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Abstract: In this paper, we consider the problem of routing multiple robots to service spatially
distributed requests at specified time instants. As a motivating example, we present the Robot Music Wall,
a musically instrumented surface where planar positions correspond to distinct notes of an instrument.
Multiple robots with the ability to traverse the wall can effectively “play” a piece of music by reaching
positions on the wall that correspond to the musical notes in the piece, at specified time instants. We show
that the multi-robot routing problem for servicing such spatio-temporal requests can be formulated as a
pure assignment problem with the resulting reduction in complexity. Moreover, we derive the minimum
number of robots required to service such requests.
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1. INTRODUCTION

Multi-robot routing is an important, well researched topic in
robotics. It requires multiple robots to visit a set of spatially
distributed locations for some purpose (e.g., delivery or ac-
quisition) with routes that optimize certain criteria (e.g., mini-
mization of total distance travelled, completion time, or energy
consumption). In this paper, we consider such a problem of
servicing spatial requests, with an added temporal constraint
that each request be serviced at a specified time instant. Our
problem is musically inspired in that it requires multiple robots
to reach a series of planar positions at specified time instants,
much like a musician that uses multiple fingers to play a series
of notes on an instrument at specified time instants. We show
that such a problem can be formulated as a pure assignment
problem, solvable in polynomial time. Moreover, we derive the
minimum number of robots required to solve it.

Many well known problems in combinatorial optimization can
be associated with multi-robot routing, as seen in the field of
operations research and theoretical computer science. For in-
stance, the multiple travelling salesman problem (m-TSP) con-
sists of determining a set of optimal routes form salesmen who
all start from and turn back to a home city (see Bektas (2006)).
Another example is the the well known vehicle routing problem
(VRP) (see Bodin et al. (1983) and Arsie et al. (2009)), which
is a constrained version of the m-TSP. The VRP concerns the
design of optimal delivery or collection routes for a fleet of
vehicles from one or many depots to a number of geographi-
cally scattered customers with known demands. The dynamic
counterpart of the VRP, known as the dynamic vehicle routing
problem, deals with online arrival of customer demands during
the operation (see Bullo et al. (2010), Smith et al. (2010), and
Pavone and Frazzoli (2010)). Variations like the capacitated
VRP (see Ralphs (2003)) and VRP with time windows (see
Solomon (1987)) incorporate practical constraints like vehicle
capacities and timely deliveries.

Applications of multi-robot routing include surveillance, search
and rescue, transportation on demand, and assembly. However,

Fig. 1. A rendering of the Robot Music Wall concept

to solve such problems is computationally expensive. In fact,
the VRP is proven to be NP-hard (see Karp (1972)). To over-
come this complexity, one can note that many times, applica-
tions require an ordered sequence in which requests be ser-
viced. For instance, an autonomous structure assembly system,
or a car manufacturing system, may require multiple robots
to service locations in a synchronized and sequenced manner.
We show that by encorporating such constraints in servicing
requests, a notion of directionality appears in the otherwise NP-
hard problem of routing, and thus it can be converted to an
assignment problem solvable in polynomial time.

2. A MOTIVATING EXAMPLE - THE ROBOT MUSIC
WALL

Consider a two-dimensional magnetic-based surface (wall)
with a grid of strings in different pitches that generate sound
when plucked, as illustrated in Figure 1. Distinct positions on
the wall correspond to distinct sound frequencies, i.e. distinct
notes of an instrument. Multiple robots with the ability to tra-
verse the wall can reach these positions and pluck at the strings
above them. In other words, we have a musically instrumented
wall where a robot can effectively “play” a musical note by
reaching its corresponding position on the wall and plucking
the string above it.



With this set-up, we can interpret any piece of music consisting
of a series of notes to be played at specified time instants,
as a series of corresponding spatio-temporal requests (timed
positions) on the music wall. We call such a series a Score,
which contains positions that must be reached at specified
time instants. Moreover, we might even require that multiple
positions are reached simultaneously, akin to a musician that
has to play multiple notes of an instrument simultaneously with
different fingers. By routing multiple robots to service such
timed positions, we can effectively “play” the piece of music
associated with them on the wall. Note that we consider a timed
position “serviced” the instant it is reached by a robot (i.e. we
neglect on-site servicing time).

3. PROBLEM DEFINITION

We let t1, t2, ..., tn denote n discrete time instants over which
the Score is defined, where t1 < ... < tn. Moreover, we let
Pi denote the corresponding set of planar positions that require
simultaneous servicing at time ti. Each position in this set is
denoted by Pi,α, where α ∈ {1, ..., |Pi|} (the symbol |.| denotes
cardinality), i.e.,

Pi = {Pi,α |α ∈ {1, ..., |Pi|}}, ∀i ∈ {1, ..., n} (1)

We let K be the maximum number of positions that require
simultaneous servicing at any time instant in T , i.e.,

K = max
i∈{1,...,n}

|Pi| (2)

Definition 1. Let the Score, denoted by Sc, be the set of all
timed positions that the robots must reach. We express such
timed positions as (position, time) pairs in the Score, i.e.,

Sc = {(Pi,α, ti) | i ∈ {1, ..., n}, α ∈ {1, ..., |Pi|}} (3)

Moreover, for a given set of r robots, denoted by R =
{1, ..., r}, we let P0 = {P0,α |α ∈ {1, ..., |P0|}} be the set
of their initial positions, defined at some initial time instant t0.

Notice that if we have fewer robots than the maximum num-
ber of positions requiring simultaneous servicing in the Score,
given by K, then all K positions cannot be reached simultane-
ously. Thus, we must have at least K robots, i.e. r ≥ K.

We are interested in the problem of optimally routing these
robots to reach the timed positions contained in the Score. By
optimal, we mean a routing plan that minimizes the total dis-
tance travelled by the robots. Moreover, we want our solution
to act at a high enough level of abstraction so that the dynamics
of the robots do not have to be explicitly accounted for. This
construction must be inherently hybrid in that it connects the
continuous dynamics to a discrete solution. Hence, we assume
single integrator dynamics for every robot, given by ẋi = ui.
Since for such systems, minimum distance paths are straight
lines and minimum energy motions have constant velocities,
we let robots move between assigned positions in straight line
paths with constant velocities that ensure their timely arrival.

Now, suppose we define a function A : R → 2Sc that maps
the robots in R to sets of timed positions in the Score. We
call this function a feasible mapping if it satisfies the following
conditions,⋃

p∈R
A(p) = Sc (4)

A(p) ∩A(q) = ∅ ∀p, q ∈ R, p 6= q (5)
(Pi,α, ti), (Pj,β , tj) ∈ A(p)⇒ i 6= j if α 6= β (6)

Equation (4) states that every timed position in the Score is
assigned (or in context to the music wall, every note is played).
Equation (5) states that no two robots are assigned the same
timed position (i.e. no two robots play the same note at the same
time). Equation (6) states that a robot is not assigned more than
one position at a given time instant (i.e. a robot does not play
more than one note at a given time instant).

Given such a feasible mapping, the path of every robot is
determined by its assigned set of timed positions, traversed in
increasing order of specified time instants. Since robots move
between assigned positions in straight line trajectories, the total
distance traversed by all robots can be determined. Moreover,
if this total distance is minimum, then we call such a mapping
an optimal mapping, denoted by A?.

Furthermore, we can interpret the path of any robot as a series
of individual assignments between timed positions assigned to
that robot, directed in increasing order of specified time in-
stants. Hence, the information contained in A? can be encoded
in a different function that explicitly describes such individual
assignments. We elaborate on this in subsequent paragraphs,

Definition 2. Let the Assignees, denoted by As, be the set
containing all timed positions in the Score specified before the
last time instant tn, in addition to all timed initial positions of
the robots. We denote this by,
As = {(Pi,α, ti) | i ∈ {0, ..., n− 1}, α ∈ {1, ..., |Pi|}} (7)

Note that r ≥ K implies that |As| ≥ |Sc|.
We let π : As → Sc be a function that maps between
timed positions in the Assignees and the Score. If there exists
some As′ ⊆ As, such that firstly, the restricted function
π|As′ : As′ → Sc is a bijection, and secondly, π((Pi,α, ti)) =
(Pj,β , tj) ∈ Sc′ ⇒ tj > ti for all (Pi,α, ti) ∈ As′, then
we call this restricted function a feasible assignment. The first
condition ensures that every timed position in the Score is
assigned, no two timed positions in the Assignees map to the
same timed position in the Score, and no two timed positions
in the Score are assigned to the same timed position in the
Assignees. The second condition enforces directionality within
each individual assignment, i.e. it states that a position in the
Score specified at time instant tj must be assigned to a position
in the Assignees specified at some time instant ti earlier than tj
i.e. ti < tj . We call this the directionality constraint.

In addition to being feasible, if the total distance associated with
the individual assignments in π|As′ is minimum (akin to saying
that the total distance travelled by all the robots is minimum),
then we call it an optimal assignment, denoted by π?. Note that
π? is restricted to the subset As′ ∈ As because the condition
|As| ≥ |Sc forces (|As| − |Sc|) number of timed positions in
As to go unassigned, in order to ensure π? is indeed a bijection.

Hence, for a given (Sc,R, P0), we see that the optimal assign-
ment π? encodes all information contained in the corresponding
optimal mapping A?. To express A? in terms of π?, it will
be convenient to apply π? repeatedly. We use the following
notatation to express this fact,

(π?)0(a) = a

(π?)k(a) = (π?(π?)k−1(a))

where k ∈ N, a ∈ As′.
Note that for a robot p ∈ R, if its initial timed position
(P0,p, t0) is not in As′, then clearly, it is not assigned to
any timed position in the Score. Consequently, the path of p



in the corresponding optimal mapping A? is an empty set.
However, if the initial position of p is indeed in As′, then we
can determine its corresponding path by applying π? repeatedly
on (P0,p, t0). The number of times we must apply π? is given
by kp ∈ {1, ..., |Sc|}, where (π?)kp−1((P0,p, t0)) ∈ As′ ∧
(π?)kp((P0,p, t0)) 6∈ As′. Here, (π?)kp denotes the terminal
timed position in the path of robot p. Thus, we can construct
A? as follows,

A?(p) =


kp⋃
k=1

{(π?)k((P0,p, t0))} if (P0,p, t0) ∈ As′

∅ otherwise

, ∀p ∈ R (8)

Consequently, we can search for π? rather thanA?. Thus, in the
remaining part of this paper, we focus on the problem of finding
the optimal assignment π? for a given triple (Sc,R, P0).

3.1 Formal definition of the problem

Given (Sc,R, P0), and a cost function C : (As × Sc) → R
where C((Pi,α, ti) ∈ As, (Pj,β , tj) ∈ Sc) = ||Pj,β − Pi,α||,
i.e. the cost of assigning a timed position in As to a timed
position in Sc equals the distance between the two positions,
the objective is to find a feasible assignment π|As′ : As′ → Sc,
As′ ⊆ As such that the following function is minimized,∑

(Pi,α,ti)∈As′
C((Pi,α, ti), π((Pi,α, ti)) (9)

Equation (9) represents the total distance associated with the in-
dividual assignments in π|As′ . Hence, the resulting assignment
is an optimal assignment, denoted by π?.

For convenience, we define index sets for i and j as I ,
{0, ..., n − 1} and J , {1, ..., n}, representing the index sets
for time instants at which positions are specified in As and Sc
respectively. Also, we define Ai , {1, ..., |Pi|}, i ∈ {0, ..., n}
as the index set for α and β.

By defining a mapping l(i, α, j, β), we can rewrite the problem
as a linear program,

min
l

∑
i∈I

∑
α∈Ai

n∑
j=i+1

∑
β∈Aj

||Pj,β − Pi,α|| l(i, α, j, β) (10)

subject to:
l(i, α, j, β) ∈ {0, 1} (11)
j−1∑
i=0

∑
α∈Ai

l(i, α, j, β) = 1, ∀ j ∈ J , β ∈ Aj (12)

n∑
j=i+1

∑
β∈Aj

l(i, α, j, β) ≤ 1, ∀ i ∈ I, α ∈ Ai (13)

where l(i, α, j, β) represents the individual assignment of
(Pi,α, ti) ∈ As to (Pj,β , tj) ∈ Sc, and is 1 if the assign-
ment is done, and 0 otherwise. The resulting l gives us the
corresponding optimal assignment π? : As → Sc, where
l(i, α, j, β) = 1 ⇐⇒ π?((Pi,α, ti)) = (Pj,β , tj). Equations
(12) and (13) ensure feasibility of this assignment, while (10)
ensures that the total distance associated with the individual
assignments is minimum.

In combination with the distance travelled, one can also asso-
ciate with π?, the maximum velocity required by the robots to
execute the assigned trajectories. This will become important
as we, later on, cap the velocities of the individual robots.

Definition 3. The velocity of an optimal assignment π?, given
by V (π?) is,

V (π?) =

 max
i∈I,α∈Ai
j∈J ,β∈Aj

{
||Pj,β − Pi,α||

tj − ti
l(i, α, j, β)

} (14)

4. ASSIGNMENT METHOD

The problem in (3.1) is a modified version of the classic
linear sum assignment problem (LSAP) (see Derigs (1985) and
Martello and Toth (1987)) that concerns the following: given
two equal sized sets P and Q with some non-negative cost
function C : (P × Q) → R, the objective is to find a complete
assignment, i.e. a bijection S : P → Q that minimizes the
function

∑
a∈P C(a, S(a)).As and Sc in (3.1) correspond to P

and Q in the LSAP, and the feasible assignment π corresponds
to S. Note that the problem in (3.1) is a slight modification
of the LSAP, since the LSAP insists on P and Q being equal
sized while (3.1) insists on |As| ≥ |Sc|. Moreover, in the LSAP,
there exist no forbidden individual assignments between P and
Q, contrary to (3.1), where individual assignments between As
and Sc that violate the directionality constraint are forbidden.
However, we can apply algorithms developed for solving the
LSAP towards solving the problem in (3.1) by incorporating
certain modifications that we discuss later in this section.

Many algorithms, both sequential and parallel, have been devel-
oped for solving the LSAP (see survey paper by Martello and
Toth (1987)), ranging from primal-dual combinatorial algo-
rithms to simplex-like methods, cost operation algorithms, for-
est algorithms, and relaxation approaches. Although immaterial
to the underlying theory, in this paper, we choose to use the first
polynomial-time primal-dual algorithm developed for solving
the LSAP, called the Hungarian Method (see Kuhn (1955)).
Note that the fastest version of the Hungarian Method involving
N stages is O(N3) (see implementation in Lawler (1976)).

The Hungarian Method operates on a square cost matrix C =
[ci,j ] generated from the given cost function C : (P ×Q)→ R,
where ci,j is the cost of assigning the ith element in P to the jth
element in Q. In order to use the Hungarian Method towards
solving the problem in (3.1), we generate a similar cost matrix
from the cost function C : (As × Sc) → R, by constructing
a matrix C of size |As| × |Sc|, where the rows and columns
in C represent timed positions in As and Sc respectively. We
partition C into n2 blocks, where a block is denoted by Ci,j ,
i ∈ I, j ∈ J . Ci,j is in turn a submatrix of size |Ai| × |Aj |,
where the rows in Ci,j represent timed positions specified at
ti in As and columns represent timed positions specified at tj
in Sc. Now that the structure of C is established, we denote
an element in C by ciα,jβ , where ciα,jβ denotes the element
(α, β), α ∈ Ai, β ∈ Aj , in the block Ci,j in C. Moreover, we
let ciα,jβ = C((Pi,α, ti) ∈ As, (Pj,β , tj) ∈ Sc). We call C the
cost matrix, and denote it by C = [ciα,jβ ].

Notice that C is not a square matrix. Hence, in order to use the
Hungarian Method towards solving the problem in (3.1), we
need to incorporate some changes in C. We introduce (|As| −
|Sc|) dummy positions as targets (in addition to the timed
positions in the Score) in order to create a square cost matrix.
For convenience, we assume that these dummy positions are
specified at time instant tn+1. We denote the set of such dummy
positions by Pn+1 = {Pn+1,β |β ∈ An+1} where An+1 ,
{1, 2, ..., (|As| − |Sc|)}. Moreover, we let the cost associated



with reaching these dummy positions be zero. In other words,
we append (|As| − |Sc|) number of columns with zero cost to
the cost matrix, thereby creating a square cost matrix. We define
Sc′ to be the set containing the Score in addition to the dummy
positions, i.e., Sc′ = Sc ∪ {(Pn+1,β , tn+1) |β ∈ An+1}.
The Hungarian Method operates on such a square cost ma-
trix to search for a one-to-one correspondence (assignment)
between its row and column elements (assignees and targets
respectively), such that the assignment has a minimum cost.
In the case of the LSAP, it always terminates with a complete
assignment, i.e. a bijective functionH : P → Qwith minimum
cost, denoted by cost(H). More importantly, there exist no
targets in Q that go unassigned. However, in the case of the
problem in (3.1), there exist forbidden individual assignments
between As and Sc′ that need to be taken into account. The
way these are typically dealt with within the framework of the
Hungarian Method, is to associate a prohibitively large cost M
with each of them (see for example Burkard et al. (2009)). We
denote this modified cost matrix by Ĉ = [ĉiα,jβ ], where,

ĉiα,jβ =



||Pj,β − Pi,α||, i ∈ I, α ∈ Ai,
j ∈ {i+ 1, ..., n}, β ∈ Aj

M, i ∈ I, α ∈ Ai,
j ∈ {1, ..., i}, β ∈ Aj

0, i ∈ I, α ∈ Ai,
j = n+ 1, β ∈ Aj

(15)

The symbol ? represents valid assignments, whileM represents
forbidden ones. If M is large enough, then the Hungarian
Method finds a complete assignment between As and Sc′ that
avoids forbidden individual assignments, if such an assignment
exists. And, as will be shown in subsequent paragraphs, such
an assignment does in fact exist. We denote the assignment by
Hr : As→ Sc′, where r refers to the number of robots.

4.1 Existence of a solution

Since the cost associated with reaching a dummy position in
Sc′ is zero, Hr always contains (|As| − |Sc|) number of in-
dividual assignments between timed positions in the Assignees
and dummy positions. Thus, all timed positions in the Score are
reached, i.e. Sc ⊆ range(Hr), if and only if Hr is a com-
plete assignment that avoids forbidden individual assignments.
Moreover, given such a complete assignment, we can construct
an optimal assignment Hr|As′ : As′ → Sc, where As′ ⊆ As is
the set of timed positions in the Assignees that are not assigned
to dummy positions. We denote such an assignment by H?

r
(Hr|As′ is a bijection that satisfies the directionality constraint,
with minimum associated cost).

Theorem 1. Given the problem in (3.1), the Hungarian Method
operates on its associated cost matrix Ĉ, given by (15), to
produce an optimal assignment H?

r .

Proof. See Appendix A.

Corollary 1.

cost(H?
r ) = cost(Hr) ≤ trace(Ĉ)

Proof. In the proof of Theorem 1, we introduce a bijective
function ωr : As → Sc′ that contains individual assignments
between all timed positions in As and Sc′ that have a corre-
sponding diagonal cost entry in the cost matrix Ĉ. Moreover,

we show that ωr is a complete assignment that avoids forbid-
den individual assignments. Notice that cost(ωr) = trace(Ĉ).
Also, from Theorem 1, we know that the Hungarian Method
produces a complete assignment Hr that avoids forbidden in-
dividual assignments, which in turn produces the optimal as-
signmentH?

r (after removing assignments to dummy positions).
Since the cost associated with reaching dummy positions is
zero, cost(H?

r ) = cost(Hr). Moreover, since the Hungarian
Method produces an assignment with minimum cost, no other
assignment can have a lower associated cost. Thus, cost(H?

r ) =

cost(Hr) ≤ cost(ωr) = trace(Ĉ).

Theorem 2. The minimum number of robots, given by r?,
required to ensure that a solution exists to the problem in
(3.1) equals the maximum number of positions that require
simultaneous servicing in the Score (K), i.e.,

r? = min
r
{Sc ⊆ range(Hr)} = K (16)

Proof. If r < K, then there are not enough robots to ensure
that all K positions (specified at some time instant tj , j ∈ J ),
are reached simultaneously. Moreover, from Theorem 1, we
know that for r ≥ K, there exists a solution to the problem in
(3.1) that can be found through the Hungarian Method. Hence,
r? = K.

5. CONSTRAINED VELOCITY CASE

So far, we have assumed that robots do not have any constraints
on their velocities. However, a more realistic approach would
be to introduce, say, a maximum velocity v̂ that the robots
cannot exceed while driving between assigned timed positions.
We incorporate this constraint in the problem in (3.1) (uncon-
strained velocity case) to define its corresponding constrained
velocity version as follows,

min
L

∑
i∈I

∑
α∈Ai

n∑
j=i+1

∑
β∈Aj

||Pj,β − Pi,α|| l(i, α, j, β) (17)

subject to:
l(i, α, j, β) ∈ {0, 1} (18)
j−1∑
i=0

∑
α∈Ai

l(i, α, j, β) = 1, ∀ j ∈ J , β ∈ Aj (19)

n∑
j=i+1

∑
β∈Aj

l(i, α, j, β) ≤ 1, ∀ i ∈ I, α ∈ Ai (20)

||Pj,β − Pi,α||
tj − ti

< v̂ ⇐⇒ l(i, α, j, β) = 1 (21)

Using a similar approach to before, we construct the associated
cost matrix for the constrained velocity problem, denoted by

ĉviα,jβ =



||Pj,β − Pi,α||,
||Pj,β − Pi,α||

tj − ti
≤ v̂,

i ∈ I, α ∈ Ai
j ∈ {i+ 1, ..., n}, β ∈ Aj

M, i ∈ I, α ∈ Ai
j ∈ {1, ..., i}, β ∈ Aj

0, i ∈ I, α ∈ Ai
j = n+ 1, β ∈ Aj

M,
||Pj,β − Pi,α||

tj − ti
> v̂,

i ∈ I, α ∈ Ai
j ∈ {i+ 1, ..., n}, β ∈ Aj

(22)



Fig. 2. A simulated Piano Wall with 36 coordinates (light colored points) representing the notes across three octaves of a piano
(left), four snapshots of the unconstrained velocity case: r = 3, r? = 2 (center), and four snapshots of the constrained velocity
case: v̂ = 3, r = 2, r? = 5 (right). Note that in the constrained velocity case, r < r?. Hence, (r? − r) = 3 additional robots
were deployed from the base stations to ensure no timed position went unassigned

Note that we include individual assignments that not only
violate the directionality constraint, but also the maximum
velocity constraint, in the set of forbidden assignments. As
always, we denote such assignments by M in the cost matrix.

Recall that if M is large enough, the Hungarian Method finds a
complete assignment betweenAs and Sc′ that avoids forbidden
individual assignments, if such an assignment exists. In the
unconstrained velocity case, we saw that such an assignment
does in fact exist. However, this is not guaranteed in the
constrained velocity case, since there may be timed positions
in Sc that are at distances so large from all timed positions in
As that they simply cannot be reached without causing a robot
to violate the given maximum velocity constraint.

In general, if the complete assignment at the termination of the
Hungarian Method contains forbidden individual assignments,
we deal with this by simply removing them from the complete
assignment, thus obtaining an incomplete one. We let a ⊆
As and s ⊆ Sc′ be the sets of timed positions in As and
Sc′ respectively that correspond to such forbidden individual
assignments. Consequently, we denote the resulting assignment
by the bijective function Ĥr : As \ a→ Sc′ \ s.

5.1 Existence of a solution

Similar to the unconstrained velocity case, all timed positions
in the Score are reached, i.e. Sc ⊆ range(Ĥr), if and only if
the Hungarian Method terminates with a complete assignment
Ĥr : As → Sc′ that avoids forbidden individual assignments
(a = s = ∅). Moreover, given such a complete assignment,
we can construct an optimal assignment Ĥr|As′ : As′ → Sc,
where As′ ⊆ As is the set of all timed positions in As
that are not assigned to dummy positions. We denote such an
assignment by Ĥ?

r .

Theorem 3. Given the constrained velocity problem, the Hun-
garian Method operates on its associated cost matrix ĈV , given
by (22), to produce an optimal assignment Ĥ?

r if the velocity of
the optimal assignment H?

r in the corresponding unconstrained
velocity case does not violate the maximum velocity v̂, i.e.,

V (H?
r ) ≤ v̂ ⇒ Sc ⊆ range(Ĥr)

Proof. If the velocity of the optimal assignment H?
r does not

exceed the maximum velocity v̂, it implies that none of the
costs associated with the individual assignments in H?

r equal
M in the cost matrices for both unconstrained and constrained

velocity cases. In other words, the Hungarian Method finds the
exact same optimal assignment for both cases, i.e. H?

r = Ĥ?
r ,

which in turn implies that Sc ⊆ range(Ĥr).

Note that for a given v̂, the existence of Ĥ?
r depends on the

intial positions of the robots. Thus, in order to remove this
dependence, we assume the following,

Assumption 1. The starting position of every robot is chosen
such that it can reach any timed position in the Score without
violating the maximum velocity constraint.

Theorem 4. The minimum number of robots, denoted by r?,
needed to ensure that a solution exists to the constrained veloc-
ity problem is given by,

r? = min
r
{Sc ⊆ range(Ĥr)} = K + |As| − |range(ĤK)|

where K equals the maximum number of positions that require
simultaneous servicing in the Score.

Proof. Recall that we insist on r ≥ K. However, a solution to
the constrained velocity problem is not guaranteed to exist with
a minimum of K robots, since the number of timed positions
in the Score that go unassigned depends on the maximum
velocity v̂ of the robots. Intuitively, we see that the two hold
an inverse dependence (for a larger v̂, fewer timed positions
go unassigned and so on). Moreover, for every timed positions
that goes unassigned, we require a new robot that can reach
that position. Hence, in order to calculate the minimum number
of robots needed, we restrict r to K and apply the Hungarian
Method to the associated cost matrix ĈV given by (22). If we
let z be the total number of unassigned timed positions in the
Score, then,

z = |Sc| − (|range(ĤK)| − (|As| − |Sc|)) (23)
where (|As|−|Sc|) denotes the number of dummy positions that
are always assigned. Hence, using (23), the minimum number
of robots, r? = K + z = K + |As| − |range(ĤK)|.

6. SIMULATIONS

To demonstrate the musically inspired problem central to this
paper, we simulated an example of a wall in MATLAB, instru-
mented to sound like a piano (see Figure 4.1 (left)) Our goal
was to make multiple robots (simulated as 2-d light (green)
colored points in Figure 4.1 (center, right)) perform the popular
composition “Für Elise” by Ludwig van Beethoven on this
Piano Wall.



Note that firstly, all notes in “Für Elise” lie amongst the set
of notes used to create the Piano Wall, and secondly, a pianist
is required to hit a maximum of two keys simultaneously
throughout its performance (K = 2).

We created the Score associated with “Für Elise”, containing
timed positions on the wall corresponding to notes in “Für
Elise”, specified at a beat of one second. Additionally, we cre-
ated 2 base stations at the bottom of the wall (simulated as 2-d
dark (blue) colored points in Figure 4.1 (center, right)), from
where robots could start in conjunction with Assumption 1. For
different values of r ≥ K and v̂, we generated the optimal
assignment, and the corresponding optimal mapping describ-
ing each robots path, for both unconstrained and constrained
velocity cases. These paths were then executed by the robots
with appropriate velocities that ensured their timely arrival at
assigned positions. Moreover, in our program, the instant a
robot reached an assigned timed position, it was encircled by a
light circle (yellow), and the sound of the corresponding piano
note was generated. Thus, our robots were able to effectively
perform “Für Elise” on the Piano Wall. Instances of two such
simulations are shown in Figure 4.1 (center, right).
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Appendix A. PROOF OF THEOREM 1

Let ĉp,q denote an element of the cost matrix Ĉ, where p, q ∈
{1, ..., |As|}. Recall that previously, we denoted an element of
Ĉ by ĉiα,jβ , where i ∈ I, α ∈ Ai, j ∈ J ∪{n+1} and β ∈ Bj
Hence, we can express p and q as follows,

p =

i−1∑
θ=0,i>0

|Pθ|+ α (A.1)

q =

j−1∑
θ=1,j>1

|Pθ|+ β (A.2)

Now consider a bijective function ωr : As → Sc′, such that
ωr((Pi,α, ti)) = (Pj,β , tj) ⇒ ĉiα,jβ = ĉp,p (p=q), i.e. ωr
contains individual assignments between all timed positions in
As and Sc′ that have a corresponding diagonal cost entry in the
cost matrix Ĉ.

Let us assume there exists a forbidden individual assignment
in ωr, i.e. there exists a diagonal element in Ĉ that equals M .
From (15), we note that ĉiα,jβ = M ⇒ j ≤ i (forbidden
assignments violate the directionality constraint).

Now consider the diagonal element ĉp,p (p=q) = ĉiα,jβ , for
some i ∈ I, α ∈ Ai, j ∈ J ∪ {n + 1} and β ∈ Bj .
Clearly, to assume ĉp,p (p=q) = ĉiα,jβ = M implies that j ≤ i.
Immediately, we notice that for i = 0, there exists no j ∈ J ∪
{n+ 1} such that j ≤ i. Similarly, for j = n and j = (n+ 1),
there exists no i ∈ I such that j ≤ i. As a result, we see that
ĉp,p (p=q) = ĉiα,jβ =M is a contradiction for the above values
of i and j. Hence, we direct our focus on the remaining values
of i and j, i.e. i ∈ {1, ..., n− 1} and j ∈ {1, ..., n− 1}.
Notice that we can rewrite (A.1) for index p as follows,

p = |P0|+
j−1∑

θ=1,j>1

|Pθ|+
i−1∑

θ=j,i>j

|Pθ|+ α (A.3)

p = r +

j−1∑
θ=1,j>1

|Pθ|+
i−1∑

θ=j,i>j

|Pθ|+ α (A.4)

Since p = q, we can equate (A.4) and (A.2) to get the following,

r +

i−1∑
θ=j,i>j

|Pθ|+ α = β (A.5)

Recall that r ≥ K. Moreover, r ≥ K ⇒ r ≥ β, since 1 ≤
β ≤ |Pj | ≤ K, ∀j ∈ {1, ..., n − 1}, thereby making (A.5) a
contradiction. Hence, we have shown that no diagonal element
in Ĉ equals M , or in other words, ωr is a complete assignment
that avoids forbidden individual assignments. The existence of
such an assignment further proves that the Hungarian Method
always finds a complete assignment that avoids forbidden in-
dividual assignments, i.e. a bijection Hr : As → Sc′ which
is, at the very least, equal to ωr (cost(Hr) ≤ cost(ωr)). Thus,
we can construct an optimal assignment Hr|As′ : As′ → Sc,
denoted by H?

r , where As′ ⊆ As is the set of timed positions
in the Assignees that are not assigned to dummy positions.


