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Abstract 

From Gene Trees to Species Trees: 

Algorithms for Parsimonious Reconciliation 

by 

Yun Yu 

One of the criteria for inferring a species tree from a collection of gene trees, when 

gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is 

minimize deep coalescence, or MDC. Exact algorithms for inferring the species tree 

from rooted, binary trees under MDC were recently introduced. Nevertheless, in 

phylogenetic analyses of biological data sets, estimated gene trees may differ from 

true gene trees, be incompletely resolved, and not necessarily rooted. Further, the 

MDC criterion considers only the topologies of the gene trees. So the contributions 

of my work are three-fold: 

1. We propose new MDC formulations for the cases in which the gene trees are un­

rooted/binary, rooted/non-binary, and unrootedjnon-binary, prove structural 

theorems that allow me to extend the algorithms for the rooted/binary gene 

tree case to these cases in a straightforward manner. 

2. We propose an algorithm for inferring a species tree from a collection of gene 

trees with coalescence times that takes into account not only the topology of 

the gene trees but also the coalescence times. 



iii 

3. We devise MDC-based algorithms for cases in which multiple alleles per species 

may be sampled. 

We have implemented all of the algorithms in the PhyloNet software package and 

studied their performance in coalescent-based simulation studies in comparison with 

other methods including democratic vote, greedy consensus, STEM, and GLASS. 
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Chapter 1 

Introduction 

Use of DNA sequence data for inferring phylogenetic relationships among species is 

central in biology; however, the evolution of DNA is complex, and this complexity is 

almost never fully taken into account in phylogenetic inference from DNA sequence 

data. Of particular importance in phylogenomic analyses, the evolution of the DNA 

regions used for phylogenetic inference (often genes, but not always) need not be 

congruent with the evolution of the species. This is the classic gene tree/species 

tree problem [Mad97, DR09b]. Errors in estimating gene trees (due, for example, to 

inadequate sequence length, improper phylogeny estimation methods, or insufficient 

computational resources) can produce estimated gene trees that differ from the true 

gene trees and therefore from the species tree even when the true gene tree and species 

tree are identical. In addition, however, many biological factors can cause true gene 

trees to be different from the true species trees. For example, horizontal gene transfer, 

gene duplication/loss, and incomplete lineage sorting (ILS) can result in gene/species 

tree incongruence. My work here focuses on ILS as the sole biological cause of such 

1 
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incongruence. 

The population genetics community has long recognized the existence of gene tree 

incongruence [Hud83, Nei86, Taj83]. This phenomenon can sometimes cause severe 

errors in phylogenetic inference procedures [PN88, Tak89, Wu91]. However, for most 

species, it has until recently been difficult to gather data on more than a single part 

of the genome [DAB+04]. With the advent of technologies that make it possible to 

obtain large amounts of sequence data from multiple species, multi-locus data are 

becoming widely available, highlighting the issue of gene tree incongruence [DR09a, 

KWK08, PIME06, RWKC03, SWCL05, TSIN08]. 

Several methods have been introduced for inferring a species tree from a col­

lection of gene trees under ILS-based incongruence. Summary statistics, such as 

the majority-rule consensus (e.g., [DDBR09, KWK08]) and democratic vote (e.g., 

[Daw04, DR06, Wu91, Wu92]), are fast to compute and provide a good estimate 

of the species tree in many cases. However, not only does the accuracy of these 

methods suffer under certain conditions, but also these methods do not provide ex­

plicit reconciliation scenarios, generating only summaries of the gene trees. Methods 

that explicitly model ILS have recently been introduced, such as Bayesian infer­

ence [ELP07, LP07], maximum likelihood [KCK09], and the maximum parsimony 

criterion Minimize Deep Coalescence, or MDC [Mad97, MK06, TSIN08]. Recently 

Than and Nakhleh [TN09, TNlO] introduced the first exact algorithms for inferring 

species trees under the MDC criterion from a collection of rooted, binary gene trees. 
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1.1 Contributions of this thesis 

In practice, when we analyze real biological data sets, we have DNA sequences from 

which we can infer gene trees. However, none of those tree reconstruction methods 

can identify the root. So we have to deal with unrooted gene trees. Furthermore, 

there is uncertainty about gene trees inferred from sequences. In Bayesian inference, 

this uncertainty is reflected by a posterior distribution of gene tree topologies. In 

a parsimony analysis, several equally optimal trees are computed. To account for 

these uncertainty so as to minimize the number of false-positive edges, we usually 

remove edges with low support. For example, for maximum parsimony, we take strict 

consensus of all optimal trees; for neighbor-joining with bootstrap, we remove edges 

with low bootstrap value; for bayesian analysis, we remove edges with low posterior 

probability. All of them may result in unresolved trees. 

Here we propose an approach to estimating species trees from estimated gene trees 

which outcomes these problems. Instead of assuming that all gene trees are correct 

(and hence fully resolved, rooted trees), I consider the case in which all gene trees are 

modified so that they are reasonably likely to be unrooted, edge-contracted versions of 

the true gene trees. For example, the reliable edges in the gene trees can be identified 

using statistical techniques, such as bootstrapping, and all low-support edges can be 

contracted. In this way, the MDC problem becomes one in which the input is a set of 

gene trees that might not be rooted and might not be fully resolved, and the objective 

is a rooted, binary species tree and binary rooted refinements of the input gene trees 

that optimizes the MDC criterion. We provide exact algorithms and heuristics for 
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inferring species trees for these cases. Further, the MDC criterion considers only the 

topologies of the gene trees. In practice, coalescence times may be estimated for the 

internal nodes of gene trees. We also extend the MDC criterion and provide an exact 

algorithm for the case of input gene trees with coalescence times. In addition, Than 

and N akhleh have extended the MDC criterion and devised an algorithm for cases in 

which multiple alleles (or no alleles) per species may be sampled. Here, we establish 

that the algorithm is exact, in that it finds a species tree that minimizes the amount 

of deep coalescences when multiple alleles may be involved in the analysis. 

We have implemented these MDC-based algorithms in PhyloNet software pack­

age [TRN08], and evaluated their performance in comparison with four other popular 

methods: the greedy consensus, the democratic vote, GLASS, and STEM, in terms 

of both the accuracy and speed. 



Chapter 2 

Background 

2.1 Species tree/gene tree problem 

A species tree reveals the inferred evolutionary relationships among different biolog­

ical species, in which every internal node represents species divergence. Within the 

branches of a species tree, gene trees are contained. They are formed because of gene 

replication. Every internal node in a gene tree is generated when a gene copy at a 

locus in the genome replicates and its copies are present in more than one offspring 

[Mad97]. 

The traditional approach to species tree inference entails sequencing a gene from 

the set of species under study, inferring the gene tree, and finally declaring the gene 

tree as the estimate of the species phylogenetic relationship. However, in a seminal 

paper, Maddison [Mad97] discussed the issue of potential incongruence among gene 

trees and proposed inferring species phylogenies by simultaneously accounting for 

mutations within a gene and incongruence across genes. He pointed out that gene 

5 
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trees could disagree with their containing species tree due to a host of factors, like 

horizontal transfer, gene duplication/extinction, and lineage sorting. While Maddison 

focused mainly on topological incongruence, Edwards [Edw09] more recently revisited 

the issues and highlighted, in addition, incongruence in terms of branch lengths (what 

he termed branch length heterogeneity). Indeed, recent analysis of multi-locus data 

sets have shown large extents of gene tree incongruence in various groups of organisms 

[RWKC03, SWCL05, PIME06, TSIN08, KWK08]. Here, my work exclusively assumes 

incomplete lineage sorting (ILS) as the cause of incongruence. 

2.2 Incomplete lineage sorting 

ILS is best understood under the coalescent model [DR06, DS05, Hud83, Nei86, Nei87, 

Ros02, Taj83, Tak89]. The coalescent model views gene lineages moving backward in 

time, eventually coalescing down to one lineage. The term coalescence refers to the 

process in which, looking backward in time, two gene lineages merge at a common 

ancestor. In each time interval between species divergences (e.g., t in Fig. 2.1), 

lineages entering the interval from a more recent time period might or might not 

coalesce-an event whose probability is determined largely by the population size 

and branch lengths. ILS, or deep coalescence, refers to the case in which two lineages 

fail to coalesce before their speciation events. It is more likely to happen for a larger 

population or a shorter branch length. 

Thus, a gene tree is viewed as a random variable conditional on a species tree. For 

the species tree ((A, B), C), with timet between species divergences, Fig. 2.1 shows 
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~\\1\MX\ 
A B CAB CAB CA C B 

Figure 2.1: Gene/species tree incongruence due toILS. Given species tree ST, with con-

stant population size throughout and time t in coalescent units (number of generations 

divided by the population size) between the two divergence events, each of the three gene 

tree topologies gt1, gt2, and gt3 may be observed, with probabilities 1- (2/3)e-t, (1/3)e-t, 

and (1/3)e-t, respectively. 

the three possible outcomes for the gene tree topology random variable, along with 

their probabilities. 

2.3 Existing methods 

The observation of gene tree incongruence in data analyses and the need to establish 

the phylogenetic relationship of species despite this incongruence have led to the devel-

opment of a number of methods for inferring species trees despite incomplete lineage 

sorting (see [DR09b] and [LYK+09] for very recent surveys of such methods). These 

methods can be divided into two categories. The first category contains methods 

that simply concatenate sequences from the multiple loci and apply any phylogenetic 

tree reconstruction method to the resulting supergene. While this approach is very 

simple and fast, particularly when choosing a fast phylogenetic method to run on the 

concatenated sequences, Kubatko and Degnan [KD07] have recently shown that this 

approach can produce incorrect species tree estimates with strong bootstrap support. 
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The second category contains methods that analyze each locus individually and pro­

duce a species tree estimate from the evolutionary histories of the individual loci. 

The simplest two methods in this category are the democratic vote, which amounts 

to selecting the highest-frequency gene tree as the species tree estimate, and the ma­

jority consensus, which produces a tree in which each branch is displayed by at least 

50% of the individual gene trees. Degnan and Rosenberg [DR09b] recently discussed 

the performance of these two methods and showed that they can produce incorrect 

species tree estimates, even when more data are used. More recently, four methods 

were added to this category, which take incongruence into account by exclusively 

accounting for the coalescent process [Kin82]. Mossel and Roch [MRlO] introduced 

GLASS (Global LAteSt Split), a distance-based method that infers species relation­

ships based on pairwise distances computed for each locus independently. Liu [LP07] 

and Edwards [ELP07] introduced BEST (Bayesian Estimation of Species Trees), a 

Bayesian method for simultaneous inference of gene trees and the species tree that 

contains them. Kubatko, Carstens, and Knowles [KCK09] introduced STEM (Species 

Tree Estimation using Maximum likelihood), a maximum likelihood approach follow­

ing Maddison's proposal[Mad97]. Than and Nakhleh [TN09] introduced MDC (Min­

imize Deep Coalescences), a parsimony-based approach to species tree inference that 

builds on previous studies [Mad97, MK06, TSIN08]. 



Chapter 3 

Preliminary Material 

3.1 Clades and clusters 

Throughout this section, unless specified otherwise, all trees are presumed to be rooted 

binary trees, bijectively leaf-labelled by the elements of !r (that is, each x E !r labels 

one leaf in each tree). We denote by ~~ the set of all binary rooted trees on leaf­

set !r. We denote by V(T), E(T), and L(T) the node-set, edge-set, and leaf-set, 

respectively, ofT. For v a node in T, we define parent(v) to be the parent of v in T, 

and Children(v) to be the children of v. A clade in a tree Tis a rooted subtree of 

T, which can be identified by the node in T rooting the clade. For a given tree T, we 

denote the subtree ofT rooted at v by Clader(v), and when the tree Tis understood, 

by Clade(v). The clade for node v is Clade(v), and since nodes can have children, 

the children of a clade Clade(v) are the clades rooted at the children of v. The set 

of all clades of a tree Tis denoted by Clades(T). The set of leaves in Clader(v) is 

called a cluster and denoted by Clusterr( v) (or more simply by Cluster( v) if the tree 

9 
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T is understood). The clusters that contain either all the taxa or just single leaves 

are called trivial, and the other clusters are called non-trivial. The cluster of node 

v is Cluster(v). As with clades, clusters can also have children. If Y is a cluster in 

a tree T, then the clade for Y within T, denoted by Clader(Y), is the clade ofT 

induced by Y. The set of all clusters ofT is denoted by Clusters(T). We say that 

edge e in gt is outside cluster Y if it satisfies e fj. E(Clade9t(Y)), and otherwise that 

it is inside Y. Given a set A~ L(T), we define MRCAr(A) to be the most recent 

(or least) common ancestor of the taxa in A. Finally, given trees t and T, both on 

.¥,we define H: V(t)--+ V(T) by Hr(v) = MRCAr(Clustert(v)). 

We extend the definitions of Clades(T) and Clusters(T) to the case in which Tis 

unrooted by defining Clades(T) to be the set of all clades of all possible rootings of 

T, and Clusters(T) to be the set of all clusters of all possible rootings ofT. Thus, 

the sets Clades(T) and Clusters(T) depend upon whether Tis rooted or not. 

Given a cluster Y ~ .¥ ofT, the parent edge of Y within Tis the edge incident 

with the root of the clade for Y, but which does not lie within the clade. When T is 

understood by context, we will refer to this as the parent edge of Y. 

A set C:C of clusters is said to be compatible if there is a rooted tree T on leaf-set S 

such that Clusters(T) = C:C. By [8803], the set C:C is compatible if and only if every 

pair A and B of clusters in C:C are either disjoint or one contains the other. 



11 

3.2 Valid coalescent histories and extra lineages 

Given gene tree gt and species tree ST, a valid coalescent history is a function f : 

V(gt) -+ V(ST) such that the following conditions hold: 

• if w is a leaf in gt, then f(w) is the leaf in ST with the same label; and, 

• if w is a vertex in Clade9t(v), then f(w) is a vertex in CladesT(f(v)). 

Note that these two conditions together imply that f(v) is a node on the path between 

the root of ST and the MRCA in ST of Cluster9t(v). Given a gene tree gt and a 

species tree ST, and given a function f defining a valid coalescent history of gt within 

ST, the number of lineages on each edge in ST can be computed by inspection. 

Notice that in a rooted tree, each edge ( u, v) is uniquely associated with, or 

identified by, its head node, v. Further, when multiple coalescence events occur 

within a branch in the species tree, the order in which these events occur does not 

matter under the MDC criterion. Based on these two observations, we always map 

coalescence events to nodes. Let e = ( u, v) be an edge in the species tree, and x and 

y be the two children of v. If lx lineages enter edge e from the edge ( v, x), and ly 

lineages enter edge e from the edge ( v, y), and q coalescence events are mapped to 

node v under a given valid coalescent history, then the number of lineages in edge e 

is lx + ly - q; see the illustration in Fig. 3.1. 

An optimal valid coalescent history is one that results in the minimum number of 

lineages over all valid coalescent histories. We denote the number of extra lineages 

on an edge e E E(ST) (one less than the number of lineages on e) in an optimal 
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Figure 3.1: Under the coalescent model, time flows backward from the leaves toward the 

root. In a valid coalescent history, the number of lineages in edge e = ( u, v) equals the sum 

of the numbers of lineages entering e, when going backward in time, from edges (v, x) and 

( v, y), minus the number of coalescent events that occur at node v. 

valid coalescent history of gt within ST by XL( e, gt), and we denote by XL ( ST, gt) 

the total number of extra lineages within an optimal valid coalescent history of gt 

within ST, i.e., X L(ST, gt) = L eEE(ST) X L(e, gt); see Fig. 3.2. Finally, we denote 

by X L(ST, ~) the total number of extra lineages, or MDC score, over all gene trees 

in ~, so X L(ST, ~) = Lgte.1 X L(ST, gt). 

For example, in Fig. 3.2, given a rooted binary gene tree gt and a rooted binary 

species tree ST, there are three different ways of reconciling this gene tree, as shown 

in the bottom row. We can see that with respect to the topology of the gene tree, 

lineage C and D have to coalesce above the root. However, A and B can coalesce on 

three different branches of the species tree, resulting in three different valid coalescent 

histories. From the number of extra lineages on each branch of the species tree for 

all three reconciliations shown in the figure, it is easy to tell that the first one is 

optimal under MDC criterion, which yields the smallest number of total extra lineages 
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XL(ST, gt) = 1. 

A B C D A B c D 

A B c D A B c D A B c D 

total extra lineages: 1 total extra lineages: 2 total extra lineages: 3 

Figure 3.2: Illustration of optimal and non-optimal reconciliations of a rooted, binary 

gene tree gt with a rooted, binary species tree ST, which yield 1, 2, and 3 extra lineages, 

respectively. 

Given gene tree gt and species tree ST, finding the valid coalescent history that 

yields the smallest number of extra lineages is achievable in polynomial time, as we 

now show. Given cluster A in gt and cluster Bin ST, we say that A is B-maximal if 

(1) A ~ B and (2) for all A' E Clusters(gt), if A C A' then A' ~ B. We set kB(gt) 

to be the number of B-maximal clusters within gt. Finally, we say that cluster A 

is ST-maximal if there is a cluster B E Clusters(ST) such that B =I= !lC and A is 

B-maximal. 

Theorem 1 (From [TN09j) Let gt be a gene tree, ST be a species tree, both binary 
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rooted trees on leaf-set X. Let B be a cluster in ST, and let e be the parent edge of B in 

ST. Then k8 (gt) is equal to the number of lineages one in an optimal valid coalescent 

history. Therefore, XL(e,gt) = kB(gt) -1 and XL(ST,gt) = L:8 [kB(gt) -1], where 

B ranges over the clusters of ST. Furthermore, a valid coalescent history f that 

achieves this total number of extra lineages can be produced by setting f(v) = Hsr(v) 

(i.e., f(v) = MRCAsr(Cluster9t(v))) for all v. 

In other words, we can score a candidate species tree ST with respect to a set r.# 

of rooted binary trees with XL(ST, r.#) = L:gtE~ L:BEClusters(ST)[kB(gt)- 1]. Finally, 

Corollary 1 Given collection r.# of k gene trees and species tree ST, each tree labelled 

by the species in !Z', we can compute the optimal coalescent histories relating each gene 

tree to ST so as to minimize the total number of extra lineages in 0( nk) time, and 

the MDC score of these optimal coalescent histories in O(nk) time, where I!Z'I = n. 

The analysis of the running time follows from the following two lemmas. 

Lemma 1 Given a rooted gene tree gt and a rooted binary species tree ST, we can 

compute all Hsr(v) (letting v range over V(gt)) in O(n) time. 

Proof: We begin by preprocessing both gt and ST in O(n) time so that each sub­

sequent MRCA query takes constant time [HT84, BFCOO]. Then, for each node 

v E V(gt), we can compute Hsr(v) in 0(1) time. Thus, we can compute the optimal 

coalescent history relating gt to ST in O(n) time. D 
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Lemma 2 Given a rooted gene tree gt and a rooted binary species tree ST, and 

assuming that HsT(v), for each v E V(gt) has been computed, we can compute 

XL(ST,gt) in O(n) time. 

Proof: We define the function lins: V(ST)-+ N as follows. For a vertex v E V(ST), 

lins(v) is the number of lineages in the parent edge of node v given an optimal valid 

coalescent history (i.e., under the HsT mapping). 

Denote by coalv the number of gene tree nodes mapped to node v under the HsT 

mapping. That is, coalv = l{u E V(gt) : HsT(u) = v}l. The function lins can be 

computed recursively as 

{ 
1 

lins(v) = 
lins(x) + lins(y)- coalv 

if vis a leaf 
(3.1) 

if {(v, x), (v, y)} ~ E(ST) 

We now prove that (1) for every node v E V(ST), linsv = kB(gt) where B 

Cluster(v) in ST, and (2) lins is computable in O(n) time. 

The proof of (1) uses strong induction on the height of node v, where the height of 

vis the length of the longest path from v to any leaf in Cluster(v). For the base case, 

let v be a node of height 1, and its two children (which are leaves) x andy be labeled 

lx and ly, respectively. For this base case, lins(x) = lins(y) = coalx = coaly = 1. If 

{lx, ly} is a cluster in gt, then kB(gt) = 1, in which case the algorithm sets lins(v) to 

lins(x) + lins(y) - coalv = 1 + 1 - 1 = 1, since coalv = 1. If {lx, ly} is not a cluster 

in gt, then kB(gt) = 2, and the algorithm sets lins(v) to lins(x) + lins(y)- coalv = 

1 + 1-0 = 2, since no coalescence event occurs at node v. Therefore, k8 (gt) = lins(v) 

for nodes v of height 1 in ST. 
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Now assume that kB(gt) = lins(v) for every node v of height at most p, and 

let w be a node in ST of height p + 1, with B = cluster(w). Let x and y be 

w's two children, with Bx = Cluster(x) and By = Cluster(y). Clearly, the height 

of x and y is smaller than p. By the induction hypothesis, kB,Jgt) = lins(x) and 

kB"(gt) = lins(y). By Theorem 1, kB(gt) is equal to the number of lineages on the 

parent edge of Bin ST, which is the sum of the numbers of lineages on the parent 

edges of Bx and By, minus the number of coalescence events that occur at node w 

(kB(gt) = kB.,(gt) + kB"(gt) - coalw)· By the strong induction hypothesis, this is 

identical to lins(x) + lins(y)- coalw. By Equation (3.1), we have lins(x) + lins(y)­

coalw = lins(w). This completes the proof that kB(gt) = lins(w). 

For the second part, notice that computing the values of lins for all nodes in 

ST can be achieved by a bottom-up algorithm that traverses each node v E V(ST) 

exactly once. For each node v, the values of lins(x) and lins(y) of its children x 

andy are already computed, and the value of coalv is already computed via the HsT 

mapping. Thus, the algorithm takes 0( n) time. D 

3.3 MDC on rooted binary gene trees: The single­

allele case 

The MDC problem is the "minimize deep coalescence" problem; as formulated by 

Maddison in 1997 [Mad97], this is equivalent to finding a species tree that minimizes 
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the total number of extra lineages over all gene trees in r§. Thus, the MDC problem 

can be stated as follows: given a set r§ of rooted, binary gene trees, we seek a species 

tree ST such that X L(ST, r.f) = "L-gtE'# X L(ST, gt) is minimized. 

MDC is conjectured to be NP-hard, and no polynomial-time exact algorithm is 

known for this problem. However, it can be solved exactly using several techniques, 

as we now show. 

Algorithms for MDC The material in this section was proposed by Than and 

N akhleh [TN09]. The simplest technique to compute the optimal species tree with 

respect to a set r§ of gene trees is to compute a minimum-weight clique of size n- 2 

(where l%1 = n) in a graph which we now describe. Let r§ be the set of gene trees in 

the input to MDC, and let M DC(r.f) be the graph with one vertex for each non-trivial 

subset of% (so MDC(r.f) does not contain trivial clusters). Any two vertices A and 

B are connected by an edge if the two clusters are compatible (and so A n B = 0, 

A C B, or B C A). A clique inside this graph therefore defines a set of pairwise 

compatible clusters and, hence, a rooted tree on %. We set the weight of each node 

A to be w(A) = "L-gtE'#[kA(gt)- 1]. We seek a clique of size n- 2, and among all 

such cliques we seek one of minimum weight. By construction, the clique will define 

a rooted, binary tree ST such that XL(ST, r.f) is minimized. 

The graph M DC(r.f) contains 2n- n- 1 vertices, where n = I% I, and is therefore 

large even for a relatively small n. We can constrain this graph size by restricting 

the allowable clusters to a smaller set, CC, of subsets of%. For example, we can set 

CC = Ugte<#Clusters(gt) (minus the trivial clusters), and we can define MDC(CC) to 
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be the subgraph of M DC(r.ff) defined on the vertices corresponding to C(/. However, 

the cliques of size n- 2 in the graph M DC(C(f) might not have the minimum possible 

weights; therefore, instead of seeking a minimum weight clique of size n - 2 within 

MDC(C(f), we will set the weight of node A to be w'(A) = Q- w(A), for some very 

large Q, and seek a maximum weight clique within the graph. 

Finally, we can also solve the problem exactly using dynamic programming. For 

A ~ tc and a binary rooted tree T on leaf-set A, we define 

lT(A, r.ff) = L L[kB(gt)- 1], 
gtEfl B 

where B ranges over all clusters ofT. We then set 

l*(A, r.ff) = min{lT(A, r.ff) : T E .o/"A}· 

By Theorem 1, l* ( tt", r.ff) is the minimum number of extra lineages achievable in any 

species tree on tt", and so any tree T such that lT(tc, r.ff) = l*(tt", r.ff) is a solution 

to the MDC problem on input r.ff. We now show how to compute l*(A, r.ff) for all 

A ~ tt" using dynamic programming. By backtracking, we can then compute the 

optimal species tree on tt" with respect to the set r§ of gene trees. 

Consider a binary rooted tree T on leaf-set A that gives an optimal score for 

l*(A, r.ff), and let the two subtrees off the root ofT be T1 and T2 with leaf sets A1 and 

A2 =A- A1 , respectively. Then, letting B range over the clusters ofT, we obtain 

lT(A, r.ff) = L L[kB(gt)- 1] = 
gtEfl B 

L L [kB(gt) -1] + L L [kB(gt) -1] + L[kA(gt) -1]. 
gtEfl 
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If fori = 1 or 2, lri (Ai, C§) =1- l*(Ai, C§), then we can replace~ by a different tree on Ai 

and obtain a tree T' on A such that lr,(A, C§) < lr(A, C§), contradicting the optimality 

ofT. Thus, lri(Ai, C§) = l*(A, C§) fori= 1, 2, and so l*(A, C§) is obtained by taking 

the minimum over all sets A1 C A of l*(A1, C§) + l*(A- A1, C§) + LgtEfl[kA(gt)- 1]. 

In other words, we have proven the following: 

This lemma suggests the dynamic programming algorithm: 

• Order the subsets of .¥ by cardinality, breaking ties arbitrarily. 

• Compute kA(gt) for all A~ .¥ and gt E C§. 

• For all singleton sets A, set l*(A, C§) = 0. 

• For each subset with at least two elements, from smallest to largest, compute 

• Return l*(%, C§). 

There are 2n- 1 subproblems to compute (one for each set A) and each takes 

0(2nn) time (there are at most 2n subsets A1 of A, and each pair A, A1 involves 

computing kA for each gt E C§, which costs O(n) time). Hence, the running time is 

O(n22n) time. A tighter bound of 0(2n +3n) can also be achieved. This follows from 

the fact that for each value of i, for 1 ~ i ~ n, we have (~) sets of size i, and for each 

of these sets, we need to consider all its subsets (there are 2i of them) and score the 

number of extra lineages. 
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However, Than and N akhleh showed that using only the clusters of the gene trees 

would produce almost equally good estimates of the species tree [TN09, TNlO]. 



Chapter 4 

Extending MDC 

4.1 Estimated gene trees: The single-allele case 

Estimating gene trees with high accuracy is a challenging task, particularly in cases 

where branch lengths are very short (which are also cases under which ILS is very 

likely to occur). As a result, gene tree estimates are often unrooted, unresolved, or 

both. To deal with these practical cases, we formulate the problems as estimating 

species trees and completely resolved, rooted versions of the input trees to optimize 

the MDC criterion. We show that the clique-based and DP algorithms can still be 

applied. 

4.1.1 U nrooted, binary gene trees 

When reconciling an unrooted, binary gene tree with a rooted, binary species tree 

under parsimony, it is natural to seek the rooting of the gene tree that results in the 

minimum number of extra lineages over all possible rootings; see the illustration in 

21 
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Fig. 4.1. In this case, the MDC problem can be formulated as follows: given a set 

.1\ BAD /A.
4 0~ /A rcR.; I I'A«=<i4 1 

A B c D E unrooted gene treegt B C A D E A B D E 
rooted gene tree gt'1 rooted gene tree gt'

2 
optimal reconciliation 

Figure 4.1: Illustration of optimal and non-optimal reconciliations of an unrooted, binary 

gene tree gt with a rooted, binary species tree ST, which yield 1 and 3 extra lineages, 

respectively. 

r§ = {gt1 , gt2 , ... , gtk} of gene trees , each of which is unrooted, binary, with leaf-set 

&: , we seek a species tree STand set rc§' = {gt~ , gt;, ... , gt~} , where gt~ is a rooted 

version of gti, so that X L(ST, r§') is the minimum over all such sets r§'. 

Given a species tree and a set of unrooted gene trees , it is easy to compute the 

optimal rootings of each gene tree with respect to the given species tree, since there 

are only O(n) possible locations for the root in an n leaf tree, and for each possible 

rooting we can compute the score of that solution in O(n2
) time. Thus, it is possible 

to compute the optimal rooting and its score in O(n3 ) time. Here we show how to 

solve this problem more efficiently - finding the optimal rooting in O(n) time, and the 

score for the optimal rooting in O(n2
) time, thus saving a factor of n. We accomplish 

this using a small modification to the techniques used in the case of rooted gene trees. 

We begin by extending the definition of B-maximal clusters to the case of unrooted 

gene trees, forB a cluster in a species tree ST, in the obvious way. Recall that the set 

Clusters(gt) depends on whether gt is rooted or not, and that kB(gt) is the number 
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of B-maximal clusters in gt. We continue with the following: 

Lemma 4 Let gt be an unrooted binary gene tree on 9:, and let ST be a rooted binary 

species tree on 9:. Let C:C* be the set of ST -maximal clusters in gt. Let e be any edge 

of gt such that 'v'Y E C*,e ~ E(Clade9t(Y)) {i.e., e is not inside any subtree of gt 

induced by one of the clusters in C:C* ). Then the tree gt' produced by rooting gt on edge 

e satisfies {1) C:C* ~ Clusters(gt'), and {2) XL(ST,gt') = EBEClusters(ST)[kB(gt)-1], 

which is the best possible rooted version of gt. Furthermore, there is at least one such 

edge e in gt. 

Proof: We begin by showing that there is at least one edge e that is outside Y for all 

Y E C:C*. Pick a cluster A1 E C:C* that is maximal (i.e., it is not a subset of any other 

cluster in C:C*); we will show that the parent edge of A1 is outside all clusters in C:C*. 

Suppose e is inside cluster A2 E C:C*. Since A1 is maximal, it follows that A2 ~ A1. 

However, if the parent edge of A2 is not inside A1, then either A2 is disjoint from 

A1 or A2 contains A1, neither of which is consistent with the assumptions that A1 is 

maximal and the parent edge of A1 is inside A2. Therefore, the parent edge of A2 

must be inside A1. In this case, A1 n A2 =1- 0 and A1 U A2 = 9:. Let Bi be the cluster 

in ST such that A is Bi-maximal, i = 1, 2. Then B1 n B2 =1- 0, and so without loss 

of generality B1 ~ B2. But then A1 U A2 ~ B1 U B2 = B2 and so B2 = 9:. But 9: 

is the only 9:'-maximal cluster, contradicting our hypotheses. Hence the parent edge 

of any maximal cluster in C:C* is not inside any cluster in C:C*. 

We now show that rooting gt on any edge e that is not inside any cluster in 

C:C* satisfies C:C* ~ Clusters(gt'). Let e be any such edge, and let gt' be the result 



24 

of rooting gt on e. Under this rooting, the two children of the root of gt' define 

subtrees T1 , with cluster A1 , and T2 , with cluster A 2 • Now, suppose 3A' E ~*­

Clusters(gt'). Since ~* ~ Clusters(gt), it follows that A' is the complement of a 

cluster B E Clusters(gt'). If B is a proper subset of either A1 or A2 , then the subtree 

of gt induced by A' contains edge e (since A'= 9: -B), contradicting how we selected 

e. Hence, it must be that B = A1 orB= A2 . However, in this case, A' is also equal 

to either A1 or A 2 , and hence A' E Clusters(gt'), contradicting our hypothesis about 

A'. 

We finish the proof by showing that XL(ST, gt') is optimal for all such rooted 

trees gt', and that all other locations for rooting gt produce a larger number of extra 

lineages. By Theorem 1, X L(ST, gt') = 'EB[kB(gt') -1], as B ranges over the clusters 

of ST. By construction, this is exactly 'EB[kB(gt) -1], as B ranges over the clusters 

of ST. Also note that for any rooted version gt* of gt, kB(gt*) 2: kB(gt), so that this 

is optimal. Now consider a rooted version gt* in which the root is on an edge that is 

inside some subtree of gt induced by A E ~*. Let gt* have subtrees T1 and T2 with 

clusters A1 and A2 , respectively. Without loss of generality, assume that A1 C A, 

and that A2 nA =10. Since A E ~*,there is a cluster BE Clusters(ST) such that A 

is B-maximal. But then A1 is B-maximal. However, since A- A1 #0, there is also 

at least one B-maximal cluster Y C A within T2 • Hence, kB(gt*) > kB(gt). On the 

other hand, for all other clusters B' of ST, kB'(gt*) 2: kB'(gt') = kB'(gt). Therefore, 

XL(ST,gt*) > XL(ST,gt'). In other words, any rooting of gt on an edge that is not 

within a subtree induced by a cluster in d is optimal, while any rooting of gt on any 

other edge produces a strictly larger number of extra lineages. 0 
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This theorem allows us to compute the optimal rooting of an unrooted binary 

gene tree with respect to a rooted binary species tree and, hence, gives us a way of 

computing the score of any candidate species tree with respect to a set of unrooted 

gene trees: 

Corollary 2 Let ST be a species tree, and t§ = {gt1 , gt2 , ..• , gtk} be a set of unrooted 

binary gene trees. Lett§'= {gt~, gt~, ... , gtk} be a set of binary gene trees such that 

gt~ is a rooted version of gti for each i = 1, 2, ... , k, and which minimizes XL(ST, t§'). 

Then X L(ST, t§') = L:i L:BeClusters(ST) [kB(gti) -1]. Furthermore, the optimal t§' can 

be computed in O(nk) time, and the score oft§' computed in O(n2k) time. 

Solving MDC given unrooted, binary gene trees. Lett§= {gt1 , gt2 , ••• , gtk}, 

as above. We define the MDC-score of a candidate (rooted, binary) species tree ST 

by L:i L:BeClusters(ST)[kB(gti) -1]; by Corollary 2, the tree ST* that has the minimum 

score will be an optimal species tree for the MDC problem on input t§. As a result, 

we can use all the techniques used for solving MDC given binary rooted gene trees, 

since the score function is unchanged. 

4.1.2 Rooted, non-binary gene trees 

When reconciling a rooted, non-binary gene tree with a rooted, binary species tree 

under parsimony, it is natural to seek the refinement of the gene tree that results in the 

minimum number of extra lineages over all possible refinements; see the illustration 

in Fig. 4.2. In this case, the MDC problem can be formulated as follows: given a set 
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o~PAJI\~~/ 
A E AB CDE AB CDE AB CDE ABCDE 

optimal reconciliation binary gene tree gt'1 unresolved gene tree gt binary gene tree gt'2 optimal reconciliation 

ontimal refinement I I non-optimal refinement 

Figure 4.2: Illustration of optimal and non-optimal reconciliations of a rooted, non-binary 

gene tree gt with a rooted, binary species tree ST, which yield 0 and 3 extra lineages, 

respectively. 

C.§ = {gt1 , gt2 , ... , gtk} in which each gti may only be partially resolved, we seek a 

species tree ST and binary refinements gti of gti so that X L(ST, C#*) is minimized, 

where C.§* = {gti, gt2, ... , gt'k}. This problem is at least as hard as the MDC problem, 

which is conjectured to be NP-hard. 

Yu, Warnow, and Nakhleh [YWNlla, YWNllb] proposed a quadratic algorithm 

OT RM vc for optimal refinement of a given gene tree gt with respect to a given species 

tree ST, with both trees rooted, under MDC. It refines around each high degree node 

v in gt using the subtree of ST defined by the LCAs (least common ancestor) in ST 

of the children of v. 

For a cluster B, we first define two sets of nodes in gt: 

• D 1 = { v E V(gt): v has at least two children whose cluster is B-maximal } 

• D2 = {v E V(gt): Cluster(v) is a B-maximal cluster, and vis not a child of 

any node in D1} 

And then we define DB(gt) to be ID1I + ID2I· 
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Corollary 3 Let gt be a rooted gene tree, ST a rooted binary species tree, both on 

set !r. Then XL(ST,gt*) = L:BEClusters(ST)[DB(gt)- 1], where gt* is a binary 

refinement of gt that minimizes X L(ST, gt') over all binary refinements gt' of gt. 

Proof: Yu, Warnow, and Nakhleh [YWNlla, YWNllb] proved that X L(ST, gt*) = 

L:BEClusters(ST)[FB(gt)- 1], where FB(gt) is the number of nodes in gt that have at 

least one child whose cluster is B-maximal. We will show that DB(gt) = FB(gt). 

Let D = D1 U D2, so that DB(gt) = IDI. And let F = F1 U F2, where F1 is the 

set of nodes in gt that have at least two children whose cluster is B-maximal, and F2 

is the set of nodes in gt that have exactly one child whose cluster is B-maximal, so 

that FB(gt) = IFI = n. Obviously, D1 = F1, which follows ID1I = IF1I· We will prove 

next ID2I = IF2i· 

For any node in F2 , its only child node whose cluster is B-maximal must be some 

node in D 2 , because its cluster is B-maximal and it has no sister node whose cluster is 

B-maximal. So IF2I :::; ID2I· For any node in D2, since it is the only child node of its 

parent node whose cluster is B-maximal, it must be some node in F2. So ID2I ~ IF2i· 

D 

FB will be used instead of DB in the rest of the thesis. 

Corollary 4 Let ST be a species tree andr§ = {gt1, gt2, ... , gtk} be a set of gene trees 

that may not be resolved. Let r§* = {gti, gt2, ... , gtk} be a set of binary gene trees such 

that gti refines gti for each i = 1, 2, ... , k, and which minimizes XL( ST, r§*). Then 

XL(ST,r§*) = L:iL:BEClusters(ST)[Fs(gti) -1]. Furthermore, the optimal resolution 
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of each gene tree and its score can be computed in 0( n 2 k) time. 

Solving MDC given rooted, non-binary gene trees. Let C.§= {gt1 , gt2, ... , gtk}, 

as above. We define the MDC-score of a candidate (rooted, binary) species tree ST by 

l:::i L.::BEClusters(ST) [FB(gti) - 1]; by Corollary 4, the tree ST* that has the minimum 

score will be an optimal species tree for the MDC problem on input C#. As a result , 

we can use all the techniques used for solving MDC given binary rooted gene trees , 

since the score function is unchanged. 

4.1.3 Unrooted, non-binary gene trees 

When reconciling an unrooted and incompletely resolved gene tree with a rooted, 

binary species tree under parsimony, it is natural to seek the rooting and refinement 

of the gene tree that results in the minimum number of extra lineages over all possible 

rootings and refinements; see the illustration in Fig. 4.3. In this case, the MDC 

• /\. .. nnt B A D .r.n~A .. ~ 0~ A\ r:)L-<";1 I IA~1 2 

A E A B C D E unrooted, unresolved gene tree gt A B C D E A 8 C D E 
optimal reconciliation rooted, binary gene treegt'

1 
rooted, binary gene treegt'2 optimal reconciliation 

------------~o~o~tim~al~r~oo~t&~re~fi~ne~------~1 ~I --------~n~on~-~op~t~im~a~lr~o~ot~&~r~efi~In~e ________ __ 

Figure 4.3: Illustration of optimal and non-optimal reconciliations of an unrooted, non-

binary gene tree gt with a rooted, binary species tree ST, which yield 0 and 3 extra lineages, 

respectively. 

problem can be formulated as follows: given a set C.§= {gt1 , gt2 , ... , gtk}, with each 

gti a tree on !!C but not necessarily rooted nor fully resolved, we seek a rooted, binary 



29 

species tree ST and set <§' = {gtL gt~, ... , gtk} such that each gt~ is a binary rooted 

tree that can be obtained by rooting and refining gti, so as to minimize X L(ST, <§') 

over all such <§'. As before, the computational complexity of this problem is unknown, 

but conjectured to be NP-hard. 

Observation 1 For any gene tree gt and species tree ST, and t* the optimal refined 

rooted version of gt that minimizes X L(ST, t*) can be obtained by first rooting gt at 

some node, and then refining the resultant rooted tree. Thus, to find t*, it suffices to 

find a node v E V (gt) at which to root the tree t, thus producing a tree t', so as to 

minimize 2: BEClusters(ST) [ F B (gt') - 1]. 

We now show how we will find an optimal root x. 

Notation Let x be a node in gt, and let gt<x) denote the tree obtained by rooting 

gt at x. Let gt be a given gene tree, ST a given species tree, and X a cluster of gt. 

Let r'(X) be the far endpoint of the parent edge of X within gt (i.e., the parent edge 

of X is (r, r'), where r is the root of X in gt). For a given cluster B of ST, we will say 

that two clusters A and A' of gt are B-siblings if A and A' are B-maximal clusters 

and their roots share a common neighbor. For a fixed cluster BE Clusters(ST), we 

will refer to a maximal set of B-maximal clusters in gt that are pairwise siblings as 

a family of B-maximal clusters in gt. A family of B-maximal clusters will also be 

referred to as a family of ST-maximal clusters. We denote by gt(A) the subtree of gt 

induced by cluster A. 
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Lemma 5 Let A be a largest ST-maximal cluster in gt, and a = r'(A). Then a is 

not internal to any ST -maximal clade in gt, nor is a the root of any ST -maximal 

clade that is in a family of size at least two. 

Proof: Let A be a largest ST-maximal cluster in gt, and suppose A is X-maximal 

for X E Clusters(ST) with a= r'(A). Suppose a is inside a B-maximal cluster Y, 

with Y produced by edge e E E(gt). If e is inside A, then Y n A i- 0, A - Y i- 0, 

and AU Y = !!C. Since A ~ X andY ~ B, it follows that XU B = !!C and also that 

X n B i- 0. Since X and B are both clusters in ST, they must be compatible, and 

so one must contain the other. But then one must be the entire set !!C, which is a 

contradiction. 

Suppose instead that a is the root of a B-maximal cluster Z of gt, with Z defined 

by edge e, and that Z has a sibling Z'. Thus, Z' is also B-maximal, and the roots 

of Z and Z' share a common neighbor. We consider first the case where the edge e 

defining cluster Z is the parent edge of A. In this case, the edge e in gt splits the tree 

into clusters A and Z. Since Z is B-maximal and A is X-maximal, and Band X are 

both clusters in ST, it follows that B U X= !!C. Thus, the two subtrees off the root 

of ST are on leafset B and on leafset X. But then Z = B and A = X. Since Z and 

Z' are disjoint, it follows that Z' ~ A, contradicting that Z' ~ B. 

We now consider the case where the edge e defining Z is some other edge incident 

with a. But then since a is the root of Z, it follows that A is a proper subset of Z, 

contradicting that A is the largest ST-maximal cluster in gt. 
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Hence, for a, the far endpoint of the parent edge of a largest ST-maximal cluster 

in gt, a is not the root of any ST-maximal cluster that is in a family of size two or 

more, nor is a internal to any ST-maximal cluster. 0 

Theorem 2 Let A be a largest ST-maximal cluster in gt, and a = r'(A). Then 

FB(gt(a)) :s; FB(gt<r)) for all clusters B E Clusters(ST) and for all nodes r E V(gt). 

Proof: By Lemma 5, a is not internal to any ST-maximal cluster of gt, and a is not 

the root of any cluster that is in a family of size at least two. Let B be a cluster 

in ST. Since a is not internal to any B-maximal cluster and not the parent of any 

B-maximal cluster that has a sibling, it follows that the set of B-maximal clusters of 

gt<a) is identical to the set of B-maximal clusters of gt. Hence, the number of families 

of B-maximal clusters of gt<a) is identical to the number of families of B-maximal 

clusters of gt, and so equal to FB(gt<al). Furthermore, it is easy to see that FB(gt<r)) 

is at least the number of families of B-maximal clusters of gt, no matter what r is. 

Hence, FB(gt<r)) ~ FB(gt<a)) for all vertices r. 

0 

The following two corollaries follow directly from Theorem 2: 

Corollary 5 Let gt be an unrooted, not necessarily binary gene tree on !!!: , and let 

ST be a rooted species tree on!!!:. Let A E Clusters(gt) be a largest ST-maximal 

cluster, and a = r'(A) the far endpoint of the parent edge for A. If we root gt at 
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a, then the resultant tree gt(a) minimizes L:BeClusters(ST)[FB(gt')- 1] over all rooted 

versions gt' of gt. 

Corollary 6 Let 9' be a set of gene trees that are unrooted and not necessarily binary. 

For t E 9' and B c !£, define t 8 to be the rooted version oft formed by rooting t at 

r'(B). Then, the species tree ST that minimizes EteS" L:BeClusters(ST) [FB(t8 )- 1] is 

an optimal species tree for 9'. 

Solving MDC given rooted, non-binary gene trees. As a result of Corollary 

6, we can solve the problem using the clique and DP formulations as in the other 

versions of the MDC problem. 

4.2 Incorporating coalescence times 

In this section, we extend the MDC criterion to the case where nodes of the gene trees 

have times associated with them, which correspond to coalescence times. In this case, 

those times constitute constraints on coalescent histories, in addition to those imposed 

by the topologies of the gene trees. More precisely, if a set Y of leaves coalesce at 

time t in gene tree gt, then t is an upper bound (recall that under the coalescent, 

time increases when going back from the leaves toward the root) on the speciation 

time of that set of leaves in the species tree. For example, assume that alleles from 

three species A, B, and C coalesced 100 generations ago. Then, the MRCA of these 

three species must have existed ::::; 100 generations ago, since otherwise there would 

not be a valid coalescent history for the three alleles with a coalescence time of 100 
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(unless, for example, gene flow occurred after the speciation; however, we do not 

consider such events here and focus only on ILS, as they are beyond the scape of this 

thesis). We now give an algorithm for inferring a rooted, binary species tree ST from 

a collection ~ of gene trees, where each gene tree has coalescence times associated 

with its internal nodes. 

Let e = ( u, v) be a branch in a rooted gene tree; that is, v is a child of u. 

Further, for a node x, let t(x) denote the coalescence time associated with it. Clearly, 

C(v) ~ C(u) and t(v) ::; t(u) (under the coalescent, time increases as we move from 

the leaves toward the root). Since each node in a rooted tree is uniquely defined by 

the cluster of taxa under it, we use (C(u), C(v)) to denote the branch (u, v). Under 

this setup, two branches, (c1, c2) and (c;_, c;), are identical if and only if c1 = c;_, 

c2 = c~, t(ci) = t(cD, and t(c2) = t(c~). Further, We define the compatibility of two 

branches as follows. 

Definition 1 (Compatibility of two branches) 

Two branches ( c1, c2) and ( c~, ~) are compatible if one of the following three conditions 

holds: 

• c1 n c; = 0 

• c1 = c~, t(c1) = t(c;_), c2 n ~ = 0 

• c1 ~ c~, t(c1) ::; t(c;_) and 

c1 ~ ~' t(ci) ::; t(c;) or c1 n c~ = 0. 

We denote by ,B((c1 , c2 ), gt) the number of extra lineages on branch (u, v) (i.e., 

C(u) = c1 and C(v) = c2) in species tree ST resulting from reconciling gene tree gt 
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into ST according to their coalescence times. Let h, ... , lk be all the maximal clusters 

in gt that are also subsets of c2 and satisfy t{li) < t(c1) whenever llil > 1. Then, the 

number of extra lineages on branch (u, v) in ST is f3((c1, C2), gt) = k- 1. 

Given a collection f§ of rooted gene trees with coalescence times, we denote by 

ftime(ST, r.f) the sum of L:9E~ {3(br, g) for all branches br in ST, including the branch 

incident into the root of ST. Further, we denote by e;ime((A, A'), r.f) the minimum 

value of f(ST, r.f) over all possible trees ST, with times at internal nodes, on A, where 

(A, A') is the branch incident into the root of ST. If A= 9:, then we have A'= 9: 

and t(A') = +oo; otherwise, ST is a subtree in a larger tree ST' and the root of ST 

is a child of an internal node, say v, in ST', then A'= CsT'(v) and t(A') = t(v). If 

t1 and t2 are the two subtrees whose roots are the two children of the root of ST, 

then we have ftime(ST, r.f) = ftime(tb r.f) +ftime(t2, r.f) + L:gE~ {3(br, g), where br is the 

branch incident into the root of ST. The quantity L:9E~ f3(br, g) is fixed for each br. 

Therefore, we can compute e;ime((A, A'), r.f) recursively as follows. 

1. Let !!A be a collection of all branches (with times) on &: . We partition !!A into subsets 

f!Al, ... ,!!AIXI• where f!Ai, 1:::; i:::; l&:l, is the collection of all branches (A,A') in !!A 

with IAI = i. 

2. For every (A, A') E flAb t;ime((A, A'),~) = 0, and for (A, A') E f!A2, 

t;ime((A, A'),~) = :L;9E~ ,B((A, A'), g). 

3. For (A, A') E !!Ai, 3:::; i:::; l&:l, 

t;ime((A,A'),~) =min{t;ime((A1,A),~) +i;ime((A2,A),~): (Aj,A) and (A, A') are compatible 

for j = 1, 2, A1 n A2 = 0 and A1 U A2 =A}+ :L;9E~ ,B((A,A'),g). 



35 

We next show how to obtain ~ in Step 1. As mentioned before, nodes in the 

species tree must satisfy the constraint that the coalescence time of a set of leaves in 

the gene tree must be an upper bound on the speciation time of that set of leaves in 

the species tree. It implies that the coalescence time of a node cannot be assigned 

without specifying its children. For example, assume we have two gene trees gt1 and 

gt2 , as shown in Fig. 4.4, Then for cluster BCD, if we have branch (BCD, CD) in 

A B c D A c B D 

Figure 4.4: Illustration of constraints on speciation times of nodes in the species tree 

imposed by gene trees. Particularly, we have two gene trees gt1 and gt2 with branch lengths 

on the same taxa set. 

the species tree, we will have t(BCD) = 7 for that branch due to the coalescence time 

of (B, D) in gt2 • However, if we have branch (BCD, BD) in the species tree, we will 

have t(BCD) = 5 due to the coalescence time of (C, D) in gt1. Besides, the speciation 

time of a node in the species tree should also be no later than the speciation time of 

its parent node. More precisely, if we have candidate branches (c1, c2) and (c2, c3) for 

the species tree, the time for c2 can be calculated as 

t(c2) = min{min{Coal(a,b): a E ~- c3,b E c3},t(c1)}, 

where Coal(a, b) is the minimum coalescence time for taxa a and bin all gene trees. 

Therefore, we could compute~ from an empty set as follows. 



36 

1. Let Cf? be a collection of all non-empty subsets of !!C. For every c E Cf?, if lei = 1, 

t(c) = 0; otherwise, t(c) = min{t(MRCA9 (c')): c <::;; c',c' E Cf?,g E ~}. 

2. Build a map .A to keep the minimal coalescence time for every pair of taxa a and b; 

i.e., .A(a, b)= min{t(c): a, bE c, c E Cf?}. 

3. Sort all clusters inC(? in a decreasing order of size. For every c2 E Cf? with t 2 = t(c2), 

let cL ... , c~ be the clusters in Cf? with c2 C ci for 1 :::; i :::; k. Then for every c2 and 

ci pair, do 

(a) Let tmin =min{ .A( a, b): a E ci- c2, bE c2}. 

(b) Let tlist be a set of all possible coalescence times for ci; i.e., tlist = {min{ t(c~), tmin} : 

(~,c~) E 86',ci = c~}. 

(c) For every t E tlist, make a branch (c~, ~), where c~ = ci with t(cD = t, and 

~ = c2 with t(c~) = min{t2,t}, and add it into 86'. 

4. Add branch (!!C, !!C') to 86', where !!C' = !!C and t(!!C') = +oo, which is the branch 

incident into the root. 

4.3 Multiple-allele cases 

Thus far, we have assumed that exactly a single allele is sampled per species in 

the analysis. However, sequences of multiple individuals per species are becoming 

increasingly available. Therefore, it is necessary to develop methods that infer species 

trees from data sets that contain zero or more alleles per species for the different loci. 

Than and Nakhleh [TNIO] described how to extend the algorithms from their earlier 

work [TN09] to the case of multiple alleles in a straightforward manner. To illustrate 
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this case, consider the scenario in Fig. 4.5. Here, the numbers of alleles sampled from 

the species A, B, C, D, and E, for the given locus are 3, 1, 2, 0, and 2, respectively. 

Under the MDC criterion, a cluster of alleles in the gene tree coalesce at their MRCA 

in the species tree, where the MRCA is taken over the set of species to which the 

alleles belong. For example, the cluster {A1 , A2 } coalesces on the parent edge of 

species A, whereas the cluster {A1, A2 , Bl} coalesces on the parent edge of cluster 

{A, B}. We now formalize the MDC criterion for this case. 

Figure 4.5: Illustration of ILS and the MDC criterion in the case of multiple alleles. Xi 

denotes an allele of species X. In particular, species D has no alleles sampled for the given 

locus. 

Let ST be a rooted, binary species tree on set !!£ of taxa. Let gt be a gene 

tree injectively leaf-labeled by the elements of Jd = UxE.z-a(x), where a(x) is a set 

of alleles for species x. In other words, every leaf in gt is labeled uniquely by an 

element in Jd, but there may be labels in Jd to which no leaf in gt is mapped. In 

Fig. 4.5, we have a(A) = {A1, A2 , A3 }, a(B) = {B1}, a( C) = {C1, C2}, a( D) = 0, 

and a(E) = {E1, E2}. 

For every set of alleles W of a given locus, we denote by a(W) the set of all species 
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that have alleles in W. In Fig. 4.5, for the set W = {A1 , A2 , B1 , 0 1 , 0 2 , A3 }, we have 

a(W) = {A, B, C}. Using the a mapping, we can now define the MRCA mapping 

for the multiple-allele case. 

Let v be a node in gt and, as before, denote by Cluster(v) its cluster. Then, the 

MRCA mapping H: V(gt)--+ V(ST) is defined by HsT(v) = MRCAsT(a(Cluster9t(v))). 

Notice that under this mapping, if Cluster(v) contains only alleles of a single species 

(e.g., Cluster(v) ~ a(x) for some x E &:"'), then HsT(v) = x. Given a cluster A in 

gt and a cluster Bin ST, we say that A is B-maximal if (1) a(A) ~ B, and (2) for 

all A' E Clusters(gt), if A ~ A', then a(A') ~ B. We set kB(gt) as before to be 

the number of B-maximal clusters within gt. Further, we say that cluster A in gt 

is ST-maximal if there is a cluster B E Clusters(ST) such that B =/= &:' and A is 

B-maximal. 

Now that we have established the definitions, Theorem 1 applies directly. 

Theorem 3 Let ST be a rooted, binary species tree on set &:' of taxa, and gt be a 

rooted, binary gene tree leaf-labeled by set J2l of alleles of&:'. Let B be a cluster in ST, 

and let e be the parent edge of B in ST. Then kB(gt) is equal to the number of lineages 

on e in an optimal valid coalescent history. Therefore, X L(e, gt) = kB(gt) - 1, and 

XL(ST, gt) = EB[kB(gt) -1], where B ranges over the clusters of ST. Furthermore, 

a valid coalescent history f that achieves this total number of extra lineages can be 

produced by setting f(v) = HsT(v) (i.e., f(v) = MRCAsT(a(Cluster9t(v)))) for all 

v. 

Proof: Let B = ClustersT(v) and e be the parent edge of node v. We prove that 
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kB(gt) is equal to the number of lineages on e in an optimal valid coalescent history 

by induction on the height of node v (as before, the height of a node is the longest 

distance from the node to a leaf under it). In particular, as above, we show that 

kB(gt) = kc(gt) + kv(gt)- numcoal(B), where C and Dare the children clusters of 

Bin the species tree, and numcoal(B) is the number of coalescent events that occur 

on the parent edge of B in an optimal valid coalescent history. 

For the base case, consider node v of height 0, that is, vis a leaf. Further, assume 

vis labeled by taxon B E &: (here, the cluster B has a single element, therefore, we 

used B as the element of the cluster itself). In this case, B has no children clusters, 

and the B-maximal clusters in g are exactly all maximal subtrees t 1 , t2 , ••• , tk of gt, 

where L(ti) ~ a(B) for 1 ::::; i ::::; k. An optimal valid coalescent history will have 

all leaves of ti, for each i, coalesce within the parent edge of B. In other words, the 

number of lineages in the parent edge of B under such a valid coalescent history is k, 

which is equal to the number of B-maximal clusters within gt. Thus, the result holds 

for all nodes of height 0. 

For the induction hypothesis, we assume the result holds for all nodes v E V(ST) 

of height p, and prove the result for nodes of height p + 1. Let u E V ( ST) be a node 

such that v, ware its children, and their height is p. Further, let B = Clustersr(u) 

whose parent edge is e, C = Clustersr(v) and D = Clustersr(w). By the induction 

hypothesis, we have that kc(gt) and kv(gt) equal the number of extra lineages in an 

optimal valid coalescent history on the parent edges of clusters C and D, respectively. 

The number of lineages that "enter" edge e from below (i.e., from its endpoint that 

is closer to the leaves) in an optimal valid coalescent history is kc(gt) + kv(gt). If 
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numcoal(B) is the number of coalescent events that take place on edge e in an optimal 

valid coalescent history, and given that each coalescence event decreases the number 

of lineages by 1, then the number of edges that "exit" e from above (i.e., from its 

endpoint that is closer to the root) is kc(gt) + kv(gt) - numcoal(B), which is, by 

definition, k8 (gt). This completes the proof. D 



Chapter 5 

Performance 

5.1 Simulated data 

To generate the data sets, we used the Mesquite tool of W.P. Maddison and D.R. 

Maddison [MM04] and similar procedure and parameters used by W.P. Maddison and 

Knowles [MK06]. 

Species trees were simulated by using the "Uniform Speciation" (Yule) module in 

Mesquite. Two sets of species trees were generated: one for those with a total branch 

length of 100,000 generations, and one for 1,000,000 generations. Each data set has 

500 species trees. Within the branches of each species tree, the script generated 

1, 3, 9, or 27 gene trees using the module "Coalescence Contained within Current 

Tree" with the effective population size Ne equal100,000. For each gene tree, 1, 3, 9, 

or 27 alleles (individuals) were sampled per species. Further, the evolution of DNA 

sequences of length 1000 base pair was simulated down each gene tree under the model 

of Jukes-Cantor [JC69]. Thus, sequence alignments were obtained under all settings. 

41 
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For each such sequence alignment, we built a gene tree using a maximum parsimony 

(MP) heuristic with strict consensus in PAUP* [Swo95]. This setup allowed us to 

study not only the performance of methods on the true gene trees, but also those 

reconstructed MP, thus accounting for potential errors in the gene trees. 

5.2 Methods 

We studied the performance of several methods, including greedy consensus, demo­

cratic vote, STEM, GLASS, and MDC. 

Summary statistic inference: greedy consensus 

Greedy consensus can be viewed as an extension of majority consensus. Majority 

consensus computes from a collection of gene trees the tree whose every branch ap­

pears in at least half of the gene trees in the input. It guarantees that this collection 

of branches is pairwise compatible; that is, they can simultaneously be the branches 

of a tree. A salient feature of trees computed by the majority consensus method is 

that they typically lack resolution, and usually have a high rate of false negatives and 

a low rate of false positives. As an extension, the greedy consensus method continu­

ously refines the majority consensus tree by branches with lower-than-50% frequency. 

Instead of using only branches with higher-than-50% frequency, it orders the rest of 

the branches by decreasing frequency, and adds them one by one to the consensus 

tree once it is compatible. Both majority consensus and greedy consensus have been 

implemented in PhyloNet. 
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In our study, we run the greedy consensus method on all data-sets. 

Summary statistic inference: democratic vote 

Democratic vote simply amounts to declaring the gene tree with the highest frequency 

in the input as the species tree estimate [DR09b]. However, an important issue that 

has not been addressed before is the potential non-uniqueness of a highest-frequency 

tree. Indeed, our coalescent simulations show that more than a single gene tree in the 

input may attain the highest frequency. In this case, the highest-frequency is not well-

defined. Therefore, we explore below the performance of the democratic vote when 

a random maximum-frequency tree is used, and when the majority consensus of all 

maximum-frequency trees is used. Based on our findings below, we have implemented 

in PhyloN et a version of the democratic vote method that uses the greedy consensus 

of all maximum-frequency trees. 

In our study, the democratic vote method was run only on single-allele data sets. 

Likelihood-based inference: STEM 

The tool STEM [KCK09] implements a maximum likelihood approach that infers a 

species tree ST using the likelihood function 

k 

L(ST,T) = ITf(giiST,T), 
i=l 

where T is a vector of the branch lengths of the species tree ST, and f is the gene 

tree density function [RY03]. 

In our study, STEM was run only on the true gene trees, because of one of the 
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restrictions in the STEM tool that the gene trees in the input must be rooted and 

must satisfy the molecular clock assumption. 

Distance-based inference: GLASS 

GLASS [MRlO] is a distance-based method that applies a clustering algorithm to 

pairwise distances between species computed based on the coalescence times of the 

input loci. Formally, let D~~ denote the minimum divergence time between any two 

alleles of locus i, where one is sampled from species r and the other is sampled from 

species s, and define the distance between two species A and Bas 

D . {D(i)} 
AB= min AB' 

l~i:::;k 

where k is the number of loci. Based on these species pairwise distances, a species 

tree is inferred by a clustering algorithm that joins the closest species (or, in inter-

mediate steps, the closest clusters) and updates distances, following the algorithm of 

Rosenberg's [Ros02]. 

We have implemented GLASS in the PhyloNet. It allows the user to specify the 

D~~ distance matrices, and computes the species tree estimate based on the GLASS 

algorithm. This implementation provides the user with flexibility as to what source 

of data can be used, since those distances could be computed from the sequences 

directly, or taken from gene tree estimates, for example. 

Since GLASS uses divergence times computed from all loci, in our study, to run 

GLASS, we used the true coalescence times from the gene trees, as well as times 

estimated from sequences according to the model of Jukes-Cantor [JC69]. 
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Parsimony-based inference: MDC 

For MDC without time, we run both exact and heuristic versions on all data-sets. 

The "exact" version uses all possible clusters on the taxon set, and the "heuristic" 

version uses only the clusters of the input gene trees. For the heuristic MDC, the 

estimated species tree may not be fully resolved. In this case, we followed this initial 

analysis with a search through the set of binary resolutions of the initial estimated 

species tree for a fully resolved tree that optimized the number of extra lineages. 

The extended MDC with time method was run only on the true gene trees, since 

the extension works for the case of rooted trees. 

5.3 Results and discussion 

In this section we report on the results of the experiments we performed, in terms of 

both accuracy and speed. For accuracy of the species tree inference, since the species 

tree is known for simulated data, we compared the inferred species tree against the 

true species tree by the normalized [RF81] measure, which quantifies the average 

proportion of branches present in one, but not both, of the trees. A value 0 of the 

RF distance indicates that the two trees are identical, and a value of 1 indicates that 

the two trees are completely different (they disagree on every branch). 

The democratic vote 

When using the democratic vote as a method for inferring a species tree estimate, 

we have observed that more than a single (gene) tree may occur with the highest 
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frequency. To the best of our knowledge, this issue is not discussed in the literature; 

instead, researchers simply report using the democratic vote, mistakingly assuming 

its uniqueness. We have investigated two approaches to selecting a "representative" 

tree from the collection of all maximum-frequency gene trees: 

• Greedy consensus: This amounts to taking the greedy consensus tree of all 

maximum-frequency trees. 

• Random: This amounts to choosing a random tree from the collection of all 

maximum-frequency trees. 

Given that the true species tree is known in simulations, we have also quantified the 

error rate in the "best" maximum-frequency gene tree (that is the tree that has the 

highest frequency and is closest to the true species tree in terms of topology) as well 

as the average error rate (averaging over all maximum-frequency gene trees). Notice 

that these two approaches are not applicable on biological data sets, since in this case 

the true species tree is unknown. 

The results are plotted in Fig. 5.1. Clearly, using the greedy consensus of all 

maximum-frequency trees gives a more accurate estimate of the species tree than 

choosing a random one (on average). In the case of the lNe data, we observe that the 

greedy consensus is significantly better than randomly choosing a maximum-frequency 

tree. Further, we observe that choosing a maximum-frequency tree at random produce 

a species tree estimate that is much closer, in terms of topological accuracy, to the 

average than to the best maximum-frequency tree. This point indicates that there 

are many maximum-frequency trees, most of which are very far from the true species 
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Figure 5.1: Results of the democratic vote (DV) method on the true gene trees of the 

lNe (left) and lONe (right) data sets (see text for description of the four curves). 

tree topology. 

In the case of the lONe data, the greedy consensus produces a more accurate 

species tree estimate than a random choice; however, in this case, the gain is not as 

significant, with both methods obtaining almost identical accuracy when all 27 gene 

trees are used. Further, in this case, both approaches produce trees that are very close 

in terms of accuracy to the best maximum-frequency gene tree. This is a reflection 

of the fact that, under these settings, the number of maximum-frequency gene trees 

is very small, and hence a random choice and the greedy consensus of all trees may 

produce very similar trees (identical trees in many cases in fact). 

Based on these results, we recommend using the greedy consensus of all maximum-

frequency gene trees as the DV tree. 
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GLASS 

As stated above, the GLASS method [MRlO] is a distance-based method that uses 

distance matrices, each computed from a single locus. In simulated data sets where 

the true gene trees, along with their coalescence times, are known, the method applies 

directly to those coalescence times. However, when the method is run on sequence 

data, distances have to be first estimated from the sequences. In our experiments, 

we computed pairwise distances under the model of Jukes-Cantor [JC69], since the 

sequences were evolved under this model. In this case, using all computed pairwise 

distances may negatively affect the performance of GLASS, since distances between 

very closely related sequences may be underestimated. We have investigated the 

performance of GLASS as "bottom" distances are removed for each locus; results are 

shown in Fig. 5.2. 

The results in Fig. 5.2 clearly show that not removing bottom distances produce 

poor estimates of the species tree. Even worse, in the case of the lNe data sets, the 

accuracy of the method becomes worse as more loci are included in the analysis, which 

is rather surprising in light of the theoretical consistency results proved by Mossel 

and Roch [MRlO]. 

Nonetheless, we observe that the performance of GLASS improves as bottom 

distances are removed, with the optimal performance achieved when the bottom 20% 

distances are removed for each locus (with the exception of the lONe, lallele data set, 

where removing the bottom 30% yielded the best results). 

Therefore, we recommend removing the bottom 20% of distances computed for 
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each locus. It is worth mentioning, though, that these results were obtained on 

sequences of length 1000, evolved under the model of Jukes-Cantor [JC69], with 

distances computed under the same model as well. A more thorough investigation of 

the parameter space is needed in order to better study this issue and how it affects 

the performance of GLASS, since the consistency of the distance estimate is crucial 

to the performance of GLASS, as well as any other distance-based methods. 

MDC 

As discussed above, Than and Nakhleh [TN09] have recently proposed exact solutions 

for inferring species tree estimates under the MDC criterion. Further, they proposed 

a heuristic solution that considers only clusters of taxa that appear in the gene trees 

(that is, excludes any cluster of taxa that is not displayed by any of the gene trees). 

While this heuristic achieves several orders of magnitude in speedup (in fact, for data 

sets containing more than 15 taxa or so, it is infeasible to run the exact solution, since 

the number of clusters grows exponentially in the number of taxa), a question was 

left as to how the two compare in terms of the accuracy of the trees they compute. It 

is important to note that, while the exact solution is guaranteed to return a tree that 

is at least as good as the one computed by the heuristic in terms of the optimality 

criterion, this does not necessarily mean that the tree computed by the exact solution 

is more accurate. 

Indeed, considering the results in Fig. 5.3 of both MDC solutions on the true gene 

trees, one observes that the error rate of the heuristic solution is slightly lower than 
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that of the exact solution on the lONe data sets. However, they are almost identical, 

and definitely within standard deviation from each other when true gene trees are 

used. Almost identical trends are observed when the solution is run on gene trees 

reconstructed using MP with strict consensus that are not necessarily binary (in Fig. 

5.4). In light of these results, we recommend using the heuristic solution of MDC 

over the exact solution, and when the gene trees may contain polytomies, using the 

heuristic on non-binary trees is recommended. 

Comparing all methods 

We now turn to comparing the performance of all methods discussed above when run 

on the true gene trees (results in Fig. 5.5) and on the reconstructed gene trees (results 

in Fig. 5.6). In all these figures, we plot the error rate of methods, as measured by 

the distance measure of Robinson-Foulds [RF81], as a function of the number of loci 

sampled. Different panels correspond to different numbers of sampled alleles and/or 

different total branch length (lNe and lONe). 

Based on the above analyses, we have chosen the greedy consensus of all maximum­

frequency gene trees as the implementation of the democratic vote method. While 

we have extended the applicability of the greedy consensus method to data sets with 

multiple alleles, we did not do so with the democratic vote method, since it is not 

as clear how, or whether, to extend it. Hence, the democratic vote method was 

applied only to single-allele data sets. While STEM is applicable when the true gene 

trees are used, we could not apply it to reconstructed gene trees, since they were not 
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guaranteed to be ultrametric (a requirement in the STEM implementation). When 

running GLASS on the sequence data, we eliminated the bottom 20% distances for 

each locus, per the observations made above. We used the heuristic implementation 

of MDC, and when run on reconstructed gene trees, we used the version that assumed 

unrooted (gene) trees that are not necessarily bifurcating. 

In Fig. 5.5, we can see that, under the settings of our simulations, all methods 

exhibited trends of statistical consistency: the error rates dropped as more loci and/or 

alleles were sampled. STEM and GLASS, both with identical performance, produced 

the most accurate species trees, followed by MDC with time. Further, STEM and 

GLASS converge almost completely to the true species tree when 27loci and at least 9 

alleles are sampled. The error rates of the other methods, on the other hand, seem to 

plateau once nine loci are sampled, particularly in the lNe data sets. The observation 

that these three methods (STEM, GLASS, and MDC with time) outperform the other 

methods is not surprising, since these three methods make use of the topology and 

coalescence times of the genes, while the others make use only of the topology, and 

in this case, the estimates of coalescence times are accurate. As we describe below, 

when these times are inferred from the data, their inaccuracies significantly affect the 

performance of the methods that use them. Obviously, in the case when only a single 

locus and single allele is sampled, all methods perform identically. The performance 

of the democratic vote method was the worst when nine or more loci were sampled. 

The gap in performance among the methods seemed to close as more alleles were 

sampled per species. Further, this gap is much smaller in the case of the lONe data 

sets than the lNe data sets. While sampling more loci clearly improves the accuracy 
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of the methods, this improvement "slows down" with the number of loci sampled. If 

we denote by tiRF M ( i, i + 1) the decrease in error rate of method M, as measured 

by the RF distance, when sampling 3i+1 loci, as opposed to 3i loci (for i = 0, 1, 2), 

then we observe that tiRFM(O, 1) > t1RFM(1, 2) > t1RFM(2, 3), where M is any of 

the seven methods. 

The trends observed when using the true gene trees change significantly when 

using gene tree estimates. Fig. 5.6 shows the performance of the greedy consensus, the 

democratic vote (for the single-allele case only), MDC, and GLASS on reconstructed 

gene trees. 

While methods still exhibit trends indicating statistical consistency in these cases, 

MDC produces the most accurate species tree estimates under all combinations of 

number of alleles, number of loci, and total branch lengths. The greedy consensus 

performs almost similarly to MDC on gene tree estimates. Further, the accuracies 

of MDC and the greedy consensus do not seem to be affected when using gene tree 

estimates rather than the true ones, as can be seen from comparing the results from 

Fig. 5.5 and Fig.5.6. A similar comparison across all three methods shows that the 

performance of GLASS (even under the best scenario of eliminating the bottom 20% 

distances for each locus) suffers significantly when using the gene tree estimates rather 

than the true ones. These two observations combined indicate that methods that use 

topology alone perform better than methods that rely on coalescence times when the 

gene trees may have error in them. 

Finally, we show in Fig. 5. 7 the running times of all methods as a function of the 

number of loci sampled. All tools were run on a desktop with an Intel Core 2 Duo, 
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2.40GH CPU, and 3 GB of RAM. Different panels correspond to different numbers of 

alleles sampled and/or different total branch lengths. While all methods complete the 

analyses in a reasonable amount of time, GLASS, the democratic vote, and the greedy 

consensus method were the fastest. This is not surprising as the first is distance-based 

and the latter two are simple summary statistics; the other methods, however, involve 

optimization criteria and extensive searches of the tree space. For the largest data sets 

(27loci, and 27 alleles per species), STEM was by far the slowest. While the numbers 

of taxa, loci, and alleles affect the speed of the method, we believe the "complexity" 

of the data, owing to the species tree parameters (total branch lengths, etc.), may be 

the main factor affecting the speed of methods. 
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Figure 5.2: Performance of GLASS on the lNe (left column) and lONe (right column) 

data sets. Rows from top to bottom correspond to 1, 3, 9, and 27 alleles, respectively. 

Distances were computed under the Jukes-Cantor model, and for each locus, the 

bottom x% distances were removed, for x E {0, 5, 10, 20, 30, 40}. 
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Figure 5.3: Results of the exact and heuristic solutions of MDC on lNe (left column) 

and lONe (right column) data sets, using the true gene trees. Rows from top to 

bottom correspond to 1, 3, 9, and 27 alleles, respectively. 
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Figure 5.4: Results of the exact and heuristic solutions of MDC on lNe (left column) 

and lONe (right column) data sets, using the gene tree reconstructed by MP. Rows 

from top to bottom correspond to 1, 3, 9, and 27 alleles, respectively. 
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Figure 5.5: Performance of all methods on lNe (left column) and lONe (right column) 

data sets, using the true gene trees. Rows from top to bottom correspond to 1, 3, 9, 

and 27 alleles, respectively. 
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Figure 5.6: Performance of all methods on lNe (left column) and lONe (right col-

umn) data sets, using the gene trees reconstructed by MP. Rows from top to bottom 

correspond to 1, 3, 9, and 27 alleles, respectively. 
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Figure 5.7: Running time of methods on lNe (left column) and lONe (right column) 

data sets, using the true gene trees. Rows from top to bottom correspond to 1, 3, 9, 

and 27 alleles, respectively. 



Chapter 6 

PhyloNet 

PhyloNet [TRN08] (http::/ /bioinfo.cs.rice.edu/phylonet) is a software package devel­

oped and maintained by the Bioinformatics Group at the Department of Computer 

Science at Rice University. As a toolkit of phylogenetics, it provides a suite of tools 

for efficient and accurate analysis of evolutionary phylogenies, such as detecting hor­

izontal gene transfer from a pair of species and gene trees, detecting interspecific 

recombination breakpoints in a sequence alignment, and so on. 

As stated above, many methods in this work have been implemented in PhyloNet 

for inferring species tree from a set of gene trees, including MDC, MDC with time, 

GLASS, democratic vote, and greedy consensus. The usage of MDC and MDC with 

time is described next. 
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MDC on rooted gene trees 

Given a set of rooted gene trees, to infer species tree using MDC, we can use the 

following command in PhyloNet. 

java -jar phylonet.jar infer_st -m MDC -i input [-e proportion] 

[-x] [-b threshold] [-a mapping] [-ur] [-t time] [-o output] 

The parameters in this tool include 

• -i input: Specify the file that contains the input gene trees, which are rooted 

and not necessarily be binary. Also, gene losses are allowed. 

• -e proportion: By default, the method returns the optimal species tree. But this 

option allows the users to get the optimal species tree and a set of sub-optimal 

ones. More precisely, if the optimal species tree has n extra lineages, all the sub­

optimal species trees that have extra lineages less than ( 1 +proportion/ 100) *n 

will also be returned with the optimal one. 

• -x: By default, the method uses clusters induced from gene trees to infer species 

tree. However, this option allows users to use all possible clusters instead. 

• -b threshold: If the gene trees have bootstrap values, users can use this option 

to set the threshold. Then all the branches in the gene trees that have bootstrap 

values lower than this threshold will be contracted. 

• -a mapping: If multiple alleles are sampled per species, this option can be 

used to include a file that contains the associations between gene tree taxa and 
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species tree taxa. For example, if alleles a1 and a2 in gene trees are sampled 

from species A, and alleles b1 and b2 in gene trees are sampled from species B, 

the following associations should be contained in the mapping file: 

• -ur: If the gene trees are not binary and only clusters from gene trees are used 

to do the inference, the inferred species tree might also be non-binary, which 

triggers an exhaustive search for an optimal binary resolution of the species 

tree. If the inferred species tree has low degree of resolution, the search might 

take a large amount of time. So if non-binary species tree is tolerated, users 

can use this option, which indicates that non-binary species tree is allowed, to 

avoid the search. 

• -t time: As mentioned above, if the inferred species tree is not fully resolved, 

searching the optimal binary resolution may take a large amount of time. Users 

can use this option to limit the search time to time minutes. In that case, 

when the time is reached, the optimal resolution obtained by that time will be 

returned. 

• -o output: Users can use this option to save the result to a specified file. 
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MDC on unrooted gene trees 

Given a set of unrooted gene trees, to infer the species tree using MDC, we can use 

the following command in PhyloNet. 

java -jar phylonet.jar infer_st -m MDC_UR -i input [-e proportion] 

[-x] [-a mapping] [-b threshold] [-ur] [-t time] [-o output] 

The parameters for this tool in PhyloNet are the same as those for MDC on rooted 

trees, which have been introduced in the previous section. 

MDC with time 

Given a set of rooted gene trees with branch lengths, to infer the species tree using 

MDC with time, we can use the following command in PhyloNet. 

java -jar phylonet.jar infer_st -m MDC_TIME -i input [-a mapping] 

[-b bootstrap] [-o output] 

The parameters for this tool in PhyloN et have also been introduced in the previous 

section. 

Example 

If we want to use MDC to infer the species tree from a set of rooted gene trees stored 

in file gt.in, which are listed below, 

( ( ( al ,bl), ( a2,c2) ),(b2,cl)); 



( ( ( al,a2),(bl,b2)) ,( cl,c2) ); 

( ( ( (al ,bl ),a2),b2) ,( cl,c2) ); 

with a file map.in contains the following associations between alleles and species, 

A:al,a2; 

B:bl,b2; 

C:cl,c2; 

we can use the following command in PhyloNet, 

java -jar phylonet.jar infer....st -m mdc -i gt.in -a map.in 

and PhyloN et will return the following inferred species tree 

(C:l,(B:2,A:2):2):0; 7 extra lineages in total 

with the number of extra lineages on every branch shown after colons. 
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Chapter 7 

Conclusions 

In this work, we extended the MDC method [TN09] so that it applies to the cases 

where the gene trees are unrooted/binary, rooted/non-binary and unrooted/non­

binary. Further, we proposed a new MDC method that takes into account not only 

the topology of the gene trees but also the coalescence times when they are available. 

In addition, we devise all MDC-based algorithms so that they can work on cases 

where multiple alleles per species are sampled. 

We studied the performance of five methods for inferring species trees from multi­

locus data sets, including democratic vote, greedy consensus, STEM, GLASS, and 

MDC. When the true gene trees and coalescence times were used, we found that the 

distance-based GLASS and likelihood-based STEM performed best in terms of accu­

racy. And when incorporating times into the MDC framework, the method performed 

only second to GLASS and STEM. However, when coalescence time estimates were 

used, this trend was reversed almost completely for GLASS compared to other meth­

ods. As for STEM, since the reconstructed gene trees were not rooted and violated 
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the molecular clock assumption, the tool could not be applied to the data. When 

gene tree estimates were used, the MDC method performed best, followed closely by 

the greedy consensus. Possibly not surprising was the fact that the performance of all 

methods was better on the lONe data sets than the lNe data sets; this is a reflection 

of the more extensive level of incongruence in the former compared to the latter. 

Nonetheless, all methods exhibited trends of statistical consistency under almost all 

conditions, in that their error rates decreased as more alleles and/or more loci were 

used in the analyses. The only exception to this observation is the democratic vote, 

when run on reconstructed gene trees with single allele per species; in this case, the 

error rate seems to plateau beyond nine loci. In terms of speed, MDC with time was 

the slowest, followed by STEM, with all the other methods being faster. However, the 

differences observed among the methods indicate that they can comfortably apply to 

larger data sets without the need for extensive computational resources. This is one 

advantage of all these tools over the Bayesian ones. 

Finally, the PhyloNet software package [TRN08] now has extensive functionali­

ties for species tree inference from multi-locus data, including greedy consensus, the 

democratic vote, GLASS, and all variants of MDC described above. 
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