
Algorithm for Optimal Mode Scheduling in Switched Systems

Y. Wardi and M. Egerstedt

Abstract— This paper considers the problem of computing
the schedule of modes in an autonomous switched dynamical
system, that minimizes a cost functional defined on the tra-
jectory of the system’s continuous state variable. It proposes
an algorithm that modifies a finite but unbounded number of
modes at each iteration, whose computational workload at the
various iterations appears to be independent on the number
of modes being changed. The algorithm is based on descent
directions defined by Gâteaux differentials of the performance
function with respect to variations in mode-sequences, and its
convergence to (local) minima is established in the framework
of optimality functions and minimizing sequences, devised by
Polak for infinite-dimensional optimization problems.

I. INTRODUCTION

Autonomous switched-mode hybrid dynamical systems
often are characterized by the following equation,

ẋ = f(x, v), (1)

where x ∈ Rn is the state variable, v ∈ V with V being a
given finite set, and f : Rn×V → Rn is a suitable function.
Suppose that the system evolves on a horizon-interval [0, T]
for some T > 0, and that the initial state x(0) = x0 is
given for some x0 ∈ Rn. The input control of this system,
v(t), is discrete since V is a finite set, and we assume that
the function v(t) changes its values a finite number of times
during the horizon interval [0, T].

Such systems have been investigated in the past several
years due to their relevance in various control applications;
see, e.g., [3], [6] for surveys. Of a particular interest in
such applications is an optimal control problem where it is
desirable to minimize a cost functional (criterion) of the form

J :=

∫ T

0

L(x)dt (2)

for a given T > 0, where L : Rn → R is a cost function
defined on the state trajectory.

This general nonlinear optimal-control problem was for-
mulated in [4], where the particular values of v ∈ V are
associated with the various modes of the system.1 Several
variants of the maximum principle were derived for this prob-
lem in [14], [8], [11], and subsequently provably-convergent
optimization algorithms were developed in [16], [11], [13],
[6], [1]. We point out that two kinds of problems were
considered: those where the sequence of modes is fixed
and the controlled variable consists of the switching times

1The setting in [4] is more general since it involves a continuous-time
control u ∈ Rk as well as a discrete control v. Furthermore, most of
the references cited in this paper except for ours’ treat this more general
formulation, but we focus only on the discrete control since it captures the
salient features of switched-mode hybrid dynamical systems.

between them, and those where the controlled variable is
comprised of the sequence of modes as well as the switch-
ing times between them. We call the former problem the
timing optimization problem, and the latter, the scheduling
optimization problem.

The timing optimization problem essentially is a nonlin-
ear programming problem with a continuous variable, the
switching times. In contrast, the variable of the scheduling
optimization problem has discrete and continuous elements,
namely the mode-sequence and the switching times between
them, and hence generally it is more difficult than the timing
optimization problem. Thus, while the algorithms that were
proposed early focused on the timing optimization problem,
several different (and apparently complementary) approaches
to the scheduling-optimization problem have emerged as
well. Zoning algorithms that compute (iteratively) the mode
sequences based on geometric properties of the problem
have been developed in [12], needle-variations techniques
were presented in [2], [7], and relaxation methods were
proposed in [3], [5]. These different approaches are still
being developed and conclusive comparisons between them
have to wait for extensive simulation experiments on realistic
applications.

Our stating point is the algorithm we developed in [2]
which alternates between the following two stages: (1). Given
a sequence of modes, compute the switching times between
them that minimize the functional J . (2). Update the mode-
sequence by inserting to it a single mode at a (computed)
time that would lead to the greatest-possible reduction rate
in J . Then repeat Step 1, etc.

The second stage deserves some explanation. Fix a time
t ∈ [0, T], and let us denote the system’s mode at that time
by Mα. Now suppose that we replace this mode by another
mode, denoted by Mβ , over the time-interval [t, t + λ] for
some given λ > 0, and denote by J̃(λ) the cost functional
J defined by (2) as a function of λ. We call the one-sided
derivative dJ̃

dλ+ (0) the insertion gradient, and we note that if
dJ̃
dλ+ (0) < 0 then inserting Mβ for a brief amount of time at
time t would result in a decrease in J , while if dJ̃

dλ+ (0) >
0 then such an insertion would result in an increase in J .
Now the second stage of the algorithm computes the time
t ∈ [0, T] and mode Mβ that minimize the insertion gradient,
and it performs the insertion accordingly. We mention that
if the insertion gradient is non-negative for every mode Mβ

and time t ∈ [0, T] then the schedule in question satisfies a
necessary optimality condition and no insertion is performed.

This algorithm and its setting have been extended in
[7] in the following three ways: (i) the system includes a

continuous control u in addition to the discrete control v, (ii)
the optimal control problem has inequality constraints as well
as multiple objectives, and (iii) the cost functional includes
penalty terms on the number of switchings. However, on the
issue of optimal mode-switching the two algorithms share
the aforementioned two-stage approach. In fact, for the same
choice of descent direction in the setting of [2] the two
algorithms are identical.

The above two-stage approach may have an inherent
inefficiency for the following reason. The requirement of
solving a timing optimization problem following each mode-
insertion involves, theoretically, an infinite-loop procedure
at each step of the algorithm. Furthermore, the approach
consists of inserting a single mode at each iteration, and the
inefficiencies can become especially pronounced when each
mode in a given schedule is active for only a brief amount of
time. In contrast, this paper develops an alternative algorithm
that changes any finite (but possibly unbounded) number
of modes at each iteration, and its computational workload
appears to be independent of the number of modes that are
being changed. Moreover, it computes directly in the space of
mode-schedules and does not solve any timing optimization
problems. From a theoretical standpoint, our convergence-
proof requires a new line of analysis since the arguments
of [2], [7] break down. From a practical standpoint, it is
premature to draw sweeping comparisons between these two
algorithmic approaches before extensive testing on realistic
problems; the objective of this paper is but to introduce a
new player to the field and test it on an example.

The rest of the paper is organized as follows. Section
II sets the mathematical formulation of the problem and
recounts some established results. Section III presents the al-
gorithm and its convergence properties, Section IV provides
a simulation example, and Section V concludes the paper.
Due to space constraints we relegate all of the proofs to a
technical memorandum that is posted on the web site of the
second author [15].

II. PROBLEM FORMULATION AND SURVEY OF RELEVANT
RESULTS

Consider the state equation (1) and recall that the initial
state x0 and the final time T > 0 are given. We make the
following assumption regarding the vector field f(x, v) and
the state trajectory {x(t)}.

Assumption 1: (i). For every v ∈ V , the function f(x, v)
is twice-continuously differentiable (C2) throughout Rn. (ii).
The state trajectory x(t) is continuous at all t ∈ [0, T].

Every mode-schedule is associated with an input control
function v : [0, T] → V , and we define an admissible mode
schedule to be a schedule whose associated control function
v(·) changes its values a finite number of times throughout
the interval t ∈ [0, T]. We denote the space of admissible
schedules by Σ, and a typical admissible schedule by σ ∈ Σ.
Given σ ∈ Σ, we define the length of σ as the number
of different consecutive values of v on the horizon interval
[0, T], and denote it by ℓ(σ). Furthermore, we denote the ith
successive value of v in σ by vi, i = 1, . . . , ℓ(σ), and the

switching time between vi and vi+1 will be denoted by τi.
Further defining τ0 := 0 and τℓ(σ) = T , we observe that the
input control function is defined by v(t) = vi ∀i ∈ [τi−1, τi),
i = 1, . . . , ℓ(σ). We require that ℓ(σ) < ∞ but impose no
upper bound on ℓ(σ).

Given σ ∈ Σ, define the costate p ∈ Rn by the following
differential equation,

ṗ = −
(∂f
∂x

(x, v)
)T

p−
(dL
dx

(x)
)T

(3)

with the boundary condition p(T) = 0. Fix time s ∈ [0, T),
w ∈ V , and λ > 0, and consider replacing the value of v(t)
by w for every t ∈ [s, s + λ). This amounts to changing
the mode-sequence σ by inserting the mode associated with
w throughout the interval [s, s + λ). Denoting by J̃(λ) the
value of the cost functional resulting from this insertion,
the insertion gradient is defined by dJ̃

dλ+ (0). Of course this
insertion gradient depends on the mode-schedule σ, the
inserted mode associated with w ∈ V , and the insertion time
s, and hence we denote it by Dσ,s,w. We have the following
result (e.g., [6]):

Dσ,s,w = p(s)T
(
f(x(s), w)− f(x(s), v(s))

)
. (4)

As mentioned earlier, if Dσ,s,w < 0 then inserting to σ
the mode associated with w on a small interval starting
at time s would reduce the cost functional. On the other
hand, if Dσ,s,w ≥ 0 for all w ∈ V and s ∈ [0, T] then
we can think of σ as satisfying a local optimality condition.
Formally, define Dσ,s := min{Dσ,s,w : w ∈ V }, and define
Dσ := inf{Dσ,s : s ∈ [0, T]}. Observe that Dσ,s,v(s) = 0
since v(s) is associated with the same mode at time s and
hence σ is not modified, and consequently, by definition,
Dσ,s ≤ 0 and Dσ ≤ 0 as well. The condition Dσ = 0 is
a natural first-order necessary optimality condition, and the
purpose of the algorithm described below is to compute a
mode-schedule σ that satisfies it.

Our algorithm is a descent method based on the principle
of the Armijo step size. Given a schedule σ ∈ Σ, it computes
the next schedule, σnext, by changing the modes associated
with points s ∈ [0, T] where Dσ,s < 0. The Lebesgue
measure of this set where the mode-sequence is modified
acts as the parameter for the Armijo procedure. We point
out that the algorithm in [7] also uses the Armijo step size
to compute the length of an interval where a new mode is
to be inserted, but our algorithm is radically different for
the following reasons. First, the insertion at each iteration
can be of several modes, and second, multiple modes can be
swapped. More specifically, the search for the set where the
modes are changed in a given iteration is not restricted by
a single mode at either the given schedule or the modified
schedule. This allows us to take large step sizes, thereby
avoiding the need to solve timing optimization problems. The
point where the analyses in [2], [7] breaks down is in the fact
that the insertion gradient Dσ,s,w generally is discontinuous
in s at the mode-switching times in a given schedule σ.

Now one of the basic requirements of algorithms in
the general setting of nonlinear programming is that every

accumulation point of a computed sequence of iteration
points satisfies a certain optimality condition, like stationarity
or the Kuhn-Tucker condition. However, in our case such
a convergence property is meaningless since the schedule-
space Σ is neither finite dimensional nor complete. Conse-
quently convergence of our algorithm has to be characterized
by other means, and to this end we use Polak’s concept
of minimizing sequences [9]. Accordingly, the quantity Dσ

acts as an optimality function [10], namely the optimality
condition in question is Dσ = 0, while |Dσ| indicates an
extent to which σ fails to satisfy that optimality condition.
Convergence of an algorithm means that, if it computes a
sequence of schedules {σk}∞k=1 then,

lim sup
k→∞

Dσk
= 0; (5)

in some cases the stronger condition limk→∞ Dσk
= 0

applies. In either case, for every ϵ > 0 the algorithm yields
an admissible mode-schedule σ ∈ Σ satisfying the inequality
Dσ > −ϵ. Our analysis (see [15]) will yield Equation
(5) by proving a uniformly-linear convergence rate of the
algorithm.2

Since the Armijo step-size technique will play a key role
in our algorithm, we conclude this section with a recount of
its main features. Consider the general setting of nonlinear
programming where it is desirable to minimize a C2 function
f : Rn → R, and suppose that the Hessian d2f

dx2 (x) is
bounded on Rn. Given x ∈ Rn, a steepest descent from
x is any vector in the direction −∇f(x); we normalize the
gradient by defining h(x) := ∇f(x)

||∇h(x)|| , and call −h(x) the
steepest-descent direction. Let λ(x) ≥ 0 denote the step size
so that the next point computed by the algorithm, denoted
by xnext, is defined as

xnext = x− λ(x)h(x). (6)

The Armijo step size procedure defines λ(x) by an approx-
imate line minimization in the following way (see [10]):
Given constants α ∈ (0, 1) and β ∈ (0, 1), define the integer
j(x) by

j(x) : min
{
j = 0, 1, . . . , :

f(x− βj∇f(x))− f(x) ≤ −αβj ||∇f(x)||2
}
, (7)

and define
λ(x) = βj(x)||∇f(x)||. (8)

Now the steepest descent algorithm with Armijo step size
computes a sequence of iteration points xk, k = 1, 2, . . . ,
by the formula xk+1 = xk − λ(xk)h(xk); λ(xk) is called
the Armijo step size at xk. The main convergence property

2The reason for the “limsup” in (5) instead of the stronger form of
convergence (with “lim” instead of “limsup”) is due to technical peculiarities
of the optimality function Dσ that will be discussed later. We argue in
[15] that the stronger form of convergence applies except for pathological
situations. Furthermore, we will define an alternative optimality function
and prove (in [15]) the stronger form of convergence for it. The choice of
the most-suitable optimality function is largely theoretical and will not be
addressed in this paper.

of this algorithm [10] is that every accumulation point x̂ of
a computed sequence {xk}∞k=1 satisfies the stationarity con-
dition ∇f(x̂) = 0. Several results concerning convergence
rate have been derived as well, and the one of interest to us
is given by Proposition 1 below, whose proof can be found
in [10], Equation (8b).

Proposition 1: Suppose that f(x) is C2, and that there
exists a constant L > 0 such that, for every x ∈ Rn,
||H(x)|| ≤ L, where H(x) := df2

dx2 (x). Then the following
two statements are true: (1). For every x ∈ Rn and for every
λ ≥ 0 such that λ ≤ 2

L (1− α)||∇f(x)||,

f(x− λh(x))− f(x) ≤ −αλ||∇f(x)||. (9)

(2). For every x ∈ Rn,

λ(x) ≥ 2

L
β(1− α)||∇f(x)||. (10)

This implies the following convergence result, proved in [10]:
Corollary 1: (1). There exists c > 0 such that ∀x ∈ Rn,

f(xnext)− f(x) ≤ −c||∇f(x)||2. (11)

(2). If the algorithm computes a bounded sequence {xk}∞k=1

then
lim
k→∞

∇f(xk) = 0. (12)

III. ALGORITHM FOR THE MODE-SCHEDULING
PROBLEM

To simplify the notation and discussion we assume first
that the set V consists only of two elements, namely the
system is bi-modal. This assumption incurs no significant
loss of generality, and at the end of this section we will
point out an extension to the general case where V consists
of an arbitrary finite number of points. Let us denote the two
elements of V by v1 and v2. A mode-schedule σ alternates
between these two points, and we denote by {v1, . . . , vℓ(σ)}
the sequence of values of v associated with the mode-
sequence comprising σ. Denoting by vc the complement of
v, we have that vi+1 = (vi)c for all i = 1, . . . , ℓ(θ)− 1.

Consider a mode-schedule σ ∈ Σ that does not satisfy the
necessary optimality condition, namely Dσ < 0. Define the
set Sσ,0 as Sσ,0 := {s ∈ [0, T] : Dσ,s < 0}, and note
that Sσ,0 ̸= ∅. Recall that v(s) denotes the value of v at the
time s. Then for every s ∈ Sσ,0 which is not a switching
time, an insertion of the complementary mode v(s)c at s
for a small-enough period would result in a decrease of J .
Our goal is to flip the modes (namely, to switch them to
their complementary ones) in a large subset of Sσ,0 that
would result in a substantial decrease in J , where by the
term “substantial decrease” we mean a decrease by at least
aD2

σ for some constant a > 0. This “sufficient descent” in
J is akin to the descent property of the Armijo step size as
reflected in Equation (11).

This sufficient-descent property cannot be guaranteed by
flipping the mode at every time s ∈ Sσ,0. Instead, we search

for a subset of Sσ,0 where, flipping the mode at every s in
that subset would guarantee a sufficient descent. This subset
will consist of points s where Dσ,s is “more negative” than
at typical points s ∈ Sσ,0. Fix η ∈ (0, 1) and define the set
Sσ,η by

Sσ,η =
{
s ∈ [0, T] : Dσ,s ≤ ηDσ

}
. (13)

Obviously Sσ,η ̸= ∅ since Dσ < 0. Let µ(Sσ,η) denote
the Lebesgue measure of Sσ,η, and more generally, let µ(·)
denote the Lebesgue measure on R. For every subset S ⊂
Sσ,η, consider flipping the mode at every point s ∈ S,
and denote by σ(S) the resulting mode-schedule. In the
forthcoming we will search for a set S ⊂ Sσ,η that will
give us the desired sufficient descent.

Fix η ∈ (0, 1). Let S : [0, µ(Sσ,η)] → 2Sσ,η (the latter
object is the set of subsets of Sσ,η) be a mapping having the
following two properties: (i) ∀λ ∈ [0, µ(Sσ,η)], S(λ) is the
finite union of closed intervals; and (ii) ∀λ ∈ [0, µ(Sσ,η)],
µ(S(λ)) = λ. We define σ(λ) to be the mode-schedule
obtained from σ by flipping the mode at every time-point
s ∈ S(λ). For example, ∀λ ∈ [0, µ(Sσ,η)] define s(λ) :=
inf{s ∈ Sσ,η : µ([0, s] ∩ Sσ,η) = λ}, and define S(λ) :=
[0, s(λ)] ∩ Sσ,η. Then σ(λ) is the schedule obtained from σ
by flipping the modes lying in the leftmost subset of Sσ,η

having Lebesgue-measure λ, and it is the finite union of
closed intervals if so is Sσ,η.

We next use such a mapping S(λ) to define an Armijo
step-size procedure for computing a schedule σnext from σ.
Given constants α ∈ (0, 1) and β ∈ (0, 1), in addition to
η ∈ (0, 1). Consider a given σ ∈ Σ such that Dσ < 0. For
every j = 0, 1, . . ., define λj := βjµ(Sσ,η), and define j(σ)
by

j(σ) := min
{
j = 0, 1, . . . , : J(σ(λj))−J(σ) ≤ αλjDσ

}
.

(14)
Finally, define λ(σ) := λj(σ), and set σnext := σ(λ(σ)).

Observe that the Armijo step-size procedure is applied
here not to the steepest descent (which is not defined in
our problem setting) but to a descent direction defined by
a Gâteaux derivative of J with respect to a subset of the
interval [0, T] where the modes are to be flipped. Generally
this Gâteux derivative is not necessarily continuous in λ
and hence the standard arguments for sufficient descent do
not apply.3 However, the problem has a special structure
guaranteeing sufficient descent and the algorithm’s conver-
gence in the sense of minimizing sequences. Furthermore,
the sufficient descent property depends on µ(Sσ,η) but is
independent of both the string size ℓ(σ) and the particular
choice of the mapping S : [0, µ(Sσ,η)] → 2Sσ,η . This
guarantees that the convergence rate of the algorithm is not
reduced when the string lengths of the schedules computed
in successive iterations grow unboundedly.

3In [7] this Gâteux derivative is continuous in λ, because λ is restricted to
the extent of switching a single mode. As mentioned earlier, this restriction
requires a run of the timing-optimization algorithm which is not needed
here.

We next present the algorithm formally. Given constants
α ∈ (0, 1), β ∈ (0, 1), and η ∈ (0, 1). Suppose that for
every σ ∈ Σ such that Dσ < 0 there exists a mapping
S : [0, µ(Sσ,η)] → 2Sσ,η with the aforementioned properties.

Algorithm 1: Step 0: Start with an arbitrary schedule σ0 ∈
Σ. Set k = 0.
Step 1: Compute Dσk

. If Dσk
= 0, stop and exit; otherwise,

continue.
Step 2: Compute Sσk,η as defined in (13), namely Sσk,η =
{s ∈ [0, T] : Dσk,s ≤ ηDσk

}.
Step 3: Compute j(σk) as defined by (14), namely

j(σk) =

min
{
j = 0, 1, . . . , : J(σk(λj))− J(σk) ≤ αλjDσk

}
(15)

with λj := βjµ(Sσk,η), and set λ(σk) := λj(σk).
Step 4: Define σk+1 := σk(λ(σk)), namely the schedule
obtained from σk by flipping the mode at every time-point
s ∈ S(λ(σk)). Set k = k + 1, and go to Step 1.

It must be mentioned that the computation of the set Sσk,η

at Step 2 typically requires an adequate approximation. This
paper analyzes the algorithm under the assumption of an
exact computation of Sσk,η, while the case involving adaptive
precision will be treated in a later, more comprehensive
publication.

The main result of the paper concerns the sufficient
descent of Algorithm 1, which yields its asymptotic conver-
gence to schedules satisfying the optimality condition. We
outline the main arguments of the analysis, while the proofs
can be found in [15].

Given σ ∈ Σ, consider an interval I := [s1, s2] ⊂ [0, T]
of a positive length, such that the modes associated with
all s ∈ I are the same, i.e., v(s) = v(s1) ∀s ∈ I .
Denote by σs1(γ) the mode-sequence obtained from σ by
flipping the modes at every time s ∈ [s1, s1 + γ], and
consider the resulting cost function J(σs1(γ)) as a function
of γ ∈ [0, s2 − s1]. The following two preliminary results
follow from the perturbation theory of differential equations;
see [10].

Lemma 1: There exists a constant K > 0 such that, for
every σ ∈ Σ, and for every interval I = [s1, s2] as above, the
function J(σs1(·)) is twice-continuously differentiable (C2)
on the interval γ ∈ [0, s2−s1]; and for every γ ∈ [0, s2−s1],
|J(σs1(γ))

′′ | ≤ K (“prime” indicates derivative with respect
to γ).

Lemma 1 in conjunction with Corollary 1 (above) can
yield sufficient descent only in a local sense, as in [7],
where the same mode is scheduled according to σ. At mode-
switching times, Dσ,s is no longer continuous in s, and hence
Lemma 1 cannot be extended to intervals where v(·) does
not have a constant value. The following result provides an
upper bound on the sensitivity across different modes.

Lemma 2: There exists a constant K > 0 such that for
every σ ∈ Σ, for every interval I = [s1, s2] as above (i.e.,
such that σ has the same mode throughout I), for every
γ ∈ [0, s2 − s1), and for every s ≥ s2,

|Dσs1 (γ),s
−Dσ,s| ≤ Kγ. (16)

Lemma 2 concerns a schedule σs1(γ) obtained from σ by
flipping the modes at every point in the interval [s1, s1 +
γ); and it establishes a uniform Lipschitz continuity of the
insertion gradient at future points s, with respect to the length
of the interval where the modes are being flipped, γ. This
extends the local sufficient descent, implied by Lemma 1,
to intervals having any number of modes, and yields global
sufficient descent in the sense of the following result.

Proposition 2: Fix η ∈ (0, 1), β ∈ (0, 1), and α ∈ (0, η).
There exists a constant c > 0 such that, for every σ ∈ Σ
satisfying Dσ < 0, and for every λ ∈ [0, µ(Sσ,η)] such that
λ ≤ c|Dσ|,

J(σ(λ))− J(σ) ≤ αλDσ. (17)

General results concerning sufficient descent, analogous to
Proposition 2, provide key arguments in proving asymptotic
convergence of nonlinear-programming algorithms (see, e.g.,
[10]). In our case, the optimality function has the peculiar
property that it is discontinuous in the Lebesgue measure
of the set where a mode is flipped. To see this, recall
that Dσ,s,v(s)c = p(s)T

(
f(x(s), v(s)c)−f(x(s), v(s))

)
(see

Equation (4)), and hence a change of the mode at time
s would flip the sign of Dσ,s,v(s)c . This can result in
situations where |Dσ| is “large” while Sσ,η is “small”, and
for this reason, convergence of Algorithm 1 is characterize
by Equation (5) with the limsup rather than with the stronger
assertion with lim. This is the subject of the following result.

Corollary 2: Suppose that Algorithm 1 computes a se-
quence of schedules, {σk}∞k=1. Then Equation (5) is in force,
namely lim supk→∞ Dσk

= 0.

Alternative optimality functions can be considered as
well, like the term Dσµ(Sσ,η), where it is shown in [15]
that limk→∞ Dσk

µ(Sσk,η) = 0. The choice of the “most
appropriate” optimality function is an interesting theoretical
question that will be addressed elsewhere, while here we
consider the simplest and (in our opinion) most intuitive
optimality function Dσ , despite its technical peculiarities.

Finally, a word must be said about the general case where
the set V consists of more than two points. The algorithm
and much of its analysis remain unchanged, except that for
a given σ ∈ Σ, at a time s, the mode associated with v(s)
should be switched to the mode associated with the point
w ∈ V that minimizes the term Dσ,s,w.

IV. NUMERICAL EXAMPLE

We tested the algorithm on the double-tank system shown
in Figure 1. The input to the system, v, is the inflow rate
to the upper tank, controlled by the valve and having two
possible values, v1 = 1 and v2 = 2. x1 and x2 are the
fluid levels at the upper tank and lower tank, respectively, as
shown in the figure. According to Toricelli’s law, the state
equation is (

ẋ1

ẋ2

)
=

(
v −√

x1√
x1 −

√
x2

)
, (18)

x1

x2

v

Fig. 1. Two-tank system

with the (chosen) initial condition x1(0) = x2(0) = 2.0.
Notice that both x1 and x2 must satisfy the inequalities 1 ≤
xi ≤ 4, and if v = 1 indefinitely than limt→∞ xi = 1, while
if v = 2 indefinitely then limt→∞ xi(t) = 4, i = 1, 2.

The objective of the optimization problem is to have the
fluid level in the lower tank track the given value of 3.0, and
hence we chose the performance criterion to be

J = 2

∫ T

0

(
x2 − 3

)2
dt, (19)

for the final-time T = 20. The various integrations were
computed by the forward-Euler method with ∆t = 0.01. For
the algorithm we chose the parameter-values α = β = 0.5
and η = 0.6, and we ran it from the initial mode-schedule
associated with the control input v(t) = 1 ∀ t ∈ [0, 10] and
v(t) = 2 ∀ t ∈ (10, 20].

Results of a typical run, consisting of 100 iterations of
the algorithm, are shown in Figures 2-5. Figure 2 shows
the control computed after 100 iterations, namely the input
control v associated with σ100. The graph is not surprising,
since we expect the optimal control initially to consist of
v = 2 so that x2 can rise to a value close to 3, and then to
enter a sliding mode in order for x2 to maintain its proximity
to 3. This is evident from Figure 2, where the sliding mode
has begun to be constructed. Figure 3 shows the resulting
state trajectories x1(t) and x2(t), t ∈ [0, T], associated with
the last-computed schedule σ100. The jagged curve is of x1

while the smoother curve is of x2. It is evident that x2 climbs
towards 3 initially and tends to stay there thereafter. Figure
4 shows the graph of the cost criterion J(σk) as a function
of the iteration count k = 1, . . . , 100. The initial schedule,
σ1, is far away from the minimum and its associated cost is
J(σ1) = 70.90, and the cost of the last-computed schedule is
J(σ100) = 4.87. Note that J(σk) goes down to under 8 after
3 iterations. Figure 5 shows the optimality function Dσk

as
a function of the iteration count k. Initially Dσ1 = −14.92
while at the last-computed schedule Dσ100 = −0.23, and it
is seen that Dσk

makes significant climbs towards 0 in few
iterations. We also ran the algorithm for 200 iterations from
the same initial schedule σ1, in order to verify that J(σk)
and Dσk

stabilize. Indeed they do, and J declined from
J(σ100) = 4.87 to J(σ200) = 4.78, while the optimality

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1

1.2

1.4

1.6

1.8

2

Fig. 2. Control (schedule) obtained after 100 iterations

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Fig. 3. x1 and x2 vs. t

functions continues to rise towards 0, from Dσ100 = −0.23
to Dσ200 = −0.062.

V. CONCLUSIONS

This paper proposes an algorithm for the optimal mode-
scheduling problem, where it is desirable to minimize an
integral-cost criterion defined on the system’s state trajec-
tory as a function of the modes’ schedule. Unlike extant
techniques in the same vein, the algorithm here changes
an unspecified number of modes per iteration, and it does
not have to solve timing optimization problems. Asymptotic
convergence is proved in the sense of minimizing sequences,
and simulation results support the theoretical developments.

REFERENCES

[1] S.A. Attia, M. Alamir, and C. Canudas de Wit. Sub Optimal Control
of Switched Nonlinear Systems Under Location and Switching Con-
straints. Proc. 16th IFAC World Congress, Prague, the Czech Republic,
July 3-8, 2005.

[2] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest. A Gradient
Descent Approach to Optimal Mode Scheduling in Hybrid Dynamical
Systems. Journal of Optimization Theory and Applications, Vol. 136,
pp. 167-186, 2008.

[3] S.C. Bengea and R. A. DeCarlo. Optimal control of switching systems.
Automatica, Vol. 41, pp. 11-27, 2005.

[4] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A Unified Framework
for Hybrid Control: Model and Optimal Control Theory. IEEE Trans-
actions on Automatic Control, Vol. 43, pp. 31-45, 1998.

[5] T. Caldwell and T. Murphy. An Adjoint Method for Second-Order
Switching Time Optimization. Proc. 49th CDC, Atlanta, Georgia,
December 15-17, 2010.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Fig. 4. Cost criterion vs. iteration count

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

Fig. 5. Optimality function vs. iteration count

[6] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-Time Optimiza-
tion for Switched Systems. IEEE Transactions on Automatic Control,
Vol. AC-51, No. 1, pp. 110-115, 2006.

[7] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S.S. Sastry, R. Bajcsy,
and C. Tomlin. A Numerical Method for the Optimal Control of
Switched Systems. Proc. 49th CDC, Atlanta, Georgia, December 15-
17, 2010, pp. 7519-7526.

[8] B. Piccoli. Hybrid Systems and Optimal Control. Proc. IEEE Confer-
ence on Decision and Control, Tampa, Florida, pp. 13-18, 1998.

[9] E. Polak and Y. Wardi. A Study of Minimizing Sequences. SIAM
Journal on Control and Optimization, Vol. 22, No. 4, pp. 599-609,
1984.

[10] E. Polak. Optimization Algorithms and Consistent Approximations.
Springer-Verlag, New York, New York, 1997.

[11] M.S. Shaikh and P. Caines. On Trajectory Optimization for Hybrid
Systems: Theory and Algorithms for Fixed Schedules. IEEE Confer-
ence on Decision and Control, Las Vegas, NV, Dec. 2002.

[12] M.S. Shaikh and P.E. Caines. Optimality Zone Algorithms for Hybrid
Systems Computeation and Control: From Exponential to Linear Com-
plexity. Proc. IEEE Conference on Decision and Control/European
Control Conference, pp. 1403-1408, Seville, Spain, December 2005.

[13] M.S. Shaikh and P.E. Caines. On the Hybrid Optimal Control Problem:
Theory and Algorithms. IEEE Trans. Automatic Control, Vol. 52, pp.
1587-1603, 2007.

[14] H.J. Sussmann. A Maximum Principle for Hybrid Optimal Control
Problems. Proceedings of the 38th IEEE Conference on Decision and
Control, pp. 425-430, Phoenix, AZ, Dec. 1999.

[15] Y. Wardi and M. Egerstedt. Algorithm for Optimal Mode Scheduling
in Switched Systems. Technical Memorandum, www.ece.gatech.edu/
∼magnus/OptSwitchTechnReport.pdf, Georgia Institute of Technol-
ogy, March 2011.

[16] X. Xu and P. Antsaklis. Optimal Control of Switched Autonomous
Systems. IEEE Conference on Decision and Control, Las Vegas, NV,
Dec. 2002.

