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Hybrid Systems Tools for Compiling Controllers for

Cyber-Physical Systems

Patrick Martin · Magnus Egerstedt

Abstract In this paper, we consider the problem of going from high-level specifications

of complex control tasks for cyber-physical systems to their actual implementation and

execution on physical devices. This transition between abstraction levels inevitably

results in a specification-to-execution gap, and we discuss two sources for this gap;

namely model based and constraint based. For both of these two types of sources,

we show how hybrid control techniques provide the tools needed to compile high-level

control programs in such a way that the specification-to-execution gap is removed. The

solutions involve introducing new control modes into nominal strings of control modes

as well as adjusting the control modes themselves.

1 Introduction

Many emerging controls applications have seen increased system complexity due to

the pervasive use of computing and networking resources [1,14] in tight coupling with

the physical world in which these devices are deployed. The resulting, so-called cyber-

physical systems (CPS), have been deployed to instrument and control large scale

systems, from buildings to sensor networks. When designing controllers for such systems

it is no longer feasible to design one control law that is expected to cope with all possible

environmental conditions the system can be experience. As such, the control laws have

to be hybrid in nature. In fact, in order to manage this complexity, system abstractions

and specification languages must be designed so that control tasks can be broken up

into smaller “chunks,” or motion primitives, which are then interpreted by the systems

at run-time.
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One aspect of this abstraction-based approach to control design is that it lets users

specify a desired system execution using strings of pre-defined control laws. However,

these types of abstractions typically lose some of the important physical details that

affect the execution of the control laws. This specification-to-execution gap can result in

undesirable behavior at run-time. It would be beneficial if there existed an intermediate

process, such as the one illustrated in Figure 1, that takes a system specification and

brings it in-line with system capabilities and constraints before execution.

The problem under consideration in this paper is that of designing this intermedi-

ate process. As will be seen, we will not provide a one-size-fits-all solution, but rather

discuss some of the issues that must be addressed and, in particular, show how hybrid

systems theory provides valuable tools for this endeavor. It should be noted, already at

this point, that some of the technical results presented in this paper have appeared else-

where, and the real novelty of the paper must be understood in terms of the placement

of these results in the context of compilation of control programs for CPS.

The outline of this paper is as follows: In Section 2, we further discuss the specification-

to-execution gap and show why the problems associated with this are inherently hybrid

in nature. In particular, we formulate the specifications for cyber-physical systems in

terms of motion description languages – strings of controller-interrupt pairs – to be

parsed by the system. We also identify the two key aspects of the compilation process

that will be addressed in this paper, namely the problem of modifying the particulars

of the control laws and interrupt conditions to make them fit the physical platform

better, and the problem of inserting new control modes in order to satisfy constraints

imposed on the controller by the physical platform. The latter of these problems is

discussed in Section 3, where we introduce hard control constraints and show how a

hybrid control design process will allow us to insert new control modes into the speci-

fications in an automatic fashion in order to satisfy the otherwise violated constraints.

In Section 4, recent results in optimal timing control for switched systems are used to

modify the control strings prior to their execution. This approach is illustrated on a

problem concerning how to control a robotic marionette based on high-level specifica-

tions. A discussion of where this line of inquiry should be taken next is given in Section

5.

2 The Specification-to-Execution Gap

One challenge associated with the intermediary compilation process is the inherent

heterogeneity of CPS due to their varying computational capabilities. Additionally,

actuators and sensors may be different among types of a single class of systems, such

as a collection of mobile robots. These robots may have the same drive train and the

physical dynamics; however, each robot may be equipped with different suites of sensors

from IR to GPS. The selection of sensors affects the ability of the robot to execute

control tasks. Despite this, it is desirable to specify, at a high level of abstraction, what

the different systems should be doing without having to take such low-level details

into account. Consequently, new specification languages are required to enable the

specification of control tasks among systems with different capabilities.
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Fig. 1 This work focuses on developing the tools necessary for the development of an inter-
mediate, or “compilation,” layer for creating motion programs for cyber-physical systems.

2.1 Motion Description Languages

For CPS, one design methodology that has proven useful is to decompose the control

task into sequences of primitive building blocks, designed with a particular objective

in mind. These building blocks are then sequenced together to produce the desired,

overall system behavior. One way in which this sequencing of motion programs can

be done is in the framework of Motion Description Languages (MDL), consisting of

strings of controller-interrupt pairs, e.g. [3,9,11]. For example, in mobile robotics, one

can construct motion programs with MDL that define a sequence of behaviors for

navigation through an environment.

More specifically, let the system have dynamics of the form

ẋ = f(x, u), x ∈ X ⊆ Rn, u ∈ U (1)

where x is the state of the system, and u is the control input. If we let the control input

be given by a closed-loop mapping κ : X → U , and introduce interrupt functions as

mappings ξ : X → {0, 1}, where 1 indicates that an interrupt has occurred, we denote

a MDL mode by the tuple (κ, ξ). The interpretation here is that the system in (1)

executes the controller κ until ξ → 1. A MDL program thus becomes a sequence of

such controller-interrupt pairs.

We can think of the physical system as parsing strings in the MDL. For example,

given the MDL string (κ1, ξ1), (κ2, ξ2), . . . the system parses this string as

ẋ = f(x, κ1(x)), until ξ1(x) = 1,

at which point

ẋ = f(x, κ2(x)), until ξ2(x) = 1,

and so forth. This way of specifying controllers has been used in robotics [9], manufac-

turing [3], and mobile sensor networks [15], and we take it as a prototypical specification

language for CPS, even though it should be noted that other choices are possible, such
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as LTL [5], Maneuver Automata [7], CCL [8], and Control Quanta [2], just to name a

few.

2.2 Compiling MDL for Cyber-physical Systems

Regardless of specification language, it is generally assumed that the controller “fits”

the dynamics of the system in that the system can execute the control string and

that the transitions between control modes are well-behaved. However, in a number of

practical applications, e.g. embedded control systems, there are hard constraints on the

actuator signals achievable that effect what motion programs can be executed. It is thus

possible that a motion program that is intended to perform some action, actually fails

to accomplish the task because of these constraints. Moreover, unmodeled dynamics or

simply unforeseen environmental conditions may cause the transitions between modes

to occur at the wrong time or in the wrong manner. As such, we identify two distinct,

different sources for the specification-to-execution gap, namely constraint-based and

specification-based sources.

3 Constraint-Based Compilation

As a canonical example of the issue with constraints associated with the actual platform

on which the CPS program is deployed, we consider the effect that input bounds have

on the system. A preliminary treatment of this problem was given in [10].

Consider the unstable, controllable linear system

ẋ = Ax+ bu, x ∈ Rn, u ∈ R. (2)

where x ∈ Rn and u ∈ R, and A, b are matrices of appropriate dimension. A stabilizing

controller for this system can be generated by solving the LQ design problem where

the cost functional is

J(x, u) =

∫ ∞

0

(

xTQx+
√
2uT u

)

dt.

The solution is given by the feedback gain P that solves the Riccati equation

ATP + PA+Q− 2PbbTP = 0, (3)

where Q ≻ 0. The resulting feedback control for stabilizing (2) is thus given by

u = −bTPx. (4)

What we will do is select such a P and then augment the controller with an affine

term that drives the system to a given set-point. By stringing together different such

affine terms, we get a motion program that takes the system through a sequence of

set-points. Consequently, we modify the control input to include an affine term, v, as

u = −bTPx+ v. (5)

By applying the controller (5) to (2), we get the following closed loop dynamics:

ẋ = (A− bbTP )x+ bv,
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with globally attractive, stationary point given by

xv = −(A− bbTP )−1bv.

(Note that the inverse is well defined since the real parts of the eigenvalues of (A−bbTP )

are negative by design.) As such, we can define the interrupt function ξ(P, v, ǫ) that

triggers once the state of the system is close to xv, i.e.

ξ(P, v, ǫ) =

{

1 if ‖x− xv‖2P ≤ ǫ

0 otherwise,
(6)

where ‖z‖2P = zTPz.

As such, we let the motion program used for driving the system through a collection

of set-points be given by strings ((P, v1), ξ(P, v1, ǫ1)), . . . , ((P, vN ), ξ(P, vN , ǫN )). As we

have assumed that P is fixed, we can use the shorthand (v1, ǫ1), . . . , (vN , ǫN ) to denote

these MDL strings.

For each v ∈ R, we thus have a controller that takes the system (asymptotically)

to the set-point xv. The first thing we need to do in order to “compile” the MDL

programs is to characterize what the set of such set-points actually looks like under

the input constraint |u| < umax.

3.1 Regions of Attraction

Let the set of stationary points be denoted by X . In order to calculate the regions of

attraction around each point, we need the following lemma:

Lemma 1 (Stationary Points under Bounded Input) Let (A, b) be a controllable

pair, let P be the positive definite matrix solution to the Riccati equation (3) for some

Q ≻ 0, and let K = (A − bbTP ). If u = −bTPx + v and |u| < umax, then the set of

stationary points X is given by

X = −K−1b(bTPK−1b+ 1)−1[−umax, umax]

if bTPK−1b+ 1 6= 0 or,

X = −K−1bR, otherwise.

Proof Assume that xvi ∈ X is the stationary point obtained by using the open-loop

control vi in equation (5). Then, the total control effort needed to hold the system at

xvi is

uvi = −bTPxvi + vi

= (bTPK−1b+ 1)vi

Note that if bTPK−1b + 1 = 0 then uvi = 0 for any v ∈ R. If the equality does not

hold, then the choice of v must come from the set

v ∈ V = (bTPK−1b+ 1)−1[−umax, umax].

in order to maintain that |u| < umax; otherwise, v ∈ R. Hence, the set of stationary

points is

X = −K−1bV
which completes the proof.
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Now, with a proper characterization of these stationary points, we can proceed with

calculating the regions of the state space from which these points can be reached with

bounded inputs. These regions will form the basis for developments in the following

sections.

Theorem 1 (Regions of Attraction Under Bounded Input) Given the assump-

tions in Lemma 1, the region of attraction around the point xvi is given by

E(P, vi) = {x ∈ Rn|(x− xvi)
TP (x− xvi) 6 αvi} (7)

with

xvi = −KT bvi

and

αvi = (bTPb)−1(umax − |uvi |)2. (8)

Proof Let x = xvi +∆xvi , then

u = −bTP (xvi +∆xvi) = uvi − bTP∆xvi .

However, since we have the constraint u ∈ [−umax, umax], we interpret the above

equation as

bTP∆xvi ∈ [−umax + uvi , umax + uvi ].

P is a solution to the Riccati equation (3), so we define the function

V (∆xvi) = ∆xTviP∆xvi , ∀∆xvi ∈ Rn, ∆xvi 6= 0. (9)

If this function is Lyapunov, then it can serve as a conservative region of attrac-

tion around the point xvi . To show this fact, consider the ellipsoid generated by

∆xTviP∆xvi = γ, where γ > 0 and real and ∀∆xvi ∈ Rn. Assume γ is chosen such that

| − bTP∆xvi | < umax, and, furthermore, we choose some β ∈ (0, γ).

Thus, we want to solve the following maximization problem for any ∆xvi ∈ Rn:

max∆xvi
bTP∆xvi

s.t. ∆xTviP∆xvi = γ.

Forming the Lagrangian,

L = bTP∆xvi − λ(∆xTviP∆xvi − γ),

and setting its derivative w.r.t. ∆xvi equal to 0 we get that

∆xvi = − 1

2λ
b (10)

which implies that the maximum ∆xvi is parallel to the input matrix b. According

to the constraint equation we calculate the value of λ and insert into equation (10),

resulting in the maximum value:

∆xmax =

√

γ

bTPb
b.
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Using this value in the control law results in the maximum control effort

uγ = bTP

√

γ

bTPb
b =

√
γ‖b‖P

Finally, if we compare the difference between the maximum input along the the γ

level-set and that on the β level-set we get

uβ − uγ = (
√

β −√
γ)‖b‖P

which is a strictly negative quantity, by the assumption that β ∈ (0, γ). Therefore, the

control effort reduces as the state decays within the ellipsoid ∆xTviP∆xvi , and (9) is a

Lyapunov equation.

Now that we know the region defined by (9) is Lyapunov, we find the solution to

min
∆xvi

∆xTviPxvi

such that

bTP∆xvi = −umax + uvi

or

bTP∆xvi = umax + uvi .

Letting c = Pb and d± = ±umax+uvi , the Lagrange necessary and sufficient conditions

(see for example [?]) for these quadratic optimization problems are:

P∆xvi + cλvi = 0

cT∆xvi − d± = 0

where λvi ∈ Rn is the Lagrange multiplier. Solving these equations results in

λvi = −(cTP−1c)−1d±

∆xvi = P−1c(cTP−1c)−1d±.

Inserting the solution for ∆xvi into (9) results in:

∆xTviP∆xvi = (bTPb)−1(±umax + uvi)
2

where (bTPb)−1 exists since P ≻ 0 and b 6= 0 by our controllability assumption. We

choose the smallest and define it as

αvi = (bTPb)−1(umax − |uvi |)2.

Therefore, the region around each stationary point xvi where |u| ≤ umax is given by

E(P, v) = {x ∈ Rn|(x− xvi)
TP (x− xvi) ≤ αvi},

as in equation (7), and the theorem follows.

A direct corollary of Theorem 1 follows that describes the characterization of the

entire region of attraction about the points in X :

Corollary 1 The region of attraction around the set of stationary points X is given

by

L =
⋃

vi∈V

E(P, vi).
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3.2 Checking for Feasibility

We are interested in determining whether a given MDL program (v1, ǫ1), . . . , (vN , ǫN )

will successfully drive the system between the desired set-points under the input con-

straint |u| ≤ umax. It is clear that vi must be in V for this to be possible, so we first

make the following assumption:

Assumption 1 vi ∈ V, i = 1, . . . , N .

Now, in order for a MDL string to be feasible, the ith set-point must lie in region

of attraction for the (i+ 1)th set-point, and we state this fact as a lemma:

Lemma 2 Given an MDL string

σ = (v1, ǫ1), . . . , (vN , ǫN ),

satisfying Assumption 1, let

Bǫi(vi) = {x ∈ Rn | (x− xvi)
TP (x− xvi) ≤ ǫi}

represent an ellipse around point xvi . If

Bǫi(vi) ⊆ E(P, vi+1) (11)

then x can be transferred from xvi to xvi+1 while satisfying the bounded input constraint.

(Note here that the set Bǫi(vi) is exactly the set where interrupt in equation (6) takes

on the value 1.)

This lemma states that if the ellipse of size ǫi around point xvi is strictly within the

region of attraction of xvi+1 , then the system will arrive at xvi+1 (asymptotically) and

satisfy the input constraints. Based on this pairwise characterization of the feasibility,

we can now extend this notion to entire MDL strings:

Assumption 2

x(0) ∈ E(P, v1).

Definition 1 The string

σ = (v1, ǫ1), . . . , (vN , ǫN ),

is a feasible program string if it satisfies Assumptions 1 and 2, and

Bǫi(vi) ⊆ E(P, vi+1), for i = 1, · · · , N − 1.

The set of these feasible program strings is denoted by F.

We state the following theorem (whose rather obvious proof we omit):

Theorem 2 (Program feasibility) The MDL string σ drives the system close to the

set-points (in the sense defined by the interrupts) if σ ∈ F.

What this theorem gives us is a feasibility check for determining if the string does

in fact perform as desired. However, if the feasibility condition is violated1, something

must be done, and in the next section, we discuss how to insert new control modes into

the MDL string in order to respect the bounded input constraints yet drive through

the desired intermediary set-points.

1 Since our Lyapunov functions are conservative estimates of the region of attraction around
each point, it may still be possible to execute an MDL string even if σ /∈ F .
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3.3 Mode Insertion to Maintain Input Bounds

When an MDL string fails the feasibility check, we need to modify the string to ensure

that the input constraints are satisfied. Our approach is to insert new modes into the

string σ, so that the augmented string becomes a member of the feasible set F . This

method was inspired by sequential composition, as described in [4], by inserting modes

when we know that the inserted region of attraction contains the a subset of the region

of attraction of the previous mode.

Consider, again, the MDL string

σ = (v1, ǫ1), . . . , (vN , ǫN ).

Each element in σ comes from a finite alphabet of modes, which we denote by (vi, ǫi) ∈
A. The set of all possible concatenations of these elements is denoted by A⋆; conse-

quently, the each MDL comes from the set of all concatenations, i.e. σ ∈ A⋆. We define

the length operator as a mapping ℓ : A⋆ → N, which accepts an MDL string and

returns its number of elements. For example, if σ = (v1, ǫ1), (v3, ǫ3), then ℓ(σ) = 2.

Now, using our definitions, we state the mode insertion problem as:

min
σ′

ℓ(σ′)

s.t. (vi, ǫi)σ
′(vi+1, ǫi+1) ∈ F .

Thus, the problem of inserting intermediate points is characterized by minimizing the

length of the string σ′ such that the new string (vi, ǫi)σ
′(vi+1, ǫi+1) is still in the set

of feasible program strings, F . This problem can be solved by inserting new modes,

(vkl
, ǫkl

), such each pair of intermediate points satisfy the pairwise relation (11).

3.3.1 MAXFORWARD Algorithm

We develop an algorithm, called MAXFORWARD, that builds up the intermediate MDL

string σ′ using the relation in (11). This algorithm begins with the starting element

of the MDL string: (vi, ǫi). When the system uses this MDL mode, the state is pulled

toward the point xvi ∈ X until it crosses into the interrupt region, Bǫi(vi). From

this region we need to insert a finite number of modes that can drive our system to

(vi+1, ǫi+1).

We want to choose a vkl
such that Bǫi(vi) ⊆ E(P, vkl

). In other words, we need

an ellipse that covers the interrupt region so that equation (11) in Lemma 2 holds. To

find the value of vkl
that results in the covering ellipse E(P, vkl

), we design an iterative

algorithm that steps through possible values of v ∈ V, starting at vi. At each iteration

we perform the update

vkj+1
= vkj

+∆v,

where ∆v > 0 is a fixed step size. As the size of ∆v increases the more numerical

error enters into the insertion process, eventually creating incorrect mode insertions.

If this increment results in Bǫi(vkj
) * E(P, vkj+1

) then the value vkj
is chosen as an

intermediate MDL mode: (vkj
, ǫkj

). We repeat the algorithm until the mth step, where

Bǫkm (vkm
) ⊆ E(P, vi+1).
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At this point we have the new intermediate string:

σ′ = (vk1
, ǫk1

), . . . , (vkm
, ǫkm

),

which maintains that (vi, ǫi)σ
′(vi+1, ǫi+1) ∈ F . Note that this algorithm produces an

optimal path given our feasibility requirements. Without input bounds, the optimal

solution would be more straightforward.

The formal algorithm is shown in listing Algorithm 1.

Algorithm 1 MAXFORWARD Algorithm

Choose ∆v > 0
vkj
← vi {Initialize with first MDL mode’s controller.}

covered ← FALSE

while Bǫkj (vkj
) * E(P, vi+1) do

while ¬covered do

vkj+1
= vkj

+∆v

if Bǫkj (vkj
) * E(P, vkj+1

) then

σ′ ← (vkj
, ǫkj

) {Add interim MDL mode.}
covered ← TRUE

end if

end while

end while

return σ′

Theorem 3 (MAXFORWARD Optimality)

If Algorithm 1 returns a solution σ′ then it produces the minimal length string σ′

such that (vi, ǫi)σ
′(vi+1, ǫi+1) ∈ F.

Proof Assume Algorithm 1 returned the string σ′ corresponding to m intermediate

points xv1 , · · · , xvm between xvi and xvi+1 , i.e. Algorithm 1 inserted m new modes

into the MDL string. We note that in order to go from xvk to xvi+1 (or more precisely,

from small ellipses around these points) Algorithm 1 needs m− k + 1 modes.

Now, since v ∈ R, and hence dim (relint(X )) = 1, where relint denotes the relative

interior, we can order points along X by how far away from xvi+1 they are. The first

observation is that, by construction, the MAXFORWARD nature of Algorithm 1 prevents

the existence of a point x′ ∈ X such that x′ can be reached in k or fewer steps from xvi ,

and ‖x′ − xvi+1‖ < ‖xvk −xvi+1‖. Instead, assume that σ′ is not optimal and that the

kth intermediary point is x′′ 6= xvk . Thus, we know that ‖x′′−xvi+1‖ > ‖xvk −xvi+1‖.
But, the MAXFORWARD property again implies that no x ∈ X such that ‖x−xvi+1‖ >

‖xvk − xvi+1‖ can reach xvi+1 in fewer steps than m − k + 1. As such, the optimal

string (containing the intermediary point x′′) can have no fewer elements than σ′, and

hence σ′ is the (not necessarily unique) optimal solution.

This proof works because we have an order on the 1-dimensional space X . If

dim (relint(X )) > 1 then our algorithm and proof would have to consider multiple

directions at each step due to the discretization of the state space.
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3.3.2 Simulation Results

For our simulation results, we use the same choice of system matrices from the end of

Section 3.1. We specified a two mode MDL string: (v1, ǫ)(v2, ǫ), where each mode uses

the same sized interrupt region defined by Bǫ(vi), i = 1, 2 and the values of vi come

from the computed region V.

0 100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

Control Effort

Iterations

u

Fig. 2 The plot of the input u over the iterations of the simulation. Note that at the switch
point, the system requires an input far greater than what the actuators can supply. The system
leaves the input bound, again, as the second mode is executed.

Figure 2 shows the effort of the feedback controller as the system executes this

MDL string. Once the system reaches the interrupt region of the first mode, the system

switches to (v2, ǫ), which causes a jump in the input signal that is well outside of the

upper bound of the input constraint, umax = 1. According to Definition 1, this MDL

string is not feasible; hence, we must apply Algorithm 1 to insert intermediate modes.

The result of our MAXFORWARD algorithm, with ∆v = 0.001, is shown in Figure 3

by the dotted ellipses. The algorithm inserted ten modes, allowing the system to move

from its starting point x0 to the final state xf with bounded control effort, as shown in

Figure 4. Using the expanded MDL string lengthens the time it takes for the system to

approach xf ; however, our design goal of maintaining the input constraints was met.

4 Specification-Based Compilation

The second source of the specification-to-execution gap is, as already stated, caused by

the fact that the control laws and interrupt conditions are specified at such a high level

of abstraction that the actual dynamics of the system is not properly accounted for. For

example, one would like to be able to let users define high-level tasks without having

to worry about the actual dynamics. Yet, the dynamics clearly matters when it comes
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Fig. 3 This figure shows the ten new ellipses (dotted lines), E(P, vkj
) for j = 1, · · · , 10,

produced by the intermediate modes inserted into the MDL string.

0 500 1000 1500 2000 2500 3000 3500 4000
−2

−1

0

1

2

3

4

Control Effort

Iterations

u

Fig. 4 In this plot, we see the successful maintenance of the control bound |u| < 1 during the
execution of the expanded MDL string.

to executing these specifications. In this section, we illustrate this issue through an

example involving robotic marionettes and, in particular, we show how recent results

on optimal control of hybrid systems can by put to use as a compiler of CPS programs.
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4.1 Example: Robotic Puppetry

Consider the problem of designing controllers that let robotic marionettes execute en-

tire ”plays” by switching between different motions, as is shown in Figure 5. Moreover,

assume that there are multiple robotic marionettes acting on the same stage, having

to coordinate their motions with each other. In order to script motion programs for

such scenarios, we modify the standard MDL to account for four important properties

of our desired motion programs: who should act, what motion should they do, where

should they operate, and when should the action occur, as discussed in [13].

(a) Puppet in initial
configuration.

(b) Puppet in wave
motion.

(c) Puppet starting a
walk.

(d) The final step in
the walk mode.

Fig. 5 An image sequence of the puppet executing a wave followed by a walk mode.

We assume that the puppets are identified by an index, i ∈ M, where M =

{1, · · · ,m}, and each puppet has the dynamics,

ẋi = f(xi, ui), xi ∈ Rn, ui ∈ Rp, (12)

where we use the superscript i to denote agent-i.

We define the input to this model as one in a collection of possible feedback laws,

i.e. ui = κj(x
i, t, αj), with κj , for some j, coming from a finite set of control laws K =

{κ1, · · · , κC}; additionally, αj is an “energy”-scaling parameter that could affect speed,

amplitude, or some other property of the control mode. When applying a controller of

this form, we get the resulting closed-loop system dynamics ẋi = f(xi, t, κj(x
i, t, αj)).

And, by combining controllers from K with a time-driven interrupt, denoted τ , that

dictates the time at which the control mode interrupts, resulting in controller-interrupt

pairs of the form (κ, τ ). However, to allow for the specification of programs involving

multiple agents, we add in an element for agent identification, i, and a spatially defined

location, r, where the agent performs its control κ. These locations in the environment

come from a set R = {r1, · · · , rl}.
Now that we have modified MDL for composing multi-agent motion programs, we

focus on developing a process for tweaking the timing and scaling parameters. For

instance, an undesirable MDL mode would use a control law that potentially drives a

system out of its intended operational region. It would be better to adjust the timing

and energy scaling of the mode so that this behavior is prevented. We approach this

problem using calculus of variations to derive optimality conditions that form the basis

of an MDL compiler algorithm. This algorithm accepts a nominal motion program and

outputs control code based on the system dynamics, under spatio-temporal constraints.
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Say we are given a single-agent (agent-i) program with N modes over the time inter-

val [t0, tf ], and we denote all switch time parameters as the vector τ̄ i = [τ i1 · · · τ iN−1]

and the scaling parameters as ᾱi = [αi
1 · · · αi

N ]. Additionally, we denote the nominal

switch times and energy parameters from our spatio-temporal MDL specification as

τ̂ i = [τ̂ i1 · · · τ̂ iN−1] and α̂i = [α̂i
1 · · · α̂i

N ], respectively. Then the cost functional for

optimizing this agent’s program could take the form,

min
τ̄ i,ᾱi

J(τ̄ i, ᾱi) =

∫ tf

t0

L(xi, t)dt+

N
∑

j=1

(

Cj(α
i
j , α̂

i
j)+Ψj(x

i(τ ij))
)

+

N−1
∑

k=1

∆k(τ
i
k, τ̂

i
k). (13)

The interpretation here is that the agent has a trajectory cost, L(xi, t), associated

with the execution of the motion program. Since scaling controller speed or amplitude

requires more energy, we penalize the energy usage of each mode with the Cj(α
i
j , α̂

i
j)

functions. In this general form, the energy penalty function could use the nominal

values from the initial MDL specification, α̂i
j . We also encode the spatial constraint for

each mode through the spatial cost term, Ψj(x
i(τ ij)), that penalizes the distance of the

agent from the location of the specified region. Finally, to prevent large deviations of

a particular switch-time τ ij , we add the temporal cost function ∆k(τ
i
k, τ̂

i
k), which uses

the nominal switch-times, τ̂ ik.

Assume that we construct an MDLp motion program of length N , which induces

the system dynamics:

ẋi =



















f(xi, t, κ1(x
i, t, α1)), t ∈ [τ0, τ1)

f(xi, t, κ2(x
i, t, α2)), t ∈ [τ1, τ2)

...

f(xi, t, κN (xi, t, αN )), t ∈ [τN−1, τN ]

(14)

where τ0 := t0 and τN := tf . The following result gives us the optimality conditions

necessary to “compile” this motion program. Note that this theorem was given (in

a slightly different context) in [13], and is based on the timing control algorithms

developed in [6].

Theorem 4 (First Order Necessary Optimality Conditions) The first order

necessary conditions for minimizing the cost functional (13) such that the system dy-

namics (14) are satisfied, are given by

∂J

∂τ i
k

= λi(τ i−k )T fk(x(τ
i
k), α

i
k)− λi(τ i+k )T fk+1(x

i(τ ik), α
i
k+1) +

∂∆i
k

∂τ i
k

+
∂Ψk

∂xi

T

f ik+1(x
i(τ ik), α

i
k+1) = 0, k = 1, · · · , N − 1 (15)

∂J

∂αi
k

= µi(τ i+k−1
) = 0, k = 1, · · · , N

where fk(x
i(t), αi

k) denotes f(x
i, t, κk(x

i, t, αi
k)) and τ i−

k
and τ i+

k
are the left and right

limits, respectively. Additionally, the discontinuous co-states λi(t) ∈ Rn, µi(t) ∈ R
satisfy the co-state dynamics,

λ̇i(t)T = − ∂J

∂xi

T

− λi(t)T
∂fk
∂xi

µ̇i(t) = λi(t)T
∂fk
∂αi

k
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with t ∈ [τk−1, τk] and boundary conditions,

λi(τ iN ) =
∂ΨN

∂xi
(xi(τ iN ))

µi(τ iN ) =
∂CN

∂αi
N

λi(τ i−k ) = λi(τ i+k ) +
∂Ψk

∂xi
(xi(τ ik))

µi(τ i−k ) =
∂Ck

∂αi
k

for k = 1, · · · , N − 1 and where we let we let τN = tf and τ0 = t0.

4.2 Simulation Results

To illustrate the operation of this hybrid optimal control-based CPS compiler, consider

three robotic puppets. and assume that we have created three possible open loop

controllers for them to execute, namely

K = {κ1 = waveLeftArm, κ2 = walk, κ3 = walkInCircles}.

For example, the walk mode applies alternating sinusoids of the form

u(t) =
4

π
αωmax(sin(2πft) + (1/3) sin(6πft)),

where ωmax is a constant maximum rotational speed of the arm and leg lifting actuators

and α is the scaling parameter for the control; see e.g. [12].

Using these controllers, we constructed the following puppetry play specified as a

motion description language:

(p1, κ1(1.2), r1, 2.5)(p
1, κ2(1.3), r1, 3)(p

1, κ3(1), r1, 4)

(p2, κ1(1.2), r3, 2.5)(p
2, κ3(1.5), r3, 2)(p

2, κ2(1.3), r3, 3)

(p3, κ3(1), r2, 2)(p
3, κ2(1.5), r2, 4).

The initial run of this play is illustrated by the gray lines and shapes in Figure 6.

Note that puppets 1 and 2 (located in r1 and r3 in the figure) behave relatively well

using their nominal plays. However, puppet 3 breaches the boundary between r1 and

r2 while its nominal MDL string requires it to remain in r2.

After running the MDL compiler on these strings, the improved runtime behavior

is illustrated by the black lines and shapes in Figure 6. Puppet 3’s trajectory is now

within r2, as prescribed in the original MDLp string. Also, all three puppets reduce

their cost, as shown in Figure 7. Note that puppet 3 takes the longest, computing 100

iterations before minimizing its cost. This iteration count shows how bad the nominal

program was at satisfying the cost functional (13). Additionally, our algorithm uses a

conservative, fixed-step gradient descent to limit the amount of numerical error, which

will slow down convergence as the derivatives (15) get closer to 0. If a dynamic step

size were used (such as the Armijo step-size) then convergence would be faster. This

work demonstrates that we can solve the problem of improving the multi-agent motion

program given spatial costs. We now turn to the example of generating optimized

control code under networked timing constraints.
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Fig. 6 Image of the puppet motions before (gray) and after (black) the MDL compilation
process.
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Fig. 7 This figure shows the costs as a function of the MDL compiler algorithm iteration
when compiling a play for three puppets with spatial constraints. Puppet 1 completed in 29
iterations, Puppet 2 completed in 41 iterations, and Puppet 3 took 100 iterations.

5 Conclusions and Outlook

In this paper, we introduce the specification-execution gap for cyber-physical systems

and show, through two distinct different classes of problems, that hybrid systems

tools are natural selections for addressing this issue. The first problem we consider

involves systems with saturation limits on the actuators and, as a result, we introduce

a constraint-based compilation process that involves inserting new control modes into
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the nominal string of modes that make up the high-level system specification. The

second issue we consider is that of having specifications that do not take the actual

system dynamics into account when specifying high-level control programs. Through

optimal timing results for hybrid systems, we design a new type of CPS compiler that

modifies the control laws and the interrupt conditions in order to make the resulting,

new control string optimize a given cost functional.

The two particular sources of the specification-execution gap under investigation

here are (1) constraint-based where the physical constraints of the system make the

high-level program infeasible, and (2) specification-based where the specifications can

be changed slightly in order to improve the performance of the system. This view

of the need for compilers for CPS is quite general even though we, in this paper,

only provided solutions to two rather particular instantiations. For a more general

theory of control program compilation to be developed, additional and richer system

and constraint classes must be addressed, including nonlinear and networked systems

under actuation, power, communications, computation, and sensing constraints. This

is, however, an undertaking that is both massive and important and it will no doubt

combine both model-based, simulation-based, and constraint-based approaches. We

hope, however, that this paper will serve as a starting point for this general line of

investigation.
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