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PREFACE

The modern availability and usability of a comprehensive nano-scale track-structure
code such as GEANT4-DNA allows scientists, engineers and researchers to begin to
examine the fundamental nature of radiobiology from a new perspective. This thesis
is meant to help form the basis for future efforts in making the connection between
effects of radiation on biological material and its physical action on a nanodosimetric
scale through computer simulation. Perhaps its purpose is best described by the Latin

phrase:
in specialibus generalia quaerimus

The study of the effects of radiation on biological material has traditionally been an
outside-in field of research. Cells were irradiated and effects observed. The phrase,
meaning "to seek the general in the specifics”, describes the potential of nanoscale
track-structure analysis to provide foundational reasoning to back these experimen-
tal observations and eventually form a more accurate and comprehensive predictive

model.
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SUMMARY

The promise of comprehensive, nanoscale, characterization of radiation track-
structure is a basic, physical level understanding of the relationship between the
characteristics of a given radiation and the damage caused. The effectiveness of radi-
ation in achieving biological endpoints is known to differ with linear eneryg transfer
(LET) as well as particle type. This thesis examines this multi-dimensional rela-
tionship using track-structure analysis and document the differences in complexity of
damage produced by each type of radiation at various lineal energies by using cluster
analysis of certain energy depositions. An effort is also made to determine if the im-
plementation of a basic chromatin fiber geometry offers any benefits over previously
suggested methods for this type of work.

The author presents, in the following chapters: motivations for the construction
of this thesis; background for the adoption of track-structure analysis; methods for
the production of results; the ultimate results of simulation and cluster analysis; con-
clusions of these results; and a brief summary of recent developments and suggestions

for future work.
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Chapter 1

OBJECTIVE AND MOTIVATION

Few developments have happened faster than the application of radiation to medicine.
The mysterious ability of Roentgen’s x-ray was observed. Followed soon by crude ra-
diographs, it was less than a year before the presence of rashes as a result of exposure
had led to the dermatological application of x-rays. Marie Curie’s discovery of the
first radioactive isotopes predicated the introduction of radiation in an oncological
setting. While many of its effects were apparent, their extent and the underlying
mechanisms were hardly understood. Examination of the biological effects of ra-
diation has increasingly moved to a smaller scale. Investigation of general effects
progressed to cellular experiments concerning the different effects of various types of
radiation on cell cultures.|[7][8] The scale continued to shrink as Kellerer and Rossi
proposed the dual radiation action theory [49] which posited a precise connection be-
tween the physical action of radiation on a sub-cellular scale and resultant biological
effects giving rise to the field of microdosimetry.[35] Much in opposition to the inves-
tigation of average, macroscopic quanties in dosimetry, microdosimetry focuses on an
investigation of stochastic of microscopic interaction.[37] The field of nanodosimetry
is yet another progression as investigators focus on the action of radiation on the
nanometer scale in an attempt to better understand radiation as a whole.

Radiation is defined as a process by which energy is carried, by waves or particles,
through a medium. It is typically classified in in two ways: ionizing and non-ionizing.
Ionizing radiation, due to its sufficient energy, can liberate electrons from atoms. This
ability to induce modifications to its medium has significant biological consequence.

Each ionization event is the result of energy transfer from the incident particle. The



rate at which a particle will induce ionization events is dependent on its mass and
effective charge. Linear Energy Transfer (LET) is a measure developed to quantify the
energy transferred to the medium, by secondary electrons, from the incident particle.

The general effects of radiation on organisms have been well studied. It has been
established that radiation can affect cells: their function, their reproductive charac-
teristics, and ultimately their life-cycle. Experiments have also determined that the
primary target, by which radiation exerts its effects, is DNA.[63] Tonization events in
the nucleus can result in direct and indirect damage to the genetic material of the
cell. The connection between the absorption of energy from radiation and biological
effect is evident. However, experiments and studies have shown that the effects of
radiation can also vary dependent upon the type of incident particle. Relative biolog-
ical effectiveness (RBE) is a measure that has been established to qualify the different
effectiveness of damage caused by various types of ionizing radiation. It is defined
as the ratio of the dose of a standard photon beam (250 kVp x-ray beam or Co-60
gamma-ray beam) to the dose of the test beam that is necessary to produce the same
level of biological effect (it is an iso-effecitve dose ratio)[40].

The connection between RBE and LET is important. The biological effects of
radiation are intrinsically linked to the ionization of cell nuclear material. The ion-
ization of nuclear material is, in turn, derivative of the energy transfer from an incident
particle to the medium.[10][9] The difference between RBE of various particles with
similar LETs has been established.[67] While a connection with ionization density
and secondary particle production has been proposed, the underlying interactions
that form the basis of this connection are not necessarily understood.[11]

The modern development of comprehensive particle track-structure simulations in
water allows the nanoscale examination of the behavior of various radiations and their
associated secondary particles (most importantly electrons) and reactive chemical

species.[38] Through the establishment of various parameters attempts can be made



to, in part, explain the characteristic effectiveness of different types of radiation.
The comprehensive, nanoscale, characterization of radiation track-structure has
been an objective of researchers for more than three decades.[35] Monte Carlo codes,
of varying levels of detail, have been available since the 1970s.[62] Their development
has followed, not coincidentally, the historical increase in computing power available
to the average investigator. It is due to this computational limit that many of these
codes did not examine low energy electromagnetic processes involving charged parti-
cles. A small number of research groups developed proprietary, in-house codes. How-
ever, few of these have propagated due to their usability, narrow focus, and the prior
stated limit of computational power. The development of GEANT4[2] and its release
in the late 1990s represented a significant improvement in the capability of detailed
track-structure code. Its open-source, object-oriented technology provided substantial
versatility and opportunity for expansion. A desire to more accurately model radi-
ation at the nanoscale level led to the creation of a GEANT4-DNA toolkit.[44] This
toolkit implements processes for the simulation of low energy electromagnetic pro-
cesses. Integrated into the primary GEANT4 tookit it has provided a significant new
avenue for the comprehensive, nanoscale investigation of radiation track-structure.
In this thesis the particle transport simulation toolkit GEANT4 has been used by
the author to simulate the incidence of various radiation particles upon a hypothetical
cell nucleus in an effort to connect the observed facts of the RBE-LET relationship
with data derived from Monte Carlo track-structure simulation. Chapter two of this
thesis provides a general background of the rationale behind this work as well as
details of the programs used for the execution of the methods. Chapter 3 describes
the methods used for the production and processing of data. Chapter 4 and 5, re-
spectively, detail the results of this work and the conclusions of the author. The final
chapter describes the author’s ideas and suggestions for optimization, continuation

and further development of this work. Included in the appendix is the author’s code



as run in GEANT4 as well as the R code used for processing of the data outputted by

GEANT4.



Chapter 11

BACKGROUND

2.1 Radiobiology and Particle Track Structure

It is certain that ionizing radiation can lead to biological damage. While the effects
of radiation are readily evident, the underlying mechanisms are not. In consideration
of biological effects, it has been determined that the principle target for radiation is
the deoxyribonucleic acid (DNA) inside the cell nucleus.[63] The blueprint of the cell,
DNA is collected in much larger units called chromosomes. DNA exists as two com-
plementary strands entwined in a double-helix formation. The specific arrangement
of four DNA bases (adenosine, cytosine, guanine and thymine) constitutes a collec-
tion of discrete genes which, together, provide instruction for the functional processes
of a living cell. During interphase, chromosomes are compartmentalized inside a cell
nucleus with each one having its own territory. The structure subunits of a chro-
mosome include: nucleosomes, chromatin fibers, and chromatin fiber. Each of these
structures, illustrated in figure 1, loops facilitates the packing of a large amount of
DNA into the relatively small cell nucleus. Various structure proteins, predominantly

the family of histones, coordinate strands of DNA into a dense arrangement.

The Metaphase Chrom.

During cell division.

Figure 1: The structures of genetic material in the nucleus.[77]



The action by which radiation causes damage in cells is divided into two classifica-
tions. When the radiation interacts directly with the cell target (DNA) it can cause
ionization or excitation events that lead to biologic consequence. This direct action
is the dominant process for high-LET radiations. Radiation may also act indirectly
by affecting other molecules in the nucleus. Water, the primary constituent material
of the cell medium, is of particular concern. The radiolysis of water can result in the
formation of several different free radicals such as *OH, e, , *H, and H3O™, which
may diffuse over short distances (a few nanometers)[79] and can chemically attack
and cause damage to nearby DNA. Their interactions with DNA can result in biolog-
ically important changes in DNA structure. The comparative importance of indirect
action and direct action are dependent on the type of incident radiation, the LET of
the incident radiation, and the structure and organization of the chromosome.

Ionizing radiation, through direct and indirect effects, can cause damage to the
structure of chromatin. Incident radiation and/or free radical (primarily OH*) in-
teractions can cause base aberrations (base deletions, base modification and sugar
cross-linking) as well as single-strand breaks. These damages have varying degrees
of severity but share one common trait: their coincident occurrence has significant
impact upon the ability of the cell to successfully repair the damage. Single-strand
breaks (SSB) are of little biological consequence as they are easily repaired by the
cell using the complementary strand as a template.

Significantly more important when considering biological effect are double-strand
breaks (DSB). A DSB is defined as the coincident occurrence of two SSBs on opposite
strands less than 10 base pairs apart. DSBs are significantly more difficult for the
cell to repair. Furthermore, the occurrence of multiple lesions of base damages, SSBs
and/or DSBs in a general area increases the severity of the damage and decreases

the effectiveness of the cell’s repair mechanisms. These clustered DNA damage sites
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Figure 2: Relationship between RBE and LET based on experimental data. From
Raju.[67]

are termed "locally multiply damaged sites (LMDS)” and are preferentially associ-
ated with high-LET radiations.[36] All of these damage sites, if left un-repaired or
mis-repaired by the cell, may have significant biological consequences including chro-
mosomal aberrations, cell transformation and, ultimately, cell death. It has been
established that RBE is coordinated to a radiation particle’s LET.

The variance of RBE is not, however, simple a function of only LET. As shown
in figure 2, RBE can vary significantly for different particles of similar LET. RBE is
actually dependent on ionization density[11] which, while intrinsically related to LET,
is also dependent upon particle mass and effective charge. Nanoscale track structure
analysis allows the definition of the physical difference in ionization density for various
particles with similar LET and will possibly allow these effects to be coordinated to

chromatin organized to uniquely determine an RBE value for an incident radiation.



2.2 Monte Carlo Simulation of Particle Transport and In-
teractions

The Monte Carlo Method is a ”statistical approach to the study of differential equa-
tions.” [58] It makes use of repeated sampling of pseudo-random number in an attempt
to determine the behavior of a probabilistic event. The stochastic nature of radiation
transport lends itself well to simulation in this manner. Monte Carlo simulation are
computationally expensive. The small scale of DNA target has limited the use of
track structure modeling for nanodosimetric purposes and it is only with time that
the feasibility of simulation of track-structures at low-energy has become statistically
feasible on a large scale.

The early progression of track structure codes for biophysical modeling is well
documented by Nikjoo, et al.[62] Their focus is on modeling, in detail, the track-
structure of radiation in an aqueous environment (like the cellular medium). The
differences between track-structure codes lies primarily in the theoretical models and
cross-sections that each codes uses.(Nikjoo, et al. summarizes this well)[60] The
agreement, of most track structure codes is good at high-energy; however, at lower
energies the consensus becomes less clear.

The uncertainty of cross-section data for low-energy electrons in water is prob-
lematic. Their influence upon the ultimate spatial distribution of energy deposition
is certainly significant. Existing cross-sections for low-energy interaction in liquid
water are derived from water vapor experiments. The effect of phase difference on
yield is significant The theoretical assumptions made by the authors of each code in
deriving these cross-sections have appreciable impact upon the nanoscale action of
the codes.[73]

The production and subsequent diffusion of reactive chemical species during the

energetic degradation of secondary electrons has a significant nanoscale effect on the



energy deposition distribution of radiation. The coupling of the actions of these re-
active chemical species to radiation particles is an ongoing effort. As early as the late
1980s the authors of the track-structure code OREC|72][71] made this coupling. The
coupling of the physical and chemical actions of radiation involves a significant amount
of uncertainty. The simulation of chemical actions, specifically diffusion of radicals
and their cross-interactions, requires a temporal component not otherwise accom-
modated in other detailed track-structure codes.[16] Originally developed in the late
1990s, the detailed track-structure code PARTRACI[27] models the time-dependent
interaction of reactive chemical species with DNA material.[28] A benchmark com-
parison between NOREC (a revised code based on OREC)[70] and PARTRAC shows
only small difference possibly attributable to the developments in the understanding
of input parameters for interaction in liquid water.[17]

The development of the GEANT4-DNA toolkit[44] represents the evolution of low-
energy Monte Carlo simulation. GEANT4’s design and versatility brings these simu-
lations into the mainstream. The recent integration of a radiation chemistry module,
developed for the PARTRAC code, into GEANT4 will provide users with an even

greater capability to simulating particle interaction on a nanometer scale.

2.3 GFEANTY4 in General

GEANT4 is a toolkit for the simulation of particles through matter.[2] Its origin, as
a development, can be traced back to studies done at CERN and KEK in the early
1990s.[4] These studies proposed ways to improve upon the existing GEANT3 Monte
Carlo code as well as other existing Monte Carlo code by taking advantage of modern
computing techniques. The Original development at CERN, known as RD44, quickly
adapted object oriented technology and the C++ programming language. Its first
release, in December 1998, as GEANT4, led to the formation of the GEANT4 Collab-

oration in January 1999. It was created to address the demand for comprehensive



simulation of particle detectors used in large and complex nuclear physics experi-
ments. (involving significantly higher energies than often concern the radiobiologist).
Its development was made feasible by the increase in the user base of comprehensive
nuclear track-structure simulation software facilitated by the proliferation of low-cost
computational power. The design of GEANT4 was meant to address the shortcoming
of many previously available codes. Its use of object-oriented technology implemented
in the modern C++ programming language allowed modularity and versatility not
present in previously available codes. GEANT4 is also distinguished by the large scale
of the backing developmental collaboration and the ready availability of its source to
all users.

Since its development GEANT4 has continued to evolve and expand. The orig-
inal toolkit implemented methods for handling the fundamental aspects of physical
simulation: geometry, materials, particle interactions, particle generation, particle
tracking, generation and storing of event and tracking data, and detector and track-
ing visualization. Form these building blocks the code has expanded wildly.[3] Its
object-oriented nature allows the end-user to make use of the existing framework by
instantiating useful class systems while maintaining a unique and personal application
framework

The GEANT4 Collaboration has fostered further development by facilitating the
formation of multiple working groups. These working groups, made up of relevant ex-
perts, are tasked with individually managing releasable components. The framework
of the Collaboration allows new working groups to be created and existing ones main-
tained in am manner that allows GEANT4 to organically develop and progress. Since
GEANT4’s introduction these working groups have developed new, additive, toolk-
its which have expanded the capabilities of the original program. These expanded
capabilities are targeted to address shortcomings and new experimental applications

and include: new methods for modeling geometries, new underlying physical models,

10



physics for addressing new particles, and physics for additional energy ranges.

The Collaboration also actively supports a web portal which facilitates the dis-
semination of new versions of the GEANT4 toolkit, relevant documentation, reference
material, and answers to frequently asked questions. In addition the Stanford Linear
Accelerator Center (SLAC) provides an internet-based forum for the congregation
and interaction of the GEANT4 user base with each other as well as with members of
the GEANT4 Collaboration.

At its core GEANT4 is a repository of much of the world’s knowledge of particle
interactions. The ease with which new physical models are added to GEANT4 has
allowed the toolkit to develop and evolve with new research. GEANT4 is capable of
accommodating multiple physical models. While default setups are given in abstract
base classes, the end-user is left with an unlimited array of options to customize
model usage. The user can choose models, define the ranges of their usage, and even
modify their behavior. These are simply the capabilities provided to the application
developer. An advanced user can modify the basic function of processes and incor-
porate personal models. This modular versatility is rooted in GEANT4’s adoption of
object-oriented technology. Many previous codes are complex, unwieldy and opaque
and further development, manipulation, and replacement of physical models can be
difficult and sometimes impossible without significant redesign.

Each process invoked in GEANT4 is typically well documented by published work
of the GEANT4 Collaboration. These documents make liberal justifications for model
usage and provide the original publications demonstrating the foundation for each
model. It is possible for a user, relatively nave in the intricacies of object-oriented
coding, to review and understand the basic operations performed by the classes as-

sociated with each physical model by investigating the associated source file.
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2.3.1 For the End-User

When designing an application, as an end-user, there are three user action classes
whose instantiation and registration is mandatory. GEANT4 provides an abstract
interface for these user action classes.. The necessary classes are: G4V UserDetector-
Construction, G4V UserPrimaryGeneratorAction and G4V UserPhysics. The Detec-
torConstruction and PrimaryGeneratorAction classes provide for the registration of
the system geometry as well as the geometry of the associated particle source. While
the registration of geometry will not be foreign to any Monte Carlo veteran, the ne-
cessity of the UserPhysicsList might be. GEANT4 has no default physics processes.
Instead the user must register the physics process(es) that he/she wishes to use.
Without the registration of these processes GEANT4 cannot transport particles of
any type or energy. This requirement for verbosity is derivative of the facility for
easy manipulation of transportation process and physics process handling. GEANT4
does provide abstract base classes which invoke a standard set of model with de-
fault energy limits. Examples included with the GEANT4 distribution also provide a
number of PhysicsLists with widely varying purposes and constructions.

There are five further optional user action classes. It should be noted that these
are simply abstract interfaces through which the user-designed application can com-
municate with the core GEANT4 program. The three mandatory and five optional
user action base classes are listed below with their descriptions. They are listed in

similar order to the description provided in the top-level diagram shown in figure 3.

o (G} VUserDetectorConstruction for defining the material and geometrical setup
of the detector. Several other properties, such as detector sensitivities and

visualization attributes, are also defined in this class.

o (GG} VUserPhysicsList for defining all the particles, physics process and cut-off

parameters.
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Figure 3: GEANT4 toolkit Top Level Diagram (TLD). Adapted from Agostinelli, et
al.]2] The dependencies move in a single direction and each addresses certain aspects
of simulation.
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G4 UserPrimaryGneeratorAction for generating the primary verifices and par-

ticles.

G4 UserRunAction for actions at the beginning and end of every run.

G4 UserEventAction for actions at the beginning and end of every event.

G4 UserStackingAction for customizing access to the track stacks.

G4 UserTrackingAction for actions at the creation and completion of every track.

G4 UserSteppingAction for customizing behavior at every step.

When establishing the physics list for a given application the user must define, in
one manner or another: the physical processes for each particle type and all energies
to be addressed. A corollary for this requirement is that the user is not required to
define processes to address particle types and energies that will not be handled by the
application. The user is also given the ability to manipulate various aspects of the
physical models invoked such as energy cutoffs and the volumes where models apply.
The user may also choose to instantiate models derived from user constructed classes
within the application itself. (or user constructed classes integrated into the toolkit
itself). This allows a customizable physical treatment of each particle at the user’s
discretion.

Physics may also be linked to various regions. These regions are typically defined
in the DetectorConstruction class (where geometry is set) and may instantiate mul-
tiple (or a single) physical volumes. This allows for substantial variance reduction as
computationally intensive physical models can be instantiated only where necessary.*

Range cuts are used in GEANT4 to allow the tracking and production of particle
to be optimized for geometry and performance. A user-defined range cut instructs

the application to not produce any secondary particles whose range is below the

L Advantageous for variance reduction in less-sensitive regions.
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threshold. The ranges of particle of various energies are calculated using range-energy
and absorption length-energy tables derived from the corresponding processes. The
use of range cuts provides the user an easy method for altering the scale of the track-

structure simulation.?
2.3.2 Physics Processes in General

GEANT4 incorporates a large library of models for handling physics of a variety of
particles at a large number of energies. The GEANT4 Collaboration has published
on most models incorporated into the toolkit.[15] The instantiation of the models
included with GEANT4-DNA toolkit often supersede the less defined models of the
original toolkit. These lower energy processes were not originally simulated in detail as
their actions are unnecessary for the simulation of the high-energy physics experiments

for which GEANT4 was originally built.
2.3.3 Physics Process in GEANT4-DNA

GEANT4-DNA introduces a new set of physical models in an effort to increase the
definition of physical modeling at lower particle energies. Certain processes, han-
dled vaguely by standard physics, are treated by models with increased detail and
very low energy electromagnetic processes are introduced.® Even a basic outline of
physics models implemented in GEANT4-DNA is impractical in the scope of this work.
Ultimately large reference works could be written describing these models in detail.
Currently GEANT4-DNA handles the transport of electrons, protons, hydrogen nuclei,
alpha nuclei (with various charges) and four heavier ions (carbon, nitrogen, oxygen
and iron ions). For review of the physical models implmented in GEANT4-DNA the
author recommends the publication of Incerti, et al., Villagrasa, et al., Chauvie, et

al., Incerti, et al. and Incerti, et al.[45][75][13][44][14] Each of these publications is

2Range cuts allow scale to be changed quickly without the need to translate the desired scale to
energy cutoffs for each particle individually.
3These very low energies were not previously treated.
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authored by members of the GEANT4-DNA working group and include a review of
the physics processes implemented by GEANT4-DNA with extended references to the
experimental, theoretical and analytical works which provide the basis for the various

physical models.
2.3.4 Primary Generator in General (particle generator)

Primary particle generation in GEANT4 is instantiated by the mandatory user action
class G4 VUserPrimaryGeneratorAction. This class requires the definition of two
instances, G4PrimaryVertexr and G4PrimaryParticle. The former states the particles
starting point in space and time. The latter states the primary particle’s type, initial

momentum and other characteristics.
2.3.4.1 Particle Gun

The original method for generating particles in GEANT4, G4 ParticleGun, is designed
to simulate a beam of particles. The particle gun allows customization of particle type,
energy, polarization, charge and number of particles shot per event. It is possible
to affect the particle gun differently with random (or pre-defined) characteristics

dependent on event number and other customizations.
2.8.4.2 General Particle Source

The G/GeneralParticleSource is a more advanced implementation of the particle
generator.[22] It is included in the standard GEANT4 toolkit provides built-in sup-
port for spectral, spatial and angular distribution of generated primary particles.
The General Particle Source is easily controlled within existing applications using a

built-in command tree in the user interface.
2.3.5 Geometry in General

The geometry of the application is described in the user’s application’s DetectorCon-

struction class. In this class can articulate a wide variety of geometries. GEANT4 is a
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STEP compliant code. STEP (Standard for the Exchange of Product model data) is a
standard protocol (ISO 10303) for the exchange of geometrical data. GEANT4 makes
use of the EXPRESS description method defined in STEP. The implementation of
the STEP standard allows interchange with most CAD software.

As a STEP compliant code GEANT4 supports multiple methods for representing
solid objects. The immediately relevant methods are Constructive Solid Geometry
(CGS) and Boundary Represented Solids (BREPs). CSG, a method involving the
buildup of objects from multiple constituent solids, is normally easier to implement
and provides for superior computational performance. BREP allows for the produc-
tion of significantly more complex and exotic solids.[5]

GEANT4 provides a series of abstract classes for the building of solids using the
CSG representation. These abstract classes define various three-dimensional primi-
tives. The CSG primitive solids are: boxes, tubes, cones, spheres, wedges and toruses.
GEANT also provides for more advanced solids using CSG representation. These
solids are well documented in the EXPRESS description in the STEP manual. These
classes facilitate (amongst many solids) the CSG representation of trapezoids, tetra-
hedra, tubes with hyperbolic profiles, paraboloids, ellipsoids, cones and tubes with

elliptical cross-sections, twisted tubes and trapezoids, and extruded solids.

17



Chapter III

METHODS

This work makes use of two applications with slightly different methods for defining
sensitive sites and data processing as shown in figure 4. The first application is similar
to the work of Francis, et al.[21] and uses a simpler method making use of a rejection
sampling technique to define which points have fallen on theoretical sensitive sites;
heretofore this application, based on its use of a rejection algorithm, is referred to
as the REJECTION APPLICATION. A second application makes use of a predefined
sensitive region for scoring damages and, based on its implementation of a basic chro-
matin fiber model, is referred to as the CHROMATIN-INCLUSIVE APPLICATION. Each
application makes use of cluster analysis to expose the density of significant energy
depositions and the differences between particles of different types and energies. The
two applications use slightly different input values in the cluster analysis algorithm
(DBSCAN) in an effort to coordinate results. The two applications are run together
in an effort to determine if a pre-defined sensitive region is beneficial when performing

relatively simple statistical analysis of energy deposition interactions.!

3.1 Programs Used

Two programs were used for the primary production of results in this work. GEANT4,
a particle simulation toolkit, was used to simulate the transport of radiation particles
through a model cell and output a comprehensively detailed track structure of primary

and secondary particle as well as associated energy deposition events. This data

IThis is a matter of open debate. Until available software allows more detailed simulation of
damage to genetic material (and not statistical approximations) are more detailed model of genetic
material may not offer a significant advantage in predictive value over a simplified statistical model.
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Figure 4: The general design of the data creation and processing underlying the
production of this thesis.
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was processed using the R language environment which is designed to ”statistically
explore data sets” and provides a simple user interface and large library of data mining

algorithms.
3.1.1 GEANT4

The GEANT4 versions used by the author in the development of this work were
GEANT4.9.4p1, GEANT4.9.4p2 and GEANT4.9.5. The production of final results was
done using GEANT4.9.5. The author made substantial use of the examples provided
with the distribution. These examples are invaluable assisting the novice user over the
steep learning curve. Prior knowledge of object-oriented programming (OOP) (and
C++ specifically) is certainly beneficial before introduction to the GEANT4 toolkit.?

GEANT4 is designed to be compiled using G++ in a Linux environment.® The ease
of install install in LINUX varies with the user’s Linux distribution. Most common
desktop distributions will provide the potential user with some difficulty in finding
and acquiring the plethora of packages needed to run GEANT4 at its full capability.
GEANT4 can also be installed in Windows using Cygwin though the author has no

experience with this type of installation.[33]
3.1.1.1 Geanti VMWARE

The author settled on the use of image provided by Geant4@IN2P.[34] This im-
ages, easily implemented in the free VMware viewer, is kept up to date with current
GEANT4 releases. It includes all major packages along with multiple ancillary pro-
grams recommended for use with GEANT4. This method of implementing GEANT4
has advantages and disadvantages. It allows the user to bypass the installation phase
and updates and simply download the corresponding image to run the new distribu-

tion. The limitations of the VMware software possibly impose a slight performance

2However, it should be noted that this was the author’s first experience with OOP.
3SciLinuxb.5 is currently recommended by the GEANT4 Collaboration
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penalty and limit the application of multiple CPUs. However, for the casual user the

author wholly recommends the image distributed by Geant4@IN2P3.

3.1.2 R

R, a "language and environment for statistical computing and graphics” was used
by the author to process the immediate output from GEANT4. A GNU project,
R is based on the S language developed at Bell laboratories and is available from
the website of the R Project.[1] Its primary utility to the author was for statistical
processing of the GEANT4 output. The R environment provides a system for the han-
dling and processing of large data sets along with a plethora of third party extensions

implementing a variety of algorithms and function.

3.2 GEANT/ Model

The author has developed an application using the GEANT4-DNA toolkit. A single
geometry setup was used for all trials presented in this work.* The materials of the
geometry are homogenous thus, in a sense, the geometry of volumes is inconsequential
relative to the definition of sensitive detector regions when considering the outputted
results. The difference in the definition of sensitive regions also required differences

in the methods for generating incident radiation particles.
3.2.1 Description of Geometry

This experiment uses an original physical geometry.>® The geometry attempts to
model a cellular nucleus with its associated genetic material. The genetic material is

modeled with the assumption of uniform distribution throughout the nucleus. The

41t is quite important to note, especially in this work, that the instantiation of geometry does
not necessarily reflect the scoring mechanisms or sensitive regions which are defined in a separate,
though dependent, manner

>This original geometry was originally proposed by Dr. Chris Wang based upon prior knowledge
of basic nuclear geometry and characteristics.

6The author places an emphasis on understanding the importance of separate definition of sen-
sitive detector regions relative to physical geometry.
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Figure 5: A top-down illustration of the arrangement of volumes in the author’s
applications.

geometric model makes use of identically sized cylinder representing strands of chro-
matin sized according to the basic characteristics of chromatin.

The basic model geometry is shown in figures 5 and 6.” There are 4 volumes
defined in this work. The material defined in each volume are identical and each
volume exists only to allow for flexibility in definition of sensitive volumes (scoring

regions) and customizable instantiation of physics models.

"Figures 5 and 6 show only a single fiber along the center-line. This is done to demonstrate scale.
The actual geometries used for the author’s applications incorporates a number of chromatin fibers
distributed throughout the nuceleus volume.
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The Nucleus The Medium

|A Chromatin Fiber|

Figure 6: A cross-sectional illustration of the arrangement of volumes in the author’s
applications.

3.2.1.1 The Nucleus

8 The nucleus volume was

The nucleus volume was modeled as a simple cylinder.
constructed on a 1:5 scale as a 1 micron height and 3 micron diameter simple cylinder.”
The scaled size of the nucleus was implemented in an effort to reduce variance.

The nucleus volume was modeled using the G4Tubs function built into GEANT4.
This function facilitates the creation of tube-like solids. The nucleus was thus repre-
sented as a tube with zero inner radius (a cylinder). It was oriented lengthwise along

the z-axis. The material of the nucleus was set to ”waterMaterial” which was defined

in the user’s class as the GEANT4 "NIST Water Equivalent”!? with a density of 1.0

gm
cm3”

3.2.1.2 The Chromatin Fibers

Chromatin fibers were defined in the geometry used in both applications; however,
the chromatin volumes are only used independently of the nucleus volume in the
CHROMATIN-INCLUSIVE APPLICATION. The implementation of the chromatin fibers

is done based on an assumption of uniform distribution of genetic material throughout

8Based on the suggestion of Dr. Chris Wang (personal communication)

9The original dimensions were 7.5 micron height and 15 micron diameter which were arrived at
independently but are similar to the dimensions used by Friedland et al.[24]

10 A material definition provided by the GEANT4 toolkit.
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the nucleus. They allow a simple method for the restriction of registered events to a
defined sensitive region.

The simplest implemementation of chromatin fiber, numerous simple cylinders
with 30nm diameter are placed in a uniform manner throughout the nucleus volume.
The diameter corresponds to the experimentally observed diameter of chromatin fiber.
The number of chromatin fiber volumes placed in the nucleus volume was calculated
so that the volume of chromatin fiber volumes equated to 16% of the nucleus volume.!*

A simple method making use of concentric shells of cylinders (chromatin fiber
volumes) was chosen to approximate a uniform distribution. The Parameterisation
feature included in the GEANT4 geometry system was used to implement repeating
cylinders (chromatin fibers) throughout the nucleus volume. The G4PVParameterised
class allows the user to defined volumes according to equations with position (and/or
size) varying with each implementation.

The dimensions of each chromatin fiber volume are identical and are not modified

by the parameterisation class. The transformation is calculated according to two

variables: the number of shells and the nubmer of chromatin on the first shell.

nCro; = nCroy x i (1)
nSh

nCropr =1+ Z nCroy i (2)
i=1

This method, described by equations 1 and 3.2.1.2, results in discrete possible
values for total chromatin fibers. These two variables can be altered to best approx-
imate the target number of total chromatin fibers (to achieve the 16% value). There
is a single chromatin placed on the zeroeth shell.? The distance between each shell is

constant and is calculated based on the number of shells and the radius of the parent,

1 This method distinguishes itself as the registration of energy depositions is restricted to this
pre-defined region.
12The zeroeth shell is the centerline of the nucleus.
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nucleus, volume. The number of chromatin fibers on each shells increases, relative
to the number of chromatin fibers on the first shell, proportionally to the radius of
the first shell. The algorithm implemented in the ChromatinParameterisation class
results in the population of shells moving outward from the center. Each individual
shell is populated in a counter-clockwise motion (when observing in the direction of

the negative z-axis) starting at 0* relative to the positive x-axis.
3.2.1.83 The World and Medium

In addition two other volumes were created in these applications. The world volume
is a cylinder encompassing the nucleus and a small buffer. Just inside of this world
volume is an identically shaped Medium volume. This setup was derived, in part,
from the Microdosimetry example and done to accommodate the implementation of

special physics settings by the user.
3.2.2 Description of Physics

The physics list used for both applications is identical. It was derived, in large part,
from the microdosimetry example included with the GEANT4 toolkit. This physics
lists activates a full suite of GEANT4-DNA specific physics included in the GEANT4
release used. (GEANT4.9.4p2). For the author’s applications: the processes, the
models and the energies which each model handles are shown in table 7?7 for each
particle.!

Physics processes and models in GEANT4 are enabled by region. For these appli-
cations a single region was created. This regions, known in-program as a G4Region,
was defined by the medium volume. In this G4Region GEANT4-DNA physics were

enabled. It is inclusive of the nucleus and chromatin volumes. This implementation

13Reviews of the models used in GEANT4-DNA are referenced in the background section of this
work
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of physics in separately defined regions instead of specific volumes allows some flexi-
bility for the end-user. The region was defined as the medium to allow the author to
expand and contract the region outside of the nucleus where DNA physics were active
without manipulating the world volume. It may be desirable, for equilibrium pur-
poses, to have a region of active DNA physics larger than the scoring region. In these
applications the medium is only slightly larger than the nucleus volume and dose not
currently make a consideration for equilibrium. Only regular GEANT4 physics were

active in the world volume outside of the medium.
3.2.3 Description of Primary Generator

The implementation of the General Physical Source (GPS) allowed the user to by-
pass the cumbersome use of algorithms in the PrimaryGenerator class. The built-in
accommodations for source location distributions, energy distributions, angular dis-
tributions, and other features made GPS attractive to the author. GPS is typically
activated using the UIMessenger interface allowing simple, in application, manipula-
tion of particle type and energy.

The REJECTION APPLICATION simulates the passage of protons, alpha particles,
carbon ions, nitrogen ions, oxygen ions and iron ions of various energies as shown in
table 2. What distinguishes this example is the stationary source. In the REJECTION
APPLICATION the source fires from a static position in the center of the top of the
nucleus cylinder. The result is a pencil beam directed in the negative z-direction
through the height of the cylinder (lengthwise). The particles and energies simulated
by the REJECTION APPLICATION are outlined in table 2.

The CHROMATIN-INCLUSIVE APPLICATION differs in how the source is imple-
mented. The location of the source is a randomly chosen point on the nucleus surface

that is re-sampled with each incident particle generated. It fires from the interior
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Table 2: Particles and energies simulated by author using the REJECTION APPLI-
CATION.

Particle Type | Energies Simulated MeV

Protons 0.06, 0.08, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 2.00,
5.00, 7.00, 10.0, 20.0

Alphas 0.20, 0.60, 1.00, 2.00, 7.00, 10.0, 16.0, 20.0, 40.0,
70.0, 100

Carbons 7.00, 8.00, 10.0, 50.0, 100, 500, 1000, 5000

Nitrogens 8.00, 10.0, 40.0, 70.0, 100, 400, 700, 1000

Oxygens 40.0, 70.0, 100, 400, 1000

Irons 50.0 100, 200, 500, 1000, 3000, 5000, 11000, 25000,
50000, 100000, 500000, 1000000

Table 3: Particles and energies simulated by author using the CHROMATIN-
INCLUSIVE APPLICATION.

Particle Type | Energies Simulated MeV
Protons 0.10, 0.20, 0.30, 0.60, 1.00, 2.00, 5.00, 10.0, 20.0
Alphas 0.30, 0.60, 1.00, 5.00, 10.0, 40.0, 100

surface of the nucleus volume with an angular cosine distribution.'* Due to variance
issues and computational requirements, it presently addresses only protons and alpha
particles.!® The particles and energies simulated by the CHROMATIN INCLUSIVE-
APPLICATION are outlined in table 3.

For both applications the number of particles simulated was determined according
to resultant variance and availability of computational resources. All simulations used
mono-energetic sources. The moving source simulations required a larger number of
simulated particles due to the introduced variance of the varying location and angular

distributions.

14 A lambertian distribution.
5There is no physical (GEANT4-related) reason precluding simulation of heavier particles.
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3.2.4 Description of Tracking and Scoring

When running simulations using the applications there are three distinct phases that
are important to tracking and scoring: runs, events and interactions. The run is
initiated from the GUI and, in this case, uses mono-energetic primary particles. Each
run proscribes a certain number of events. These events, in these applications, repre-
sent a single incident primary particle. Each particle and its secondaries can produce
interactions.

The basic tracking of particles does not differ between the REJECTION APPLI-
CATION and the CHROMATIN-INCLUSIVE APPLICATION. All particles are tracked
throughout the volumes and these results are outputted to the ROOT file. The total
energy deposition of all interaction in the nucleus is summed and used to calculate
dose delivered to the nucleus volume by each primary particle and these results are
outputted to the dose file.

The storage of interaction for processing is significantly different for the two ap-
plications. Whereas the REJECTION APPLICATION registers all interactions (above 5
eV) in the nucleus volume (inclusive of chromatin fibers) the CHROMATIN-INCLUSIVE
APPLICATION only stores interaction (above 5 eV) which occur in the defined chro-
matin fibers. These data are outputted to the SB file.

Each run of of the author’s application results in the output of three files. Variable
numbers of primary particles are simulated during each run. Each primary particle
is simulated (along with secondary particles) before the subsequent primary particle

is initiated. The three types of files outputted on each run are:

e Root FILE: This file is outputted at the end of each run and consists of trees
of data cataloging locations of interaction, process types, energy deposited, and

other physical parameters.

e DOSE FILE: This csv (comma-separated value) file outputted at the end of each
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run. It provides the dose deposited by each event along with the dose of the
total run. It also includes the number of potential strand breaks (interactions

depositing greater than 5 eV).

e SB FILE:'® This is a csv file outputted at the end of each event. This file con-
tains the location of each interaction with greater than 5 eV energy deposition.

The location (x,y,z) and energy are stored for each qualifying interaction.

The number of events simulated in each run is limited by the maximum file sizes
of under two gigabytes. Simulation times are significant but are well coordinated to
output file size. Simulation times were less than twelve minutes using GEANT4 in a

virtual environment running on a single core of an Intel Q6600 processor.

3.3 Processing in R

R was used for the processing and mining of the results ouputted from GEANT4.7
It performs the rejection sampling,'® the energy ramp function and instantiates DB-
SCAN algorithm. It also includes various features for aggregating the results of
multiple particle energies. It facilitates the processing of events individually and in
combined groups. It outputs all data in a format easily viewed and subsequently

processed in any common spreadsheet application.
3.3.1 Energy Ramp Function

A ramp function is used (in both applications) to determine if registered possible
strand breaks (events with deposition >5 eV) are to be considered as strand breaks.
This function is adapted from the work of Friedland, et al.[30] and of Francis, et al..[21]

The function scores interactions as damage with zero probability for interactions with

16SB FILE refers to its storage of locations of what are considered potential strand breaks.

"The author’s R code is included in Appendix B.

8 As documented the Russian-roulette rejection sampling techniques are only applied to the RE-
JECTION APPLICATION
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energy deposition of 5 eV. The probability of an interaction being scored as a damage
increases linearly from 5 eV until it reaches unity at 37.5 eV. Equation 3 is used along

with a pseudo-random number generator to pass and reject potential damages.

E — Elow
mod = —— 3
Ehigh - Elow ( )

The reasoning for this ramp function is based on the understanding that excita-
tions and ionizations can both cause local damage under a variety of circumstances.
Ionizations with high energy deposition have a large probability of causing damage.
Excitations have a lower, but still significant, probability of causing damage through

the formation of reactive chemical species.
3.3.2 Sampling Rejection

This section applies only to the REJECTION APPLICATOIN which lacks the more
restriction definition of sensitive volume implemented in the CHROMATIN-INCLUSIVE
APPLICATION. The former application defines sensitive sites using a Russian Roulette

technique. To simualte the 16% genetic material in the nucleus volume, it rejects 84
3.3.3 DBSCAN Algorithm

To perform cluster analysis the author chose the DBSCAN algorithm. The choice of
the DBSCAN algorithm was based on author’s desire for a density-based clustering
algorithm. DBSCAN (density-based spatial clustering of applications with noise) is
a commonly used clustering algorithm proposed by Ester, et al.[18].1

DBSCAN relies on clusters designate by reach-ability. The user identifies two

parameters:

e minPts: the minimum number of points required to form a cluster.

9The specific implementation of the DBSCAN algorithm used by the author was obtained from
the ’fpc’ (flexible procedures for clustering) library developed by Hennig[39] which is included in the
repositories built into the current release of the R software.
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e ¢/eps: the maximum distance searched to find a neighboring point.

The DBSCAN algorithm first visits an unvisited point?®. It then proceeds to
search in the e neighborhood for further points. If a sufficient number of points
are found to form a cluster then these points are added and their € neighborhoods
are searched. This is done until a point in the cluster is reached which does not
have minpts in is € neighborhood. The DBSCAN algorithm, barring pre-processing
optimization, operates with O(n?)?*' complexity.??

The minpts value used in this work was two; it was derived from the inherent
requirements for the formation of a theoretical double strand break. The second
input parameter, €, determined the distance to be searched for neighboring damages.
The two applications documented in this work make use of separate values for e.

The value of € for the REJECTION APPLICATION is 3.2nm and was adopted from
the work of Francis, et al.[21]. This value is roughly the lineal distance occupied by
10 base pairs on a DNA strand. It has been experimentally established that this 10
base pair difference is correlated well to the formation of biologically consequential
damage. Brenner and Ward[12] have established an experimental correlation between
the yield of double-strand breaks and the presence of clusters of multiple ionizations
2-3 nm in siz.e

The CHROMATIN-INCLUSIVE APPLICATION took a different approach to the value
of e. The reason for this separate approach was the poor fit of the results of this appli-
cation when compared to those of the prior application. This action is justified by the
empirical nature of the many of the values adopted for the REJECTION APPLICATION

led the author of this work to manipulate the € value in an effort to match the results

20In this work a point corresponds to the location of a damage as determined by the applied
functions from the energy depositions stored in the SB file ouputted by GEANT4

217Big O notation” is used to denote the limiting complexity of a given operation. In this case
the time complexity of the operation scales with the square of the size of the analyzed dataset.

22This is important as there is great variation in performance between clustering algorithms and
techniques for determining damage density
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Table 4: Examples of probabilities of damage classifications for cetain cluster sizes.

# of Damages (n) | 1 2 3 4 5 6 7

P(SSSB) 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
P(CSSB) 0.00 | 0.50 | 0.25 | 0.13 | 0.06 | 0.03 | 0.02
P(SDSB) 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
P(CDSB) 0.00 | 0.00 | 0.75 | 0.88 | 0.94 | 0.97 | 0.98

of the two application. It is also proposed by the author that the 3.2 nm search
may be, per se, inappropriate as the value of e. With the defined chromatin fibers
the 3.2 nm value may result in a de facto overestimation of clusters. The reason for
this overestimation is due to the three dimensional search when the DNA strand only
extends in two directions and may be oriented in a non-linear fashion. The € value for
the CHROMATIN-INCLUSIVE APPLICATION was ultimately set to .8 nm. This value,

as is hown in the results, produces similar results to the REJECTION APPLICATION.
3.3.4 Categorization of Damages

The type of damage caused is based entirely on the size of the clusters. Simple
strand breaks are associated with singular energy depositions and thus these types
of singular damage are classified as simple strand breaks. Multiply damaged sites
are associated with clusters with two or more energy depositions. These sites can be
classified as complex single strand breaks, simple double strand breaks or complex
double strand breaks depending upon the cluster size (number of energy depositions).
The probability of the occurence of each type of strand break at a for a certain multiply

damaged site (cluster) is defined by equations 4 and 5.
Pssp = 0.5"! (4)

Ppsp =1—05"" (5)

The variable n is representative of the number of damages in a certain cluster.
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Figure 7: Examples of strand break classifications.

Singular, non-clustered, damages are classified as simple single strand breaks. Multi-
ply damaged sites are classified by the number of damages in a certain cluster. Simple
double stranded breaks are defined as sites where two lesions in a cluster are deter-
mined to have occurred on opposite strands. Complex strand breaks are determined
to be all single and double strand breaks which do not fit the requirements of their
corresponding "simple” designation. Probabilities for the classification of clusters is

shown in table 4. Figure 7 shows six examples of the strand break classification.
3.3.5 Lineal Energy

Linear energy transfer (LET) is defined as the energy transferred to material by an
ionizing radiation.[6] It is desirable to coordinate the results of this work to LET.
However, the restrictive definition of LET[47] has led the author to adopt a similar,
but easier to derive, measure; lineal energy,[68] y, is defined as energy imparted to a
medium by a radiation divided by the mean chord length of the volume cross by the

incident particle.[41][42]
€s

7 (6)

y:

Equation 6 is used for the calculation of lineal energy. The chord lengths used for each
application are defined using two different methods according to the positioning of the
source. The REJECTION APPLICATION assumes a chord length of exactly one unit

height. The CHROMATIN-INCLUSIVE APPLICATION uses the work of Langworthy
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[55] to derive the mean chord length of a right cylinder. The ultimate derivation and

resultant mean chord length for the geometry used is shown in equation 7.

_ 2hd
CE "

These assumptions result in chord lengths (/) for the REJECTION APPLICATION and

CHROMATIN-INCLUSIVE APPLICATION of 1.0 micron and 1.2 micron respectively.
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Chapter IV

RESULTS AND DISCUSSION

4.1  Visualization of Geometry and Track Structure

The OpenGL (OGL) visualization driver included in the standard GEANT4 toolkit
was used to visualize the applications to verify the accuracy of the geometry and the
primary particle generator (location distribution and angular distribution). Figure
8: (a) and (b) shows the geometry during the drawing period. The action of the
methods used for parametrization of the chromatin volumes can be seen as the copies
are drawn in a counter-clockwise direction filling each shell from the center to the
boundary resulting in the complete geometry shown in figure 8: (c¢) and (d).

The OGL module is also capable of drawing particle track structures. Figures 9,
10 and 11 show track structures for three different type of incident radiation particles.
Each of these particles, as is shown in this work, has similar lineal energy deposition
through the volume. Together these figures of particle track structure provides a basic

illustration of ionization density for each of these particles.!

4.2 A Comparison of Applications

With the necessity of a pre-defined sensitive region in question a comparison of the
REJECTION APPLICATION and the CHROMATIN-INCLUSIVE APPLICATION is pre-
sented. The differences between these two applications are described in detail in the
Methods chapter. It is important to note that, in addition to the change in defini-

tion of sensitive sites, the CHROMATIN-INCLUSIVE APPLICATION presents a smaller

"'While a difference can be seen between track-structures the small sample size and different
physical model coverage for each particle (all electrons are shown, not just those of ionizations)
results in some obfuscation of the expected apparent ”connective-ness” between interactions of each
primary particle type.
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(c) Full Draw (0*) (d) Full Draw (45%)

Figure 8: The application geometry during, (a) and (b), and after completion, (c)
and (d), of the drawing period as rendered in the OpenGL Event Display.

F-1000-Z04-1

Figure 9: Visualization of single 1 MeV proton track structure. Ions are illustrated
in blue; electrons are illustrated in red.
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A-20000-Z04-1

Figure 10: Visualization of single 20 MeV alpha particle track structure. Ions are
illustrated in blue; electrons are illustrated in red.

C-100000-Z04-1 ‘

Figure 11: Visualization of single 1000 MeV carbon ion track structure. Ions are
illustrated in blue; electrons are illustrated in red.

e value? in comparison to the REJECTION APPLICATION for processing with the DB-
SCAN cluster analysis algorithm. The derivation of this smaller value is empirical

based on the matching of results from the two applications.?

4.2.1 Lineal Energy

The lineal lnergy has been derived for both applications.*"> The lineal energy de-
rived from each application, for protons and alpha particles, is compared in figure to
each particle’s total stopping power and % adopted from NIST’s PSTAR
and ASTAR databases.[59] The apparent validity of these values has led to their

use throughout the Results chapter to coordinate the results of the cluster analysis

techndiques and data processing.®

2¢ is defined and its value described in the Methods chapter.

3 Justification in slightly greater detail is provided in the Methods chapter.

4The adoption of Lineal Energy as a stand-in for LET is described in the Methods chapter.

5The slight deviation of the method for calculating lineal energy in this work from the true
method proscribed by the ICRU is described in the Methods chapter.

6Here it stands in for LET in an effort to validate one of the objectives of this work: to analyze
the relationship between LET, particle type and damage complexity.
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Figure 12: The derived lineal energy for protons and alpha particles for the RE-
JECTION APPLICATION (prefix RA) and the CHROMATIN-INCLUSIVE APPLICATION
(prefix CIA).

4.2.2 Strand Break Production

The production of damages is proportional to dose and this proportionality holds
roughly constant all lineal energies and similar between both protons and alpha par-
ticles. Table 5 shows the number of strand breaks registered by both applications.”®
The small deviations, shown in the figures, appear to be due to the influence of noise
noise. The application of the energy ramp function might account for a small differ-
ence between the two applications due to different energy distributions of potential
strand breaks (damages).’

Lineal energy is thus established as a relative non-factor in the production of

damages at sensitive sites. Cluster analysis and further classification of singly and

"this value is the result of applying the rejection algorithm (if applicable) and the energy ramp
function to the number of potential damages stored by GEANT4

8These strand breaks are also referred to as ”damages.” They are energy depositions greater than
5 eV that have been passed by the rejection algorithm (if applicable) and energy ramp function for
cluster analysis by the DBSCAN algorithm

9As detailed in the Methods chapter these strand breaks are simply a record of all interaction
recorded by GEANT4 for each application which deposit energy greater than 5 eV at sensitive sites.
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Table 5: The average number of strand breaks for all energies run of protons and
alphas for the REJECTION APPLICATION and the CHROMATIN-INCLUSIVE APPLI-
CATION

Application Particle Type | Average | o %

REJECTION APPLICATION Proton 95.72 1 5.54 | 5.78%
Alpha Particle | 96.88 | 3.37 | 3.48%
Proton 94.87 | 5.90 | 6.22%

CHROMATIN-INCLUSIVE APPLICATION Alpha Particle 101.87 | 6.27 | 6.16%

multiply damage sites'® allows the qualification of damages by complexity. Figure
13 and 14 show the strand break production for alpha particles and protons using
the REJECTION APPLICATION and the CHROMATIN-INCLUSIVE APPLICATION nor-
malized per unit dose to the nucleus volume. The increased complexity of damages
for higher lineal energy particles can be readily seen. The most severe damage ac-
cording to the classification scheme, complex double stand breaks, exhibit the greater

variation with lineal energy.
4.2.3 Damage Complexity

A commonly used parameter to qualifying the complexity of damage produced by
incident radiation particles is the ratio of double strand breaks to single strand breaks.
Figure 15 shows this ratio for the REJECTION APPLICATION and the CHROMATIN-
INCLUSIVE APPLICATION for both protons and alpha particles. The influence of lineal
energy upon this measure of complexity is immediately obvious becoming especially

pronounced at higher lineal energies.

4.3 REJECTION APPLICATION in Detasl

The superior convergence of the REJECTION APPLICATION application, due to its

scoring simplicity, allowed a significantly larger amount of data to be collected from

10 According to the classification scheme detailed in the Methods chapter of this work
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Figure 13: For protons of various energies a comparison of the number of six types of
strand breaks: simple single strand breaks, complex single strand breaks, total single
strand breaks, simple double strand breaks, complex double strand breaks and total
double strand breaks. Values derived from the REJECTION APPLICATION is denoted
by the prefix RA and values derived from the CHROMATIN-INCLUSIVE APPLICATION
are denoted by the prefix CIA.
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Strand Breaks per Unit Dose (#/Gy)

0.1
10 100 1000 10000

Lineal Energy (MeV/cm)

& CIA-A-SSSB/Dose - RA-A-SSSB/Dose CIA-A-CSSB/Dose -4 RA-A-CSSB/Dose
¢ CIA-A-SDSB/Dose = RA-A-SDSB/Dose @ CIA-A-CDSB/Dose + RA-A-CDSB/Dose

Figure 14: For alpha particles of various energies a comparison of the number of
six types of strand breaks: simple single strand breaks, complex single strand breaks,
total single strand breaks, simple double strand breaks, complex double strand breaks
and total double strand breaks. Values derived from the REJECTION APPLICATION
is denoted by the prefix RA and values derived from the CHROMATIN-INCLUSIVE
APPLICATION are denoted by the prefix CIA.
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Figure 15: Comparison of the ratio of total double strand breaks (simple+complex)
to total single strand breaks (simple+complex) for models the REJECTION APPLI-
CATION (prefix RA) and the CHROMATIN-INCLUSIVE APPLICATION (prefix CIA) for
protons and alpha particles. These values are coordinated to lineal energy.

it. The data was processed with a variety of techniques in an attempt to quantify

and graphically illustrate the characteristics of different incident radiations.
4.3.1 Lineal Energy

The verification of lineal energy derived for the REJECTION APPLICATION against
total stopping power shown in figure 12 introduces the presentation of figure which
shows the lineal energy for the REJECTION APPLICATION for protons, alpha particle

and an assortment of heavier ions.
4.3.2 Damage Complexity

Figure 17 shows the ratio of the number of clusters classified as DSBs to the number
of clusters and singular damages classified as SSBs for particles of various types at

various energies,''. The data can be compared to the results, shown in figure ref

1Tn figure 17 energy is shown scaled per nucleon not only to scale the data to be easily displayed
on a single graph but also because the implementation of physics models scales, in part, with particle
mass.
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Figure 16: The user-derived average lineal energy for the protons, alpha particle, car-
bon ions, nitrogen ions, oxygen ions and iron ions as calculated using the REJECTION
APPLICATION. These values is coordinated to Energy/Nucleon.

obtained by Francis, et al.[21] who used a substantially similar method though limited
the scope of their analysis to protons.

The differences in damage complexity and their relationship to lineal energy for
each particle are illustrated in figure 18. It is important to note that, due to the
limits of Born theory, GEANT4 does not properly address heavier ions with energies
below 0.5-1.0 MeV /u. Figure 19 shows the full range of particles energies simulated
(coordinated by lineal energy).'?

The most important damage produced by radiation particles according to the
classification scheme adopted by the author is the complex double strand break.
These damages represent those damages which, biologically, are the most difficult for
the cell to repair effectively. Figure shows the production of CDSBs coordinated to
lineal energy for protons, alpha particles, carbon ions, nitrogen ions, oxygen ions and

ron ions.

2Figure 19 is inclusive of the previously inaccurately addressed lower energies. The effects of the
inaccuracy can be seen for heavier ions with higher lineal energies.
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Figure 17: The ratio of the number of calculated double strand breaks to the number
of calculated single strand breaks coordinated to energy per nucleon.
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f
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<+ P-TDSB/TSSB -4 A-TDSB/TSSB C-TDSB/TSSB = N-TDSB/TSSB O-TDSB/TSSB —+I-TDSB/TSSB

Figure 18: The ratio of the number of calculated double strand breaks to the number
of calculated single strand breaks coordinated to derived quantity lineal energy.
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Figure 19: The ratio of the number of calculated double strand breaks to the number
of calculated single strand breaks coordinated to derived quantity lineal energy. Points
are connected in accordance with particle energy. The progression of particle energy
is shown by arrows.
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Figure 20: The number of complex double strand breaks coordinated to lineal energy

and normalized per unit dose. Higher lineal energy data points for heavier ions (lower
energies) are not shown due to inaccuracies noted in text.
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Figure 21: The average cluster size (a) for particle simulated using the REJECTION
APPLICATION. The frequency of occurrence of clusters (of certain numerical size) is
detailed for protons (b), alpha particles (¢) and carbon ions (d).

The complexity of damage can also be characterized in greater detail by looking
at the specific size of clusters produced by different radiations. The average cluster
size, as shown in figure 21, is relatively indifferent to particle type at a certain lineal
energy (with deviation near peak lineal energy). The distributions of cluster sizes
for simulated proton, alpha particle and carbon ion energies simulated using the
REJECTION APPLICATION are also shown in figure 21. It can be seen that, in general,
as energy increases the overall complexity of damage decreases for both particle. At
each particle energy the frequency of clusters of various sizes is shown relative to the
number of simple single strand breaks (singular damages).

Figure 22 shows a more detailed comparison of particle type for radiations of a

similar lineal energy.!> The frequency of occurrence of clusters with greater than

13Because particles were initiated at certain energies with lineal energy a derived quantity, these
particle have, only, approximately the same lineal energy.
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a certain number of damages is shown in figure 22.'* The display of frequency of
occurrence as "greater than n damages” instead of "n damages” better displays the
difference in complexity between each type of particle which is the central purpose of

figure 22.

14This value is different than the frequency of occurrence shown in (a), (b) and (c) of figure 21
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Chapter V

CONCLUSIONS

This thesis establishes a methodology for using the Monte Carlo track structure code
GEANT4 to computationally quantify damage done by simulated incident radiation
particles to cell nuclear material. The results presented in this thesis shows, using
cluster analysis, that the complexity of damage varies not only with lineal energy
but also with particle type. It can also be concluded, from the work shown, that a
pre-defined sensitive site, in the form of a basic chromatin fiber, does not provide
significant benefit to results.

The REJECTION APPLICATION is based on the techniques adopted by Francis,
et al.[21] and makes use of a rejection algorithm that designate 16% of energy de-
positions greater than 5eV as sensitive sites. Its results compare favorably to those
obtained by Francis, et al.. The CHROMATIN-INCLUSIVE APPLICATION is an evo-
lution of the REJECTION APPLICATION that designates sensitive sites as occurring
in a predefined region. Modifications had to be made to the data processing tech-
niques! to match the data produced by the two applications. No significant advantage
can be distinguished for the CHROMATIN-INCLUSIVE APPLICATION. The statistical
nature of the cluster analysis technique for analyzing damage complexity caused by
various radiations is judged, by the author, to be effectively handled by the simpler
REJECTION APPLICATION.

The data shows a definite increase in damage complexity, as quantified by the
metrics introduced by the author, for protons versus alphas and heavier ions at any

given lineal energy. This difference is greater near the peak lineal energy of a given

!The modification to the input variables of the DBSCAN algorithm are detailed in the Methods
chapter
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particle type. The greater production of complex double strand breaks is especially
important given the cell’s decreased effectiveness in repairing these types of damages.
A smaller sample of data also suggests that alpha particles have a superiority to
carbon ions of similar lineal energy. This trend appears to carry for relationships
between ions of different mass.? The similarity between particle lineal energy and
linear energy transfer (LET) leads the author to propose that these inferences hold
true when the coordinating measure used is LET instead of the less restrictive lineal

energy.

2Suggesting some correllation to mass which is, in turn, coordinated with effective charge. The
effect of these paramters together or indepedently is not directly investigated by this work
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Chapter VI

FUTURE DEVELOPMENTS

6.1 Integration of Advanced Geometry and Systems Biol-
ogy

The ultimate goal of successful prediction of RBE using track structure analysis is
currently far away. One of the relatively simple, yet enormously complex, steps to-
wards this goal is the implementation of a realistic geometry. Various past simulation
experiments have implemented geometries of varying complexity. The simplest of
these are no more complex than the geometry implemented by the author in the ap-
plications examined in this thesis while other, more complex solutions to modeling
the geometry of the nucleus (and ultimately the cell) are offered, in brief, below.

The author implemented a non-dynamic static version of chromatin. This imple-
mentation was based on a uniform and random distribution of chromatin. A more
complex method based is the use of a polymer chain model. The polymer chain
method is based on the knowledge that, during G¢/G; interphase, DNA condenses
into folded, loping structures of several megabase pair (Mbp) size.[80]

One method for the implementation of a polymer chain model is the use of a
random-walk algorithm for the creation of the backbone which forms the higher-order
structure of chromatin.[69][53] The random walk method assigns segments of geome-
try with randomly sampled twists, turns and/or bends. This method can make use
of Brownian dynamics and Monte Carlo simulation.[57] Experimental data regarding
various parameters such as bending rigidity, torsional rigidity, stretching rigidity and
intrachain interaction can be used to bias the progress of the random walk and allow

the final, combined structure to resemble that of chromatin in situ.[54]
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The use of random walk generated geometry and Monte Carlo particle simulation
to predict DNA breakage has been studied by Ponomarev, et al.. Of specific interest
to the author is work examining fragment size distribution and dose response[64] as
well as the connection of higher-order DNA structure to the relation between DNA
breakage and incident radiation LET.[65]

Advances in structural biology have lead to increasingly complex and detailed
three dimensional chromatin models.[50] The integration of increasingly complex ge-
ometries with Monte Carlo particle track structure simulation and analysis is an on-
going area of research.[28][23] Currently research has been published using the PAR-
TRAC Monte Carlo track structure code to begin form a ful, detailed scale simulation
of "systems radiation biology.” [30] This work has progressed to include the investiga-
tion of the spatial and/or temporal aspects of ion track interaction[51], diffusion of
reactive chemical species|[52], strand break repair[25][26], and bystander effects[29].
The ultimate goal is a four-dimensional simulation that will, ideally, model, in detail,

all spatial and temporal aspects and results of particle interaction with cell material.

6.2 GEANTY

The GEANT4 project is ongoing. New developments from the GEANT4-DNA and
Electromagnetic Physics working groups are included with each release. Currently
the development of GEANT4-DNA includes work towards a multi-scale approach to
physics (combinations of condense and explicitly detailed treatments), implementa-

tion of radiation chemistry, and the provision of advanced cellular geometries.[43]
6.2.1 Radiation Chemistry

The current release of GEANT4-DNA (4.9.5) is the first to include capability for model-
ing radiation chemistry. The processes and models for simulating radiatiation chem-

istry are detailed by Karamitros, et al.[46] and are derived from the Monte Carlo

code, PARTRAC devleoped by Friedland, et al..[52][23] The present capabilities of
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the GEANT4 software include the ability to simulate the chemical stage in the tem-
poral aspect up to 1 microsecond after irradiation. Currently the implementation of
radiation chemistry has been integrated into the working release of GEANT4 but has

not been fully documented or demonstrated by its developers.?
6.2.2 Cloud Computing

Much has been made of the advancements in Monte Carlo simulation made possible
by the increased availibility of cheap computational power. The next step in this
evolutionary process is the application of commercial cloud computing infrastrucure.
The on-demand availibility and the unique cost-structure of commercial cloud com-
puting makes vast computational resources available to a variety of researchers when
before it was limited to a handful of elite research universities, institutes and national
laboratories with much greater funding resources. The author did not make use of
cloud computing for this work but, for the production of final results, the utility of
the commercial cloud computing infrastructure seems undeniable.[76] Furthermore,
the implementation of GEANT4 in this environment has been made easier by the pro-
vision of easy installation methods for certain cloud computing services by GEANT4’s

supportive user base.[66]

!The most common and useful way of demonstration is through inclusion of turorials and exam-
ples in the working release of GEANT4.
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Appendix A

GEANT4 USER APPLICATION CODE

This application owes much to the examples provided by the GEANT4 Collaboration.
The author would like to express his sincere gratitude to the GEANT4 Collaboration
and especially to the members of the GEANT4-DNA working group without whom

this work would not have been possible.

A.1 REJECTION APPLICATION

This work is, at its base, an evolution of the classes provided in the examples included
with the GEANT4 toolkit. Its basic structure is adapted directly (and openly) from
the microdosimetry example. Some user classes are unaltered from there existance in
that example (such as G4ElectronCapture). Others have been altered significantly to
fit the needs of the author. User classes not instantiated and GEANT4 capabilities

not used in the examples have also be introduced based upon the needs to the author.

A.1.0.1 GEANTJ License

// EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEESESSSS

// % License and Disclaimer *
J/ * *
// * The Geant} software 1is copyright of the Copyright Holders of x
// % the Geant4 Collaboration. It is provided wunder the terms and x*
// * conditions of the Geant) Software License, included in the file x
// % LICENSE and available at http://cern.ch/geantl/license . These x
// * idnclude a list of copyright holders. *
// * *
// * Neither the authors of this software system, nor their employing x*

// * institutes ,nor the agencies providing financial support for this x
// * work make any representation or warranty, ezxpress or implied, x*

// * regarding this software system or assume any liability for its x
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// * use. Please see the license in the file LICENSE and URL above =

// * for the full disclaimer and the limitation of liability. *
/) * *
// * This code implementation is the result of the scientific and x
// % technical work of the GEANTj collaboration. *
// * By wusing, copying, modifying or distributing the software (or x

// * any work based on the software) you agree to acknowledge its x
// * use in resulting scientific publications, and indicate your x*
// * acceptance of all terms of the Geant] Software license. *

/ sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok ok ok ko

A.1.1 Base Class and Make File
A.1.1.1 GNUmakefile

#
# $Id: GNUmakefile,v 1.2 2010—01—11 16:13:32 gcosmo Exp $

#

# GNUmakefile for examples module. Gabriele Cosmo, 06/04/98.
#

name := Vad3—4

G4TARGET := $(name)

G4EXLIB := true

ifndef G4INSTALL
G4INSTALL = .. /..
endif

.PHONY: all
all: lib bin

include $(G4INSTALL)/config/binmake.gmk

A.1.1.2 Vad3-4.cc

#include ”G4RunManager.hh”
#include ”G4Ulmanager.hh”

#ifdef G4VIS_USE
#include ” G4VisExecutive.hh”
#endif

#ifdef G4UI_USE
#include ” G4UIExecutive.hh”
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#endif

#include ”Randomize.hh” // header for randomization. needed for initiation of
RNG

#include ”DetectorConstruction .hh”

#include ”PhysicsList.hh”

#include ”PrimaryGeneratorAction.hh”

#include ”RunAction.hh”

#include ” SteppingAction.hh”

#include ” SteppingVerbose.hh”

#include ”HistoManager.hh”

#include ”EventAction.hh”

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .

int main(int argc,charxx argv)

{

// This line sets the RNG engine. There are various engines

CLHEP: : HepRandom : : set TheEngine (new CLHEP:: RanecuEngine) ;

// Construct the default run manager

G4RunManager * runManager = new G4RunManager;

// Set mandatory wuser initialization classes
DetectorConstruction*x detector = new DetectorConstruction;
runManager—>SetUserInitialization (detector);

runManager—>SetUserInitialization (new PhysicsList);

// Set mandatory user action classes

available .

runManager—>SetUserAction (new PrimaryGeneratorAction (detector));

PrimaryGeneratorAction* primary = new PrimaryGeneratorAction(detector);

HistoManager* histo = new HistoManager () ;
// Set optional user action classes
RunAction* RunAct = new RunAction(detector ,histo);

runManager—>SetUserAction (RunAct) ;

// Need to set up EventAction class

runManager—>SetUserAction (new EventAction (histo ,RunAct));
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runManager—>SetUserAction (new SteppingAction (RunAct, detector ,primary, histo));

#ifdef G4VIS_USE
G4VisManager* visManager = new G4VisExecutive;
visManager—>Initialize () ;

#endif

// Initialize G4 kernel

runManager—>Initialize () ;

remove (”Vad3—4.root”);

// Get the pointer to the User Interface manager

G4UImanager* Ulmanager = G4Ulmanager:: GetUlpointer () ;

if (argc==1) // Define Ul session for interactive mode.
{
#ifdef GAUI_USE
G4UlExecutivex ui = new G4UIExecutive(argc, argv);
Ulmanager—>ApplyCommand (” /control /execute microdosimetry.mac”);
ui—>SessionStart () ;
delete ui;

#endif

else // Batch mode

G4String command = ” /control/execute ”;

G4String fileName = argv[1];

Ulmanager—>ApplyCommand (command+fileName) ;

#ifdef G4VIS_USE
delete visManager;

#endif

delete runManager;

return O0;

}
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A.1.2 include
A.1.2.1 DetectorConstruction.hh

#ifndef DetectorConstruction_h

#define DetectorConstruction_h 1

#include ”G4VUserDetectorConstruction.hh”
#include ” G4VPhysicalVolume.hh”
#include ” G4LogicalVolume.hh”
#include ”G4Box.hh”

#include ”G4Tubs.hh”

#include ” G4Sphere.hh”

#include ” G4Material.hh”
#include ” G4NistManager.hh”
#include ” G4PVPlacement.hh”
#include " G4UserLimits.hh”
#include ” G4VisAttributes.hh”

//....00000000000........ 00000000000 . . . ..... 00000000000 . . . ... .. 00000000000 . . . .

class G4Region;

class DetectorConstruction : public G4VUserDetectorConstruction

{

public:

DetectorConstruction () ;

"DetectorConstruction () ;

G4VPhysicalVolume* Construct () ;

G4double GetWorldDiameter () {return WorldDiameter;}; // function for getting
WorldDiameter

G4double GetNucleusHeight () {return NucleusHeight;}; // function for getting
NucleusHeight

G4double GetNucleusDiameter () {return NucleusDiameter;}; // function for getting
NucleusDiameter

G4double GetNucleusMass () {return NucleusMass;}; // function for getting
NucleusMass
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G4double GetChromatinMass () {return ChromatinMass;}; // function for getting
ChromatinMass
private:
G4double WorldDiameter;
G4double WorldHeight ;
G4double MediumDiameter ;
G4double MediumHeight ;
G4double NucleusDiameter;
G4double NucleusHeight ;
G4float NucleusMass ;
G4float ChromatinMass ;
G4VPhysicalVolumex* physiWorld ;
G4LogicalVolumex logicWorld ;
G4Tubsx* solidWorld ;
G4Material x waterMaterial;
G4Region=* mediumRegion ;
G4Regionx* nucleusRegion;
void DefineMaterials () ;
G4VPhysicalVolume* ConstructDetector () ;
b
#endif
A.1.2.2  ChromatinParameterisation.hh
#ifndef ChromatinParameterisation_H

#define ChromatinParameterisation-H 1

#include " globals.hh”
#include ”"G4VPVParameterisation.hh”

//....00000000000........ 00000000000 . . ... ... 00000000000 . . .

class G4VPhysicalVolume;
class G4Tubs;
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// Dummy declarations to get rid of warnings
class G4Trd;
class G4Trap;
class G4Cons;
class G4Orb;
class G4Sphere;
class G4Torus;
class G4Para;
class G4Hype;
class G4Box;
class G4Polycone;

class G4Polyhedra;

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
class ChromatinParameterisation : public G4VPVParameterisation
{
public:
ChromatinParameterisation (G4int NbOfShells,
G4int NbFirstShell ,
G4double NucleusHeight ,
G4double NucleusDiameter ,
G4double ChromatinDiameter) ;
virtual
“ChromatinParameterisation () ;
void ComputeTransformation (const G4int CopyNo, G4VPhysicalVolumes* physVol) const;
void ComputeDimensions(G4Tubs& Chromatin, const G4int copyNo, const
G4VPhysicalVolume* physVol) const;
private:
void ComputeDimensions (G4Trd&,const G4int,const G4VPhysicalVolumex*) const {}
void ComputeDimensions (G4Trap&,const G4int,const G4VPhysicalVolumex) const {}
void ComputeDimensions (G4Cons&,const G4int,const G4VPhysicalVolumex) const {}
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void
void
void
void
void
void

void

void

ComputeDimensions
ComputeDimensions
ComputeDimensions
ComputeDimensions
ComputeDimensions
ComputeDimensions

ComputeDimensions

{

ComputeDimensions

18

G4Sphere&,const G4int ,const G4VPhysicalVolumex*) const {}
G40rb&,const Gdint ,const G4VPhysicalVolumex) const {}

G4Torus&,const G4int ,const G4VPhysicalVolumex) const {}

G4Hype&,const G4int ,const G4VPhysicalVolumex*) const {}

(
(
(
(G4Para&,const Gdint,const G4VPhysicalVolumex) const {}
(
(G4Box&,const G4int ,const G4VPhysicalVolumex*) const {}
(

G4Polycone&,const G4int,const G4VPhysicalVolumex*) const

(G4Polyhedra&,const G4int,const G4VPhysicalVolume*) const

// intializing wvariables used

G4int fNb;
G4int fFS;

G4double fND;
G4double fNH;
G4double fCD;

G4double gap;

G4doublex NbEach;

G4doublex RaEach;

G4doublex AngEach;

G4int thisNb;
G4double thisRa;
G4double thisAng;

G4int NbChromatin;

G4doublex xC;

G4doublex yC;

G4doublex zC;

};

// this is integer for counter

// stores total number of chromatin

//....00000000000........ 00000000000 . . . ..... 00000000000 . . ... ... 00000000000 . . . . ..

#endif
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A.1.2.3 PrimaryGeneatorAction.hh

#ifndef PrimaryGeneratorAction_h

#define PrimaryGeneratorAction_h 1

#include ” G4VUserPrimaryGeneratorAction.hh”

//#include 7 G4ParticleGun.hh”

#include ” G4GeneralParticleSource.hh” // using the General Particle Source instead
of ParticleGun
#include ”DetectorConstruction .hh”

#include ”G4Event.hh”
#include ” G4ParticleTable.hh”

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .

class PrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction

{

public:

PrimaryGeneratorAction (DetectorConstruction*) ;

“PrimaryGeneratorAction () ;

void GeneratePrimaries (G4Eventx);

//void GetEventNum () (return eventNum;);

private:

//G4ParticleGunx particleGun ;

G4GeneralParticleSourcex GPS; // using GPS instead

DetectorConstruction * Detector;
}s
#endif

A.1.2.4 PhysicsList.hh

#ifndef PhysicsList_h
#define PhysicsList_h 1

#include ” G4V UserPhysicsList.hh”
#include ”G4ProcessManager.hh”

62




#include " G4ParticleTypes.hh”
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .

class PhysicsList: public G4VUserPhysicsList

{

public:

PhysicsList () ;

virtual “PhysicsList () ;

void SetGammaCut(G4double) ;
void SetElectronCut (G4double) ;
void SetPositronCut (G4double) ;

void SetProtonCut (G4double) ;
protected:

// these methods construct particles

void ConstructBosons();

void ConstructLeptons () ;

)
) .

void ConstructBarions () ;

// these methods construct physics processes and register them
void ConstructGeneral () ;

void ConstructEM () ;

// Construct particle and physics
void ConstructParticle () ;

void ConstructProcess();

// set cuts
void SetCuts () ;

private:
G4double cutForGamma;
G4double cutForElectron;
G4double cutForPositron;

G4double cutForProton;
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47| #endif

A.1.2.5 G4FElectronCapture.hh

1|#ifndef ElectronCapture_h

#define ElectronCapture_h 1

#include ” G4VDiscreteProcess.hh”

2

3

4

5|#include ”globals.hh”
6

7| class G4Region;

8

9

//....00000000000........ 00000000000 . . ... ... 00000000000 . . . ... .. 00000000000 . . . . ..

11| class G4ElectronCapture : public G4VDiscreteProcess

12| {

13 public:

14

15 G4ElectronCapture (const G4String& regName, G4double ekinlimit);

16

17 virtual “G4ElectronCapture () ;

18

19 void SetKinEnergyLimit(G4double);

20

21 virtual void BuildPhysicsTable(const G4ParticleDefinition&);

22

23 virtual G4bool IsApplicable(const G4ParticleDefinition&);

24

25 virtual G4double PostStepGetPhysicallnteractionLength( const G4Track& track,
26 G4double previousStepSize ,

27 G4ForceCondition* condition);

28

29 virtual G4VParticleChange* PostStepDolt(const G4Track&, const G4Step&);
30

31 protected:

33 virtual G4double GetMeanFreePath(const G4Track&, G4double,G4ForceCondition*);

35 private:

37 // hide assignment operator as private
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G4ElectronCapture (const G4ElectronCapture&);
G4ElectronCapture& operator = (const G4ElectronCapture &right);
G4double kinEnergyThreshold;
G4String regionName;
G4Region* region;
s
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
#endif
A.1.2.6 RunAction.hh
#ifndef RunAction_h

#define RunAction_h 1

#include ” DetectorConstruction .hh”

#include ”HistoManager.hh”
#include ” G4UserRunAction.hh”
#include ” globals.hh”
#include <iostream>

// . ...00000000000........ 00000000000 . . . ..... 00000000000 . . . ..... 00000000000 . . ..

class G4Run;

class G4Timer;
class RunAction : public G4UserRunAction
{

public:

RunAction(DetectorConstruction*, HistoManager *);

“RunAction () ;

void BeginOfRunAction (const G4Runx) ;
void EndOfRunAction(const G4Runx) ;

//the equation below add the dose for the run
void AddDoseN(G4double energy){doseN +=energy;}
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G4double GetDoseN () {return doseN;}
void AddDoseNC(G4double energy){doseNC +=energy;}
G4double GetDoseNC () {return doseNC;}
void AddDoseC(G4double energy){doseC +=energy;}
G4double GetDoseC () {return doseC;}
//void SetDoseCBeginEvt(Gjdouble energy){DoseBegin = energy;}
//G4double GetDoseCBeginEvt(){return DoseBegin;}
private:
DetectorConstruction* Detector;
HistoManager+ Histo; //
G4double doseN; //
G4double doseNC;
G4double doseC;
G4double DoseBegin;
G4double doseDelta; // intializing doseDelta
G4Timer* timer; // pointer for timer.
I
#endif
A.1.2.7 FventAction.hh
#ifndef EventAction_h
#define EventAction_h 1
#include ” G4UserEventAction.hh”
class G4Event;
class HistoManager;
class RunAction;
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..

class EventAction

public G4UserEventAction
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public:
EventAction (HistoManager*, RunActionx);
“EventAction () ;
public:
void BeginOfEventAction (const G4Eventx);
void EndOfEventAction(const G4Eventx);
private:
HistoManager* Histo
RunActionx Run;
I8
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
#endif
A.1.2.8 SteppingAction.hh
#ifndef SteppingAction_h

#define SteppingAction_h 1

#include " G4UserSteppingAction.hh”

class RunAction;
class DetectorConstruction;
class PrimaryGeneratorAction;

class HistoManager;

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 .. . . .

class SteppingAction : public G4UserSteppingAction

{
public:
SteppingAction (RunAction*, DetectorConstruction x*,
HistoManager ) ;
“SteppingAction () ;
void UserSteppingAction (const G4Stepx) ;
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21

22| private:
23
24 RunAction=* Run; // mot sure what the point of these pointers are.

this mot done in the class file with run, det, pri, histo?

25 DetectorConstruction = Detector;
26 PrimaryGeneratorAction* Primary ;
27 HistoManager % Histo;

28

29| };

30| #endif

Is

A.1.2.9 SteppingVerbose.hh

—_

class SteppingVerbose;

#ifndef SteppingVerbose_h

#define SteppingVerbose_h 1

#include ” G4SteppingVerbose.hh”
#include " G4UnitsTable.hh”

© o N O U e W N

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .

—
= o

class SteppingVerbose : public G4SteppingVerbose

{

— e
w N

public:

= =
SIS

SteppingVerbose () ;

—_
[=2]

“SteppingVerbose () ;

= =
[C N |

void SteplInfo ();

—_
©

void TrackingStarted () ;

")
[=]

IE
#endif

[\
—_

A.1.2.10 HistoManager.hh

1|#ifndef HistoManager_h
2|#define HistoManager_h 1
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#include <fstream>

#include <iostream>

#include ” globals.hh”

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . .
// AIDA is Abstract Interfaces for Data Analysis
// http://aida. freehep.org/

namespace AIDA

{

class TAnalysisFactory;
class ITree;
class ITuple;
}
const G4int MaxNtupl = 3; // this set the maz ntupl. this has to change for new
ntuple
//....00000000000........ 00000000000 . . . ..... 00000000000 . . . ... .. 00000000000 . . . . ..
class HistoManager
{
public:
HistoManager () ;
“HistoManager () ;
void book(); // book function. has mo return and thus no type. wvoid function
void save(); // save function. has mo return and thus no type. just performs
an action.
void process(std::ostream& a_out, G4int con);
void stream (G4int con, G4int event_id);
void FillNtuple (G4int id, G4int column, G4double value);
void AddRowNtuple(G4int id);
void ResetNtuple (G4int id);
private:
G4String fileName [2]; // fileName is a string [2]
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G4String fileType; //
G4String fileOption;
AIDA :: TAnalysisFactory af;
AIDA :: ITreex tree;
AIDA :: ITuplex ntupl0; // pointer for ntupl0. additional line for
another ntuple
AIDA :: ITuplex* ntupll;
AIDA :: ITuplex* ntupl2;
std :: string csvfilename ;
G4bool factoryOn;
5
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
#endif
A.1.3 src

A.1.3.1 DetectorConstruction.cc

#include ” DetectorConstruction .hh”
#include ” G4Region.hh”

#include ” G4ProductionCuts.hh”
#include ”RunAction.hh”

#include ” G4PVParameterised.hh”

#include ”ChromatinParameterisation.hh”

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . .
DetectorConstruction :: DetectorConstruction () //constructor for this class
:physiWorld (NULL) , logicWorld (NULL), solidWorld (NULL)

{}

// . ...00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 .. . . .
DetectorConstruction::” DetectorConstruction () //destructor for this class

{}
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//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .

G4VPhysicalVolumex DetectorConstruction :: Construct ()

DefineMaterials () ;

return ConstructDetector () ;

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .

void DetectorConstruction:: DefineMaterials ()

{
// Water is defined from NIST database
G4NistManager * man = G4NistManager:: Instance () ;
G4Material * H20 = man—>FindOrBuildMaterial ("G4 WATER” ) ;
// Default materials in setup
waterMaterial = H20;
}
// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . .
G4VPhysicalVolume* DetectorConstruction :: ConstructDetector ()

{

// . ...00000000000........ 00000000000 . . . ..... 00000000000 . . . ..... 00000000000 . . ..

// World Volume // The Purpose of this volume is to surround everything. Physics are

off here.

WorldDiameter = .0031 *mm; // diameter of world. Change here.

WorldHeight = .0011xmm;

solidWorld = new G4Tubs(”World” , // name of this solid volume (in this
the World volume)
0, // inside radius of world?
WorldDiameter /2, // outside radius of world?
WorldHeight /2,
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0, // angular exztent minimum

twopi) ; // angular exztent mazimum

logicWorld = new G4LogicalVolume (solidWorld, // the parent solid of this logical

volume
waterMaterial , // the material of this logical volume
”World” ) ; // the name of this logical volume
physiWorld = new G4PVPlacement (0, // governs placement of physical volume.

There is mo rotation.

G4ThreeVector (), // placement of the volume

”World” , // mame of the wvolume

logicWorld , // the logical volume associated with this physical
placement

0, // the mother volume. In this case 0 because this is the 7
world”

false , // mo boolean operation

0); // copy number (what?)

// Medium Volume // The purpose of this wvolume is to provide a medium around the

target. Physics can be activated in this region.

G4double MediumDiameter = .999% WorldDiameter; // setting the medium just inside the
world. (for now)

G4double MediumHeight = .999%x WorldHeight ;

G4Tubs* solidMedium = new G4Tubs(”Medium” , // mame of solid
0, // inside radius?

MediumDiameter /2, // outside radius

MediumHeight /2,
0, //
twopi);
G4LogicalVolumex logicMedium = new G4LogicalVolume (solidMedium , // parent solid

of this logical volume

waterMaterial , // its material
” Medium” ) ; // its mame
G4VPhysicalVolume* physiMedium = new G4PVPlacement (0, // mo rotation of this

volume
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92 G4ThreeVector (), // default placement by a three wvector
(0,0,0)
93 ” Medium” , // its name
94 logicMedium , // its associated logical wvolume
95 physiWorld , // its mother volume (physical)
96 false , // boolean
97 0); // copy mumber
98
99
100| // The nucleus — this volume 1is the nucleus. The nucleus is represented in this
example as a cylinder.
101
102 NucleusHeight = .001 xmm; // height of nucleus
103 NucleusDiameter = .003*mm; // diameter of nucleus
104
105 G4Tubs* solidNucleus = new G4Tubs(” Nucleus”, // its mame
106 0, // inner radius (a cylinder thus zero)
107 NucleusDiameter /2, // outer radius. tube is created from
centroid
108 NucleusHeight /2, // half length. The tube is created from the
centroid so it extends —2.5 to 2.5 micron
109 0, // phi
110 twopi) ; // phi (it is a full tube 0-2pi)
111
112 G4LogicalVolumex* logicNucleus = new G4LogicalVolume (solidNucleus , // its
associated solid
113 waterMaterial , // its assigned material
114 ” Nucleus” ) ; // its mame
115
116 G4VPhysicalVolume* physiNucleus = new G4PVPlacement (0, // there is no
rotation of this wvolume respectively
117 G4ThreeVector () , // default placement by a three vector
(0,0,0)
118 ” Nucleus” , // its mame
119 logicNucleus , // associated logical volume
120 physiMedium , // parent physical volume
121 false , // boolean
122 0); // copy number
123
124| // The chromatin fibers.
125
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// here are wariables setting up parameterisation. will be tweaked

G4double ChromatinDiameter = .00003*mm; // 30nm diameter

G4double ChromatinHeight = NucleusHeight ;

G4int NbOfShells = 9; // inclusive of zeroeth shell

G4int NbFirstShell = §;

G4int NbOfChromatin = 1633; // should eventually either get rid of this

go by shells only) or rectify to match in parameterisation class

// The number of chromatin was designed to meet the 16% threshold of DBSCAN. Here
it is 16.33%.

G4Tubs* solidChromatin = new G4Tubs(” Chromatin” ,
0,
ChromatinDiameter /2,
ChromatinHeight /2,
0,

twopi);

G4LogicalVolumex* logicChromatin = new G4LogicalVolume (solidChromatin
waterMaterial ,

”? Chromatin” ) ;

G4VPVParameterisation* ChromatinParam = new ChromatinParameterisation (NbOfShells,
NbFirstShell ,
ChromatinHeight ,
NucleusDiameter ,

ChromatinDiameter) ;

G4VPhysicalVolume* physiChromatin = new G4PVParameterised (” Chromatin”
logicChromatin ,
logicNucleus ,
kUndefined ,
NbOfChromatin ,

ChromatinParam) ;

// below the density of the target is set. (this might should be called from

material settings...using this for dose calculations)

G4double NucleusVolume = NucleusHeight*pixNucleusDiameter*NucleusDiameter /4;
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G4double density = 1.0%xg/cm3;

NucleusMass = density*NucleusVolume;

G4cout << ”\n\n\n\nNucleusVolume” << NucleusVolume << ”\nNucleusMass = "7 <<
NucleusMass << ”\n”;

G4double ChromatinVolume = NbOfChromatin* ChromatinHeight*pi*ChromatinDiameter*
ChromatinDiameter /4;

ChromatinMass = density*ChromatinVolume;

// Visualization attributes

G4VisAttributesx worldVisAtt = new G4VisAttributes(G4Colour(1.0,1.0,1.0)); //
white

worldVisAtt—>SetVisibility (true); // wisibility is true

logicWorld—>SetVisAttributes (worldVisAtt); // logicWorld (

logical volume) set to worldVisAtt (white and wvisible)

G4VisAttributes* nucleusVisAtt = new G4VisAttributes(G4Colour(1.0,0.0,0.0)); //

red
nucleusVisAtt—>SetVisibility (true); // visible
logicNucleus—>SetVisAttributes (nucleusVisAtt); // logicNucleus set

to nucleusVisAtt (red and wvisible)

G4VisAttributes* chromatinVisAtt = new G4VisAttributes(G4Colour(0.0,1.0,0.0)); //

blue?22%?
chromatinVisAtt—>SetVisibility (true); // visible
logicChromatin—>SetVisAttributes (chromatinVisAtt); // logicNucleus

set to nucleusVisAtt (red and visible)

// Create G4Region (Defines a region or a group of regions in the
// detector geometry setup, sharing properties associated to materials
// or production cuts which may affect or bias specific physics processes.)

// I am setting up two regions (for mow) for the nucleus and the medium.

mediumRegion = new G4Region (”Medium” ) ; // setting up region for medium (

here we specify physical volume, I THINK??2?, or just mames the Region???%)
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//nucleusRegion = new G4Region(” Nucleus”); // setting up region for nucleus

(here we specify physical volume, I THINK???)

G4ProductionCuts* cuts = new G4ProductionCuts() ; // cutoffs for particle

production

G4double defCut = lxnanometer;

// setting a default cut of Inanometer.

If particle won’t travel further it is terminated.

cuts—>SetProductionCut (defCut ,” gamma” ) ; // setting production cut (cuts)

for gammas to defCut

cuts—>SetProductionCut (defCut ,”e—"); // setting production cut (cuts) for

electrons to defCut

cuts—>SetProductionCut (defCut ,”e+"); // setting production cut (cuts) for

positrons to defCut

cuts—>SetProductionCut (defCut ,” proton”); // setting production cut (cuts)

for protons to defCut

mediumRegion—>SetProductionCuts (cuts) ; // setting production cuts in

medium (to cuts)

mediumRegion—>AddRootLogicalVolume (logicMedium) ; // adding the logical wvolume

for medium

//nucleusRegion—>SetProductionCuts (cuts); // setting production cuts in

nucleus (to cuts)

//nucleusRegion—>AddRootLogicalVolume (logicNucleus); // adding the logical

volume for nucleus (could add others to this region or others)

return

physiWorld ;

A.1.3.2 ChromatinParameterisation.cc

#include ” ChromatinParameterisation.hh”

#include ”G4VPhysicalVolume.hh”

#include ” G4ThreeVector.hh”

#include ”G4Tubs.hh”

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..

ChromatinParameterisation:: ChromatinParameterisation (

G4int NbOfShells ,
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G4int NbFirstShell |
G4double NucleusHeight ,
G4double NucleusDiameter ,

G4double ChromatinDiameter)

fNb = NbOfShells;

fFS = NbFirstShell;
fND = NucleusDiameter;
fNH = NucleusHeight ;

fCD = ChromatinDiameter;

//temporary

//temporary

// Below are calculations for setting out cylinders

gap = fND/2/fNb;

// This section will count how many members (and future correction can be done here

)

NbEach = new G4double [{Nb]; // array is created. It must be pointer because it
has wvariable size therefore mneeds to wuse dynamic memory allocation .

RaEach = new G4double [{Nb];

AngEach = new G4double [{Nb];

thisNb = 1; // stores for each shell, here it is 1 for zeroeth shell
thisRa = 0;

thisAng = 0;

NbEach [0] = thisNb; // sets nmnumber for zeroeth

RaEach[0] = thisRa;
AngEach [0] = thisAng;

NbChromatin = thisNb; // stores total number of chromatin
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fo

xC
yC
zC

r (G4int i=1; i < (fNb); i++) // storing these so that they can

manipulated more easily with a rectifying function

thisNb = fFS*xixi; // number on this shell
NbEach[i] = thisNb; // mumber on the shell in question

thisRa = ixgap;
RaEach[i] = thisRa;

thisAng = 2xpi/thisNb;
AngEach[i] = thisAng;

NbChromatin = thisNb + NbChromatin; // adds to NbChromatin

new G4double [NbChromatin];
= new G4double [NbChromatin];
= new G4double [NbChromatin | ;

G4int index = 0;

G4double angle;

fo
{

r (Gdint i = 0; i < (fNb); i++)
thisAng = AngEach[i]; // the spacing for this row.
thisRa = RaEach[i];

for (Gd4int ii = 0; ii < NbEach[i]; ii++)
{
angle = thisAngx*ii; // the angle for each cylinder
xClindex] = cos(angle)*thisRa;
yClindex] = sin(angle)*thisRa;
zC[index] = 0;
index++;

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000
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ChromatinParameterisation::” ChromatinParameterisation ()

{3

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . . ..

void ChromatinParameterisation :: ComputeTransformation (const G4int copyNo,

G4VPhysicalVolumex* physVol) const

G4ThreeVector centers (xC[copyNo] ,yC[copyNo],zC[copyNo]) ; // beware will need
to hand calc this wuntil there is a rectifying function in place

physVol—>SetTranslation (centers);

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..

void ChromatinParameterisation :: ComputeDimensions (G4Tubs& Chromatin, const G4int

copyNo, const G4VPhysicalVolumex) const

Chromatin. SetInnerRadius (0) ;
Chromatin. SetOuterRadius (fCD/2) ;
Chromatin. SetZHalfLength (fNH/2) ;
Chromatin. SetStartPhiAngle (0) ;
Chromatin. SetDeltaPhiAngle (2% pi);

A.1.3.3 PrimaryGeneratorAction.cc

#include ”PrimaryGeneratorAction.hh” // include the primarygeneratoraction header

#include ”Randomize.hh” // include the randomize header for the random
number generator

#include ”DetectorConstruction .hh” // include the detectorconstruction header to
access those values stored

//....00000000000........ 00000000000 . . ... ... 00000000000 . . . ... .. 00000000000 . . . .

PrimaryGeneratorAction :: PrimaryGeneratorAction (DetectorConstruction* det)

:Detector (det)

{

G4int n_particle = 1;
//GPS = new G4GeneralParticleSource(n_particle);
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// NOrmally you can replace G4ParticleGun with G4GeneralParticleSource
// straight—up. Howeve,r ParticleGun can take number of particles

// GPS can’t. Need to use SetNumberOfParticle function inside GPS

GPS = new G4GeneralParticleSource () ;
GPS—>SetNumberOfParticles(n_particle);

// below are the default gun parameters

// these have been commented out because they are not used for GPS. Use macro
instead?

//GPS—>SetParticleEnergy (10.xMeV) ;

//GPS—>SetParticle MomentumDirection ( G4 Threevector (0.,0.1.));

//GPS—>SetParticlePosition (G4 ThreeVector (0.,0.,0.xmm));

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . .. ... 00000000000 . . .
PrimaryGeneratorAction::” PrimaryGeneratorAction ()
{

delete GPS;

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . .

void PrimaryGeneratorAction:: GeneratePrimaries (G4Eventx anEvent)
{
GPS—>GeneratePrimaryVertex (anEvent) ;
// may be able to hardcode some default particle settings in here such as cosine
law surface distribution .
// Look at /source/event/include/G4GeneralParticleSource then ../
G4SingleParticleSource then ../G4SPSAngDistribution.hh
// might work...might not. Would allow the things that don’t mormally vary to be
hard coded (though the difference between this
// and just always including it in the macro inputted in the terminal is minimal...
// minimal meaning no difference (I don’t think) except that if I am not going to
allow it to change why require it to be

// inputted.
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A.1.3.4 PhysicsList.cc

#include ” PhysicsList.hh”

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
#include ” PhysicsList .hh”

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . .
PhysicsList :: PhysicsList (): G4VUserPhysicsList ()

{
defaultCutValue = lxmicrometer; // setting cuts
cutForGamma = defaultCutValue;
cutForElectron = defaultCutValue;
cutForPositron defaultCutValue;
cutForProton = defaultCutValue;
SetVerboseLevel (1) ;
}
//....00000000000........ 00000000000 . . . ..... 00000000000 . . . ... .. 00000000000 . . . .
PhysicsList ::” PhysicsList ()

{}
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
void PhysicsList :: ConstructParticle ()

{

// Construct Particles

ConstructBosons () ;

)

ConstructLeptons ()
)

ConstructBarions () ;

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . .. ... 00000000000 . . .

void PhysicsList :: ConstructBosons ()

{
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// Gamma

G4Gamma : : GammaDefinition () ;

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .

void PhysicsList :: ConstructLeptons ()
{
// Leptons
G4Electron:: ElectronDefinition () ;

G4Positron :: PositronDefinition () ;

//....00000000000. ....... 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .

// Including DNA
#include " G4DNAGenericlonsManager . hh”
// End of DNA

void PhysicsList :: ConstructBarions ()
{
// Barions
G4Proton :: ProtonDefinition () ;

G4Genericlon :: GenericlonDefinition () ;

// Geant4—DNA new particles
G4DNAGenericlonsManagerx genericlonsManager ; // G4DNAGenericlonManager
genericlonsManager
genericlonsManager=G4DNAGenericlonsManager :: Instance () ;
genericlonsManager —>Getlon (” alphat+") ;
genericlonsManager —>Getlon (” alpha+”);
genericlonsManager —>GetIon (” helium”) ;
(

genericlonsManager —>Getlon (’

"hydrogen” ) ;
// Invoking additional ions added in 4.9.5
genericlonsManager—>GetlIon (” carbon” ) ;

genericlonsManager—>Getlon(” nitrogen”);

(
genericlonsManager —>GetIon (
(

"oxygen”);
genericlonsManager —>Getlon(”iron”);
}
// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . .
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void PhysicsList :: ConstructProcess ()

{

AddTransportation () ;

ConstructEM () ;

ConstructGeneral () ;

//....00000000000........ 00000000000

// Geant/—DNA MODELS

#include " G4DNAElastic.hh”

#include ”G4DNAChampionElasticModel . hh”

#include ” G4DNAScreenedRutherfordElasticModel . hh”

#include ”G4DNAExcitation.hh”

#include ”"G4DNAMillerGreenExcitationModel . hh”

#include ”"G4DNABornExcitationModel.hh”

#include ”G4DNAlonisation.hh”

#include ”"G4DNABornlonisationModel.hh”

#include ”"G4DNARuddlonisationModel.hh”

#include ”"G4DNAChargeDecrease.hh”

#include ” G4DNADingfelderChargeDecreaseModel . hh”

#include ” GADNAChargelncrease.hh”

#include ”"G4DNADingfelderChargelncreaseModel.hh”

#include ”G4DNAAttachment.hh”
#include ” G4ADNAMeltonAttachmentModel

#include ”"G4DNAVibExcitation.hh”

#include ”"G4DNASancheExcitationModel
//
#include ” G4LossTableManager.hh”

#include ” G4EmConfigurator.hh”
#include ”G4VEmModel. hh”

.hh”

.hh”
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#include ”G4DummyModel. hh”

#include ” G4elonisation .hh”

#include ” G4hlonisation .hh”

#include ” G4ionlonisation.hh”

#include " G4eMultipleScattering .hh” // source/processes/electromagnetic/standard/
#include ” G4hMultipleScattering.hh” // source/processes/electromagnetic/standard/
#include ”G4BragglonGasModel.hh”

#include ” G4BetheBlochlonGasModel.hh”

#include ”G4UrbanMscModel93.hh”

#include ” G4MollerBhabhaModel.hh”

#include ” G4lonFluctuations.hh”

#include ” G4UniversalFluctuation .hh”

#include " G4ElectronCapture.hh”

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 .. . . .

void PhysicsList :: ConstructEM ()

{

theParticleIterator —>reset () ; // reset condition of iterator for while loop

while( (xtheParticlelterator) () )

{

G4ParticleDefinition* particle = theParticlelterator —>value(); // set walue for
iterator

G4ProcessManager* pmanager = particle —>GetProcessManager () ; // source/processes
/management/src/G4ProcessManager. cc

G4String particleName = particle —>GetParticleName () ;
/) R R KR R K R K R KK R K KK R K K

// 1) Processes for the World region

// sk >k >k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok

// Process for Electrons

if (particleName = 7e—")

{

// STANDARD msc is active in the world
//
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G4eMultipleScattering* msc = new G4eMultipleScattering () ;
pmanager—>AddProcess (msc, —1, 1, 1); // Process, AtRest, AlongStep
, PostStep. —1 is inactive. otherwise it is order of Doltmethod. Inverse

order of GetInteractionLength

// STANDARD ionisation is active in the world
G4elonisation* eion = new G4elonisation () ;
eion—>SetEmModel (new G4MollerBhabhaModel (), 1);
// first number sets model and second number gives size of a wvector (and
indez ).
// I think when two models are used that you have to give 1, 2, etc as it
needs to store them all?2%?
// see:
// \source\processes\ electromagnetic\standard\ src\ G4elonization.cc
// \source\processes\electromagnetic\standard\ src\ G4MollerBhabhaModel. cc
// \source\processes\ electromagnetic\utils\src\G4VEnergyLossProcess.cc
pmanager—>AddProcess(eion, —1, 2, 2);
// Process, AtRest, AlongStep, PostStep. —1 is inactive. otherwise it is

order of Doltmethod. Inverse order of GetlInteractionLength

// DNA elastic is mot active in the world
G4DNAElasticx theDNAElasticProcess = new G4DNAElastic(”e—_G4DNAElastic”) ;
theDNAElasticProcess—>SetModel (new G4DummyModel() ,1) ;

pmanager—>AddDiscreteProcess (theDNAElasticProcess);

// DNA ezcitation is not active in the world
G4DNAExcitation* dnaex = new G4DNAExcitation(”e—_G4DNAExcitation”) ;
dnaex—>SetModel (new G4DummyModel() ,1) ;

pmanager—>AddDiscreteProcess (dnaex) ;

// DNA ionisation is not active in the world
G4DNATonisation* dnaioni = new G4DNATlonisation(”e—_-G4DNATonisation”);
dnaioni—>SetModel (new G4DummyModel() ,1) ;

pmanager—>AddDiscreteProcess (dnaioni);
// DNA attachment is not active in the world
G4DNAAttachment* dnaatt = new G4DNAAttachment (”e—_G4DNAAttachment” ) ;

dnaatt—>SetModel (new G4DummyModel() ,1) ;

pmanager—>AddDiscreteProcess (dnaatt) ;

// DNA wvib. ezcitation is not active in the world
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G4DNAVibExcitation* dnavib = new G4DNAVibExcitation(”e—_G4DNAVibExcitation”);
dnavib—>SetModel (new G4DummyModel() ,1) ;

pmanager—>AddDiscreteProcess (dnavib) ;

// THE FOLLOWING PROCESS WILL KILL ALL ELECTRONS BELOW A SELECTED ENERY
THRESHOLD

// Capture of low—energy e—G4FElectronCapturex ecap = new G4ElectronCapture(”
Target”, 5.1xeV);

G4ElectronCapturex ecap = new G4ElectronCapture (”Medium” ,5.1xeV);

pmanager—>AddDiscreteProcess (ecap) ;

// Processes for Protons

else if ( particleName = ”proton” )

{

// STANDARD msc is active in the world
G4hMultipleScattering* msc = new G4hMultipleScattering () ;

pmanager—>AddProcess (msc, —1, 1, 1);

// STANDARD ionisation is active in the world
G4hlonisation* hion = new G4hlonisation () ;
hion—>SetEmModel (new G4BragglonGasModel(), 1);
hion—>SetEmModel (new G4BetheBlochlonGasModel (), 2);

pmanager—>AddProcess (hion, -1, 2, 2);

// DNA ezcitation is not active in the world

G4DNAExcitation* dnaex = new G4DNAExcitation(” proton_.G4DNAExcitation”);
dnaex—>SetModel (new G4DummyModel() ,1) ;

dnaex—>SetModel (new G4DummyModel() ,2) ;

pmanager—>AddDiscreteProcess (dnaex) ;

// DNA ionisation is not active in the world

G4DNAIlonisation* dnaioni = new G4DNAlonisation(” proton_G4DNATIonisation”);
dnaioni—>SetModel (new G4DummyModel() ,1) ;

dnaioni—>SetModel (new G4DummyModel() ,2) ;

pmanager—>AddDiscreteProcess (dnaioni);

// DNA charge decrease is ACTIVE in the world since mno corresponding STANDARD
process exiSst

pmanager—>AddDiscreteProcess (new G4DNAChargeDecrease (”
proton_G4DNAChargeDecrease”) ) ;
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// Processes for Hydrogen (proton and electron, zero charge)
else if ( particleName = ”hydrogen” )
{
// DNA processes are ACTIVE in the world since no corresponding STANDARD
processes exist
pmanager—>AddDiscreteProcess (new G4DNAlonisation(”hydrogen_.G4DNAITIonisation”));
pmanager—>AddDiscreteProcess (new G4DNAExcitation(” hydrogen_.G4DNAExcitation”));
pmanager—>AddDiscreteProcess (new G4DNAChargelncrease (”
hydrogen_G4DNAChargelncrease”) ) ;

else if (particleName = ” Genericlon”)

{
// THIS 1S NEEDED FOR STANDARD ALPHA Gjionlonisation PROCESS

// STANDARD msc is active in the world

pmanager—>AddProcess (new G4hMultipleScattering, —1, 1, 1);

// STANDARD ionisation is active in the world
G4ionlonisation* hion = new G4ionlonisation () ;
hion—>SetEmModel (new G4BragglonGasModel () ,1);
hion—>SetEmModel (new G4BetheBlochIonGasModel (), 2);

pmanager—>AddProcess (hion, -1, 2, 2);

// Alphas

else if ( particleName = ”alpha” )

{
// STANDARD msc is active in the world

G4hMultipleScattering* msc = new G4hMultipleScattering () ;

pmanager—>AddProcess (msc, —1, 1, 1);

// STANDARD iomnisation is active in the world
G4ionlonisation* hion = new G4ionlonisation ();
hion—>SetEmModel (new G4BragglonGasModel () ,1);
hion—>SetEmModel (new G4BetheBlochlonGasModel (), 2);

pmanager—>AddProcess (hion, -1, 2, 2);

// DNA ezcitation is not active in the world
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G4DNAExcitation* dnaex = new G4DNAExcitation(” alpha_G4DNAExcitation”);
dnaex—>SetModel (new G4DummyModel() ,1);

pmanager—>AddDiscreteProcess (dnaex) ;

// DNA ionisation is not active in the world
G4DNAIlonisation* dnaioni = new G4DNAlonisation(” alpha_G4DNAlonisation”);
dnaioni—>SetModel (new G4DummyModel() ,1) ;

pmanager—>AddDiscreteProcess (dnaioni);

// DNA charge decrease is ACTIVE in the world since no corresponding STANDARD
process exist

pmanager—>AddDiscreteProcess (new G4DNAChargeDecrease(” alpha_.G4DNAChargeDecrease
” ) ) ;

// Alpha+ (singularily charged alphas)
else if ( particleName = ”alpha+” )

{

// DNA processes are ACTIVE in the world since no corresponding STANDARD
processes exist

pmanager—>AddDiscreteProcess (new G4DNAExcitation(” alpha+_G4DNAExcitation”));

pmanager—>AddDiscreteProcess (new G4DNAlonisation (”alphat+_G4DNAIlonisation”));

pmanager—>AddDiscreteProcess (new G4DNAChargeDecrease(” alpha+
_G4DNAChargeDecrease” ) ) ;

pmanager—>AddDiscreteProcess (new G4DNAChargelncrease(” alpha+
_G4DNAChargelncrease”) ) ;

// Helium atoms (neutral alphas)
else if ( particleName = ”helium” )
{
// DNA processes are ACTIVE in the world since no corresponding STANDARD
processes exist
pmanager—>AddDiscreteProcess (new G4DNAExcitation(” helium_G4DNAExcitation”));
pmanager—>AddDiscreteProcess (new G4DNATonisation (”helium_G4DNATJonisation”));
pmanager—>AddDiscreteProcess (new G4DNAChargelncrease (7
helium_G4DNAChargelncrease”) ) ;

38




306
307
308
309
310
311

312
313
314
315
316
317
318

319
320
321
322
323
324
325

326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342

//
//
//
//
/!
//

// THESE ARE NEW TREATMENTS ADDED 2012/03/23 by mcoghill3
// Carbon atoms (meutral carbon)
else if ( particleName = ”carbon” )
{
//Ghcout << "\m\n carbon \n\n” << Gjendl;
// DNA process are active in the world since no corresponding STANDARD
processes exist??? (is this true??? mcoghill3 added this 2012—02—1}

pmanager—>AddDiscreteProcess (new G4DNAlonisation(” carbon.G4DNAIJIonisation”));

else if ( particleName = ”nitrogen” )
{
//Ghcout << "\n\n nitrogen \n\n” << G4endl;
// DNA process are active in the world since no corresponding STANDARD
processes exist??? (is this true??? mcoghill8 added this 2012—02—1/

pmanager—>AddDiscreteProcess (new G4DNAIlonisation(”nitrogen_.G4DNATlonisation”));

else if ( particleName =— "oxygen” )
{
//Ghcout << "\n\n ozygen \n\n” << G4endl;
// DNA process are active in the world since no corresponding STANDARD
processes exist??? (is this true??? mcoghill8 added this 2012—02—14

pmanager—>AddDiscreteProcess (new G4DNATlonisation(” oxygen_-G4DNATonisation”));

}
else if ( particleName = ”iron” )
{
//Ghcout << "\n\n iron \n\n” << Gjendl;
// DNA process are active in the world since no corresponding STANDARD
processes exist??? (is this true??? mcoghill3 added this 2012—02—14
pmanager—>AddDiscreteProcess (new G4DNAlonisation (”iron_.G4DNATonisation”));
}
3k 3k 3k 3k >k sk sk >k skok >k sk ok sk sk ok sk sk >k sk sk sk sk sk sk sk ok sk sk ok skok ok sk ok skok ok

2) Define processes for Target Area
For these purposes we will activate
physics in the medium for now
the medium includes the nucleus and

other wvolumes included in the nucleus
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// STANDARD EM processes should be inactivated when corresponding DNA processes are
used

// — STANDARD EM e— processes are inactivated below 1 MeV

// — STANDARD EM proton €& alpha processes are inactivated below standEnergyLimit

G4double standEnergyLimit = 99.9xMeV;

G4double massFactor = 1.0079/4.0026;

G4EmConfigurator*x em_config = G4LossTableManager :: Instance ()—>EmConfigurator () ;

G4VEmModel* mod ;

/) kxx e—

// ——> STANDARD EM processes are inactivated below 1 MeV

mod = new G4UrbanMscModel93 () ;

mod—>SetActivationLowEnergyLimit (1xMeV) ;

em_config—>SetExtraEmModel (”e—" ,” msc” ,mod,” Medium” ) ;

mod = new G4MollerBhabhaModel () ;

mod—>SetActivationLowEnergyLimit (0.99*MeV) ;

em_config—>SetExtraEmModel ("e—" ,” eloni” ;mod,” Medium” ,0.0,100%TeV, new
G4UniversalFluctuation () );

// ——> DNA processes activated

mod = new G4DNAChampionElasticModel () ;
em_config—>SetExtraEmModel ("e—" ,”e—_G4DNAElastic” ,mod,” Medium” ,0.0,1+xMeV) ;

mod = new G4DNABornlonisationModel () ;
em_config—>SetExtraEmModel ("e—" ,”e—_G4DNATonisation” ,mod,” Medium” ,11%eV,1xMeV) ;

mod = new G4DNABornExcitationModel () ;

em_config—>SetExtraEmModel ("e—" ,”e—_G4DNAExcitation” ;mod,” Medium” ,9%eV,1xMeV) ;

mod = new G4DNAMeltonAttachmentModel () ;

em_config—>SetExtraEmModel ("e—" ,” e—_G4DNAAttachment” ,mod,” Medium” ,4+xeV,13xeV) ;
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mod = new G4DNASancheExcitationModel () ;

em_config—>SetExtraEmModel ("e—" ,”e—_G4DNAVibExcitation” ,mod,” Medium” ,2xeV,100%eV) ;

// *xx proton

// ——> STANDARD EM processes inactivated below standEnergyLimit

// STANDARD msc is still active
// Inactivate following STANDARD processes

mod = new G4BragglonGasModel () ;
mod—>SetActivationLowEnergyLimit (standEnergyLimit) ;
em_config—>SetExtraEmModel (” proton” ,” hIoni” ,mod,” Medium”

G4IonFluctuations () );

mod = new G4BetheBlochlonGasModel () ;

mod—>SetActivationLowEnergyLimit (standEnergyLimit) ;

,0.0,2%xMeV, new

em_config—>SetExtraEmModel (” proton” ,” hIoni” ;mod,” Medium” ,2+MeV,100%TeV, new

G4UniversalFluctuation () );

// ——> DNA processes activated

mod = new G4DNARuddIonisationModel () ;

em_config—>SetExtraEmModel (” proton” ,” proton_G4DNATIonisation” ,mod,” Medium”

MeV) ;

mod = new G4DNABornlonisationModel () ;

em_config—>SetExtraEmModel (” proton” ,” proton_.G4DNAlIonisation” ,mod,” Medium”

,100%MeV) ;

mod = new G4DNAMillerGreenExcitationModel () ;

em_config—>SetExtraEmModel (” proton” ,” proton_.G4DNAExcitation” ,mod,” Medium”

,0.5xMeV) ;

mod = new G4DNABornExcitationModel () ;

em_config—>SetExtraEmModel (” proton” ,” proton_G4DNAExcitation” ;,mod,” Medium”

,100xMeV) ;

// *%x alpha

// ——> STANDARD EM processes inactivated below standEnergyLimit
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// STANDARD msc is still active
// Inactivate following STANDARD processes

mod = new G4BragglonGasModel () ;
mod—>SetActivationLowEnergyLimit (standEnergyLimit) ;
em_config—>SetExtraEmModel (” alpha” ,” ionloni” ,mod,”Medium” ,0.0,2*MeV/massFactor , new

G4IonFluctuations ());

mod = new G4BetheBlochlonGasModel () ;
mod—>SetActivationLowEnergyLimit (standEnergyLimit) ;
em_config—>SetExtraEmModel (" alpha” ,”ionloni” ,mod,” Medium” ,2*MeV/massFactor ,100«TeV,

new G4UniversalFluctuation());

// —> DNA processes activated

mod = new G4DNARuddIonisationModel () ;
em_config—>SetExtraEmModel (” alpha” ,” alpha_G4DNATonisation” ,mod,” Medium” ,0.0,100«MeV

)

mod = new G4DNAMillerGreenExcitationModel () ;
em_config—>SetExtraEmModel (” alpha” ,” alpha_G4DNAExcitation” ,mod,” Medium” ,1xkeV,100x
MeV) ;

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . .

void PhysicsList :: ConstructGeneral ()

{}
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
void PhysicsList :: SetCuts ()

{

if (verboseLevel > 0 )

{

G4cout << "PhysicsList :: SetCuts:” << ”CutLength : 7 << G4BestUnit (defaultCutValue

,”Length”) << Gd4endl;

// set cut wvalues for gamma first, electrons second, positrons third
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453 // this is because some processes for electrons and positrons need cut values for
gamma (duh)

454 // appears these are all overridden in the Medium by the G4Region section of
DetectorConstruction.

455 SetCutValue (cutForGamma ,” gamma” ) ;

456 SetCutValue (cutForElectron ,”e—");

457 SetCutValue (cutForPositron ,”e+”);

458 SetCutValue (cutForProton ,” proton”);

459
460 if (verboseLevel >0)

461 |

462 DumpCutValuesTable () ;
463 1}

464/ }

A.1.8.5 G/ElectronCapture.cc

1|#include ” G4ElectronCapture.hh”
2|#include ” G4ParticleDefinition .hh”
3|#include ” G4Step.hh”
4|#include ” G4Track.hh”
5|#include ” G4Region.hh”
6|#include ” G4RegionStore.hh”
7|#include " G4Electron.hh”
8
9 //....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
10
11| G4ElectronCapture :: G4ElectronCapture (const G4String& regName, G4double ekinlim)
12 G4VDiscreteProcess (”eCapture”, fElectromagnetic), kinEnergyThreshold(ekinlim),
13 regionName (regName) , region (0)
141 {
15 if (regName =— 7”7 || regName =— ”world”) {
16 regionName = ”DefaultRegionForTheWorld” ;
17 }
18] }
19
20| //....00000000000. ....... 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . . ..
21
22| G4ElectronCapture :: ~ G4ElectronCapture ()
23| {}
24
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//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . . ..

void G4ElectronCapture:: SetKinEnergyLimit (G4double val)

{
kinEnergyThreshold = val;
if (verboseLevel > 0) {
G4cout << "### G4ElectronCapture: Tracking cut E(MeV) = ”
<< kinEnergyThreshold /MeV << G4endl;
}
}
//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . . ..
void G4ElectronCapture :: BuildPhysicsTable (const G4ParticleDefinition&)

{

region = (G4RegionStore:: GetInstance () )—>GetRegion (regionName) ;
if (region && verboseLevel > 0) {
Gdcout << "##4# G4ElectronCapture: Tracking cut E(MeV) = 7
<< kinEnergyThreshold /MeV << ” is assigned to ” << regionName
<< Gdendl;
}
}
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
G4bool G4ElectronCapture:: IsApplicable (const G4ParticleDefinition&)

{

return true;

G4double

G4ElectronCapture:: PostStepGetPhysicallnteractionLength (const G4Track& aTrack,

G4double
G4ForceCondition* condition)
{
// condition is set to ”"Not Forced”
scondition = NotForced;
G4double limit = DBLMAX;
if (region) {
if (aTrack.GetVolume ()—>GetLogicalVolume ()—>GetRegion () = region &&
aTrack.GetKineticEnergy () < kinEnergyThreshold) { limit = 0.0; }
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}

return limit ;
}
//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . . ..
G4VParticleChangex G4ElectronCapture :: PostStepDolt (const G4Track& aTrack,

const G4Step&)
{
pParticleChange—>Initialize (aTrack);
pParticleChange—>ProposeTrackStatus ({StopAndKill);
pParticleChange—>ProposeLocalEnergyDeposit (aTrack. GetKineticEnergy ());
return pParticleChange;
}
//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . . ..
G4double G4ElectronCapture :: GetMeanFreePath (const G4Track&,G4double,

G4ForceCondition )

return DBL.MAX;

A.1.8.6 RunAction.cc

#include ”RunAction.hh”

#include ”G4Run.hh”
#include ”G4Timer.hh” // include for timer
//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . . .
RunAction:: RunAction(DetectorConstruction* det, HistoManager* his) // using
varitable in namespace RunAction
:Detector (det) ,Histo (his)
{
timer = new G4Timer; // timer constructor
}
//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 .. . . .
RunAction::” RunAction () // destructor
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delete timer; // timer destructor

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .

void RunAction:: BeginOfRunAction (const G4Runx run)

{
// Histograms

Histo—>book () ;

// setting up for dose calculations
doseN = 0;

doseNC = 0;

doseC = 0;

doseDelta = 0;

Gdcout << "### Run” << run—>GetRunID () << 7 start.” << Gdendl; // get run ID

timer—>Start () ; // start the timer

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .

void RunAction :: EndOfRunAction (const G4Run* run)

{

//Histo—>stream () ;

// save the histogram

Histo—>stream (2,0); //should create another function to owverload???

Histo—>save () ;

G4cout << ”\n \n Dose in Nucleus: 7 << GetDoseN() << 7 Gy \n \n” << G4endl;

// ouput does to the terminal

G4cout << ”\n \n Dose in Nucleus || Chromatin: ” << GetDoseNC() << ” Gy \n \n” <<
G4endl;

// ouput does to the terminal

G4cout << ”\n \n Dose in Chromatin: 7 << GetDoseC() << ” Gy \n \n” << Gd4endl;

// ouput does to the terminal

96




56
57
58

59

timer—>Stop () ; // stop the timer
G4cout << ”"number of events: ” << run—>GetNumberOfEvent () << 7 7 << stimer <<
G4endl; // output number of events
}
A.1.3.7 FEventAction.cc
#include ”EventAction.hh”

#include ”G4Event.hh”
#include ” G4EventManager.hh”
#include ”HistoManager.hh”
#include ”RunAction.hh”

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . . .. .. 00000000000 . . . . ..

EventAction:: EventAction (HistoManager* his, RunAction* run)

:Histo (his) ,Run(run)

{}

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
EventAction::” EventAction ()

{}
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . ...
void EventAction:: BeginOfEventAction (const G4Eventx)

{
//Run—>SetDoseCBeginEvt (Run—>GetDoseC () ) ;
}
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..
void EventAction:: EndOfEventAction(const G4Event*x evt)

{

G4int event_id = evt—>GetEventID () ;

G4int event_num = event_id+1;

G4cout << ”\n (EAC) Event Number: ” << event_id << "\n”;
G4double DoseNEvt = Run—>GetDoseN () ;

G4double DoseNCEvt = Run—>GetDoseNC () ;
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G4double DoseCEvt = Run—>GetDoseC () ;
G4double DoseEvtNorm = DoseNCEvt/event_num;
G4cout << ”\n DoseNCEvtNorm: ” << DoseEvtNorm << ”\n”;
Histo—>FillNtuple (2, 0, event_num);
Histo—>FillNtuple (2, 1, DoseNEvt);
Histo—>FillNtuple (2, 2, DoseNCEvt) ;
Histo—>FillNtuple (2, 3, DoseCEvt);
Histo—>AddRowNtuple(2) ;
Histo—>stream (1,event_id);
Histo—>ResetNtuple (1) ;

}

A.1.3.8 SteppingAction.cc
#include ” SteppingAction.hh”

#include ”RunAction.hh”
#include ” DetectorConstruction .hh”
#include ”PrimaryGeneratorAction.hh”

#include ”HistoManager.hh”

#include ” G4SteppingManager.hh”
#include ” G4VTouchable.hh”
#include " G4VPhysicalVolume.hh”

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . .

SteppingAction :: SteppingAction (RunAction* run, DetectorConstruction* det,

PrimaryGeneratorAction* pri, HistoManagerx his)

:Run(run) ,Detector (det) ,Primary (pri),Histo(his)

{}

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 .. . . .
SteppingAction::” SteppingAction ()

{3

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
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void SteppingAction :: UserSteppingAction (const G4Step* step) // what is this void

function? taskba/src/SteppingAction.cc this is called at each G4Step

G4double flagParticle=0.;

G4double flagProcess=0.;

G4double x,y,z,xXp,yp,zp,e€;

G4double mod;

G4double DoseC,DoseNC,DoseN; //DoseBegin, Doselnc;

if

(step—>GetTrack ()—>GetDynamicParticle ()—>GetDefinition () —>GetParticleName () =
Ve—=") flagParticle = 1;
(step—>GetTrack ()—>GetDynamicParticle ()—>GetDefinition () —>GetParticleName () =
”proton”) flagParticle = 2;
(step—>GetTrack ()—>GetDynamicParticle ()—=>GetDefinition () —>GetParticleName () =—
"hydrogen”) flagParticle = 3;
(step—>GetTrack ()—>GetDynamicParticle ()—>GetDefinition () —>GetParticleName () =
”alpha”) flagParticle = 4;
(step—>GetTrack ()—>GetDynamicParticle ()—>GetDefinition () —>GetParticleName () =
”alpha+”) flagParticle = 5;
(step—>GetTrack ()—>GetDynamicParticle ()—>GetDefinition () —>GetParticleName () =

”helium”) flagParticle = 6;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=—"msc” )
flagProcess =10;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="e—

_G4DNAElastic”) flagProcess =11;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=—="e—

_G4DNAExcitation”) flagProcess =12;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="e—

_G4DNATJonisation”) flagProcess =13;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=—"e—

_G4DNAAttachment” ) flagProcess =14;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=—"e—

_G4DNAVibExcitation”) flagProcess =15;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=="eCapture”

) flagProcess =16;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
proton_.G4DNAExcitation”) flagProcess =17,
(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="

proton_.G4DNATIonisation”) flagProcess =18;
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(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
proton_G4DNAChargeDecrease”) flagProcess =19;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
hydrogen_.G4DNAExcitation”) flagProcess =20;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
hydrogen_G4DNATlonisation”) flagProcess =21;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
hydrogen_G4DNAChargelncrease”) flagProcess =22;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
alpha_G4DNAExcitation”) flagProcess =23;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
alpha_G4DNATonisation”) flagProcess =24;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
alpha_G4DNAChargeDecrease”) flagProcess =25;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=="alpha+
_G4DNAExcitation”) flagProcess =26;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="alpha+
_G4DNAIonisation”) flagProcess =2T;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=="alpha+
_G4DNAChargeDecrease”) flagProcess =28;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=—"alpha+
_G4DNAChargelncrease”) flagProcess =29;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
helium_G4DNAExcitation”) flagProcess =30;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()="
helium_G4DNATonisation”) flagProcess =31;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=
helium_G4DNAChargelncrease”) flagProcess =32;

(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=="hIoni”)
flagProcess =33;
(step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()=—"eloni”)

flagProcess =34;
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if (step—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>GetProcessName ()!="
Transportation”) // if statement defined below for examples that are not

transport

x=step—>GetPreStepPoint ()—>GetPosition () .x()/nanometer;
y=step—>GetPreStepPoint ()—>GetPosition () .y()/nanometer;
z=step—>GetPreStepPoint ()—>GetPosition () .z () /nanometer;
xp=step—>GetPostStepPoint ()—>GetPosition () .x()/nanometer;
yp=step—>GetPostStepPoint ()—>GetPosition () .y()/nanometer;
zp=step —>GetPostStepPoint ()—>GetPosition () .z ()/nanometer;
e=step—>GetTotalEnergyDeposit () /eV;

Histo—>FillNtuple (0, 0, flagParticle);

Histo—>FillNtuple (0, 1, flagProcess);

(0
(0
Histo—>FillNtuple (0, 2, x);
Histo—>FillNtuple (0, 3, y);
Histo—>FillNtuple (0, 4, z);
Histo—>FillNtuple (0, 5, e);
Histo—>FillNtuple (0, 6, sqrt ((xp—x)x*(xp—x)+(yp—y) *(yp—y)+(zp—2z) *(zp—2)));
Histo—>AddRowNtuple (0) ;

// below I am setting up the dose counter. I limit it to only the nucleus. Later

I might limit it to the chromatin when that is added.

if (step—>GetPreStepPoint ()—>GetPhysicalVolume ()—>GetName () == ” Nucleus”)
{
DoseN = (step—>GetTotalEnergyDeposit()/joule)/(Detector—>GetNucleusMass () /kg) ;
// if this is just nucleus and not chromatin need some subraction for
mass

Run—>AddDoseN (DoseN) ;

}

if ((step—>GetPreStepPoint ()—>GetPhysicalVolume ()—>GetName () = ” Nucleus”) || (
step—>GetPreStepPoint ()—>GetPhysicalVolume ()—>GetName () = ” Chromatin”))

{

DoseNC = (step—>GetTotalEnergyDeposit()/joule)/(Detector—>GetNucleusMass () /kg) ;
Run—>AddDoseNC (DoseNC) ;

if (e >= 5)

{

//DoseBegin = Run—>GetDoseCBeginEvt () ;
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N =

//Doselnc = DoseC — DoseBegin;

//Glcout << "\m DoseC: 7 << DoseC << ”"\n DoseBegin: ” << DoseBegin << ”\n
Doselnc: 7 << Doselnc << G4endl;

Histo—>FillNtuple (1, 0, x);

Histo—>FillNtuple (1, 1, y);

Histo—>FillNtuple (1,

N
~

)

2
Histo—>FillNtuple (1, 3, e);
Histo—>AddRowNtuple (1)

if (step—>GetPreStepPoint ()—>GetPhysicalVolume ()—>GetName() = ” Chromatin”) //
might get some speed by tucking chromatin and nucleus checks into the check

for both. Not sure...but maybe.

DoseC = (step—>GetTotalEnergyDeposit()/joule)/(Detector —>GetChromatinMass () /kg)
//could be

//DoseC = (step—>GetTotalEnergyDeposit())/(Detector—>GetChromatinMass () )*Gy;

Run—>AddDoseC (DoseC) ;

A.1.8.9 SteppingVerbose.cc

#include ” SteppingVerbose.hh”

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 .. . . .
SteppingVerbose :: SteppingVerbose ()

{}

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 .. . . .

SteppingVerbose::~ SteppingVerbose ()

{3

//....00000000000........ 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 .. . . .
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void SteppingVerbose:: StepInfo ()

{
CopyState () ;
G4int prec = G4cout.precision (3);
if ( verboseLevel >=1 )
{
if ( verboseLevel >= 4 ) VerboseTrack();
if( verboseLevel >= 3 )
{
G4cout << G4endl;
G4cout << std::setw( 5) << "#Step#’ << 7
<< std::setw( 6) << 7X” << 7 7
<< std::isetw( 6) << "Y” << 7 ”
<< std::setw( 6) << 7Z” << 7 7
<< std::setw( 9) << ”KineE” << 77
<< std::setw( 9) << "dEStep” << 77
<< std::setw(10) << ”StepLeng”
<< std::setw(10) << ”TrakLeng”
<< std::setw(10) << ”NextVolu”
<< std::setw(10) << ”Process” << Gdendl;
}
G4cout << std::setw( 5) << fTrack—>GetCurrentStepNumber () << 7 7
<< std::setw( 6) << G4BestUnit (fTrack—>GetPosition().x(),” Length”)
<< std::setw( 6) << G4BestUnit({Track—>GetPosition().y(),” Length”)
<< std::setw( 6) << G4BestUnit({Track—>GetPosition().z(),” Length”)
<< std::setw( 6) << G4BestUnit(fTrack—>GetKineticEnergy () ,” Energy”)
<< std::setw( 6) << G4BestUnit(fStep—>GetTotalEnergyDeposit () ,” Energy”)
<< std::setw( 6) << G4BestUnit (fStep—>GetStepLength () ,” Length”)
<< std::setw( 6) << G4BestUnit (fTrack—>GetTrackLength () ,” Length”);
// if( fStepStatus != fWorldBoundary){
if ( fTrack—>GetNextVolume() != 0 )
{
G4cout << std::setw(10) << fTrack—>GetNextVolume ()—>GetName() ;
}
else
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G4cout << std::setw(10) << ”OutOfWorld” ;

if (fStep—>GetPostStepPoint ()—>GetProcessDefinedStep () != NULL)
{
G4cout << std::setw(10) << fStep—>GetPostStepPoint ()—>GetProcessDefinedStep ()—>

GetProcessName () ;

else

G4cout << ”User Limit”;

G4cout << G4endl;

if ( verboseLevel = 2 )
{
G4int tN2ndariesTot = fN2ndariesAtRestDolt 4+ fN2ndariesAlongStepDolt +
fN2ndariesPostStepDolt;

if (tN2ndariesTot >0)
{
G4cout << 7 —_— List of 2ndaries — 7

<< "#SpawnInStep=" << std::setw(3) << tN2ndariesTot
<< 7 (Rest=" << std::setw(2) << fN2ndariesAtRestDolt
<< 7 ,Along=" << std::setw(2) << fN2ndariesAlongStepDolt
<< 7 ,Post=" << std::setw(2) << fN2ndariesPostStepDolt
<< 7)),

<< "#SpawnTotal=" << std::setw(3) << (*fSecondary).size ()

<< ?
<< G4endl;
for (size_-t Ipl=(xfSecondary).size ()—tN2ndariesTot;
Ipl <(xfSecondary).size (); lpl++)
{
Gdcout << 7 27
<< std::setw (6)
<< G4BestUnit ((*fSecondary) [lpl]—>GetPosition().x(),” Length”)
<< std::setw (6)

<< G4BestUnit ((*fSecondary) [lpl]—>GetPosition () .y () ,” Length”)

104




94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

}

G4cout

<<
<<
<<
<<
<<
<<
G4cout

<<

std ::setw (6)

G4BestUnit ((*fSecondary) [lpl]—>GetPosition () .z () ,” Length”)
std ::setw (6)

G4BestUnit ((«fSecondary) [1p1]—>GetKineticEnergy () ,” Energy”)
std ::setw (10)

(xfSecondary) [lpl]—>GetDefinition ()—>GetParticleName () ;

<< Gdendl;

<< 7 . 9

<< "— EndOf2ndaries Info ”

<< G4endl;

G4cout . precision (prec);

//Gcout<< "exit SteppingVerbose:: StepInfo 7 << G4endl;

}

/-

. 00000000000 . . ...... 00000000000 . . . ..... 00000000000 . . ...... 00000000000 . . . .

void SteppingVerbose:: TrackingStarted ()

{

CopyState () ;

G4int prec = G4cout.precision (3);

if( verboseLevel > 0 )

{

G4cout
<<
<<
<<
<<
<<
<<
<<
<<
<<

G4cout

<<

<< std::setw( 5) << 7 Step# << 77

std::rsetw( 6) << "X” << 7 ”

std::setw( 6) << Y << 7 7

std::setw( 6) << 727 << 7 7

std::setw( 9) << "KineE” << 7 7

std ::setw( 9) << "dEStep” << 7 7

std ::setw (10) << ”StepLeng”

std ::setw (10) << ”TrakLeng”

std ::setw (10) << ”NextVolu”

std ::setw (10) << ”Process” << G4endl;

<< std::setw( 5) << fTrack—>GetCurrentStepNumber () << 7 7
std ::setw( 6) << G4BestUnit (fTrack—>GetPosition().x(),” Length”)
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153

<< std::setw( 6) << G4BestUnit({Track—>GetPosition().y(),” Length”)
<< std::setw( 6) << G4BestUnit({Track—>GetPosition().z(),” Length”)
<< std::setw( 6) << G4BestUnit(fTrack—>GetKineticEnergy () ,” Energy”)
<< std::setw( 6) << G4BestUnit(fStep—>GetTotalEnergyDeposit () ,” Energy”)
<< std::setw( 6) << G4BestUnit(fStep—>GetStepLength () ,” Length”)
<< std::setw( 6) << G4BestUnit (fTrack—>GetTrackLength () ,” Length”);
if (fTrack—>GetNextVolume ())
{
G4cout << std::setw(10) << fTrack—>GetNextVolume ()—>GetName() << 7 7;
}
else
{
G4cout << std::setw(10) << ”OutOfWorld” << 7 7;
}
G4cout << std::setw(10) << ”initStep” << G4endl;
}
G4cout . precision (prec);
G4cout << ”exit SteppingVerbose:: TrackingStarted () 7 <<G4endl;
}
A.1.3.10 HistoManager.cc
#include ”HistoManager .hh”

#include ” G4UnitsTable.hh”

#ifdef G4ANALYSIS_USE
#include ”AIDA/AIDA.h”

#endif

// . ...00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . . ..

HistoManager :: HistoManager ()

:af(0),tree (0) ,factoryOn(false)

{
#ifdef G4ANALYSIS_USE

// Creating the analysis factory

af = AIDA _createAnalysisFactory () ;

if (laf)
{
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G4cout << ” HistoManager :: HistoManager () :” << ” problem creating the AIDA

analysis factory.” << Gdendl;

}
#endif

fileName [0] = "vad3—47;
fileType = "root”;

fileOption = ”"export=root”;

ntupl0=0;
ntupll=0;
ntupl2=0;

// initialize
// initialize

// initialize

ntupl0
ntupll

ntupl2

//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .

HistoManager :: ~ HistoManager ()

{

#ifdef G4ANALYSIS_USE
delete af;

Hendif

}

// . ...00000000000........ 00000000000 . . . ... .. 00000000000 . . . ... .. 00000000000 . . .

void HistoManager :: book ()

{
#ifdef G4ANALYSIS_USE

if (laf) return;

// woid function book

// Creating a tree mapped to an hbook file

fileName [1] = fileName [0] + ”7.” + fileType;

next )
G4bool readOnly = false;

G4bool createNew = true;

AIDA:: ITreeFactory* tf = af—>createTreeFactory();

tree = tf—>create (fileName [1],

options for file
delete tf;
if (Itree)

{

creation .

// delete pointer as it

// add file type to file name (and

// create
fileOption); //

tree factory

fileType, readOnly, createNew,
all PRESET in wvariables.

is no longer mneeded
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G4cout << ”HistoManager :: book() :”
<< "problem creating the AIDA tree with ”
<< 7 storeName = 7 << fileName [1]
<< 7 storeType =7 << fileType
<< 7 readOnly = 7 << readOnly
<< 7 createNew = 7 << createNew
<< 7 options =7 << fileOption
<< G4endl;
return;
}
// Create a histogram and nutpl factory
AIDA:: IHistogramFactory* hf = af—>createHistogramFactory (xtree); // hf points
to
AIDA:: ITupleFactory* ntf = af—>createTupleFactory (xtree);
ntupl0 = ntf—>create (”ntuple0”, "Beam Profile”, "double flagParticle, flagProcess,
X, y, z, e, d7); //naming fields for nutplel0
ntupll = ntf—>create(”ntuplel”, ”SSB” ”»double x, y, z, e”);
ntupl2 = ntf—>create (”ntuple2”, ”Dose” ”double EventNum, EvtDoseN, EvtDoseNC,
EvtDoseC” ) ;
factoryOn = true;
delete hf; // delete the pointer
delete ntf; // delete the pointer
if (factoryOn)
G4cout << 7\n > Histogram Tree is opened in 7 << fileName [1l] << G4endl;
#endif
}
//....00000000000........ 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
void HistoManager ::save ()

{
#ifdef G4ANALYSIS_USE
if (factoryOn)
{
tree —>commit () ; // Writing the histograms to the file
tree—>close () ; // and closing the tree (and the file)
G4cout << 7\n > Histogram Tree is saved in 7 << fileName [1] << Gd4endl;
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96 delete tree;

97 tree = 0;

98 factoryOn = false;

99 }

100 #endif

101}

102

103| // . ... 00000000000 . . ...... 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
104

105| void HistoManager :: process (std :: ostream& a_out, G4int con)
106| {

107 #ifdef G4ANALYSIS_.USE

108

109 J//AIDA :: ITupleFactory* tuple;

110

111 AIDA :: ITuplex ntuplP;

112

113 if (con = 1)

114 {

115 ntuplP = ntupll;

116 a_out << "\"x\”7,\"y\",\"2z\7,\"e\”” << Gdendl;

117 }

118 else if (con = 2)

119 {

120 ntuplP = ntupl2;

121 a_out << ”"\”EventId\”,\”DoseN\”,\”DoseNC\” ,\” DoseC\”” << G4endl;
122 }

123 G4int coln = ntuplP—>columns () ;

124 for (int 1=0; i<coln; i++)

125 {

126 Gdcout << ”process_file :”

127 << 7icol =7 << i

128 << 7, label =7 << ntuplP—>columnName (i)

129 << 7, type =7 << ntuplP—>columnType (i)

130 << G4endl;

131 }

132 G4cout << "process_file: rows = 7 << ntuplP—>rows () << G4endl;
133

134 std :: vector<std ::string> types = ntuplP—>columnTypes() ;
135

136 char del = 7,7}
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137

138

139

140 ntuplP—>start () ;

141 while (ntuplP—>next () )

142 {

143 for (int col=0;col<coln;col++)

144 {

145 if (col)

146 {

147 a_out << del;

148 }

149 if (types[col]=="float”)

150 {

151 float v = ntuplP—>getFloat (col);
152 a_out << v;

153 }

154 else if(types|[col]=="double”)
155 {

156 double v = ntuplP—>getDouble(col);
157 a_out << v;

158 }

159 else if(types[col]=="char”)

160 {

161 char v = ntuplP—>getChar(col);
162 a_out << v;

163 }

164 else if(types[col]=="short”)

165 {

166 short v = ntuplP—>getShort (col);
167 a_out << vj

168 }

169 else if(types[col]=="int”)

170 {

171 int v = ntuplP—>getInt (col);
172 a_out << vj

173 }

174 else if(types[col]=="long”)

175 {

176 long v = ntuplP—>getLong(col);
177 a_out << v;

110




178 }

179 else if(types|[col]=="boolean”)

180 {

181 bool v = ntuplP—>getBoolean(col);

182 a_out << vj

183 }

184 else if(types|[col]=="string”)

185 {

186 std :: string v = ntuplP—>getString (col);
187 a_out << vj

188 }

189 else

190 {

191 G4cout << 7 process_file : unknown type.” << types[col] << Gdendl;
192 }

193 }

194 a_out << G4endl;

195 }

196 #endif

197}

198

199| // . ... 00000000000 . ....... 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .
200

201| void HistoManager :: stream (G4int con, G4int event_id)
202/ {
203

204 std :: stringstream str;

205 if (con = 1)

206| {

207 str << "pSSB” << event_-id+1l << " .csv”;
208 }

209 else if (con = 2)

210{ {

211 str << "Dose” << 7 .csv”;

212 1}

213 csvfilename = str.str();

214

215

216 std :: ofstream out(csvfilename.c_str());

217 if (out. fail ())
218 {
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219 G4dcout<< ”can’t open out.csv” << Gdendl;

220| }

221

222 process (out, con);
223

224 out.close () ;
225/ }
226
227
228(//....00000000000. . ...... 00000000000 . . . ... .. 00000000000 . . ... ... 00000000000 . . . .
229
230| void HistoManager :: FillNtuple (G4int nt, G4int column, G4double value)
231 {
232 if (nt >= MaxNtupl)

233 {

234 G4cout << "——> warning from HistoManager:: FillNtuple () : Ntuple ” << nt << ”
dose not exist ” << column << value << Gd4endl;

235 return;

236 }

237|#ifdef G4ANALYSIS_.USE

238 if (nt==0) ntuplO—>fill (column, value);
239 if (nt==1) ntupll—>fill (column, value);
240 if (nt==2) ntupl2—>fill (column, value);
241| #endif

242| }
243
244\ // .. .. 00000000000 . . ...... 00000000000 . . ... ... 00000000000 . . ... ... 00000000000 . . . .
245
246| void HistoManager : : AddRowNtuple (G4int nt)
247| {
248 if (nt >= MaxNtupl)

249| {

250 G4cout << "——> warning from HistoManager :: AddRowNtuple() : Ntuple ” << nt << ”
do not exist” << Gd4endl;

251 return;

252|  }

253|#ifdef G4ANALYSIS_.USE

254 if (nt==0) ntupl0O—>addRow () ;
255 if (nt==1) ntupll—>addRow () ;
256 if (nt==2) ntupl2—>addRow () ;
257 | #endif
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267
268
269
270
271
272
273
274

//....00000000000........ 00000000000 . . ... ... 00000000000 . . . .. ..

void HistoManager :: ResetNtuple (G4int nt)
{
if (nt >= MaxNtupl)
{
G4cout << "——> warning from HistoManager:: ResetNtuple ()
do not exist” << G4endl;
return;

}
#ifdef GAANALYSIS_USE

if (nt==0) ntuplO—>reset ();
if (nt==1) ntupll—>reset ();
if (nt==2) ntupl2—>reset ();
#endif
}

00000000000 . . ..

Ntuple 7 << nt << ”
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Appendix B

R STATISTICAL PROGRAM CODE

This final version of this code for data processing, DSB-21s.R, can perform all of
the data processing needed to produce the results in this thesis. This code requires
instantiation of the ’fpc’ library described in the Methods chapter. The command to

instantiate this library is: library(’fpc’).

B.1 DSB-21s.R

ion = "A”;
concat = 1;
set.seed (2)
pct = 1;
emin = 5;
emax = 37.5;
eps = .8;
minpts = 2;

” 9

dirs = list . files (pattern=paste(ion,”—%” ;sep=""));
ifelse (length(dirs)==1,result T<-matrix (0,length(dirs)+1,9),result T<-matrix (0,length (
dirs),9));
rownames(resultT )<-rownames(resultT ,do.NULL=FALSE, prefix="xx");
ifelse (length(dirs)==1,clusterNbT<-matrix (0,length(dirs)+1,9),clusterNbT<-matrix (0,
length(dirs) ,9));
rownames ( clusterNbT )<-rownames(clusterNbT ,do.NULL=FALSE, prefix="xx");
for(iii in 1l:length(dirs))
{
doseloc = paste(dirs[iii],”Dose.csv” sep="/");
dose.m <— read.csv(doseloc ,sep=",");
names = list . files (path=dirs[iii], pattern="SSBx*");
result = matrix(0,length (names)+1,9);
colnames(result) <— c¢(”pSB” ,”nSB” ,”nSSB” ,”’nCLS” ,”nDSB” ,” Events” ,” DoseN” ;” DoseNC” ,”
DoseC”) ;
rownames(result )<-rownames(result ,do.NULL=FALSE, prefix="Run” ) ;

rownames(result ) [length (names)+1]<—" Total” ;
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clusterNb = matrix(0,length (names)+1,9);
colnames(clusterNb) <— c(71”,72” 73" ,”4” 75”7 .76 ,”7” ,”8” ,”More” ) ;
rownames ( clusterNb )<-rownames(result ,do.NULL=FALSE, prefix="Run” ) ;
rownames( clusterNb) [length (names) +1]<—" Total” ;
for (i in 1:(length(names)/concat))
{
name = paste(”run” ,formatC (i, digits=3,wid=3,flag="0"),” .raw”, sep="");
place = matrix(0,0,4);

”

colnames(place) <— c¢("x”,%y”,”2z” ,7e”);

for(iiii in 1l:concat)

{
loc = paste(dirs[iii],names[concat*(i—1)+iiii],sep="/");
run.raw <— read.csv(loc,sep=",");
place = rbind(place ,run.raw);

}

nCSV = nrow(place);

modl = matrix (runif(nCSV,0,1) ,nrow=nCSV) ;
run. hit = place [modl<pct ,1:4];

mod2 = matrix(runif(nrow(run. hit) ,0,1) ,nrow=nrow (run. hit));
mod3 = (run.hit[,4] —emin)/(emax—emin)>mod2;
run.SSB = run. hit [mod3,1:4];

result [i,6]=1;

result [i,7]=dose.m[i,2];

result [i,8]=dose.m[i,3];

result [i,9]=dose.m[i ,4];

if (nrow (run.SSB)==0)

{

result [i,1:9]=0;

else

result [i,1] = nCSV;

run.SSB = run.SSB[, —4];

run.ds <—dbscan (run.SSB,eps,minpts);

result [i,2]=nrow(run.SSB);

result [i,3]=sum(run.ds$cluster==0);

result [i,4]=max(run.ds$cluster);

clusterNb [i,1]=sum(run.ds$cluster==0);

for (ii in 1:ifelse(result[i,4]==0,1,result [i,4]))

{
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result [i,5]=result [i,5]4+(1—.5"(ifelse (sum(run.ds$cluster=—ii)==0,0,sum(run.ds
$cluster=—ii)—1)));
number = ifelse (sum(run.ds$cluster=—ii)<9,sum(run.ds$cluster=—ii) ,9);

clusterNb [i ,number]=clusterNb [i ,number]+1;

}

result [length 1,1]=sum(result [,1]

)

result [length (names) +1,2]=sum(result [ ,2]);
+1,3]=sum(result [,3]

result [length (names

)

result [length (names =sum(result [ ,4]

)

result ;

result [length (names result [,7]

)

result [length (names =max(result [,8]

)

[ ( )+ )
[ ( ) ] )
[ ( ) ] )
[ ( ) +1,4] )
result [length (names)+1,5]=sum(result [,5]) ;
[ ( ) ] )
[ ( )+1,7]= )
[ ( ) +1,8] )
[ ( ) ] )

result [length (names)+1,9]= result [,9]

(

(

(

(

(

length (names) +1,6]=sum(result [ ,6]
max (

(

max ( ;
resultT [iii ,] = result [length(names)+1,];

(

rownames(resultT)[iii] <— sub(paste(ion,”—" ;sep=""),""  ,dirs[iii]);

” ”

resultName <— paste(” Results/” ,dirs[iii],”.csv” ,sep="");
write.csv(result ,resultName) ;

clusterNb [length (names) +1,1]=sum(clusterNb [ ,1]

clusterNb [length (names) +1,2]=sum(clusterNb [,2]);
clusterNb [length (names) +1,3]=sum(clusterNb [,3]) ;
clusterNb [length (names) +1,4]=sum( clusterNb [ ,4]

3

( )
( ) )
( ) )
( ) )
clusterNb [length (names)+1,5]=sum(clusterNb [ ,5]) ;
( ) )
( ) )
( ) )
( ) )

clusterNb [length (names) +1,6]=sum(clusterNb [ ,6]) ;

clusterNb [length (names) +1,7]=sum(clusterNb [ ,7]) ;

clusterNb [length (names) +1,8]=sum(clusterNb [ ,8]) ;

clusterNb [length (names) +1,9]=sum(clusterNb[,9]);

clusterNbT [iii ,] = clusterNb [length (names) +1,];

rownames (clusterNbT) [1ii] <— sub(paste(ion,”—" ,sep=""), "  ,dirs[iii]);

clusterNbName <— paste(” Results/” ,dirs[iii],” cls.csv” ,sep="");
write.csv (clusterNb ;| clusterNbName) ;

}

resultT <— resultT [sort(rownames(resultT)) ,]

colnames(resultT) <— c¢(”pSB” ,”nSB” ,”nSSB” ,”nCLS” ,”nDSB” ,” Events” ,” DoseN” ,” DoseNC” ,”

DoseC”) ;

folder = tail (strsplit(getwd(), ”/”)[[1]], 1);

resultFile = paste(” Results/” ,folder ,”—Results.csv” ,sep="");

write.csv(resultT ,resultFile);

resultT

116




102
103
104
105
106
107
108
109

clusterNbT <— clusterNbT [sort (rownames(clusterNbT)) ,]

colnames (clusterNbT) <— c (717,727 ,73” ,”4” [”5” 76”7 ,27” ,”8” ,”More” ) ;
folder = tail (strsplit(getwd(), ”/”)[[1]], 1);

clusterNbFile = paste(” Results/” ,folder ,”—clusterNb.csv” sep="");
write.csv (clusterNbT , clusterNbFile);

clusterNbT

resultC=resultT;

clusterNbC=clusterNbT ;
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Appendix C

OTHER NOTES

C.1 Doxygen

GEANT4 is a large and complex toolkit. Its object-oriented nature, while being highly
modular and manipulable, does not lend its code to being easily understood by the
casual, inexperienced, user. The use of a documentation generator allows the simpli-
fied interpretation of GEANT4 code. The author recommends the use of the Doxygen
software. The GEANT4 collaboration offers a Doxgyen version of documentation of
recent release on its website. However, the author finds the personal use of Doxygen
to be especially beneficial in understanding the interaction of user applications with

GEANT4 base classes.|[74]
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