segmentation of ventricles with the purely region-based Chan-Vese model:
(a,b) Initialization for the left and right ventricle segmentation. (c,d) Final region-based,
Chan-Vese segmentation.

2. Globally Optimal Geodesic Active Contour (GOGAC) model [11]

GOGAC is a purely edge-based segmentation model, which generates globally opti-

mal edge-based segmentation. The algorithm is initialized with a single user-given

point inside the object of interest. The edge-based travelling cost in (37) is then
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modified to

τ ′(x) =
1

r

(
g

(
1

1 + ‖∇I‖

)
+ ε

)
, (53)

where r is the Euclidean distance from the user-specified point. A globally optimal

edge-based segmentation is obtained using a minimal path approach by inducing an

artificial cut in the image domain. The procedure followed by the algorithm does not

allow further user interactions to improve segmentation results.

In Figure 21, the GOGAC-model-based left and right ventricle segmentations are

initialized by the user with points marked by black ‘X’s. We obtain the globally

optimal closed geodesic with the vertical cut induced in the image plane as shown

in the Figures 21 (a) and (b), respectively. Although, the final segmentation curves

are global minima with respect to the edge-based travelling cost in (53), they fail

to segment the ventricles due to the presence of strong, misleading edges inside the

ventricles.

(a) (b)

Figure 21: GOGAC based ventricle segmentation: (a,b) Left and Right Ventricle seg-
mentation using the purely-edge-based-GOGAC model initialized with the points marked
by ’X’ within the ventricles.

3. Linear Combination of Edge- and Region-based Energies [73]

In this model, the active contour minimizes a linear combination of edge- and region-

based energies,

E = α · Ereg + (1− α) · Eedge, (54)
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where α ∈ (0, 1). We again use the Chan-Vese energy (38) as our region-based

energy in this linear combination. The edge-based energy is of the form

Eedge =

∫
C

φ · ds, (55)

where,

φ =
1

(1 + ||∇I||2)
. (56)

Figure 22 shows the left and right ventricle segmentation initialized with contours

shown in Figures 20 (a) and (b), respectively. As the contour converges to the edges

of the ventricles, it gets stuck in certain local minima within the ventricles. Further, it

may become necessary to heuristically change the weight of the linear combination

for different scenarios (Results presented here were generated with α = 0.75). In

addition to sensitivity to the choice of α, such linear combination yield new classes

of local minima that represent unsatisfactory compromises of edge- and region-based

models.

(a) (b)

Figure 22: Segmentation of ventricles with linear combination of region- and edge-based
energies: (a,b) Final segmentation of left and right ventricles obtained by minimizing the
energy in (54), when initialized with curve given in Figures 20 (a) and (b), respectively.

4. Random Walker Segmentation [45]

This is an interactive segmentation algorithm, which is initialized with a few pixels
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on the image with user-defined labels. Based on an intensity-weighted metric, the al-

gorithm determines the probability of a random walker starting from each unlabelled

pixel to reach a pre-labelled pixel. Assigning each pixel, with the label corresponding

to highest probability generates the segmentation result.

Analogous to the interactive segmentation model described in Section 3.4, we present

the user with the segmentation result generated with the initial few labelled pixels.

We then ask the user to add one labelled pixel at a time to interact with the segmen-

tation algorithm and improve the segmentation result, if required. Figure 23 shows

one such sequence of user interactions, where the user added labelled pixels to seg-

ment the left ventricle. The pixels marked by the green dots were marked as points

lying inside the ventricle, whereas the points marked with the red dots were marked

as points lying outside the ventricle. The random walker generates unconstrained,

arbitrary segmentation results based on user interactions. Thus, we need several pre-

cisely placed user-labels to generate the final segmentation of the left ventricle as

shown in Figures 23 (a-e). In Figure 24, we show the final segmentation of the left

and right ventricles using the random walker segmentation algorithm after several

user interactions.

Figure 25(a) shows the final segmentation of the left ventricle in the cardiac image

shown in Figure 15(a) with the proposed active geodesic model. A single repeller placed

by the user is sufficient to segment out the left ventricle. Since, the final segmentation tries

to optimize a region-based energy with an edge-based constraint, it overcomes the minima

that hampers the Chan-Vese segmentation model, GOGAC model and the linear combina-

tion model. Further, the global edge-constraint ensures that our model generates meaning-

ful segmentation results rather than arbitrary intermediate results generated by other user

interactive segmentation algorithms (such as the random walker algorithm). Thus, we can

achieve desired segmentation with fewer user interactions (with a single repeller in the

case with left ventricle). Similarly, Figure 25(b) shows the final segmentation of the right

61



(a) (b) (c)

(d) (e)

Figure 23: Left Ventricle segmentation with random walker algorithm: The segmentation
of the left ventricle with user-interactive Random Walker Segmentation Algorithm. Green
dots - User-labelled pixels belonging to the interior of the ventricle and Red dots - User-
labelled pixels belonging to the interior of the ventricle.

(a) (b)

Figure 24: Random walker based segmentation of both ventricles: Final Left and Right
Ventricle Segmentation using random walker algorithm after several user interactions.
Green dots - User-labelled pixels belonging to the interior of the ventricle and Red dots
- User-labelled pixels belonging to the exterior of the ventricle.
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ventricle after modifying the metric by placing a few attractors and repellers.

(a) (b)

Figure 25: The initial repeller is marked by a black ’X’.(a) Left Ventricle segmentation.
Desired segmentation was achieved in 19 iterations (b) Right Ventricle segmentation after
the user has placed a few attractors (marked by green ’X’s) and repellers (marked by red
’X’s). Desired segmentation was achieved after 27 iterations.

In Figure 26, we compare the segmentation of the two nuclei in a cell image with mul-

tiple nuclei. Again we see that using the active geodesic model segments both nuclei with

a few user interactions, where as the other techniques fail to segment the nuclei. The ran-

dom walker algorithm segments the nuclei with reasonable accuracy after placing several

labelled pixels in the interior and exterior regions of the two nuclei. With the edge-based

GOGAC approach, the final segmentation depends on the initialization and the orienta-

tion of the cut (Figures 27(b,d)). Since, it is not possible to interact with the algorithm to

improve segmentation, we fail to segment one of the nuclei.

In Figures 27(a,c,e-g), we present cell segmentation results. We can see that the edge-

based GOGAC approach fails due to the presence of several strong edges within the cell.

The random walker algorithm also fails to capture the cell edges that lie in regions with

similar intensity distribution along both sides of the edge. Using our approach, the user can

accurately segment the cell by placing a few additional attractors and repellers (Figures

27(a,c,e)).

Figures 27(a,c,e), also illustrate how we can segment the cell with three different ini-

tializations. Note that the initial repeller in Figures 27(a,c) match the initial repeller for
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nuclei segmentation in Figures 26 (i,j), respectively.

Finally, in Figures 28, 29 and 30 we compare the segmentation results on hip bone

image. Due to weak edges and low-contrast separating the interior regions of the bone

from the exterior regions, this image poses an extremely challenging scenario for image

segmentation algorithms. We see that the traditional models, which are not interactive fail

to segment the bones in this image. Where as, both the random walker and active geodesic

approaches segment the bones in the image after a few user interactions.

3.6 Conclusion

We have presented a novel active geodesic model, which constrains an evolving active

contour to continually be a geodesic with respect to an edge-based metric throughout the

evolution process. The edge optimality constraint reduced the infinite dimension region-

based optimization problem into a finite dimension problem by reducing the search space.

Further, using minimal path technique to generate geodesics during the “active” evolution

of the contour ensured that the edges captured by the curve corresponds to edges of a global

minimizer rather than the unwanted local minima. Minimizing a region-based energy sub-

ject to this edge-based constraint yields closed geodesics that exhibit both local and global

behaviors rather than being compromises achieved by weighted combination of region- and

edge-based energies. We showed that active geodesics generated by our model are also nat-

urally responsive to intuitive user interactions. We used this fact to develop an interactive

segmentation algorithm. We also showed results illustrating the benefits of our approach

over existing segmentation algorithms on various medical images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 26: Nuclei segmentation: (a,b) Initialization for segmentation of the two nuclei
with Chan-Vese model and linear combination model. (c,d) Final region-based Chan-Vese
segmentation. (e,f) Final segmentation optimizing the combination of region- and edge-
based energies. (g,h) Segmentation with random walker algorithm. Green dots - User-
labelled pixels belonging to the interior of the nuclei and Red dots - User-labelled pixels
belonging to the exterior of the nuclei. (i,j) Active geodesic based segmentation: Attractors
- Green ’X’s and Repellers - Red ’X’s. Desired segmentation was achieved after 49 and 21
iterations, respectively
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(a) (b) (c) (d)

(e) (f) (g)

Figure 27: Cell segmentation:(a,c,e) Active geodesic based segmentation: The initial
repeller is marked by a black ’X’. Subsequent attractors are marked by green ’X’s and
repellers are marked by red ’X’s. Desired segmentation was achieved in 22, 34 and 40 iter-
ations respectively. (b,d,f) Cell segmentation results using edge-based GOGAC approach.
(g) Segmentation with random walker algorithm. Green dots - User-labelled pixels belong-
ing to the interior of the cell and Red dots - User-labelled pixels belonging to the exterior
of the cell.
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(a) (b) (c)

(d) (e) (f)

Figure 28: Hip bone segmentation: (a) Initialization. (b) Final region-based Chan-Vese
segmentation. (c) Final segmentation optimizing the linear combination of region- and
edge-based energies. (d) GOGAC-based segmentation. (e) Random walker algorithm
based segmentation. Green dots - User-labelled pixels belonging to the interior of the
bone and Red dots - User-labelled pixels belonging to the exterior of the bone. (f) Active
geodesic based segmentation. Attractors - Green ’X’s and Repellers - Red ’X’s. Desired
segmentation was achieved after 41 iterations.
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(a) (b) (c)

(d) (e) (f)

Figure 29: Hip bone segmentation: (a) Initialization. (b) Final region-based Chan-Vese
segmentation. (c) Final segmentation optimizing the linear combination of region- and
edge-based energies. (d) GOGAC-based segmentation. (e) Random walker algorithm
based segmentation. Green dots - User-labelled pixels belonging to the interior of the
bone and Red dots - User-labelled pixels belonging to the exterior of the bone. (f) Active
geodesic based segmentation. Attractors - Green ’X’s and Repellers - Red ’X’s. Desired
segmentation was achieved after 17 iterations.
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(a) (b) (c)

(d) (e) (f)

Figure 30: Hip bone segmentation: (a) Initialization. (b) Final region-based Chan-Vese
segmentation. (c) Final segmentation optimizing the linear combination of region- and
edge-based energies. (d) GOGAC-based segmentation. (e) Random walker algorithm
based segmentation. Green dots - User-labelled pixels belonging to the interior of the
bone and Red dots - User-labelled pixels belonging to the exterior of the bone. (f) Active
geodesic based segmentation. Attractors - Green ’X’s and Repellers - Red ’X’s. Desired
segmentation was achieved after 7 iterations.
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CHAPTER IV

LOCALIZED PCA-BASED SEGMENTATION

In this chapter, we focus our attention on principal component analysis (PCA) based shape

prior implementation for image segmentation. We use a parametric model to implicitly rep-

resent the segmenting curve as a combination of shape priors obtained by representing each

training shape as a signed distance function. We define an objective region-based energy

functional on the curve to optimize the parameters representing the curve. In the second

part of this chapter, we introduce localized shape priors, which target (local) regions within

the global shape to selectively focus the PCA efforts in certain region. This maximizes

the utility of each principal shape prior. The training data for this approach consists of

auxiliary (target) masks along with training shapes. The masks indicate various regions of

the shape exhibiting highly correlated local variations, which may be rather independent of

the variations in the distant parts of the global shape. Thus, in a sense, we are clustering

the variations exhibited in the training data set. Our model fits segmenting curves locally

within various target regions (divisions) in an image and then combines these locally ac-

curate segmentation curves to obtain a single hybrid (global) segmentation. The resulting

algorithm thus provides a globally accurate solution, which retain local variations in shape.

4.1 Introduction

Shape priors are widely used for automatic image segmentation, especially in cases where

some prior knowledge about object of interest in the given environment is known. Shape

priors are also very useful in scenarios where images have inherent noise, low contrast,

missing or diffused edges. Such images are very common in medical imaging applications.

Prior shape knowledge was first used in an explicit parametrized active contour model

for image segmentation by Cootes et al. in [34]. They called the segmentation model
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“Active Shape Model”. Subsequently, Chen et al. [27] used an average shape model to

incorporate shape information in geometric active contours. Leventon et al. [61] used the

level set framework to restrict the flow of active contours using shape information. Level

set based shape priors and segmentation was later developed in [78, 92]. These models

form the basis for various shape based variational segmentation models.

Methods to improve prior based segmentation by selectively preferring certain shape

priors/objects over others have been discussed by Cremers et al. [37] and Rousson et al.

[79]. The dynamic labeling approach developed by Cremers et al. [37], uses dynamic

labeling to enforce known shapes to minimize the Mumford-Shah [68] energy functional.

This technique is effective in segmenting objects severely corrupted by occlusion when a

similar object is present in the training dataset. Recently, authors in [38, 39] have used

kernel-based methods to utilize PCA effectively for image segmentation. Davatzikos et

al. [41] showed that using wavelets in a Hierarchical Active Shape Model framework can

capture certain local variations. Recently authors in [103] developed an explicit ASM-

based scheme that generates independent partitions and uses PCA strictly local to these

partitions and authors in [4] use global PCA with weighted local fitting. All the above-

mentioned approaches treat the entire shape as a single global entity.

We begin this chapter with a detailed discussion of the traditional shape prior based

curve evolution model in a level set framework. Before we learn shape variations from a

given training set, we align the training images with respect to scale and orientation (Sec-

tion 4.2), so that we use our resources in capturing only the shape variations and not the

pose variations. In Section 4.3.1, we describe the process of representing these training

shapes as level sets, and describe the process of learning the shape variations using PCA.

We also discuss the parameter optimization required for fitting (segmentation) in Section

4.3.2. Later, in section 4.4, we develop localized PCA based shape priors in a level set

framework and discuss localized parameter optimization to generate locally accurate seg-

mentation curves. We describe the level set based framework used to combine these locally
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accurate segmentation curves in Section 4.5. Finally, in Section 4.6, we present an appli-

cation of our approach to Myocardial segmentation in Cardiac images. The work in this

chapter has been presented in a conference paper [5].

4.2 Binary Shape Alignment

The various images present in the training dataset vary in shape, size and orientation (Figure

31). If we use PCA on such training data, the variations in size and orientation will mask the

shape variations; thereby preventing PCA from capturing shape variations effectively. To

concentrate the efforts of PCA in capturing just the shape variations, we first align images

in our training dataset with respect to scale and orientation. This ensures that the shape

priors capture only the shape variations and not the pose variations.

(a) (b) (c)

(d) (e) (f)

Figure 31: Training images.

Consider training set with n binary images {I1, I2, ..., In}with pose parameters {p1,p2, ...,pn}.

For 2D images we define a pose parameter vector p, such that p = [a, b, h, θ], where a, b, h

and θ correspond to x-, y- translation, scale and rotation, respectively. The transformed

image of I , denoted by Ĩ , for a given pose parameter (p) is obtained using a transformation
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matrix T (p). This transformation matrix T (p) maps co-ordinates (x, y) ε R2 to (x̃, ỹ) ε R2.

The transformation matrix is a product of three matrices: a transition matrix M(a, b), a

scaling matrix H(h) and an in-plane rotation matrix R(θ).

Ĩ = T (p)I,

where,


x̃

ỹ

1

= T(p)


x

y

1

 .

Transformation matrix T (p) = MHR, where,

M =


1 0 a

0 1 b

0 0 1

 , H =


h 0 0

0 h 0

0 0 1

 , R(θ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 .

As suggested by Tsai et al. [92], we can jointly align n images in our training set by

minimizing the following energy functional with respect to the pose parameters:

Ealign =
n∑
i=1

n∑
j=1,j 6=i

{∫ ∫
Ω

(Ĩ i − Ĩj)2dA∫ ∫
Ω

(Ĩ i + Ĩj)2dA

}
, (57)

where Ω is the image domain and dA is unit area.

An example of the overlay of training images before and after alignment are shown in

Figures 32(a) and 32(b), respectively.
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(a) (b)

Figure 32: Binary Shape Alignment: (a) Shape overlay before alignment (b) Shape over-
lay after alignment.

4.3 Shape Priors

In this section, we describe the traditional approach for image segmentation using global

shape priors in a level set framework. This approach treats the entire training shape as a

single global entity and uses PCA to learn the shape variations in the given training data

set.

4.3.1 Global PCA

We use the level set approach introduced by Osher and Sethian [71] to represent training

shapes. We represent training shapes using signed distance functions {ψ1, ψ2, ...ψn}, where

the shape boundary is embedded as the zero level set. Negative distances are assigned to

regions inside the boundary, and positive distances to regions outside the boundary. Figure

33 shows the level set representation of the training shapes given in Figure 31. Taking the

average of the n signed distance functions we get the mean level set (Figure 34) for the

training images,

ψ =
1

n

n∑
i=1

ψi.

We extract the shape variability in each training image by subtracting the mean signed

distance function ψ from each signed distance function, forming n mean offset functions

{ψ̂1, ψ̂2, ...ψ̂n}.

ψ̂i = ψ − ψi.
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(a) (b) (c)

(d) (e) (f)

Figure 33: Training shapes represented as signed distance functions.

Figure 34: Mean shape generated using all training images.

We then define a shape variability matrix S, given by

S = [Ψ̂1 Ψ̂2 ... Ψ̂n], (58)

where the samples of ψ̂i are stacked lexicographically to form each column Ψ̂i.

As suggested in [1, 92], we take the eigenvalue decomposition of (1/n)STS, which

gives us the eigenshapes (principal modes), Ψi’s. For S = {ψ̂1, ψ̂2, ...ψ̂n}, we get a maxi-

mum of n different eigenshapes {Ψ1,Ψ2, ...Ψn}. A new level set function can be expressed

as a linear combination of these eigenshapes. For k ≤ n,
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ψ̃(α) = ψ +
k∑
i=1

αiΨi, (59)

where α = {α1, α2, ..., αk} are the weights associated with the k eigenshapes. We

again use the zero level set of ψ̃ as the representation of our shape. Thus, by varying α, we

vary ψ̃, which indirectly changes the shape. The value of k must be chosen large enough

to capture the prominent shape variations in the given training dataset. But if the value of

k is too large, the model will capture some intricate details that are specific to a particular

training shape in the dataset. In all examples presented in this chapter, we choose the value

of k empirically.

The segmentation also needs to accommodate variations in the pose parameters along

with the variations in shape. Thus we include the pose parameters in the representation of

the level set function ψ̃ in (59).

ψ̃(α,p) = ψ(p) +
k∑
i=1

αiΨi(p). (60)

4.3.2 Parameter Optimization via Gradient Descent

We need to choose a geometric active contour energy model to segment this region. We use

an active contour model, which minimizes a region-based energy. Other forms of energy

may also be used effectively with our model. Consider a general class of region-based

energy

E(ψ̃) =

∫
Rin

fin(x, y)dA+

∫
Rout

fout(x, y)dA, (61)

where Rin = {(x, y) ∈ R2 : ψ̃(x, y) < 0} and Rout = {(x, y) ∈ R2 : ψ̃(x, y) ≥ 0}.

We employ gradient descent on E(ψ̃) with respect to the pose parameters p and shape

parameters α for the evolution of ψ̃. For concise notations, we denote Θ as a collective

representation of the pose and shape parameters. We denote the gradient of E(ψ̃), with
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respect to a given parameter Θ, by∇ΘE. The update equation for parameter Θ is given by

Θi+1 = Θi −∇ΘE dt.

We now denote the zero level set of ψ̃ by Cψ̃. The evolution of parameters Θ results in

the evolution of ψ̃ and causes an implicit evolution of Cψ̃. To compute ∇ΘE, we need a

line integral on curve C, which is formed by the shared boundary of regions Rin and Rout.

We can represent∇ΘE as the line integral

∇ΘE =

∫
C

fin∇ΘC ~Nψ̃ds+

∫
C

fout∇ΘC(− ~Nψ̃)ds, (62)

where s is the arc length parameter of the curve and ~Nψ̃ is the outward normal of the zero

level sets of ψ̃.

Since the zero level set of ψ̃ is a function of C and Θ, we have

ψ̃ (C(Θ, s),Θ) = 0. (63)

Taking gradient of (63) w.r.t. Θ, we get

∇Θψ̃ +∇ψ̃ · ∇ΘC = 0

⇒ ∇Θψ̃ + ||∇ψ̃|| · ~Nψ̃ · ∇ΘC = 0

⇒ ∇ΘC · ~Nψ̃ =
−∇Θψ̃

||∇ψ̃||
. (64)

Substituting (64) in Equation (62), we get

∇ΘE =

∫
C

(
−∇Θψ̃

||∇ψ̃||
)(fin − fout)ds, (65)

where ~Nψ̃ = ∇ψ̃
||∇ψ̃|| .

In all examples presented here, we use the region-based energy functional proposed by

Chan and Vese [25]. The Chan-Vese energy functional is suited to segment images with

bi-modal distribution. We use the following choices for functions fin and fout:

fin = (I − µ)2, fout = (I − ν)2,
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where µ and ν denote the mean intensity values inside the regions Rin and Rout, respec-

tively.

4.4 Localized Shape Prior based Segmentation

In order to use localized PCA for shape priors, we first need to divide our image domain into

various target regions, which cluster parts of the global shape exhibiting highly-correlated

local shape variations. The shape variations in these regions may be independent of the

shape variations in other parts of the global shape.

Figure 35 shows a sample set of training images and associated auxiliary masks. These

training images are manually traced training shapes for the object we intend to segment,

mugs in this example. The masks shown in Figure 35(h-m), separate the variations in the

shape of the handle from the shape of the body of the mug. With these target regions, we

use a spatially weighted (localized) PCA [85] to learn the shape variation in each target

region. Thus, we focus the learning from PCA to these regions and maximize the utility

of each principal component (shape prior). Since we use a spatially weighted learning and

fitting procedure, we do not require very precise target masks.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 35: Training images and associated target masks: (a-f) Training images, (g-l)
Automatically Generated Target Masks: The white regions mark Target Mask ‘1’ - cap-
turing variations in the shape of the body. Gray regions mark Target Mask ‘2’ - capturing
variations in the shape of the handle.
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We represent these training shapes and target masks using the level set formulation [71].

We apply weighted PCA [85] on level sets used to represent training shapes and associated

masks, to obtain a set of localized eigenshapes (shape priors) and eigenmasks (mask pri-

ors) corresponding to each target mask. We represent the segmenting curve and the mask

for each (target) local segmentation as a linear combination of these localized eigenshapes

and eigenmasks. Evolving these curves locally within each mask we obtain a set of lo-

cally accurate segmentation curves. We combine these curves to obtain a hybrid global

segmentation curve. Finally, we evolve this hybrid curve to obtain a globally accurate seg-

mentation. Although the local parameters affect the global shape of the segmenting curve,

they evolve based on information local to the target mask.

4.4.1 Localized PCA

Since target masks correspond to regions in the original training shapes, we do not align

these target masks separately. Instead, we transform the masks with the same set of pose

parameters obtained in aligning the training shapes.

We use signed distance functions to represent training shapes and associated target

masks [61,78,92], as described in Section 4.3.1. The zero level set depicts the shape/mask

boundary, with positive distances indicating the regions inside the boundary and negative

distances indicating the regions outside the boundary. Let {ψ1, ψ2, ...ψn} denote the signed

distance functions for the n shapes and {φT1, φT2, ...φTn} denote the signed distance func-

tions for the corresponding binary masks for a specific target T . We define the mean level

set for the shapes as ψ = (1/n)
∑n

i=1 ψi and the mean level set for the masks of a given

target T as φT = (1/n)
∑n

i=1 φT i. Now, we define an extended shape variability matrix for

each target mask as explained in [1, 9].

ST =
( ψ1 − ψ

φT1 − φT


 ψ2 − ψ

φT2 − φT

 · · ·
 ψn − ψ

φTn − φT

). (66)

In addition to the shape variability matrix, we also define a weighting matrix MT for each
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target T ,

MT =
( g(φT1)

1


 g(φT2)

1

 · · ·
 g(φTn)

1

).
Here g(·) is a non-linear function, which has unit weight for the elements within the mask

and for the regions outside the mask it monotonically decreases to zero as we move away

from the boundary of the mask (g(φ̃ ≥ 0) = 1, 0 < g(φ̃ < 0) < 1). 1 denotes unit weight

for elements corresponding to regions inside the mask in MT . Now, we use the spatially

weighted EM framework described in [85] to estimate k principal components for shape

and target masks (k < n). The matrix MT gives higher emphasis to the regions within

the mask, hence the shape priors will capture the local shape variations better. We denote

these localized principal components for the shapes and masks as {ψ̂T1, ψ̂T2, ...ψ̂Tk} and

{φ̂T1, φ̂T2, ...φ̂Tk}, respectively.

Using these k priors we formulate a new level set function ψ̃T as a linear combination

of the mean level set for the shape ψ and the k principal modes (localized shape priors).

Accommodating pose variations in the framework in addition to these shape variations for

each given target mask T , we define a new level set ψ̃T as

ψ̃T (α,pT) = ψ(pT) +
k∑
l=1

αT lψT l(pT). (67)

Similarly, we define a level set function for the mask as

φ̃T (α,pT) = φ(pT) +
k∑
l=1

αT lφT l(pT).

Here {αT1, αT2, ..., αT l} are the weights associated with each principal mode {ψT1, ψT2, ..., ψT l},

{φT1, φT2, ..., φT l} and pT is the pose vector. The zero level set of ψ̃ represents the shape

boundary. By varying weights αT , we can vary the shape of the segmenting curve and

associated target mask implicitly. The evolution of the φ̃ should correspond to evolution of

ψ̃. Thus, we use the same set of pose and shape parameters for both these functions.

Figure 36 compares the variation caused by the principal mode of the global PCA and
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the localized PCA for the two target masks. Notice that the principal component corre-

sponding to target mask 2 (Figure 36(d)) captures the variation in shape of the handle,

whereas the global PCA fails to capture this variation.

(a) Mean level set ψ (b) Shape variation using
principal mode of global
PCA

(c) Shape variation us-
ing the principal mode for
Target Mask 1

(d) Shape variation us-
ing the principal mode for
Target Mask 2

Figure 36: Shape variability of global PCA and localized PCA: In (b), global PCA fails
to capture shape variation of the handle, whereas (c) capture local changes in mug body
while (d) captures variation in the mug handle.

4.4.2 Localized Parameter Optimization via Gradient Descent

In this section, we describe the coupling for evolution of level set ψ̃ with the mask φ̃

for segmenting the region in the image within a given target mask. The domain under

consideration will not be the entire image, but only the region within the given mask (φ̃ ≥

0). The definition for the region-based energy defined in (61) is now modified to

E(ψ̃, φ̃) =

∫
Rin

fin(x, y)dA+

∫
Rout

fout(x, y)dA, (68)

where Rin = {(x, y) ∈ R2 : ψ̃(x, y) < 0, φ̃(x, y) ≥ 0} and Rout = {(x, y) ∈ R2 :

ψ̃(x, y) ≥ 0, φ̃(x, y) ≥ 0}.

We again employ gradient descent on E(ψ̃, φ̃) with respect to the shape and pose pa-

rameters. We use the same set of pose and shape parameters for the ψ̃ ans φ̃ (Collectively

denoted as Θ).

The zero level set of ψ̃ and φ̃ are denoted by Cψ̃ and Cφ̃, respectively. Figure 37 shows

a graphical representation of these zero level sets. The evolution of parameters Θ results in

the evolution of ψ̃ and φ̃, as well as an implicit evolution of Cψ̃ and Cφ̃.
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To compute∇ΘE in (65), we need the line integral on the curve C, which is formed by

the shared boundary of regions Rin and Rout. Since we use the same set of parameters for

evolution of the curve and the mask, the domain will change after each update of φ̃. To stop

our evolution based on energy minimization, we must compare the region based energies

under the same domain. Thus, we update the mask once every few iterations.

Figure 37: Domain Representation: Domain under consideration is marked by the shaded
region. The region inside the mask and the curve form Rin and the region outside the curve
but inside the mask forms Rout.

Figure 38 shows an example of local segmentation using two target masks. We initialize

our segmentation with the mean level set shown in Figure 36(a). Since the curve evolves

only on the basis of the cues within the mask, we get a reliable segmentation in the regions

inside the mask.

4.5 Combined Shape Evolution
4.5.1 Initialization

The target regions are chosen such that they isolate correlated local variations. In real-

ity, the local variations in these target regions are never completely independent from the

global shape. Thus, we have to combine the local segmentation curves corresponding to

each target mask to obtain a hybrid segmentation. To combine the individual local segmen-

tation curves, we use the same level set framework that was used to generate these local
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(a) Segmentation for Target Mask
1 with 2 Principal Modes

(b) Segmentation for Target Mask
2 with 2 Principal Modes

Figure 38: Localized PCA based segmentation: Red curves mark the boundary of the
target region. We see that we achieve accurate segmentation inside the target mask by
ignoring image information from regions outside the mask.

segmentation curves.

Given N target regions, we combine the level sets {ψ̃1, ψ̃2, ...ψ̃N} into a single hybrid

level set Ψinit.

Ψinit =

∑N
T=1{λT ρ(φ̃T ) · ψ̃T (αT ,pT )}∑N

T=1{λT ρ(φ̃T )}
, (69)

where λT is the scalar weight associated with each target level set and ρ(φ̃T ) ≥ 0 is a non-

linear function. We set the value of λT = 1/N to obtain the initial hybrid level set. The

function ρ(·) should be 1 in the regions inside the mask (positive values of φ̃T ), and for the

regions outside the mask it should monotonically decrease to zero as we move away from

the mask boundary. In regions where the masks overlap, the hybrid level set will be the

average of the overlapping level sets. Thus, the hybrid level set seamlessly combines the

various target level sets (with a higher weight given to the regions inside each mask). Figure

39(a) shows the hybrid initialization using the local segmentation curves from Figures 38(a)

and 38(b).

4.5.2 Evolution

To represent the hybrid level set Ψ, we use a single set of pose parameters P along with

k principal modes corresponding to each target level set ψ̃k. Since we have a new set
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of pose parameters, we update the eigenshapes and eigenmasks for each target with the

corresponding pose parameters to obtain ψ̂T l = ψ̂T l(pT ), and φ̂T l = φ̂T l(pT ). Thus, (67)

becomes

ψ̃T (AT ,P) = Ψinit(P) +
k∑
l=1

AT lψ̂T l(P), (70)

where constants represented by AT are the weights associated with the new eigenshapes.

A similar equation can be derived for the update of mask φ̃T . Now, we can express the

hybrid level set as

Ψ =

∑N
T=1{λT ρ(φ̃T ) · ψ̃T (AT ,P)}∑N

T=1{λT ρ(φ̃T )}
. (71)

This hybrid level set is a function of pose parameter set (P), shape parameters correspond-

ing to each target region {A1,A2, ...,AN}, and scalar weights {λ1, λ2, ..., λN}. We con-

verge to the final segmentation by employing gradient descent (Section 4.4.2) on each of

these parameters. The parameters λT andAT evolve based on the cues within their respec-

tive target regions. Thus, curve evolution retains the local properties within each region,

but the pose parameters are affected by the collective region inside all target masks. The

pose parameters evolve based on global cues and shape priors evolve based on local cues.

Thus, the final segmentation retains the local shape variations in each region, which are

combined using global set of pose parameters.

Figure 39(b) shows the final evolved hybrid segmentation using 2 principal modes for

each target mask. Figure 39(c) shows segmentation obtained using the conventional global

PCA approach using 4 principal modes. Although we use the exact same number of prin-

cipal modes to segment the image in both cases, the localized PCA approach does a very

good job of capturing the shape of the body of the mug, as well as the handle. Since most of

the effort from the global PCA is used in learning and fitting the shape of the body, it is un-

able to segment the handle correctly. Our approach concentrates the efforts of the weighted

PCA to segment each target region separately, thus achieving a better global segmentation.

In Figure 40, we show results on the same test image with added occlusions, pose variation

and additive Gaussian noise. Results in Figure 40 suggest that our approach is robust under
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(a) Initial Hybrid segmentation (b) Final (evolved) Hybrid Seg-
mentation

(c) Segmentation using standard
PCA with 4 modes

Figure 39: Comparison of segmentation: The final hybrid segmentation is able to segment
the mug handle and the body of the mug. Where as the global PCA based approach uses
all its training resources to capture the variation in the mug body and fails to segment the
handle.

such demanding conditions, which are common to various segmentation tasks.

4.6 Application to Cardiac Image Segmentation

Myocardial segmentation in cardiac images is a very challenging problem, because of the

low contrast separating the ventricles from the myocardium and partially missing bound-

aries along the ventricles. In this section, we present Myocardial Segmentation results on

a cardiac dataset using our localized PCA based approach.

We used a data set of 200 2-D images from a 4-D interactive manual segmentation

of a single patient’s cardiac CT scan for our experiment. We used 100 of these images

for training and the other 100 as the test set. Along with the manual tracings, we have a

corresponding set of images marking the regions in the data with weak/missing edges, i.e

the regions with low confidence in image data. Selectively using information from shape

priors by neglecting the regions of low confidence improves segmentation . Figure 41(a-c)

shows an example of one training image slice with corresponding manual segmentation

and the binary mask indicating regions of low confidence in image data.

To generate target masks, we dilate the left and right ventricles obtained from manual
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(a) Image in with occlusion and
additive Gaussian noise

(b) Segmentation using standard
PCA with 4 modes

(c) Segmentation using localized
PCA with 2 modes in each target

Figure 40: Comparison of global PCA based segmentation with localized PCA based
segmentation on mug image with occlusion and noise.

tracings. We dilate the masks enough to include some parts from the exterior regions of the

epicardial boundary. From these dilated masks we exclude the regions with weak/missing

edges, i.e. the regions with low confidence (Figure 41(d,e)). Thus, in the training phase we

learn the location of these weak and missing edges along with the shape of the myocardium

and the mask. Since we use a non-linear function g(.) in the weighting matrix MT , the lo-

calized PCA captures shape variations even in regions of low confidence. But, during curve

fitting (evolution), we neglect all image information from these regions of low confidence.

Figure 42 compares the results of segmentation on a test image. We use 12 principal

modes for each target mask, and compare our result with the global PCA approach that uses
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(a) Image from training data

(b) Manual Segmentation (c) Regions of Low Confidence

(d) Mask for Right Ventricle (e) Mask for Left Ventricle

Figure 41: Myocardial segmentation: Training data and Target Masks generated from the
manual segmentation.

25 principal modes. The average distance between the manual tracing and the obtained seg-

mentation for the localized PCA based approach is 1.47 mm with a variance of 1.88mm.

The average distance for the global PCA based approach is 5.21mm with a variance of

6.41mm. We see that our approach can segment the boundaries along both the ventricles

and the epicardium, whereas the global PCA approach tries to fit the curve simultaneously

on the endocardial and epicardial boundary, and in the process fails to achieve either. We
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note that the masks were generated automatically from the training data, which suggests

that our approach does not rely on custom designed masks. The masks need not be accu-

rately designed for the training data; any mask that can successfully cluster the correlated

local shape variations will improve segmentation. Since our approach uses fewer modes for

segmentation, it can be very useful in cases where the training data set consists of limited

training data.

4.7 Conclusion

In this chapter, we have presented a variational framework that can employ localized shape

priors to segment various regions in an image separately and then combine these locally

accurate segmentation curves to obtain a single globally accurate segmentation. The exam-

ples presented here show that concentrating efforts of localized shape priors within certain

target regions can enhance the utility of PCA as a tool. Although the examples presented

here use only 2 target regions on 2-D images, it can be easily extended to accommodate

multiple target regions in multi-dimensional data.
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(a) Test Image Slice

(b) Segmentation with 12
Modes: Right Ventricle Mask

(c) Segmentation with 12
Modes: Left Ventricle Mask

(d) Final global segmentation
with 12 Modes

(e) Segmentation using global
PCA with 24 Modes

Figure 42: Segmentation results on cardiac image: In (b,c) the black curves mark the
boundary of target region the white curve mark the obtained semi-local segmentation and
in (d,e) the black curves are manual segmentation curves, which we compare with these
manual tracings (white curve).
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CHAPTER V

MOTION SEGMENTATION

We begin this chapter with a brief description of the traditional approaches used for motion

segmentation. We then discuss the pitfalls of the traditional models and develop a new mo-

tion segmentation model, which overcomes these issues. The model proposed here treats

an image sequence as a combination of a foreground layer overlapping a background layer.

We use the images in the sequence to generate the layers under a smoothness assumption.

We solve the motion segmentation problem by simultaneously optimizing the boundary

separating the foreground and background, estimating a motion model to fit the layers to

the image data and updating smooth estimates for the layers. The layering structure is

defined such that the background in the occluded region is estimated under the smooth-

ness constraint with available image information, without having to explicitly detect the

occluded regions. Secondly, the layers are defined such that they utilize all pixels in the

image sequence, with each pixel being considered exactly once, regardless of the image

order. This ensures that all occluded regions are considered in the model and occluding re-

gions are not considered more than once. Such modeling of the occluded region is possible

because we relax the strict brightness constancy constraint and estimate a motion model by

fitting the foreground and background layer to the image sequence. We therefore refer to

our approach as Relaxed Motion Segmentation.

5.1 Introduction

In image sequences, motion of objects in the sequence becomes a very important cue for

segmentation. A wide variety of motion-based computer vision applications like optical

flow estimation, motion segmentation and tracking utilize motion based cues for object

segmentation. A Variational methods for optical flow estimation were introduced by Horn
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and Schunck [48]. Lucas and Kanade [64] also introduced an optical flow estimation algo-

rithm based on the optical flow constraint. The Horn-Schunk optical flow estimation used a

global smoothness constraint in the flow field, whereas Lucas-Kanade used a local smooth-

ness constraint to estimate the flow field. Later, various motion segmentation algorithms

based on the basic principles discussed in these papers [48, 64] were developed.

Wang and Adelson [96] proposed a two-step motion segmentation approach, where

they first estimate a local flow field and then cluster regions using the estimated flow field.

Black and Anandan [16] used a parametric motion model to estimate the motion vectors,

and then used active contours to segment the estimated flow field. Farneback [43] intro-

duced 3-D orientation tensors along with the parametric motion model to improve motion

vector estimation. Later, Paragios and Deriche [72] developed a motion-based level set

segmentation algorithm.

As opposed to the previously mentioned two-step segmentation approaches, motion

segmentation models described in [20,35] use local smoothness constraint in the flow field

to identify the boundary of objects moving independently in the image sequence. Cremers

and Soatto developed the motion competition model [36], which couples motion estimation

and boundary optimization using the brightness constancy constraint (BCC), introduced

by Alvarez et al. [3], instead of the differential optical flow constraint [48]. Dense flow

fields, with large displacement, can be estimated using the brightness constancy constraint.

Motion estimation algorithm with dense flow fields have also been developed in [19, 86]

using the brightness constancy constraint.

The above-mentioned algorithms assume absence of occlusion due to moving objects

and the motion models are valid only in unoccluded regions. But, in reality handling oc-

clusion is an important factor in motion segmentation algorithms. Certain approaches have

been developed to identify regions in the image that are occluded [13, 49, 88] and impose

certain constraints in the occluded region, while some approaches, such as [59], enforce

motion field discontinuity in sub-domains for occlusion handling.

91



In Section 5.3, we propose an enhancement to the traditional motion segmentation

model in which we treat foreground object and background of the image sequence as over-

lapping layers. We simultaneously estimate the layers under the smoothness assumption,

the motion parameters and the object boundary using available information from two con-

secutive frames in the image sequence. The concept of treating images as deformable,

overlapping layers was introduced in [50], and using smoothness constraint in regions in-

side and outside the evolving contour was introduced by Mumford and Shah [67]. Under

the smoothness constraint, we define the foreground and background layers such that the

background in occluded regions are estimated with available image information, without

having to explicitly detect the occluded regions. With this proposed approach, we can

model the occluded regions and circumvent the need to impose constraints on the evolving

contour in these occluded regions.

5.2 Traditional Motion Segmentation Models

There are two major tasks associated with motion segmentation: a) estimating motion vec-

tors, and b) detecting object boundaries. Traditionally, motion segmentation algorithms

can be classified into two categories based on how they perform these two tasks. In the first

approach, based on the global smoothness assumption, the optical flow field is calculated

and then the flow field is segmented using an active-contour-based curve evolution model.

In the second approach, an energy functional based on the brightness constancy constraint

is defined. This approach relies on the local smoothness assumption to jointly optimize

motion estimation and boundary detection.

5.2.1 Optical Flow-Based Motion Segmentation

For the optical flow based two-step approach, we first calculate the optical flow field, and

then segment objects in the flow field using a region-based curve evolution model. We

can formulate the problem of estimating optical flow as an energy minimization problem

by adding a global smoothness constraint on the optical flow velocity. Combining global
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smoothness constraint with (6), we get the energy functional for optical flow as

Eop =

∫
Ω

(
(Ix · u+ Iy · v + It)

2 + α(||∇u||2 + ||∇v||2)
)
dA, (72)

where α > 0 is a weighting factor. We can now solve for u and v iteratively, using the

following equations:

un+1 = un − Ix[Ixu
n + Iyv

n + It]

α2 + Ix
2 + Iy

2 ,

vn+1 = vn − Iy[Ixu
n + Iyv

n + It]

α2 + Ix
2 + Iy

2 . (73)

Here un+1, vn+1 are the updated estimates of un and vn, and un and vn are the local averages

[48]. Solving (73) iteratively, until u and v converge, gives us the optical flow field.

This flow field can be interpreted as a vector-valued image, with two components at

each pixel location. We can use the vector-valued curve evolution model described in

[26] for curve evolution. Consider an evolving curve C in the given image domain. We

represent the curve implicitly using a level set function φ [70], such thatC = {(x, y) ∈ R2 :

φ(x, y) = 0}. The region inside the curve is represented byRin = {(x, y) ∈ R2 : φ(x, y) ≥

0} and the region outside the curve is represented by Rout = {(x, y) ∈ R2 : φ(x, y) < 0}.

We can now define a region-based energy functional for the two-channel flow field as

Ecv = λ · Length(C) +

∫
Rin

(u− Uin)2dA+

∫
Rin

(v − Vin)2dA

+

∫
Rout

(u− Uout)2dA+

∫
Rout

(v − Vout)2dA,

(74)

where Uin and Vin are the average values of u and v inside the evolving curve C, Uout

and Vout are the average values of u and v outside the evolving curve C and λ ≥ 0 is a

weighting factor.

Minimizing the energy via gradient descent separates the image domain into regions

with the least flow-field variation inside and outside the curve. Evolving φ implicitly
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evolves the segmenting curve C. The gradient descent equation for the level set repre-

senting the curve can be written as

∂φ

∂t
= −δ(φ)

(
2(Uin + Uout)(u−

Uin − Uout
2

) · ~N + 2(Vin + Vout)(v −
Vin − Vout

2
) · ~N

+ γ · ~N + λ · κ · ~N
)
,

(75)

where ~N is the outward normal of the zero level set of φ, κ is the curvature of C and γ is a

constant that regulates inflationary/shrinking force. As described in [25], the function δ is

implemented by a smooth approximation of the delta function.

Figures 43(a) and 43(b) show two successive frames of an image sequence. In Fig-

ure 43(c), we present the optical flow field computed using (72). Because of the global

smoothness constraint, the flow field does not change abruptly at object boundaries.

We start our segmentation with the initial contour shown in Figure 44(a). Minimizing

the energy in (73) drives the contour to the final segmentation, shown in Figure 44(b).

For the given initialization, we choose the constant γ to have a shrinking effect on the

contour. This prevents the contour from getting stuck in local minima. We see that the final

segmentation does not align with the object boundaries because of the global smoothness

constraint.

(a) Image I1. (b) Image I2. (c) Optical Flow.

Figure 43: Optical flow: (a,b) Successive images from an image sequence. (c) Optical
flow field overlayed on the image.
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(a) Initialization. (b) Final segmentation.

Figure 44: Vector-valued segmentation on the calculated flow field

5.2.2 Joint Motion Estimation and Boundary Optimization

In this section, we describe the single-step approach for motion segmentation. In this ap-

proach, we estimate motion and optimize the object boundary simultaneously, by mini-

mizing a single energy functional based on the brightness constancy constraint (76). We

assume that the motion field is smooth (constant) locally, within regions inside and outside

the curve, but not across the curve. Thus, when the curve boundary evolves to match the

object boundary, we do not smooth the flow field across the discontinuity at this boundary.

This joint optimization approach combines the two tasks of estimating motion vectors

and detecting object boundaries. This is achieved by minimizing a single energy function

to simultaneously estimate motion vectors and detect object boundary. Optical flow and

motion estimation algorithms assume that the brightness (gray value) of a moving pixel

does not change with displacement. The brightness constancy constraint (BCC), based on

this assumption, can be defined as

I1(x, y) = I2(x′, y′), (76)

where I1 : Ω→ R and I2 : Ω→ R are images defined over a domain Ω ⊂ R2 at two differ-

ent time instants t1 and t2, and x′ and y′ are transformed co-ordinates with respect to a given

group action model gi. Group action model gi is defined such that [x′ y′]T = gi( [x y]T ),

i.e. X ′ = gi(X), where X = [x y]T . The group action model gi is defined in terms of

affine or non-affine parameters pi. For the examples considered here, a parameter set pi
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consisting of translation along the X- and Y-axis was sufficient for motion segmentation.

Equation (76) is ill-posed because it has two unknowns. Thus, we need additional

constraints to solve this equation. As mentioned earlier, Horn and Schunck [48] introduced

a global smoothness constraint, whereas Lucas and Kanade [64] used a local smoothness

assumption to solve this problem. Motion segmentation models assume that the motion

field is locally smooth within the foreground and the background. Based on this local

smoothness assumption, the energy functional for a typical motion segmentation model

can be defined as

E = λ · Length(C) +

∫
R

[I1 − I2 ◦ gin]2dΩ +

∫
(Ω\R)\O

[I1 − I2 ◦ gout]2dΩ, (77)

where R represents the region inside the segmenting curve C, I1 : Ω → R and I2 :

Ω → R are images defined over a domain Ω ⊂ R2 at two different time instants t1 and

t2, gin and gout represent the smooth motion field (group actions for each region) in R

and Ω \ R, respectively, O denotes the occluded regions according to the current motion

model and object boundary and λ ≥ 0 is a weighting factor. The symbol ‘◦’ denotes

that the given image is composed with the respective motion vector field (group action

model). We represent the curve implicitly using a level set function φ [70], such that

C = {(x, y) ∈ R2 : φ(x, y) = 0}. The region inside the curve is now represented by

R = {(x, y) ∈ R2 : φ(x, y) ≥ 0}, and the region outside the curve is Ω \ R = {(x, y) ∈

R2 : φ(x, y) < 0}.

Notice that the motion field is smooth (constant) locally, in the regions inside and

outside the given segmenting curve, but not across the curve. When the curve boundary

evolves to match the object boundary, the flow field maintains a discontinuity at the bound-

ary. Since, the energy functional depends on the motion vectors and the embedding level

set function φ, we minimize this energy by alternating evolution of the level set and the

motion vectors.
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5.2.2.1 Updating motion vectors

For a fixed φ, we can update the motion vectors parameters pin and pout by the following

update equation:

pi
n+1 = pi

n +
∂E

∂pi
· dpi, (78)

where i = {in, out}.
∂E

∂pin
= −

∫
R

[I1 − I2 ◦ gin] · ∇I2 ◦ gin,

∂E

∂pout
= −

∫
(Ω\R)\O

[I1 − I2 ◦ gout] · ∇I2 ◦ gout. (79)

5.2.2.2 Level set evolution

Conversely, for fixed motion vectors, the gradient descent equation for the level set φ can

be written as

∂φ

∂t
= −δ(φ)

(
[(I1 − I2 ◦ gin)2 − (I1 − I2 ◦ gout)2] · ~N + γ · ~N + λ · κ · ~N

)
, (80)

where ~N is the outward normal of the zero level set of φ, κ is the curvature of C, γ is a

constant and δ(φ) is smooth approximation of a delta function.

5.2.3 Occlusion Problems in Traditional Motion Segmentation Models

Consider two sample images, I1 and I2, shown in the illustration in Figure 45 (a) and Figure

45 (b). Here we represent the foreground object by a circle and it occludes parts of the

background, which is represented by vertical lines. The group action for the foreground can

be denoted by a translation in the vertical direction and the group action for the background

can be denoted by translation in the horizontal direction.

Figure 45 (c) shows the overlay of I1 and I2 ◦gin for the integral in region R and Figure

45 (d) shows the overlay of I1 and I2 ◦ gout for the integral in region Ω \ R in equation

(77). The domain for the difference term I1 − I2 ◦ gin is well defined for region R. But,

I1−I2 ◦gout (for the background) is not consistently defined over the entire domain (Ω\R)

because of the following:
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Figure 45: Illustration of the occlusion problem. (a) I1. (b) I2. (c) Overlay of I1 and
I2 ◦ gin. (d) Overlay of I1 and I2 ◦ gout. (e,f) Minimal region of support for fin and fout.

a) Occlusion:

Since motion in the foreground and the background are different, there are regions in

the background of I2 that are occluded by the foreground, but visible in I1. The occluded

region is highlighted in Figure 45 (d).

b) Image domain boundary inconsistency:

Secondly, there are regions in image I2 that move outside the domain Ω when operated

with the motion model. These pixels are not accounted in the motion segmentation model.

Moreover, there are regions in domain Ω, where I2 ◦ gout is not defined. These regions are
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highlighted in the overlay image in Figure 45 (d).

Since the definition of traditional motion segmentation model does not account for these

problems, it may lead to certain undesirable segmentation results in which the contour gets

stuck in undesired minima. Figure 46 shows an example in which the contour gets stuck

in local minima using traditional motion segmentation model. Figure 46 (a) and Figure 46

(b) show images at two time instants t1 and t2 and Figure 46 (c) shows the initial contour.

The segmentation obtained by minimizing the energy in (77) is shown in Figure 46(d). We

notice that the curve gets stuck in undesired minima due to improper occlusion handling.

Since the contour is not on the object boundary, the motion vector estimation is not precise,

which further aggravates the occlusion problem causing the contour to get stuck in the

minima. Adding a shrinking balloon force or an inflationary balloon force or increasing the

weight on the curvature term to overcome the minima may not lead to the correct solution,

as shown in Figure 46 (e), Figure 46 (f) and Figure 46 (g), respectively.

Figure 47 shows an example for motion segmentation on the hockey player image se-

quence. Due to camera motion, there is significant motion along X-axis in the background

and the foreground. Thus the background behind the player is severely occluded. We see

that segmentation curve gets stuck in a minima due to improper occlusion handling in the

traditional motion segmentation model.

5.3 Relaxed Motion Segmentation

In this section, we develop a motion segmentation model, which can overcome image

boundary inconsistency and occlusion handling problems described previously.

5.3.1 Relaxed Motion Segmentation Model

Consider images I1 : Ω → R and I2 : Ω → R defined over a domain Ω ⊂ R2 at two

different time instants t1 and t2. We define layers fin : Ωin → R over a domain Ωin ⊂ R2

and fout : Ωout → R over a domain Ωout ⊂ R2 for the foreground and background,

respectively. These layers represent smooth approximates of the regions in the foreground
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(a) I1. (b) I2. (c) Initialization.

(d) Traditional Motion Segmenta-
tion Result.

(e) Traditional Motion Segmenta-
tion with shrinking force.

(f) Traditional Motion Segmenta-
tion with inflationary force.

(g) Traditional Motion Segmenta-
tion with large weight on curvature
term.

Figure 46: Avoiding local minima in motion segmentation: (a) I1. (b) I2. (c) Initial
contour. (d) Final segmentation contour is stuck in an undesirable minima. (e) Final seg-
mentation with a shrinking force. (f) Final segmentation with an inflationary force. (g)
Final segmentation with a large weight on the curvature term.

and background from both images. Based on these smooth foreground and background

layers we define a new energy functional for the relaxed motion segmentation model,

E = β
{ ∫

Ω∩R
(I1 − fin)2dΩ +

∫
Ω\R

(I1 − fout)2dΩ

+

∫
Ω∩gin(R)

(I2 − fin ◦ gin−1)2dΩ +

∫
Ω\gin(R)

(I2 − fout ◦ gout−1)2dΩ
}

+ (1− β)
{∫

Ωin

||∇fin||2dΩin +

∫
Ωout

||∇fout||2dΩout

}
+ λ

∫
C

ds,

(81)
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(a) I1. (b) I2.

(c) Initialization. (d) Traditional Motion Segmenta-
tion Result.

Figure 47: Avoiding local minima in motion segmentation: (a) I1. (b) I2. (c) Initial
contour. (d) Final segmentation contour is stuck in an undesirable minima.

where the domains Ωin and Ωout are defined such that,

Ωin ⊂ R ∩ (Ω ∪ gin−1(Ω)),

Ωout ⊂ (Ω \R) ∪ {gout−1(Ω) \ (gout
−1 ◦ gin)(R)}. (82)

The first four terms in the energy functional (81) are data fidelity terms, which ensure

that the foreground and background layers are consistent with the image data. The terms pe-

nalizing ||∇fin||2 and ||∇fout||2 are smoothness terms for the foreground and background

layers, respectively. Finally, the last term is a penalty on the length of the curve C. By

varying the parameter β ∈ [0, 1], we can vary the significance of the data fidelity and the

smoothness terms.

In our model, we choose the minimal region of support for fin and fout by taking

Ωin = R∩(Ω∪gin−1(Ω)) and Ωout = (Ω\R)∪{gout−1(Ω\(gout−1◦gin)(R)}. The minimal

region of support for the foreground and background layers are non-arbitrary domains that

are large enough to account for fin and fout, but no larger. The highlighted regions in
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Figure 45 (e) and Figure 45 (f) show examples of minimal regions of support for fin and

fout, respectively.

In equation (81), with minimal regions of support, the data fidelity terms consider each

and every pixel on both images either in the background or the foreground layer. The

disjoint domains of integration for the background and foreground layers on each image

ensure that each pixel (on both images) is considered exactly once. There are no holes due

to occluded regions in the estimated background layer and any portion of the image that

moves outside the image domain when operated with the motion model is accounted for in

the smooth approximation of the background layer.

Since this energy functional depends on group action models gin and gout, foreground

and background layers fin and fout, and embedding level set function φ, we minimize the

energy by alternating the evolution of the level set function, motion vectors and smooth

estimates of the foreground and background layers.

5.3.1.1 Update for Foreground and Background Layers

For fixed φ, gin and gout, we update fin and fout by solving the following equations:

∆fin = (fin − I1) · χ(R∩Ω) + (fin − I2 ◦ gin)|∂gin
∂X
| · χ(R∩gin

−1Ω), (83)

∆fout = (fout − I1) · χ(Ω\R) + (fout − I2 ◦ gout) · |
∂gout
∂X
| · χ(Ω\(gin◦gout

−1)R), (84)

where χRi
is a characteristic function such that,

χRi
(x) =

 1, if x ∈ Ri,

0, otherwise.

(85)
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5.3.1.2 Updating motion vectors

For fixed φ, fin and fout, we update the motion vectors gin and gout. The partial derivatives

∂E
∂pin

and ∂E
∂pout

are given by

∂E

∂pin
=− 2

∫
Ω∩R

(I2 ◦ gin − fin) · (∇fin) · adj
(
∂gin
∂X

)
· ∂gin
∂pin

dΩ

+

∫
C

(I2 ◦ gin − fin)2 · ∂gin
∂pin

· adj(
∂gin
∂X

)T ·N · ds,

∂E

∂pout
=− 2

∫
gout

−1(Ω\gin(R))

(I2 ◦ gout − fout) · (∇fout) · adj
(
∂gout
∂X

)
· ∂gout
∂pout

dΩ

+

∫
C

(I2 ◦ gin − fout ◦ gout−1 ◦ gin)2 · ∂gin
∂pout

· adj(
∂gin
∂X

)T ·N · ds.
(86)

Here, ~N is the outward normal to the curve C, and ∂gin

∂X
and ∂gout

∂X
are Jacobian ma-

trices introduced in these equations since we switch the group action operator from the

smooth estimates to the images. The complete derivation for equations in (86) are given in

Appendix D.

5.3.1.3 Level set evolution

Finally, for fixed gin, gout, fin and fout, the gradient descent equation for the level set φ can

be written as

∂φ

∂t
= −δ(φ)

(
[Fin − Fout] · ~N + λ · κ · ~N

)
, (87)

where,

Fin = (1− β)||∇fin||2 + β{[I1 − fin]2 + [I2 ◦ gin − fin]2 · |∂gin
∂X
|},

Fout = (1− β)||∇fout||2 + β{[I1− fout]2 + [I2 ◦ gin− fout ◦ gout−1 ◦ gin]2 · |∂gin
∂X
|}, (88)

and ~N is the outward normal of the zero level set of φ, κ is the curvature of C and δ(φ) is

a smooth approximation of the delta function.
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5.3.2 Multi-scale Relaxed Motion Segmentation

By varying the weight β in our energy functional, we can generate a multi-scale relaxed

motion segmentation algorithm. Let us first consider two special cases: β = 0 and β = 1.

a) β = 0

For the case where the weight on the data fidelity terms is set to zero (β = 0), we

encounter total smoothing of the foreground and background layers. We can replace the

smooth estimates fin and fout with the respective means ufin and ufout. With β = 0, the

equivalent energy formulation of E given in (81) is

E(β = 0) =

∫
Ω∩R

(I1 − ufin)2dΩ +

∫
Ω\R

(I1 − ufout)2dΩ

+

∫
Ω∩gin(R)

(I2 − ufin)2dΩ +

∫
Ω\gin(R)

(I2 − ufout)2dΩ + λ

∫
C

ds.

(89)

b) β = 1

Let us denote the foreground and background layers for β = 1, as Iin : ΩIin → R over

a domain ΩIin ⊂ R2 and Iout : ΩIout → R over a domain ΩIout ⊂ R2. With no weight on

the smoothness terms, the minimal region of support for Iin and Iout are now

ΩIin = gin
−1(Ω) ∩R, (90)

ΩIout = (Ω \R ∩ gout−1(Ω)) \ ((gout
−1 ◦ gin)(R)). (91)

Since Iin and Iout are not defined over domains Ωin and Ωout, the modified energy

functional in (81) becomes

E(β = 1) =

∫
gin
−1(Ω)∩R

(I1 − Iin)2dΩ +

∫
Ω∩gin(R)

(I2 − Iin ◦ gin−1)2dΩ

+

∫
((Ω\R)∩gout

−1(Ω))−(gout
−1◦gin)(R)

(I1 − Iout)2dΩ

+

∫
Ω\gin(R)

(I2 − Iout ◦ gout−1)2dΩ + λ

∫
C

ds.

(92)

Not every pixel from images I1 and I2 are considered in these integrals, but only the

pixels where Iin or Iout are defined is considered. Since the occluded regions and regions
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that extend from outside the image domain are not considered in the domain of integration,

this energy functional has holes in the domain of integration. The domain of integration

on the second term in (92) accounts for occlusion by excluding (gout
−1 ◦ gin)(R) from the

domain, and (Ω \ R) ∩ gout−1(Ω) accounts for the regions that do not have a value for

the corresponding pixel in I2. The domain of integration on the first term, gin−1(Ω) ∩ R,

excludes the regions in the foreground that may move outside the domain of image I2 due

to foreground motion.

We do not use E(β = 1) independently, since it is not defined over the entire image

domain Ω. Instead, we consider a multi-scale relaxed motion segmentation energy model,

which is a linear combination of the energy function for different weights of β ∈ [0, 1]. In

the examples presented here, we consider a linear combination of E(β = 0), E(β = 0.5)

and E(β = 1).

ERMS = a0 · E(β = 0) + a1 · E(β = 0.5) + a2 · E(β = 1), (93)

where a0 + a1 + a2 = 1 and a0, a1, a2 ≥ 0. This energy (ERMS) is defined over the

entire image domain. In the occluded regions and regions that extend from outside the

image domain where Iin or Iout are not defined, we use only the smooth estimates fin, ufin

and fout, ufout.

5.4 Experimental Results

The result of using the multi-scale relaxed energy model ERMS (93) on Figure 46 (a) and

Figure 46 (b) with the initialization given in Figure 46 (c) is shown in Figure 48 (a). We

can see that the final curve evolves to match the object boundary. In the regions hampered

by occlusion in the traditional model, our energy optimization model uses the smooth esti-

mates of foreground and background layers to overcome the occlusion problem.

Figure 48 (b) shows the result of using the multi-scale relaxed motion segmentation

model on images Figure 47 (a) and Figure 47 (b) with the initialization given in Figure 47
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(c). Since our model estimates the background in the occluded regions, we avoid minima

caused by occlusion and converge to the object boundary.

(a) Final Segmentation curve for
images in Figure 46.

(b) Final Segmentation curve for
images in Figure 47.

Figure 48: Results generated with the proposed multi-scale relaxed motion segmentation
model.

Further we tested our relaxed motion segmentation algorithm on two image sequences:

a) hockey player sequence with 15 consecutive frames, b) a teleconferencing image se-

quence with 100 consecutive frames. Once we converge to a minimum in the first frame of

each sequence, we perform curve evolution for a fixed number of iterations on consequent

frames, initializing the contour with the curve from the previous frame. We do not rely on

motion continuity since the motion segmentation model uses only two consecutive frames.

So we initialize the group action models gin and gout with no initial motion. Figures 49 and

50 show motion segmentation results on the hockey player sequence using the traditional

approach and relaxed motion segmentation approach, respectively. Figures 51 and 52 com-

pares motion segmentation results on a few intermediate frames of the teleconferencing

image sequence.

We see that the traditional model does not converge to the object boundary correctly in

the initial frames and hence the results degrade quickly in consequent frames. Whereas,

the relaxed motion segmentation model overcomes the occlusion problem to converge to

the object boundary in the initial frames and continues to detect the object in consecutive

images of the sequence. Although the foreground motion is not purely translational due to

the non-rigid motion of the object of interest, the segmentation results with our model are

106



fairly robust.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 49: Tracking results: (a)Initialization on the first frame. (b-o) Motion segmenta-
tion results on the hockey player image sequence with the traditional motion segmentation
model.

5.5 Conclusion

In this chapter, we proposed a novel relaxed motion segmentation model, which treats

image sequences as overlapping foreground and background layers. We use smoothness

constraint to model these layers using the available image information and also estimate

smooth approximates for background in the occluded regions. Thus, we address the oc-

clusion problem, which severely hampers existing motion segmentation models. We show

results on some real-life images to illustrate the superiority of our model over the traditional
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 50: Tracking results: (a)Initialization on the first frame. (b-o) Motion segmen-
tation results on the hockey player image sequence with the proposed multi-scale relaxed
motion segmentation model.

motion segmentation model.
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(a) Initialization (b) Frame 1 (c) Frame 10

(d) Frame 20 (e) Frame 35 (f) Frame 45

(g) Frame 60 (h) Frame 70

Figure 51: Tracking results: (a) Initialization on the first frame. (b-g) Results on a few
intermediate frames of the teleconferencing image sequence with the traditional motion
segmentation model. (h) Due to accumulation of error over several frames, the contour
completely disappears in frame 70.
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(a) Initialization (b) Frame 1 (c) Frame 10

(d) Frame 20 (e) Frame 35 (f) Frame 45

(g) Frame 60 (h) Frame 70

Figure 52: Tracking results on a few intermediate frames of the teleconferencing image
sequence with the proposed multi-scale relaxed motion segmentation model.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we have developed three active contour models, which are robust against a

larger class of local minima when compared to the traditional active contour models. We

also developed two schemes to improve the numerical accuracy of the implementation of

the traditional fast marching method. We present various experimental results, throughout

the thesis, to illustrate the improvement in segmentation results caused by our approaches

when compared to the existing state-of-the-art approaches for each active contour model.

6.1 Brief Summary of Contributions

• Developed interpolated fast marching method and upsampled fast marching method

to remove directional bias and non-isotropy in the traditional numerical implementa-

tion of fast marching methods.

• Developed an active geodesic model, which constrains an evolving active contour

to continually be a geodesic with respect to an edge-based metric throughout the

evolution process. The contours generated by active geodesic model exhibit both

local and global behaviors and therefore generate meaningful segmentation results.

• Developed an intuitive user interaction based segmentation algorithm using the active

geodesic model.

• Developed localized shape priors based segmentation model to learn and fit curves

that can account for local shape variations. This model segments various regions

in the target image separately, and then combines them to obtain a single globally

accurate segmentation, which retain local shape variation even as they are combined

with global pose parameters.
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• Developed a relaxed motion segmentation model to address the long-standing occlu-

sion handling problem in motion segmentation models. This model uses a layering

structure to estimate a foreground and background layer from given image sequence,

and generates an approximation for background in the occluded region to circumvent

the problem of detecting occlusions.

6.2 Future Work

There are various avenues for future research on each of the topics we have dealt with in

this thesis. Below we enlist a few suggestions on the most interesting and piratical direction

of future research for each of the research topics we have discussed in this thesis:

• We discuss the implementation of interpolated fast marching method and upsampled

fast marching method, in Chapter 2, on Cartesian grids. Investigating the benefits of

our approach on non-Cartesian grids is an interesting future direction for research.

• The current implementation of the active geodesic model, presented in Chapter 3, is

strictly applicable to closed contours on 2D images. Extending our model to higher

dimensional data is a challenging future direction of research.

• In the current implementation of the localized shape prior based segmentation ap-

proach, discussed in Chapter 4, we require user input for target mask generation.

The target mask generation can be automated by using variational methods to gen-

erate masks that increase correlation in local shape variation within each mask and

decrease the correlation in shape variation across different target masks.

• Incorporating intensity priors, to learn the intensity distribution in training images,

along with shape priors to improve prior knowledge-based segmentation can be an

interesting avenue to extend the localized shape prior based approach. Such intensity

prior based segmentation approaches can be very useful in various medical imaging

applications.
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• Localized shape priors can be incorporated in the relaxed motion segmentation model,

discussed in Chapter 5, on video teleconferencing image sequences. We can use var-

ious target regions to identify articulated motion of the subject in a teleconferencing

sequence and use localized shape priors for applications such as background substi-

tution and 2D to 3D conversion.
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APPENDIX A

FERRARI’S SOLUTION TO QUARTIC EQUATIONS

In this appendix, we derive the solution to a generic fourth order equation [60]. Consider

the quartic equation

ax4 + bx3 + cx2 + dx+ e = 0. (94)

=⇒ x4 +
b

a
x3 +

c

a
x2 +

d

a
x+

e

a
= 0. (95)

Substituting, x = (y − b
4a

) in equation (95), we get a depressed quartic equation,

y4 + (− 3b2

8a2
+
c

a
)y2 + (

b3

8a3
− bc

2a2
+
d

a
)y

+ (− 3b4

256a4
+

b2c

16a3
− bd

4a2
+
e

a
) = 0.

(96)

Substituting, p = (− 3b2

8a2 + c
a
), q = ( b3

8a3 − bc
2a2 + d

a
) and r = (− 3b4

256a4 + b2c
16a3 − bd

4a2 + e
a
)

in (96) we get,

y4 + py2 + qy + r = 0. (97)

=⇒ (y2 + p)2 = py2 − qy + (p2 − r). (98)

Introducing a new variable z, by adding (y2 + p+ z)2− (y2 + p)2 to both sides of (98),

we get,

(y2 + p+ z)2 = (p+ 2z)y2 − qy + (z2 + 2pz + p2 − r). (99)

We have to choose a value of z such that the R.H.S of (99) becomes a perfect square.

Thus, the discriminant of the R.H.S of (99), which is a quadratic equation of the form

Ay2 +By + C, should be zero, i.e. B2 − 4AC = 0. Thus, we have

q2 − 4(p+ 2z)(z2 + 2pz + p2 − r) = 0. (100)
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=⇒ z3 +
5

2
pz2 + (2p2 − r)z + (

p3

2
− pr

2
− q2

8
) = 0. (101)

Substituting, z = (v − 5
6
p) in equation (100), we get a depressed cubic equation,

v3 + (−p
2

12
− r)v + (− p3

108
+
pr

3
− q2

8
) = 0. (102)

Substituting, P = (−p2

12
− r) and Q = (− p3

108
+ pr

3
− q2

8
) in (102) we get,

v3 + Pv +Q = 0. (103)

The solution to this depressed cubic equation using Cardano’s method [60] gives us the

solution to the cubic equation in (101). For s =
3

√
−Q

2
±
√

Q2

4
+ P 3

27
,

z =

 −s+ P
3s
− 5p

6
s 6= 0,

− 3
√
Q− 5p

6
otherwise.

(104)

Consider the equation (Ay +B)2. We have

(Ay +B)2 = ((
√
A2)y +

2AB

2
√
A2

)2. (105)

Using this expression in (99), we get,

(y2 + p+ z)2 = (
√
p+ 2zy +

(−q)
2
√
p+ 2z

)2. (106)

=⇒ y2 + p+ z = ±(
√
p+ 2zy +

(−q)
2
√
p+ 2z

). (107)

=⇒ y2 ∓ (
√
p+ 2z)y + (p+ z ± q

2
√
p+ 2z

) = 0. (108)

Solution to the quadratic equation in (108) gives us the solution of the original quartic

equation.

x =

 −
b

4a
±
√
p+2z
2

+

√
(p+2z)−4(p+z± q

2
√

p+2z
)

2
,

− b
4a
±
√
p+2z
2
−
√

(p+2z)−4(p+z± q
2
√

p+2z
)

2
.

(109)
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APPENDIX B

NEWTON’S SOLUTION FOR 4-CONNECTED NEIGHBOR

SCHEME

In this appendix, we prove the convergence of Newton’s scheme for the interpolated 4-

connected neighbor scheme. We also discuss solutions to the corner cases with multiple

minima/maxima. Let us consider the higher order derivatives of f(t) given in equation

(19).

f ′′(t) =
uA − uB(√
t2 + (1− t)2

)3 + 4(τB − τA), (110)

f (3)(t) = −3(uA − uB)
{ (2t− 1)(√

t2 + (1− t)2
)5

}
, (111)

f (4)(t) = −3(uA − uB)
{ 2(√

t2 + (1− t)2
)5

− 5(2t− 1)2(√
t2 + (1− t)2

)7

}
.

(112)

We note that for uA − uB 6= 0, f (4)(t) 6= 0. If uA − uB = 0, f ′(t) in equation (20)

(in Chapter 2) becomes a linear function in t and thus it can have at most one zero crossing

for t ∈ [0, 1]. Thus, Newton’s method has at least quadratic convergence and uC(t) can

have at most four extrema. This also implies that f ′ can have a maximum of three zero

crossings. We already know that f ′(0.5) is non-negative. Also, note that f ′′ is symmetric

about t = 0.5, and f (3)(t) has a zero at t = 0.5; hence, there can be a single zero for f ′′

at t = 0 or a maximum of two zero crossings in f ′′ for t ∈ [0, 1]. Using the symmetry

of f ′′ and non-negativity of f ′(0.5), we can detect the number of zero crossings in f(t)
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(equivalently the number of extrema in uC) by looking at the sign of f ′ at t = 0 and t = 1,

and sign of f ′′ at t = 0 and t = 0.5. The four possible cases are

(i) Maximum one zero crossing in f : f ′(0), f ′(1) have the same sign and f ′′(0), f ′′(0.5)

have the same sign.

(ii) Maximum two zero crossings in f : f ′(0), f ′(1) have opposite signs and f ′′(0),

f ′′(0.5) have the same sign.

(iii) Maximum three zero crossings in f : f ′(0), f ′(1) have the same sign and f ′′(0),

f ′′(0.5) have opposite signs.

(iv) Maximum four zero crossings in f : f ′(0), f ′(1) have opposite signs and f ′′(0),

f ′′(0.5) have opposite signs.

If we detect a single extremum, we can use tinit = 0.5 to initialize Newton’s scheme.

For two extrema, we can initialize Newton’s scheme at the two boundaries. If we detect

three extrema, it could mean 2 maxima and one minimum or one maximum and 2 minima.

We can initialize the Newton’s scheme at the two boundaries and converge to the corre-

sponding extrema. If both the extrema have a higher value than the boundaries, we initial-

ize Newton’s method again with the midpoint of the two detected extrema. If the extrema

have a lower value than the boundaries, the minimum of the two extrema corresponds to

the global minimum. Finally, in the case with four extrema we initialize Newton’s method

at the two boundaries and detect one of the two local minima. We encountered the scenario

with 2, 3 and 4 extrema on ∼ 1.5%, 0% and ∼ 0.02% pixels, respectively, on a 500x500

random noise image.
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APPENDIX C

NEWTON’S SOLUTION FOR 8-CONNECTED NEIGHBOR

SCHEMES

The higher order derivatives of f(t) for 8-connected neighbor scheme, given in equation

(27) (in Chapter 2), are

f ′′(t) =
uA − uB(√

1 + t2
)3 + 2(τA − τB), (113)

f (3)(t) = −3(uA − uB)
{ t(√

1 + t2
)5

}
. (114)

If uA − uB = 0, f ′(t) in equation (28) (in Chapter 2) becomes a linear function, which

can have at the most a single zero crossing. Now, given uA − uB 6= 0, f (3)(t) has a single

zero at t = 0. The symmetry of f ′′(t) about t = 0 suggests that there can be at most

one zero crossing for t ∈ [0, 1]. Since f ′(0) is non-negative, we can detect the number

of extrema in the solution of the equation (23) by detecting the sign of f ′ and f ′′ at the

boundaries t = 0 and t = 1. The three possible cases are

(i) Maximum one zero crossing in f : f ′(0), f ′(1) have the same sign and f ′′(0), f ′′(1)

have the same sign.

(ii) Maximum two zero crossings in f : f ′(0), f ′(1) have opposite signs, irrespective of

the sign of f ′′(0), f ′′(1).

(iii) Maximum three zero crossings in f : f ′(0), f ′(1) have the same sign and f ′′(0),

f ′′(1) have opposite signs.

If uC(t) has a single extremum, we initialize Newton’s method with tinit = 0. If uC(t)

has 2 or 3 extrema, we use the strategy discussed in Appendix B. On the 500x500 random

noise image, we encountered scenarios with 2 and 3 extrema in ∼ 6% and ∼ 0.09% pixels,

118



respectively. A similar derivation can be employed for the 8-connected neighbor bilinear

interpolation scheme.
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APPENDIX D

DERIVATION FOR EQUATIONS IN UPDATING MOTION

VECTORS FOR THE RELAXED MOTION SEGMENTATION

MODEL

The update equation for any given parameter set pi can be written as

pi
n+1 = pi

n − ∂E

∂pi
dt,

where i = {in, out} and dt is a positive step-size.

Let us first derive ∂E
∂pin

. Taking the derivative of the energy function for the relaxed

motion segmentation (Equation (81)), we get

∂E

∂pin
=

∂

∂pin
[

∫
Ω∩R

(I2 − fin ◦ gin−1)2]dΩ, (115)

Since, (I2 − fin ◦ gin−1)2 is the only term which depends on pin, the other terms vanish.

Splitting the integral on the R.H.S of equation (115) into the region term and the boundary

term of the curve C, we get

∂E

∂pin
=2

∫
Ω∩R

(I2 − fin ◦ gin−1) · (∇fin ◦ gin−1) · ∂gin
−1

∂pin
dΩ

+

∫
C

(I2 − fin ◦ gin−1)2 · ∂C
∂pin

· ~N · ds.
(116)

Parameterizing the curve C such that C(L) : [0, 1]→ R2, we get

∂E

∂pin
=2

∫
Ω∩R

(I2 − fin ◦ gin−1) · (∇fin ◦ gin−1) · ∂gin
−1

∂pin
dΩ

+

∫ 1

0

(I2 ◦ C − fin ◦ gin−1 ◦ C)2 · ∂C
∂pin

· J · ∂C
∂L
· dL.

(117)

=⇒ ∂E

∂pin
=2

∫
Ω∩R

(I2 ◦ gin − fin) · (∇fin) · (∂gin
−1

∂pin
◦ gin) · |∂gin

∂X
|dΩ

+

∫ 1

0

(I2 ◦ gin ◦ C − fin ◦ C)2 · ∂gin ◦ C
∂pin

· J · ∂(gin ◦ C)

∂L
· dL.

(118)
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Note that,
∂

∂pin
(gin

−1(gin(X, pin), pin) = 0. (119)

=⇒ ∂gin
−1

∂pin
(gin(X, pin), pin) +

∂gin
−1

∂X
(gin(X, pin), pin) · ∂gin(X, pin)

∂pin
= 0. (120)

Thus, substituting (120) in (118) we get

∂E

∂pin
=− 2

∫
Ω∩R

(I2 ◦ gin − fin) · (∇fin) · ((∂gin
−1

∂X
◦ gin) · ∂gin

∂pin
) · |∂gin

∂X
|dΩ

+

∫ 1

0

(I2 ◦ gin ◦ C − fin ◦ C)2 · ∂gin
∂pin

◦ C · J · (∂gin
∂X
◦ C) · ∂C

∂L
dL.

(121)

Now we have

(
∂gin

−1

∂X
◦ gin) = (

∂gin
∂X

)−1, (122)

and
∂C

∂L
= T · |∂C

∂L
|. (123)

=⇒ ∂C

∂L
= JT ·N · |∂C

∂L
|. (124)

Thus substituting (122) and (124) in (121) we get

∂E

∂pin
=− 2

∫
Ω∩R

(I2 ◦ gin − fin) · (∇fin) · (∂gin
∂X

)−1 · |∂gin
∂X
| · ∂gin
∂pin

dΩ

+

∫ 1

0

(I2 ◦ gin ◦ C − fin ◦ C)2 · ∂gin
∂pin

◦ C · J · (∂gin
∂X
◦ C) · JT ·N · |∂C

∂L
|dL.

(125)

By definition of the adjoint matrix we have,

J · (∂gin
∂X
◦ C) · JT = adj(

∂gin
∂X
◦ C)T . (126)

Substituting (126) in (125), we get

∂E

∂pin
=− 2

∫
Ω∩R

(I2 ◦ gin − fin) · (∇fin) · adj
(
∂gin
∂X

)
· ∂gin
∂pin

dΩ

+

∫
C

(I2 ◦ gin − fin)2 · ∂gin
∂pin

· adj(
∂gin
∂X

)T ·N · ds.
(127)
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Following a similar analysis we can derive ∂E
∂pout

to update pout.

∂E

∂pout
=− 2

∫
gout

−1(Ω\gin(R))

(I2 ◦ gout − fout) · (∇fout) · adj
(
∂gout
∂X

)
· ∂gout
∂pout

dΩ

+

∫
C

(I2 ◦ gin − fout ◦ gout−1 ◦ gin)2 · ∂gin
∂pout

· adj
(
∂gin
∂X

)T
·N · ds.

(128)
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