
ANALYSIS OF THE SUBSEQUENCE COMPOSITION OF
BIOSEQUENCES

A Thesis
Presented to

The Academic Faculty

by

Fabio Cunial

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computational Science and Engineering

School of Computational Science and Engineering
Georgia Institute of Technology

August 2012

ANALYSIS OF THE SUBSEQUENCE COMPOSITION OF
BIOSEQUENCES

Approved by:

Professor Alberto Apostolico, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Christine Heitsch
School of Mathematics
Georgia Institute of Technology

Professor Alexander Gray
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Sorin Istrail
Department of Computer Science
Brown University

Professor Steve Harvey
School of Biology
Georgia Institute of Technology

Date Approved: May 2, 2012

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

SUMMARY . ix

I THE SUBSEQUENCE COMPOSITION OF POLYPEPTIDES . 1

1.1 Introduction . 2

1.2 Definitions, notation and state of the art 8

1.3 Special subsequences and the ω-suffix space 12

1.4 Core equivalence classes . 16

1.5 Structure in artificial strings . 20

1.6 Structure in polypeptides . 29

1.7 Laws governing polypeptides . 35

1.7.1 Dependence on string length 35

1.7.2 Dependence on ω . 38

1.8 Laws governing random permutations of polypeptides 43

1.9 Conclusion and extensions . 47

II PHYLOGENY CONSTRUCTION WITH GAPPED PATTERNS 52

2.1 State of the art . 55

2.1.1 Alignment-free sequence comparison 55

2.1.2 Gapped patterns in phylogeny 57

2.2 Phylogeny construction with rigid gapped motifs 61

2.2.1 Experimental results . 69

2.3 Phylogeny construction with gapped LZW 83

2.3.1 Experimental setup . 88

2.3.2 Dynamics of patterns and resolvers 90

III FASTER VARIANCE COMPUTATION FOR PATTERNS WITH

GAPS . 96

iii

3.1 Introduction and state of the art . 96

3.2 Notation and problem definition . 100

3.3 Gapped patterns . 103

3.4 Motifs . 106

3.5 Conclusion . 119

IV CONCLUSION AND EXTENSIONS 121

REFERENCES . 126

iv

LIST OF TABLES

1 Diachronic summary of papers that extract elementary and maximal
gapped motifs from biological sequences 62

2 Distance between the trees constructed using dj for varying arities, and
the maximum-likelihood trees produced by 13 proteins 95

v

LIST OF FIGURES

1 Core points and residual points for a case with ω = 3 18

2 Total number of points in artificial strings (ω = 4). 24

3 Total number of points with a given label (rows) and a given dimen-
sionality (columns). ω = 4. 25

4 Number of special points with a given label (rows) and a given dimen-
sionality (columns). ω = 4. 26

5 Total number of points embedded in subspaces of a given dimension-
ality (ω = 4). 27

6 Number of arcs connecting every pair of symbols (ω = 4) 28

7 Number of external arcs with label b departing from points with label
a (ω = 4) . 28

8 Total number of points at a given distance from the origin of the suffix
space . 30

9 Total number of points at ω = 8. 30

10 An overview of strings in D1 and D2 33

11 Relative number of special points versus string length, in domains and
disordered regions . 38

12 The graph of Figure 11 at ω = 1 . 39

13 Number of special points (not normalized) versus string length, in do-
mains and disordered regions . 39

14 Total number of points versus string length, in domains and disordered
regions . 40

15 Relative number of antispecial points versus string length, in domains
and disordered regions . 40

16 Number of antispecial subsequences versus string length, in domains
and disordered regions . 41

17 Relative number of antispecial subsequences versus string length, in
domains and disordered regions . 41

18 Relative number of normal subsequences versus relative number of nor-
mal points, in D1, D2 and D3 . 42

vi

19 Dependence of the relative number of special, antispecial, normal and
terminal points on ω . 43

20 Values of ω at which phase transitions occur in D1 ∪D2. 44

21 Relative number of points versus ω 45

22 Relative number of special points versus string length in D1 ∪D2, and
in a copy of D1 ∪D2 in which each string has been randomly permuted 48

23 Number of special points versus total number of points in Hemoglobin
I from Scapharca inaequivalvis and in 100 random permutations of its
sequence . 48

24 Correlation between the number of special and total points in the dataset 49

25 Number of special points versus number of total points in disprot 34. 49

26 Number of special, antispecial, and normal points versus number of
total points in disprot 25 . 50

27 Correlation between the number of normal and total points in the dataset 50

28 The classification quality of elementary motifs 71

29 The classification quality of maximal motifs 74

30 Classification quality of autocorrelations, tiling motifs, irredundant
motifs, and irredundant motifs with exactly 3 solid characters, as a
function of density . 78

31 Density, length, number of solid characters and support in maximal
motifs and their bases . 79

32 The composition of extremely sparse motifs carries a strong phyloge-
netic signal . 80

33 Average classification quality and average size of the sets of motifs that
performed best in our experiments 84

34 Pseudocode for lzwa . 87

35 Dataset S1. Number of gaps per pattern, fraction of the original string
encoded by resolvers, and compression ratio, versus arity 90

36 Classification performance of dj and dj∗ on Dp and Dr 93

37 Classification performance of dncd whenDp(t) is initialized toDp(s) and
Dr(t) is initialized toDr(s); when just Dp(t) is initialized toDp(s); and
when just Dr(t) is initialized to Dr(s) 93

38 Classification performance of dncd with lossy compression 94

vii

39 Dataset S4, arity = 14. Neighbor-joining tree from measure dj on the
dictionaries of patterns. 95

40 Matrix Ta of Lemma 7 and matrix T of Corollary 1 for string ab •
•baa • babaa . 109

41 Illustrating Lemma 8 . 111

42 The composition of elementary motifs in nine nodaviruses 124

viii

SUMMARY

Measuring the amount of information and of shared information in biological

strings, as well as relating information to structure, function and evolution, are fun-

damental computational problems in the post-genomic era. Classical analyses of the

information content of biosequences are grounded in Shannon’s statistical telecom-

munication theory, while the recent focus is on suitable specializations of the notions

introduced by Kolmogorov, Chaitin and Solomonoff, based on data compression and

compositional redundancy. Symmetrically, classical estimates of mutual information

based on string editing are currently being supplanted by compositional methods

hinged on the distribution of controlled substructures.

Current compositional analyses and comparisons of biological strings are almost

exclusively limited to short sequences of contiguous solid characters. Comparatively

little is known about longer and sparser components, both from the point of view

of their effectiveness in measuring information and in separating biological strings

from random strings, and from the point of view of their ability to classify and to

reconstruct phylogenies. Yet, sparse structures are suspected to grasp long-range

correlations and, at short range, they are known to encode signatures and motifs that

characterize molecular families.

In this thesis, we introduce and study compositional measures based on the reper-

toire of distinct subsequences of any length, but constrained to occur with a predefined

maximum gap between consecutive symbols. Such measures highlight previously un-

known laws that relate subsequence abundance to string length and to the allowed

gap, across a range of structurally and functionally diverse polypeptides. Measures

ix

on subsequences are capable of separating only few amino acid strings from their

random permutations, but they reveal that random permutations themselves amass

along previously undetected, linear loci. This is perhaps the first time in which the

vocabulary of all distinct subsequences of a set of structurally and functionally diverse

polypeptides is systematically counted and analyzed.

Another objective of this thesis is measuring the quality of phylogenies based on

the composition of sparse structures. Specifically, we use a set of repetitive gapped

patterns, called motifs, whose length and sparsity have never been considered before.

We find that extremely sparse motifs in mitochondrial proteomes support phylogenies

of comparable quality to state-of-the-art string-based algorithms. Moving from max-

imal motifs – motifs that cannot be made more specific without losing support – to a

set of generators with decreasing size and redundancy, generally degrades classifica-

tion, suggesting that redundancy itself is a key factor for the efficient reconstruction

of phylogenies. This is perhaps the first time in which the composition of all motifs

of a proteome is systematically used in phylogeny reconstruction on a large scale.

Extracting all maximal motifs, or even their compact generators, is infeasible for

entire genomes. In the last part of this thesis, we study the robustness of measures

of similarity built around the dictionary of lzw – the variant of the lz78 compres-

sion algorithm proposed by Welch – and of some of its recently introduced gapped

variants. These algorithms use a very small vocabulary, they perform linearly in the

input strings, and they can be made even faster than lz77 in practice. We find that

dissimilarity measures based on maximal strings in the dictionary of lzw support

phylogenies that are comparable to state-of-the-art methods on test proteomes. In-

troducing a controlled proportion of gaps does not degrade classification, and allows

to discard up to 20% of each input proteome during comparison.

x

CHAPTER I

THE SUBSEQUENCE COMPOSITION OF

POLYPEPTIDES

Many approaches have been developed and tested over the years in an attempt at

capturing the structure embodied in artifacts and natural objects alike. Despite these

efforts, we still lack measures and meters to define and appraise this elusive attribute.

The recent 50th anniversary issue of the Journal of the acm opens, for example, with

an essay by Frederick P. Brooks Jr. entitled “Three great challenges for half century

old computer science”. The author gives a list of outstanding problems, the first of

which is described as follows [27]:

Shannon and Weaver performed and inestimable service by giving us a definition of

information and a metric for information as communicated from place to place. [...]

We have no theory however that gives us a metric for the information embodied in

structure. [...] I consider this missing metric to be the most fundamental gap in the

theoretical underpinning of information and computer science.

Not surprisingly, Brooks points to biological sequences as the ideal test-bed for this

endeavor: in biology, the transition to the molecular level has made centerpiece of the

principle that form, interpreted as purely syntactic organization, dictates function.

Moreover, the quantitative underpinning of the information content of biosequences is

an obvious prerequisite to the quantitative modeling and study of biological function

and evolution. Several past studies have addressed the question of what distinguishes

biosequences from random strings: such studies typically analyze the organization

of biosequences in terms of their constituent characters or subwords (i.e. blocks

of consecutive text characters), and have consistently exposed a tenacious lack of

1

compressibility on behalf of biosequences. This chapter describes an assessment of the

structure and randomness of polypeptides in terms on newly introduced parameters

that relate to the vocabulary of their (suitably constrained) subsequences rather than

their substrings. Our measures are seen to grasp structural/functional information in

a dataset of biochemically diverse polypeptides, where they are related to each other

under a specific set of rules. Measures on subsequences are capable of separating

only few amino acid strings from their random permutations, but they show that the

random permutations of most polypeptides amass along specific linear loci. This is

perhaps the first time in which the vocabulary of all distinct subsequences of a set

of structurally and functionally diverse polypeptides is systematically counted and

analyzed.

1.1 Introduction

Defining and measuring the amount of information contained in biological strings,

and relating this information to structure, function and chemical activity [32, 95], has

long been an elusive problem, both for the inherent difficulty of formalizing intuitive

notions of “information” [88] and for the peculiar structure of these strings.

Proteins, for example, are optimized by selection to assume specific chemical prop-

erties and spatial conformations: this streamlining tends to remove redundancies

[4], yielding strings of amino acids in which every symbol carries information; such

“slightly edited random strings” [174] are therefore hardly distinguishable from their

random permutations when measured with both statistical and algorithmic definitions

of information. Not even translating amino acids with scales that capture relevant

physico-chemical properties provides significantly more insight: for example, the dis-

tribution of hydrophobicity – a key property influencing folding and spatial stability –

along the sequence of most proteins is well known to be indistinguishable from random

[152, 177]. The very presence of repetitions and redundancies has been implicated in

2

human diseases at the dna level [24], and in the formation of toxic fibrillar structures

at the protein level [28]. Repetitions in polypeptides have also been conjectured to

multiply the folding possibilities by introducing many interactions with similar en-

ergy [171]: these alternatives would prevent the convergence of the folding process

into a global minimum. Wet-lab experiments with random polypeptides [45, 131]

have shown that secondary and tertiary structures do appear frequently and spon-

taneously in random strings built upon suitably small alphabets. Many of the basic

folding patterns of natural proteins can even be explained theoretically by assuming

the randomness of their primary sequence [176]: this seems to suggest that the main

carrier of folding information is the composition of amino acids rather than their lin-

ear ordering [134]. All these clues, that nicely fit into the neutral theory of evolution,

have oriented biochemists towards seeing modern proteins as memorized ancestral

random polypeptides, that have been slightly edited by selection to optimize their

active sites and stability under specific physiological conditions1. As Jaques Monod

has put it [110]:

In 1952, F. Sanger described the first complete sequence of a globular protein. This

turned out to be both a revelation and a deception. This sequence, defining the struc-

ture and therefore the elective properties of a functional protein (insulin), did not show

any regularity, characteristic feature, or limit. In those days it was hoped that, with

the addition of further documentation, it might be possible to find the general laws of

association and some functional correlations. Today we know hundreds of sequences

corresponding to the proteins extracted from many different organisms. From them

and their systematic comparison, performed with the help of up-to-date analysis and

calculation devices, we can now deduce the general law: the chance law. More pre-

cisely, these structures are “random” because by knowing precisely the order of 199

1An exception to this universal rule of disorder is represented by strongly nonrandom polypep-
tides: about 25% of all amino acids in current databases are estimated to be in “low complexity”,
highly regular regions, and about 34% of all proteins in current databases are estimated to contain
at least one such low complexity region [179]. These segments are routinely searched for and masked
before local alignment searches [79, 178].

3

residues of a protein containing two hundred it is not possible to formulate a theoretical

or empirical law which allows us to predict the nature of the only residue still to be

analytically identified.

Along with this intrinsic, evolutionary randomness, two additional problems make

the definition of information in polypeptides even more elusive. The first problem is

context : the translation of an amino acid string into a three-dimensional structure

is made possible by the cooperation of many distant substrings of the same and of

different molecules (e.g. chaperones, multimers); the transport of many proteins to

their proper cellular compartment and the acquisition of their final function depend

on multiple post-translational modifications. Therefore, the information that leads a

protein to assume its specific biological role is distributed in a context of interactions

that transcends the single sequence [1, 61, 88]. The second problem is resolution: the

key functions of a protein are often implemented by few atoms configured in specific

spatial arrangements and bearing specific chemical properties. A single letter of the

primary sequence of a protein hides tens of such atoms, positions and properties:

these sub-symbolic signals are doomed to evade any measure of information that

treats proteins as strings on the traditional amino acid alphabet.

Notwithstanding these fundamental issues, the question of what and how much

information is carried by amino acid sequences has historically attracted a lot of

attention, both for obvious purposes of classification, prediction and insight into fold-

ing and evolution, and for the screening and synthesis of artificial polypeptides for

their use in new drugs [44, 47]. Some successes have been recorded, especially in the

context of large sets of non-homologous proteins (e.g. the proteome of an organism

[2, 23, 107]). Estimates of differential entropy and context-free grammar complexity

[174] have shown that the complexity of such large sets is lower than the complexity

of a corresponding set of random strings by approximately 1%, about one third of

which is caused by well-known low-complexity regions. Evidence of weak correlations

4

at short, medium, and long range has also been found: positive correlations appear

at medium range (≥ 100) and decrease with distance, implying that the amino acid

distribution of proteins that are close in the genome is more similar than that of pro-

teins far in the genome. The sign of the correlation between pairs of amino acids at

medium distance forms groups that resemble those traced by widely accepted physico-

chemical properties. Family-dependent, short-range periodicities in hydrophobicity,

α-helix propensity and charge have also been detected [173], and have been attributed

to interactions between elements of the same secondary structures.

Both in statistical and in algorithmic information theory, the search for corre-

lations and patterns is intimately related to the construction of compact models

[87, 90, 93]. Since a provocative 1999 study that advocated the incompressibility of

proteomes [114], there has been a modest flourishing of compression techniques tuned

for long concatenations of polypeptides, spanning both the substitutional and the sta-

tistical realms [64]. We mention, among others, techniques consisting in instantiating

the ppm algorithm with contexts of multiple lengths, weighted by amino acid mu-

tation probabilities [114]; searching for exact and approximate reverse complements,

repeats, and weighted context trees [108]; partitioning amino acids according to their

frequency and invoking popular text compressors [150]; using amino acid substitution

matrices to guide the creation of Huffman codes [75]; building an offline dictionary

of motifs with flexible gaps, constrained to be maximal in density and extension and

to occur sufficiently frequently in the dataset [12]; using panels of weighted experts

that estimate the probability of a symbol using Markov models encoding species in-

formation, local context information, as well as repeated and complementary reversed

substrings [31]. These methods achieve entropies that range from about 3.67 to 4.05

bits per symbol, while other estimations based on the k-th order Shannon formula

and Zipf curves reach 2.5 bps; incorporating secondary structure information in a

gambling algorithm à la Shannon lowers this bound to about 2 bps [162].

5

As expected, the analysis of stand-alone sequences has yielded more limited re-

sults. Measures of entropy over sliding windows have been shown to separate globular

and fibrous proteins [145], and Lempel-Ziv complexity has been used to predict the

cellular location of proteins [182]. Adding physico-chemical information to amino

acids has enabled a Fourier analysis to detect characteristic periodicities in two pro-

tein families with similar structural architectures [133]; a mapping of recoded protein

sequences onto one-dimensional Brownian bridges has revealed systematic deviations

from randomness that have been related to energy minimization [120]. The entropy

of the primary sequence has also been shown to correlate with the inverse packing

density and the hydrophobicity of residues in their spatial conformations [97].

In the present chapter, rather than identifying the information content of biose-

quences with their negentropy or compressibility, we follow a compositional approach

that was probably proposed for the first time in [39], and which is likely to gain in

importance with the current popularization of alignment-free algorithms for sequence

comparison [169, 170]. Colosimo and De Luca [39] define the complexity of a biologi-

cal string s as a function fs(n) that maps every integer 1 ≤ n ≤ |s| to the number of

distinct substrings of length n that occur in s. In their experiments, they compare the

dna sequence s corresponding to a gene to its random reshuffle s′: when all O(|s|2)

substrings are taken into account, no significant difference between fs(n) and fs′(n)

is reported. However, when only the O(|s|) set of right-maximal substrings is con-

sidered (i.e. substrings that cannot be extended to the right with any symbol of the

alphabet without losing at least one of their occurrences in s), a systematic difference

between fs(n) and fs′(n) appears. Similar k-mer spectra have been studied more

recently at a genomic scale: Chor et al. [35] consider function fk
s (n) that maps an

integer 0 ≤ n ≤ |s|−k+1 to the number of distinct substrings of length k that occur

n times in s, showing a multimodal behavior in selected genomes and reproducing it

with first- and second-order Markov chains.

6

In this chapter we similarly relate information content to laws that govern the

abundance of suitable combinatorial substructures of polypeptide strings. Rather

than focusing on windows of fixed length or on substrings, however, we measure the

composition of subsequences of any length. In contrast to the case of substrings, one

difficulty when dealing with subsequences is that their number escalates quite rapidly

and just as rapidly saturates the space of possible conformations, thereby turning the

whole quest into a vacuous endeavor: we must look thus for words that appear as a

constrained subsequence of the subject sequence. Our constraint consists of bounding

the hiatus or interval ω between the text positions that may elapse between any two

consecutive characters in one of our subsequences.

This chapter is organized as follows. Section 1.2 formalizes the notion of con-

strained subsequence and of class of positional equivalence. In the spirit of [39],

Section 1.3 characterizes a set of subsequences as extremal, in the sense that they

cannot be enriched with characters without losing some occurrence in the string.

Subsequences and equivalence classes are then embedded in a natural spatial repre-

sentation, in which they assume the form of paths and points, respectively. Even for

small values of ω, the number of ω-subsequences can be exponential in the length

of the host string: Section 1.4 describes an implicit representation taking quadratic

space for finite alphabets. Sections 1.5 and 1.6 introduce suitable measures on this

representation, and test such measures, respectively, on a small collection of artificial

strings with various degree of structure, and on a set of polypeptides. Section 1.7

describes a previously unknown array of laws that, in the dataset of polypeptides,

are seen to relate our measures to string length and to the hiatus of subsequences.

Finally, Section 1.8 studies regularities that constrain pairs of measures in random

permutations of our dataset.

7

1.2 Definitions, notation and state of the art

Given a nonempty string s from alphabet Σ, a subsequence of s is any string v that can

be obtained by removing from s one or more, not necessarily consecutive characters.

An occurrence of v in s is specified by a list of positions of s matching the characters

of v consecutively. The positions of s that correspond to the first (respectively, last)

character of v form the left (respectively, right) occurrence list of v, denoted by Lv =

{l0, l1, . . . , lk−1} (respectively, Rv = {r0, r1, . . . , lh−1}). Among all the occurrences of

v as a subsequence of s, one is led to naturally privilege the leftmost.

Definition 1 ([52]). Let I be the set of all occurrences of a string v as a subsequence of

a string s. The canonical (or leftmost) occurrence of v in s is i∗ = 〈i∗0, i∗1, . . . , i∗|v|−1〉 ∈

I such that i∗j ≤ ij ∀ i = 〈i0, i1, . . . , i|v|−1〉 ∈ I, 0 ≤ j < |v|.

The function that assigns to a nonempty string v its canonical occurrence in s

is clearly bijective. The canonical occurrence, as well as the number of occurrences

of all prefixes of v as a subsequence of s, can be computed in overall O(|v| · |s|2)

space and O(|v| · |s|3) time using recurrence relations and dynamic programming [52]

– ubiquitous tools in counts of subsequences.

A natural way to measure the complexity of s – reminiscent of the substring com-

plexity studied in [35, 39] – is counting the number of its distinct subsequences (also

known as turbulence in the social sciences [53]). The number of distinct subsequences

of s can be computed in O(|s|2) time and space [52], and similar techniques allow

to count the number of distinct subsequences of each length in a string, the number

of distinct subsequences common to two strings, and the number of distinct subse-

quences of length at least k common to two strings, with comparable time and space

complexities [52]. The maximum number of distinct subsequences in a string of length

n on alphabet Σ satisfies the Fibonacci-like recurrence M(n) =
∑|Σ|

k=1M(n− k) + 1,

with M(n) = 2n ∀ 0 ≤ n ≤ |Σ| [52]. More specifically, the string that maximizes the

8

number of distinct subsequences of every length among all strings of length n on Σ, is

the length-n prefix of the infinite string σ+, where σ = σ0σ1 . . . , σ|Σ|−1 is the string in

which all characters of alphabet Σ occur exactly once in their total order [33, 59, 76].

Conversely,
∑n−k

i=0

(

τ−n+k

i

)

is a tight lower bound on the number of distinct subse-

quences of length k in a string of length n, where τ is the number of maximal runs

in the string [76].

In this chapter we will consider subsequences with bounded flexibility.

Definition 2. Given a string s and an integer ω ≥ 0, an ω-occurrence of a string

v in s is an occurrence 〈i0, i1, . . . i|v|−1〉 such that 0 ≤ i0 < i1 < · · · < i|v|−1 < |s|

and 0 ≤ ij+1 − ij − 1 < ω for all 0 ≤ j < |v|. Every substring of s that contains an

ω-occurrence of v is called an ω-realization of v. A string v that has an ω-occurrence

in s is called an ω-subsequence of s.

Definition 3. The ω-occurrence of a string v that starts at position j in s and that

corresponds to the sequence of lexicographically smallest positions among all other

ω-occurrences that start at j is called greedy at j.

Given an ω-occurrence i = 〈i0, i1, . . . , i|v|−1〉 of v in s, the window of i is the word

wi = s[ik + 1 . . . ik + ω]. We extend s by the segment s[|s|, |s| + 1, . . . |s| + ω − 1]

filled with the extra character $ /∈ Σ, so that every ω-occurrence has a window. For

any position j of s, the set Hj of windows of the ω-occurrences of v starting at j is

called the horizon of v at j. The set of windows of all ω-occurrences of v in s is called

the panorama Pv of v in s. We say that symbol a ∈ Σ ∪ {$} is visible in Pv if there

is at least one word in Pv that contains it. If ω = 1, each horizon contains exactly

one window, and the panorama cannot contain more than |Σ|+ 1 total windows. To

examine a more elaborate case, let:

ω = 3, s = ACCTATACGT$$$, v = ATAT, w = ACT .

9

Word v has ω-occurrences: i1 = 〈0, 3, 4, 5〉, i2 = 〈0, 3, 6, 9〉 and i3 = 〈4, 5, 6, 9〉.

Word w has ω-occurrences: j1 = 〈0, 1, 3〉, j2 = 〈0, 2, 3〉, j3 = 〈0, 2, 5〉, j4 = 〈4, 7, 9〉

and j5 = 〈6, 7, 9〉. Therefore, Lv = {0, 4}, Lw = {0, 4, 6}, Rv = {5, 9} and Rw =

{3, 5, 9}. Word v has panorama Pv = {ACG, $$$}, in particular, H1 = {ACG, $$$} and

H5 = {$$$}. Word w has panorama Pw = {ATA, ACG, $$$} with H1 = {ATA, ACG},

H5 = {$$$}, H7 = {$$$}. The greedy ω-occurrences of v are i1 and i3, those of w

are j1, j4 and j5.

Note that the number of ω-occurrences of strings of length k starting at the same

position in s is O(ωk−1), and the maximum number of ω-occurrences of a specific

string v in s is O(ω|v|−1 · |s|). This upper bound is tight, being attained by v = A|v|

in s = A|s|. The maximum number of distinct strings of length k that ω-occur in s

is O(min(|Σ|k, |s| · ωk−1)); this bound is attained by Σ = {A, C, G, T}, s = (ACGT)N ,

ω = 4, N ≫ k. The number of greedy ω-occurrences of a specific string v in s is

O(|s|), and the maximum number of greedy ω-occurrences of strings of length k that

start at the same position in s is O(min(|Σ|, ω)k−1). For ease of notation, from now

on we will use “occurrence” to mean an ω-occurrence, and we will indicate the value

of ω by appending ω replicas of “$” at the end of string s.

The ω-complexity of a string s is classically defined as function fs(ω) that assigns

to every integer ω ≥ 0 the number of distinct ω-subsequences of s [84]. The structure

of ω-subsequences in general, and the ω-complexity in particular, are closely related

to Fibonacci recursions [84]. A closed form for the tight upper bound of the ω-

complexity of any string of length n can be derived using generating functions [84].

In this chapter, we aim at measuring the complexity of a string using higher-order

constructs that relate to classes of positional equivalence, rather than by counting

the number of subsequences or of ω-subsequences.

Definition 4 (Left equivalence). Two subsequences v and w are left equivalent, de-

noted v ≡l w, if Lv = Lw.

10

We stipulate that strings never occurring in s are assigned to the class character-

ized by the empty list. We also assign the left list {0, 1, . . . , |s| − 1, |s|} to v = ε and

{|s|} to v = $. With this proviso, the equivalence relation ≡l imposed on string s is a

partition of {Σ∗ ∪ {$}}, containing at most 2|s| + 2 left-equivalence classes. The right

equivalence relation ≡r and its corresponding classes are defined symmetrically. The

following properties are immediate from the definitions.

Property 1. If v ≡r w, then Pv = Pw.

Property 2. The relation ≡r is right-invariant, i.e., v ≡r w implies va ≡r wa ∀ a ∈

Σ ∪ {$}.

Note that v and w can have the same panorama even though they do not have the

same number of occurrences in s, and that Pv = Pw may occur even if the relation

v ≡r w does not hold: for example, in s = ATCACGTCAC$$ we have PAT = PGT = {CAC}

even if AT and GT are not right-equivalent.

Definition 5 (Implication). We say that w implicates or induces v on s if, for every

occurrence i1 = 〈i10, i11, . . . , i1|w|−1〉 of w, there is also an occurrence i2 = 〈i21, i22, . . . , i2|v|−1〉

of v such that (i10 = i20) and (i1|w|−1 = i2|v|−1).

Implication is not symmetric, e.g., with s = ACAGTTT$$$, v = AGT and w = ACT,

we have that w implicates v even though v does not implicate w.

Definition 6 (Equivalence). Two subsequences v and w of s are equivalent, denoted

v ≡ w, if they implicate one another.

We say that a class of the equivalence relation ≡ is a terminal class if the list of

its right occurrences is {|s| − 1}. Every subsequence in such a class is called terminal

subsequence.

Lemma 1. If v ≡ w, then Pv = Pw; moreover, v and w have the same horizon

structure.

11

Proof. If v ≡ w then v ≡r w, hence Pv = Pw. For a generic i, consider the set Ii

of the occurrences of v starting at i: the occurrences of w that also start at i are

precisely the occurrences implicating the occurrences of Ii, therefore w has a horizon

at i that coincides with the one of v.

Lemma 2. The equivalence relation ≡ is right-invariant.

Proof. It is immediate that the generic occurrence of wa in s is implicated by at least

one occurrence of va, and vice versa. Hence, v ≡ w implies va ≡ wa ∀ a ∈ Σ.

Note that v ≡ w ⇒ (Lv = Lw) ∧ (Rv = Rw), but the converse is not true.

Consider the example s = ACATCATCATCT$$$, v = AT, w = ACT, where Lv = Lw =

{0, 2, 5, 8} and Rv = Rw = {3, 6, 9, 11}: occurrence i1 = 〈5, 6〉 of v does not have a

corresponding occurrence of w starting at position 5 and ending at position 6, and the

occurrence i2 = 〈5, 7, 9〉 of w does not have a corresponding occurrence of v starting

at position 5 and ending at position 9.

1.3 Special subsequences and the ω-suffix space

It is of interest to single out the subsequences of s that cannot be expanded without

losing support, i.e., their number of ω-occurrences in s. The following definition may

be considered an extension to subsequences of the one applied to substrings in [39].

Definition 7 (Special subsequence). A subsequence v ∈ Σ∗ occurring in s starting

with left list Lv 6= ∅ is a special subsequence of s if Lva ⊂ Lv for every symbol

a ∈ Σ ∪ {$} visible from Pv. A subsequence v is non-special if there is a symbol

a ∈ Σ ∪ {$} visible from Pv such that Lva = Lv.

Note that, according to this definition, ε is a special subsequence. Special subse-

quences have the following properties.

12

Property 3. Let i0, i1, . . . , ik−1 be the starting positions of v in s. Then v is a special

subsequence if and only if there are two starting positions ih and ik such that no

window in Hih shares a symbol with a window in Hik .

Property 4. If av is a special subsequence and a ∈ Σ, then the suffix v of av is a

special subsequence.

Property 5. If v is a special subsequence, then such is also any w ≡ v.

Following is the dual notion of that of a special subsequence.

Definition 8 (Antispecial subsequence). A subsequence v of s is antispecial if any

extension va of v in s, a ∈ Σ ∪ {$}, results in va ≡l v.

Therefore, a subsequence is antispecial if and only if every symbol with which it

can be extended in s appears in every horizon. Notice that a subsequence v that

is extensible in s in only one way, or such that |Lv| = 1, is necessarily antispecial,

but an antispecial subsequence can have any support in general. It is also easy to

observe that the extensions of an antispecial subsequence, its prefixes and its suffixes

are not necessarily antispecial. Finally, if v is antispecial, then every sequence w ≡ v

is antispecial.

The definition of special subsequence embodies a criterion to build all the ≡l

and ≡ classes of a string s. Assuming that all the occurrences i0, i1, . . . , ik−1 of a

subsequence v in s have been found, we determine Lv = {i0, i1, . . . , ih−1} and then

organize the windows in groupsH0,H1, . . . ,Hh−1 related to the same starting position

of the occurrences: every symbol a ∈ Σ ∪ {$} appearing in at least one window of

the panorama Pv signals the occurrence of sequence va in s, that can be linked to

v by a directed arc labeled by a, establishing a parent-child relationship between

the sequences. If symbol a appears in at least one window of each group of v, then

va ≡l v, otherwise va belongs to a new ≡l class identified by Lav ⊂ Lv. If no child of

13

v belongs to the same class as v, then v is special, and if va and wb, where a 6= b ∈ Σ

and v, w ∈ Σ∗, have the same left and right lists, they belong to the same ≡ class.

Like standard common subsequences, also those considered here are susceptible

to a natural geometric representation. Let δ0, δ1, . . . , δd−1 be the positions of symbol

a ∈ Σ in s. Align the suffixes s[δi . . . |s| − 1] ∀ 0 ≤ i < d along the d coordinate axes

of a multidimensional grid, such that s[δi+k] occupies position k+1 along coordinate

δi. This space, denoted Ψa(s), will be called the ω-suffix space of s associated with

character a. With the convention that the origin matches any character of Σ, we

mark a matching point (in what follows often referred to simply as a point or match)

in this space at every cell X = [X0, X1, . . . , Xd−1] of the grid such that, ∀ 0 ≤ i < d,

(s[δi +Xi − 1] = b) ∨ (Xi = 0), b ∈ Σ. Next, we define a partial order on the points

by using a strict-dominance criterion: X < Y iff X0 < Y0, X1 < Y1, . . . , Xd−1 < Yd−1.

A greedy ω-subsequence corresponds to a chain in this partial order, such that,

for each pair of consecutive points X and Y, we have X < Y and for no point Z we

have X < Z < Y. To connect all chains related to some greedy ω-subsequence, we

start at the origin and connect matches in succession under the ω constraint, and in

such a way that whenever an arc is established between points X and Y, then for

no point Z we have X < Z < Y. Except for the fact that here we direct the arcs

from the lower point to the higher one, this process results in a partial Hasse diagram

for the partially-ordered set of points [66], that is, the portion of the diagram that is

compatible with the ω constraint. Still, there are greedy ω-subsequences that are not

captured in this process.

The simple construction that we now proceed to describe traces all the ω-sequences

of s, resulting in what constitutes an expansion of the constrained Hasse diagram

above. The space Ψa(s) sets the natural stage also for such construction, which starts

at point 1 = [1, 1, . . . , 1] and proceeds according to the following rule. Assume that, at

the generic iteration, we are at point X = [X0, X1, . . . , Xd−1], and let Y c
0 , Y

c
1 , . . . , Y

c
d−1

14

be the closest matches of character c ∈ Σ following X in the partial order and falling

within an interval of ω on every axis: in the next iteration, we move to all such points

and resume the process. Is it apparent that this construction explores only a subset

of all matching points in Ψa(s), and that, in a generic space with d dimensions, it

proceeds monotonically within an hyperpyramid with vertex at point 1, axis along

the line passing through the points with equal coordinates, and edges identified by

the d lines passing through the points [1 + ω, 2, 2, . . . , 2], [2, 1 + ω, 2, . . . , 2], . . . ,

[2, 2, . . . , 1 + ω] and through the vertex. This process mimics the construction of a

trie with analogies to the inexact suffix tree [34]; for unbounded ω, the resulting graph

is seen to incorporate the Hasse diagram of the poset of matches.

Let V be the set of points in space Ψa(s) that are visited by the algorithm just

described, and let A be the set of arcs, oriented and labeled by symbols of Σ, that

indicate the extensions of each point of V carried out by the algorithm. Graph

Ga(s) = (V,A) is called the ω-suffix graph induced by symbol a on s.

Lemma 3. The points of Ga(s) represent all and only the classes of equivalence

relation ≡ among the greedy ω-subsequences of s that start by symbol a.

Proof. Strings that share the same starting and ending positions in all their greedy

ω-occurrences in s are clearly projected to the same point of Ψa(s). That these

points identify all the equivalence classes of the ≡ relation derives from the fact that

the procedure generates all the subsequences that have a greedy ω-occurrence in s.

Note that the left list of the class associated with point X = [X0, X1, . . . , Xd−1] is

given by L = {δi : Xi 6= 0, 0 ≤ i < d}, and that the right list is given by

R = {δi +Xi − 1 : Xi 6= 0, 0 ≤ i < d}.

Ψa(s) may have a very high number of dimensions, but it contains subspaces of

smaller dimensionality.

Definition 9 (Subspace of Ψa(s)). Let δ0, δ1, . . . , δd−1 be the list of occurrences of

15

symbol a in s. The subspace of Ψa(s) associated with the distinct coordinates

δi0 , δi1 , . . . , δik−1
, is the set of points in Ψa(s) having non-null values only along di-

mensions δi0 , δi1 , . . . , δik−1
.

Strings belonging to the same class under ≡l are projected to paths ofGa(s) ending

at points located in the same subspace of Ψa(s). In particular, class La associated

with point 1 consists of points with exactly d non-null coordinates, the class formed

by strings that never occur in s corresponds to point 0 = [0, 0, . . . , 0] having zero

non-null coordinates, and the transition from the string v of a class that comprises

coordinate δ to the string va of a class devoid of coordinate δ corresponds to the

connection of the last point associated with the ≡ class of v to a point with a null

value along δ. A special subsequence is associated with a path of the graph ending at

a point X from which it is only possible to connect to points located in subspaces with

fewer dimensions than X; an antispecial subsequence, on the other hand, corresponds

to a path ending at a point Y which is able to connect only to points with the same

non-null coordinates as Y. From this geometric interpretation it can be seen that

speciality, antispeciality, and the way in which the support is reduced by extension,

are properties common to all the subsequences belonging to the same equivalence

class of relation ≡, as was noted earlier.

1.4 Core equivalence classes

Even though graphGa(s) visits an exponential number of points across a large number

of subspaces, its structure exhibits a high degree of redundancy: for instance, if

two points have the same value along some coordinate δ (i.e., they lie in the same

hyperplane orthogonal to coordinate δ), their extension by every possible symbol leads

to points that still have the same value along coordinate δ. More generally, the points

of Ga(s) lying in each subspace Sk with k < d dimensions belong to the graph that

our algorithm would create if it were executed within the sole subspace Sk. It is seen,

16

however, that the entire population of the classes of ≡ can be described using only

a limited number of representatives. The main reason for this is the fact, that along

each coordinate axis of Ψa(s) there is at least one point for each discrete value within

that coordinate range: we use this observation to derive a small subset of points with

the property that the structure of all classes may be inferred from them.

Consider a map that assigns to every value k > 1 along every coordinate δi of

space Ψa(s) exactly one point X = [X0, X1, . . . , Xd−1] of graph Ga(s), such that the

i-th coordinate of X is equal to k. There are many ways to choose such points. To

fix the ideas, we will select the diagonal map ̺ such that, for any dimension δj 6= δi,

Xj is the largest possible value not greater than k. The points identified by ̺ are

called core points, and they form a set Ra = {X0,X1, . . . ,Xr−1}; the equivalence

classes of relation ≡ associated with these points are called core classes ; the points

(and the associated classes) that are not included in Ra are called residual points.

Core equivalence classes in topological order describe in a compact way the whole

structure of Ga(s) ∀ a ∈ Σ, in that they are enough to retrieve all other points.

Lemma 4. Pair (Ra, Aa) formed by core points and by the arcs individually leav-

ing core points in Ga(s) enables to reconstruct the connection of any residual point,

without knowledge of the original string s.

Proof. Let Y = [Y0, Y1, . . . , Yd−1] be the generic residual point. By assumption, we

know the group formed by the not necessarily distinct core points A = {X0,X1, . . . ,Xd−1 :

Yi = Xi,i ∀ 0 ≤ i < d}. Consider a symbol a ∈ Σ, and suppose that the arcs labeled

by a leaving each point of A lead, respectively, to the not necessarily distinct points

B = {Z0,Z1, . . . ,Zd−1}: each point Zi indicates the closest occurrence of a along

coordinate i. Thus, collecting the individual values yields the match to which Y is

to be connected under a transition labeled by a.

By way of illustration, consider the example in Figure 1: the residual point [4, 6]

17

Figure 1: Core points and residual points for a case with ω = 3. Core points and their
outbound arcs are shown in dark gray; residual points and part of their outbound
arcs are shown in light gray and dashed, respectively.

can be reconstructed by inspecting the outbound connections of the core point [3, 3].

Because [4, 6] is residual, there are core points [4, 0] and [0, 6] that have the same

values as [4, 6], respectively along the horizontal and vertical axis. In particular, the

extension of [4, 0] by symbol B leads to point [5, 0], and the extension of [0, 6] by the

same symbol leads to [0, 7]: therefore, it must be that the extension of [4, 6] by B leads

to point [5, 7]. The same procedure can be applied to predict the points to which [4, 6]

connects using the other symbols of Σ.

Lemma 4 guarantees that the knowledge of the core classes of equivalence relation

≡, and of at most |Σ| residual classes for each of them, suffices to determine all the

classes of relations ≡ and ≡l and all the subsequences belonging to them; notice, in

particular, that we can reconstruct the lists L and R of each ≡ class.

Lemma 5. The number of core classes induced by ≡ on a string s is O(|Σ| · |s|2) and

18

Ω(|s|). The graphs Ga(s) ∀ a ∈ Σ can be recovered from O(|Σ|2 · |s|2) core points and

arcs.

Proof. For arbitrary a ∈ Σ, every core point in Ga(s) is associated with at least one

value along the i-th coordinate: therefore, we can assign a name to each of these points

according to one of the values they are associated with by function ̺. There are at

most |s| names for each of the d coordinates: under the most restrictive hypothesis,

each point will be associated with only one value along one coordinate, whence the

number of core points in Ga(s) cannot exceed d · |s|. Since this holds for each a ∈ Σ,

and d ≤ |s|, the number of core classes cannot exceed |Σ| · |s|2. The lower bound

follows from the immediate observation that if a is the first character of s, then there

is a path in (Ra, Aa) that spells out precisely s. By Lemma 4, to reconstruct graph

Ga(s) it suffices to know the |s|2 core points of space Ψa(s) and their outbound arcs.

Each such point has at most |Σ| outbound arcs, and the spaces to be considered are

at most |Σ|. Hence the overall number of points and arcs required to reconstruct all

graphs Ga(s) ∀ a ∈ Σ is O(|Σ|2 · |s|2).

The number of core points can be much lower than the upper bound if ̺ chooses

points associated each with multiple values along many dimensions. It seems interest-

ing that the upper bound to the number of core classes in the above lemma does not

depend on ω, and in particular that it does not change while ω shifts from 1 to greater

values. When ω = 1 no point of Ga(s) is residual; since points correspond, in this

case, to distinct substrings of s, the number of core classes is still O(|Σ| · |s|2). This

independence may seem surprising at first sight, since the complexity of the structure

of equivalence classes presents a clear discontinuity at ω = 1. Indeed, when ω = 1

the lists L of all child subspaces are partitions of the L lists of their parent spaces,

because each subspace is reachable, through a different symbol of the alphabet, from

the sole point associated with the special sequences of the parent space. When ω > 1

the increased width of the window does not force any more the construction to either

19

remain within a subspace or to leave it, but it let it exploit both of these possibilities

by carrying out extensions by different symbols. Therefore, the points associated with

special sequences can be more than one for each subspace, and the exit from a sub-

space can be possible also from points that are not associated with special sequences.

Consequently, it is not necessary for the lists L associated with each of the subspaces

reachable from a space S to be partitions of the list L of space S: it suffices for them

to be subsets.

1.5 Structure in artificial strings

It is natural to ask in what ways do suffix graphs expose the structure of strings.

In particular, a basic question is whether any of these features can separate random

from ordered strings, and be used as a complexity parameter to classify and compare

strings. We describe here the results of a controlled experiment on 10 artificial strings,

expected to possess different degrees of internal structure.

• Constant - The constant string (0)200.

• Periodic - The periodic string (0123456789)20.

• Block - The block string (•9i=0i
5)4, where • denotes concatenation.

• QPeriodic - A random quasiperiodic string, with quasiperiod 15374628091537.

Recall that a string s is quasiperiodic if there is a string w 6= s such that the oc-

currences of w in s completely cover s, that is if every position in s belongs to at

least one occurrence of the quasiperiod w of s [15]. The string that we use here

is built by iteratively choosing, with equal probability, whether to concatenate

the quasiperiod or to partially overlap it to the current prefix.

• Random - A string emitted by a pseudo-random source assigning equal prob-

ability to all symbols in Σ.

20

• π - The truncation to the first 200 decimal digits of the irrational constant π.

• φ - The truncation to the first 200 decimal digits of the golden ratio φ =

(1 +
√
5)/2.

• Champ - The truncation to the first 200 decimal digits of the Champernowne

constant C10. Recall that the Champernowne number Cb on base b is represented

by concatenating to “0.” the infinite string s consisting of the concatenation of

the base-b representations of the natural numbers, in increasing order. String s

is disjunctive, i.e. it has a number of distinct substrings of length i > 0 equal

to bi. For particular choices of b (like 10) it is also normal, i.e. all strings of the

same length occur in s asymptotically with the same frequency: in this case, the

probability of finding a string w in a given portion of s equals what we would

expect in a random string.

• Erdos - The truncation to the first 200 decimal digits of the Copeland-Erdös

constant. Recall that this number is represented by concatenating to “0.” the

base-10 representations of all prime numbers, in increasing order. This number

is normal and disjunctive.

• Protein - The primary sequence of a single-strand binding protein fromClostrid-

ium botulinum (entry ACA57568 in ncbi). The alphabet has been reduced from

20 to 10 symbols by recoding each amino acid according to its Lifson-Sander

value that measures the conformational preference of an amino acid for parallel

beta-strand secondary structure [149]. The scale of possible values has been

uniformly divided into bins of equal size, and all amino acids falling in the same

bin have been assigned the same symbol.

All strings are defined on alphabet Σ = {0, 1, . . . , 9}, have length 200, and are scanned

from left to right during the construction of their suffix graphs.

21

Recall that two key properties of a point in a suffix graph are its label and its

dimensionality; in particular, we will call internal the arcs that connect points em-

bedded in the same subspace, and external the arcs associated with extensions that

cause a loss of dimensionality; as for points, a key additional property of an arc is its

label. The simplest measures that can be collected from a suffix graph are perhaps

those listed below.

• Measures on points — These include the total number of points (in particular,

total number of special points, antispecial points and normal points), and the

total number of points with a given label and dimensionality (again divided into

special points, antispecial points and normal points).

• Measures on arcs — These consist of the total number of arcs (in particular,

internal and external arcs), the number of internal arcs with a given label and

lying in a subspace with a given number of dimensions, the number of external

arcs removing a given number of dimensions and having a given label, and

the number of external arcs directed from a subspace with d1 dimensions to a

subspace with d2 < d1 dimensions.

• Associative measures — Associations among symbols are measured by counting

the number of points with a given label and a given fan-out, the number of points

having both symbol a and b in their fan-out, the number of directed arcs from

symbol a to symbol b, and the number of external arcs with label b departing

from a point with label a.

In the rest of this section we make the further simplification of considering the sum of

each feature over the suffix graphs associated with all symbols of Σ; in other words,

if fi(s, a) represents feature i measured on the suffix graph of string s associated with

symbol a ∈ Σ, we actually study fi(s) =
∑

a∈Σ fi(s, a). We do not normalize these

22

counts, since all strings in our dataset have the same length and are defined on the

same alphabet2.

We focus our analysis on ω = 4. The total number of points reveals remarkable

differences among the strings above. In particular, the dataset seems to be divided

into three groups (Figure 2, top-left): Constant, Periodic, Block and QPeri-

odic have a markedly lower number of points than Random, while Champ, Erdos

and Protein are greater; π and φ are indistinguishable from Random: this seems to

fall in line with the fact that these sequences have passed the usual statistical tests for

randomness. The more detailed graphs displayed in Figure 2 make this classification

even stronger, showing that φ has less special and normal points than Random; even

π seems to be different from Random when special and antispecial points are taken

into account, but these differences are weak. By analyzing all graphs, it seems there-

fore reasonable to group the dataset into the following three classes: (Constant,

Periodic, Block, QPeriodic), (Random, π, φ), (Champ, Erdos, Protein).

Similar conclusions can be drawn from the counts of the number of arcs: in this

case, φ displays a lower number of external arcs than Random, and Erdos shows a

significantly greater number of arcs than Champ and Protein.

The correlation between label and dimensionality in points reveals further struc-

ture. Zooming into the bars of Figure 2, strong differences appear in the matrices

traced by different strings (Figures 3 and 4). In these and all subsequent matrices,

numbers are represented as uniform levels of intensity, increasing from dark to bright3.

As expected, the graph of Constant spans all subspaces, since it consists of a series

of nodes with unitary fan-out, with each node in a different subspace; all points are

2Note, however, that not all strings in our dataset have the same number of occurrences of each
symbol.

3Intensity is rescaled in each map to encompass its specific range of variation, therefore the same
intensity can be associated with different numbers in different matrices.

23

0 0.5 1 1.5 2 2.5 3

x 10
5

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM
π
φ

CHAMP
ERDOS

PROTEIN

Total points

0 0.5 1 1.5 2

x 10
4

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM

CHAMP
ERDOS

PROTEIN

Special points

0 2 4 6 8 10

x 10
4

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM

CHAMP
ERDOS

PROTEIN

Antispecial points

0 0.5 1 1.5 2

x 10
5

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM

CHAMP
ERDOS

PROTEIN

Normal points

π
φ

π
φ

π
φ

Figure 2: Total number of points in artificial strings (ω = 4).

special, since the support undergoes a unit decrease with each extension. By inspect-

ing the numerical values in the matrices of Periodic, we see that each suffix graph

consists, disregarding border effects, of 20 filaments of 10 points each, in which each

filament has exactly one special point, 3 normal points and 6 antispecial points. A

regular pattern appears also in Block and, notably, in QPeriodic, even though

the latter has been generated by a random process. Random, π and φ exhibit still a

similar overall matrix, but differences in specific cells appear in the matrices of special

points. The shapes of Champ and Erdos turn out to be completely different from

each other and from those of all other strings, exhibiting each a peculiar pattern.

Protein is different from all other strings as well, and it shows some similarities

with Erdos. Analogous conclusions can be drawn by plotting the total number of

points embedded in each dimensionality: to limit clutter, the curves of QPeriodic

(a decreasing trend tending towards Periodic) and Block (approximately constant

around 103) are not displayed in Figure 5, and Periodic and Constant are just

24

CONSTANT

5 10 15 20

1

3

5

7

9

PERIODIC

5 10 15 20

1

3

5

7

9

BLOCK

5 10 15 20

1

3

5

7

9

QPERIODIC

5 10 15 20

1

3

5

7

9

RANDOM

5 10 15 20

1

3

5

7

9

π

5 10 15 20

1

3

5

7

9

φ

5 10 15 20

1

3

5

7

9

CHAMP

5 10 15 20

1

3

5

7

9

ERDOS

5 10 15 20

1

3

5

7

9

PROTEIN

5 10 15 20

1

3

5

7

9

Figure 3: Total number of points with a given label (rows) and a given dimensionality
(columns). ω = 4.

sketched. The distribution of points over labels, the number of external arcs that con-

nect subspaces of different dimensionality, and most of the measures on arcs suggest

similar conclusions, confirming the proposed classification, highlighting similarities

within each group and marked differences among groups. The shape of each map

seems to be a peculiar signature of the corresponding string.

Further structure can be grasped by looking at associative measures: plotting the

number of directed arcs between every pair of symbols (Figure 6), Periodic, Block

and Champ display a strongly banded trend; QPeriodic appears to be organized in

a highly-ordered checkerboard, despite the randomness of the process that produced

it; Erdos and Protein display a clear horizontal band in the top part of their

matrices; on the other hand, no differences seem to distinguish Random, π and φ

25

CONSTANT

5 10 15 20

1

3

5

7

9

PERIODIC

5 10 15 20

1

3

5

7

9

BLOCK

5 10 15 20

1

3

5

7

9

QPERIODIC

5 10 15 20

1

3

5

7

9

RANDOM

5 10 15 20

1

3

5

7

9

π

5 10 15 20

1

3

5

7

9

φ

5 10 15 20

1

3

5

7

9

CHAMP

5 10 15 20

1

3

5

7

9

ERDOS

5 10 15 20

1

3

5

7

9

PROTEIN

5 10 15 20

1

3

5

7

9

Figure 4: Number of special points with a given label (rows) and a given dimension-
ality (columns). ω = 4.

26

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

10
5

Dimensionality

P
oi

nt
s

CONSTANT

ERDOS

CHAMP

π

φ

RANDOM

PROTEIN
PERIODIC

Figure 5: Total number of points embedded in subspaces of a given dimensionality
(ω = 4).

among each other. We obtain a similar classification if we plot the number of points

with a given label and a given fan-out, the number of points having any pair of

symbols in their fan-out, and if we consider the number of external arcs with label b

that depart from a point with label a. Notably, in the latter case both π and φ display

a shape that is clearly different from Random (Figure 7). All these maps confirm

the proposed classification, and also suggest that there is some similarity between

Champ and the group of Periodic, while there are some strong differences between

this group and QPeriodic.

A full investigation of the effects of ω on the previous measures is outside the scope

of this section. Preliminary results show that, in the range 2 ≤ ω ≤ 8, all maps tend

to be similar to those already described. Differences among strings become generally

fainter when ω decreases; when ω increases, the pattern of connectivity between sym-

bols and the distribution of special points point out stronger differences among π, φ

27

CONSTANT

1 3 5 7 9

1

3

5

7

9

PERIODIC

1 3 5 7 9

1

3

5

7

9

BLOCK

1 3 5 7 9

1

3

5

7

9

QPERIODIC

1 3 5 7 9

1

3

5

7

9

RANDOM

1 3 5 7 9

1

3

5

7

9

π

1 3 5 7 9

1

3

5

7

9

φ

1 3 5 7 9

1

3

5

7

9

CHAMP

1 3 5 7 9

1

3

5

7

9

ERDOS

1 3 5 7 9

1

3

5

7

9

PROTEIN

1 3 5 7 9

1

3

5

7

9

Figure 6: Number of arcs connecting every pair of symbols (rows: source symbol;
columns: destination symbol). ω = 4.

CONSTANT

1 3 5 7 9

1

3

5

7

9

PERIODIC

1 3 5 7 9

1

3

5

7

9

BLOCK

1 3 5 7 9

1

3

5

7

9

QPERIODIC

1 3 5 7 9

1

3

5

7

9

RANDOM

1 3 5 7 9

1

3

5

7

9

π

1 3 5 7 9

1

3

5

7

9

φ

1 3 5 7 9

1

3

5

7

9

CHAMP

1 3 5 7 9

1

3

5

7

9

ERDOS

1 3 5 7 9

1

3

5

7

9

PROTEIN

1 3 5 7 9

1

3

5

7

9

Figure 7: Number of external arcs with label b (columns) departing from points with
label a (rows). ω = 4.

28

and Random. At high ω, the Euclidean distance of points from the origin of the

space starts to reveal regular, differentiated profiles (Figure 8). When ω = 2 the total

number of points in Periodic, Block and QPeriodic becomes greater than Ran-

dom and comparable to Champ; in particular, Champ becomes significantly smaller

than Erdos and Protein. Bar charts similar to Figure 2 seem in agreement with

the proposed classification, but they further suggest that Constant is significantly

different from the other simple strings in its class. When ω = 8 (Figure 9), Champ is

still smaller than Erdos and Protein, but the group of Random, π and φ displays

a larger number of points and arcs than Champ, Constant, Periodic and Block.

Now QPeriodic can be separated from the other simple strings, since it assumes

values that are more similar to Random than to its own class. Notably, π exhibits

the largest values in its class, surpassing Champ. These changes highlight that ω has

a key role in determining the total number of points in the space, while preliminary

analyses suggest that it does not induce significant alterations to the shape of the

matrices.

1.6 Structure in polypeptides

Motivated by the high degree of structure revealed by suffix graphs in artificial strings,

in the rest of this chapter we set up a battery of experiments to study the properties

of suffix graphs generated by amino acid strings and by their random permutations.

Natural compositional measures that we will consider are, again, the number of points

(special, antispecial, normal, terminal), the number of arcs (internal and external)

and the number of subsequences (special, antispecial, normal, terminal) at different

values of ω. The following sections will aggregate and systematize over one million

data points. This is probably the first time in which the structure and randomness of

polypeptides is assessed at this scale in terms of the vocabulary of their constrained

subsequences rather than their substrings.

29

0

0.5

1
CONSTANT

0

5

10

15
PERIODIC

0

20

40

60
BLOCK

0

1000

2000

3000
QPERIODIC

0

1000

2000

3000
RANDOM

0

2000

4000
π

0

1000

2000
φ

0

500

1000
CHAMP

0

1

2
x 10

4 ERDOS

0

5000

10000
PROTEIN

P
oi

nt
s

Figure 8: Total number of points at a given distance from the origin of the suffix
space. The horizontal axis depicts interval [0, 200] divided in bins of length 0.2. ω = 8.

0 0.5 1 1.5 2 2.5

x 10
7

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM
π
φ

CHAMP
ERDOS

PROTEIN

Total points

0 5 10 15

x 10
5

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM

CHAMP
ERDOS

PROTEIN

Special points

0 2 4 6 8 10 12

x 10
5

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM

CHAMP
ERDOS

PROTEIN

Antispecial points

0 0.5 1 1.5 2

x 10
7

CONSTANT
PERIODIC

BLOCK
QPERIODIC

RANDOM

CHAMP
ERDOS

PROTEIN

Normal points

π
φ

π
φ

π
φ

Figure 9: Total number of points at ω = 8.

30

Many previous investigations [89, 94, 113, 173, 174] have recoded the original

amino acid strings with reduced alphabets that incorporate physico-chemical infor-

mation. The large number of such scales published to date [85], and the lack of

a standard methodology to perform such recoding, haunted our preliminary experi-

ments with parameters that made our analyses depend on their fine-tuning. Amino

acid similarities are also known not to be universal: at different positions of a protein,

different sets of amino acids or of amino acid substrings can more likely substitute for

one another, making a fixed substitution scheme less biochemically significant [71].

The need to make our results as general as possible led us to analyze polypeptides

encoded in the original alphabet of amino acids.

Most proteins consist of modular subunits (called domains) whose spatial confor-

mation and function are thought to be independent of other parts of the protein. A

limited number of highly similar domains are seen to occur in all known proteins,

both as parts of larger multidomain structures and by themselves [112, 118, 136],

suggesting that they are remnants of ancient functional polypeptides that have been

assembled by evolution to produce the combinatorial variety of structures and func-

tions that appear in modern proteins. The modular nature of domains makes them

better candidates than whole proteins for investigating regularities and patterns, since

the concatenation of different domains could be a source of noise. The sequential

compactness and the moderate length of domains make them preferable to secondary

structures, supersecondary structures, or motifs, that are typically shorter and non-

contiguous subsequences.

The scop database [112] is a comprehensive ordering of all protein domains of

known structure according to their evolutionary, structural and functional similarity.

The basic classification unit is the domain, which is put at the leaves of a tree with

three more hierarchical levels: families, containing domains with a common evolu-

tionary origin as testified by high sequence similarity or highly similar function and

31

structure; superfamilies, containing domains with low sequence similiarity but shar-

ing structural and functional features that suggest a common evolutionary origin;

folds, containing domains with a specific set of major secondary structures, a spe-

cific configuration of these structures in space, and a specific connection pattern; and

classes, containing domains that share the same frequency of secondary structures

(e.g. domains in which the large majority of secondary structures are α-helices).

This classification is manually curated by biologists.

We elect a subset of 148 scop domains as our main dataset: we will refer to this

dataset as D1 in what follows. We choose domains to span two different classes (1

and 2), two different folds per class (1.1, 1.8, and 2.1, 2.2), two different superfamilies

per fold (1.1.1, 1.1.2, 1.8.1, 1.8.4, and 2.1.1, 2.1.2, 2.2.2, 2.2.3), and two different

families per superfamily4 (1.1.1.3, 1.1.1.4, 1.1.2.1, 1.1.2.2, 1.8.1.1, 1.8.1.2, 1.8.4.5,

1.8.4.6, and 2.1.1.1, 2.1.1.2, 2.1.2.1, 2.1.2.2, 2.2.3.2, 2.2.3.3, 2.2.2.1, 2.2.2.2). The

purpose of this choice is twofold: on one hand, we want to determine at which level

of accuracy different measures on suffix graphs reconstruct the scop classification.

For example, if a measure correctly separates domains in different classes but not in

different folds, we can conjecture that the measure grasps information encoded in the

dominant secondary structures and not in their spatial arrangement. On the other

hand, we want to test whether the primary sequence of domains systematically differs

from random strings, and if so whether this difference is a widespread phenomenon or

it is confined to specific leaves of the classification. To do so, we analyze 100 random

permutations of each string in D1.

As shown in Figure 10, all domains use between 15 and 20 symbols, and have

empirical entropy5 between 3.5 and 4.2; entropy in the same scop leaf can vary

4For each domain, we use at most three homologues coming from different species. Our choice of
branches at each level, and of domains in each class, is arbitrary. For reasons of practical efficiency,
domains in D1 have length between 40 and 200.

5By “empirical entropy” we mean the approximation of the entropy of the ergodic source that
generated each sequence using the observed frequency of amino acids.

32

3

3.5

4

DP

1 2

1 8

1 2

3 4 1 2

1 4

1 2 5 6

E
n
tr

o
p
y

−0.8
−0.6
−0.4
−0.2

0
C

o
m

p
re

s
s
io

n
 r

a
ti
o

50

100

150

L
e
n
g
th

5

10

15

20

S
y
m

b
o
ls

1 2

1 2 3 2

1 2 1 2 2 3 1 2

Figure 10: An overview of strings in D1 and D2. Empirical entropy is computed
using logarithms to base 2 (0 · log2(0) is set to 0). Compression ratio is defined as
(|s| − |s′|)/|s|, where s is the original string, s′ is its compression with gzip -9, and
| · | is file size in bytes.

widely inside this range, however. Conversely, string length and the compression

ratio achieved by a popular string compressor, are uniform inside many leaves (e.g.

1.1.1.3, 1.1.1.4, 1.1.2.1, 1.8.4.6, 2.1.1.1, 2.1.1.2, 2.1.2.1, 2.1.2.2, 2.2.3.3, 2.2.2.2), and

they display trends that are very similar to each other. Not surprisingly, a significant

proportion of domains are either expanded or not compressed at all.

Modern proteins do not consist entirely of domains: some regions have no fixed

spatial configuration under physiological conditions, but are capable of dynamically

transitioning through an ensemble of structures [136, 154, 180]. The flexibility of

these unstructured (or disordered) segments allows them to fold and bind to a tar-

get simultaneously, transitioning from disorder to order according to their biochem-

ical environment: this allows a single protein to bind multiple targets, and different

proteins to bind the same target, an important feature in signalling and regulation

33

networks. The fluctuation of spatial conformation is also exploited to create regions

of exclusion in space, to facilitate phosphorylation and acetylation, and to capture

small molecules. In disordered regions, the relationship between sequence and struc-

ture is different than in typical folded domains: disordered regions are known to be

enriched in charged and polar, and depleted in hydrophobic residues. Along with

other chemical and spatial indicators, these biases have been used to construct var-

ious disorder prediction heuristics, and to classify disordered regions into subclasses

[96]. From the purely syntactic viewpoint, disordered regions tend to have low en-

tropy [146, 172], however some disordered sequences have high entropy, and some

low-entropy sequences are not disordered.

disprot [154] is a comprehensive functional classification of all polypeptide re-

gions for which there is experimental evidence of disorder. We collect a subset of 23

regions of disprot in a secondary dataset (called D2 in what follows); the choice of

strings in this set is again arbitrary, except that, for efficiency and consistency, we

consider only proteins with a single disordered region of length at most 200. The

purpose of this dataset is twofold: on one hand, we want to test whether disordered

regions differ from domains according to suffix graph measures. We conjecture that if

a measure clearly separates D1 fromD2, then it grasps information that only polypep-

tides with a fixed spatial conformation encode. On the other hand, we want to test

whether disordered regions can be distinguished from random strings, and whether

such difference resembles those that intercur between domains and random strings.

To do so, we analyze again 100 random permutations of each string in D2.

As shown in Figure 10, just 8 regions in D2 use less than 15 symbols, and just 5

regions have empirical entropy less than 3.5, the minima in D1. Furthermore, just 8

regions have positive compression ratio, and compression ratios in D2 are never larger

than the largest compression ratio achieved in D1. Therefore, strings in D2 do not

appear as systematically “less complex” than strings in D1. Six disordered regions

34

have compression ratio smaller than -0.58, the minimum in D1, but this does not

allow to conclude that disordered regions are systematically “more complex” than

strings in D1 either.

1.7 Laws governing polypeptides

In this section we investigate the dependence of suffix graph measures on string length

and on the the hiatus of subsequences in datasets D1 and D2.

1.7.1 Dependence on string length

Preliminary analyses suggest that the number of special points taken relative to the

total number of points is inversely proportional to string length. At ω = 1 this

inverse proportionality comes not unexpected: the total number of points (in this

case, distinct substrings) grows at most as the square of string length, and the number

of special points (in this case equivalent to the number of distinct special substrings)

grows at most linearly with string length, therefore the number of special points

divided by the total number of points should behave like a/n + b, where n is string

length and a, b are suitable constants, assuming that the strings in the dataset are

approximately random. In principle, every string in D1 ∪ D2 could obey a different

set of parameters, making D1 ∪ D2 appear as a disordered cloud in the plane with

dimensions (Special points / Total points) and string length. We expect, however, to

see a limited number of distinct curves along which domains in similar scop groups

align. These curves (that we will also call loci in what follows) should be signatures

of such groups, and their detection could guide classification.

Plotting the relative number of special points versus string length at ω = 1 (Figure

11) shows indeed the expected 1/x proportionality but, surprisingly, most strings

in D1 ∪ D2 are aligned along the same locus with coefficients6 a ≈ 1.435, b ≈ 0.

6All the coefficients reported here are computed using the fit function of the matlab curve
fitting toolbox. A detailed investigation of the coefficients of such best interpolations is outside the

35

Significantly, the only strong outlier is disprot 34. There are three features that

make disprot 34 unique in the dataset: its highly repetitive structure, the use of

just 3 distinct symbols, and its small entropy (≈ 1.215). The locus could therefore

reflect a property of all strings that lack a strong periodic structure, that have a

sufficiently high number of symbols, a sufficiently high entropy, or any combination

of these three features. To test this hypothesis, we collect an additional dataset

consisting of 89 distinct scop domains of length at most 30: we will refer to this set

as D3 in what follows. It turns out that D3 contains at least two strings7 that lack a

strong periodic structure, use a number of symbols comparable to strings in D1 ∪D2

(14 and 13), have entropy comparable to strings in D1∪D2 (≈ 3.5398 and ≈ 3.8643),

but that do not lie on the locus. This proves that the locus cannot be explained by

any combination of the candidate quantities alone. We also note that low entropy

alone does not expel a string from the locus: Figure 12 shows that random strings on

20 symbols and minimum entropy (≈ 1.1169, even lower than disprot 34) can lie on

the curve.

A locus with similar parameters persists at ω = 2, 3, with disprot 34 and some

strings in D3 continuing to be outliers. Increasing ω beyond 3 gradually transforms

the sharp locus into a dispersed cloud that keeps no resemblance to the original curve.

At ω ≥ 6 three disordered regions (disprot 34, 13 and 19) become clearly separated

from the rest of the dataset, along with few strings in D1.

We expect a direct proportionality between the number of special points y (not

normalized) and string length n, and in particular a linear relationship y = an + b

when ω = 1. Plotting these two quantities together shows indeed a linear bundle

centered around a ≈ 0.317, b ≈ 0.318 for all domains and disordered regions except

scope of this chapter.
7Tumor necrosis factor receptor superfamily member 17, bcma; and Nucleic acid binding protein

p14.

36

disprot 34 and 258 (Figure 13). The locus remains linear at ω = 2, but from ω = 3

it progressively tends towards a sparse nonlinear shape that we will call horn in what

follows. We note that, at ω ≥ 6, this shape includes strings that were outliers at

lower ω, in particular the highly regular disprot 34. Strings in D3 are never seen to

escape the locus, but random strings on 20 symbols with minimum entropy turn out

to be outliers for every ω, proving that the curve is not an unavoidable regularity of

all strings.

The total number of points assumes the expected quadratic shape at ω = 1, which

persists up to ω = 4, then it gradually becomes a horn (Figure 14). Neither D3 nor

disprot 34 escape the locus, but few other disordered regions do. As before, it can

be shown that there is at least one string that does not lie on the locus.

Similar curves appear when other measures are considered: in all cases, at most

one sharp curve appears, collecting most of D1 ∪ D2 with the possible exception of

few outliers. Rather than analyzing each one of these curves in detail, we prefer to

focus on two measures in which the shape of the locus changes in a different way

as a function of ω. In the relative number of antispecial points (Figure 15) a sharp

nonlinear curve of direct proportionality with few, strong outliers persists up to ω = 2,

then it becomes disordered at ω = 3, 4, 5, and finally it transitions towards a bundle of

inverse proportionality at ω = 8. The second notable example is the relative number

of normal points: no clear locus appears at ω ≤ 6, but a linear bundle starts to

emerge at ω = 7, 8.

Measures on subsequences, on the other hand, depend weakly on string length.

For example, the number of antispecial subsequences (not normalized) grows expo-

nentially with string length, and their growth is confined inside a bundle whose width

expands with length (Figure 16). However, there is no correlation between the rela-

tive number of antispecial subsequences and string length when ω > 1 (Figure 17).

8Part of Fibronectin-binding protein A.

37

50 100 150

0.01

0.02

0.03

0.04

0.05

0.06

S
p

e
c
ia

l
p

o
in

ts
 /
 T

o
ta

l
p

o
in

ts

ω=1

50 100 150

0.02

0.04

0.06

0.08

ω=2

50 100 150

0.05

0.1

0.15

ω=3

50 100 150

0.05

0.1

0.15

ω=4

50 100 150

0.05

0.1

0.15

Length

S
p

e
c
ia

l
p

o
in

ts
 /
 T

o
ta

l
p

o
in

ts

ω=5

50 100 150

0.05

0.1

0.15

Length

ω=6

50 100 150
0

0.05

0.1

0.15

Length

ω=7

50 100 150

0.05

0.1

0.15

Length

ω=8

Figure 11: Relative number of special points versus string length, in domains (dots)
and disordered regions (circles). Strings in D3 are represented as gray crosses. The
best interpolating a/n+ b curve is shown as a black line.

On the other hand, the relative number of normal subsequences depends on string

length under a relationship of exponential inverse proportionality for all ω ≤ 5; this

locus disappears into a disordered cloud at ω ≥ 6.

A measure can have no dependence on string length at a specific ω, but it could

nonetheless obey other rules. We have just seen that the relative number of normal

points has no locus at ω < 7, and that the relative number of normal subsequences

has no locus at ω ≥ 6: plotting one of these two measures versus the other shows

again no correlation for D1 ∪ D2, but it reveals that D3 is aligned along a horn at

all values of ω > 1 (Figure 18). No such regularity occurs, however, when we plot

the relative number of antispecial points versus the relative number of antispecial

subsequences.

1.7.2 Dependence on ω

In the previous section we have seen that the shape of the curves relating suffix

graph measures to string length changes with ω: thus, it is natural to investigate the

38

20 40 60 80

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

S
p

e
c
ia

l
p

o
in

ts
 /
 T

o
ta

l
p

o
in

ts

Length
100 120 140 160

1

2

3

4

5

6

7

8

9

10
x 10

−3

Length

Figure 12: The graph of Figure 11 at ω = 1. (Left) Some strings in D3 (gray crosses)
do not lie in the locus. (Right) Some random strings on 20 symbols and minimum
entropy (gray crosses) enter the locus.

50 100 150

10

20

30

40

50

60

S
p
e
c
ia

l
p
o
in

ts

ω=1

50 100 150

0

50

100

150

ω=2

50 100 150

50

100

150

200

250

300

ω=3

50 100 150

200

400

600

ω=4

50 100 150

500

1000

1500

2000

Length

S
p
e
c
ia

l
p
o
in

ts

ω=5

50 100 150

1000

2000

3000

4000

5000

Length

ω=6

50 100 150
0

2000

4000

6000

8000

10000

Length

ω=7

50 100 150
0

0.5

1

1.5

2

x 10
4

Length

ω=8

Figure 13: Number of special points (not normalized) versus string length, in domains
(dots) and disordered regions (circles). Gray crosses are random strings on 20 symbols
with minimum entropy.

39

50 100 150

5000

10000

15000

T
o
ta

l
p
o
in

ts

ω=1

50 100 150

5000

10000

15000

ω=2

50 100 150

5000

10000

15000

ω=3

50 100 150

0.5

1

1.5

2
x 10

4 ω=4

50 100 150

0.5

1

1.5

2

2.5

x 10
4

Length

T
o
ta

l
p
o
in

ts

ω=5

50 100 150

2

4

6

x 10
4

Length

ω=6

50 100 150

5

10

15

x 10
4

Length

ω=7

50 100 150

0.5

1

1.5

2

2.5

x 10
5

Length

ω=8

Figure 14: Total number of points versus string length, in domains (dots) and dis-
ordered regions (circles). The interpolating line is y = a · n2 + b · n + c. At ω = 1,
a ≈ 0.4963. At ω = 2, a ≈ 0.5453. At ω = 3, a ≈ 0.5585. At ω = 4, a ≈ 0.6057.

50 100 150

0.85

0.9

0.95

A
n
ti
s
p
e
c
ia

l
p
o
in

ts
 /

 T
o
ta

l
p
o
in

ts

ω=1

50 100 150

0.7

0.8

0.9

ω=2

50 100 150

0.5

0.6

0.7

0.8

0.9

ω=3

50 100 150

0.5

0.6

0.7

0.8

0.9

ω=4

50 100 150

0.4

0.6

0.8

Length

A
n
ti
s
p
e
c
ia

l
p
o
in

ts
 /
 T

o
ta

l
p
o
in

ts

ω=5

50 100 150

0.4

0.6

0.8

Length

ω=6

50 100 150

0.4

0.6

0.8

Length

ω=7

50 100 150

0.2

0.4

0.6

0.8

Length

ω=8

Figure 15: Relative number of antispecial points versus string length, in domains
(dots) and disordered regions (circles). At ω = 2, 3, 4 some outliers fall outside the
displayed range.

40

50 100 150

5000

10000

15000
A

n
ti
s
p
e
c
ia

l
s
u
b
s
e
q
u
e
n
c
e
s

ω=1

50 100 150

10
5

ω=2

50 100 150

10
5

10
10

ω=3

50 100 150

10
5

10
10

ω=4

50 100 150

10
5

10
10

Length

A
n
ti
s
p
e
c
ia

l
s
u
b
s
e
q
u
e
n
c
e
s

ω=5

50 100 150

10
5

10
10

Length

ω=6

50 100 150

10
5

10
10

Length

ω=7

50 100 150

10
5

10
10

Length

ω=8

Figure 16: Number of antispecial subsequences versus string length, in domains
(dots) and disordered regions (circles).

50 100 150

0.93

0.94

0.95

0.96

0.97

0.98

A
n
ti
s
p
e
c
ia
l
s
u
b
s
e
q
.
/
T
o
ta
l
s
u
b
s
e
q
.

ω=1

50 100 150

0.85

0.9

0.95

1

ω=2

50 100 150

0.75

0.8

0.85

0.9

0.95

1

ω=3

50 100 150

0.75

0.8

0.85

0.9

0.95

1

ω=4

50 100 150
0.75

0.8

0.85

0.9

0.95

Length

A
n
ti
s
p
e
c
ia
l
s
u
b
s
e
q
.
/
T
o
ta
l
s
u
b
s
e
q
.

ω=5

50 100 150

0.75

0.8

0.85

0.9

0.95

1

Length

ω=6

50 100 150

0.75

0.8

0.85

0.9

0.95

Length

ω=7

50 100 150

0.8

0.85

0.9

0.95

Length

ω=8

Figure 17: Relative number of antispecial subsequences versus string length, in do-
mains (dots) and disordered regions (circles). At ω > 1 few strings lie far from the
main cloud, and fall outside the displayed range.

41

0 0.02 0.04
0

5

10

x 10
−3

N
o

rm
a

l
s
u

b
s
e

q
.
/
T

o
ta

l
s
u

b
s
e

q
. ω=2

0 0.05 0.1
0

2

4

6

8

10

x 10
−3 ω=3

0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

0.025

ω=4

0 0.1 0.2

0

0.01

0.02

0.03

Normal points / Total points

N
o

rm
a

l
s
u

b
s
e

q
.
/
T

o
ta

l
s
u

b
s
e

q
. ω=5

0 0.1 0.2

0

0.01

0.02

0.03

Normal points / Total points

ω=6

0.1 0.2 0.3

0

0.01

0.02

0.03

0.04

0.05

Normal points / Total points

ω=7

0.1 0.2 0.3
0

0.02

0.04

0.06

Normal points / Total points

ω=8

Figure 18: Relative number of normal subsequences versus relative number of normal
points, in D3 (black crosses), D1 (light gray dots) and D2 (light gray circles).

dependence of these measures on ω itself. Plotting the relative number of special,

antispecial, normal and terminal points on the same graph reveals a recurrent motif:

many strings pass through five phases, marked by the following events (Figure 19):

(1) the increase of special points above terminal points; (2) the increase of normal

points above terminal points; (3) the overtaking of special points by normal points;

(4) the final overtaking of antispecial points by normal points, after which normal

points become the most abundant category in suffix graphs.

Studying the whole datasets reveals that the values of ω at which each of these

transitions occurs is not constant across D1 (Figure 20): while there is little variation

for the value at which normal points overtake terminal and special points (always

around 4,5), and at which special points overtake terminal points (always around

3,4), the value at which normal points overtake antispecial points varies significantly,

and it does not respect scop boundaries. Superfamily 1.1.1 and fold 2.2 transition

at ω ≥ 6, while fold 1.8 either presents no phase transition or transitions at ω = 8.

In family 1.8.1.1 normal points never overcome antispecial points, and special and

42

Figure 19: Dependence of the relative number of special, antispecial, normal and
terminal points on ω. (Left) A member of family 1.1.1.1. (Center) A member of
family 1.8.1.1. (Right) DisProt 34.

normal points increase above terminal points at relatively high ω. Other exceptions

to the motif described above occur in D2, where, not surprisingly, disprot 34 is an

exemplar anomaly (Figure 19).

This extended heterogeneity prompts us to test whether the relationship between

each suffix graph measure and ω is controlled by general laws, like those seen for string

length (Figure 21). It turns out that the relative number of special, antispecial,

normal and terminal points trace wide sigmoid bundles, in which all strings have

similar shape but possibly very different values9. These loci are not universal: apart

from few clear outliers in D2 (disprot 34 in special and normal points, disprot 13

in special points, disprot 9 in antispecial and terminal points, disprot 20 in normal

and terminal points), strings in D3 turn out to follow very different rules (Figure 21).

Similar conclusions can be drawn for the absolute number of points and subsequences.

1.8 Laws governing random permutations of polypeptides

The alignment of most polypeptides along the same loci, and the presence of outliers

to such loci, proves that the strings in D1∪D2 follow a specific compositional pattern,

9There is a tendency for strings in folds 1.1-2.2 to assume a smaller proportion of antispecial and
terminal points, and a larger proportion of special and normal points, compared to the rest of D1.
We leave this detail to future research.

43

Figure 20: Values of ω at which phase transitions occur in D1 ∪D2.

and that this pattern is shared by proteins lying in very different groups of the scop

hierarchy. We naturally expect the information that encodes these loci to be carried

by the sequences of amino acids: if this is the case, randomly permuting the strings

would destroy the signal and it would cause the loci to degenerate into random clouds.

We analyze a set of 100 random permutations for each string in D1∪D2. Surprisingly,

such permutations still trace the same loci in all graphs of the previous sections (see

e.g. Figure 22): this proves that, in the dataset analyzed, it is the composition of

symbols, not the sequence, to be responsible for the alignment of polypeptides along

regular loci. However, the relationship between distribution of symbols and locus is

not bijective: among the members of D1 there are significant variations in how the

frequencies of symbols are distributed, therefore a locus does not necessarily imply

similar distributions of symbols.

On the other hand, sequence does influence suffix graph measures: in Figures 12

44

2 4 6 8

0.02

0.04

0.06

0.08

0.1

Special / Total

2 4 6 8

0.05

0.1

0.15

2 4 6 8

0.2

0.4

0.6

0.8

Antispecial / Total

2 4 6 8

0.2

0.4

0.6

0.8

2 4 6 8
0

0.2

0.4

0.6

Normal / Total

2 4 6 8
0

0.2

0.4

0.6

2 4 6 8

0.01

0.02

0.03

0.04

Terminal / Total

2 4 6 8

0.02

0.04

0.06

0.08

0.1

2 4 6 8
0

0.05

0.1

ω

2 4 6 8

0.2

0.4

0.6

0.8

ω

2 4 6 8
0

0.2

0.4

0.6

ω

2 4 6 8

0.02

0.04

0.06

0.08

0.1

ω

Figure 21: Relative number of points versus ω. (First row) D1: folds 1.1-2.2 (black)
compared to 1.8-2.1 (gray). (Second row) D2 (black) compared to D1 (gray). (Third
row) D3 (black) compared to D1 (gray).

45

and 13, for example, random arrangements of a set of 20 symbols with minimum

entropy trace a range of different values. Thus, in the strings of D1 ∪ D2, the effect

of sequence on suffix graph measures is weaker than the effect of symbol composition.

The influence of sequence on suffix graph measures deserves more attention. We

project the 100 random permutations of each string in D1 ∪D2 onto the space gen-

erated by every possible (x, y) pair, where x and y are suffix graph measures. Let’s

concentrate on the relationship between special points and total points first: the

visual inspection of the graphs of few strings in D1 shows that the set of random

permutations forms a well defined, linear bundle at ω = 1 and ω ≥ 6, while random

clouds appear at 2 ≤ ω ≤ 5 (Figure 23). Polypeptides are always seen to belong to

these bundles.

Probing the extent to which this relationship is supported by D1, D2 and D3

is clearly unfeasible by drawing and analyzing each graph visually. Therefore, we

measure the correlation coefficient between special and total points for each string10.

The graph of the correlation coefficients for all three datasets shows that at ω = 1 the

random permutations of all strings have a strong linear negative correlation, except

for disprot 34 and few members of D1 and D3 (Figure 24). At ω = 2, 3, 4 correlation

progressively becomes weaker, except in disprot 34 in which it is strong and positive

for all ω > 1 (Figure 25). At ω ≥ 5 correlation progressively becomes strong and

positive for most strings in D1 ∪ D2, but it remains weak in most of D3 (except,

e.g., Thyroid receptor interacting protein 6, Homo sapiens), in some members of D2

(e.g. disprot 20), and in fold 1.8 (e.g. in the C-terminal domain of γ,δ resolvase,

Escherichia coli). In all cases in which most strings have a strong correlation, strings

with a weak correlation can be found, and vice versa, proving that the pattern of

strong and weak correlations as a function of ω is not an unavoidable regularity of all

10The correlation coefficient represents the strength of linear relationship between two variables as
a value between -1 (strong linear negative relationship) and 1 (strong linear positive relationship).
We consider “strong” a correlation that has absolute value ≥ 0.5 and p-value ≤ 10−5.

46

polypeptides.

The pattern of correlations neither reveals clear distinctions among scop groups,

nor between polypeptides and their permutations: all strings in the datasets belong

to the linear loci of their random permutations, with the exception of disprot 28,

25 and 34 at ω = 1 (Figures 25 and 26). The coefficient a of the linear interpolations

is approximately constant inside D1 ∪D2 ∪D3 at ω = 1, and approximately constant

in D1 ∪ D2 at ω ≥ 6. The coefficient b, on the other hand, oscillates widely across

D1 ∪D2.

Analyzing in detail the effect of sequence on each suffix graph measure is outside

the scope of this section. Here we just observe that, except for few cases, normal

points are not strongly correlated to total points at ω ≤ 4, but at ω ≥ 5 D1 ∪ D2

reaches a strong correlation, while the correlation of D3 remains lower (Figure 27).

Antispecial points are highly correlated with total points at all values of ω; terminal

points are not correlated to total points at ω = 1, but they become strongly correlated

at ω = 2, 3, and finally their correlation stabilizes around a lower value at ω ≥ 5.

1.9 Conclusion and extensions

Some natural measures on the abundance of points, arcs and subsequences in suffix

graphs reveal a high degree of structure in ordered, artificial strings, and detect a

specific, previously unknown set of rules related to string length and to the hiatus of

subsequences in a range of structurally and functionally diverse polypeptides. Con-

forming with the current consensus that sees proteins as random strings, these rules

are influenced by the distributions of symbols more strongly than by their organiza-

tion within the sequence. In most polypeptides, it is seen that even their random

permutations amass along specific linear loci. Counterexamples show that none of

such rules is an unavoidable property of all polypeptides or of all distributions of

symbols, thereby suggesting that the shapes of these loci are specific signatures of the

47

50 100 150

0.05

0.1

0.15

ω=1

S
p

e
c
ia

l
p

o
in

ts
 /
 T

o
ta

l
p

o
in

ts

50 100 150

0.05

0.1

0.15

ω=2

50 100 150

0.05

0.1

0.15

0.2

ω=3

50 100 150

0.05

0.1

0.15

0.2

ω=4

50 100 150

0.05

0.1

0.15

0.2

ω=5

Length

S
p
e
c
ia

l
p

o
in

ts
 /
 T

o
ta

l
p

o
in

ts

50 100 150

0.05

0.1

0.15

ω=6

Length
50 100 150

0.05

0.1

0.15

ω=7

Length
50 100 150

0.05

0.1

0.15

0.2

ω=8

Length

Figure 22: Relative number of special points versus string length in D1 ∪D2 (light
gray circles), and in a copy of D1 ∪ D2 in which each string has been randomly
permuted (black dots).

1.041 1.042 1.043

x 10
4

40

45

50

55

S
p
e
c
ia
l
p
o
in
ts

ω=1

1.061.081.11.121.141.161.18

x 10
4

90

100

110

ω=2

1.15 1.2 1.25

x 10
4

180

200

220

240

260

ω=3

1.3 1.4 1.5

x 10
4

300

350

400

450

500

550

ω=4

1.6 1.8 2 2.2

x 10
4

600

800

1000

1200

Total points

S
p
e
c
ia
l
p
o
in
ts

ω=5

2 3 4

x 10
4

1000

1500

2000

2500

3000

3500

Total points

ω=6

4 6 8

x 10
4

2000

3000

4000

5000

6000

Total points

ω=7

5 10 15

x 10
4

4000

6000

8000

10000

Total points

ω=8

Figure 23: Number of special points versus total number of points in Hemoglobin I
from Scapharca inaequivalvis (a protein in D1, circle) and in 100 random permuta-
tions of its sequence (dots). Lines indicate the best linear interpolation of the set of
permutations. Other strings in D1 trace similar shapes.

48

−1

−0.5

0

0.5

1

ω=1

−1

−0.5

0

0.5

1

ω=2

−1

−0.5

0

0.5

1

ω=3

−1

−0.5

0

0.5

1

ω=4

−1

−0.5

0

0.5

1

ω=5

−1

−0.5

0

0.5

1

ω=6

−1

−0.5

0

0.5

1

ω=7

−1

−0.5

0

0.5

1

ω=8

DP34

DP34 DP34

γδR γδR

γδR

DP20

TRIP6

DP20

TRIP6 TRIP6

Figure 24: Correlation between the number of special and total points in the dataset.
For clarity of presentation, p-values are not shown: they are ≤ 10−5 wherever the
correlation is ≥ 0.5 in absolute value. Vertical dashed lines highlight fold 1.8 and D2.
γδR: C-terminal domain of γ,δ resolvase, Escherichia coli. trip6: Thyroid receptor
interacting protein 6, Homo sapiens.

600 620 640 660

22

24

26

28

30

32

S
p
e
c
ia
l
p
o
in
ts

ω=1

1000 1500 2000 2500

100

200

300

ω=2

2000 4000 6000

200

400

600

800

1000

1200

1400

ω=3

2000 4000 6000 8000

500

1000

1500

2000

ω=4

2000 4000 6000 800010000

500

1000

1500

2000

2500

Total points

S
p
e
c
ia
l
p
o
in
ts

ω=5

5000 10000 15000

1000

2000

3000

4000

Total points

ω=6

2000 4000 6000 8000

500

1000

1500

2000

2500

Total points

ω=7

2000 4000 6000 8000

500

1000

1500

2000

Total points

ω=8

Figure 25: Number of special points versus number of total points in disprot 34.

49

8100 8150 8200 8250

40

60

80

100

120

Total points

S
p

e
c
ia

l
p

o
in

ts

ω=1

0.9 1 1.1

x 10
4

0

200

400

600

800

1000

1200

Total points

N
o

rm
a

l
p

o
in

ts

ω=3

0.8 1 1.2

x 10
4

7000

8000

9000

10000

11000

12000

Total points
A

n
ti
s
p

e
c
ia

l
p

o
in

ts

ω=3

Figure 26: Number of special (left), antispecial (center), normal (right) points versus
number of total points in disprot 25.

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=2

C
o
rr
e
la
ti
o
n

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=3

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=4

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=5

C
o
rr
e
la
ti
o
n

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=6

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=7

50 100 150 200 250
−1

−0.5

0

0.5

1

ω=8

Figure 27: Correlation between the number of normal and total points in the dataset.
Vertical dashed lines highlight fold 1.8 and D2.

50

dataset under observation or of its parts.

It is well known that amino acid composition varies with functional class and

cellular localization [82]. The fact that most of the rules described in this paper

hold for structurally and evolutionarily diverse polypeptides might suggest that they

capture organizational constraints that cross the boundaries of protein families, and

which could be implied in the chemical or spatial stability of amino acid chains [71, 72],

or in the mechanism by which secondary structures aggregate and connect to each

other [130]. Alternatively, these rules might capture evolutionary regularities, for

example properties of the limited number of peptides that arguably composed the

primitive peptide world [132, 177], or laws behind the assemblage of these original

segments into modern domains [106].

It is also well known that amino acid abundance is highly influenced by genome

structure, and that it varies with species [82]. The regularities described in this

chapter could therefore reflect biases and optimizations in the translation machinery

[49, 147, 151, 171, 176], or be the image of corresponding constraints in genomes.

From the experimental viewpoint, this work stimulates the analysis of the whole

scop with the purpose of counting and mapping the repertoire of rules that occur

therein. Studying what happens at higher values of ω would also be a natural ex-

tension. From the theoretical viewpoint, this work opens the problem of explaining

the effect of the sequence and of the distribution of symbols of a string on the de-

scribed loci. A related avenue consists in defining a complexity measure for strings

and distributions hinged on these rules, and in comparing it to other state-vector

complexity measures, like Shannon’s entropy and the global compositional measure

in [171]. The problems of computing such measures efficiently and of structurally

comparing the suffix graphs of different strings lend themselves to the formulation of

interesting algorithmic extensions.

51

CHAPTER II

PHYLOGENY CONSTRUCTION WITH GAPPED

PATTERNS

Measures of sequence similarity based on some underlying notion of relative compress-

ibility are becoming increasingly of interest in connection with massive tasks of text

classification such as, notably, in document classification and molecular taxonomy on

a genomic scale. Sequences that are similar can be expected to share a large number

of common substrings, whence some successful measures in this class have been based

on the substring composition of the input sequences. A family of methods avoids

to consider the potentially quadratic number of all distinct substrings by bounding

their maximum length and observing convergence when length 5 or larger is reached

(see, e.g., [14, 132, 156] for a small sampler, and [169, 170] for a more comprehensive

review). A recent alternative points to the linear set of maximal substrings – i.e.

strings that cannot be extended in any direction without reducing their number of

occurrences – as sufficient to grasp essential phylogenetic information (see [7] and ref-

erences therein). Yet other methods explicitly resort to data compression techniques

such as lz77. Strings with gaps or don’t care characters, on the other hand, have

traditionally been used as signatures of protein families or as features in svm text

classification, but they have rarely been applied to phylogeny reconstruction. In par-

ticular, no existing application allows a very large proportion of don’t care characters

in substrings, and no existing application compares the gapped substring composition

of two strings.

This chapter explores the potential of carefully chosen gapped substrings to guide

52

phylogeny reconstruction. First, we measure for the first time the quality of phy-

logenies constructed by explicitly comparing the composition of structures that do

allow gaps. For “composition” of a string s we mean here the set of all structures

of a given type that occur in s. We turn to rigid gapped motifs in particular, and

we compare their phylogenies both to a reference taxonomy and to those generated

by popular string-based alignment-free methods. Second, we study the relationship

between classification power and number of gaps. For “classification power” of a given

set of motifs we mean here the distance between phylogenies reconstructed from the

composition of such motifs and corresponding reference phylogenies. We are specif-

ically interested in testing whether extremely sparse motifs carry any phylogenetic

signal. To accomplish this goal, we use motifs whose length and sparsity have never

been considered before. Even worse than substrings, the number of rigid gapped mo-

tifs can grow exponentially in the length of a string. Our third objective is measuring

the footprints on classification quality of systematic ways to limit this explosion. We

experiment with global and local bounds on the density of motifs, with motifs with

high z-score, as well as with maximal motifs, i.e. motifs that cannot be made more

specific without losing support. Unfortunately, even maximal motifs grow too fast to

be practical: we thus consider bases that are capable of generating the whole set of

maximal motifs but grow quadratically or linearly in the length of the string.

Scaling to entire genomes and proteomes is a fundamental requisite for alignment-

free sequence comparison algorithms. At the genome scale, using a smaller set of fea-

tures during comparison has a significant impact on storage space and on classification

time, besides having inherent information-theoretic implications. As the number of

sequenced genomes increases, speeding up feature extraction becomes another key

priority. We thus study the robustness of measures of similarity built around the dic-

tionary of lzw – the variant of the lz78 compression algorithm proposed by Welch –

as well as of some of its lossy variants, in phylogeny reconstruction. lzw has both a

53

practically faster implementation than lz77, and a significantly smaller vocabulary.

We focus in particular on recently introduced gapped variants of lzw that are equally

straightforward to implement, but allow for a controlled number of don’t cares to be

injected in the substrings that compose the dictionary. Such gaps allow to apply lzw

to domains that tolerate some loss of information in exchange for increased compres-

sion. An ingenious disambiguation scheme that resolves gaps in blocks rather than

one by one affords compression even in lossless mode.

This chapter is organized as follows: Section 2.1 overviews the state of the art

in alignment-free sequence comparison, describes the few existing methods that con-

struct phylogenies from gapped patterns, and traces their roots to early large-scale

compositional analyses. Section 2.2 studies the dependence between the quality of

reconstructed phylogenies and the density, number of solid characters, and statistical

significance of gapped motifs and of some of their compact generators. Experiments

with more than 3600 trees built on approximately 4.4 billion motifs show that the

average performance of suitably defined sets of gapped motifs is comparable to that

of popular string-based alignment-free methods. In particular, extremely long and

sparse motifs produce phylogenies of the same or better quality than those produced

by short and dense motifs. Finally, Section 2.3 experiments with the gapped words

in the vocabulary of recently introduced variants of the lzw compression algorithm.

Dissimilarity measures based on maximal strings in the dictionary of lzw yield phylo-

genies that are comparable to state-of-the-art methods on test proteomes. Introducing

a controlled proportion of gaps does not degrade classification, and allows to discard

up to 20% of each input string.

54

2.1 State of the art

2.1.1 Alignment-free sequence comparison

Classical techniques for the comparison and classification of sequences do not work

in the emerging context of massive data classification: edit distances, for example,

become both computationally unbearable and semantically ambiguous when applied

to whole genomes. The classical approaches are thus currently being supplanted by

global, parameter-free similarity measures (see, e.g., [14, 25, 50, 55, 73, 77, 93, 119,

132, 168, 167, 170, 181]), whose theoretical substrates try in various ways to approx-

imate universal measures of mutual information. In their practical implementations,

most of these global approaches resort, implicitly or explicitly, to the substring com-

position of the input.

Substring composition is explicitly used in measures based on the frequency of

k-mers, pioneered by Blaisdell [25] and currently being applied to an increasing num-

ber of proteomes (see e.g. [73, 132]). Let Σ be a finite alphabet. The k-mer ap-

proach projects a string x ∈ Σ+ onto a composition vector X ∈ ℜ|Σ|k , with one

component for each string w ∈ Σk. Let f(w) be the observed number of (possi-

bly overlapping) occurrences of w in x, and let p̄(w) be the probability of seeing

string w in x according to a (k − 2)th order Markovian random source. Then,

the value X[w] of X along component w is a function of the empirical probability

p(w) = f(w)/(|x| − |w|+ 1) of observing string w in x, purified from noise as follows

[132]: X(w) = (p(w)− p̄(w))/p̄(w) if p̄(w) 6= 0; X(w) = 0 otherwise. When the com-

position vector X is regarded as a point in a Euclidean space, the similarity between

two vectors can be measured by the cosine of the angle between them: this yields

the metric dcos(x, y) = (1 − cos(X,Y))/2 ∈ [0, 1]. When X and Y are regarded as

probability distributions px, py over Σk (cf., e.g., [156]), one may use instead classical

information-theoretic measures of dissimilarity, such as the Jensen-Shannon diver-

gence djs(px, py) = (KL(px|q)+KL(py|q))/2, where q = (px+ py)/2, and KL(px|py) is

55

the Kullback-Leibler divergence between distributions px and py, that is, the expected

number of extra bits needed to identify a value w ∈ Σk drawn from px, if a code is

used corresponding to the probability distribution py, rather than px.

A related measure of dissimilarity between probability distributions on Σ is the

expected length of the description of a value a ∈ Σ drawn from distribution p, using

a code tailored to q. If p and q are iid, this amounts to:

d̃(p|q) = −
∑

a∈Σ

p(a) log q(a) = −Ep(log q(Σ))

If p and q are Markovian, this can be expressed as:

d̃(p|q) = lim
k→∞
−1

k

∑

w∈Σk

p(w) log q(w) = −Ep(log q(Σ))

Like KL divergence, d̃(p|q) violates symmetry and triangle inequality, but it has the

nice property that, if x and y are strings generated by Markovian distributions p

and q, then d̃(p|q) is approached by the estimate dℓ(x, y) = (d′ℓ(x, y) + d′ℓ(y, x))/2 as

|x|, |y| → ∞ [167], where

d′ℓ(x, y) =
log(|y|)

∑|x|−1
i=0 ℓx,y(i)/|x|

− log(|x|)
∑|x|−1

i=0 ℓx,x(i)/|x|

and ℓx,y(i) is the length of a longest substring of y that matches a substring starting

at position i of x. Note that dℓ is still not a metric, since it violates triangle inequal-

ity, however, it does constitute one more measure explicitly based on the substring

compositions of x and y. Note also that the average length of maximal common sub-

strings adopted here is a coarser measure than the individual substring frequencies

used by dcos and djs.

Kolmogorov’s approach to information [87] may also lead to measures of mutual

compressibility. Recall that the Kolmogorov complexity K(x) of a string x is the

length of the shortest program that outputs x and halts on a fixed universal machine,

while the conditional Kolmogorov complexity K(x|y) is the length of the shortest

56

program that computes x if y is given in input. Li et al. [93] showed that the normal-

ized information distance dnid(x, y) = (max{K(x|y), K(y|x)})/(max{K(x), K(y)})

satisfies the properties of a metric up to an additive term, and is universal in that

d(x, y) ≤ f(x, y) for any upper-semicomputable normalized distance f , up to an addi-

tive term. Since K is not computable [87], neither is dnid(x, y), which is approximated

in practice by the normalized compression distance:

dncd(x, y) =
max{C(x|y), C(y|x)}
max{C(x), C(y)} ≈ min{C(x · y), C(y · x)} −min{C(x), C(y)}

max{C(x), C(y)}
(1)

where C(x) is the length of the output of a mundane compressor on input x, and

symbol · denotes concatenation. Most applications of dncd to the classification of texts

use Lempel-Ziv-like compressors [90, 185], thereby making dncd an implicit measure of

the substrings shared by the lz77 dictionaries of the two strings [153], albeit probably

perturbed by the heuristics of the compressor.

2.1.2 Gapped patterns in phylogeny

Patterns with gaps are a successful formalism to represent structural and functional

information in biological sequences: for example, most of the signatures in biologi-

cally significant databases like prosite [155] contain gaps with fixed lengths [74, 81],

and algorithms for the automatic extraction of gapped motifs in many flavors have

flourished (see, e.g., [81, 124] and references therein). Due to their ability to reca-

pitulate all motifs that occur in a string, maximal motifs have attracted a fertile

line of research [30, 67, 137]. Like patterns in manually curated databases, however,

maximal motifs extracted by unsupervised algorithms have mostly been applied to

build signatures of protein families, with a range of complexity that goes from a sin-

gle motif to sets of motifs that occur with variable order, multiplicity and position

[43, 102, 103, 160].

Recall that by composition we mean the set of all structures of a given type that

57

occur in a dataset. The transition from patterns seen as signatures to comprehen-

sive compositional studies probably started with the unsupervised extraction of all

maximal motifs with given density bounds and support from the GenPept database

[138], with the aim of building a dictionary of all maximal motifs that occur in any

known protein sequence. Correlating such building blocks to structure and function

provides a way to understand protein organization, thereby enabling a pipeline for the

unsupervised functional and structural annotation of proteomes [140]. Motifs in the

dictionary have been shown to contain information at multiple levels of abstraction:

some motifs are specific to a protein family, others are specific to a phylogenetic taxon,

and yet others cross protein families and phylogenetic groups, suggesting themselves

as universally reused gapped modules that resonate with solid ones identified earlier

[71, 72]. The very idea of relating motif composition to phylogeny probably surfaces

for the first time in this dictionary, albeit being still seen from a signature viewpoint:

the authors of [138] ask for the set of motifs that characterizes a specific clade, that

are shared among a given set of clades, and that occur in all known clades, and they

provide examples of motifs that are archaea-specific, bacteria-specific, shared between

archaea and bacteria and between archaea and eukaryotes. A systematic study on the

classification power of gapped motifs is however deferred. The dictionary of motifs

was subsequently recompiled using the proteomes of 4 archaea and 13 bacteria [139]:

once again, motifs are used for functional annotation and as signatures of protein

families, and the composition of motifs is not compared across the two clades.

The notion of composition vector based on normalized counts of occurrences of

gapped patterns looms already in the few other large-scale compositional studies on

gapped patterns. These studies systematically collected all occurrences of prosite’s

regular expressions in the translated intergenic regions of the fly, yeast and human

genomes [184], and in a set of 42 proteomes [116], respectively, exploiting existing the-

oretical tools to compute expectation and variance (see e.g. [21, 117] and references

58

therein). Both studies revealed subsets of patterns to be overrepresented and other

subsets to be underrepresented, showing functional preference in proteomes, and dis-

covering, in intergenic regions, relics of ancient proteins that have been deactivated by

accumulated mutations. Such compositional preferences, however, were not used to

build phylogenies. Composition vectors based on various notions of gapped patterns

have then been extensively built by the string kernel community as a prerequisite to

classify biosequences using the svm machinery. For a small sampler, we mention here

vectors containing the raw frequency of motifs in the eblocks database [22] – rigid

gapped patterns with substitution groups extracted in an unsupervised way from the

SwissProt database using the emotif heuristic –, vectors containing the frequency of

all maximal rigid gapped motifs with high density occurring in the dataset [48], vec-

tors indexed by all possible strings in (Σ ∪ {•})∗ with k solid characters and at most

m gaps [91], vectors indexed by k-mers, but containing the number of occurrences of

each k-mer as a subsequence with prescribed number and length of gaps [91, 104, 148],

and vectors indexed by all possible pairs of spaced k-mers [101]. These studies, how-

ever, applied composition vectors to the task of discriminating between the biological

sequences belonging to a class (e.g. a node in the scop tree or a group of enzymes)

and those not belonging to a class, rather than to reconstructing hierarchical clusters

or entire phylogenies. Perhaps the efforts in this line of research that came closer to

the reconstruction of phylogenies were the use of the normalized frequency of short,

dense, gapped maximal motifs to detect horizontal gene transfer events [165] and

to classify variable-length dna fragments coming from several metagenomes [109].

In this latter work, a hierarchy of multiclass support vector machines was used to

discriminate the members of a phylogenetic taxon from those not belonging to that

taxon, at the domain, phylum, class, order and genus level.

To date, few phylogenies inferred from gapped motifs exist, but none of them

compares the motif composition of biosequences explicitly. To compute the distance

59

between two sequences x and y, the authors of [77] concatenate the realizations of all

rigid, gapped, maximal motifs that occur exactly once in both x and y, forming two

new sequences x′, y′ of the same length. A conventional maximum-likelihood estimate

based on a model of character evolution is then used to compute the distance between

x′ and y′. This methodology effectively uses rigid gapped motifs as anchors for local

alignments, comparing the characters that fill corresponding gaps in two sequences

rather than the repertoire of motifs in the sequences. Moreover, motifs with multiple

occurrences in the same sequence are systematically discarded. Motifs with flexible

gaps are used to classify mitochondrial genomes in [12], but inside the algorithmic

information framework of the Normalized Compression Distance [37]: the distance

between two strings depends here on their mutual compressibility with a greedy offline

compressor that iteratively shrinks the pair using the motif that yields the best gain,

possibly in lossy mode [16]. The motif composition of the two strings is thus compared

only implicitly.

As mentioned, the present chapter investigates also how classification quality

varies when moving from all motifs in a family to compact subsets capable of gen-

erating the whole family. In rigid gapped motifs, the notion of using a basis to

characterize and compare strings without resorting to alignments originated with the

very definition of such bases [127]. However, few alignment-free methods study sim-

ilar issues of minimality. svd is the typical dimension-reduction and denoising step

after the construction of composition vectors [48, 163, 164], however the features of

the resulting orthonormal basis have no clear interpretation as substrings or patterns.

Elsewhere [40, 41, 42] it is conjectured that moving from distances based on common

rigid gapped motifs, i.e. on rigid gapped motifs with at least one realization in two

strings, to a non-redundant subset with no mutual dependency and capable of gen-

erating all common rigid gapped motifs, should improve the performance of kernel

methods by removing redundancy. Competitive results are reported in the remote

60

homology detection of proteins, but the distortion on distance that this approach

should be capable of avoiding is not quantified empirically nor formally.

Another objective of the present chapter is studying what happens to phylogenies

when increasingly sparser motifs are used in composition vectors. Sparsity has been

systematically penalized in string kernels, typically by weighting gaps with exponen-

tially decreasing functions of their length or number [91, 104, 148]. On the other

hand, applications of motif discovery have been extremely liberal with gaps (except

rare exceptions, e.g. [81]), showing that sparse structures do carry biological infor-

mation. Table 1 summarizes the densities used in a sampler of papers that extract

maximal and elementary motifs (as defined in the following section) from biological

sequences. Experiments with gapped string kernels have used comparable or even

higher densities than those listed in the table (see e.g. [91]).

2.2 Phylogeny construction with rigid gapped motifs

Let Σ be a reference alphabet and let • /∈ Σ be a don’t care. Using standard notation,

we define the following partial order among elements of Σ∪{•}: a � b iff either a ∈ Σ

and b = •, or a ∈ Σ and b = a. We also define the binary operator ⊕ on Σ as follows:

a⊕ b = a if a = b, and a⊕ b = • otherwise. In the present paper we will use the term

gapped pattern (or just pattern) to denote any string in Σ(Σ ∪ {•})∗ • (Σ ∪ {•})∗Σ,

i.e. any string in Σ(Σ ∪ {•})∗Σ that contains at least one don’t care. We will say

that pattern v is a subpattern of pattern w if there is an index i ∈ {0, . . . , |w| − |v|}

such that w[i + j] = v[j] for all j ∈ {0, . . . , |v| − 1}. We will use the term gapped

motif (or just motif) to denote a gapped pattern that occurs at least two times in

a string. With Ls(w) we will denote the set of occurrences of pattern w in string

s ∈ Σ+. Given an integer d, we will write Ls(w)+ d to mean set {l+ d : l ∈ Ls(w)}.

The most natural way to introduce gaps in standard k-mers is probably the notion

of elementary motif.

61

Table 1: Diachronic summary of papers that extract elementary and maximal gapped
motifs from biological sequences. k solid characters can span a window of length at
most h. n: minimum number of occurrences of a motif. o: homology allowed. Papers
highlighted in gray detail the distribution of the number of motifs on density, length
and support. Cursory hints at length and support can also be found in [103, 140, 166].
[51] considers only patterns with maximum length 10. [109] extracts patterns with
length exactly h. [13] considers flexible motifs. [67], not included in the table, extracts
maximal motifs with global density 0.65 and 0.8.

Ref. Year k h n o Dataset

[137] 1998 3 35 7 Core histone families H3, H4.
3 35 10 Leghemoglobin family.

[138] 1999 6 15 2 • All NCBI proteins.
[139] 1999 6 15 2 • Translated ORFs from 13

Bacteria and 4 Archaea genomes.
[30] 2000 4 12 variable • Histone I protein family.

4 30 GPCR protein superfamily.
[102] 2001 4 8 variable • GPCR protein superfamily.

4 12
6 12
8 12

[140] 2002 6 15 2 • All SwissProt proteins.
[103] 2003 4 6 variable • Mammalian odor receptor proteins.
[43] 2005 4 8 2 • Cupredoxin and multicopper

oxidase protein families.
[48] 2006 3 6 10 SCOP families.
[77] 2006 4 16 2 • Artificial polypeptides.

Benchmark protein alignments.
[160] 2007 6 8 7 DNA upstream and downstream

orthologous genes in Drosophila
species.

[109] 2007 2 3 1 Metagenomic DNA: Sargasso sea,
4 6 EBPR-sludge.
5 6

[51] 2007 2 3 variable • Enriched Eukaryotic Linear
Motif datasets [65]

[13] 2010 2 3 variable • PROSITE families
4
6
7
12

62

Definition 10 (Elementary motif [137]). A rigid gapped pattern w is a (k, h, n)-

elementary motif of a string s if it has k solid characters, if it has length at most h,

and if |Ls(w)| ≥ n ≥ 2.

Elementary motifs have strong ties to molecular biology: for example, self-contained

“functional microdomains”, believed to mediate 15-40% of all protein-protein inter-

actions in intracellular signaling, are rigid gapped patterns with length at most 10

occurring in disordered regions on the surface of multidomain proteins [65]. The use

of elementary motifs in phylogeny was probably hinted at for the first time in [77],

and was then partially explored in [109].

Elementary motifs grow exponentially in k and h, thus limiting the values of these

parameters that can be probed in practice. To handle longer and sparser structures,

we turn to maximal motifs and their bases.

Definition 11 (Maximal motif [122]). Let w be a pattern occurring at positions

Ls(w) = {i0, i1, . . . , in−1} in a string s, where n ≥ 2. We say that w is maximal

in composition if no other motif v 6= w of s has Ls(v) = Ls(w) and v[i] � w[i] for

all i ∈ {0, . . . , |w| − 1}. We say that w is maximal in length if no other motif v 6= w

of s is such that |Ls(v)| = |Ls(w)| and w is a subpattern of v. We say that w is a

maximal motif of s if it is both maximal in composition and maximal in length.

Maximal motifs can grow exponentially in the length of the input string [122]. A

first way to limit this explosion is imposing local density bounds.

Definition 12 (Dense maximal motif [137]). A rigid gapped pattern w is a (k, h, n)-

maximal motif of a string s if it is a maximal motif of s with |Ls(w)| ≥ n, and if

every subpattern of w with exactly k solid characters has length at most h > k.

As mentioned, a second way is to consider compact generators of the whole set of

maximal motifs.

63

Definition 13 (Irredundant motif [122]). A maximal motif w of a string s is redun-

dant if there exist maximal motifs w0, w1, . . . , wn−1 of s such that Ls(w) =
⋃n−1

i=0 Ls(wi).

We call irredundant a maximal motif of s that is not redundant.

Definition 14 (Tiling motif [126]). A maximal motif w of a string s is tiled is there

exist maximal motifs w0, w1, . . . , wn−1 of s (wi 6= w ∀ i) and integers d0, d1, . . . , dn−1

such that Ls(w) =
⋃n−1

i=0 Ls(wi) + di. We call tiling a maximal motif of s that is not

tiled.

The set of irredundant (respectively, tiling) motifs with at least n occurrences

in a string s, together with their occurrence lists, contains sufficient information to

generate any other maximal motif with at least n occurrences in s, together with its

list, without knowing s itself [122, 125]. It is thus standard to call this set a basis.

For n = 2, the size of the irredundant (respectively, tiling) basis is bounded by a

quadratic (respectively, linear) function of the length of s [126]. The tiling basis is

a subset of the irredundant basis, as well as of another distinguished set of maximal

motifs that we include in our analysis.

Definition 15 (Autocorrelation [19]). For strings x and y in Σ+, let w = x ⊕ y be

the string w ∈ (Σ ∪ {•})max{|x|,|y|} such that u[i] = x[i] ⊕ y[i] for all i ∈ {0, n − 1}

(we assume x[i] = • for i < 0 and i ≥ |x|, and y[i] = • for i < 0 and i ≥ |y|).

Furthermore, given a string w ∈ (Σ∪{•})+, we denote with [w] the pattern obtained by

removing all leading and trailing don’t cares from w. A pattern w is an autocorrelation

of a string s if w = [s ⊕ sufi], where sufi is the suffix of s starting at position i ∈

{1, |s| − 1}.

To date, irredundant and tiling motifs have been used as guides for the alignment

of multiple sequences [121], as codewords for lossy, as well as lossless, compression of

texts [16] and images [3], and as features of string kernels for protein classification

[41, 42].

64

As mentioned, we want to study how classification quality depends on the compo-

sition of autocorrelations and of elementary, maximal, irredundant and tiling motifs

of a string. More specifically, unlike previous studies that assessed the performance

of tree construction algorithms on few phylogenetic trees or tried to settle specific

controversies in phylogeny, we want to produce results that are independent of the

specific set of organisms used. However, we are not interested in artificial sequences

generated by models of sequence evolution. We thus set the 2329 metazoan mito-

chondrial proteomes available from ncbi on June 2011 as our dataset P, and we

set the corresponding ncbi taxonomy T as our reference taxonomy. Mitochondria

strike a good balance between phylogenetic significance and manageable string length:

datasets containing few dozens mitochondria have been used repeatedly to assess the

effectiveness of phylogeny reconstruction algorithms [12, 92, 164, 167].

Given a string x ∈ P, we denote with X(e,k,h) the corresponding composition

vector indexed by all possible patterns with exactly k solid characters and length at

most h. The component of X(e,k,h) associated with pattern w contains the number of

occurrences of w in x, normalized to the maximum possible number of occurrences of

w in x, if w is a (k, h, 2)-elementary motif of x, and zero otherwise. For practical limits

we set h = 20 and k ∈ {2, 8}, allowing a density than is approximately seven times

smaller than the smallest density examined in previous studies on elementary motifs

(Table 1). We will thus use the shorthand X(e,k) for X(e,k,20). Note that increasing k

corresponds to the standard alignment-free methodology of increasing the length of

substrings. Elementary motifs with the same k can however span different lengths,

and thus have different densities. Similarly, we denote with X(m,k,h) the composition

vector indexed by all possible patterns w such that every substring of w that contains k

solid characters spans at most h positions. The component of X(m,k,h) associated with

pattern w is zero if w is not a (k, h, 2)-maximal motif of x, and equals the normalized

frequency of w in x otherwise. To render our experiments feasible, we are forced to

65

impose k = 2 and h = 50: this allows a local density that is approximately two times

smaller than the smallest local density considered in previous applications of maximal

motifs (Table 1), and captures all maximal motifs with 7 or more solid characters

that occur in P. This constraint is also permissive enough to match approximately

98.5% of all gaps contained in release 20.75 of prosite [30, 74]. We will thus use the

shorthand Xm forX(m,2,50). Finally, we set Xi (respectively, Xa andXt) to denote the

composition vectors indexed by all possible patterns w, and containing at component

w the normalized frequency of w in x if w is an irredundant motif (respectively, an

autocorrelation or a tiling motif) of x, zero otherwise. Autocorrelations, irredundant

and tiling motifs do not grow too fast in practice, thus we do not force any density

constraint on them.

We are interested in studying how the quality of the reconstructed tree depends

on the density of motifs (the ratio between the number of solid characters and length)

and on their statistical significance. Given a composition vector X, we denote with

[X]d0,d1 the projection of X onto the subspace of patterns with density between d0

and d1 (inclusive). We measure the significance of seeing a pattern w occurring n

times in a string x with the z-score of n, assuming that x has been generated by a

Markov chain of order 1 whose transition probabilities match the empirical frequency

of dimers in P. We denote with 〈X〉z0,z1 the projection of X onto the subspace of

patterns with z-score between z0 and z1 in x (inclusive). Given a set Pi ⊂ P, we

denote with Ti the corresponding subtree of the reference T , and with [Ti]
e,k
d0,d1

(re-

spectively, with [Ti]
m
d0,d1

, [Ti]
i
d0,d1

, [Ti]
a
d0,d1

, [Ti]
t
d0,d1

) the tree built from the strings in

Pi as follows: first, we project each string x ∈ Pi into the corresponding composition

vector [Xe,k]d0,d1 (respectively, [Xm]d0,d1, [X
i]d0,d1, [X

a]d0,d1 , [X
t]d0,d1); then, we build

the matrix of pairwise Euclidean distances between each pair of such vectors; finally,

we run neighbor joining on the resulting matrix. 〈Ti〉e,kz0,z1
, 〈Ti〉mz0,z1, 〈Ti〉iz0,z1 , 〈Ti〉az0,z1,

66

〈Ti〉tz0,z1 have similar definitions for z-scores. We are mainly interested in what hap-

pens at the two extremes of the density and z-score spectra. To study such extremes

in elementary motifs, we take 100 random samples P0, P1, . . . , P99 with replacement

from P, such that each Pi contains the proteomes of 32 different organisms1, and we

plot the functions:

−→
de,k(δ) =

1

100

99
∑

i=0

rf([Ti]
e,k
0,δ , Ti)

←−
de,k(δ) =

1

100

99
∑

i=0

rf([Ti]
e,k
δ,1 , Ti)

−→ze,k(z) =
1

100

99
∑

i=0

rf(〈Ti〉e,k−∞,z, Ti)

←−ze,k(z) =
1

100

99
∑

i=0

rf(〈Ti〉e,kz,+∞, Ti)

where rf(T0, T1) is the Robinson-Foulds distance [144] (abbreviated with rf in what

follows) between trees T0 and T1, ranging in this case from 0 to 58. For studying

autocorrelations, maximal, irredundant and tiling motifs, we similarly sample P and

define the homologous functions
−→
dα,
←−
dα,
−→zα, ←−zα, α ∈ {m, i, a, t}. In what follows,

we will call
−→
dα and

←−
dα left-to-right analyses, and −→zα and ←−zα right-to-left analyses.

←−
dα approximates the average behavior of classification quality in P as progressively

sparser motifs are added to an initial core of extremely dense ones. We expect that

motifs under a given density threshold cease to carry phylogenetic information and

start to be dominated by noise. Similarly, ←−zα approximates the average behavior of

classification quality in P as progressively less statistically significant motifs are added

to an initial core of highly significant ones. We expect the large mass of motifs with

low z-score to be plesiomorphic features dominated by noise, and the few motifs with

extremely high z-score to be peculiarities of each taxon that are difficult to find in

other organisms. Apomorphic features should intuitively be found at “intermediate”

132 is a good balance between computation time and realistic input size.

67

z-scores, sufficiently high to distinguish them from random occurrences and yet low

enough not to be idiosyncrasies of a given proteome.

The purpose of this section is not achieving the best classification in a specific

dataset, but studying the shape of
−→
dα,
←−
dα,
−→zα and ←−zα on a large number of samples.

This is why we have selected the components of our pipeline to maximize speed. For

example, unlike state-of-the-art alignment-free algorithms, we do not store z-scores

in composition vectors: this makes the computation of distance between two strings

x and y extremely fast, because it allows to discard motifs that occur in neither x

nor y, and to set to zero all components of X that correspond to motifs that do not

occur in x: a crucial advantage when composition vectors are indexed by all possible

rigid gapped patterns. Even approximating the z-score of seeing no occurrence in y of

a motif that occurs in x makes our experiments unbearably slow. Removing z-scores

from composition vectors has the additional advantage of avoiding the comparison

among the z-scores of different motifs that would be implicit in the resulting distance:

this comparison is unreliable in cases, like ours, in which the z-scores of motifs do

not follow a normal distribution [158]. Finally, the size of the alphabet, the number

of motifs, their length and their sparsity, make considering Markov chains of order

greater than one impractical.

We use the publicly available version of teiresias [137] to extract dense elemen-

tary and maximal motifs, and we build fast implementations of the algorithms in

[17, 126, 157] to extract irredundant and tiling motifs, and to compute the z-score of

rigid gapped patterns. We feed our distance matrices to the phylip package [54] for

building neighbor-joining trees and for computing rf distances.

68

2.2.1 Experimental results

2.2.1.1 Classifying with elementary motifs

The set of elementary motifs with k solid characters and length 20 contains as much

phylogenetic information as its supersets for any value of k: indeed,
−→
dek is approxi-

mately flat for any k (Figure 28a). As density increases, the number of motifs per

density decreases like a polynomial of low order, thus denser motifs do encode phyloge-

netic information themselves. As in standard k-mers, the number of solid characters

is the main force behind classification quality. In elementary motifs, however, the

smallest rf distance is achieved by
−→
de3 and

−→
de4, while increasing k to 5 or larger de-

grades classification. Allowing elementary motifs with 3 solid characters to span up

to 50 positions continues to show a flat
−→
de3 curve (Figure 28a, insert), implying that

elementary motifs with exactly 3 solid characters and length 50 are not dominated

by noise, but rather encode as much phylogenetic information as denser ones.

The right-to-left analysis confirms that the sparsest motifs at all values of k carry

phylogenetic signal: adding them to denser motifs makes tree topology converge, does

not degrade classification quality at k < 5, and even reduces rf distance at k ≥ 5

(Figure 28b). Dense motifs, on the other hand, belong to two different categories.

Those with k ≥ 5 contain little phylogenetic information: classification quality is poor

(or even null for k ≥ 7) when such very dense motifs are considered, and it gradu-

ally improves when progressively sparser motifs are added. Since the composition of

standard ungapped k-mers with k ≥ 5 yields good classifications on the same dataset

(Figure 33a), these trends suggest that the performance of k-mer methods crucially

depends on words that occur just once, or that do not occur, in mitochondrial pro-

teomes. Elementary motifs with k < 5 and length k + 1, on the other hand, achieve

the global minimum of the corresponding
←−
dek, which remains constant when progres-

sively sparser motifs are added. Once again, the smallest rf distance is achieved by

←−
de4. Finally, we note that for k > 2 most motifs occur just two or three times in each

69

string, so our distance measure between the composition vectors of two strings be-

comes effectively the Jaccard distance between the corresponding sets of elementary

motifs.

Elementary motifs preferentially amass at the low end of the z-score spectrum:

for example, approximately 95% of all elementary motifs with k = 4 have z-score at

most 6. Counterintuitively, motifs with low z-score carry a strong phylogenetic signal

for each k:
←−
dzk decreases or remains constant when such motifs are included, reaching

its global minimum around 0;
−→
dzk decreases or remains constant when motifs with

progressively higher z-score are added, until it reaches a global minimum when the

bulk of all elementary motifs with low z-score have been included. Figure 28c details

−→
dz4 and

←−
dz4: curves for different values of k follow similar trends.

2.2.1.2 Classifying with maximal motifs

The distribution of maximal motifs with respect to density is quantized (Figure 31a):

in particular, the densities d for which at least one motif exists follow a 1/d trend.

This is due to the fact that most maximal motifs have between 3 and 5 solid charac-

ters and variable lengths. Significantly, the distribution of the number of motifs on

density is based on a single module that is iteratively repeated and scaled (Figure

31b). Preliminary experiments show that this regular shape persists when proteomes

are reshuffled, implying that it is a property of the density of characters rather than

a regularity in mitochondrial sequences. Previous works have studied such a distri-

bution in different datasets [139, 138], but none has considered densities smaller than

0.4 and sufficiently small bins to detect a quantization.

Maximal motifs are inherently infrequent and sparse: approximately 80% of all

maximal motifs occurs 3 or 4 times, and approximately 80% of all maximal motifs

have density smaller than 0.1 (Figure 31). Our distance measure between the com-

position vectors of two strings thus becomes effectively the Jaccard distance between

70

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

2

3 4

5
6

7

8

2

3 4

5

6

7

8

(a) (b)

0

10

20

30

40

50

0

0

10

20

30

40

50

0 0.670.50.40.330.290.250.220.2 0.670.50.40.330.290.250.220.2

Density Density

R
F

R
F

R
F

R
F

-10 0 10 20 30 40 50 60 70 80

z-score

RL

LR

LR

RL

(c)

(d) (e)

Figure 28: The classification quality of elementary motifs:
−→
dek (a) and

←−
dek (b) for

k ∈ {2, . . . , 8}. The insert in panel (a) shows
−→
de3 at densities between 0 and 0.2 and

at rf distances between 0 and 58. Panels (d) and (e) show the median, the 25th
and 75th percentiles, the maximum and minimum of the rf distances of all samples
for k = 4. To avoid clutter, the horizontal axis is distorted so that densities are
equally spaced. (c) −→ze4 and ←−ze4. Different values of k yield similar curves. The gray
area indicates the approximate positions of the 5% and 95% values of the cumulative
distribution of motifs, averaged over all strings in the dataset. The insert zooms the
containing panel at z-scores between -2 and 10 and at distances 30 and larger.

71

the corresponding sets of motifs. At the high end of the density spectrum, maximal

motifs cluster mainly around a small, discrete set of densities: 0.6, approximately

0.67, 0.75 and 0.8.
←−
dm sharply decreases when motifs at these densities are progres-

sively added, reaching a value that is just 2 units larger than the global minimum

as soon as density 0.75 is reached (Figure 29b, insert). At this point, just 0.05% of

all maximal motifs have been included. Using only motifs with density 0.8 is not

sufficient to achieve the same rf distance, and using even denser motifs yields poor

classifications. Counterintuitively, adding sparser motifs keeps
←−
dm constant or slowly

decreasing, and makes tree topology converge: the global minimum is reached at den-

sity approximately 0.135, when approximately 9% of all maximal motifs have been

included (Figure 29b). Adding the remaining 91% motifs with even lower density

causes only minor oscillations to
←−
dm, indicating that such motifs too are rich in phy-

logenetic signal, and that the taxonomy encoded by the composition of such sparse

motifs agrees with the taxonomy encoded by the composition of denser ones. The

high signal-to-noise ratio of extremely sparse motifs is confirmed by the left-to-right

analysis:
−→
dm uniformly decreases when progressively denser motifs are added, un-

til it plateaus around density 0.15, when approximately 93% of all maximal motifs

have been included (Figure 29a). The minima of
−→
dm and

←−
dm differ by just 1.3 units,

suggesting that very sparse and very dense motifs tell similar phylogenetic stories,

despite being such different structures: indeed, one set has average length 70 and

average density 0.067, while the other has average length 5 and average density 0.8.

Motivated by the strong dependence between classification quality and number of

solid characters k in elementary motifs, we perform the same analysis on maximal

motifs. As above, let
−−→
dmk and

←−−
dmk be the curves of the left-to-right and of the right-

to-left analysis of maximal motifs with exactly k solid characters. k is again a key

factor in classification quality: quality improves going from k = 2 to k = 3 and 4, and

degenerates for k ≥ 5.
−→
dm3 and

−→
dm4 are approximately equal (Figure 29d), while

←−
dm3

72

is consistently the lowest in the right-to-left analysis (Figure 29e). Remarkably, the

minima of
−→
dm3 and

←−
dm3 are approximately equal to those of

−→
dm and

←−
dm, respectively,

even though maximal motifs with k = 3 are just 34% of all maximal motifs. Of all

maximal motifs with exactly 3 solid characters, the 79% with density at most 0.1 and

the 50% with density at least 0.065 are sufficient to achieve the corresponding minima.

In particular, using only motifs with k = 3 and density 0.6 or larger (approximately

4.5% of all maximal motifs with k = 3) leads to a classification quality that is just

one unit larger than the global minimum of
←−
dm3 (Figure 29e, insert).

The distribution of maximal motifs on z-score is concentrated between scores

approximately 0 and 25; unlike elementary motifs, it has a long decreasing tail at

high z-score: approximately 10% of all maximal motifs in a proteome has z-score

equal to 200 or larger. The right-to-left analysis shows that motifs with z-score equal

to 100 or larger contain limited phylogenetic signal, as they need to be complemented

by motifs with lower z-score to reach (at z-score one) the global minimum of←−zm, which

is approximately 2.6 units larger than the global minimum of
←−
dm (Figure 29c). In

the left-to-right analysis, the bulk of motifs with z-score equal to 15 or lower contains

sufficient phylogenetic signal to achieve the minimum of −→zm.

2.2.1.3 Classifying with motif bases

Consistent with previous studies [62]2, autocorrelations, tiling motifs and irredundant

motifs are sparse, long and infrequent: 90% or more of these motifs have density 0.2

or smaller, and approximately 50% of all autocorrelations, 70% of all tiling motifs,

and 40% of all irredundant motifs have length 100 or larger, compared to just 10% of

all maximal motifs. Moreover, approximately 67% of all irredundant motifs, 90% of

all autocorrelations and 99% of all tiling motifs occur 2 times, compared to just 4% of

all maximal motifs (Figure 31). While the distribution of maximal motifs on length

2We thank Matthias Gallé for pointing out these distributional studies on tiling motifs, which
inspired part of the present section.

73

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

Density Density

R
F

R
F

R
F

R
F

3,4

2
5

k

6
7

0 50 100 150 200

z-score

RL

LR

RL

LR

(a) (b) (c)

(d) (e)

Figure 29: The classification quality of maximal motifs.
−→
dm (a) and

←−
dm (b) are

represented with thick lines. The plots show also the first and third quartiles (gray
areas), the minimum and maximum (dashed lines) of all samples taken. The insert in

panel (b) shows
←−
dm at densities 0.65 and larger and at rf distances 30 and larger. In

the insert, horizontal grid lines occur every 5 units, and vertical grid lines occur every

0.05 units. Panels (d) and (e) show
−−→
dmk and

←−−
dmk, respectively, for k ∈ {2, . . . , 7}.

The insert in panel (e) shows
←−
dm3 at densities 0.6 and larger and at rf distances 30

and larger. In the insert, horizontal grid lines occur every 5 units, and vertical grid
lines occur every 0.05 units. Panel (c) shows −→zm and ←−zm. The gray area indicates the
approximate position of the 25% and 75% values of the cumulative distribution of
maximal motifs on z-score, averaged over all strings in the dataset. The insert zooms
panel (c) at z-scores 30 and smaller and at rf distances between 34 and 44.

74

is unimodal, the distribution of autocorrelations and of irredundant and tiling motifs

is multimodal, with peaks up to length 300 (Figure 31c): these shapes persist when

proteomes are reshuffled, implying that they are not imputable to some regularity in

the sequence. The distribution of irredundant motifs and autocorrelations on density

is very similar to the distribution of maximal motifs: densities are again quantized,

and the overall shape is based on a single module that is repeated and scaled.

As for maximal motifs,
−→
da,
−→
dt and

−→
di uniformly decrease when progressively denser

motifs are added, and they finally plateau at a global minimum at density approxi-

mately 0.4 for irredundant and autocorrelations, and approximately 0.115 for tiling3

(Figure 30a). This trend indicates that extremely sparse motifs do carry phylogenetic

signal. Rather than remaining constant like
←−
dm, the curves of

←−
da,
←−
dt and

←−
di decrease

when progressively sparser motifs are added, until they reach corresponding global

minima at density approximately 0.115 for autocorrelations and irredundant, and ap-

proximately 0.15 for tiling4 (Figure 30b). Significantly, such minima are smaller than

the values of the functions at 0, indicating that phylogenetic signal is differentially

distributed along the density spectrum. Indeed, the right-to-left analysis highlights a

specific band of densities as more affected by noise:
←−
da,
←−
dt and

←−
di sharply increase

when tiling motifs with density between 0.1 and 0.15 (approximately 28% of all tiling

motifs), and autocorrelations and irredundant motifs with density between 0.085 and

0.115 (approximately 30% of the respective totals) are added (Figure 30b, insert).

Including motifs with even lower density brings all curves back to values that are

close to their global minima.

Despite having similar trends, the curves of autocorrelations, tiling and irredun-

dant motifs differ considerably in absolute value. Tiling motifs display the worst per-

formance: the distance computed using all tiling motifs is approximately 8.7 larger

3Including approximately 98% of all motifs in each basis.
4Including approximately 29% of all autocorrelations, 3% of all tiling motifs, and 36% of all

irredundant motifs.

75

than both the distance computed using all autocorrelations, and the distance com-

puted using all irredundant motifs, while the latter two differ by approximately 1.5

from each other. The curve of tiling motifs is consistently higher than the curve of

autocorrelations at any density:
←−
dt is at least 8 units larger than

←−
da in approximately

48% of the sampled densities, and
−→
dt is at least 8 units larger than

−→
da in approximately

39% of the sampled densities. This indicates that the 90% redundant autocorrelations

that are discarded during the construction of the tiling basis contain a strong phy-

logenetic signal. Another indication that redundancy is important in classification

comes from irredundant motifs, a superset of the tiling basis that is approximately

15 times larger. Irredundant motifs display the best performance among the sets of

motifs considered in this section:
←−
di is approximately 2 units smaller than

←−
da at its

minimum, and the difference reaches peaks of 9 at higher densities.

Together with density and redundancy, the number of solid characters has again

a strong influence on classification quality. As above, let
−→
dak and

←−
dak be the curves

of the left-to-right and right-to-left analysis of autocorrelations with exactly k solid

characters, and assume similar notation for tiling and irredundant motifs. In autocor-

relations, distance decreases going from k = 3 to 4, then it monotonically increases for

k ≥ 5, both in the left-to-right and in the right-to-left analysis (Figure 30, c and d).

A similar trend characterizes irredundant motifs, in which distance decreases going

from k = 2 to 3, then monotonically increases for k ≥ 4. Contrary to
←−
da and

←−
di , no

←−
dak or

←−
dik increases when density decreases, thus the oscillations of

←−
da and

←−
di at low

density are imputable to local changes in the abundance of motifs with different k.

Remarkably, using only irredundant motifs with exactly 3 solid characters (approx-

imately 3% of the total) improves classification over using the whole set of irredundant

motifs (Figure 30a): the minimum of
−→
di3 is 5.4 units smaller than the minimum of

−→
di , and it is reached using the approximately 80% sparsest fraction of all irredun-

dant motifs with 3 solid characters; the minimum of
←−
di3 is 2.2 units smaller than the

76

minimum of
←−
di , and it is reached using the approximately 78% densest fraction of

all irredundant motifs with 3 solid characters.
−→
di3 improves by approximately 5 units

over
−→
di at densities 0.4 and larger, and the difference reaches peaks of 12 at smaller

densities.
←−
di3 improves by approximately 4 units over

←−
di at densities 0.2 or smaller,

with peaks of 10 around density 0.08. We stress that the minima of both
−→
di3 and

←−
di3

are achieved by long, sparse and infrequent motifs: the minimum of
−→
di3 corresponds to

a set of motifs with average density 0.09, average length 132 and average support 2.8;

the minimum of
←−
di3 is achieved by motifs with average density 0.14, average length

98, and average support 3.2. Such minima are equal, suggesting that motifs at the

two ends of the density spectrum support similar phylogenies.

No value of k has a comparably distinguished role in autocorrelations. For exam-

ple, using only autocorrelations with k = 4 (approximately 6% of the total) improves

by just 1.7 over
−→
da, and larger values of k degrade classification both in the left-to-right

and in the right-to-left analysis.

2.2.1.4 Discussion

Rigid gapped motifs in polypeptides have traditionally been associated with signa-

tures that group proteins into families with homologous function or structure. In this

section we have shown that the composition of gapped motifs can be used to construct

phylogenies from mitochondrial proteomes. Phylogenies with comparable distance to

a reference taxonomy can be built using either extremely dense or extremely sparse

motifs. For example, elementary motifs with exactly k solid characters and length 20

yield phylogenies of the same or better quality than those produced by elementary

motifs with k solid characters and length k+1, and maximal motifs with density less

than approximately 0.15 yield phylogenies of the same quality as those produced by

maximal motifs with density 0.75 or larger. Using even lower densities degrades clas-

sification in maximal motifs and their bases, but surprisingly keeps groups of related

77

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

I

A

T

0

10

20

30

40

50

Density Density

R
F

R
F

(a) (b)

I

A

T

R
F

R
F

T

A

I

40

45

50

55

0 0.2 0.4 0.6 0.8 1

35

40

45

50

55

0 0.2 0.4 0.6 0.8 1

(c) (d)

I3 I3

RL RL

LR

LR

Figure 30: Classification quality of autocorrelations (A), tiling motifs (T), irredun-
dant motifs (I), and irredundant motifs with exactly 3 solid characters (I3) as a func-
tion of density: left-to-right (a) and right-to-left (b) analysis. The insert in panel (b)

zooms densities [0,0.2] and rf distances [35,53]. (c)
−→
dak and

←−
dak for k ∈ {4, 5, 6, 7}. Ar-

rows show the direction of increasing k. Curves for k = 3 are not shown because they

are similar to the corresponding curves for k = 5. (d)
−→
dik and

←−
dik for k ∈ {3, 4, 5, 6}.

Curves for k = 2 are not shown because they are similar to the corresponding curves
for k = 4.

78

(b)

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20.02
0

2000

4000

6000

8000

10000

12000

14000

0.065 0.07 0.075 0.08

(a)
M

o
ti

fs

Density Density

0

4000

8000

12000

16000

0

200

400

600

0

100

200

0

10

20

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Maximal Irredundant Autocorrelations Tiling

Length Length Length Length

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0

1

2

3

4

5

0

2

4

6

8

10

12

0

0.5

1

1.5

2

2.5

3
*10e3*10e5 *10e3

0

50

100

150

200

Solid characters Solid characters Solid characters Solid characters

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
0

1

2

3

4

5

6

*10e5

0

*10e3

5

10

15

20

25

30

35

40
*10e3

0

5

10

15

20

25

30

35

40
*10e3

0

0.5

1

1.5

2

2.5

3

3.5

4

M
o
ti

fs
M

o
ti

fs
M

o
ti

fs

Support Support Support Support

(c)

(d)

(e)

Figure 31: Density, length, number of solid characters and support in maximal motifs
and their bases. (a) Number of maximal motifs with density d in the proteome of
Rattus norvegicus. The same shape recurs in all strings of the dataset. (b) Detail
of panel (a): the distribution of maximal motifs on density is based on a single unit
that is repeated and scaled. (c,d,e) Average number of maximal, irredundant, tiling
motifs and autocorrelations with length l (c), with k solid characters (d), and with
support s (e) in the dataset.

79

R
at

H
o
u
se
M
o
u
se

P
la
ty
pu
s

O
po
ss
um

W
al
la
ro
oAr
ma
dil
lo

Cow
Sheep
Hippo

FinbackWha

BlueWhale Pig

H
arborSeal

G
reySeal
C
at

D
o
g

W
h
iteR

h
in
o G

re
at
R
h
in
o

H
o
rs
e

D
on
ke
y

Fr
ui
tB
at Py

gm
yC
hi
m
p

Ch
im
pa
nz
ee

Hum
an

Gorilla

Orangutan
GibbonBaboon

Elephant

G
uineaPig

Squirrel

D
orm
ouse

R
ab
b
it

A
ard
v
ark

P
ig

C
o
w

S
he
ep

Pl
at
yp
usCa

t

Py
gm

yC
him

p
Chi

mpan
zeeOpossum

Orangutan
Gorilla

Gibbon

Elephant
Rat

D
og

D
orm

ouse
A
rm

ad
illo

G
rey

S
eal W
al
la
ro
o

H
ar
b
o
rS
ea
l

H
ip
po Fi
nb
ac
kW

ha

Bl
ue
W
ha
le

Ho
rse

Donk
ey

Rabbit
GuineaPig

HouseMouseBaboonSquirrelW
hiteRhino

G
reatR

hino

F
ruitB

at

H
u
m
an

A
ard

v
ark

S
h
ee
p

C
o
w

B
lu
eW
ha
le

Fi
nb
ac
kW
ha

H
ip
po

PigHor
seDonke
y

WhiteRhino

GreatRhino

HarborSeal

GreySeal
D
og C

at
F
ruitB

at

R
at

H
o
u
seM

o
u
se

G
u
in
ea
P
ig

C
h
im
p
an
ze
e

P
yg
m
yC
hi
m
p

H
um
an

G
or
ill
a

Or
an
gu
tan

Gib
bon

Baboo
n

Platypus
WallarooOpossum

Squirrel
D
orm
ouse

R
abbit

A
ardvark

A
rm
ad
illo

E
lep
h
an
t

A
rm
ad
il
lo

C
o
w

S
he
ep
Pi
g

H
ip
po

Fin
ba
ck
W
ha

Blu
eW
hale

Harbo
rSeal

GreySeal
Dog

Cat

W
hiteRhino

G
reatRhino

H
orse

D
onkey

F
ru
itB
at

S
q
u
irrel D

o
rm
o
u
se

R
at

H
ou
se
M
ou
se

Pl
at
yp
us

O
po
ss
um

W
all
aro
o

Pyg
my
Chi
mp

Chimp
anzee

Human
GorillaOrangutan

Gibbon

Baboon

E
lephant

G
uineaP

ig

R
ab
b
it

A
ard
v
ark

(a) (b)

(c) (d)

Figure 32: The composition of extremely sparse motifs carries a strong phylogenetic
signal. (a) Reference tree from ncbi. See [167] and references therein for other
algorithms applied to the reconstruction of this tree. (b) Tree built using elementary
motifs with 3 solid characters and length 50. Average number of motifs per proteome:
30135. (c) Tree built using maximal motifs with 3 solid characters and density at
most 0.0308. Average length of a motif: 98. Average number of motifs per proteome:
254. (d) Tree built using irredundant motifs with 3 solid characters and density at
most 0.031. Average length of a motif: 118. Average number of motifs per proteome:
98.

80

organisms together (Figure 32). The length and sparsity of such motifs resonate in

interesting ways with long-range correlations of various kinds that are known to have

a key role in proteins [23, 173]: studying the structure of such sparse motifs and their

occurrences in the protein space, as well as extending the alphabet of motifs to allow

groups of homologous amino acids, would thus be natural extensions of this work.

In tiling motifs, irredundant motifs and autocorrelations, extremely dense motifs,

as well as sparse motifs in a specific density range, contain comparatively little phylo-

genetic signal. Contrary to what has been observed in the remote homology detection

of proteins [42], redundancy seems to be a key factor for the efficient reconstruction

of phylogenies: classification quality improves when moving from the smallest tiling

basis to its supersets, autocorrelations and irredundant motifs. Our analysis high-

lights also a third force behind classification quality: the number of solid characters.

Contrary to the convergence seen when increasing the length of k-mers, classification

with gapped motifs reaches its best at k = 3 or 4, and degenerates for larger k. In

particular, considering only motifs with exactly 3 solid characters is sufficient – and

sometimes even necessary – to achieve the best classification quality in elementary,

maximal and irredundant motifs.

Another point in which our analyses differ from traditional k-mer approaches is

the role of statistical correction. Downplaying k-mers with low statistical significance

has been reported to be essential for achieving good classifications (see e.g. [36, 132]);

our experiments, on the other hand, show that gapped motifs with z-score close to

zero carry a strong phylogenetic signal, and classification quality degrades when such

motifs are discarded.

Figures 33a and b summarize the sets of motifs that achieve the best average

classification quality in our experiments. Such sets are extremely fast to compute

in practice, and turn out to be largely disjoint from prosite. Remarkably, the

average classification quality of such sets is comparable to state-of-the-art methods

81

based on substrings, even though all our motifs repeat at least two times in the

input, and even though we use a simplistic setup based on Euclidean distance and

raw frequencies (which in practice reduces to the Jaccard distance). This motivates

further applications of gapped motifs to alignment-free sequence comparison, as well

as a systematic search for the subsets of motifs that yield the best classification. The

fact that substring-based and motif-based methods never push the average distance

from the ncbi taxonomy below 30 suggests also the existence of a practical upper

bound to the performance of alignment-free algorithms, that would be interesting to

study more extensively.

Albeit being all at comparable distances from the ncbi taxonomy, the sets of

gapped motifs shown in Figure 33a do not tell all the same phylogenetic story. As a

first, qualitative glimpse into the problem of which motifs support which phylogeny,

we computed the matrix of pairwise rf distances between trees produced by the

best performing sets of gapped motifs and by a small sampler of substring-based

alignment-free methods (cvtree with lengths ranging from 3 to 7 [183], the Nor-

malized Compression Distance using gzip [37], and the Average Common Substring5

[167]), averaged over 100 random samples from our dataset (Figure 33c). The matrix

shows at least two clusters: the first consisting of composition vectors with length

greater than 3, ncd and acs, the second consisting of elementary and maximal mo-

tifs with 3 solid characters. This suggests that phylogenies produced by elementary

and maximal motifs are more similar to each other than to phylogenies built by sub-

strings. Interestingly, composition vectors with length 3 tend to be more similar to

the cluster of gapped motifs than to the cluster of substrings, while elementary mo-

tifs with 4 solid characters and length 20 tend to be more similar to the cluster of

substrings than to the cluster of gapped motifs. Irredundant motifs seem to form a

5We thank David Burstein for providing an implementation of the Average Common Substring
algorithm.

82

third cluster on their own, and acs seems to be systematically different from all other

substring-based methods. We leave to future research a more detailed study on this

topic.

The fact that gapped motifs carry phylogenetic signal could be a peculiarity of

proteomes (long regions without solid characters could represent loops where muta-

tions are more likely, see e.g. [30] and [74]), or even just of mitochondrial proteomes.

It is natural to envision experiments that apply gapped motifs to the reconstruc-

tion of phylogenies from the genic and intergenic dna of longer genomes. Scaling to

genomes would rule off the possibility of using the composition of all elementary and

maximal motifs, and would move the focus on autocorrelations, tiling motifs, irredun-

dant motifs, and on motifs with a controlled number of solid characters. Experiment

with flexible gaps [13, 81] would also come natural: statistically significant maximal

flexible motifs have already been shown to identify biologically significant patterns in

prosite families [11].

2.3 Phylogeny construction with gapped LZW

The approach presented in this section explores the potential of the lzw compression

algorithm – the variant of lz78 proposed by Welch [175] – as well as of some of its

recent lossy variants [6], in text classification and phylogeny reconstruction. Whereas

lzw has a faster and simpler implementation than lz77, the vocabulary underlying

lzw is significantly smaller than that of lz77. It seems thus natural, in presence of

massive data, to inquire into the discriminating power of lzw. Specifically, we focus

on recently introduced gapped variants of lzw that are equally straightforward to

implement but allow for a controlled number of don’t cares to be introduced in the

substrings that compose the dictionary used during compression.

As is well known, the lz77 encoding of a string s on alphabet Σ proceeds as

follows: (1) initialize a dictionary to Σ; (2) assume to have encoded s[0, i− 1]; let w

83

e4l
e4r
e3l
e3r
m3l
m3r

m3rr

i3l
i3r

cv3

cv4
cv5
cv6
cv7

ncd

0 10 20 30 40 50

e
4

l
e
4

r
e
3

l

e
3

r
m

3
l

m
3

r
m

3
rr i3
l

i3
r

c
v
3

c
v
4

c
v
5

c
v
6

c
v
7

n
c
d

e4l
e4r
e3l
e3r
m3l
m3r
m3rr

i3l
i3r

cv3

cv4
cv5
cv6
cv7

ncd

ncbi

n
c
b
i

1

2

3

4

5

6

0

e
4

l

e
4

r

e
3

l

e
3

r

m
3

l

m
3

r

m
3

rri3
l

i3
r

RF

M
o
ti

fs
 (

lo
g

1
0
)

(a) (b) (c)

RF

a
c
s

acs

0 5 10 15 20 25 30 35

acs

Figure 33: Average classification quality (a) and average size (b) of the sets of motifs
that performed best in our experiments. Panel (a) shows median, 25th and 75th
percentiles, minimum and maximum of rf distance over 100 samples of size 32 from
P. (c) Distance between the tree produced by a set of motifs and the tree produced
by another set of motifs, averaged over 100 random samples from our dataset. e4l:
elementary, k = 4, length 20. e4r: elementary, k = 4, length 5. e3l: elementary,
k = 3, length 20. e3r: elementary, k = 3, length 4. m3l: maximal, k = 3, density
≤ 0.1. m3r: maximal, k = 3, density ≥ 0.065. m3rr: maximal, k = 3, density ≥ 0.6.
i3l: irredundant, k = 3, density ≤ 0.15. i3r: irredundant, k = 3, density ≥ 0.075;
ncbi: ncbi taxonomy. For reference, we include a small sampler of string-based
alignment-free algorithms. cvk: composition vectors using k-mers. ncd: Normalized
Compression Distance with gzip -9. acs: Average Common Substring.

84

be the longest prefix of s[i, |s| − 1] that has an occurrence starting at some position

j < i, and let s[i + |w|] = a; then append to the encoding the triplet 〈j, |w|, a〉, and

repeat the process starting at s[i+|w|+1]. The direct encoding of the triplet 〈j, |w|, a〉

requires O(log(i) + log(|s|) + log(|Σ|)) bits, which can beset in practice the benefit

of compression. In addition, the implementation of this parse takes O(|s|) steps, but

it is not straightforward. Other variants, such as lz78 [186] and the corresponding

version by Welch [175], take trivially linear time to implement, and use much shorter

encodings at the expense of a reduced vocabulary buildup. The vocabulary of lz78

is limited to the phrases used in the parse, so that the decoder need only be supplied

with the ordinal number of each phrase followed by the new one-character extension,

and, thanks to an ingenious look-ahead, lzw does not even need to specify this

character [175]. At the generic iteration of lzw, w is a prefix of the portion of the

text waiting to be encoded. With a the symbol following this occurrence of w, lzw

proceeds as follows: if wa is in the dictionary then the next symbol is read, and this

is repeated with segment wa replacing w. If, on the other hand, wa is not in the

dictionary, then the dictionary index of w is appended to the output file, and wa is

added to the dictionary; following this, w is reset to a and processing resumes from

the symbol following a. Once w is initialized to be the first symbol of the source

text, “w belongs to the dictionary” is established as an invariant in the above loop.

The resulting set of codewords obeys the prefix closure property, in the sense that if

a codeword is in the set, then so is also every one of its prefixes.

We focus here on variants of lzw that are equally fast to implement and admit

for gaps to be interspersed with cleartext. In the gapped adaptation lzwa described

in [5, 6], we maintain a dictionary of patterns Dp ⊂ (Σ∪ {•})+, where • represents a

wildcard or “don’t care” symbol that may take up one of several specifications, and a

dictionary of resolvers Dr ⊂ Σ∗. The pseudocode in Figure 34 details the algorithm.

The first part of lzwa is identical to lzw, except that lzwa seeks now the longest

85

phrase that can be reconstructed by shuffling a string in Dp with a string in Dr. At

each iteration, the algorithm maintains a pair of current strings w ∈ Dp and w′ ∈ Dr:

if (wa ∈ Dp) or (w• ∈ Dp) ∧ (w′a ∈ Dr), then w and w′ are updated and the process

is repeated; otherwise, the ordinal numbers of w and w′ are appended to the output

and Dp and Dr are suitably updated. In particular, w• is added to Dp only if the

node corresponding to w in the trie of Dp already has α children labelled by symbols

in Σ. Note that the information needed for the shuffle is provided implicitly, since the

gaps that the decoder will find in w can be filled with the characters of w′ in exact

succession. Note also that this algorithm is greedy: if we assume Σ∪{•} to be sorted

with • its maximum element, then its seek phase finds the lexicographically least

phrase in Dp occurring at the current position. Looking for a best phrase, e.g., the

one minimizing mismatches, is feasible but time consuming. Clearly, with respect to

standard lzw, the encoding of a single phrase doubles in format and probably in size,

suggesting that this variant achieves better compression only if there is a sufficiently

high reuse of patterns, resolvers, or both.

The insertion of gaps in Dp can be controlled in two, not mutually-exclusive

ways. The first one consists in explicitly prohibiting patterns with an excessively

high number (or density) of gaps. The effect of this is to limit the size of Dp and Dr,

but also to shorten the length of phrases. The second way consists in decreasing the

arity of a node of Dp, which can vary from |Σ| (as in the original lzw) to 1. A smaller

arity pushes lzwa towards building patterns with a larger number of gaps (Figure

35), thereby shifting from Dp to Dr the information about the source; this gives Dr an

increasingly larger control over the length of a match with the current dictionaries and

ultimately on the size of the compressed file. In what follows, we study in particular

the interplay between arity and classification performance in lzwa.

86

Dp ← Σ, Dr ← Σ
w ← first input character // current pattern
w′ ← ǫ // current resolver
output← 〈code(w), code(w′)〉
repeat until no more input characters

a← next input character
if wa ∈ Dp then w ← wa // extension continues
else if (w• ∈ Dp) ∧ (w′a ∈ Dr) then

w ← w•, w′ ← w′a // extension continues
else // extension impossible

output← output · 〈code(w), code(w′)〉
n← node associated with w in the trie of Dp

c(n)← number of children of n labelled by a symbol in Σ
if c(n) = α then

if w• /∈ Dp then Dp ← Dp ∪ {w•}
if w′a /∈ Dr then Dr ← Dr ∪ {w′a}

else Dp ← Dp ∪ {wa}
w ← a, w′ ← ǫ

end if

end repeat

Figure 34: Pseudocode for lzwa. α is a user-specified upper bound on the arity of
a trie; ǫ denotes the empty string; • is a don’t care; · is the concatenation operator.

87

2.3.1 Experimental setup

Given a string s ∈ Σ+, let C(s) be the output of lzwa on input s, let Dp(s),

Dr(s) be the corresponding dictionaries of patterns and resolvers, and let D(s) ∈

{Dp(s), Dr(s)} be any of the two dictionaries associated with s. We use D∗(s) to

denote the set of maximal strings in D(s), i.e. the set of strings in D(s) that are

each not a prefix of any other string in D(s). In the prefix relation, • is considered as

an additional symbol that differs from all other symbols in Σ. Given another string

t ∈ Σ+, we use D∗(s, t) to denote the set of maximal strings in D(s)∩D(t). Given a

string w ∈ D(s), we denote with fs(w) the number of times w is referenced in C(s).

We wish to compare the performance in classification with varying arity, based on a

handful of measures that relate to the composition of the dictionaries. Specifically,

we use the Jaccard metric dj between D(s) and D(t), and its variant dj∗, respectively

defined by:

dj(s, t) = 1− |D(s) ∩D(t)|
|D(s) ∪D(t)| dj∗(s, t) = 1− |D

∗(s) ∩D∗(t)|
|D∗(s) ∪D∗(t)|

We also use the cosine metric dc between the vectors the components of which are all

the strings in D(s) ∪ D(t) and taking values fs(w) and ft(w), respectively. Finally,

we include the following measure:

dh(s, t) =
1

2
· |D

∗(s, t)| log |t|+ |D∗(s, t)| log |s|
∑

w∈D∗(s,t) |w|
+

−1
2
· |D

∗(s)| log |s|
∑

w∈D∗(s) |w|
− 1

2
· |D

∗(t)| log |t|
∑

w∈D∗(t) |w|

an adaptation of the average common substring distance dℓ that focuses on the aver-

age length of maximal strings in D(s)∩D(t) (like the original measure, it is symmetric

and it is zero when s = t; see Section 2.1). We further experiment with an approx-

imation C(s|t) of Equation 1, which uses the length of the string resulting from the

compression of s when the dictionaries of lzwa are initialized to those of t. In the

lossless compression of a string s, C(s) takes into account the size of both the pattern

88

and the resolver parts of the compressed file; in lossy compression, it only measures

the size of the pattern part.

We adopt the neighbor-joining implementation provided by the phylip package

[54] to build the trees resulting from our pairwise dissimilarity measures, and we

measure the quality of classification in terms of the Robinson-Foulds distance be-

tween the trees resulting from our computations and a reference tree [144]. To give

our measures some generality, we take a reference tree with few branches, each rep-

resenting a macroscopic difference in a given domain. Specifically, we consider the

following trees: T1 =(((Rodentia, Serpentes), (Araneae, Hemiptera)), (Ascomycetes,

Basidiomycetes), (Magnoliophyta, Chlorophyta)), a subtree of the ncbi eukaryotic

mitochondrial tree, reflects macroscopic evolutionary differences among eukaryota;

T2 =((Linux, Apache), (Emacs Lisp, Scheme), (blas, eispack)), reflects macroscopic

differences among programming languages, their dialects, and corresponding software

projects; T3 =((Dante, Cavalcanti), (Ariosto, Machiavelli), (Capuana, Verga)), con-

sists of writings of notable Italian authors separated by approximately 300 years from

each other. For each leaf of a tree Ti, we arbitrarily pick k strings belonging to the

corresponding group (e.g. five mitochondrial proteomes from ncbi, the four longest

source files in each software project, four writings from each author), and compile a

dataset Si. Next, to estimate the classification performance of lzwa on Si, we build,

for each arity α, approximately 50 random samples of Si such that each sample con-

tains two strings from each leaf of Ti. We then summarize the rf distance between

Ti and the tree reconstructed from each sample in a box plot6. We discuss S1 in some

detail, and only mention the results produced with the other datasets.

Since we are interested here in classification more than in compression at all costs,

6Central marks represent medians and boxes mark the 25th and 75th percentiles. Whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted as individual circles.
An “outlier” is a value larger than p75 + 1.5(p75 − p25) or smaller than p25 − 1.5(p75 − p25), where
p25 and p75 are the 25th and 75th percentiles, respectively.

89

Figure 35: Dataset S1. (From left to right) Number of gaps per pattern, fraction of
the original string encoded by resolvers, and compression ratio (size of the uncom-
pressed file divided by the size of the compressed file) versus arity.

we build a clean implementation of lzwa with minimal space-saving heuristics. In

particular, rather than using a sliding window, we keep the same pair of dictionaries

throughout the entire compression process, and adjust the length of the codewords

assigned to strings in a dictionary D to the corresponding frequency in the compressed

file by using a suboptimal but fast O(log(|D|)) heap.

2.3.2 Dynamics of patterns and resolvers

The gapped extensions of lzw liberally use the available resolvers irrespective of the

strings they originated from. This tends to improve over the compression rate of

standard lzw, but is antagonized by the need of two pointers per phrase. Figure 35

(right panel) illustrates this tradeoff with dataset S1: decreasing arity down to 8 or 9

increases the size of the compressed file, but from that point on the compressed file

is smaller and smaller, until the compression of standard lzw is surpassed at arity

1 and 2. Datasets S2 and S3 exhibit a similarly concave plot, but with them the

compression ratio of lzw is never surpassed by a gapped variant.

One may expect the smaller alphabet of lzw to degrade classification quality

with respect to lz77, and the reuse of resolvers in lzwa to blur our dissimilarity

measures with respect to lzw, putting together sequences that are in fact distant.

Our plots for dataset S1 confirm the first conjecture but show a different picture for

90

the second (Figure 36). The case in which Dp(s) ≈ Dp(t) and Dr(s) ≈ Dr(t) at the

same time occurs only for few values of α. On the other hand, for every measure

d ∈ {dj, dj∗, dc, dh}, there is an arity ᾱd < |Σ| such that at all arities α ≥ ᾱd, the

classification performance of d as applied to Dp(s) and Dp(t) is comparable to that

of lzw. In S1, ᾱ ≈ 7 or 8 for all dissimilarity measures on the dictionaries, meaning

that we can disregard approximately 20% of the original string (stored in Dr) and still

get a classification comparable to the one based on lzw. Performance degenerates

on a roughly monotone slope when α < ᾱ. Resolvers follow a complementary curve:

classification performance is directly proportional to arity, it reaches a plateau of min-

imum efficiency when α ≈ 12 or 13, and at small arity it is comparable to standard

lzw. This suggests that, when arity is high, information about the strings is mainly

encoded by patterns, while resolvers are approximately random; when arity is low,

information moves from patterns to resolvers. We remark that resolvers are strings

that occur as flexible subsequences, whose flexibility and possible contexts are implic-

itly specified by patterns: these plots suggest that such flexible subsequences grasp

information about the strings. We note that dc and dh do not perform significantly

better than dj, even though they incorporate the additional information on length

and frequency, respectively. Combined with the fact that the performances of dj∗ and

dj are comparable, this suggests that the set of maximal words in the dictionaries

holds the key to classification – an observation that resonates in interesting ways with

recent methods that compare the maximal substrings of the input strings [7].

The performance of measures on Dp and Dr in classification does not allow us to

predict the behavior of the normalized compression distance dncd (Equation 1). For

example, assume that we compress string t using both Dp(s) and Dr(s) as starting

points, and assume that Dp(s) ≈ Dp(t) and Dr(s) ≈ Dr(t). At high arity, the

patterns in Dp(s) are dense and very similar to those in Dp(t), even though Dr(s)

and Dr(t) might be uncorrelated. On one hand, this implies that the average length

91

of a string matching the dictionaries is large, so that the phrases in the compressed

file tend to span long substrings and to induce a good conditional compression. On

the other hand, the resolvers in Dr(t) \Dr(s) tend to have longer codes because they

are seen after those of Dr(t), and the few resolvers in Dr(t)∩Dr(s) have a frequency

that does not reflect the one in Dr(t): this injects noise in the resolvers part of the

output. At low arity, the portion of the output reflecting Dp is affected by noise.

Idiosyncrasies inherent to the specific implementation of the compressor affect dncd

as well: for example, the length of the codewords in our compressed file only loosely

reflects their frequency in the file itself. This introduces an additional component of

noise that could worsen the quality of the classification. The plots of dncd show instead

that this measure is robust to both such sources of noise (Figure 37): when only Dp

or Dr is provided, the classification performance has a trend similar to measures on

the corresponding dictionary; when both Dp and Dr are provided, this performance

tends to improve at α < ᾱ and stays unchanged at α ≥ ᾱ.

We experiment also with two lossy variants of dncd; in both cases, we compute

C(s|t) by initializing Dp(s) to Dp(t), and take only the pattern part of the com-

pressed file. In the first variant, Dp(t) and Dp(s) are built by maintaining also the

corresponding Dr(t) and Dr(s); in the second, Dr(t) and Dr(s) are not maintained.

The size of the resolver portion of the compressed file reflects the frequency of usage of

the words ofDr during compression: by taking this size into account, we are implicitly

measuring the similarity of the two frequency distributions. Therefore, we expect its

removal not to be important at high arity, but to forfeit some information at low arity.

The second variant works in a very similar way to the first: the only exception is that

Dr(t) and Dr(s) are initialized to Σ+ rather than to Σ: the two alternatives should

therefore behave very similarly. Figure 38 confirms these conjectures: disregarding

the resolvers portion of the compressed file induces the classification performance to

degenerate earlier (α ≈ 12 versus α ≈ 8). The extent of this shift suggests that

92

Figure 36: Classification performance of dj (top) and dj∗ (bottom) on Dp (left) and
Dr (right). Plots summarize 50 samples. Similar trends appear when plotting dc and
dh (data not shown). In this and all the following plots, dotted lines indicate the 25th
and 75th percentiles of the classification performance achieved by dncd when gzip -9

is used as compressor.

Figure 37: Classification performance of dncd when Dp(t) is initialized to Dp(s) and
Dr(t) is initialized to Dr(s) (left); when just Dp(t) is initialized to Dp(s) (center);
when just Dr(t) is initialized toDr(s) (right). Plots summarize 36, 28 and 28 samples,
respectively.

93

Figure 38: Classification performance of dncd with lossy compression. Plots summa-
rize 32 and 39 samples, respectively.

this information is critical in dncd. By contrast, dictionary-based measures seem im-

mune from this phenomenon. Significantly, even without maintaining Dr, these lossy

measures can still classify with performances comparable to lzw at α ≈ 15.

The other two datasets S2 and S3 confirm the overall trends of patterns and

resolvers, albeit exhibiting opposite performance behaviors. The dataset S3 of Italian

literature is consistently difficult to classify (rf distance ≈ 12, maximum = 16) at

any value of α. On the easier dataset S2 of programming languages, an almost perfect

classification is achieved by all measures up to α ≈ 10, i.e. when up to approximately

10% of the original strings is discarded.

Finally, in order to assess the classification quality of measures on lzwa dictionar-

ies on instances of practical significance, we abandon the toy datasets described above

and experiment with S4, the set of 34 mammalian mitochondrial proteomes used by

[167] and [93] to demonstrate dℓ and dncd, respectively. Specifically, we compare the

trees produced by our measures on S4 with each one of the 13 maximum-likelihood

trees produced by single common genes, as described in [167]. We find that dh and

dj produce results that are largely comparable to, and in a number of cases better

than, those of dℓ and dncd (Table 2 and Figure 39). Significantly, good results occur

94

Table 2: Distance between the trees constructed using dj for varying arities (columns)
and the maximum-likelihood trees produced by 13 proteins (rows). Con: majority
consensus tree of the 13 single-protein maximum-likelihood trees. dℓ: see Section 2.1
and [167]. dncd: Equation 1 with a tuned dna compressor [93], as reported in [167].
Light gray: min{dℓ, dncd} ≤ dj ≤ max{dℓ, dncd}. Dark gray: dj < min{dℓ, dncd}.

10 11 12 13 14 15 16 17 18 19 20 Avg dℓ dncd

A6 38 38 38 36 38 40 40 40 40 40 40 38.91 40 40
A8 40 38 42 44 42 44 44 44 44 44 44 42.73 42 42
C1 34 28 32 26 22 26 28 28 28 28 28 28.00 28 26
C2 42 42 38 40 38 40 38 38 38 38 38 39.09 42 40
C3 42 42 40 40 40 40 42 42 42 42 42 41.27 42 42
CB 40 34 32 30 28 28 28 30 30 30 30 30.91 30 24
N1 32 30 26 30 26 30 28 28 28 28 28 28.55 30 30
N2 26 20 30 26 18 22 18 22 22 22 22 22.55 24 24
N3 40 36 36 36 30 32 32 32 32 32 32 33.64 28 30
N4 34 30 30 32 30 30 30 30 30 30 30 30.55 28 24
NL 42 42 40 42 42 40 40 42 42 42 42 41.45 36 40
N5 30 26 26 22 14 14 8 14 14 12 12 17.45 18 18
N6 40 36 32 34 34 32 34 34 34 34 34 34.36 28 32
Con 30 28 26 26 14 22 18 22 22 22 22 22.91 16 18
Avg 36.43 33.57 33.43 33.14 29.71 31.43 30.57 31.86 31.86 31.71 31.71 30.86 30.71

B
lu
eW
ha
le

Fi
nW
ha
le

H
ip
poCo

wShe
ep

Pig

Donkey
Horse

GrtRhino

W
htRhino

Cat
D
og

G
reyS

eal
H
arb
S
eal

F
ru
itB
at

A
rm
ad
illo

E
lep
h
an
t

B
ab
oo
n

C
hi
m
p

Py
gC
hi
m
p

Hu
ma
n

Go
rilla

Gibbo
n

Orangutan

HseMouseRat

Opossum
W
allaroo

Platypus

D
orm
ouse

S
q
u
irrel

G
u
in
eaP
ig

R
ab
b
it

A
ard
v
ark

Figure 39: Dataset S4, arity = 14. Neighbor-joining tree from measure dj on the
dictionaries of patterns.

for α ranging from 20 to at least 14, reinforcing the observation that Dp, even when

impoverished by decreasing arity, still contains sufficient information to classify.

95

CHAPTER III

FASTER VARIANCE COMPUTATION FOR PATTERNS

WITH GAPS

Determining whether a pattern is statistically overrepresented or underrepresented

in a string is a fundamental primitive in computational biology and in large-scale

text mining. In this chapter, we study ways to speed up the computation of the

expectation and variance of the number of occurrences of a pattern with rigid gaps in

a random string. Our contributions are twofold: first, we focus on patterns in which

groups of characters from an alphabet Σ can occur at each position. We describe

a way to compute the exact expectation and variance of the number of occurrences

of a pattern w in a random string generated by a Markov chain in O(|w|2) time,

improving a previous result that required O(2|w|) time. We then consider the problem

of computing the expectation and variance of the motifs of a string s in an iid text.

Motifs are rigid gapped patterns that occur at least twice in s, and in which at

most one character from Σ occurs at each position. We study the case in which s is

given offline, and an arbitrary motif w of s is queried online. We relate computational

complexity to the structure of w and s, identifying sets of motifs that are amenable to

o(|w| log |w|) time online computation after O(|s|3) preprocessing of s. Our algorithms

lend themselves to efficient implementations.

3.1 Introduction and state of the art

Given a string w ∈ Σ+ and a random text Z ∈ Σ+, the statistical properties of the

occurences of w as a substring of Z have been extensively studied and repeatedly

96

applied to biological sequences (see e.g. [83, 105, 135] and references therein). Quan-

tities of interest are typically the number of occurrences, the waiting time before the

first occurrence, r-scans (the distance between an occurrence and the r-th next one),

and corresponding quantities applied to higher-order structures, like renewals and

clumps (maximal sets of overlapping occurrences). Traditionally, the focus has been

on producing exact closed forms of the distribution and moments of such quantities

or of corresponding asymptotic approximations, and bounds on approximation error.

Comparatively little is known about the algorithmic aspects of computing such

quantities. For a string Z generated by an iid source, the expected value and variance

of the number of occurrences of all prefixes of w in Z can be computed in overall O(|w|)

time, by embedding the computation in a landmark string searching algorithm for

constructing the longest border of all prefixes of w [8]. This technique, combined with

the linear-time construction of the suffix tree of a string s, allows to score and discover

all significantly overrepresented and underrepresented substrings of s in overall O(|s|)

time if the measure of statistical significance f satisfies w ≡R wx ⇒ f(w) ≤ f(wx)

for any x ∈ Σ+, where ≡R means right-equivalence in s [9, 10]. Similar dynamic

programming schemes apply to strings with mismatches. The expected number of

occurrences of a string w with up to k mismatches in an iid text Z can be computed

in O(k2) time after a O(k|w|) preprocessing of w [18]. A related algorithm allows

to compute the expectation of all substrings of w with prescribed length in O(k|w|)

time, both for iid and for Markov sources [18, 128].

Measuring the statistical significance of strings with gaps or don’t cares is a core

primitive in computational biology [56]. A natural way to model gaps is requiring a

pattern to occur as a constrained subsequence of a given text. Assume indeed that

pattern w is a pair (w,D) in which w = w0w1 . . . wm−1 ∈ Σm is a string and D =

d0d1 . . . dm−2 ∈ (N+∪{∞})m−1 is a sequence of upper bounds on the distance between

adjacent symbols in w. Fast approximations of the expectation and variance of the

97

number of occurrences of (w,D) in an iid text Z have been derived using standard

properties of generating functions and the Chomsky-Schützenberger algorithm [58].

A related problem consists in computing the expectation and variance of the number

of (possibly overlapping) windows of Z of size σ that contain at least one occurrence

of string w as a subsequence. Setting p(w, σ) to the probability that w occurs in a

string of length σ, it is easy to see that p(w, σ) = (1 − P(w[|w| − 1])) · p(w, σ − 1) +

P(w[|w|−1]) · p(w[0, |w|−2], σ−1), thus we can compute p(w, σ) in O(|w|(σ−|w|)2)

time using a dynamic programming algorithm [68]. Measuring the variance requires

the probability that two overlapping windows host w as a subsequence at the same

time. The authors of [68] take an enumerative, exponential approach, that explicitly

iterates over all strings in Σσ that contain w as a subsequence. This algorithm has

been generalized to arbitrary sets of patterns [20], to the set of all permutations of a

given pattern, as well as to strings generated by variable-length Markov sources [69]

and to multi-stream patterns with inter-stream dependencies of prescribed types [70].

In these richer setups, computing p(w, σ) itself requires more complex recursions, and

ingenious ways to traverse the corresponding recursion graphs have been devised.

Gapped patterns could also be represented as regular expressions. Computing the

expected number and variance of the number of occurrences of a regular expression in

an iid string Z typically requires converting the regular expression into a marked dfa,

and then deriving the generating function of the language recognized by the automa-

ton via the Chomsky-Schützenberger algorithm [117]. This pipeline can be extended

to Markov chains, and editing the dfa allows to accommodate multiple languages as

well as matches with errors [115]. The approach of using a dfa to compute statistics

on regular expressions has also been used to compute the probability of a regular

expression in a random string generated by iid and Markov sources (see e.g. [21]

and references therein), and more recently it has enabled genome-scale compositional

analyses of gapped patterns [116]. The conversion from a regular expression w to its

98

corresponding dfa, however, is exponential in |w| in the worst case. A more restric-

tive way to model flexible gaps could be imposing w = u •d1,d2 v, where u ∈ U ⊂ Σ+,

v ∈ V ⊂ Σ+, and •d1,d2 is a flexible gap that extends for at least d1 and at most d2

positions. The probability that Z (assumed to be generated by a first-order Markov

chain) contains at least one occurrence of w can be expressed as a function of random

variables that relate to substrings, and whose probabilities can be computed recur-

sively in O((|u|+ |v| + d2)
2) time [141, 142, 143]. This approach holds for arbitrary

sets U and V , and can be extended to strings with mismatches [143].

Discarding flexibility altogether, closed-form, fast approximations have been pro-

posed for the expected number of distinct rigid maximal motifs with length ℓ, with k

solid characters, and with exactly n occurrences in an iid string Z [161]. Intuitively,

a rigid maximal motif (to be defined in Section 3.4) is a pattern with rigid gaps that

occurs at least two times in Z, and that cannot be made more specific without losing

support [122]. Most significance scores are monotonically nondecreasing with respect

to motif specification, thus maximal motifs usually have the greatest significance

among all motifs with the same support, and they embed any motif with exactly

the same support and score (see e.g. [11] and references therein). Approximations

like those in [161], or even simpler ones, back popular motif discovery tools (see e.g.

[30, 137]), but crucially rely on the assumption that the occurrences of a motif w in

Z are independent.

Independence is waived in [157], which gives exact formulas for the expectation

and variance of the number of occurrences of a rigid gapped pattern with symbols

in Γ ⊂ 2Σ in a random string generated by a Markov chain. These formulas will

be detailed in Section 3.2; here we just remark that they are used at the core of a

popular algorithm that discovers transcription factor binding sites in dna [158, 159],

and that the kernels of such computations iterate over a number of strings that grows

exponentially in the length of the pattern, thus limiting this approach to very small

99

queries. In Section 3.3 we describe a simple observation that brings the running time

of the formulas in [157] from O(2|w|) to O(|w|2). In the iid case, the time to compute

such formulas is dominated by convolution, and thus belongs to O(|w| log |w|). Given

a string s provided offline, Section 3.4 studies the problem of computing expectation

and variance for an arbitrary motif w of s provided online. We relate computational

complexity to the structure of w and to the basis of tiling motifs of s, and we identify

sets of rigid gapped motifs whose variance can be computed in less than O(|w| log |w|)

time. The key idea behind our construction is reusing a suitable set of convolutions

performed offline.

3.2 Notation and problem definition

In this section we summarize the algorithm described in [157], highlighting its com-

putational kernels. For clarity of presentation, we adopt a slightly different notation.

Let Σ be a finite alphabet, and let Γ ⊂ 2Σ \ ∅ be such that {a} ∈ Γ for all a ∈ Σ. We

call pattern any string s ∈ Γ+, and we say that a position i in s is a gap if s[i] = Σ.

Given patterns s and t, we write s⊗k t to mean a pattern of length k + |t| with set

s[i] ∩ t[i − k] at position i. We postulate s[i] = Σ for i /∈ [0, |s| − 1], and we set

s ⊗k t = ε if s[i] ∩ t[i − k] = ∅ for some i. With w ⊣ s we indicate that pattern

w ∈ Γ|s| is a copy of pattern s in which every nonsingleton character G ∈ Γ that

occurs in s has been transformed into a corresponding character c ∈ G: we call w an

instantiation of s. In other words, an instantiation of pattern s forces all positions of

s, except those occupied by a gap, to equal a symbol in Σ. With w ≺ s we indicate

that string w ∈ Σ|s| is a copy of pattern s in which every character G ∈ Γ occurring

in s has been transformed into a corresponding character c ∈ G, including gaps.

Given a pattern s, we call selector a diagonal square matrix I(s, i) with |Σ|d rows,

such that every diagonal element corresponding to a string w ∈ Σd : w ≺ s[i, i+d−1]

is equal to one, and all other elements are zero. We overload the term selector to

100

include vectors as well: e(s, i) is a vector with |Σ|d components, such that every

component corresponding to a string w ∈ Σd : w ≺ s[i, i+d−1] is one, and all other

components are zero. Whether we will be referring to matrices or vectors will be clear

from the context. Clearly e(s, i) (respectively, e(s, i)′) is a right (respectively, left)

eigenvector of I(s, i) associated with eigenvalue 1. For a pattern s, we set u(s, i) to

be a vector with |Σ|d components, such that all components corresponding to strings

w ∈ Σd : w ≺ s[i, i+ d− 1] are equal and sum to one, and all other components are

zero.

Recall that our purpose is computing expectation and variance of the number of

occurrences of a pattern in a random string. Consider thus a Markov chain of order

d with matrix of transition probabilities P ∈ [0, 1]|Σ|d×|Σ|d and stationary distribution

p ∈ [0, 1]|Σ|d. We denote with tmm the time to compute the product between two

square matrices of size |Σ|d, and with tvm the time to compute the product between

a vector of size |Σ|d and matrix of size |Σ|d. Let v ∈ [0, 1]|Σ|d be a vector of a priori

probabilities for d-mers, let Z be a string generated by the Markov chain, and let

s be a pattern with |s| ≤ |Z|. With p(s|v) we denote the probability that s occurs

at position 0 ≤ i ≤ |Z| − |s| of Z in the form of one or more of its instantiations,

assuming that v is the probability distribution of d-mers at i. If Z is long enough, it

is safe to set v = p independent of i (see e.g. [157] and references therein). Given a

pattern w, we define the random variable Xw to be the number of occurrences of w in

Z, and we set the indicator random variable Xw,i to be one iff w occurs at position i

in Z in the form of one or more of its instantiations. The expectation of Xs is clearly:

E(Xs) =
∑

w∈A(s)

(|Z| − |w|+ 1) · p(w|p) (2)

where A(s) = {w ⊣ s} and p(w|p) = p′ ·I(w, 0)·
[

∏|w|−d

i=1 PI(w, i)
]

·e(w, |w|−d). After

standard manipulations, computing the variance of Xs reduces to Equation 2 and to

the two following kernels, that relate to overlapping and nonoverlapping occurrences

101

of s, respectively:

|Z|−|s|−1
∑

i=0

|Z|−|s|
∑

j=i+1

E(Xs,iXs,j) =

|Z|−|s|−1
∑

i=0

m
∑

l=1

∑

v⊣s

∑

w⊣s

E(Xv,iXw,i+l)

=
∑

w∈B(s)

(|Z| − |w|+ 1) · p(w|p) (3)

|Z|−2|s|
∑

i=0

|Z|−|s|
∑

j=i+|s|

E(Xs,iXs,j) =

|Z|−2|s|
∑

i=0

|Z|−2|s|−i
∑

l=0

∑

v⊣s

∑

w⊣s

E(Xv,iXw,i+|s|+l)

=
∑

w∈C(s)

(|Z| − |w|+ 1) · p(w|p) (4)

where m = min{|s| − 1, |Z| − i− |s|}, B(s) = {v⊗l w | v ⊣ s, w ⊣ s, 1 ≤ l < |s|} \ {ε}

is the set of all valid overlaps of two instantiations of s, and C(s) = {v ⊗|s|+l w | v ⊣

s, w ⊣ s, 0 ≤ l ≤ |Z|−2|s|} is the set of all spaced concatenation of two instantiations

of s. Sets A(s), B(s) and C(s) are enumerated explicitly in [157], thus computing

Equations 2, 3 and 4 requires time, respectively:

(|s| − d) · (tvm + |Σ|d) · |Σ||s| ∈ O(|s| · |Σ||s|)

|Σ|2|s| · (tvm + |Σ|d) ·
|s|−1
∑

l=1

(|s|+ l − d) ∈ O(|s|2 · |Σ||s|)

|Σ|2|s| · (tvm + |Σ|d) ·
|Z|−2|s|
∑

l=1

(2|s|+ l − d) ∈ O(|Z|2 · |Σ||s|)

The dependence on |Z| of Equation 4 is attenuated in [157] by introducing the

following approximation1. For patterns v, w, we denote with p(v
l7→ w) the probability

of transitioning in exactly l steps of the Markov chain to any d-mer y ≺ w[0, d− 1],

starting from any d-mer x ≺ v[|v| − d, |v| − 1]. Formally, p(v
l7→ w) = u(v, |v| −

d)′ · Pl · e(w, 0). For a pattern w, we similarly denote with p(7→ w) the probability

that w occurs, assuming that any d-mer x ≺ w[0, d− 1] occurs. Formally, p(7→ w) =

1Alternatively, we could shave a O(|Z|) factor from the running time of Equation 4 by using the
expression for sums of powers of stochastic matrices given in [86]. We use this method in Section
3.3.

102

u(w, 0)′ ·
(

∏|w|−d

i=1 PI(w, i)
)

· e(w, |w| − d). Equation 4 can thus be approximated by:

∑

v⊣s

∑

w⊣s

p(v|p) · p(7→ w) ·
|Z|−2|s|
∑

l=1

(|Z| − 2|s| − l + 1) · p(v l+d7−→ w)

and can thus be computed in time O(|Z| · |Σ||s|).

The exponential dependency of running time on |s| is not a problem in the specific

application domain of [157], where pattern have length approximately 20 and the

alphabet has size 4, but it makes it impractical to generalize this approach to patterns

of arbitrary length. In Section 3.3 we describe a way to make the computation of

Equations 2, 3 and 4 scale quadratically, rather than exponentially, on |s|.

3.3 Gapped patterns

Equations 2, 3 and 4 can be computed without explicitly iterating over sets A(s), B(s)

and C(s). Avoiding the explicit construction of such sets brings both an asymptotic

speedup, and the practical advantage of removing string operations altogether from

the implementation of the corresponding equations.

Lemma 6. Let s be a pattern, and let v be a vector of d-mer probabilities. Then,

p(s|v) = v′I(s, 0) ·PI(s, 1) ·PI(s, 2) · · ·Pe(s, |s| − d).

Proof. Clearly I(s, i) =
∑

w⊣s[i,i+d−1] I(w, 0), and the matrices in this sum select dis-

joint subsets of Σd. Similarly, e(s, i) =
∑

w⊣s[i,i+d−1] e(w, 0), and the vectors in the

sum select disjoint subsets of Σd. Thus, v′I(s, 0) · PI(s, 1) · PI(s, 2) · · ·Pe(s, |s| − d)

can be written as:

v′

∑

w⊣s[0,d−1]

I(w, 0)

 ·P

∑

w⊣s[1,d]

I(w, 0)

 · · ·P ·

∑

w⊣s[|s|−d,

|s|−1]

e(w, 0)

=
∑

w0⊣s[0,d−1],

...
w|s|−1⊣s[|s|−d,|s|−1]

v′I(w0, 0) ·PI(w1, 0) · · ·P · e(w|s|−d, 0)

103

Two selectors I(wi, 0) and I(wj, 0) in the sum above are called incompatible if either

i < j < i + d and wi ⊗j−i wj = ε, or j < i < j + d and wj ⊗i−j wi = ε. By the

structure of P, products containing incompatible selectors do not contribute to the

sum, and set {(w0, w1, . . . , w|s|−d) | 6 ∃ 0 ≤ i, j ≤ |s| − d : wi, wj are incompatible}

can be put in one-to-one correspondence with A(s).

Equation 2 thus reduces to:

(|Z| − |s|+ 1) · p′I(s, 0) ·PI(s, 1) ·PI(s, 2) · · ·Pe(s, |s| − d) (5)

which can be computed in O(|s|) time. Applying Lemma 6 to Equation 4 we get:

p′I(s, 0)·PI(s, 1) · · ·PI(s, |s|−d)·

|Z|−2|s|
∑

i=0

|Z|−2|s|−i
∑

l=0

Pl+d

 I(s, 0)·PI(s, 1) · · ·Pe(s, |s|−d)

After using the expression for sums of powers of stochastic matrices given in [86], this

becomes:

q′QPn−2|s|+3QPd−1r− q′QP2QPd−1r+ (n− 2|s|+ 1)q′QP1p′P
d−1

r+

−(n− 2|s|+ 1)q′QPdr+

(

n2

2
+ 2|s|2 − 2|s|n+ 1 +

3

2
n− 3|s|

)

q′1p′P
d−1

r (6)

where q′ = p′I(s, 0) ·PI(s, 1) · · ·PI(s, |s|−d), r = I(s, 0) ·PI(s, 1) · · ·Pe(s, |s|−d), 1

is the vector of |Σ|d ones, and Q = (P− I+ 1p′)−1 as defined in [86]. This equation

can be computed in O(|Z|) time as is, or in constant time if we assume |Z| ≫ |s| and

thus approximate P|Z|−2|s|+3 with 1p′ as done in [157]. Equation 3 can similarly be

computed in O(|s|2) time:

∑

w=s⊗ks,

1≤k<|s|

(|Z| − |s| − k + 1) · p′I(w, 0) ·PI(w, 1) ·PI(w, 2) · · ·Pe(w, |w| − d) (7)

Lemma 6 can speed up also the parts of [157] that depend on the specific domain

of transcription factor binding sites. Assume that Σ = {a, c, g, t} and let the com-

plement of a a be t and the complement of c be g, and vice versa. Complementation

104

extends naturally to subsets of Σ. Denote with s̄ the reverse complement of a pattern

s. The probability that s occurs at a generic position of a random string Z, possibly

in the form of s̄, is just p′(s|v) = p(s|v) + p(s̄|v) (any instantiation v ∈ Γ|s| of s

such that v ⊣ s and v ⊣ s̄ is counted twice in [157], thus no further correction is

needed). Adapting Equations 5, 6 and 7 is thus straightforward. When the reverse

complement of s is considered, however, a fourth term needs to be taken into account

in the variance:

|Z|−|s|
∑

i=0

∑

v⊣s

E

(

∑

w⊣s̄

Xv,iXw,i

)

=
∑

w∈D(s)

(|Z| − |w|+ 1) · p(w|p)

where D(s) = {v ⊗0 w | v ⊣ s, w ⊣ s̄} \ {ε}. This quantity is clearly (|Z| − |s|+ 1) ·

p(s⊗0 s̄|p).

Let’s now return to Equation 7. Clearly s⊗k s 6= ε iff |s|−k is a border of s, i.e. if

the prefix of length |s| − k of s matches the suffix of length |s| − k of s. For strings in

Σ+, borders have a recursive structure that enables the enumeration of all borders of a

string in overall linear time. As mentioned in the introduction, a version of Equation

7 for the iid case can be embedded in the computation of borders, thereby requiring

just O(|s|) time to compute [8]. This scheme can be easily extended to Markov chains

of any order if we remain in Σ+, but it breaks down for strings in Γ+ [78]. When

s ∈ Γ+ and Z is generated by an iid source, Equation 7 becomes:

∑

w=s⊗|s|−bs,

b∈β(s)

(|Z| − 2|s|+ b+ 1) ·

|s|−b−1
∏

i=0

P(s[i])

 ·

|s|−1
∏

i=|s|−b

P(w[i])

 ·

|s|−1
∏

i=b

P(s[i])

 (8)

where the first and third products can be accessed in constant time after O(|s|)

preprocessing of s. The second term is clearly convolutional, and it can be computed

in O(|s| log |s|) time using the landmark match-count algorithm for string searching

by Fischer and Paterson [57], or one of its recent, randomized variants (see e.g. [38]).

In the next section, we study ways to bring the complexity of this computation below

O(|s| log |s|) in the case in which patterns are queried online, but we know that they

105

are motifs of a specific string provided offline.

3.4 Motifs

In most applications we are given a fixed text s ∈ Σ+ and a set of patterns w0,

w1, . . . , wk−1 in Γ+. If patterns are provided offline, the fastest way to compute

expectation and variance with respect to a random Markovian string would be to

apply Equations 5, 6 and 7 to each pattern separately. Storing patterns in a suffix

tree would allow to reuse some intermediate results in practice, without however

affecting asymptotics (see e.g. [69]). Assume, on the other hand, that string s is

given offline, and that we are asked to compute the expectation and variance of

arbitrary patterns provided online. This scenario models popular websites that allow

to search for biologically significant patterns in genomes and proteomes (e.g. [155]),

and captures the post-processing stage of most pattern-discovery algorithms, which

rank their results according to statistical significance (e.g. [30]). In what follows we

will focus on the iid case and on computing Equation 8. The main intuition behind

performing less than O(|w| log |w|) operations for a pattern w given online is moving

some convolutions offline, and reusing such convolutions at query time with the help

of suitable data structures.

Given a string w ∈ Γ+, we define ♯w,a[i] to be the number of positions in which

w⊗iw equals a ∈ Γ, 0 ≤ i < |w|. We define ♯w,a[i, j, k] to be the number of positions in

which w[i, i+k−1]⊗0w[j, j+k−1] equals a ∈ Γ, 0 ≤ i, j ≤ |w|−k. Finally, we define

♯s,t,a[i] to be the number of positions in which s⊗i t equals a ∈ Γ, −|t|+ 1 ≤ i < |s|.

To simplify notation, we use symbol • to denote set Σ, and we indicate with ||w||

the number of positions in which w is different from •. We first study ways in which

the convolution of w can be reused to compute the convolution of its prefixes and

suffixes.

Lemma 7. Let w ∈ Σ(Σ ∪ {•})∗Σ, and assume that ♯w,a[i] is known for every 1 ≤

106

i < |w| and every a ∈ Σ. Then, the value of ♯wk,a[i] for 1 ≤ i ≤ k and a ∈ Σ

can be computed for all prefixes wk = w[0, k] of w (similarly, the value of ♯wk,a[i] for

1 ≤ i < |w| − k and a ∈ Σ can be computed for all suffixes wk = w[k, |w| − 1] of

w) in overall optimal O(|w|2) time and space and in overall O(||w|| · |w|) arithmetic

operations.

Proof. For a generic offset i, ♯w[0,|w|−2],a[i] = ♯w,a[i] + τa,i,|w|−2, where:

τa,i,j = −♯w,a[j + 1, j + 1, 1]− ♯w,a[j + 1, j − i, 1] + ♯w,a[j − i, j − i, 1]

In particular, w[j + 1] = • implies τa,i,j = 0 for all i and a ∈ Σ. Let Ta be an upper-

triangular matrix with |w|−2 rows and columns, indexed starting from one, in which

row i corresponds to offset i, column j corresponds to prefix w[0, j], and Ta[i, j] =

τa,i,j . Matrix Ta is filled in column-major order, starting from column |w| − 2. It is

easy to see that Ta has a regular structure (Figure 40a). First, as mentioned above,

since w[|w|−1] ∈ Σ, the fact that Ta[i, |w|−2] = −2 implies that T[k, |w|− i−2] = 0

for all 1 ≤ k ≤ |w| − i − 2. Second, let ja = max{j : w[j] = a, 0 ≤ j < |w|}; then,

every column Ta[:, j] such that w[j + 1] = a equals column T[:, ja − 1] shifted up by

ja − j − 1 cells. Third, there is only one other type of column in Ta, not considering

shifts and columns that are identically zero: the column corresponding to symbols

different from a, which contains only zeros and ones, and appears sequentially shifted

up (for j < ja − 1) and down (for j > ja − 1) as described above. We can thus

compute these two types of column in O(|w|) time and space, and store them rather

than Ta itself in practice. To compute ♯w[0,k],a for every k, traverse the columns of Ta

from right to left, keeping a running sum of the cells associated with every row i. If

Ta[i, j] = 0, then the corresponding ♯w[0,j],a[i] is just copied from ♯w[0,j+1],a[i].

Corollary 1. Let w ∈ Σ(Σ ∪ {•})∗Σ, and let Xw be a vector with |w| components,

such that:

Xw[i] = (|Z| − |w| − i+ 1) ·
i−1
∏

j=0

P(w[j]) ·
|w|−1
∏

j=i

P(vi[j]) ·
|w|−1
∏

j=|w|−i

P(w[j])

107

where vi = w⊗i w and P(∅) = 1. Assume that we know Xw[i] for all i. Then, we can

compute Equation 8 for all prefixes and all suffixes of w in overall O(||w|| · |w|) time

and optimal O(|w|) space.

Proof. We follow closely the proof of Lemma 7. For a generic offset i:

Xw[0,|w|−2][i] = Xw[i] · τi,|w|−2 ·
(

1 +
1

|Z| − |w| − i+ 1

)

· 1

P(w[|w| − 1])

where τi,j = P(w[j−i+1])/P(w[j+1]∩w[j−i+1]) if w[j+1] matches w[j−i+1], and

τi,j = P(w[j− i+1]) otherwise. Clearly w[j + 1] = • implies τi,j = 1 for all i. We are

interested in the case |Z| ≫ 2|w|, thus the second factor in the above equation could

be considered independent of i in practice. τi,j, however, does depend on i. Let T

be an upper-triangular matrix with |w| − 2 rows and columns, indexed starting from

one, in which row i corresponds to offset i, column j corresponds to prefix w[0, j],

and T[i, j] = τi,j. Matrix T is filled in column-major order, starting from column

|w| − 2, and it has, again, a regular structure (Figure 40b). First, as mentioned

above, since w[|w| − 1] ∈ Σ, the fact that T[i, |w| − 2] = 1/P(w[|w| − 1]) implies that

T[k, |w|− i−2] = 1 for all 1 ≤ k ≤ |w|− i−2. Second, let ja = max{j : w[j] = a, 0 ≤

j < |w|}; then, every column T[:, j] such that w[j + 1] = a equals column T[:, ja − 1]

shifted up by ja− j−1 cells. Third, there are just |Σ| distinct types of columns in T,

not considering shifts and null columns. Indeed, let w[|w| − 1] = a; for every j such

that w[j] = b 6= a, b ∈ Σ, we have that T[:, j − 1] is a copy of T[:, |w| − 2] shifted up

by |w| − j − 1 cells, where every one is replaced by a, every b is replaced by one, and

every 1/P(a) is replaced by 1/P(b). We can thus compute and store these |Σ| types of

columns in O(|w|) time and space overall, rather than storing T itself. To compute

Equation 8 for all prefixes of w, traverse the columns of T from right to left, keeping

a running product of the cells associated with every row i, and keeping a count of

the number of matches associated with every row i as done in Lemma 7. Then, sum

the values of every column corresponding to rows with no mismatches. The value of

108

1 2 3 4 5 6 7 8 9 10 11

11 1 1/b b 1 1 1/b b a b 1

21 1/b 1/a b 1 a 1/a 1 1 b

31 1/a 1/a 1 a 1 1/b b 1

4b 1/a 1 1 1 a 1/a b

5b 1 1/b b a 1 1/a

61 1/b 1/a 1 1 1

71 1/a 1/b b 1

8b 1/b 1/a b

91 1/a 1/a

10b 1/a

11b

1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 -1 -1 0 0 -1 1 -1 -1

2 0 0 -2 -1 0 1 -2 0 -1 -1

3 0 -2 -2 0 1 -1 0 -1 -1

4 -1 -2 0 0 -1 1 -2 -1

5 -1 0 0 -1 1 -1 -2

6 0 0 -2 0 -1 -1

7 0 -2 0 -1 -1

8 -1 0 -2 -1

9 0 -2 -2

10 -1 -2

11 -1

(a) (b)

Figure 40: Matrix Ta of Lemma 7 (a) and matrix T of Corollary 1 (b) for string
ab • •baa • babaa. To avoid clutter, P(a) is abbreviated with a for all symbols a ∈ Σ.
Light gray highlights column 11 and its shifts.

Equation 8 associated with a column that is entirely one needs just constant time to

be derived from the value of the previous column.

Lemma 7 and Corollary 1 generalize easily to suffixes and to strings in Γ+. Given

a string w, in what follows we will call Pw,a the upper-triangular matrix with |w| − 2

rows and columns, indexed starting from one, in which row i corresponds to offset i,

column j corresponds to prefix w[0, j], and Pw,a[i, j] = ♯w[0,j],a[i]. We similarly define

Sw,a for suffixes. A nice property of Pw,a and Sw,a is that they can be used as indexes

to answer questions about arbitrary substrings of w in constant time2.

Lemma 8. Let w ∈ Γ+. After O(|w|2) preprocessing, we can compute the following

quantities: (1) ♯v,a[k] for all 1 ≤ k < |v| and a ∈ Γ in O(|v|) time, for any substring

v of w; (2) ♯w1,w2,a[i] for all −|w2| + 1 ≤ i < |w1| and a ∈ Γ in O(|w1| + |w2|) time,

for any pair of substrings w1 and w2 of w.

Proof. (1) Build Pw,a in O(|w|2) time. Then, build the suffix tree Tw of w, and assign

2From this point of view, such data structures recall the match matrix described in [17].

109

to every internal node the starting position of one of the suffixes in its subtree. This

can be done in overall O(|w|) time. Given a substring v of w, find its proper locus in

Tw, extract the associated starting position i in w, set j = i+ |w| − 1, and apply the

following identity to every a ∈ Γ (see Figure 41):

♯w[i,i+|w|−1],a[k] = ♯w[0,i+|w|−1],a[k]− ♯w[0,i+k−1],a[k] + 2 · ♯w,a[i, i, k] (9)

The first two terms in the right-hand side can be computed from Pw,a, and the last

term can be accessed in constant time after O(|w|) preprocessing of w. The equation

above could be set up for using Sw,a rather than Pw,a. Notably, just one of Pw,a and

Sw,a suffices to answer queries on single substrings. (2) Preprocess w as above. Let

i1 and i2 be the starting positions of w1 and w2 in w, respectively. For clarity of

presentation, we describe the formula for the case in Figure 41, leaving the general

case to the reader. Let k′ = i2 − i1 − k and i∗ = i1 + |w1|. Then:

♯w1,w2,a[k] = ♯w,a[k
′] +

−♯w[0,i2−1],a[k
′] + ♯w,a[i1 + k, i1 + k, k′] + ♯w,a[i1, i1, k] + (10)

−♯w[i1+|w1|,|w|−1],a[k
′] + ♯w,a[i1 + |w1|, i1 + |w1|, k′] + (11)

+♯w,a[i
∗ + k′, i∗ + k′, i2 + |w2| − i∗ − k′] (12)

where all terms can be accessed in constant time by either querying Pw,a and Sw,a,

or by accessing values that have been precomputed in O(|w|) time.

In what follows, we will also be interested in computing ♯v,a[i] for a string v that

is less specific than a known string w.

Definition 16. Given a string w ∈ Γ+, we say that string v ∈ Γ|w| is less specific than

w (or, equivalently, that v is a sparsification of w) if w[i] ⊆ v[i] for all 0 ≤ i < |w|,

and if w[i∗] ⊂ v[i∗] in at least one position i∗.

When the maximum distance between two sparsified positions of v is bounded

by a sublinear function of |w|, computing the convolution of v by exploiting the

110

i1 i2

k

k'

k'

i1 i2

i2-1

i2-10

0

0

0 |w|-1

|w|-1

k'

i1+|w1| |w|-1

i1+|w1| |w|-1

i*

i*+k'

(d)

(e)

(f)

w

w

w1 w2

i j0

w

w

i j0
k

i+k-1

i+k-1

j0

j0
k

0

0
k

i+k-1

i+k-1

w

(a)

(b)

(c)

i1+k

i

Figure 41: Illustrating Lemma 8. (a) Reusing the convolution of a string w to
compute the convolution of a substring. (b,c) The prefixes of w used in Equation 9.
(d) Reusing the convolution of a string w to compute the convolution between two
substrings w1 and w2 of w. (e) The prefix of w used in Expression 10. (f) The suffix
of w used in Expressions 11 and 12.

111

convolution of w is asymptotically faster than computing the convolution of v with

no prior information.

Lemma 9. Let w be a string in (Σ∪{•})+, and let v ∈ (Σ∪{•})|w| be a sparsification

of w such that v[i] = w[i] for all 0 ≤ i < |w|, except for a set of positions V =

{i0, i1, . . . , ik−1} where w[ij] ⊂ v[i], 0 ≤ j < k. We can compute ♯v,a[i] from ♯w,a[i] for

all offsets i in overall O(|v| log(ik−1 − i0)) time.

Proof. For every a ∈ Σ, let {ia0, ia1, . . . , iaka−1} be the partition of V in which w[iaj] = a

for 0 ≤ j < ka. Project substring v[ia0, i
a
0 + 1, . . . , iaka−1] to a binary vector Va of

length iaka−1 − ia0 + 1 that is zero everywhere, except at positions iaj − ia0, at which it

equals one. Then, compute in O((iaka−1 − ia0) log(i
a
ka−1 − ia0)) time the convolution of

Va with itself, and store the result in vector Xa: thus, Xa[i] contains the number of

new gaps in v that are aligned with other new gaps in v in v ⊗i v. Similarly, project

w to a binary vector W of length |w|+ iaka−1 − ia0 + 1 that is zero everywhere, except

at positions of w that contain a gap, and at positions greater than or equal to |w|.

Compute in O(|v| log(iaka−1 − ia0)) time the convolution of W and Va, storing the

result in vector Ya: thus, Ya[i] stores the number of times in w ⊗i v[i
a
0, . . . , i

a
ka−1] a

new gap in v is aligned with a gap that already existed in w. Any offset i that is valid

for w is also valid for v, and the number of matching characters can be corrected in

constant time as follows:

♯v,a[i] = ♯w,a[i]−Xa[i]−Ya[i
a
0 + i]−Ya[i

a
0 − i]

An offset i that is not valid for w, on the other hand, could become valid for v.

Convolve vector Va with the binary vector Vb of length |v|+ iaka−1−ia0+1, that is one

only at positions i where v[i] = b 6= a. This convolution takes O(|v| log(iaka−1 − ia0))

time, and produces a vector Za that contains, at coordinate Za[i], the number of

(a, b)-mismatches in w⊗i−ia0
w that can be removed by putting gaps in w at positions

{ia0, ia1, . . . , iaka−1}. Since we know the original number of matches in w⊗i w for every

112

symbol in Σ and every invalid offset i, we can compute ♯v,a[i] for every a and invalid

offset i in constant time.

Lemma 9 can be easily generalized to strings in Γ+, and can be extended to pairs

of strings w1, w2 with different sparsifications, at cost O((|w1|+ |w2|) log(|w1|+ |w2|)).

Another natural way to constrain the sparsification of w is forcing sparsified positions

to occur inside a contiguous interval.

Lemma 10. Let w be a string in (Σ∪{•})+, and let v ∈ (Σ∪{•})|w| be a sparsification

of w such that v[i] = w[i] for all 0 ≤ i < |w|, except possibly at positions V =

{d, d+1, . . . , d+k−1} where v[d+i] = •, 0 ≤ i < k. After O(||w|| · |w|) preprocessing,

we can compute ♯v,a[i] for all i in O(|v|) time.

Proof. Let
−→
♯ w,a[x, y, z] be the number of positions in w[x, x+ z−1]⊗0w[y, y+ z−1]

that have an a in w[x, x+z−1] and a gap in w[y, y+z−1]. Such values can be computed

for w using convolution, then they can be propagated to all prefixes and suffixes of w

following a strategy similar to the proof of Lemma 7. The resulting matrices support

substring queries as described in Lemma 8, thus enabling the computation of the

following correction in constant time:

♯v,a[i] = ♯w,a[i]− ♯w,a[d+ i, d, k − i]−−→♯ w,a[d+ k − i, d+ k, i]−−→♯ w,a[d, d− i, i]

Lemma 10 can be seen as applying to subsequences of w whose elapsing positions

are gaps in w, and it can be easily generalized to handle pairs of strings with different

sparsifications, as well as strings in Γ+. In a practical implementation, Lemma 9 and

Lemma 10 are applied in cascade to a string w. Since there are multiple ways in

which w could be parsed into the tokens that are input to such lemmas, it is natural

to ask for the fastest configuration.

113

Lemma 11. Let w ∈ (Σ ∪ {•})+, and let v be a sparsification of w. The set of

applications of Lemmas 9 and 10 that leads to the fastest computation of ♯v,a[i] for all

1 ≤ i < |w| and a ∈ Σ can be determined in O(|w|3) time.

Proof. Both operations work on nonoverlapping substrings of w, thus let G = (V,
−→
E)

be a directed graph in which V = {w[i, j] : 0 ≤ i ≤ j < |w|}∪{α,Ω}, where α and Ω

are artificial nodes. Set (w[i1, j1], w[i2, j2]) ∈
−→
E iff i2 > j1 and (v[k] = •)⇒ (w[k] = •)

for j1+1 ≤ k < i2. Set (α,w[i
∗, j]) ∈ −→E for all j, where i∗ = min{i : v[i] = •∧w[i] 6=

•}. Finally, set (w[i, j∗],Ω) ∈ −→E for all i, where j∗ = max{j : v[j] = • ∧ w[j] 6= •}.

Assign to each vertex a cost: α, Ω, and all substrings of w that are not sparsified in v

have cost zero. The vertex associated with a sparsified substring w[i, j] has the cost

of applying Lemma 10 to w[i, j] if v[i, j] ∈ •+, and it has the cost of applying Lemma

9 to w[i, j] otherwise. The set of operations that leads to the fastest computation

of ♯v,a[i] is the (α,Ω) path with smallest cost in G, and can thus be computed in

O(|w|3 + |w|2 log |w|) time using Dijkstra’s algorithm as implemented in [60].

Lemma 11 can be useful in a scenario in which w is fixed and sparsifications are

queried online. Assuming that the structure of such sparsifications belongs to few

known types, we could compute the best sparsification scheme for each type offline,

and then just apply it online. Lemma 11 is particularly practical because it can use

the running time of concrete implementations of Lemmas 9 and 10.

Recall that our purpose is preprocessing a given text s ∈ Σ+ to compute the

expectation and variance of arbitrary patterns w ∈ Γ+ provided online. From now

on, we will restrict to a specific class of patterns, called motifs.

Definition 17 (Motif [122]). Given a string s ∈ Σ+, a motif is a string w ∈ Σ(Σ ∪

{•})∗Σ that occurs at least two times in s.

The number of distinct motifs in a string s grows exponentially with |s|. Among

the set of all motifs of s, a notable subset cannot be intuitively made “more specific”

114

without losing support.

Definition 18 (Maximal motif [122]). Let w be a motif occurring at positions L(w) =

{i0, i1, . . . , in−1} in a string s ∈ Σ+, n ≥ 2. We say that w is maximal in composition

if no other motif v 6= w of s has L(v) = L(w) and v[i] ⊆ w[i] for all i ∈ {0, . . . , |w| −

1}. We say that w is maximal in length if no other motif v 6= w of s is such that

|L(v)| = |L(w)| and w is a substring of v. We say that w is a maximal motif of s if

it is both maximal in composition and maximal in length.

Unfortunately, even the number of maximal motifs can grow exponentially in |s|.

A landmark result in pattern discovery states that the subset of tiling maximal motifs

is bounded by a linear function of |s| [122, 126].

Definition 19 (Tiling motif [126]). A maximal motif w of a string s is tiled is there

exist maximal motifs w0, w1, . . . , wn−1 of s (wi 6= w ∀ i) and integers d0, d1, . . . , dn−1

such that Ls(w) =
⋃n−1

i=0 Ls(wi) + di. We call tiling a maximal motif of s that is not

tiled.

The set of tiling motifs of s, together with their occurrence lists, contains sufficient

information to generate any other maximal motif in s and its occurrences, without

knowing s itself [122, 125]. It is thus standard to call this set a basis : in what follows,

we will denote it with Bs. We are interested here in the mechanism by which the

basis generates a motif of s.

Fact 2 ([127]). The motifs of s are all and only the strings in Σ(Σ∪{•})∗Σ that can

be obtained as follows: (1) take a substring of a tiling motif that starts and ends with

a character in Σ; (2) replace an arbitrary set of solid characters (excluding the first

and last ones) with gaps.

This fact, combined with the sparsification tools described above, will be the core

of our construction. Before describing the main result of this section, however, we

need some more notation.

115

Definition 20. Let s ∈ Σ+ be a string, and let Bs be its tiling basis. We say that a

string w ∈ (Σ ∪ {•})+ is gap-maximal if it is a right-maximal substring of Bs such

that w• does not occur in Bs.

Definition 21. The gap-factorization of a string w ∈ (Σ∪{•})+ induced by a string

s ∈ Σ+ is the decomposition w = u0•d0 u1•d1 · · ·•dk−2 uk−1, where each ui starts with a

solid character, and is the longest prefix of uiui+1 . . . uk−1 that matches a gap-maximal

substring v of Bs. By “matching” we mean that v[j] ⊆ ui[j] for all 0 ≤ j < |v|.

We are now ready to state our main theorem.

Theorem 3. Let s ∈ Σ+, let w be a motif of s provided online, and let w = u0 •d0

u1 •d1 · · · •dk−2 uk−1 be the gap-factorization of w induced by s. After a O(|s|3) offline

preprocessing of s, we can compute ♯w,a[i] for all i ∈ {1, . . . , |w|− 1} and all a ∈ Σ in

worst-case O
(

∑k−1
i=0

∑k−1
j=i+1(|ui|+ |uj|) log(|ui|+ |uj|) + k|w|

)

time.

Proof. Build Bs = {t0, t1, . . . , t|Bs|−1} in O(|s|2 log |s|) time [126]: the result is a set of

O(|s|) tiling motifs of length O(|s|) each [126]. For all i ∈ {0, . . . , |Bs| − 1}, compute

the convolution of ti with itself in O(|s|2 log |s|) time overall. Build matrices Pti,a

and Sti,a for every a ∈ Σ using Lemma 7, in overall
∑|Bs|

i=0 ||ti|| · |ti| ∈ O(|s|3) time

and space. At the same cost, build the matrices used by Lemma 10. Then, build in

O(|s|2) time the generalized suffix tree Ts of the strings in Bs, treating • as different

from every other symbol in Σ. In what follows, we will decorate the nodes of Ts with

additional information that will help answering online queries. For clarity, given a

tree T , we will denote with T [α] the value stored at node α of T . First, we initialize

a digital search tree Qs with height two. For every tiling motif ti ∈ Bs, let Ti be

its corresponding suffix tree. We set Ti[α] = j for every node α in Ti, where j is a

position at which the substring of ti associated with α occurs in ti. This can be done

in O(|s|) time. Then, we mark all nodes α of Ts that correspond to nodes of Ti in

O(|s2|) time, by traversing Ti and Ts top-down in parallel. Let α be a node of Ts

116

that corresponds to node ᾱ in Ti: we set Ts[α] = (i, Ti[ᾱ]). Similarly, let α and β be

two nodes of Ts that correspond to nodes ᾱ and β̄ in Ti, respectively. Then, we add

to Qs strings αβ and βα, and we store at the corresponding leaves of Qs the triplet

(i, Ti[ᾱ], Ti[β̄]). This can be done in O(|s|2) time. Ti is then discarded and we proceed

to the next i. The overall preprocessing of s thus takes O(|s|3) time and space.

Let now w be a motif of s provided online. Follow w in Ts: if w is a substring of

Bs, then it has a proper locus α in Ts, and Ts[α] is sufficient to compute ♯w,a[i] for all

i and a in O(|w|) time using Lemma 8. If w is not a substring of Bs, then there is a

position 0 ≤ i < |w| such that w[i] = • and • cannot be found at the current position

in the suffix tree. If the current position in the suffix tree lies inside an edge, we can

continue matching w until such a mismatch happens at a node of the tree, i.e. until

we find a node without symbol • among its children: this node corresponds to string

v0, the longest dot-maximal substring of Bs that matches prefix u0 of w. We then

continue reading from the next solid character of w starting from the root of Ts, thus

finding substrings v1, v2, . . . , vk of Bs that match u1, u2, . . . , uk, respectively. In the

worst case, the value of ♯ui,a[j] for 1 ≤ j < |ui| can be computed in O(|ui| log |ui|) time

from the information stored at the node of Ts that corresponds to vi, using Lemma 9.

To compute ♯w,a[i] we also need to know ♯ui,uj ,a[h] for 0 ≤ i < j < k. Let αi and αj be

the nodes of Ts that correspond to vi and vj , respectively. Fact 2 and the structure

of Ts guarantee that there is at least one string in Bs in which both vi and vj occur,

thus string αiαj must occur in Qs: using the information returned by Qs and Lemma

8, we can thus access ♯vi,vj ,a[h] in constant time for any h. The value of ♯ui,uj ,a[h] can

then be derived using natural adaptations of Lemmas 9 and 10 to pairs of strings.

This construction fails for patterns that are not motifs of s, because such patterns

are not capable of producing valid indexes in Qs. For example, assume that w is

not a motif of s because, at some position i, it has a solid character that cannot be

found at the corresponding position in Ts. Assume that we terminate the current

117

factor at this point, and that we restart reading w from the root of Ts, ending up

with a factorization u0u1 . . . uk−1, ui ∈ (Σ ∪ {•})+ for all i, not dissimilar to the one

described above. Since w is not the sparsification of a substring of a tiling motif of

s, we are not guaranteed that there is a tiling motif in which both ui and uj occur

for all 0 ≤ i < j < k: accessing Qs with the identifiers of the corresponding nodes in

Ts could thus return no result. The same happens for patterns that are too long to

be motif of s. Adapting our data structures to address this issue would likely require

Ω(|s|4) preprocessing, which tends to be impractical in most applications.

For arbitrary motifs, the worst-case performance of Theorem 3 is never asymp-

totically faster than computing the convolution of motif w with itself: for example,

if k is bounded by a constant, the worst-case running time is O(|w| log |w|); if k is

O(log |w|) the worst-case running time is O(|w|(log |w|)3); and if k is O(|w|), the

worst-case running time is O(|w|2). However, Theorem 3 does link the time to pro-

cess a motif w to the structure of w and of the text s. The following corollary, that

derives immediately from Theorem 3 and Lemma 10, shows that motifs with a specific

structure are amenable to particularly fast processing.

Corollary 4. Let s be a string, let w be a motif of s, let w = u0•d0 u1•d1 · · ·•dk−2 uk−1

be the gap-factorization of w induced by s, and let v0, v1, . . . , vk−1 be the corresponding

substrings of Bs that match the factors of w. A block in a factor ui, 0 ≤ i < k, is a

substring ui[d, d+ ℓ−1] such that (ui[j] = •)∧ (vi[j] 6= •) for j = d and j = d+ ℓ−1,

and such that ui[j] = • for d < j < d+ℓ−1. A block is maximal if it is not contained

in any other block. If bi, the number of maximal blocks in factor ui, is bounded by

a constant for all i, then we can compute ♯w,a[i] for all i ∈ {1, . . . , |w| − 1} and all

a ∈ Σ in O(k|w|) time after O(|s|3) preprocessing. Similarly, if k is bounded by a

constant, then we can compute ♯w,a[i] for all i ∈ {1, . . . , |w| − 1} and all a ∈ Σ in

O(|w|∑k−1
i=0 bi) time after O(|s|3) preprocessing.

Assuming that the number of maximal blocks in w is bounded by a constant is

118

probably not too restrictive in practice, since input motifs are likely to have a number

of maximal runs of gaps bounded by an application-dependent constant.

3.5 Conclusion

Speeding up the computation of statistical properties of gapped patterns is crucial in

large-scale molecular biology and text mining. The implicit technique used in Section

3.3 to bring the computation of the expectation and variance of a gapped pattern

w from O(2|w|) to O(|w|2) time has the desirable practical effect of limiting string

operations to the construction of selectors, thus keeping only matrix and vector oper-

ations in the kernels. This likely allows to take better advantage of existing software

libraries and hardware in a practical implementation of such equations. Lemma 6 is

likely to be applicable to other statistical measures as well, for example to the con-

ditional expectation and variance of a pattern given the occurrences of others (see

e.g. [26]), and to the expectation and variance of a set of patterns allowed to overlap

each other. Even the construction in Theorem 3 lends itself to multiple levels of op-

timization and tuning, both in the offline and in the online part. Implementing such

algorithms efficiently could thus be a first step towards the construction of a com-

prehensive, high-performance library for computing statistics on gapped patterns, a

much needed tool in all fields that deal with large unstructured texts.

The setup in Theorem 3 heavily relies on having string s available offline. Assum-

ing that even s is given online would be more realistic in applications like security

and logging, and would probably require a completely different set of data structures

and algorithms. The gap-factorization of a motif seems also a notion of indepen-

dent interest, and resonates with ideas in conditional algorithmic information and

data compression (e.g. [90]): it would be interesting to relate the time to compute

the variance of a motif to a measure of mutual algorithmic information between the

motif and the basis. Another natural extension of this work would be optimizing

119

the computation of the variance for maximal motifs : maximal motifs have no special

status in our current construction, mainly because they are not singled out by Fact 2.

However, maximal motifs in s could bear a relation to right-maximal substrings, or

to other saturated constructs, in Bs. Finally, embedding the efficient computation of

expectation and variance into existing algorithms that generate all motifs of a string

s from its tiling basis Bs (e.g. [123]) could also be a stimulating extension.

120

CHAPTER IV

CONCLUSION AND EXTENSIONS

This thesis explored a notion of information in biological sequences that, rather than

relating to negentropy or compressibility, is based on the dictionaries of all combi-

natorial substructures of a specific kind, and on suitable extremal subsets of these

dictionaries. This notion, rooted in subword complexity, comes particularly natural

with the current surge of alignment-free algorithms for genome and proteome com-

parison. We have focused on substructures whose length and sparsity have never

been explored before, i.e. subsequences and rigid gapped motifs with bounded mini-

mum density and unbounded length. Our measures highlight previously unseen laws

that relate subsequence composition to string length and to the maximum distance

between consecutive symbols, across a range of structurally and functionally diverse

polypeptides. Similar counts on extremely dense and extremely sparse gapped motifs

are shown to achieve state-of-the-art phylogeny reconstruction of mitochondrial pro-

teomes, implying that the composition of such structures encodes shared evolutionary

information.

Strings with gaps are likely to carry more phylogenetic information than short,

solid blocks in sequences subjected to a high rate of random mutation, and requiring

long-range interactions for stability or function: viral genomes would thus be ideal

candidates for testing whether motif-based distances can outperform string-based dis-

tances. The very fact that long and extremely sparse motifs carry phylogenetic signal

resonates with the medium-range pair correlations that have been measured in pro-

teomes up to length 800 [23], and with the long-range correlations up to hundred

121

of thousands amino acids apart, caused by gene duplication and genomic rearrange-

ments [173]. Medium-range correlations themselves are likely to be a trace of gene

duplication, while also capturing the three-dimensional structure of proteins. Such

correlations could be put at the core of a new alignment-free methodology, and their

fast computation at the genome scale would likely lend itself to the formulation of

interesting algorithms.

Another natural extension of our experiments would be to replace string-theoretic

gapped motifs with biologically significant gapped patterns. As mentioned in Section

2.1, the gapped patterns in prosite have been found to be selectively over- and under-

represented in proteomes and in the translated intergenic regions of some genomes,

but these preferences have not been applied to phylogeny construction yet [116, 184].

Intergenic occurrences of prosite patterns have been conjectured to be relics of

ancient proteins that have been deactivated by mutation [184]: if this is indeed the

case, taking into account such occurrences in phylogeny reconstruction could move

related taxa closer to their common ancestor, improving classification. The idea

of using biologically significant components in composition vectors is not new to

phylogeny: genomes have been represented as vectors indexed by cog clusters, and

containing the frequency (or just the presence or absence) of genes belonging to each

cluster (see, e.g., [99, 100, 111]). A similar approach has been applied to scop folds

and domains (see e.g. [29, 46, 63, 98, 99] for a small sampler), other natural “words” in

the protein dictionary of an organism. However, none of these studies has considered

gapped structures, and none of them has been validated on more than few dozen

proteomes.

Another key observation that emerges from our experiments is that phylogenetic

information is not equally distributed in the dictionary of motifs. Different parts of

a dictionary could even carry different signals: for example, preliminary experiments

with the two-stranded genomes of nine nodaviruses show that elementary motifs with

122

six or more solid characters group together strands that correspond to homologous

function, while both existing string-based algorithms and elementary motifs with four

solid characters or less separate such strands according to their phylogenetic origin

(Figure 42). This seems to resonate with the well-known multiplicity of codes that

are superimposed in biological sequences [129]. The experiments in Section 2.2.1

also show that we could limit ourselves to specific subsets of the dictionary of motifs

in phylogeny reconstruction. Using a limited set of compositional features has both

computational benefits in storage space and running time, and nontrivial implications

in molecular evolution. In case of sparse motifs, using a reduced set of features

is even imperative to scale to genomes. In this thesis, we considered systematic

ways to reduce the size of pattern dictionaries, like restricting density and number of

solid characters, isolating sets of compact generators with limited redundancy, and

resorting to the dictionary of the lzwa family of online compressors, that allows

a controlled proportion of gaps to be interspersed with solid characters. Measures

on the gapped and ungapped dictionaries of lzwa from test proteomes are seen

to reconstruct phylogenies of comparable quality to state of the art alignment-free

algorithms. By validating these experiments on a large scale, we expect lzwa to keep

achieving comparable quality to current k-mer approaches, while using significantly

fewer features and even disregarding large portions of the input genomes.

Even in case classification quality with lzwa proves consistently inferior to other

methods, this algorithm has the potential for a very fast implementation, and it could

thus be used to build a fast initial approximation to the correct phylogeny. Moreover,

the very structure of lzw prompts the development of further algorithmic extensions

that enable the extraction of more complex or biologically meaningful patterns at

approximately the same speed. Specifically, we could generalize lzw into a family

of pattern extraction algorithms with the following properties: first, they must read

the input string s ∈ Σ+ online, maintaining a constant number of dictionaries that

123

F
H
V
1

B
B
V
2

F
H
V
2

Bo
V2

NoV2

TPNNV2

S
JN
N
V
2

B
F
N
N
V
2

R
G
N
N
V
2

P
a
V
2

N
o
V
1

S
JN
N
V
1

BF
NN
V1

TPNNV1

RGNNV1

P
aV
1

B
o
V
1B
B
V
1

F
H
V
1

N
o
V
1

S
JN
N
V
1

BF
NN
V1

TPNNV1

RGNNV1

T
P
N
N
V
2

S
JN
N
V
2

B
F
N
N
V
2

R
G
N
N
V
2

P
a
V
2

B
B
V
2

FH
V2

NoV2
BoV2

P
aV
1

B
o
V
1B
B
V
1

F
H
V
1B
o
V
1

P
aV
1

BB
V2

FHV2

BoV2

N
oV
2

P
a
V
2

S
J
N
N
V
2 T

P
N
N
V
2

R
G
N
N
V
2

B
F
N
N
V
2

No
V1

SJNNV1

BFNNV1
T
P
N
N
V
1

R
G
N
N
V
1B
B
V
1

F
H
V
1B
o
V
1

P
aV
1

BB
V2

FHV2

BoV2

N
oV
2

P
a
V
2

S
J
N
N
V
2

R
G
N
N
V
2

T
P
N
N
V
2

B
F
N
N
V
2

No
V1

SJNNV1

RGNNV1
T
P
N
N
V
1

B
F
N
N
V
1B
B
V
1

2 1

Beta,1
Alpha,1

Beta,2

Alpha,2

1

1

1

1

2 2

2
2

Beta

Alpha

2 1

Alpha

Beta

Alpha

Beta

(a) (b)

(c) (d)

Figure 42: The composition of elementary motifs in nine nodaviruses. The genome
of each virus consists of two rna molecules: molecule one contains replication com-
ponents, molecule two encodes the coat protein. Alpha nodaviruses primarily infect
insects, Beta nodaviruses infect fish [80]. acs (panel c) and cvtree (panel d, k = 5)
separate Alpha from Beta, then divide rna1 from rna2. Elementary motifs with
4 solid characters or less support the same subdivision (panel a: 4 solid characters,
length between 48 and 50). However, elementary motifs with 5 solid characters gen-
erate random trees, and elementary motifs with 6, 7 and 8 solid characters separate
rna1 from rna2 and then Alpha from Beta, detecting a functional similarity that is
invisible with other methods (panel b: 6 solid characters, length between 45 and 50).
Data from ncbi.

124

are updated with a constant number of elementary operations per input character.

Second, they must be able to output a sequence σ of pointers to these dictionaries,

with the requirement that there is an algorithm D which returns s on input σ. Since

we are interested in pattern extraction rather than in compression, we do not require

|σ| ≤ |s| in practice, nor in a significant fraction of Σ+. Also, we do not require D

to perform in linear time, nor σ to be stored somewhere in practice: the compressed

string and the decoder are only there to ensure that all the information from s is

stored in the dictionaries of the encoder, and that this information can be reversibly

transformed to obtain s. A notable subset of this family of algorithms could, like

lzw, have a decoder that proceeds online, and that synchronizes with the encoder

after a constant number of steps. This setup brings to its logical extreme the notion

of using patterns extracted by a compressor to measure similarity, which is at the

core of algorithmic information.

The contributions of this thesis can be summarized as the following list of publications:

1. Cunial, F., “Faster variance computation for patterns with gaps,” Submitted.

2. Cunial, F. and Apostolico, A., “Phylogeny construction with rigid gapped motifs,” Jour-

nal of Computational Biology. Accepted.

3. Apostolico, A. and Cunial, F., “Sequence similarity by gapped lzw,” in Proceedings of

the Data Compression Conference 2011, pp. 343-352, March 2011.

4. Apostolico, A. and Cunial, F., “The subsequence composition of polypeptides,” Journal

of Computational Biology, vol. 17, no. 8, pp. 1011-1049, 2010.

5. Apostolico, A. and Cunial, F., “Probing the randomness of proteins by their subsequence

composition,” in Proceedings of the Data Compression Conference 2009, pp. 173-182, March

2009.

6. Apostolico, A. and Cunial, F., “The subsequence composition of a string”. Theoretical

Computer Science, vol. 410, no. 43, pp. 4360-4371, 2009.

125

REFERENCES

[1] Adami, C. and Cerf, N., “Physical complexity of symbolic sequences,” Phys-
ica D: Nonlinear Phenomena, vol. 137, pp. 62–69, 2000.

[2] Adjeroh, D. and Nan, F., “On compressibility of protein sequences,” in
Proceedings of the Data Compression Conference 2006, pp. 422–434, 2006.

[3] Amelio, A., Apostolico, A., and Rombo, S., “Image compression by 2D
motif basis,” in Proceedings of the Data Compression Conference 2011, pp. 153–
162, March 2011.

[4] Anfinsen, C., “The formation and stabilization of protein structure,” Journal
of Biochemistry, vol. 128, pp. 737–749, 1972.

[5] Apostolico, A., “Of lempel-ziv-welch parses with refillable gaps,” in Proceed-
ings of the Data Compression Conference 2005, DCC ’05, (Washington, DC,
USA), pp. 338–347, IEEE Computer Society, 2005.

[6] Apostolico, A., “Fast gapped variants for Lempel–Ziv–Welch compression,”
Information and Computation, vol. 205, no. 7, pp. 1012–1026, 2007.

[7] Apostolico, A., “Maximal words in sequence comparisons based on subword
composition,” in Algorithms and Applications, vol. 6060 of Lecture Notes in
Computer Science, pp. 34–44, Springer Berlin / Heidelberg, 2010.

[8] Apostolico, A., Bock, M., and Xu, X., “Annotated statistical indices
for sequence analysis,” in Proceedings of the Compression and Complexity of
Sequences 1997, Sequences ’97, (Washington, DC, USA), pp. 215–229, IEEE
Computer Society, 1997.

[9] Apostolico, A., Bock, M., and Lonardi, S., “Monotony of surprise and
large-scale quest for unusual words,” in Proceedings of the sixth annual inter-
national conference on Computational biology, RECOMB ’02, (New York, NY,
USA), pp. 22–31, ACM, 2002.

[10] Apostolico, A., Bock, M., Lonardi, S., and Xu, X., “Efficient detection
of unusual words,” Journal of Computational Biology, vol. 7, no. 1, pp. 71–94,
2000.

[11] Apostolico, A., Comin, M., and Parida, L., “Conservative extraction of
over-represented extensible motifs,” Bioinformatics, vol. 21, pp. i9–i18, 2005.

126

[12] Apostolico, A., Comin, M., and Parida, L., “Mining, compressing and
classifying with extensible motifs,” Algorithms for Molecular Biology, vol. 1,
2006.

[13] Apostolico, A., Comin, M., and Parida, L., “VARUN: Discovering exten-
sible motifs under saturation constraints,” IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, vol. 7, no. 4, pp. 752–726, 2010.

[14] Apostolico, A., Denas, O., andDress, A., “Efficient tools for comparative
substring analysis,” Journal of Biotechnology, vol. 149, no. 3, pp. 120–126, 2010.

[15] Apostolico, A. and Ehrenfeucht, A., “Efficient detection of quasiperiod-
icities in strings,” Theoretical Computer Science, vol. 119, no. 2, pp. 247–265,
1993.

[16] Apostolico, A. and Parida, L., “Compression and the wheel of fortune,”
in Proceedings of the Data Compression Conference 2003, pp. 143–152, March
2003.

[17] Apostolico, A. and Parida, L., “Incremental paradigms of motif discovery,”
Journal of Computational Biology, vol. 11, pp. 15–25, 2004.

[18] Apostolico, A. and Pizzi, C., “Monotone scoring of patterns with mis-
matches,” in In Proceedings of WABI 2004, pp. 87–98, Springer, 2004.

[19] Apostolico, A. and Tagliacollo, C., “Optimal offline extraction of ir-
redundant motif bases,” in Computing and Combinatorics (Lin, G., ed.),
vol. 4598 of Lecture Notes in Computer Science, pp. 360–371, Springer
Berlin/Heidelberg, 2007.

[20] Atallah, M., Gwadera, R., and Szpankowski, W., “Detection of signif-
icant sets of episodes in event sequences,” in Proceedings of the Fourth IEEE
International Conference on Data Mining, ICDM ’04, (Washington, DC, USA),
pp. 3–10, IEEE Computer Society, 2004.

[21] Atteson, K., “Calculating the exact probability of language-like patterns in
biomolecular sequences,” in ISMB-98 Proceedings, pp. 17–24, 1998.

[22] Ben-Hur, A. and Brutlag, D., “Remote homology detection: a motif based
approach,” Bioinformatics, vol. 19, no. suppl. 1, pp. i26–i33, 2003.

[23] Benedetto, D., Caglioti, E., and Chica, C., “Compressing proteomes:
the relevance of medium range correlations,” EURASIP Journal of Bioinfor-
matics and Systems Biology, p. 60723, 2007.

[24] Benson, G. and Waterman, M., “A method for fast database search for all
k-nucleotide repeats,” Nucleic Acids Research, vol. 22, pp. 4828–4836, 1994.

127

[25] Blaidsell, B., “A measure of the similarity of sets of sequences not requir-
ing sequence alignment,” in Proceedings of the National Academy of Sciences,
vol. 83, pp. 5155–5159, 1986.

[26] Blanchette, M. and Sinha, S., “Separating real motifs from their artifacts,”
Bioinformatics, vol. 17, pp. S30–S38, 2001.

[27] Brooks, Jr., F. P., “Three great challenges for half-century-old computer
science,” Journal of the ACM, vol. 50, no. 1, pp. 25–26, 2003.

[28] Broome, B. and Hecht, M., “Nature disfavors sequences of alternating polar
and nonpolar amino acids,” Journal of Molecular Biology, vol. 296, pp. 961–968,
2000.

[29] Caetano-Anollés, G. and Caetano-Anollés, D., “Universal sharing pat-
terns in proteomes and evolution of protein fold architecture and life,” Journal
of Molecular Evolution, vol. 60, pp. 484–498, 2005.

[30] Califano, A., “SPLASH: structural pattern localization analysis by sequential
histograms,” Bioinformatics, vol. 16, pp. 341–357, 2000.

[31] Cao, M., Dix, T., Allison, L., and Mears, C., “A simple statistical al-
gorithm for biological sequence compression,” in Proceedings of the Data Com-
pression Conference 2007, pp. 43–52, 2007.

[32] Carothers, J. M., Oestreich, S. C., Davis, J. H., and Szostak, J. W.,
“Informational complexity and functional activity of RNA structures,” Journal
of the American Chemical Society, vol. 126, pp. 5130–5137, 2004.

[33] Chase, P. J., “Subsequence numbers and logarithmic concavity,” Discrete
Mathematics, vol. 16, no. 2, pp. 123–140, 1976.

[34] Chattaraj, A. and Parida, L., “VARUN: an inexact-suffix tree based
algorithm for detecting extensible patterns,” Theoretical Computer Science,
vol. 335, 2005.

[35] Chor, B., Horn, D., Goldman, N., Levy, Y., andMassingham, T., “Ge-
nomic DNA k-mer spectra: models and modalities,” Genome Biology, vol. 10,
no. 10, p. R108, 2009.

[36] Chu, K. H., Qi, J., Yu, Z.-G., and Anh, V., “Origin and phylogeny of
chloroplasts revealed by a simple correlation analysis of complete genomes,”
Molecular Biology and Evolution, vol. 21, no. 1, pp. 200–206, 2004.

[37] Cilibrasi, R. and Vitányi, P., “Clustering by compression,” IEEE Trans-
actions on Information Theory, vol. 51, pp. 1523–1545, 2005.

128

[38] Cole, R. and Hariharan, R., “Verifying candidate matches in sparse and
wildcard matching,” in Proceedings of the thiry-fourth annual ACM Symposium
on Theory of Computing, STOC ’02, (New York, NY, USA), pp. 592–601, ACM,
2002.

[39] Colosimo, A. and De Luca, A., “Special factors in biological strings,” Jour-
nal of Theoretical Biology, vol. 58, pp. 29–46, 2000.

[40] Comin, M. and Parida, L., “Detection of subtle variations as consensus mo-
tifs,” Theoretical Computer Science, vol. 395, pp. 158–170, 2008.

[41] Comin, M. and Verzotto, D., “Classification of protein sequences by means
of irredundant patterns,” BMC Bioinformatics, vol. 11, no. S16, 2010.

[42] Comin, M. and Verzotto, D., “The irredundant class method for remote
homology detection of protein sequences,” Journal of Computational Biology,
vol. 18, no. 12, pp. 1–11, 2011.

[43] Darzentas, N. andRigoutsos, I., “Sensitive detection of sequence similarity
using combinatorial pattern discovery: a challenging study of two distantly
related protein families,” Proteins, vol. 61, pp. 926–937, 2005.

[44] Davidson, A., Lumb, K., and Sauer, R., “Cooperatively folded proteins
in random sequence libraries,” Nature Structural Biology, vol. 2, pp. 856–864,
1995.

[45] Davidson, A. and Sauer, R., “Folded proteins occur frequently in libraries
of random amino acid sequences,” PNAS, vol. 91, pp. 2146–2150, 1994.

[46] Deeds, E., Hennessey, H., and Shakhnovich, E., “Prokaryotic phylo-
genies inferred from protein structural domains,” Genome Research, vol. 15,
pp. 393–402, 2005.

[47] Doi, N., Kakukawa, K., Oishi, Y., and Yanagawa, H., “High solubility
of random-sequence proteins consisting of five kinds of primitive amino acids,”
Protein Engineering, vol. 18, pp. 279–284, 2005.

[48] Dong, Q., Wang, X., and Lin, L., “Application of latent semantic analysis
to protein remote homology detection,” Bioinformatics, vol. 22, no. 3, pp. 285–
290, 2006.

[49] Dufton, M., “Genetic code synonym quotas and amino acid complexity: cut-
ting the cost of proteins?,” Journal of Theoretical Biology, vol. 187, pp. 165–173,
1997.

[50] Edgar, R., “Local homology recognition and distance measures in linear time
using compressed amino-acid alphabets,” Bioinformatics, vol. 32, pp. 380–385,
2004.

129

[51] Edwards, R., Davey, N., and Shields, D., “SLiMFinder: a probabilis-
tic method for identifying over-represented, convergently evolved, short linear
motifs in proteins,” PLoS ONE, vol. 2, p. e967, 10 2007.

[52] Elzinga, C., Rahmann, S., and Wang, H., “Algorithms for subsequence
combinatorics,” Theoretical Computer Science, vol. 409, no. 3, pp. 394–404,
2008.

[53] Elzinga, C., “Complexity of categorical time series,” Sociological Methods and
Research, vol. 38, no. 3, pp. 463–481, 2010.

[54] Felsenstein, J., “PHYLIP (Phylogeny Inference Package) version 3.6.” Dis-
tributed by the author, 2005. Department of Genome Sciences, University of
Washington, Seattle.

[55] Ferragina, P., Giancarlo, R., Greco, V., Manzini, G., and Valiente,

G., “Compression-based classification of biological sequences and structures via
the Universal Similarity Metric: experimental assessment,” BMC Bioinformat-
ics, vol. 8, pp. 252–272, 2007.

[56] Ferreira, P. and Azevedo, P., “Evaluating deterministic motif significance
measures in protein databases,” Algorithms for Molecular Biology, vol. 2, no. 1,
p. 16, 2007.

[57] Fischer, M. and Paterson, M., “String-matching and other products,” tech.
rep., Massachusetts Institute of Technology, Cambridge, MA, USA, 1974.

[58] Flajolet, P., Guivarc’h, Y., Szpankowski, W., and Vallée, B., “Hid-
den pattern statistics,” in Proceedings of the 28th International Colloquium on
Automata, Languages and Programming,, ICALP ’01, (London, UK), pp. 152–
165, Springer-Verlag, 2001.

[59] Flaxman, A., Sorkin, G. B., and Harrow, A. W., “Strings with maxi-
mally many distinct subsequences and substrings,” Electronic Journal of Com-
binatorics, vol. 8, 2004.

[60] Fredman, M. and Tarjan, R., “Fibonacci heaps and their uses in improved
network optimization algorithms,” Journal of the ACM, vol. 34, pp. 596–615,
July 1987.

[61] Galas, D., Nykter, M., Carter, G., Price, N., and Shmulevich, I.,
“Biological information as set-based complexity,” IEEE Transactions on Infor-
mation Theory, vol. 56, pp. 667–677, February 2010.

[62] Gallé, M., Searching for compact hierarchical structures in DNA by means of
the Smallest Grammar Problem. PhD thesis, Université de Rennes 1, 2011.

130

[63] Gerstein, M., “Patterns of protein-fold usage in eight microbial genomes: A
comprehensive structural census,” Proteins: Structure, Function, and Bioinfor-
matics, vol. 33, no. 4, pp. 518–534, 1998.

[64] Giancarlo, R., Scaturro, D., and Utro, F., “Textual data compression
in computational biology: a synopsis,” Bioinformatics, vol. 25, pp. 1575–1586,
2009.

[65] Gould, C., “ELM: the status of the 2010 Eukaryotic Linear Motif resource,”
Nucleic Acids Research, pp. 1–14, 2009.

[66] Gratzer, G., General Lattice Theory. Birkhauser, 2nd ed., 1998.

[67] Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E.,
and Vandin, F., “MADMX – a strategy for maximal dense motif extraction,”
Journal of Computational Biology, vol. 18, no. 4, pp. 535–545, 2011.

[68] Gwadera, R., Atallah, M., and Szpankowski, W., “Reliable detection of
episodes in event sequences,” in Knowledge and Information Systems, pp. 67–
74, 2004.

[69] Gwadera, R., Atallah, M., and Szpankowski, W., Markov models for
identification of significant episodes, pp. 404–414. SIAM, 2005.

[70] Gwadera, R. and Crestani, F., “Discovering significant patterns in multi-
stream sequences,” in Proceedings of the 2008 Eighth IEEE International Con-
ference on Data Mining, ICDM ’08, (Washington, DC, USA), pp. 827–832,
IEEE Computer Society, 2008.

[71] Han, K. and Baker, D., “Recurring local sequence motifs in proteins,” Jour-
nal of Molecular Biology, vol. 251, pp. 176–187, 1995.

[72] Han, K., Bystroff, C., and Baker, D., “Three-dimensional structures
and contexts associated with recurrent amino acid sequence patterns,” Protein
Science, vol. 6, pp. 1587–1590, 1997.

[73] Hao, B. and Qi, J., “Procaryote phylogeny without sequence alignment: from
avoidance signature to composition distance,” Journal of Bioinformatics and
Computational Biology, vol. 2, pp. 1–19, 2004.

[74] Hart, R., Royyuru, A., Stolovitzky, G., and Califano, A., “System-
atic and fully automated identification of protein sequence patterns,” Journal
of Computational Biology, vol. 7, no. 3/4, pp. 585–600, 2000.

[75] Hategan, A. and Tabus, I., “Protein is compressible,” in Proceedings of the
6th Nordic Signal Processing Symposium, pp. 192–195, 2004.

[76] Hirschberg, D. and Regnier, M., “Tight bounds on the number of string
subsequences,” Journal of Discrete Algorithms, vol. 1, no. 1, pp. 123–132, 2000.

131

[77] Höhl, M., Rigoutsos, I., and Ragan, M., “Pattern-based phylogenetic dis-
tance estimation and tree reconstruction,” Evolutionary Bioinformatics Online,
vol. 2, pp. 359–375, 2006.

[78] Iliopoulos, C., Mohamed, M., Mouchard, L., Perdikuri, K., Smyth,
W., and Tsakalidis, A., “String regularities with don’t cares.,” Nordic Jour-
nal of Computing, pp. 40–51, 2003.

[79] Jiménez-Montaño, M., “On the syntactic structure of protein sequences and
the concept of grammar complexity,” Bulletin of Mathematical Biology, vol. 46,
pp. 641–659, 1984.

[80] Johnson, K., Johnson, K., Dasgupta, R., Gratsch, T., and Ball, L.,
“Comparisons among the larger genome segments of six nodaviruses and their
encoded RNA replicases,” Journal of General Virology, vol. 82, pp. 1855–1866,
2001.

[81] Jonassen, I., Collins, J., and Higgins, D., “Finding flexible patterns in
unaligned protein sequences,” Protein Science, vol. 4, pp. 1587–1595, 1995.

[82] Karlin, S., “Quantile distributions of amino acid usage in protein classes,”
Protein Engineering, vol. 5, pp. 729–738, 1992.

[83] Karlin, S. and Brendel, V., “Chance and statistical significance in protein
and DNA sequence analysis,” Science, vol. 257, no. 5066, pp. 39–49, 1992.

[84] Kása, Z., “On the d-complexity of strings,” Pure Mathematics and Applica-
tions, vol. 9, no. 1–2, pp. 119–128, 1998.

[85] Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A.,
Katayama, T., and Kanehisa, M., “AAindex: amino acid index database,
progress report 2008,” Nucleic Acids Research, vol. 36, pp. D202–D205, 2008.

[86] Kleffe, J. and Borodovsky, M., “First and second moment of counts of
words in random texts generated by Markov chains,” Bioinformatics/Computer
Applications in the Biosciences, vol. 8, pp. 433–441, 1992.

[87] Kolmogorov, A., “Three approaches to the quantitative definition of in-
formation,” International Journal of Computer Mathematics, vol. 2, no. 1–4,
pp. 157–168, 1968.

[88] Konorski, J. and Szpankowski, W., “What is information?,” in IEEE In-
formation Theory Workshop, ITW ’08., pp. 269–270, May 2008.

[89] Lapinsh, M., Gutcaits, A., Prusis, P., Post, C., Lundstedt, T., and
Wikberg, J., “Classification of G-protein coupled receptors by alignment-
independent extraction of principal chemical properties of primary amino acid
sequences,” Protein Science, vol. 11, pp. 795–805, 2002.

132

[90] Lempel, A. and Ziv, J., “On the complexity of finite sequences,” IEEE Trans-
actions on Information Theory, vol. 22, pp. 75–81, January 1976.

[91] Leslie, C. and Kuang, R., “Fast kernels for inexact string matching,” in Six-
teenth Annual Conference on Learning Theory and Seventh Kernel Workshop,
pp. 114–128, 2003.

[92] Li, M., Badger, J., Chen, X., Kwong, S., Kearney, P., and Zhang,

H., “An information-based sequence distance and its application to whole mi-
tochondrial genome phylogeny,” Bioinformatics, vol. 17, no. 2, pp. 149–154,
2001.

[93] Li, M., Chen, X., Li, X., Ma, B., and Vitányi, P., “The similarity met-
ric,” in Proceedings of the fourteenth annual ACM-SIAM symposium on discrete
algorithms, pp. 863–872, 2003.

[94] Li, T., Fan, K., Wang, J., and Wang, W., “Reduction of protein sequence
complexity by residue grouping,” Protein Engineering, vol. 16, pp. 323–330,
2003.

[95] Li, W., “The complexity of DNA,” Complexity, vol. 3, no. 2, 1997.

[96] Li, X., Obradovic, Z., Brown, C., Garner, E., and Dunker, A., “Com-
paring predictors of disordered protein,” Workshop on Genome Informatics,
vol. 11, pp. 172–184, 2000.

[97] Liao, H., Yeh, W., Chiang, D., Jernigan, R., and Lustig, B., “Protein
sequence entropy is closely related to packing density and hydrophobicity,”
Protein Engineering, vol. 18, pp. 59–64, 2005.

[98] Lin, J. and Gerstein, M., “Whole-genome trees based on the occurrence of
folds and orthologs: implications for comparing genomes on different levels,”
Genome Research, vol. 10, pp. 808–818, 2000.

[99] Lin, J., Qian, J., Greenbaum, D., Bertone, P., Das, R., Echols, N.,
Senes, A., Stenger, B., and Gerstein, M., “GeneCensus: genome com-
parisons in terms of metabolic pathway activity and protein family sharing,”
Nucleic Acids Research, vol. 30, pp. 4574–4582, 2002.

[100] Ling, L., Wang, J., Cui, Y., Li, W., and Chen, R., “Proteome-wide anal-
ysis of protein function composition reveals the clustering and phylogenetic
properties of organisms,” Molecular Phylogenetics and Evolution, vol. 25, no. 1,
pp. 101–111, 2002.

[101] Lingner, T. and Meinicke, P., “Remote homology detection based on
oligomer distances,” Bioinformatics, vol. 22, no. 18, pp. 2224–2231, 2006.

133

[102] Liu, A. and Califano, A., “Functional classification of proteins by pattern
discovery and top-down clustering of primary sequences,” IBM Systems Journal,
vol. 40, no. 2, pp. 379–393, 2001.

[103] Liu, A., Zhang, X., Stolovitzky, G., Califano, A., and Firestein,

S., “Motif-based construction of a functional map for mammalian olfactory
receptors,” Genomics, vol. 81, pp. 443–456, 2003.

[104] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and
Watkins, C., “Text classification using string kernels,” Journal of Machine
Learning Research, vol. 2, pp. 419–444, March 2002.

[105] Lonardi, S., Global detectors of unusual words: design, implementation, and
applications to pattern discovery in biosequences. PhD thesis, Purdue Univer-
sity, West Lafayette, IN, USA, 2001.

[106] Lupas, A., “On the evolution of protein folds: are similar motifs in different
protein folds the result of convergence, insertion, or relics of an ancient peptide
world?,” Journal of Structural Biology, vol. 134, pp. 191–203, 2001.

[107] Macchiato, M., Cuomo, V., and Tramontano, A., “Determination of the
autocorrelation orders of proteins,” European Journal of Biochemistry, vol. 149,
pp. 375–379, 1985.

[108] Matsumoto, T., Sadakane, K., and Imai, H., “Biological sequence com-
pression algorithms,” Genome Informatics, vol. 11, pp. 43–52, 2000.

[109] McHardy, A., Mart́ın, H., Tsirigos, A., Hugenholtz, P., and Rigout-

sos, I., “Accurate phylogenetic classification of variable-length DNA frag-
ments,” Nature Methods, vol. 4, no. 1, pp. 63–72, 2007.

[110] Monod, J., Chance and necessity. Collins London, 1972.

[111] Montague, M. and Hutchison, C., “Gene content phylogeny of her-
pesviruses,” Proceedings of the National Academy of Sciences, vol. 97, no. 10,
pp. 5334–5339, 2000.

[112] Murzin, A., Brenner, S., Hubbard, T., and Chothia, C., “SCOP: a
structural classification of proteins database for the investigation of sequences
and structures,” Journal of Molecular Biology, vol. 247, pp. 536–540, 1995.

[113] Nakai, K., Kidera, A., and Kanehisa, M., “Cluster analysis of amino acid
indices for prediction of protein structure and function,” Protein Engineering,
vol. 2, pp. 93–100, 1988.

[114] Nevill-Manning, C. and Witten, I., “Protein is incompressible,” in Pro-
ceedings of the Data Compression Conference 1999, p. 257, 1999.

134

[115] Nicodème, P., “Regexpcount, a symbolic package for counting problems on
regular expressions and words,” Fundamenta Informaticae, vol. 56, pp. 71–88,
October 2002.

[116] Nicodème, P., Doerks, T., and Vingron, M., “Proteome analysis based
on motif statistics,” Bioinformatics, vol. 18, pp. S161–S171, 2002.

[117] Nicodème, P., Salvy, B., and Flajolet, P., “Motif statistics,” Theoretical
Computer Science, vol. 287, pp. 593–617, 2002.

[118] Orengo, C., Michie, A., Jones, S., Jones, D., Swindells, M., and
Thornton, J., “CATH: a hierarchic classification of protein domain struc-
tures,” Structure, vol. 5, pp. 1093–1109, 1997.

[119] Otu, H. and Sayood, K., “A new sequence distance measure for phylogenetic
tree reconstruction,” Bioinformatics, vol. 19, pp. 2122–2130, 2003.

[120] Pande, V., Grosberg, A., and Tanaka, T., “Nonrandomness in protein
sequences: evidence for a physically driven stage of evolution,” PNAS, vol. 91,
pp. 12972–12975, 1994.

[121] Parida, L., Floratos, A., and Rigoutsos, I., “An approximation algo-
rithm for alignment of multiple sequences using motif discovery,” Journal of
Combinatorial Optimization, vol. 3, no. 2–4, pp. 247–275, 1999.

[122] Parida, L., Rigoutsos, I., Floratos, A., Platt, D., and Gao, Y., “Pat-
tern discovery on character sets and real-valued data: linear bound on irre-
dundant motifs and an efficient polynomial time algorithm,” in Proceedings
of the eleventh annual ACM-SIAM symposium on Discrete algorithms, SODA
2000, (Philadelphia, PA, USA), pp. 297–308, Society for Industrial and Applied
Mathematics, 2000.

[123] Parida, L., Rigoutsos, I., and Platt, D., “An output-sensitive flexible
pattern discovery algorithm,” in Proceedings of the 12th Annual Symposium
on Combinatorial Pattern Matching, CPM ’01, (London, UK), pp. 131–142,
Springer-Verlag, 2001.

[124] Pisanti, N., Carvalho, A., Marsan, L., and Sagot, M.-F., “RISOTTO:
Fast extraction of motifs with mismatches,” in LATIN 2006: Theoretical In-
formatics (Correa, J., Hevia, A., and Kiwi, M., eds.), vol. 3887 of Lecture
Notes in Computer Science, pp. 757–768, Springer Berlin / Heidelberg, 2006.

[125] Pisanti, N., Crochemore, M., Grossi, R., and Sagot, M.-F., “Bases of
motifs for generating repeated patterns with don’t cares,” tech. rep., University
of Pisa, 2003.

[126] Pisanti, N., Crochemore, M., Grossi, R., and Sagot, M.-F., “A basis
of tiling motifs for generating repeated patterns and its complexity for higher

135

quorum,” in Proceedings of the 28th Mathematical Foundations of Computer
Science Symposium, pp. 622–631, 2003.

[127] Pisanti, N., Crochemore, M., Grossi, R., and Sagot, M., “Bases of mo-
tifs for generating repeated patterns with wildcards,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 2, no. 1, pp. 40–50, 2005.

[128] Pizzi, C. and Bianco, M., “Expectation of strings with mismatches under
markov chain distribution,” in Proceedings of the 16th International Symposium
on String Processing and Information Retrieval, SPIRE ’09, pp. 222–233, 2009.

[129] Popov, O., Segal, D., and Trifonov, E., “Linguistic complexity of protein
sequences as compared to texts of human languages,” Biosystems, vol. 38, no. 1,
pp. 65–74, 1996.

[130] Przytycka, T., Srinivasan, R., and Rose, G., “Recursive domains in
proteins,” Protein Science, vol. 11, pp. 409–417, 2002.

[131] Ptitsyn, O. and Volkenstein, M., “Protein structure and neutral theory of
evolution,” Journal of Biomolecular Structure and Dynamics, vol. 4, pp. 137–56,
1986.

[132] Qi, J., Wang, B., andHao, B., “Whole proteome prokaryote phylogeny with-
out sequence alignment: a k-string composition approach,” Journal of Molecu-
lar Evolution, vol. 58, pp. 1–11, 2004.

[133] Rackovsky, S., “Hidden sequence periodicities and protein architecture,”
PNAS, vol. 95, pp. 8580–8584, 1998.

[134] Rahman, R. and Rackovsky, S., “Protein sequence randomness and
sequence-structure correlations,” Biophysical Journal, vol. 68, pp. 1531–1539,
1995.

[135] Reinert, G., Schbath, S., and Waterman, M., “Probabilistic and statisti-
cal properties of words: an overview,” Journal of Computational Biology, vol. 7,
pp. 1–46, 2000.

[136] Richardson, J., “The anatomy and taxonomy of protein structure,” Advances
in Protein Chemistry, vol. 34, pp. 167–339, 1981.

[137] Rigoutsos, I. and Floratos, A., “Combinatorial pattern discovery in bio-
logical sequences: the TEIRESIAS algorithm,” Bioinformatics, vol. 14, no. 1,
pp. 55–67, 1998.

[138] Rigoutsos, I., Floratos, A., Ouzounis, C., Gao, Y., and Parida, L.,
“Dictionary building via unsupervised hierarchical motif discovery in the se-
quence space of natural proteins,” Proteins, vol. 37, no. 2, pp. 264–277, 1999.

136

[139] Rigoutsos, I., Gao, Y., Floratos, A., and Parida, L., “Building dictio-
naries of 1D and 3D motifs by mining the unaligned 1D sequences of 17 archaeal
and bacterial genomes,” in Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, 1999.

[140] Rigoutsos, I., Huynh, T., Floratos, A., Parida, L., and Platt, D.,
“Dictionary-driven protein annotation,” Nucleic Acids Research, vol. 30, no. 17,
pp. 3901–3916, 2002.

[141] Robin, S. and Daudin, J.-J., “Exact distribution of word occurrences in
a random sequence of letters,” Journal of Applied Probability, vol. 36, no. 1,
pp. 179–193, 1999.

[142] Robin, S., Daudin, J.-J., and Bernard, R., “Exact distribution of the
distances between any occurrences of a set of words,” Annals of the Institute of
Statistical Mathematics, vol. 36, pp. 895–905, 2001.

[143] Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F., and Schbath, S.,
“Occurrence probability of structured motifs in random sequences,” Journal of
Computational Biology, pp. 761–774, 2002.

[144] Robinson, D. and Foulds, L., “Comparison of phylogenetic trees,” Mathe-
matical Biosciences, vol. 53, no. 1–2, pp. 131–147, 1981.

[145] Romero, P., Obradovic, Z., andDunker, A., “Folding minimal sequences:
the lower bound for sequence complexity of globular proteins,” FEBS Letters,
vol. 462, pp. 363–367, 1999.

[146] Romero, P., Obradovic, Z., Li, X., Garner, E., Brown, C., and
Dunker, A., “Sequence complexity of disordered protein,” Proteins, vol. 42,
pp. 38–48, 2000.

[147] Rost, B., “Did evolution leap to create the protein universe?,” Current Opin-
ion in Structural Biology, vol. 12, pp. 409–416, 2002.

[148] Rousu, J. and Jaakkola, T., “Efficient computation of gapped substring ker-
nels on large alphabets,” Journal of Machine Leaning Research, vol. 6, pp. 1323–
1344, 2005.

[149] S. Lifson and C. Sander, “Antiparallel and parallel β-strands differ in amino
acid residue preferences,” Nature, vol. 282, pp. 109–111, 1979.

[150] Sampath, G., “A block coding method that leads to significantly lower en-
tropy values for the proteins and coding sections of Haemophilus influenzae,”
in Proceedings of the IEEE Computer Society Conference on Bioinformatics,
p. 287, 2003.

137

[151] Schachtel, G., Bucher, P., Mocarski, E., Blaisdell, B., and Karlin,

S., “Evidence for selective evolution in codon usage in conserved amino acid
segments of human alphaherpesvirus proteins,” Journal of Molecular Evolution,
vol. 33, pp. 483–494, 1991.

[152] Schwartz, R. and King, J., “Frequencies of hydrophobic and hydrophilic
runs and alternations in proteins of known structure,” Protein Science, vol. 15,
pp. 102–112, 2006.

[153] Sculley, D. and Brodley, C., “Compression and machine learning: a new
perspective on feature space vectors,” in Proceedings of the Data Compression
Conference 2006, pp. 332–341, 2006.

[154] Sickmeier, M., Hamilton, J., LeGall, T., Vacic, V., Cortese, M.,
Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V., Obradovic,

Z., and Dunker, A., “DisProt: the database of disordered proteins,” Nucleic
Acids Research, vol. 35, pp. D786–D793, 2007.

[155] Sigrist, C., Cerutti, L., de Castro, E., Langendijk-Genevaux, P.,
Bulliard, V., Bairoch, A., and Hulo, N., “PROSITE, a protein domain
database for functional characterization and annotation,” Nucleic Acids Re-
search, vol. 38, pp. 161–6, 2010.

[156] Sims, G., Juna, S., Wu, G., and Kim, S., “Alignment-free genome com-
parison with feature frequency profiles (FFP) and optimal resolutions,” PNAS,
vol. 106, pp. 2677–2682, 2009.

[157] Sinha, S. and Tompa, M., “A statistical method for finding transcription fac-
tor binding sites,” in Proceedings of the International Conference on Intelligent
Systems for Molecular Biology, vol. 8, pp. 344–354, 2000.

[158] Sinha, S. and Tompa, M., “Discovery of novel transcription factor binding
sites by statistical overrepresentation,” Nucleic Acids Research, vol. 30, no. 24,
pp. 5549–5560, 2002.

[159] Sinha, S. and Tompa, M., “YMF: a program for discovery of novel tran-
scription factor binding sites by statistical overrepresentation,” Nucleic Acids
Research, vol. 31, no. 13, pp. 3586–3588, 2003.

[160] Sosinsky, A., Honig, B., Mann, R., and Califano, A., “Discovering tran-
scriptional regulatory regions in Drosophila by a nonalignment method for phy-
logenetic footprinting,” PNAS, vol. 104, no. 15, pp. 6305–6310, 2007.

[161] Stolovitzky, G. and Califano, A., “Statistical significance of patterns in
biosequences,” IBM research report, 1998.

[162] Strait, B. and Dewey, T., “The Shannon information entropy of protein
sequences,” Biophysical Journal, vol. 71, pp. 148–155, 1996.

138

[163] Stuart, G., Moffett, K., and Baker, S., “Integrated gene and species
phylogenies from unaligned whole genome protein sequences,” Bioinformatics,
vol. 18, no. 1, pp. 100–108, 2002.

[164] Stuart, G., Moffett, K., and Leader, J., “A comprehensive verte-
brate phylogeny using vector representations of protein sequences from whole
genomes,” Molecular Biology and Evolution, vol. 19, no. 4, pp. 554–562, 2002.

[165] Tsirigos, A. and Rigoutsos, I., “A new computational method for the
detection of horizontal gene transfer events,” Nucleic Acids Research, vol. 33,
no. 3, pp. 922–933, 2005.

[166] Tsirigos, A. and Rigoutsos, I., “Human and mouse introns are linked to
the same processes and functions through each genome’s most frequent non-
conserved motifs,” Nucleic Acids Research, vol. 36, no. 10, pp. 3484–3493, 2008.

[167] Ulitsky, I., Burstein, D., Tuller, T., and Chor, B., “The average com-
mon substring approach to phylogenomic reconstruction,” Journal of Compu-
tational Biology, vol. 13, pp. 336–350, 2006.

[168] van Helden, J., “Metrics for comparing regulatory sequences on the basis of
pattern counts,” Bioinformatics, vol. 20, pp. 399–406, 2004.

[169] Vinga, S., “Biological sequence analysis by vector-valued functions: revisiting
alignment-free methodologies for DNA and protein classification,” in Advanced
Computational Methods for Biocomputing and Bioimaging (Pham, T., Yan,
H., and Crane, D., eds.), New York: Nova Science Publishers, 2007.

[170] Vinga, S. and Almeida, J., “Alignment-free sequence comparison: a review,”
Bioinformatics, vol. 19, pp. 513–523, 2003.

[171] Wan, H. and Wootton, J., “A global compositional complexity measure for
biological sequences,” Computers and Chemistry, vol. 24, pp. 71–94, 2000.

[172] Weathers, E., Paulaitis, M., Woolf, T., andHoh, J., “Insights into pro-
tein structure and function from disorder-complexity space,” Proteins, vol. 66,
pp. 16–28, 2006.

[173] Weiss, O. and Herzel, H., “Correlations in protein sequences and property
codes,” Journal of Theoretical Biology, vol. 190, pp. 341–353, 1998.

[174] Weiss, O., Jiménez-Montaño, M., and Herzel, H., “Information content
of protein sequences,” Journal of Theoretical Biology, vol. 206, pp. 379–386,
2000.

[175] Welch, T., “A technique for high-performance data compression,” IEEE
Computer, vol. 17, no. 6, pp. 8–19, 1984.

139

[176] White, S., “Global statistics of protein sequences: implications for the ori-
gin evolution and prediction of structure,” Annual Review of Biophysics and
Biomolecular Structure, vol. 23, pp. 407–439, 1994.

[177] White, S. and Jacobs, R., “Statistical distribution of hydrophobic residues
along the length of protein chains,” Biophysical Journal, vol. 57, pp. 911–921,
1990.

[178] Wise, M., “0j.py: a software tool for low complexity proteins and protein
domains,” Bioinformatics, vol. 17, pp. 288–295, 2001.

[179] Wootton, J., “Sequences with unusual amino acid compositions,” Current
Opinion in Structural Biology, vol. 4, pp. 413–421, 1994.

[180] Wright, P. and Dyson, H., “Intrinsically unstructured proteins: re-
assessing the protein structure-function paradigm,” Journal of Molecular Bi-
ology, vol. 293, pp. 321–331, 1999.

[181] Wu, T., Bruke, J., and Davison, D., “A measure of DNA dissimilarity
based on the Mahalanobis distance between frequencies of words,” Biometrics,
vol. 53, pp. 1431–1439, 1997.

[182] Xiao, X., Shao, S., Ding, Y., Huang, Z., Huang, Y., and Chou, K., “Us-
ing complexity measure factor to predict protein subcellular location,” Amino
Acids, vol. 28, pp. 57–61, 2005.

[183] Xu, Z. and Hao, B., “CVTree update: a newly designed phylogenetic study
platform using composition vectors and whole genomes,” Nucleic Acids Re-
search, vol. 37, pp. W174–W178, 2009.

[184] Zhang, Z., Harrison, P., and Gerstein, M., “Digging deep for ancient
relics: a survey of protein motifs in the intergenic sequences of four eukaryotic
genomes,” Journal of Molecular Biology, vol. 323, pp. 811–822, 2002.

[185] Ziv, J. and Lempel, A., “A universal algorithm for sequential data compres-
sion,” IEEE Transactions on Information Theory, vol. IT-23, no. 3, pp. 337–343,
1977.

[186] Ziv, J. and Lempel, A., “Compression of individual sequences via variable-
rate coding,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–
536, 1978.

140

