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ABSTRACT 

Dimension Controlled SeH-Assembly of Perylene Based Molecules 

by 

Arshad S. Sayyad 

II 

Recent advances in the self-assembly of highly organized structures of organic 

semiconducting molecules by controlled non-covalent interactions has opened avenues 

for creating materials with unique optical and electrical properties. The main focus of this 

thesis lies in the synthesis and self-assembly of n-type perylene based organic 

semiconducting molecules into highly organized materials. Perylene based molecules 

used in this study are perylene diimide (PTCDI, two side-chains), perylene mono imide 

(m-PTCI, one side-chain), perylene tetracarboxylic acid (PTCA, no side-chain) and tetra­

alkali metal salts of PTCA (M4-PTCA, no side-chain), which are synthesized from the 

parent perylene tetracarboxylic dianhydride (PTCDA). The self-assembly of these 

molecules have been performed using solution processing methods (dispersion, phase­

transfer, and phase-transfer at high temperature) by taking advantage of the changes in 

solubility of the molecules, wherein the molecular interactions are maximized to 

favorably allow for the formation of highly organized structures. 

Dimension control (lD, 2D and 3D structures) of self-assembly has been obtained 

for different perylene based molecules by appropriate design of the molecule followed by 

controlling the conditions of assembly. In case of PTCDI, a new solution processing 

method phase-transfer at high temperature (2L-HT) allowed for the controlled formation 

of extremely long and fluorescent lD structure. For the m-PTCI molecules the 
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organization by the 2L-HT method was found to result in highly organized, single­

crystalline, fluorescent 2D sheets. 

In the case of perylene based molecules with no side-chains two different methods 

have been developed for the realization of organized lD nanostructures. The first method 

utilizes the chemical conversion of a highly soluble PTCA into lD nanofibers of the 

parent insoluble perylene tetracarboxylic anhydride. The second method utilizes the 

assembly of tetra potassium salt of PTCA (Kt-PTCA) into lD nanostructures. 

Furthermore, it has been demonstrated that these lD nanostructures can be chemically 

converted to two different chemical species, both of which still retain the 1 D 

morphological characteristic, though with changes in the size. Various functional self­

assembled structures developed in this thesis opens up new avenues to explore structure­

property-function relationships and their use in applications such as sensors, electronics 

and opto-electronic devices. 
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CHAPTER! 

Self assembly of organic semiconductors 

1.1. Introduction to organic semiconductors 

1 

Organic semiconductors mainly consist of organic molecules having alternating 

single (a-) and double (a- and n-) bonds leading to high degree of conjugation due to 

presence of n-electrons in their structure. The organic semiconductors have emerged as 

promising candidates for various applications in electronics and optoelectronics. 1"7 For a 

considerable period of time, it was believed that the conjugated organic molecules 

possess large intermolecular distances and hence were regarded as insulators. In 1954, the 

complex of bromine doped perylene was shown to have conducting properties which was 

believed to be possible because of presence ofbromine.8 In 1963, Siudak et al.9 observed 

the conductivity in case of iodine doped polypyrrole complex but very little interest was 

paid towards this work. The work of organic charge transfer complexes by Heeger et 

al. 10' 11 for both conductivity and superconductivity and McGinness et al. 12 on the 

conductivity of melanin based compounds further advanced the scope for the organic 

materials for use in electronic devices. In 1977, Heeger and co-workers published a first 

report on electrical conductivity in case of iodine-doped polyacetylene. 13'14 This ground 

breaking research in the field of conducting polymers was awarded the Nobel Prize for 

Chemistry in 2000. Since this discovery, a wide variety of organic semiconductors have 

been synthesized and have been exploited for their applications in devices such as 

transistors, 15 diodes, 16' 17 photovoltaics18 and sensors. 19 

Traditionally, inorganic semiconductors such as silicon (amorphous, polycrystalline 

or single crystalline) have been demonstrated for various electronic and optoelectronic 
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applications. 20"22 Inorganic semiconductors have high stability towards environment 

leading to increased device lifetimes.23 They have very high charge-carrier mobility, 

thermal and mechanical stability.24 Despite these advantages there are several 

disadvantages of inorganic semiconductors. They are expensive, brittle (cannot withstand 

mechanical deformation) and hence light weight flexible devices are beyond realization. 

0 

Very high processing temperatures above 600 C are required and their modification of 

properties is very limited and restricted. 25 On the other hand, organic semiconductors 

hold many advantages in comparison to the inorganic semiconductors. Organic 

semiconductors include the ability to introduce wide range of functional groups in their 

structure through organic synthesis thus leading to the fine tuning of their optical and 

electrical properties.26 Their solubility in wide range of solvents enables to utilize low-

cost solution processing techniques for the formation of ordered structures and 

fabrication of devices on the flexible transparent plastic substrates at low temperature.27"29 

Efficient charge transport behavior of the various organic semiconducting materials have 

led to their application as organic light emitting diodes (OLED), light harvesting 

applications such as solar cells, field effect transistors (FET) etc. 1"7 Considerable research 

efforts, by appropriate design and modification of architectures, have now led to much 

improved performances (in comparison to the prototypes) and efficiencies (in terms of 

transport characteristics) close to amorphous inorganic silicon based semiconductors 

have been already achieved. 30 

Organic semiconductors can be classified into four categories namely small 

molecules, oligomers, dendrimers, and polymers.31 Small molecules have very well 

defined molecular weight on the other hand polymers, which consist of monomers as the 
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repeating units are polydisperse and hence do not have well defmed molecular weights. 

Oligomers and dendrimers have defined number of monomers and hence well defined 

molecular weights and their properties lie in between small molecules and polymers. 

Depending upon the majority charge carriers present in the organic semiconductors, they 

are classified as electron accepting materials (n-typei2 or electron donating materials (p­

type).33 The charge carrier mobility, J..l. (measured in cm2Ns) and the conductivity, a 

(measured in S/cm) determines the efficiency of charge transport through these materials. 

Metals have high conductivities (a ~ 103 S/cm) on the other hand insulators have low 

conductivities (a ::::; 1 0"12 S/cm). Semiconductors have conductivity in between metals and 

insulators. 34 The charge transport in organic semiconductors is not governed by the 

classical band theory, as found in case of inorganic semiconductors, owing to very weak 

coupling between adjacent organic molecules.35·36 Though the mechanism of operation 

for the organic semiconducting molecules remains elusive, the phonon assisted hopping 

model best describes the charge transfer in most of the cases, in which the energy for 

hopping is provided by the lattice vibrations.37·38 The high rate of hopping (or high charge 

carrier mobilities) depends on effective electronic coupling between the adjacent sites 

and hence in order to have high charge mobilities, a dense packing of molecules is highly 

desirable.39 Some other key desirable properties include high purity of the molecules, 

large grain size and structural defects should be as less as possible in order to avoid 

trapping of the charges leading to decreased mobilities. 40 Self-assembly of active channel 

organic materials can be utilized to attain some of the desired properties essential for 

obtaining high quality, and ordered organic materials for the fabrication of devices and 

remains a key focus of research despite the impressive records already demonstrated. 
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1.2 Self-assembly of organic semiconductors 

Self-assembly refers to the spontaneous organization of an appropriately designed 

molecule under appropriate conditions by non-covalent forces of interactions.4144 

Essentially, the self-assembly is a bottom-up method for the realization of ordered 

structures and is well suited for the current fabrication techniques (such as top-down 

methods, e-beam and photolithography) for the device fabrication. Therefore, research on 

organic semiconductors has also focused heavily on the synthesis of molecules by design, 

which includes not only the ability for the tailored organic molecules to interact via non­

covalent forces but also the ability to attain desired electrical and optical characteristics 

needed for device fabrication. Some of the common non-covalent interactions used for 

the self-assembly of organic semiconductors rely on the use of n-stacking, H-bonding, 

electrostatic, hydrophobic and van der Waals forces of interactions. Despite the 

utilization of these weak forces of interactions highly organized and stable materials have 

already been created. A variety of examples have been demonstrated for the self­

assembly of designed active channel organic compounds in different environments such 

as solid (surfaces, interfaces, etc.) and solution (interface, etc.) for the organic 

semiconductors ranging from small molecules to polymers. 4548 The resulting structures 

are also referred to as supramolecular structures because of the large number of 

individual units present in the final assembled structures. 

Recently, supramolecular electronics that bridges the gap between the molecular 

electronics (having Angstrom dimensions) and the bulk electronics (having micro- to 

milli-meter range) has gained a lot of importance.49 The self-assembly has been utilized 

to generate ordered supramolecular structures. Often, to create ordered structures such as 
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one dimensional (lD) structures particularly from the small organic molecules, 1t-

stacking interactions are utilized. It is expected that the formation of ordered structures by 

strong 1t-stacking interactions (e.g. face-to-face packing) between the planar 

semiconducting aromatic molecules could lead to materials with good charge transport 

characteristics for exploitation in device fabrication. 50•51 Essentially, the packing of the 

molecules within the organized structure allow for the determination of the final 

properties and therefore their characteristic performance. Thus, presently the research in 

the self-assembly of organic semiconductors focuses heavily on understanding the 

structure-property-function relationships. By comprehending such relationships it will be 

possible to improve the design of the molecules and their assemblies for obtaining high 

quality materials with desired characteristics for use in a range of applications. 48 

The increased electronic wave function coupling between the neighboring 

molecules in the stacks leads to an increase in bandwidth thus correlating to the increased 

electrical conductivity found in these materials. 52 The strong 1t-1t interactions between 

these extended aromatic systems have been utilized to realize various 1 D nanostructures 

such as nanotubes, nanoribbons, nanowires and nanofibers. The use of self-assembly to 

generate lD nanostructures from functional organic materials is particularly attractive 

and is expected to have far reaching effects in the field of nanoscale photonics and 

electronics because of their extraordinary morphological and opto-electronic properties. 53 

Owing to the strong electronic coupling between these molecules due to the 1t-1t 

interactions, the charge transport characteristics are expected to be efficient along the 

long axis of the nanostructures, especially in case of lD structures.50•51 These lD 

h b 1. d c. • 1" . l"k 54 55 nanostructures ave een rea 1ze 10r vanous app 1cat10ns 1 e vapor sensors, · 
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phototransistors, 56•57 solar cells58 and as an active channel materials for use in field effect 

transistors. 59•60 The morphology, properties, and therefore the characteristic transport 

behavior is a direct result of packing of these molecules in solid state. 61•62 Highly ordered 

single-crystalline nanostructures are most desirable to study various transport 

mechanisms,63•64 structure-property-function relationships,65 and effect of domain size64•66 

in microstructures which govern most the performances of these materials. 

Various solution processing methods have been developed for fabricating lD 

nanostructures. 48•67"69 These techniques have been utilized to self-assemble organic 

semiconducting molecules into highly crystalline lD nanostructures either in solution or 

substrate-solution interface. Owing to the cost effectiveness and ease of processing,70"72 

there is a growing need to explore various solution processable methods leading to very 

uniform organic single crystal nanostructures thus exhibiting high transport 

characteristics.68•73"77 The morphology and packing of the organic molecules can be 

tailored by realizing the self-assembly utilizing various solvents. Moreover, the self­

assembled materials by solution processing can be transferred to variety of substrates for 

device fabrication or characterization, provided the molecular interactions are sufficiently 

stronger than those of the molecule-surface interactions. 

In order to realize the self-assembly of polymers into lD nanostructures by 

solution processing methods various side chains are attached to polymer backbone ( 7t­

rich structure). This allows for increasing the solubility mainly in organic solvents. 78 The 

presence of bulky side chains attached to the polymers can lead to the disruption of the 

planarity (of the n-conjugated backbone) and therefore have pronounced effect on 

formation of ordered aggregates upon self-assembly.79-81 On the other hand linear alkyl 
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side chains tend to retain the planarity (of the 7t-conjugated backbone) and allows for 

obtaining ordered aggregates. 82•83 For example, the above concept has been widely 

demonstrated in case of the poly(3-alkylthiophene) polymers.84•85 Similarly, well defined 

nanowires can be also be fabricated form block co-polymer namely poly(3-

hexylthiophene )-b-poly( styrene) by 7t-7t stacking interactions. 86•87 Similar side-chain 

effects have also been observed in case of oligomers, and small molecules. In all of the 

studies involving exclusively 7t-stacking of alkyl-substituted 7t-conjugated cores the 

assembly is a direct function of co-operative interaction of the lateral side-chain 

interdigitation (by hydrophobic interactions) and the essential 7t-stacking. The 

morphology thus depends largely on the domination of one interacting force over the 

other. Furthermore, H-bonding interactions along with 7t-stacking interactions have also 

been utilized for the realization of organized lD nanostructures based on the domination 

or co-operative presence of the multiple interactions leading to stable structures.47•48•88 

Thus, the side chain modulation is an essential parameter for the self-assembly of organic 

semiconducting molecules. 

The role of side chains attached to the 7t-conjugated small molecules has also 

been extensively studied for the self-assembly by solution processing.89-93 For example, 

Mullen et al.94•95 demonstrated unusual liquid crystalline behavior and high charge carrier 

mobility from alkyl subsitituted hexa-peri-hexabenzocoronene (HBC), a widely studied 

organic semiconducting molecule. In case of a C12-HBC, the dodecyl side chains 

interdigitate amongst each other, thus enhancing the 7t-7t interactions of the planar HBC 

core resulting in uniform lD nanofibers by the slow drying of the solvent (THF).45•46 In 

this study, Mullen et al. have demonstrated the side-chain substitution effects on a wide 
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variety and with different number of end group functionalization and their morphological 

traits and concomitantly their effects on the transport characteristics. Another solution 

processing method that has been widely used especially for HBC relies on the solvent 

exchange. In this process the molecules are transferred from a solvent, in which the 

molecules exist in homogeneously dissolved state, to another solvent in which the 

molecule has no solubility. This allows for the rapid interaction of the n-rich surfaces to 

allow for the formation of 1 D structures. One of the most elegant examples for the self­

assembly by design of the HBC molecule has been shown by Aida et al. 96 The 

amphiphilic HBC molecules having two dodecyl side chains and two triethylene glycol 

chains allowed for the formation of 1 D nanotubes by the n-stacking and side chain 

interdigitation interactions. 96 The self-assembled nanotubes are realized by forming 

uniform solution of this amphiphilic molecule in THF at 50 ° C and slow cooling to 30 ° C. 

Thus, all these solution based methods based on aggregation (by precipitation) leads to 

the formation of ordered 1D nanostructures of planar and n-conjugated semiconducting 

organic molecules. 

While the synthesis and self-assembly of various molecules exhibiting p-type 

behavior have been widely studied, the synthesis and self-assembly of n-type organic 

semiconducting molecules have recently started attracting attention. Chapter 2 will 

discuss about the synthesis and self-assembly of perylene diimides (PTCDI) which fall 

into a rare category of n-type organic semiconducting molecules. Several research groups 

have synthesized various PTCDI molecules having various functional groups in their 

structure and they have been further self-assembled into ordered structures based on 

various interactions such as metal ligand, ionic, hydrogen bonding and n-n stacking. The 
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ordered self-assembled structures from these molecules have been utilized for the 

fabrication of various electronic and opto-electronic applications. 

Chapter 3 is focused on synthesis and self-assembly of planar symmetric PTCDI 

molecules having varying length of alkyl side chains attached to the perylene core. 

Various solution processing conditions such as dispersion, phase transfer at room 

temperature and phase transfer at high temperature (a new method developed and 

reported in this thesis) have been explored for controlling the size of the resultant lD 

structures by self-assembly. The role of solvents and effect of the side chains attached to 

the PTCDI on the fmal morphology of the lD structures have also been studied. The 

newly developed solution process namely two layer phase transfer at high temperature 

(2L-HT) has been utilized to generate millimeter long wires from these molecules by 

slow nucleation and growth process which show a very intense excimer emission. This 

has direct implications for applications in organic light emitting, photovoltaics and 

sensors. 

Chapter 4 will focus on the synthesis and self-assembly of perylene monoimides 

(m-PTCI) having only one hydrophobic alkyl side chain attached to perylene core. The 

self-assembly of m-PTCI have been carried out by the newly developed two layer phase 

transfer method leading to the formation of highly crystalline two dimensional (2D) 

sheets. The optical properties of these sheets have also been studied. 

3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) represents one of the 

extensively studied material for organic electronics and opto-electronics applications and 

is the starting material for the synthesis of PTCDI. The well defined nanostructures of 

this material have relied on the heavy use of vapor-phase methods. However, solution 
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processing of such insoluble materials remains a challenge to-date. In chapter 5, chemical 

reaction mediated self assembly have been utilized to generate crystalline lD nanofibers 

of PTCDA. For this purpose a highly soluble perylene tetracarboxylic acid (PTCA) has 

been converted to highly insoluble PTCDA by utilizing the carbodiimide chemistry. This 

particular chemical transformation wherein the system transforms from homogeneous 

state to an aggregated state, leads to in situ formation of lD nanofibers ofPTCDA. 

In Chapter 6 the self-assembly of perylene based salts from their aqueous 

solutions have been explored. Various tetra alkali metal salts of perylene tetracarboxylic 

acid (Mt-PTCA) were utilized for self-assembly process. It was found that the self­

assembly in this system is a very sensitive function of the processing conditions leading 

to the formation of lD, 2D and 3D self-assembled structures. Further, the self-assembled 

lD nanostructures formed in this system have been chemically modified. The changes in 

the morphology of these self-assembled 1 D structures due to the chemical modification 

have been also studied. 
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CHAPTER2 

Synthesis and Self-Assembly of Perylene Tetracarboxylic Diimides 

2.1 Introduction 

Perylene tetracarboxylic diimides (PTCDI) have been widely studied owing to 

their high chemical, electrochemical and photochemical stability along with their ability 

to act as electron acceptors (n-type). 97 Since their use in prototype organic photovoltaic 

d . 3 98 99 d hi 1. . 100 h . 1 h ~ . ev1ces · · an xerograp c app 1catwns t ese matena s ave ~ormed an Important 

class of molecules to be utilized in a variety of applications. There are very few n-type 

organic materials and therefore demand for these molecules is rather large. PTCDI are 

electron deficient and exhibit two reversible one electron reductions97 and have been used 

as an electron acceptors in photoinduced charge transfer systems. 99•101-103 Electron 

mobility as high as 1.7 cm2Ns have been observed for the films deposited by vapor 

deposition methods of N,N'-dioctadecyl-3,4,9,10-perylene diimide. 104-106 Thus, PTCDI 

molecules represent the best organic electron transport materials available till date. 107 

PTCDI have a strong tendency to aggregate by 1t-stacking interactions and 

various research groups have utilized this ability to form ordered lD structures. This self-

assembly of PTCDI leads to strong electron coupling and hence results in improved 

charge transfer properties. This chapter will discuss the synthesis and self-assembly of 

PTCDI. Fabricating well defined self-assembled structures from n-type organic 

semiconductors opens up new areas of research to explore their use in applications such 

as sensors, photovoltaics (OPV), light emitting diodes (OLED) and complementary 

inverter devices based on Field effect transistor (FET). 
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2.2 Perylene tetracarboxylic diimides (PTCDI) 

The perylene tetracarboxylic diimides (PTCDI) also known as perylene bisimides 

or perylene diimides are very important chromophores that have been explored for 

various applications as dyes and pigments. 108
'
109 This is primarily because of the 

exceptional properties displayed by PTCDI such as high chemical persistency, very high 

thermal stabilities upto 550°C, extremely high photostability, and weather fastness. 110 

The chemical structure of a typical PTCDI molecule is shown in Figure 2.1. 

1 12 

7 

Figure 2.1 Chemical structure of a PTCDI molecule. The R-groups at the imide-N 
represent the different side-chains that can be attached to the perylene core. The positions 
1, 6, 7 and 12 at the perylene cores (also known as bay-positions) shown in red can be 
functionalized to yield novel highly soluble PTCDI. 

The perylene dyes were first discovered by Kardos in 1913 and utilized as vat dyes in 

textile industries. Later on owing to their extremely low solubilities, the research on these 

dyes was shifted towards their applications as high performance pigments mainly as 

shades of red and violet black (Figure 2.2: 2a-c).97
'
110 But most recently, owing to the 

high electron affmity of the PTCDI, 111 they have been explored as n-type semiconducting 

electronic material. 112
'
113 Due to their unique optical, redox and stability properties they 

have been explored for their applications in electrophotography or xerography. 100 The 

extreme insolubility of these molecules is a criterion for pigment related applications but 
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in order to perform chemistry with these molecules the solubility in an organic solvent is 

desired. Moreover, various functional groups in the form of corresponding amines can be 

introduced in the structure of PTCDA parent molecule resulting in the formation of more 

soluble PTCDI. 

2.3 Synthesis of PTCDI 

The condensation of the corresponding amine with the parent Perylene-3,4,9,10-

tetracarboxylic dianhydride (PTCDA), 1 has been utilized for the synthesis of various 

PTCDI. 108' 114"116 A diverse range of both aliphatic and aromatic amines can be used for 

this purpose. Furthermore, by adjusting the reaction conditions it is possible to synthesize 

symmetrical PTCDI 2, asymmetric PTCDI 6, and m-PTCI (N-mono(alkyl)-3,4,9,10-

perylene tetracarboxylic monoanyhydride monoimide, 5. When only the 0-positions of 

the parent anhydride are replaced by N- the core of the perylene structure remains planar. 

However, upon substitution ofthe bay-positions (1, 6, 7, & 12, see Figure 2.1) within the 

perylene core results in the loss of the planarity of the perylene cores structure. 

2.3.1 Synthesis of symmetrical PTCDI 

When the two substituents at the imide nitrogen are similar, the PTCDI are termed 

as symmetric. The reaction scheme for the synthesis of symmetric PTCDI is shown in 

Figure 2.2. In 1959, Langhals et al. 108' 114"116 proposed the first route for the synthesis of 

PTCDI in which the long hydrophobic alkyl chains were introduced at the imide nitrogen 

which lead to the increase in the solubility of these molecules. Using this strategy various 

substituents comprising straight chains, branched carbon chains, phenyl groups can be 

attached to the ends of the dianhydride by the corresponding primary amine substitution 

leading to various PTCDI (2a-t). A very high solubility was observed when pure aliphatic 
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substituents were attached to the N -atom as compared to that obtained by attaching 

aromatic substituents. 

PTCDA, 1 PTCDI, 2 

2a- H 

2c -~-o-~N-o 
2d -1-<c.H., 

CsH13 

Figure 2.2 Synthesis of planar symmetrical PTCDI. 

When cyclo-alkyl substituents are attached to the perylene core, the solubility of 

these dyes increases till five membered ring, which then decreases for the medium sized 

rings and then again increases drastically for large sized rings as they form parallel zig-

zag chains. When two identical branched alkyl chains (' swallow-tail ' substituents) are 

attached to the perylene core extremely high solubilities are observed in chloroform (e.g. 

2d). It has been observed that the melting point of the branched perylene diimides 

decreases from higher values (as observed in case of linear alkyl substituted) to less than 

100 ° C as the length of the branched alkyl chains increases. 

2.3.2 Synthesis of asymmetrical PTCDI 

When the two substituents at the imide nitrogen are different, the PTCDI are 

termed as asymmetrical. The reaction scheme for the synthesis of asymmetric PTCDI is 

shown in Figure 2.3. Though the procedure for obtaining symmetric PTCDI is relatively 

straightforward process in which the PTCDA, 1 is condensed with excess of the primary 
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amine, the synthesis of non-symmetric PTCDI involves multiple reaction steps and 

therefore yields of the desired products are much lower than that obtained for 

symmetrical PTCDI. 

4 

Unsymmetrical PTCDI, 6 

Symmetrical PTCDI Mono-PTCI, 5 

Figure 2.3 Synthesis of planar mono (5) and unsymmetrical (6) PTCDI. 

Monofunctionalized dyes have been utilized for the synthesis of non -symmetrical 

PTCDI and complex multichromophoric architectures. It would appear straightforward to 

react excess of PTCDA with primary alkyl amine as minor components leading to 

formation of perylene monoimides (m-PTCI), 5. But it is observed that even under 

controlled reaction conditions PTCDI is a major product with very small amount of 
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perylene monoimide. Efforts were made to synthesize asymmetric PTCDI by the 

condensation of PTCDA with mixture of two different primary amines. However, such 

reactions yield mixture of products which are rather difficult to separate. 

Troster et al. 117 have developed a very elegant synthesis protocol for the synthesis 

ofperylene monoimides, 5 (Figure 2.3). In this procedure, first PTCDA, 1 is converted to 

highly water miscible tetrapotassium salt, 3 by the reaction with potassium hydroxide. 

Slow addition of acetic acid or phosphoric acid with heating leads to the moderate 

acidification, thus resulting in the precipitation of the monoanhydride monopotassium 

salt, 4 from water. Usually acetic acid is preferred over phosphoric acid because its 

removal from the final product is much easier. Due to the extraordinarily high lattice 

energy of the perylene monoanhydride monopotassium salt, 4 it is absolutely insoluble in 

any solvent even at high temperatures thus leading to its removal from the acid base 

equilibria. This method therefore allows for synthesis of extremely pure perylene 

monoanhydride monopotassium salt, 4. 118 This salt can then be coupled with various 

primary amines in water only at one position, 5 and subsequently the second position can 

be reacted with other primary amine after ring closing leading to the formation of non­

symmetric PTCDI, 6. The yields of the perylene monoimides by this strategy decreases 

as the hydrophobicity of the amines increases. However, reasonable yields are obtained 

and hence this strategy has been utilized for the preparation of asymmetric PTCDI in high 

yields utilizing water soluble primary amines. One major limitation of this method is that 

it cannot be used when extremely long and branched alkyl chains are used. 

In order to form perylene monoimides in high yields utilizing hydrophobic 

amines, the hydrolysis of symmetrical PTCDI based upon these hydrophobic chains is 
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employed. Nagao and coworkers have explored a method of partial acid saponification 

of symmetric PTCDI in concentrated sulfuric acid at 180-200°C.U9' 120 But this procedure 

usually requires harsh reaction conditions and hence substituents attached to the perylene 

core might undergo sulfonation at this temperature. Hence, to overcome this disadvantage 

other methods have been developed in which the symmetric PTCDI (in which one of the 

desired chain in the final structure) are hydrolyzed under mild conditions utilizing KOH 

and tertiary butanol, which upon acidification and heating result in the formation of 

perylene monoimide, 5.118 Moreover, since highly hydrophobic secondary amines can be 

coupled to perylene core in this way, there is enhanced solubility of these monoimides. 

These molecules can be then further condensed with various alkyl amines thus leading to 

asymmetric PTCDI chromophores. 

2.3.3 Synthesis of bay-substituted PTCDI 

The method for realizing highly soluble perylene dyes (by disruption of the 

planarity) was developed by Seybold and coworkers at BASF. 121 They devised a method 

to introduce substituents directly in the carbocyclic scaffold which is also termed as bay­

area (positions 1, 6, 7, 12, see Figure 2.1). Their approach was based on utilizing 

tetrachloro perylene diimide derivative, 7 as an initial precursor which can undergo 

nucleophilic displacement reaction by the displacement of chlorine leading to the 

introduction of substituents directly in the perylene core (Figure 2.4). The main drawback 

of this method was the formation of tri and penta substituted chloro derivates of perylene 

along with the tetra chloro derivative which were very difficult to separate from the 

reaction mixture.122 It was possible to successfully incorporate four phenoxy groups in 

the bay area leading to the synthesis oftetraphenoxy perylene derivatives, 8.121 However, 
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the other nucleophilic substituents were very difficult to be introduced in higher yields 

and single reaction product was rarely obtained. In 1997, di-bromination (at positions 

1,7) of PTCDA at bay was established123 and it was subsequently converted to the di-

substituted (1,7) bay perylene derivatives. 

QP 
0 0 

0 0 

db 8 -

R,-~~ p 
0 

!o 
0 10 

0 
Br 

Figure 2.4 Synthesis of bay substituted PTCDI. 

The major disadvantage of this method was that the product obtained after 

bromination was contaminated with almost three fold bromination products 124•125 and 

significant amount of second dibromo regioisomers, which could be detected only by 

high field (>400 MHz) H-NMR spectroscopy. However, recently new method has been 
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developed for the di-bromination ofPTCDA in very high yield(> 70 %) by the addition 

of iodine at 80 °C. 126 It was also possible to obtain tetra bromo derivatives of PTCDA in a 

reasonable yield (30%) by adding additional iodine and refluxing at higher temperature 

for a longer period of time. 127 Since the displacement of bromine substituents with 

various nucleophiles like carbon, cyano, oxygen, oligothiophene and nitrogen is a very 

straightforward reaction, it is now possible to make wide range of bay substituted PTCDI 

10, 11 in higher yields having various functional groups thus leading to very unique 

properties. 128-132 

Depending on the size and the number of substituents at the bay positions, the 

two naphthalene planes that make up the structure of perylene can be twisted about 20 °-

40°.97 Various tetra- and di- substituted perylene dyes have been widely synthesized 

because of the relative ease of the control of substituents at the bay positions. Not only 

the small molecules but also various polymers can be coupled to the perylene core 

leading to the formation of star shaped polymers with the core comprising of perylene. 

These star shaped polymers have been synthesized successfully which also show very 

unique mechanical properties. 133 Moreover, Mullen et al. 134 have systematically 

investigated the introduction of the polyphenylene dendrons at the bay area of the 

perylene core. These higher generation polyphenylene dendrons prevented the 

aggregation of the perylene core by 1t-1t interactions, thus leading to increased solubility 

in solution. 

2.4 Optical properties of PTCDI 

The absorption and emission properties of the PTCDI in homogeneous solution 

are completely indistinguishable for various PTCDI having the imide substituents with 
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wide range of functional groups and varying number of carbon atoms in the side chains. 

This is primarily because the nodes are present in the HOMO and LUMO of the imide 

nitrogen which leads to minimal coupling between the perylene core and the imide 

substituents (Figure 2.5a). Therefore, PTCDI are usually considered as the closed 

chromophoric system in which the intensity and the position of the SO-S 1 transition is 

polarized along the long molecular axis and is independent of the imide substituents. This 

type of modification retains the conjugation in the perylene core and therefore these 

PTCDI have very high fluorescence quantum yield and very low stokes shift, especially 

in solution. 
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Figure 2.5 (a) HOMO and LUMO levels of Me-PTCDI as calculated by Gaussian 03. 
The frontier orbitals on both HOMO and LUMO for PTCDI's exhibit nodes at the imide 
nitrogen. (b) Typical UV -visible and fluorescence emission spectra of perylene diimides 
homogeneously dissolved in solution. 

Moreover, these optical properties are independent of the environment i.e solvent 

1n which these dyes are highly soluble and hence these dyes exhibit very little 

solvatochromism. The planar PTCDI show strong absorption in the visible range of 450-

520 nm and the emission from the free molecules is a mirror image of the absorption 

spectra (Figure 2.5b ). The absorption and emission spectra have very well resolved 

vibrational structures. The fluorescence quantum yield for these types of dyes is close to 
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unity even under atmospheric oxygen.116 Thus, because of its high light fastness ability, 

these dyes have been utilized as standards for obtaining the quantum yield of other 

fluorophores. In the case of phenyl substituents at the imide nitrogen, due to the twisting 

of aryl groups the aggregation is prevented and solubility is increased. But due to the 

vibronic motions the quantum yields reduces to 70%. 122 In case of the highly electron 

rich alkoxyphenyl substituents (at the imide positions), the quantum yields as low as 5% 

have been reported due to the photoinduced electron transfer from the electron-rich 

phenyl substituents to the electron deficient perylene core. 135•136 The absorption spectra 

for these dyes cannot be tuned by just attaching alkyl/aryl chains at the imide nitrogen. 

However, it can be tuned either by the bay-substitution of the perylene core. 

Significant changes in the absorption and emission spectrum are obtained by the 

functionalization of the perylene core in the bay positions (1,6,7,12). 137 For example, the 

substitution of two phenoxy groups at the 1, 7 positions lead to a bathochromic shift of 20 

nm97 whereas, the substitution of four phenoxy groups leads to a bathochromic shift of 50 

nm 137 as compared to the bay-unsubstituted PTCDI dyes and the fluorescence changes to 

orange and red colors, respectively. However both these substituted dyes retain their 

high fluorescence quantum yield, solvatochromism and photostability. When the bay 

positions are substituted by two electron-donating pyrrolidino groups, green colored dyes 

with a bathochromic shift of 160 nm and their emission properties in infrared regions are 

obtained. 131 This is attributed to the charge transfer due to the pyrrolidino groups which 

leads to pronounced solvatochromism and decrease in fluorescence quantum yield. On 

the other hand, introduction of the electron-withdrawing substituents at the bay positions 

leads to insignificant changes in the absorption and emission spectrum. 
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This leads to unique situation in PTCDI where in the dissolved state no 

solvatochromism behavior is observed, but in solid state upon aggregation a pronounced 

crystallochromy can be observed, leading to crystals with different shades of color 

ranging from red to black. 138•139 Kazmaier et al. 140 has derived an empirical relation 

between the absorbance maxima and the different offsets (transverse and longitudinal) in 

the packing of the PTCDI, which results in the crystallochromy. Upon aggregation of the 

PTCDI molecules in poor solvents pronounced changes occur in the optical absorbance 

spectra.141•142 In some cases, it has been found that a new absorption band appears at 

longer wavelength (crystal phase) upon aggregation in certain solvents and concomitantly 

a decrease in the absorbance of the 0-0 peak and increase of the 0-1 and 0-2 transitions. 

These optical characteristics have been associated with the strong co-facial packing of the 

perylene cores. 

2.5 Structural properties of PTCDI 

PTCDI dyes having small substituents such as H, -CH3 attached at the imide 

positions are extremely insoluble and tend to form several single-crystals. The X-ray 

diffraction of these crystals confrrmed the extreme planarity of the perylene core. 139 From 

the bond length calculations, PTCDI are considered to be composed of two naphthalene 

half units each of which is attached to an imide unit and the naphthalene units are 

connected by two C sp2- C sp2 single bonds. 97 Upon substitution of the bay areas, there is 

introduction of sterical strain thus resulting in a twisting of the naphthalene units. 143 This 

twisting behavior was first observed for the tetrachloro-substituted perylene bisimides in 

0 0 
which the torsional angle was determined as 3 7 whereas a smaller torsional angle of 25 

was observed in case of tetraphenoxy-substituted diazadibenzoperylene derivative.144•145 
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Owing to such a distortion, the solubility of these dyes is drastically improved but the 

planarity of the perylene core is destroyed and therefore considerable constraints exist in 

packing of these dyes in solid states or in molecular aggregates. Marks and coworkers 

have utilized the crystallography and electronic structure calculations to study the 

distortion in case of bay substituted PTCDI. 146 The studies indicate that there exists a 

correlation between the electron mobilities and the distortion due to the functionalization 

of perylene core. The core twisted perylene diimides exhibit a distorted packing whereas 

the planar PTCDI exhibit co-facial packing. Hence, the study of packing behavior of 

various PTCDI is necessary in order to optimize the transport characteristics which 

determine efficiencies for the performance of various electronic and optoelectronic 

devices based on these materials. 

2.6 Packing behavior of PTCDI - Effects on optical properties upon 

aggregation 

Figure 2.6 The ideal co-facial packing for perylene diimides with three PTCDI units 
stacked one over other by 1t-1t interactions is shown in left. The distance between the two 
adjacent perylene diimide core is represented as d (1t-stacking distance). The lateral (1) 
and transverse (t) offsets observed in the packing of perylene diimides. 

The alkyl or aryl substituted PTCDI show almost similar optical properties in 

homogeneously dissolved state, but in the aggregated state their properties vary as the 
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packing of the perylene cores is different for different alkyl substituted (linear, branched, 

bulky) PTCDI. This difference in the packing behavior leads to various colored pigments 

having varying optical properties. The crystal structures of 18 different PTCDI pigments 

that differ only in the substituents attached to the perylene core have been extensively 

studied by Graser, Hadicke and Klebe at BASF. 138 Zugenmaier et al. 147 have reported the 

crystal structure of six more derivatives. All these studies reveal that the PTCDI exhibit 

planar geometry and they are arranged in stacks corresponds to the n-n interactions 

between the perylene having parallel orientation of these dyes at a distance of between 

3.34 and 3.55 A. This distance corresponds to the distance between the perylene cores 

which is similar to that observed between the graphene layers in the graphite. However, 

in case ofPTCDI with bulky substituents (at theN- position) or the ones that lead to core 

twisting (bay position), n-stacking distances up to 4.3 A is observed. This increase in 

distance is because of the introduction of longitudinal and transverse offsets to allow for 

the stabilization of the energy of the aggregates leading to distorted or weak packing of 

perylene cores (Figure 2.6).97•143•148 Thus, the nature of the substituents attached to the 

imide nitrogen dictate the offsets incorporated in the packing of the PTCDI. Moreover, 

the rotation offsets in a few phenyl substituted PTCDI result in screw type packing. 147 

Kazmaier and Hoffmann have further studied these crystallochromic effects on 

lD infinite stacks of these dyes as a function of these two offsets based on extended 

Huckel calculations. 140 It was also found that a small change in the conformation of the 

side chains of the PTCDI (trans to gauge) leads to the significant changes in the 

longitudinal and transverse offsets. A direct consequence of such change in the 
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configuration results in a change in the absorption maxima from 559 nm for gauge 

conformation to 610 nm for trans conformation. 

2. 7 Self-assembly of PTCDI 

The advancement and the flexibility in the synthesis of PTCDI, to allow for 

desired side-chain to be attached to the perylene at various positions, has allowed for 

realizing a wide range of PTCDI molecule with unique size, shape and solubility. The 

planar PTCDI molecules show strong propensity to aggregate by n-stacking interactions. 

The resulting aggregates often show ordered crystalline structures as seen by the X-ray 

diffraction of the crystals grown for a range of PTCDI. Also, the ability to show 

crystallochromic effects due the differences in packing because of side chain modulation 

allows for tuning the optical properties. The major goals of self-assembly of PTCDI 

molecules are obtaining well defmed morphological structures that are highly ordered 

such as 1 D structure which is well suited for use in application. Such stringent 

requirements therefore demand the synthesis and assembly of wide range of PTCDI 

molecules with programmed molecular interactions. Some of the non-covalent 

interactions that have been widely utilized for the realization of such structures are 

mentioned below. 

2. 7.1 7t-7t interaction based self-assembly 

The self assembly of various symmetrical, asymmetrical PTCDI and perylene 

monoimides by n-stacking interactions has been studied by various groups. The chemical 

structures of these various PTCDI are mentioned in Figure 2. 7 In order to understand the 

side chain effects on the self-assembly, Balakrishnan et al. 142 studied the self-assembly of 

two planar PTCDI molecules having linear, 13 and branched alkyl chains, 14. They found 
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that owing to the minimal steric hindrance and strong 1t-1t stacking between perylene 

backbones in case of linear side chain PTCDI, very uniform lD nanobelts could be 

realized. On the other hand, owing to the bulky side chain, there is significant distortion 

in packing of the perylene core leading to the formation of OD particles. 141 The 

interdigitation of side chains between the PTCDI due to the hydrophobic interactions also 

govern this type of self-assembly. All these assemblies were characterized by SEM, 

TEM, DSC, XRD and fluorescence microscopy. 

Further Che et al. 149 demonstrated ultralong fibers self-assembled from an 

amphiphilic asymmetrical PTCDI, 15 having polyoxyethylene on one end and 

hydrophobic branched alkyl chain, hexylheptyl, attached to the perylene core. They found 

that the 1t-stacking interactions between the perylene cores could be maximized in the 

water/ethanol solvent mixture. These ultralong fibers also show good electrical response 

upon doping with an electron donor such as hydrazine implying the long range charge 

migration due to efficient 1t electron delocalization over the entire length of the fibers. 

Highly fluorescent fibers were also fabricated by 1t-1t interactions of perylene monoimide, 

17 having only one bulky side chain attached to the perylene core by a slow solvent vapor 

diffusion process in a closed container which behaved as an efficient sensor for detection 

of volatile organic compounds (VOC) (e.g. amines), again based on the principle of 

electron transfer from the VOC to the perylene core.150 Single crystalline organic 

nanobelts were also reported by Che et al. 151 by the solvent phase transfer self-assembly 

of PTCDI, 16 having cyclohexyl groups at the imide nitrogen which was essentially 

driven by the 1t-1t interactions. 
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Figure 2.7 Structures of various planar symmetrical, unsymmetrical PTCDI and perylene 
monoimides employed for the self-assembly by n-n interactions. 

Datar et al. 152 and Mullen et al. 153 have utilized the solvent vapor annealing 

method on the films of PTCDI on surface for the self-assembly of planar PTCDI 12 and 

19 into highly ordered supramolecular architectures by n-n interactions on various 

substrates. Briseno et al. 67 have studied the self-assembly of symmetrical PTCDI having 
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varying side chain length at the imide nitrogen by a modified phase transfer method. 

They found that as the length of the side chain increases, the rate of aggregation by 7t-7t 

interactions and side chain interdigitation increases, leading to more number of nuclei 

and hence the resulting diameter of the ID fiber decreases. They utilized these ID fibers 

along with the p-type nanowires of hexathiapentacene68 to form complimentary invertors. 

Bao et al!54 have fabricated the single crystalline ID nanofibers of N,N-bis(2-

phenylethyl)-perylene-3,4,9,10-tetracarboxylic diimide, 18 by either adding a small 

amount of methanol to the hot homogeneous solution of this PTCDI in toluene or 

dispersing a concentrated homogeneous solution of the PTCDI in huge excess of 

methanol. In the former case large diameter and length of fibers are obtained due to slow 

nucleation and growth whereas in the latter case small diameter and length of fibers are 

observed. They reported highest charge carrier mobility of 1.4 cm2Ns from the single 

wire of this n-channel organic semiconducting molecules. 

Luo et al. 155 have studied the self-assembly of PTCDI, 20 having 

(propyl)triethoxysilane groups at the imide nitrogen. They found that the solvophobic 

interactions of the perylene core and the solvophilic interactions of the 

(propyl)triethoxysilane parts in the acetone/petroleum ether mixed solvents drives the self 

assembly into tubular, crystalline lD nanotubes by 7t-7t interactions. Further, Lu et al. 156 

demonstrated that by controlling the kinetics of self-assembly (rate of solvent drying, 

concentration, solvent composition) of PTCDI, 20 bearing (propyl)triethoxysilane parts, 

various morphologies like micro-tubes, macro-fibers, hollow spheres, to dense spheres 

could be obtained by hierarchical assembly in solution. Recently, Ren et al. 157 have 

studied the self-assembly of hybrid organic-inorganic molecules based on PTCDI, which 
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comprised of oligosilsesquioxane nanoparticles covalently attached to imide nitrogen via 

a rigid 1 ,4-phenylene linkage. Despite the presence of bulky nanoparticle substituents at 

the imide nitrogen, these hybrid molecules self-assembled into single crystalline 

nanobelts by 7t-7t interactions on various substrates upon evaporation of its THF solution. 

Yu et al. 158 have recently studied the self -assembly of PTCDI molecule having 

permethyl-b-cyclodextrins attached at the imide nitrogen via 7t-7t stacking interactions 

into lD fluorescent nanorods that have been explored for sensing applications. 

2.7.2 Hydrogen bonding based self-assembly 

The control of specificity and directionality of the hydrogen bonding interactions 

between the two interacting species have recently attracted lot of attention for creating 

supramolecular structures. The structures of various PTCDI and complimentary hydrogen 

bonding molecules employed for the hydrogen bond directed self-assembly are 

mentioned in Figure 2.8. The self-assembly of PTCDI, 21 having two -CO-NH-CO­

sequence with a NH hydrogen bond donor (D) and two CO hydrogen bond acceptors (A) 

thus leading to A-D-A sequence which can form hydrogen bond with various donor 

acceptor sequence have been widely studied. Wurthner et al. 159 has studied the self 

assembly of bay substituted PTCDI, lla having such A-D-A sequence at imide nitrogen 

that can undergo two self-complimentary hydrogen bonding amongst each other in 

organic solvents. Owing to presence of bulky substituents in bay position, perylene core 

twisting is observed leading to the slipped arrangement. There also exists secondary 7t-7t 

interaction amongst the slipped perylene cores leading to highly fluorescent helically 

twisted supramolecular polymer exhibiting J -type packing. They have further synthesized 

bay substituted PTCDI, llb having such A-D-A sequence and studied its ability to 
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undergo hydrogen bonding with complimentary ditopic dialkyl melamines, 29. 160 The 

triple hydrogen bonded complex are very rigid and hence these hydrogen bonded 

supramolecular chains also undergo 1t-1t interactions between perylene core and alkyl 

side chain interactions present in melamines in aliphatic solvents like methylcyclohexane 

leading to formation of highly fluorescent and extremely photostable self assembled 

nanostructures. 

R R 

N-H 

21b R=~-o-Q--f 
R R 

Ar 
21c R=~-o-Q-oR2 21 R=H 

Figure 2.8 Structures of various PTCDI and complimentary hydrogen bonding molecules 
employed for the hydrogen bond directed self-assembly. 
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Recently, Liu et al. 161 has illustrated the self-assembly of bay substituted perylene 

diimides, 21c having the A-D-A sequence mentioned above with the fullerene derivative 

bearing a 2,6-diacylaminopyridine units for their potential light harvesting applications 

by the efficient energy and electron transfer. It was found that these perylene diimides 

undergo strong hydrogen bonding interactions in chloroform and leads to the formation 

of spherical ball like assemblies. Further, they have also synthesized another PTCDI 

derivative, 22a having two N-(6-dodecanoylamino-pyridin-2-yl)-benzamide groups at the 

bay positions which can undergo triple hydrogen bonding interactions with another 

PTCDI derivative, 21c having the A-D-A sequence mentioned above leading to 

formation of long 1 D nanofibers from chloroform solution. 162 In addition to hydrogen 

bonding interactions, 7t-7t interactions were have also shown to be responsible for the 

formation of such 1D morphology. Marta et al. 163 have also demonstrated the substrate 

templated self-assembly, by the triple hydrogen bonding interactions between 1,4-bis­

(2,4-diamino-1,3,5,-triazine)-benzene, 25 and 3,4,9,10-perylenetetracarboxylic diimides, 

2ld having such A-D-A sequence, leading to the formation of periodic bicomponent 

wires and ribbons. 163 

Meijer et al. 164 have reported the synthesis of electron donor-acceptor-donor triads 

comprised of oligo(p-phenylene vinylene) (OPV) and central PTCDI which are 

connected by the chiral linkers incorporating amide bonds. This molecule was shown to 

undergo hydrogen bonded self assembly due to the presence of amide groups in toluene. 

Further, Meijer and Wurthner extended this concept and demonstrated the hierarchical 

self assembly of bay substituted PTCDI derivative, 2lb having an appropriate functional 

group at the imide nitrogen that can undergo triple hydrogen bonding with two 
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diaminotriazine functionalized oligo(p-phenylene vinylene ), 26 and further 7t-7t 

interactions leading to the formation of chiral fibers. 103 It was found that even though the 

donor acceptor chromophores form distorted J -aggregation, the fluorescence of the 

resulting chiral assemblies is completely quenched. This has been attributed to a very 

strong photoinduced electron charge transfer between the donor and acceptor present in 

the structure of the fibers. Liu, et a1. 165 has demonstrated the self-assembly of PTCDI 

having bis-urea groups attached at the two bay positions, 22a leading to the formation of 

rod like superstructures. The main driving forces for the formation of such 

superstructures was found to be hydrogen bonding interactions and 7t-7t stacking 

interactions which were determined by the NMR, fluorescence spectra and FTIR. Asha et 

al. 166 have studied the liquid crystalline behavior of perylene bisimides having ester and 

amide linkages, 23 which are terminated by the monododecyloxy phenyl, or 

tridodecyloxy phenyl units at the imide nitrogen. It was found that owing to the presence 

of amide linkage in monododecyloxy phenyl terminated PTCDI the 7t-7t interactions were 

enhanced by the additional hydrogen bonding leading to H aggregation and hence 

formation of long 1 D nanostructures from toluene. On the other hand, owing to the 

absence of hydrogen bonding interactions in corresponding ester series, J aggregation 

was observed leading to leaf like patterns. Moreover, due to the bulky nature of the 

tridodecyloxy linkages, both the ester and amide series of the tridodecyloxy phenyl 

terminated PTCDI failed to produce ordered lD aggregates. Recently, Wurthner et a1. 167 

have demonstrated the conversion of H-type to J-type packing in case of core 

unsubstituted PTCDI. They achieved this conversion by the hydrogen bond directed 

complexation of unsymmetrically substituted PTCDI, 24 having melamine units at the 
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imide nitrogen with appropriate cyanuric acid derivatives, 27, 28 both in solution as well 

as solid state. Moreover, this transformation was found to be reversible at an appropriate 

temperature. 

2.7.3 Metal Ligand based self-assembly 

With a view to form photoluminescent polymers by utilizing the concept of 

supramolecular polymerization by complexation between the metal ion and photoactive 

building blocks, Wurthner et al. 168 have synthesized PTCDI dyes having terpyridine 

receptor units. They studied the complexation of these dyes with octahedrally 

coordinating metal ions like Zn2+ and Fe2+ (Figure 2.9). In order to have efficient binding 

with the metal ions, the aggregation of the PTCDI must be prevented. Hence, appropriate 

functionalization ofPTCDI and in some cases the corresponding metal ion was desired so 

as to form coordinate bonds in one common solvent system.97 By appropriately 

controlling the structure of PTCDI and ratio of the metal ion to the perylene bisimides, 

dimers and polymers could also be realized. 

Ar, ,Ar 
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Figure 2.9 Supramolecular polymers by the metal ligand based self-assembly ofPTCDI. 
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Moreover, it was found that fluorescent dimers and polymers could be formed by 

utilizing Zn2
+ ions and this complexation was reversible, whereas the fluorescence was 

quenched drastically in case of dimers and polymers when Fe2
+ was employed and the 

complexation was completely irreversible. Thus, it can concluded that the formation of 

fluorescent supramolecular polymers from PTCDI dyes with terpyridine receptors is 

metal directed and hence exhibits different photophysical properties. In order to further 

enhance the metal-ligand coordination and reduce the 7t-7t aggregation which leads to 

precipitation and formation of mesophases, various diazadibenzoperylene having first to 

third generation dendrons attached to the bay positions have been utilized to form metal 

directed coordination polymers. 169 
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Figure 2.10 Supramolecular polymers formed by metal ligand interaction of the 
dendronized diaza PTCDI based building blocks. 

It was found that dendronized diaza perylene blocks can be polymerized by Ag + 

ion leading to rigid rod polymers (Figure 2.1 0). This polymerization was dependant on 

generation of dendrimer attached and hence only first and second generation dendrimers 

afforded highly ordered polymers whereas the third generation dendrimers led to the 

shielding of the aza coordination site by the dendritic wedges leading to no 

polymerization. 
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Figure 2.11 Metallosupramolecular squares based on PTCDI with various functionality. 

By utilizing the metallosupramolecular strategy, more interesting macromolecular 

structures such as metallosupramolecular squares have been created which are comprised 

of perylene bispyridyl imides containing four ferrocenyl moieties attached at the four bay 

positions(Figure 2.11 ). 170 The pyridyl groups at the imide nitrogen of PTCDI' s can 

coordinate with the Pt(Il) complex which serves as the angular building block leading to 

the metal directed macromolecular square structures having redox active functional units 

(Ferrocene) organized in three dimensional space. Similarly, 4-dimethylamino-1,8-

napthalimide was introduced at the four bay positions of the N,N'-bispyridyl PTCDI and 

they were self assembled by utilizing Pd(II) complex thus leading to supramolecular 

squares having sixteen dimethylaminonaphthalimide antennas and walls comprising of 

PTCDI (Figure 2.11 ).171 These aminonapthalimide antennas can transfer the light energy 

to the perylene cores by the FRET mechanism leading to emission from perylene entities 

irrespective of excitation wavelength and these squares exhibited very high fluorescence 

quantum yields. These metallosupramolecular squares have additionally been explored 
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for various other applications such as molecular recognition to incorporate various guest 

molecules, catalysis, electrochemical sensing, photoluminescence etc. 

2.7.4 Ionic self-assembly: 

Figure 2.12 Structures ofPTCDI utilized for ionic self-assembly. 

The ionic self-assembly is a process in which two oppositely charged species 

undergo electrostatic interactions leading to ordered aggregates. Water soluble PTCDI 

having different ionic side chains attached to the perylene cores are shown in Figure 

2.12. Faul et al.172 has developed a method for the synthesis of complexes by electrostatic 

interaction between the anionic surfactants ( dihexadecyl phosphate) and the cationic 

N,N'-bis(ethylenetrimethylammonium)perylenediimide,34. This complex has shown the 

formation of highly ordered thermotropic liquid-crystalline materials by utilizing this 

ionic self assembly which has been characterized by DSC and temperature dependant 

XRD. Further, by utilizing the same cationic N,N'-

his( ethylenetrimethylammonium)perylenediimide,34 having two charges and anionic 

copper-phthalocyanine tetrasulfonate having four charges, ionic self-assembly has been 

utilized to create a new class of supramolecular polymers. 173 The one dimensional chains 
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of polymers are formed by the charge transfer and n-n interactions and the whole 

structure is stabilized by the electrostatic coulomb coupling leading to the helical packing 

in the polymer stacks. The polymer chains were characterized by the TEM and XRD. 

Further, they have also studied the ionic self assembly of two different cationic chiral 

surfactants having one and two charged headgroups respectively with the anionic 

PTCDI!74 The resulting self-assembled structures yield chiral assemblies which have 

been characterized by CD spectroscopy and XRD indicating the formation of lamellar 

helical structures. 

Additionally, optically active supramolecular complexes are obtained by 

electrostatic interactions between a chiral anion based on biological material- adenosine 

triphosphate and N ,N' -bis(propylenetrimethylammonium)perylenediimide.175 Other 

secondary interactions such as the n-n interactions between the perylene cores and 

hydrophobic interactions are also responsible for formation of such superstructures which 

were characterized by CD spectroscopy, DLS, NMR, SEM. The cationic asymmetrically 

substituted PTCDI namely (N-(Dodecyl)-N' -(2-(trimethylammonio )-ethyl)perylene-

3,4,9,10-tetracarboxylic diimide iodide),37 and anionic poly(acrylate) were separately 

drop casted from homogeneous solutions on substrate and dried leading to composite 

films comprised of semiordered, sub-micrometer sized clusters of PTCDI and 

polyelectrolyte bilayers. 176 These films exhibited diode like behavior in p-n junction 

hetorojunction devices and yielded photocurrent upon illumination with visible light. 

However, due to the discontinuity in the films, the performances of these devices were 

limited. In order to overcome these limitations, efforts were made to prepare PTCDI­

polyelectrolyte thin films by sequential deposition utilizing a modified asymmetric 
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PTCDI, 36 having long chain ether which has increased solubility in water. 177 The 

resulting films showed larger domains of formation of curved nanofibers which are 

formed due to sequential deposition resulting in effective solvent annealing of the 

materials due to repeated deposition and slow growth of the PTCDI along the 

polyelectrolyte backbone. These fibers are comprised of parallel 7t-stacked PTCDI 

assemblies which are sandwiched between polyelectrolyte regions. These films are 

characterized by AFM and optical microscopic techniques and expected to have higher 

conversion efficiencies in flexible organic thin film solar cells. 

2.8 Conclusions 

The various organized assemblies obtained so far highlight the unique possibility 

of tuning optical and electrical properties by appropriately designing the molecules and 

carrying out the self-assembly process in different solution based methods. However, a 

major challenge that still attracts considerable attention especially for the formation of 

organized assemblies relies on the control of the formation of morphologically organized 

ordered structures in a reliable manner and with great consistency. It has been previously 

found that in some cases the side chain substitution can lead to wide size distribution of 

the resulting wires and finding new solution based methods to create more uniform 

structures are still lagging. Furthermore, statistics relevant to the size distributions are 

also not shown in most cases, though is apparent from the morphological evaluations. It 

is therefore critical to understand the reasons for the formation of wide size distribution 

and to control the organization by appropriate solvent conditions. 
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Self-assembly of long fluorescent wires from PTCDI 

3.1 Introduction 
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With the observation of photo-conductivity from PTCDI, 178 and a large library of 

soluble variants now available,97.108•115 these molecules have emerged as promising 

candidates for sensing and opto-electronic applications (photo-voltaic). The rationally 

designed and synthesized PTCDI have been used as functional building blocks to 

construct square179 and hexagonal97 supramolecular structures, lD nanostructures such as 

nanobelts,67•141•142•180 nanocolloidal suspensions,181 and vesicular nanocapsules. 182 With 

the recent observation of fluorescence emission in the aggregated states of PTCDI 

coupled to the ability of tuning fluorescence emission over the wavelength range 

spanning the visible region, the emphasis has therefore been towards realization of 

fluorescent structures that can be useful for pH sensing,182 fluid array immunoassay,181 

and sensing of volatile organic chemicals such as aniline. 158•183 The unique lD assemblies 

constructed by the successful self-assembly of n-conjugated materials represent a first 

and critical step towards realization of new functional materials.184 Already, several 

interesting organized lD assemblies from PTCDI using solution based processing have 

been demonstrated}80 Such solution based methods have yielded organized lD 

assemblies predominantly by the favored n-stacking interactions amongst the n-rich 

surfaces. Most recent calculations by Ratner et al. 185 and Bredas et a1. 186 on a wide range 

of PTCDI derivatives (more than 30 combined) reveal that the molecular packing driven 

by n-stacking interactions is expected to have pronounced effects on the charge-transport 

characteristics and the lD geometry is the most favorable for the charge-transport98•185•186• 
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Figure 3.1 Chemical structures of the PTCDI employed for lD self-assembly using the 
2L-HT method. 
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The three linear alkyl substituted PTCDI used in this work to obtain self-

assembled wires are shown in Figure 3.1. It has been previously shown that the resulting 

assemblies, particularly, from the linear alkyl substituted PTCDI are found to be lD 

nanostructures and are primarily driven by non-covalent interactions such as n-stacking 

and alkyl side-chain interdigitation.67•141' 142 Almost in all the cases so far the lD 

structures form tend to agglomerate together and form belt like structures.67 For better 

understanding of the fundamental electrical and optical properties associated with the lD 

structures it is essential to obtain individual lD structures such as belts and wires in a 

reliable manner with extreme consistency in the dimensions of these assembled 

materials.69•151 Herein, we show that it is, indeed, possible to create extremely large lD 

wire like structures in a very controlled manner by adopting a modified phase-transfer 

method, namely, the phase-transfer at high temperature (2L-HT). Moreover, the lD 

structures grown using the 2L-HT method show very intense excimer like emission from 

the aggregated state. 



41 

It is interesting to note that these self-assembled materials show intense 

fluorescence behavior despite the organization of the PTCDI molecules being primarily 

driven by n-stacking interactions. Until recently, such strong fluorescence behavior from 

aggregated states of PTCDI was hereto unknown. The previous studies on the assemblies 

of the 1 D nanobelts show that there is significant quenching of the free molecule 

emission and almost no fluorescence emission is observed from these assemblies.142 

However, it was shown that from the disordered aggregated films of 40, cast from 

homogeneous chloroform solutions, only very weak excimeric emission could be 

observed implying a co-facial arrangement of the perylene cores within the stacks.141 In 

the same study the authors have further demonstrated that it was possible to tune the 

fluorescence emission (green to red) of the ill-defined assemblies, created by extremely 

distorted packing between the perylene cores, from swallow type (branched alkyl) 

PTCDI. 141 Recent studies187"190 support this behavior and now it is generally accepted that 

only weak emission is observed from the strongly aggregated n-stacking (co-facial 

arrangement) while reasonable to strong excimeric emission can be detected from the 

weakly n-stacked (or distorted) aggregates. In a series of carefully carried out 

experiments, Wurthner et al. 188 have shown that by mixing two separate aggregates, one 

H-and other J-type PTCDI, it is indeed possible to co-aggregate the J-type within the H­

type till equal concentrations ( 1 : 1 ). Above this critical concentration the J -type packing 

was preferred because of energetic reasons. Based on such a behavior, we hypothesize 

that it must be possible to have both strong and weak coupling of the PTCDI molecules 

within a single wire, by some means of organization, leading to unique 1D structure with 

unique emissive behavior. Thus, we explore, firstly, the formation of the wires with both 
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strong and weak coupling of the PTCDI molecules by using a novel solution processing 

method (2L-HT) and then examine the unique fluorescence behavior from these 

assembled wires. 

3.2 Synthesis of PTCDI 

The PTCDI molecules shown in Figure 3.2 were synthesized by the strategy 

which involved the condensation of PTCDA, 1 with an aliphatic amine under an argon 

0 

atmosphere at 140 C using imidazole as a solvent (Scheme 1). The resulting PTCDI after 

purification was characterized by NMR spectroscopy. 

PTCDA, 1 

R = I--n 38, n = 3 
39, n = 6 
40, n = 10 

PTCDI, 2 

Figure 3.2 Synthesis of planar symmetrical PTCDI used in this study. 

All chemical used in this study were used as received from the supplier. PTCDI 

39 was commercially purchased from Aldrich while 38 and 40 were synthesized by 

known procedures. A detailed description of the synthesis and characterization of these 

two PTCDI is discussed below. All the solvents employed in the synthesis and the 2L-HT 

method were used as received from the supplier. In order to determine the purity, 1H-

NMR was performed in CDCb solutions using a 400 MHz Bruker NMR spectrometer. 
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3.2.1 N,N'-di(pentyl)-perylene-3,4,9,10 tetracarboxylic diimide (38) 

2 g (5.09 mmol) of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), 8 g 

(0.1175 mol) imidazole and 3.5 ml amylamine were placed in a three necked flask. One 

of the ends of the three neck flask was connected to a water condenser, Argon gas was 

purged into the reaction mixture using the second inlet and the third inlet was sealed with 

a rubber stopper. The flask was then purged with Argon for 10 min at room temperature 

so as to remove all the air trapped in the system and then immersed in the oil bath at 140 ° 

C. The reaction mixture was stirred at this temperature in the argon atmosphere. The 

imidazole starts melting and the reaction is initiated. The reaction mixture was kept 

stirring at 140 ° C for 3 h to ensure the completion of the condensation reaction between 

the amine and the anhydride. The reaction mixture was then cooled to room temperature 

resulting in the solidification of the reaction mixture. Separately, 2M HCl (500 ml) and 

Ethanol (150 ml) were mixed together and the contents ofthe flask were then transferred 

to this solution. The entire solution was allowed to stir overnight at room temperature. 

The resulting dark maroon colored solid was then filtered and washed thoroughly with 

water until the pH of the washings turned neutral. The solid was further washed with 

ethanol so as to remove excess amyl amine. The solid powder was then dried at 100 °C 

for 2 h to result give compound 38. Yield: 93%. 

1H-NMR (CDC13): () = 0.945 (t, 6H, 2CH3), 1.401 (m, 8H, 18CH2), 1.78 (m, 4H, 2~­

CH2), 4.22 (t, 4H, 2a-CH2), 8.65 (m, 8H, perylene). 

3.2.2 N, N'-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (40) 

1 g (2.54 mmol) of perylene-3,4,9, 1 0-tetracarboxylic dianhydride (PTCDA), 4 g 

(0.0587 mol) imidazole and 2.83 g dodecylamine, were placed in a three necked flask. 
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One of the ends of the three neck flask was connected to a water condenser, Argon gas 

was purged into the reaction mixture using the second inlet and the third inlet was sealed 

with a rubber stopper. The flask was then purged with Argon for 10 min at room 

temperature so as to remove all the air trapped in the system and then immersed in the oil 

0 

bath at 140 C. The reaction mixture was stirred at this temperature in the argon 

atmosphere. The imidazole starts melting and the reaction is initiated. The reaction 

mixture was kept stirring at 140 ° C for 3 h to ensure the completion of the condensation 

reaction between the amine and the anhydride. The reaction mixture was then cooled to 

room temperature resulting in the solidification of the reaction mixture. Separately, 2M 

HCl (300 ml) and Ethanol (100 ml) were mixed together and the contents of the flask 

were then transferred to this solution. The entire solution was then stirred overnight at 

room temperature. The resulting dark maroon colored solid was then filtered and washed 

thoroughly with water until the pH of the washings turned neutral. The solid was further 

washed with ethanol so as to remove excess dodecyl amine. The solid powder was then 

dried at 100 ° C for 2 h to give compound 40. Yield: 95%. 

1H-NMR (CDC13): o = 0.882 (t, 6H, 2CH3), 1.392 (m, 36H, 18CH2), 1.77 (m, 4H, 2P­

CH2), 4.22 (t, 4H, 2a-CH2), 8.64 (m, 8H, perylene ). 

3.3 Optical properties of PTCDI 

Very dilute solutions with -1.0 J..LM concentrations in different solvents were used 

for observing the spectral features associated with the three PTCDI. Solution based UV-

Visible spectroscopy was performed on a Shimadzu spectrometer. Steady-state solution 

fluorescence emission spectra were obtained on FluoroMax-3, Horiba Jobin Yvon. 
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The homogeneously dissolved PTCDI molecules show very similar absorbance 

and emission spectra since the nodes are present at the imide nitrogen in both the HOMO 

and LUM011 5
• As an example, the absorption and emission spectra of 39 in chloroform 

are shown in Figure 3.3. Both 38 and 40, show very similar absorbance and emission 

behavior in chloroform because of the aforementioned reason. 

1.0 - Fl Em1ss10n 1.0 
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Figure 3.3 The UV-Visible absorption and emission spectra of 39 in chloroforom. The 
excitation wavelength or obtaining the emission spectra is 480 nm. 

This leads to umque situation in PTCDI where in the dissolved state no 

solvatochromism behavior is observed but in solid state upon aggregation a pronounced 

crystallochromy can be observed, leading to crystals with different shades of color 

ranging from red to black138
• Kazmaier et al. 140 has derived an empirical relation between 

the absorbance maxima and the different offsets (transverse and longitudinal) in the 

packing of the PTCDI, which results in the crystallochromy. Upon aggregation of the 

PTCDI molecules in poor solvents pronounced changes occur in the optical absorbance 

spectra67
•
141

• In some cases it has been found that a new absorption band appears at longer 

wavelength (crystal phase) upon aggregation in certain solvents and concomitantly a 
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decrease in the absorbance of the 0-0 peak and increase of the 0-1 and 0-2 transitions. 

These optical characteristics have been associated with the strong co-facial packing of the 

perylene cores. In all of the three PTCDI studied in this work we observed the formation 

of crystal phase at longer wavelength (560-580 nm) and a concomitant increase in the 0-1 

transitions in comparison to the 0-0 transition in the absorbance spectra in three different 

solvents upon aggregation as shown in Figure 3.4. The three solvents that we found to be 

suitable for the formation of aggregates from the homogenous chloroform solution were 

methanol, hexane and cyclohexane. A simple dispersion of the PTCDI molecules in 

chloroform to any one of these solvent leads to the aggregation and is usually complete 

within minutes (rapid). Thus, we chose these three solvents as the aggregating solvent for 

carrying out the assembly by the 2L-HT. 
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Figure 3.4 UV-Visible absorption spectra of 38 (top), 39 (middle), and 40 (bottom) in 
different solvents. 10 J.Ll of 0.4 mM homogeneous solution of PTCDI in chloroform was 
rapidly injected in methanol, hexane and cyclohexane and the spectra were recorded in 
these solvents. The appearance of new peak at long wavelengths along with decrease of 
0-0 transition and increase of 0-1 transition implies strong electronic coupling between 
the PTCDI molecules. 
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3.4 Self-assembly of PTCDI by room temperature solution processing 

In order to study the self-assembly of PTCDI, a stock solution of each of the 

PTCDI was prepared in chloroform (0.4 mM, by slight heating). The solvents in which 

aggregation occurred were identified by performing UV -visible experiments as 

mentioned above. Methanol, hexane and cyclohexane were found to be suitable solvents 

for carrying out the self-assembly. 

3.4.1 Dispersion and two layer (2L) phase transfer methods 

In order to study the self-assembly by dispersion, a small amount of stock solution 

of an appropriate PTCDI was rapidly injected in a large excess of an appropriate non-

solvent (methanol, hexane or cyclohexane ). The red color aggregates were formed within 

30 minutes. This process is depicted in Scheme 3.1a. The red colored aggregates were 

then cast on TEM grids and were examined for their morphology. 

Dispersion 

PTCDI in CHCI3 

Non-solvent 

• Aggregates 

Time(l h) 

) 

Phase-transfer: Room Temperature 
b Time(0-3 h) ) 

PTCDI in CHCI3 

Non-solvent 

• Aggregates 

Scheme 3.1 The schematic illustration of (a) dispersion and (b) two layer room 
temperature (2L-RT) methods for the self-assembly ofPTCDI. 
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In case of two layer phase transfer method (2L-RT), a small amount of an 

appropriate stock solution of PTCDI in chloroform was placed in small glass tube. This 

was then followed by the careful addition of an appropriate non-solvent (methanol, 

hexane or cyclohexane) on the top of the chloroform solution without disturbing the 

lower layer of chloroform. The aggregation took place at the interface of the chloroform 

and the non-solvent and there was appearance of red band within first 30 minutes. This 

red band slowly grew in size and in 3 h the entire yellow color solution of PTCDI in 

chloroform turned into red colored aggregates. This was confirmed by the absence of 

fluorescence emission from the free molecules ofPTCDI in stock solution by a hand held 

UV lamp. This process is depicted in scheme 3.1b. The samples were then dried on the 

silicon wafer and examined by SEM. 

3.4.2 Morphology of aggregates by dispersion and 2L-RT method 

The dispersion and 2L-RT methods were carried out in three different solvents 

(methanol, hexane and cyclohexane) for each of the molecule used in this study to 

construct the aggregates. The as prepared aggregates in the solutions were directly spread 

on silicon or oxidized silicon substrates. After the evaporation of the solvents a light 

sputtering of the aggregates with gold is performed to allow for morphological 

evaluations under high vacuum and operating voltage conditions. 

In case of dispersion of the individual PTCDI stock solution in an appropriate 

non-solvent, very uniform lD fibers of very small diameter (in the range of few nm) and 

few micron length were observed by the TEM. Dispersion being a fast aggregating 

process, large number of uniform nuclei are rapidly generated and the free molecules of 

PTCDI aggregate on these nuclei resulting in small diameter and few micron long 
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uniform fibers. The morpholgy of the aggregates of 39 formed by utilizing all the three 

non-solvents is shown in figure 2.5. 30 nm, 120 nm and 130 nm diameter uniform 1D 

fibers result from methanol, hexane and cyclohexane as an aggregating solvent 

respectively. Similarly, an increase in diameter of the fibers with change in solvent from 

methanol to hexane to cyclohexane for 38, and 40 was also observed which implies that 

the rate of aggregation is faster in methanol followed by hexane and then cyclohexane. 

Figure 3.5 TEM images of fibers of 39 obtained by dispersion of homogeneous stock 
solution of39 in (a) methanol, (b) hexane and (c) cyclohexane. 

In case of2L-RT of the individual PTCDI stock solution in methanol and hexane, 

there was large size distribution in the 1 D self-assembled structures. There was formation 

of belt and wire like assemblies. The diameter of the 1 D structures ranged from few nm 

to few microns and lengths were observed to be from few microns to a millimeter. On the 

other hand, cyclohexane led to very uniform diameter 1 D belts from 38, 39 and 40. The 

2L-RT, being a slow procees of aggregation at the interface of two solvents, large number 

of non-uniform nuclei are formed at the interface and the free molecules of PTCDI 

aggregate on these nuclei resulting in large size distribution. It appears that cyclohexane 

leads to formation of very uniform 1 D belts at the interface due to slow nucleation and 

growth whereas methanol and hexane leads to large size distribution due to fast and non-
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uniform growth. The morpholgy of the aggregates of 39 formed by utilizing all the three 

non-solvents is shown in figure 2.6. A wide size distribution is clearly evident when 

methanol and hexane were used as non-solvents whereas a narrow size distribution 

results when cyclohexane was used as aggregating solvent. 

Figure 3.6 SEM images of fibers of 39 obtained by two layer room temperature of 
homogeneous stock solution of39 with (a) methanol, (b) hexane and (c) cyclohexane. 

Thus, 2L-R T leads to large size distribution in the morphology of 1 D structures. 

In order to study the effect of temperature, which can control the rate of nucleation and 

growth, on the self-assembly by two layer phase transfer method, a slightly modified two 

layer phase transfer at high temperature (2L-HT) method was developed. 

3.4 Self-assembly by phase transfer high temperature method (2L-HT) 

The 2L-HT method developed here is an extension of the previously developed 

room temperature phase-transfer. A schematic depiction of the 2L-HT process is shown 

in Scheme 3 .2. We take advantage of the previously developed phase-transfer method by 

carrying out the process at temperatures close to the boiling point of the chloroform 

solvent, in which the PTCDI molecules remain homogeneously dissolved but due to 

presence of a layer of poor solvent, there is very slow nucleation. The process for the 

formation of the assemblies of 38 in cyclohexane is described for ease of understanding. 
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The same protocol is followed for all PTCDI in other solvents as well. Typically, the 2L-

0 

HT process was carried out at 60 C (unless otherwise mentioned). 

PTCDI in CHCit 

Phase-transfer: High Temperature 
(2L-H.T.) 

non-solvent .t 60 °C 

Agreaates 
Time(0-6 h) 

) 

Scheme 3.2 The schematic illustration of different stages involved in the 2L-HT method 

(b). The 2L-HT method is carried out typically at 60 °C (in a water bath), wherein the 
dissolved molecules of PTCDI in chloroform are thermally equilibrated for few minutes. 
Separately, in a tube the aggregating solvent is also equilibrated at the same temperature. 
After this the aggregating solvent is carefully added atop the dissolved PTCDI 
chloroform solution. Because of the high temperature in the 2L-HT method and the 
differences in the polarity of the two different solvents, the aggregation of the PTCDI 
dyes takes much longer for the initiation (and also completion) than when carried out at 
room temperature. Usually, the aggregation leading to the formation of the 1D assembly 
takes about 6-8 h for completion. 

In a water bath set at 60 ° C, one testing tube filled with cyclohexane was allowed 

to equilibrate for 5-10 minutes. Another testing tube filled with about 0.3 mL of 38 in 

chloroform was allowed to equilibrate for about 2 min. in the same water bath, following 

which about 4 mL of the pre-equilibrated cyclohexane was carefully transferred (using 

pipette) atop the chloroform solution of 38. It was ensured during this stage that no 

mixing of the two solvents occurs. The volume of the aggregating solvent ( cyclohexane) 

was maintained at large excess (10:1 v/v). The assembly of the molecules was carried out 
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by maintaining the temperature at 60 ° C throughout the growth process. In order to 

maintain the large volume of the aggregating solvent, the thermally pre-equilibrated 

aggregating solvent was periodically added once a slight notable change in the volume 

was noticed to maintain the 10: 1 volume ratio without disturbing the two layers. Because 

the process is carried out at higher temperature than room temperature (usually 60 °C), 

the PTCDI molecules tend to remain soluble for extended periods of time. However, after 

a certain time period (30 min. in case of methanol, and hexane and 3 h in case of 

cyclohexane) a small red band can be observed at the interface of the two solvents 

indicating the initiation of the aggregation (nucleation). Over time this red band can then 

be seen to increase in size followed by the observation of needle shaped red aggregates 

(growth). After about (2 h in case of methanol, and hexane and 5 h in case of 

cyclohexane) it can be seen that a few of the needle shaped structures seem to float inside 

the tube while most of them are still present at the interface. At this point (-2-5 h) still 

considerable amount of free molecules remain in the solvent mixture (green emission 

seen in the bottom portion of the tube, UV -hand held lamp, 365 nm). The assembling 

process is further continued at the desired temperature until almost no (or detectable 

change of) free molecule emission can be observed. Already, at this stage in solution (i.e. 

at the completion of assembly process) it can be observed that the needle shaped 

aggregates show bright red fluorescence emission upon UV -light excitation (365 nm). 

The aggregates are then examined for their characteristic morphology using microscopic 

methods. The notable difference in the different solvents was in the time required for the 

formation of aggregates and completion of the 2L-HT process in each case. 
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3.6 Scanning electron microscopy (SEM) of the aggregates 

The newly developed 2L-HT was carried out in three different solvents 

(methanol, hexane and cyclohexane) for each of the molecule used in this study to 

construct the aggregates. FEI Quanta ESEM with field emission gun under vacuum and 

operating voltage of20 kV was used for the morphological investigation. The as prepared 

wires in the solutions using 2L-HT method were directly spread on silicon substrates. 

After the evaporation of the solvents the fluorescent wires were left behind on the 

substrate. A light sputtering of the wires with gold is performed to allow for 

morphological evaluations under high vacuum and operating voltage conditions. 

3.6.1 Cyclohexane as aggregating solvent 

Figure 3. 7 SEM images of the wires resulting from the 2L-HT processing of 38 in 
0 

cyclohexane at 60 C. 
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Figure 3.8 SEM images of the wires resulting from the 2L-HT processing of 39 in 
0 

cyclohexane at 60 C. 

10 J.U1l s J1ll1 

Figure 3.9 SEM images of the wires resulting from the 2L-HT processing of 40 in 
0 

cyclohexane at 60 C. 
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Figure 3.7, 3.8 and 3.9 shows the SEM images of the resulting aggregates using 

cyclohexane as the aggregating solvent from 38, 39 and 40, respectively. When using 

cyclohexane as the aggregating solvent, in case of 38, and 39 it is apparent from the low 

magnification images that wire like structures with lengths exceeding 1 mm and widths 

of several microns are formed. While 40 tends to mostly form wire like structures with 

maximum lengths around 575 J.tm. 

3.6.2 Hexane and methanol as aggregating solvents 

For 38, the largest lengths (-1 mm, average), and correspondingly the widths and 

heights, of the wires are observed when the 2L-HT processing is carried out in 

cyclohexane as the aggregating solvent while hexane produces most of the wires (more 

than 95 %, see Figure 3.11) having lengths -250 J.tm, much shorter than cyclohexane. It 

is interesting to note that when methanol is used as the aggregating solvent the wires of 

38 tends to bundle up rather strongly and significant distribution in the overall size 

(length, width and height) is observed (Figure 3.10). For 39, cyclohexane produces the 

best quality of wires in comparison to those formed in methanol (see Figure 3.12), and 

hexane (see Figure 3.13). The overall size distribution of the wires for 39 is much more 

narrow in cyclohexane in comparison to methanol and hexane. For 40, the best quality of 

wires is formed when the 2L-HT is carried out in hexane (see Figure 3.15) in comparison 

to those in cyclohexane or methanol (see Figure 3.14). In cyclohexane and methanol, in 

addition to the wire like structures a few belt like structures are also apparent. Also, the 

ends of the wires have different morphology depending on the aggregating solvent used. 

The ends of the wires formed from 38 and 39 are always tapered irrespective of the 

aggregating solvent used while 40 shows two distinct end structures depending on the 
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aggregating solvent used. The wires formed from 40 in hexane and cyclohexane have 

abrupt endings with several small wires bundled and protruding at the edges of the while 

in methanol slightly tapered rectangular edges are apparent. In all of the three PTCDI, 

2L-HT processing creates structures with notable increase in the heights of the wires 

when compared with the morphology of the resulting aggregates using previously 

processing techniques (i.e. phase-transfer at room temperature). 

The size distribution (lengths and widths) resulting for each of the PTCDI in the 

0 
three solvents employed for the 2L-HT processing at 60 C is summarized in Table 3.1. 

The value of the widths and lengths shown for each of the case has been estimated by 

averaging the results obtained for over atleast 10 measurements. Since, size distribution is 

apparent relative standard deviation (r.s.d, expressed in%) was calculated for each of the 

case. From Table 3.1 it is clear that the largest size distributions(% r.s.d) can be found in 

39, irrespective ofthe solvent used. When methanol is used as the aggregating solvent a 

trend of decreasing widths for the corresponding increase in the side-chain length can be 

obtained. Such a trend has previously been noted for comparable increase in the side-

chain length for the nanobelts that were formed67• 

Table 3.1 Size distribution (width and length) along with emission wavelength maxima 
from the wires formed from the PTCDI using 2L-HT. 

38 

39 

40 

2L-HT -Solvent 
Cyclohexane Hexane Methanol 

W/JJ.m L/mm W/JJ.m L/JJ.m 
Aem (om) 

W/nm L/JJ.m 
Aem (om) 

(±x%) (±x %) 
Aem (om) 

(±x%) (±x%) (±x%) (±x%) 
6.3 1.0 684, 2.7 265 682, 950 > 500 685, 

(±29) (± 33) 653" (±32) (±41) 650" (±55) 650" 

2.5 1.5 647 * 3.1 642 645* 923 N.A. 646* 
(±40) (± 28) 675* (±90) (±57) 677* (±40) 674* 

4.0 0.6 663 1.7 450 660 891 >40 658 
(±35) (± 31) (±44) (±27) (±29) 

Wand L correspond to the wtdth and length of the wtre, respecttvely, x%- relattve standard devtatton (calculated as standard 
deviation! average *100) A.em= fluorescence emission (wavelengths);a= shoulder peak;*=almost similar intensity. 
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Figure 3.10 SEM images of the wires resulting from the 2L-HT processing of 38 in 
0 

methanol at 60 C. 

Figure 3.11 SEM images of the wires resulting from the 2L-HT processing of 38 in 
0 

hexane at 60 C. 
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Figure 3.12 SEM images of the wires resulting from the 2L-HT processing of39 in 
0 

methanol at 60 C. 

Figure 3.13 SEM images of the wires resulting from the 2L-HT processing of39 in 
0 

hexane at 60 C. 
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Figure 3.14 SEM images of the wires resulting from the 2L-HT processing of 40 in 
0 

methanol at 60 C. 

Figure 3.15 SEM images of the wires resulting from the 2L-HT processing of 40 in 
0 

hexane at 60 C. 
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3. 7 Effect of temperature on growth of PTCDI wires 

a b c 

Figure 3.16 SEM images showing the large size distribution from the wires of 39 grown 
0 

from cyclohexane at 70 C. 

In order to understand the role of temperature for the growth of single PTCDI 

wires using the 2L-HT method both lower and higher temperature conditions were used. 

It was found that 60 ° C is the most optimal temperature for the controlled growth of the 

wires. Lowering the temperature between 40-55 °C only prolonged the growth and even 

after 1 0-12 h there was significant presence of the free molecules, while higher 

temperature, though allowed for the completion of the 2L-HT process in lesser time that 

60 ° C, often resulted in much more distribution in the size of the wires (in comparison to 

0 

those obtained at 60 C). Except for 39, there was no notable change in the resulting 

morphology in regards to the size of the 1D assembly. For the wires grown at 70 °C for 

39, a large notable increase in the overall dimensions of the wires could be observed 

(Figure 3.16). Most of the wires had lengths (2-5 mm) much larger than the mean 

0 

distribution shown in Table-1. Increasing the temperature more than 70 C results in rapid 

evaporation of the solvents, concomitant mixing, and thus offers no control in terms of 

organization. 
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3.8 Plausible mechanism for the formation of lD wires of PTCDI 

One major observation for the assemblies grown using 2L-HT method is that the 

structure in 38 and 39 result in individual wires with extremely long lengths (in mm) 

when compared to those formed in 40 (a few belts and agglomeration of the wires can be 

seen). In the 2L-HT method, growth of the structures are primarily facilitated at the 

interface of the two solvents at an equilibrated temperature. Because of the increased 

solubility of the PTCDI molecules in chloroform solvent, very few and uniform 

nucleating seeds can be expected to be formed at the interface, and therefore few and 

extremely large structures result (in terms of overall dimensions of the wire) because of 

the constant addition of the aggregates to the already present nuclei (seeds). Since, the 

2L-HT process is extremely slow there is sufficient time for the molecules at the interface 

to organize and re-organize by 7t-stacking and alkyl chain interdigitation interactions with 

the seeds in an energetically favorable manner to yield wire like structure. Both growth 

kinetics and thermodynamic considerations play a vital role in driving the formation of 

the long wires observed in 38, and 39. This case is particularly true in cyclohexane as the 

initiation and the completion of the aggregation using 2L-HT takes much longer in 

comparison to those in hexane and methanol, thereby resulting in much longer wires in 

cyclohexane. Along with the observations mentioned above and the nature of the 2L-HT 

process some insight into the mechanism for the formation of extended, straight 

structures can be gained. Two simple plausible mechanisms based on the shape and sizes 

of the initial seeds formed are proposed. 

(i) Molecular stacking in a controlled manner: In this first case it is assumed that the 

initial nucleating seeds formed have the same widths as those of the fmal resulting wires 
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and allow fresh additions only along the long axis of the seed at the interface. At the 

interface, there is constant dissolution and re-precipitation of the PTCDI molecules 

leading to situations wherein energy optimized packing of the molecules are adopted, and 

consequently the constant addition of the molecules along the long axis leads to the 

formation of the large number of individual wires. 

(ii) Small fibers aggregating to form large wire: Another plausible route is that upon 

aggregation, initially, intermingled fibers with small dimensions are formed immediately 

at the interface of the two solvents. This situation cannot be excluded as intermingled belt 

like structures are often seen in assemblies when rapid aggregation is carried out. As 

fresh molecules are constantly aggregated atop this surface there is significant 

reorganization of the aggregates, promoted further by the temperature conditions, leading 

to much larger structures (in terms of overall dimensions, as is observed in this report). In 

both the plausible cases mentioned above the orientation of the molecules within the 

wires are extremely hard to envision without use of prior knowledge of the crystal 

structure, energy, and geometry minimized structures present, and have hence been 

excluded from the discussion of the plausible mechanism even though they are expected 

to promote a favored seed shape and size. 

Moreover, it is likely that more than one such geometry optimized structure exists 

(discussed below) leading to highly fluorescent wires with tapered ends. Further 

investigation is required to obtain the detailed knowledge of the molecular packing within 

the wires and is presently beyond the scope of this report. It is likely that within a single­

wire two or more inequivalent stacks are present. Such an inequivalent stacks within the 

PTCDI crystals have recently been observed.185 
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3.9 Pick and place ofPTCDI wires 

Upon completion of the 2L-HT process the wires were spread onto a whatmann 

filter paper and the solvent was allowed to evaporate off completely (Figure 3.17). The 

largest visible individual wire was then picked up using the tweezers and could be held 

on the tweezers for a long time, implying that these wires have reasonabale mechanical 

stability. The wire could then placed onto the desired substate, for example, to prove the 

feasability of the pick and place, we placed these wires on oxidized silicon substrate as 

shown in Figure 3.17. This operation was repeated for a few more wires. It was easier to 

0 0 
work with the wires of 38 grown at 60 C and wires of 39 grown at 70 C, owing 

primarily to large lengths associated with the wires. After light sputtering with gold under 

vacuum the wires were investigated using SEM. Notably, the wires were not lost during 

the sputtering operation under vacuum. The locations where the wire was held with the 

tweezers shows a slight amount of damage. This is useful and critical information when 

real-time devices are attempted from these materials. Three diffemet wires were held at 

diffemet positions. Two were held at the ends and one was held at the centre and placed 

on to the oxidized substrate. Some of the image identifying the damages are shown in 

Figure 3.19. 

Additionally, a single wire of 39, held in the tweezers could be photo-excited 

using a hand held UV-lamp (low intensity, 375 nm) and intense emission could be 

observed with naked eye (Figure 3.17 b). Such intense fluorescence emission from 

ordered assembly of PTCDI is expected to have large impact in opto-electronic devices. 

Pick and place along with the intense fluorescence emission behavior could also be 

achieved for the wires of38 grown at 60 °C (Figure 3.18). 
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a 

b 

Figure 3.17 To test whether these large wires can be individually picked up, the as grown 
wires in cyclohexane were spread onto a whatmann filter paper. Upon evaporation of the 
solvent a large number of individual wires were readily visible (a). The SEM image of 
the spread wires on silicon substrate (c). An individual wire was then picked up using the 
tweezers (b, top panel) and could then be placed on desired surface, thus, establishing 
pick and place route for convenient fabrication of desired device. SEM imaging of the 

0 

wires obtained by pick and place route for the wires of 39 (grown at 70 C) (d), again, 
0 

highlighting that the overall size increase of the wires grown at 70 C in comparison to 

the wires grown at 60 ° C. Intense fluorescent emission from a single-wire of 39 held in 
the tweezers upon photo-excitation using a hand held UV -lamp (b, bottom panel). 

Figure 3.18. A single wire of 38 held using tweezers, a and its fluorescence emission, b 
upon excitation with a UV -hand held lamp (365 nm). SEM images showing the two large 
single wires of 38 placed on oxidized silicon substrate using the pick and place method, 
c. 
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a b 

c d 

Figure 3.19 Broken ends of the wires held using the tweezers. Only the places that were 
held by the tweezers show a slight damage. Three wires of 39 were held by tweezers at 
different positions. Two of the wires held the ends are shown in a-c, while the wire held 
at the center is shown in d. 

3.10 Optical properties ofPTCDI wires 

The wires of 38, 39, 40 were cast from their cyclohexane solutions after the 2L-

HT process was complete on to pre-cleaned, and cut glass substrate. The dimensions of 

the cut glass was carefully tailored to fit diagonally (at an angle of 45°) within a 

polystyrene (P.S.) cuvette. The P.S. cuvette, with the sample on glass, is then placed 

within the specimen holder in the FluoroMax-3 , Horiba Jobin Yvon. The glass containing 

the wires directly faces the excitation source and concomitantly the emission is then 

collected by the detector, which is at 90° to the excitation source. Two separate blank 
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measurements were performed using just the P.S. cuvette and glass + P.S. cuvette, to 

ensure that there is no interfearance with the real fluoresence signals of the wires. For 

carrying out the ensemble fluoresence emission measurements from the wires, atleast 2-3 

different areas were excited using diffemet wavelengths (480-600 nm) and the data was 

collected upto 800 nm and analyzed. The excitation wavelength range of 480-600 nm was 

chosen because both the free molecule and the aggregates could be excited. 
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Figure 3.20 Solid state ensemble emission, excitation and absorption spectra from the 1 D 
aggregates of 38(C), 39(B), and 40(A). 

Figure 3.20 (A,B and C) shows the ensemble solid state fluorescence emission 

0 

spectra from the PTCDI wires aggregated from cyclohexane using 2L-HT at 60 C. For 

all the three PTCDI, the aggregates were excited at different wavelengths ( 450-600 nm) 
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to ensure that spectral features observed are real and representative of the sample. It is 

interesting to note that for the wires of both 38, and 39, two distinct emission peaks 

(structured vibronic states) could be observed while for 40, only a single strong emission 

peak with maximum wavelength centered at 667 nm (red shift of 132 nm in comparison 

to the free molecule emission (535nm)) was observed when the respective wires were 

excited between 480-580 nm. For 38, a small shoulder peak arises at 653 nm and 

maximum intensity at 684 nm, implying red shift of 118 nm, and 149 nm, respectively in 

comparison to the free molecule. For 39, two peaks at 647 nm, and 675 nm (red shift of 

112 nm, and 140 nm, respectively with free molecule emission, with almost equal 

intensity could be observed. No new emission peaks could be observed when the wires 

were excited with wavelengths of 600 nm or more in all of PTCDI. Moreover, two 

distinct vibronic features observed in the emission spectra of the wires could be observed 

in both the solid-state UV-Visible spectra and the excitation spectra. This suggests that 

the intense emission in this case is obtained from the aggregated state of PTCDI and is an 

. . . . 
excimenc emission. 

The observation of two peaks in the emission spectra further corroborates that 

there are possibly at least two different 7t-stacking patterns involved in the formation of 

the wires. 189 Moreover, the large red shifts observed in the emission spectra of the wires 

in comparison to the free molecule emission implies that closely packed excitonic states 

might provide new pathways for allowing the excimer like emission from the aggregates, 

due of the large offsets introduced because of energetically favored assembly.187 

Therefore, both weak and strong coupling of the PTCDI molecules should be present in 
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the wires to allow for not only the formation of 1 D wires but also strong emissive 

behavior, which is unknown for such linear alkyl-chain assemblies. 

In general, it is unusual to see such intense emission from the self-assembled lD 

structures of PTCDI, particularly, for the chemical structures used in this study, because 

of the strong n-n stacking involved. 141•187 Very few reports on the strong emission from 

the ordered aggregates of PTCDI in solid state have only been recently 

observed, 151•158•191•192 because for the aggregates in the solid state there are multiple 

quenching pathways, 187•193 while, the high fluorescence quantum yields are well known 

for the PTCDI family of dyes in solution. Generally, the side-chains that hinder the 

aggregation of the perylene core result in the dyes with high quantum yield. 115 Only 

recently, have the assemblies of core-twisted (bay substituted) PTCDI been shown to 

form fluorescent aggregates in solution state. 187•194 Additionally, it has been shown that 

fluorescent organogels are possible in bay-substituted PTCDI (core-twisted PTCDI). 191 

Despite the lD morphology, a large rotational and longitudinal offset was found in the 

aggregates of the PTCDI with the bulky side-chains, 187•188•195 thus, allowing for the 

electronic transitions from the ground state to both the lower and excited energy states 

and concomitantly the observation of fluorescence emission from these aggregates. 

Again, such carefully carried out experiments support our results here that it is possible to 

organize the PTCDI molecules in anisotropic lD wire like structure with different n­

stacking d-spacings. 185•188 

It is possible that in the initial formed seeds a certain preferred packing (with 

defmed offsets) exists and the constant addition of fresh molecules to the aggregates 

results in significant reorganization of the stacks with new offsets being introduced. 
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Thereby, the final resulting wire gets formed because of, perhaps, two or more closely 

associated and energetically favored n-stacking and side-chain interdigitations. Of the 

two or more different n-stacking interactions that drive the wire formation, at least one is 

most likely the strong n-stacking interactions (H-type), while the other(s) are weakly 

coupled PTCDI molecules (J-type); the co-aggregation of these two types exist within the 

framework of each other leading to highly fluorescent and extremely long wires. It is 

therefore noteworthy that in our case macroscopically anisotropic structures such as wires 

result, despite the disorder at nanoscale (unequaln-stacking interactions). 

3.11 X-ray diffraction of the wires ofPTCDI 

The as prepared wires in the solutions using 2L-HT method were directly spread 

on to glass substrates and were concentrated to a pre-defined region by directing the 

solutions (containing the wires), by blowing them carefully with an empty glass pipette 

(bulb attached). Once a certain desired thickness of the film composed of these wires was 

apparent in the pre-defined region the samples were allowed to completely dry in hood 

for a few hours. The samples were then mounted onto the sample area within the 

diffractometer for ensemble wire measurement and analysis. X-ray diffraction was 

0 

carried out for the wires deposited on to glass substrates in the range of 3- 30 with scan 

rates (usually 0.25-0.5 °/min) using a Rigaku D-max Ultimate II configured with a 9-29 

goniometer. The source of the X-ray is Cu-Ka. having wavelength of 1.5418 A. 
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Figure 3.21 The ensemble XRD patterns obtained for 38(a), 39(b), and 40(c). 

The ensemble XRD patterns were recorded by casting an entire batch of the wires 

made using the 2L-HT ofPTCDI in cyclohexane onto glass substrates. The XRD patterns 

for each of the PTCDI shows that indeed highly crystalline wires have been formed 

(Figure 3.21 ). The large intensity of the primary molecular peak obscured much of the 
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other relevant peaks present in the sample (the first peak in each case). Hence, separate 9-

29 scans were carried out beyond the main peaks to obtain meaningful XRD patterns. For 

the 2L-HT grown wires it is clear that in the d-spacing range of 0.335- 0.45 run a few 

peaks appear. It is well known that for perfect co-facial type packing ad-spacing of 0.335 

run is expected while generally, peaks from 0.34 -0.37 run represent good co-facial 

arrangement of the molecules within the stacks and d-spacing from 0.37-0.45 run have 

been shown to result in distorted packing of the molecule within the stacks. 186•189 

Recently, Liu et al. 158 have shown that for their highly fluorescent PTCDI assemblies a 

largely distorted d-spacing of about 0.4 run was observed. In our cases except for 40, 

there is an observable peak at 0.334 run for 38, and 0.345 run for 39, indicating close 

contact of the molecules. Furthermore, three more peaks with d -spacing of 0.3 7 6 run and 

0.369 run are clearly present in 38 which can be assigned to the slipped arrangement of 

the molecules within the stacks leading to the fluorescent wires. Similar observation 

could also be made in the wires of 39, wherein, in addition to aforementioned 0.345 run 

peak three additional peaks at 0.378 run, and 0.384 run could be seen. However, for 40, 

only the peaks in the d-spacings of0.386 run, 0.395 run and 0.417 run could be observed. 

These structural features coupled with the fluorescence emission and observed 

morphology lead to interesting structure-property co-relations. For both 38 and 39, there 

are both close contact and distorted 1t-stacking interactions driving the extremely straight 

wire formation, while for 40, only distorted packing drives the self-assembly process. 

Moreover, the distorted packing does not allow for extremely large lengths of wires of 

40, while wires of 38 and 39 with large lengths could be easily constructed by the 2L-HT 

method. Additionally, the observation of two emission peaks can be attributed to the two 
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different spacing's present in both 38, and 39 (both close contact and distorted) while a 

single Gaussian shaped emission peak for 40 can be attributed to the excitonic peak 

owing to the distorted packing. 

3.12 Conclusions 

In summary, extremely long and fluorescent wires from linear alkyl substituted 

PTCDI have been demonstrated using the novel solution processed 2L-HT method. This 

is the first report of the novel solution processing method (2L-HT) which allows for the 

formation of wire structure with lengths of the individual wires on the order of a few 

millimeters. Two or more distinct packing behavior seems to drive the formation of 

fluorescent wires. Moreover, given the large lengths of the wire, single wire could be 

easily picked and placed at desired location to expedite the use of such structures in 

fabrication of devices. The intense emission observed from the wires is expected to have 

diverse use, from studying the fundamental aspects of the emission to fabrication of 

devices. Further work is currently underway to identify the organization of the PTCDI 

molecules within the wires to enable advancement of these self-assembled materials for 

device applications. 



Chapter 4 

Synthesis and self-assembly of perylene-3,4,9,10-tetracarboxylic 

monoanhydride monoimides 

4.1 ISntroduction 
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Self-assembly has been used as an efficient tool to fabricate organized functional 

materials by the bottom-up strategy. The ability to create self-assembled structures with 

well defined morphologies is essential for the applications of nanomaterials. The physical 

properties of the organic nanostructures depend not only on the constituent molecules but 

also on the size, dimension and crystallinity of the nanostructures. Various 1 D structures 

from PTCDI molecules such as nanofibers, nanorods, nanowires and nanoribbons have 

already been fabricated (discussed in chapter 2) and have been utilized in functional 

devices such as sensors, optical waveguides, lasers and field effect transistors. Though 

OD181 and 1D67•141•142•149 organic nanostructures based on these organic small molecules 

have been studied, the 2D self-assembly of these molecules still remains a major 

challenge. There have been several research efforts on controlling the arrangement of 

organic molecules on substrates.196-198 This 2D self-assembly depends largely on the 

appropriate molecular building blocks which controls the directional interactions between 

the predesigned molecules and the specific substrate in an appropriate environment. 

Hence, the substrate plays a crucial role in arrangement of molecules by self-assembly. 

Moreover, external environmental parameters such as irradiation by light199, electric and 

magnetic fields200, time201 , concentration202, temperature203•204 also plays a critical role in 

these supramolecular self assemblies. Generating well defined nanostructures by solution 

processing has recently received large attention. Thus, the role of substrate governing the 

self-assembly is completely eliminated. Moreover, the solution processed supramolecular 
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assemblies can be transferred to variety of substrates depending on the intended 

application. Though there are very few reports on surfactant mediated two dimensional 

(2D) self-assembly of perylene with well defined shape205, to the best of our knowledge 

the 2D self-assembly of perylene monoimides (m-PTCI) have never been explored. The 

fabrication of 2D sheets of m-PTCI opens new avenues to study the structure-property-

function associated with this new class of materials. 

4.2 Synthesis of m-PTCI 

The structures of m-PTCI molecules used in this study are shown in Figure 4.2. 

These molecules with varying number of carbon atoms in the alkyl side chain were 

synthesized according to a previously reported procedure. 117 The synthetic scheme is 

depicted in figure 4.1 

0 

4 Mono-PTCI, 5 

Figure 4.1 Scheme for the synthesis ofm-PTCI. 

Briefly, this involves the synthesis of perylene-3,4,9,10-tetracarboxylic acid 

monoanhydride monopotassium salt, 4 which has only one anhydride side accessible for 

the reaction with long alkyl chain amine. The product of this reaction is then isolated and 

subsequently the other open side is closed leading to the formation of m-PTCI, 5. Alkyl 



76 

amines with varying number of carbon atoms can be attached to the perylene core leading 

to various m-PTCI with varying length of side chain. All these m-PTCI having only one 

alkyl side chains have limited solubility in chloroform or dichloromethane and have very 

strong tendency to aggregate thus making it difficult to characterize this product by 1 H 

NMR. However, the mass spectroscopy was utilized to determine the purity of these 

products which showed a 100% relative abundance peak corresponding to the appropriate 

molecular weight of the corresponding m-PTCI. 

0~~ 'I~ 0 
0- - N~ 

0 ~~ ~~ 0 

N-mono(pentyl)-3,4,9,1 0-perylenetetracarboxyUc monoanhydride monoimide, 41 

0~~ 'I~ 0 
0-- N~ 

0 ~~ ~~ 0 

N-mono(octyl)-3,4,9,10-perylenetetracarboxylic monoanhydride monoimide, 42 

0~~ 'I~ 0 
0 - - N 

0 ~~ ~~ 0 

N-mono(decyl)-3,4,9,10-perylenetetracarboxylic monoanbydride monoimide, 43 

0~~ 'I~ 0 
0 - - N 

0 ~~ ~~ 0 

N-mono(dodecyl)-3,4,9,10-perylenetetracarboxyUc monoanhydride monoimide, 44 

Figure 4.2 Chemical structures of the m-PTCI employed for 2D self-assembly. 

(a) Synthesis of perylene-3,4,9,10-tetracarboxylic acid monoanhydride 

monopotassium salt : 

2 g (5.09 mmoles) of perylene-3,4,9,10-tetracarboxylic acid dianhydride 

(PTCDA) was added to a solution of 1. 7 g of KOH in 300 ml water and the resulting 
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mixture was heated at 90 ° C for 1 h with stirring to form a clear fluorescent green solution 

of tetrapotassium salt of perylene tetracarboxylic acid (~-PTCA). The resulting solution 

was filtered using a 0.2 J.Lm pore size filter paper to remove any unreacted PTCDA if any. 

0 

The filtrate was maintained at 90 C on hot plate. Separately, a solution of 2 ml glacial 

acetic acid in 18 ml water was prepared and the resulting solution was added dropwise to 

the 300 ml ~-PTCA solution in water at 90 ° C with stirring. Highly water insoluble 

bordeaux colored precipitate started appearing with the addition of acetic acid at 90 o C. 

This dispersion was allowed to stir further for 1 h at 90 ° C when all the fluorescent green 

solution of ~-PTCA gets completely converted to bordeaux colored perylene-3,4,9,10-

tetracarboxylic acid monoanhydride monopotassium salt. The resulting suspension was 

filtered using a 0.2 J.Lm pore size filter paper. The bordeaux colored solid cake was 

obtained on filter paper which was given several washings with water to remove any 

unreacted ~-PTCA if any. The solid cake was dried in vaccum oven at 120°C. Yield: 

2.2 g, 99% 

(b) Synthesis of N-(alkyl)-3,4,9,10-perylenetetracarboxylic monoanhydride 

monoimide 

1 g (2.2 mmoles) of Perylene-3,4,9,10-tetracarboxylic acid monoanhydride 

monopotassium salt was weighed in a 30 ml glass vial. 4 molar ratio of an appropriate 

amine as mentioned in the Table 4.1 below, 6 ml water and 6 ml n-propanol was then 

added to this vial and the vial was briefly sonicated so as to uniformly disperse all the 

reactants. The vial was then placed on stir plate and allowed to stir vigorously at room 

temperature for 4 h. The color of the reaction mixture turned slowly from green to red in 
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the course of 4 h. This vial containing the reaction mixture was then stirred vigorously at 

0 

90 C for 2 h by immersing it in a hot oil bath. The color of the reaction mixture turned 

violet. After 2 h, the reaction mixture is allowed to cool and transferred in 500 ml 10% 

HCl and stirred overnight at room temperature. The red colored precipitate is then filtered 

to obtain a maroon red colored cake. This cake is washed with water until the pH of the 

filtrate is neutral. Then the cake was washed with ethanol several times so as to remove 

excess unreacted amine. The solid cake was then transferred in a 500 ml round bottom 

flask. To this was added 100 m1 of 10% KOH solution in water and the resulting 

dispersion was heated at 90°C for 1 hour. This led to formation of dark reddish green 

solution and some precipitate. Then 100 ml of 8% KCl solution in water was added to 

this homogeneous solution which lead to the precipitation of potassium salt of the final 

monoimides product leaving behind a fluorescent green solution of K4-PTCA formed due 

to the presence of trace amount of unreacted perylene-3,4,9,10-tetracarboxylic acid 

monoanhydride monopotassium salt. This dispersion was then filtered so that the solid 

cake was formed on the filter paper and green colored filtrate of K4-PTCA was collected 

at the bottom. The cake was given several washings with 5% KCl solution in water till 

the color of the filtrate was colorless. This ensured that all the salt of PTCA was 

completely removed. The cake on the filter paper was then dissolved in 300 ml water 

which led to the formation of dark violet colored solution and some small amount of 

precipitate. This solution was then carefully filtered using a 0.2 Jlm pore size filter paper 

so as to obtain a clear violet filtrate. This filtrate was then acidified with 150 ml of 20% 

HCl and the resulting dispersion was stirred overnight at room temperature. The mixture 

was then filtered using a 0.2 J.tm pore size filter paper to obtain a maroon red colored 
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cake on the filter paper. This cake was then given several washings with water and 

ethanol so that the pH of the filtrate is neutral. The solid cake was dried in vacuum over 

0 

at 120 C. 

Perylene-3,4,9 ,1 0-
tetracarboxylic Acid 

Amine Yield 
Monoanhydride 

Monopotassium Salt 

1g Amylamine, 0.9 g (1.2 ml) 0.830 g (80 °/o) 

1g Octylamine, 1.3 g (1.7 ml) 0.920 g (82 °/o) 

1g Decylamine, 1.6 g (2.0 ml) 0.940 g {79 o/o) 

1g Dodecylamine, 1.9 g 1.1 g (88 °/o) 

Table 4.1 Ratio of amine and perylene-3,4,9, 1 0-tetracarboxylic acid monoanhydride 
monopotassium salt employed for the synthesis ofm-PTCI and the yield of the reaction. 

4.3 Optical properties of m-PTCI 
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Figure 4.3 The UV-Visible absorption and emission spectra of 41 in chloroforom. The 
excitation wavelength for obtaining the emission spectra is 480 nm. 
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The homogeneously dissolved m-PTCI molecules show very similar absorbance 

and emission spectra as those shown by PTCDI (Figure 3.3, Chapter 3), since the nodes 

are present at the imide nitrogen in both the HOMO and LUM0. 11 5 Figure 4.3 shows the 

absorption and emission spectra of 41 in chloroform. The other m-PTCI 42, 43, 44 shows 

the similar absorption and emission spectrum in chloroform. 

However, upon aggregation of the m-PTCI molecules in a poor solvent such as 

hexane, a new absorption band appears at the longer wavelength and there is decrease in 

0-0 peak and increase in the intensity of 0-1, 0-2 transitions. The pronounced changes in 

the optical absorption spectra suggest a strong electronic coupling of the perylene cores. 

Figure 4.4 shows the changes in absorption spectra for 44 upon aggregation in hexane. 

Similar changes in the absorption spectra were observed for the remaining three m-PTCI 

41, 42 and 43. Thus, we studied the formation of aggregates for the 41-44 using hexane 

as a poor solvent. 

1.0 
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- Chloroform 
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Figure 4.4 UV-Visible absorption spectra of 44 upon aggregation using hexane. A 
homogeneous solution of 44 in chloroform was rapidly dispersed in hexane and the 
spectrum was recorded. 
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4.4 Self-assembly of m-PTCI by phase transfer high temperature method 

The self-assembly of m-PTCI molecules has been achieved by a modified two 

layer phase transfer method used previously to achieve lD self-assembly (see chapter 3) 

of perylene diimides (PTCDI). The m-PTCI has far less solubilities in comparison to the 

corresponding PTCDI having the same number of carbon atoms in the alkyl side chain. 

Even a small change in the volume (because of evaporation) of the homogeneous 

chloroform stock solution leads to spontaneous formation of aggregates, thus preventing 

control over the formation of ordered structure. To this end, the previously developed 

phase-transfer method at high temperature can be a very viable method to not only allow 

for increased solubility of the PTCI molecules but also for the controlled growth of 

organized structures when an appropriate non-solvent is carefully added. Therefore, the 

phase-transfer at high temperature (2L-HT) was carried out for the formation of 

organized assemblies ofthe m-PTCI. 

Briefly, a homogeneous stock solution of corresponding m-PTCI in chloroform 

(0.8 mg in 25 ml CHCh) was prepared by sonicating the solution in glass vial and placing 

0 

the glass vial in a hot water bath set at 60 C. Separately, hexane (the non-solvent) is taken 

in glass vial and equilibrated at 60°C in a hot water bath. Once the homogeneous solution 

exhibiting green fluorescence ofm-PTCI in chloroform is formed, a small amount ofthis 

0 
solution is placed in glass tube and this tube is maintained at 60 C by placing in hot water 

0 

bath. Then, the pre-equilibrated hexane at 60 C is carefully added in excess on top of the 

0 

m-PTCI solution in chloroform maintained at 60 C. For atleast 2 h, there is no sign of 

aggregation and the solution of m-PTCI remains very homogeneously dissolved in 

chloroform. Hexane is added at regular time intervals to compensate for loss due to 
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evaporation. After 3 h, there are few aggregates formed at the interface which continue to 

grow with time. After total 6 h, all the m-PTCI molecules aggregate from chloroform 

solution and there is no fluorescence emission observed from free molecules when the 

tube is excited using hand held UV lamp (366 nm). When methanol was explored as poor 

solvent, no aggregation of m-PTCI was observed and at 60°C a very homogenous 

solution was formed in methanol chloroform mixture. This is because of the H-bonding 

interactions between methanol and open mono-anhydride end of the m-PTCI. Thus, the 

aggregates were formed exclusively using hexane as poor solvent for all the four m-PTCI 

and were further examined for their morphology and the properties associated with the 

aggregates. 

4.5 Characterization of the aggregates 

4.5.1 Scanning and transmission electron microscopy 

The aggregates formed using the 2L-HT method for all the four individual m­

PTCI using hexane as poor solvent were separately cast on silicon wafer and examined 

by SEM after the drying of the solvent. The SEM investigations revealed that all four m­

PTCI irrespective of the length of side chain attached to the perylene core led to the 

formation of 2D sheets (Figures 4.5-4.8). The observed morphology of the aggregates is 

very different from those observed for the PTCDI using the same method (as shown in 

chapter 3). The sheets made from different m-PTCI appear non-rectangular and in most 

cases with at least one of the comers of the sheet having an extremely tapering end. 

Furthermore, there is wide size disparity of the sheets formed. Despite the size disparity 

most of the sheets are no longer or wider than 30 J..tm. The best quality sheets could be 
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obtained only when m-PTCI 42, 43, and 44 were employed. For 41, the aggregates 

appear to be a mixture of sheets and long ribbons. 

The self-assembly of m-PTCI was also investigated using other conditions and 

was found to produce entirely different morphology. lD nanofibers were obtained by 

evaporation of the homogeneous solution of m-PTCI in chloroform (Figure 4.9). Since, 

1 D assembly has widely been performed for these molecules observation of 2D ordered 

assembly was found to be more interesting and is the first example for the formation of 

such structure because of the unique packing of these m-PTCI molecules. 

Figure 4.5 Morphology of aggregates of 41 by 2L-HT process using hexane 
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Figure 4.6 Morphology of aggregates of 42 by 2L-HT process using hexane. 

Figure 4. 7 Morphology of aggregates of 43 by 2L-HT process using hexane. 
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Figure 4.8 Morphology of aggregates of 44 by 2L-HT process using hexane. 

Figure 4.9 Morphology of aggregates of (a) 41, (b) 42, (c) 43 and (d) 44 by slow 
evaporation of homogeneous stock solution in chloroform. 
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In order to improve the size disparity of these 2D sheets the concentration of the 

initial stock solution was reduced. This should allow for formation of fewer sheets by 

self-assembly and indeed fewer sheets resulted because of the dilution effect. However, 

the size disparity still remains. The sheets grown from dilute stock solution were cast on 

Cu-TEM grid ( 400 mesh) and were imaged. Due to the presence of fewer sheets, a single 

sheet ofm-PTCI can be imaged and characterized by SAED. Figure 4.10 shows the TEM 

image of single sheet of 44 grown by 2L-HT method using a diluted stock solution. 

The 2D arrangements of these molecules are rather intriguing. It is likely a direct 

result of two sets of packing promoted by the processing conditions and the structural 

characteristics of the m-PTCI. These systems can be envisioned to be comprised of two 

half-units of PTCDA and PTCDI, each of which imparts unique non-covalent interaction 

possibilities e.g. H-bonding, n-stacking and side-chain interdigitation along with 

hydrophobic effects. To further understand the implication of the 2D sheet formation the 

optical as well as structural properties were studied. 

Figure 4.10 TEM image at different magnifications of single sheet of 44 grown from 
dilute stock solution of 44 using 2L-HT method. 
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4.5.2 Optical properties of the 2D sheets 

The optical properties of the m-PTCI in solution are already discussed in the 

above section. The free molecule absorption changes significantly (0-1, and 0-2 

transitions dictate over the 0-0) upon transferring them to hexane and a new peak at 

longer wavelengths (570 nm) is observed. This shows that electronic coupling exists 

between the m-PTCI molecules upon aggregation. To study the optical properties of the 

2D sheets formed by the self-assembly process the aggregates were cast onto pre-cleaned 

glass substrates for the measurement of the solid state features. The UV-Visible spectra 

(Figure 4.11) obtained for the assemblies of 41-44 in the solid state matches well with 

those obtained for the aggregates in hexane, implying that the same structure is 

responsible for the formation of such assemblies. 

-4t 
1.0 - a 

- a 
- 44 

0.1 

:i 
~ 0.1 

3 c: 
~ 0.4 
0 
.! 
~ 0.2 

0.0 

500 100 700 100 
Wavelength (nm) 

Figure 4.11 Solid state ensemble UV visible absorption spectroscopy of the 2D sheets of 
41-44 cast on the glass slide. 

The fluorescence spectra obtained for the assemblies show two well resolved 

peaks at 625 nm and 667 nm, respectively, in their emission spectra which is well red 

shifted (by 108 nm and 149 nm) in comparison to the free molecule 0-0 emission peak 

(Figure 4.12). It is interesting to note here that the sheets obtained for the four different 
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m-PTCI molecules show the same emission characteristics when excited in the 

wavelength range of 490-560 nm. Furthermore, large stokes shifts (131 nm, and 173 nm) 

could be measured for the m-PTCI sheets, which implies a rather profound structural 

characteristic of the sheets. Moreover, the excitation spectra (Figure 4.12, Right) obtained 

at 630 nm ad 700 nm emission wavelengths matched with the absorption spectra 

suggesting that this emission is from the aggregated state of mono-PTCI and is an 

excimeric emission. 

400 450 500 550 600 
Wavelength I nm 

650 
600 

m-C5-Mono 
m-C8-Mono 
m-C10-Mono 
m-C12-Mono 

700 
Wavelength/nm 

800 

Figure 4.12 Solid state ensemble fluorescence emission spectra (Right) and the 
absorption, excitation spectra (Left) from the 2D aggregates of 4l(a), 42(b), 43(c) and 
44(d). 

Such large stokes shifts have previously been observed by Wurthner et al. 187 for a 

liquid crystalline PTCDI with extremely bulky side chains. In this particular PTCDI case, 

described for the bulky liquid crystalline PTCDI, a large rotational offset could also be 

deciphered leading to allowed transitions from the coupled ground state. Also, for the 
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parent PTCDA molecules extremely close contact between the molecules has allowed for 

the formation of charge-transfer excitons. It is therefore interesting to observe two unique 

excimer like emission characteristics in case of m-PTCI. Thus, in the sheets it is likely 

that the two observed excimer like emission peaks are because of the allowed exciton 

transitions arising from the profound organization of the molecule. 

4.5.3. Structural properties of sheets of m-PTCI 

A highly ordered structure could be observed by the powder X-ray diffraction 

(XRD) measurements of the sheets of m-PTCI cast on glass substrate. The XRD of the 

sheets show far fewer and much sharper peaks than the powder patterns of the 

corresponding m-PTCI. 
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Figure 4.13 XRD of the ensemble of sheets of 41-44 on glass slide and its comparison 
with the powder of 41-44. 
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The powder XRD patterns obtained for the as synthesized m-PTCI molecules 

represents the typical patterns of those expected for the general m-PTCI molecules and 

belong to the characteristic triclinic system. The XRD patterns (Figure 4.13) obtained for 

the sheets corroborate a very uniform packing of the molecules. Furthermore, the selected 

area electron diffraction pattern performed on different regions within the sheet and over 

different sheets show the same single-crystalline pattern (Figure 4.14). Such a pattern is 

consistent with those observed for some of the flip-flop organized PTCDI molecules 

showing single-crystal behavior151
• In these flip-flop (large rotational offsets) systems 

that demonstrated the 1D morphology, large rotational displacement was responsible for 

extremely strong fluorescence emission. Both the optical and structural property features 

imply the rotational offsets within the structure along with significant lateral offsets and 

therefore result in the formation of 2D sheets. 

Figure 4.14 Single area electron diffraction (SAED) pattern for a single sheet of 44 from 
different regions in the sheet. The diffractions pattern remains the same irrespective of 
the region in the sheet, thus indicating that the sheets are single crystalline in nature. 

4.6 Conclusion 

The m-PTCI with their unique structural characteristics allow for the formation of 

fluorescent ( excimeric) 2D self-assembly by using the phase-transfer at high temperature 
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method. The increased solubility of the m-PTCI molecules in the homogeneous 

chloroform solutions, because of the high temperature, allows for the control of the 

organization of the molecules resulting in the formation of single-crystalline sheets of the 

m-PTCI. These fluorescent, single-crystalline sheets are expected to fmd application in 

sensors, OLED and OPV devices. 



ChapterS 

Chemical reaction mediated self-assembly of PTCDA into nanofibers 

5.1 Introduction 
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Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), a n-type organic 

semiconducting molecule, has received wide spread attention in electronic and opto­

electronic devices. 206 This molecule has been used as the parent molecule for the 

formation of PTCDI and m-PTCI. Early studies on this molecule were geared towards 

obtaining high quality, organized thin-films using vapor phase methods.206 It has been 

found that close contact between the molecules by 7t-stacking and H-bonding allow for 

efficient charge propagation and are therefore well suitable for use in electronic and opto­

electronic devices.45'4s,%,IS0,20? To enhance the charge-propagation and transport 

characteristics in organic semiconductors emphasis has largely shifted towards creating 

more organized lD nanomaterials such as wires and belt which are more conducive to 

allow expedient movement of charges across the electrodes.180'208 Largely, vapor based 

methods have been adopted for the successful assembly of PTCDA and related insoluble 

perylene based compounds into organized lD nanostructures.208"214 Recently, chemical 

vapor deposition (Ti-CVD) was used to realize nanofiber assembly of the PTCDA 

primarily driven by 7t-stacking interaction.209 However, such lD structure grown by Ti­

CVD were found to be amorphous. In organic semiconductors, crystallinity of the 

assemblies are known to have pronounced effects towards charge-transport 

characteristics.36,ll2,215,216 Generally, better transport characteristics can be attributed to 

increased crystallinity. For example, it has been demonstrated that using single­

crystalline pentacene217 and rubrene218 extremely large hole-mobilities could be attained. 
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In general, for large-scale adoption of the organic materials in the area of electronic and 

opto-electronic devices arguments are based on the ability to use cost effective solution 

based approaches rather than expensive and intensive vapor based methods. 180•215 Thus, it 

is essential to find suitable solution based methods that can lead to the formation of 

highly crystalline lD nanostructures for PTCDA. 

The assemblies of the parent PTCDA using solution based processing are rather 

challenging, owing to intrinsic insolubility, and are therefore chemically converted to 

more soluble precursors by reacting with corresponding amine to yield perylene 

tetracarboxylic diimides (PTCDI)97 for realizing solution based lD assemblies. To date 

several elegant examples for the solution processed self-assembly of PTCDI into 1 D 

nanostructures such as belts and wires have been demonstrated. 142•180 The insolubility of 

the PTCDI molecules in certain solvents have made them amenable to generate lD 

assemblies either at the interface of the soluble and in-soluble solvents or by rapidly 

transferring them from soluble to insoluble solvents. The formation of the organized lD 

assemblies in non-solvents is promoted largely because of the strong n-stacking 

interaction amongst the perylene cores and side-chain interdigitation.97•141 Often, the side­

chains attached to obtain sufficient solubility are comprised of insulating linear alkyl­

chains. Despite the insulating side-chains attached to the perylene core in PTCDI, it has 

been possible to create materials with moderate charge-transport properties using vapor 

based techniques.29 For example, electron mobility >0.5 cm2N.s106 in thin-film of 

PTCDI, derived using vapor based approach, have been reported. However, the 

measurements on lD assemblies derived using solution based processing shows only a 

fraction of the electron mobility in comparison. 67 This is likely due to the charge-traps 
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within the 1D assemblies as the major forces driving the self-assembly rely on both 

n-stacking and side-chain interdigitation interactions. It is therefore essential to find new 

solution based pathways to yield the 1D assemblies of the parent PTCDA which are 

devoid of such side-chains and concomitantly are expected to lead to materials with 

enhanced charge-transport characteristics. Such explorations will allow for fundamental 

understanding of the choice of materials for use in opto-electronic applications. 

5.2 Choice of precursor for chemical reaction mediated self-assembly 

We hypothesize that if an appropriate perylene precursor having functional 

groups, allowing reasonable solubility in certain organic solvents, and amenable to 

chemical modification to yield PTCDA, is designed, it may be possible to provide a 

solution based medium for successful 1D assembly of insoluble PTCDA. Indeed, such a 

precursor exists, namely, the perylene-3,4,9,10-tetracarboxylic acid (PTCA), 45 (Figure 

5.1) which is highly soluble in dimethylformamide (DMF) and the acid groups can be 

favorably chemically transformed to yield PTCDA using carbodiimide chemistry (Figure 

5.2). While, co-crystallization of PTCA with amines has been attempted and show 

remarkable propensity to strongly form crystals by H-bonding interactions,219 to the best 

of our knowledge, solution based chemical transformation methods to obtain 1 D 

assemblies of PTCDA have yet not been explored. 

PTCA,45 

Figure 5.1 Chemical structure of perylene-3,4,9, 1 0-tetracarboxylic acid (PTCA). 
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5.3 Protocol for the formation of lD fibers of PTCDA 

All the starting materials were obtained from commercial suppliers and used 

without further purification. Perylene-3,4,9, 1 0-tetracarboxylic-3,4,9, 1 0-dianhydride 

(PTCDA), N, N'-dimethylformamide (DMF) were purchased from Sigma Aldrich. 

Deionized (DI) water was used for all the experiments. 

5.3.1 Synthesis of standard perylene tetracarboxylic acid (PTCA) 

The synthetic protocol developed by Gregg et al. 220 has been adopted for the 

synthesis of PTCA. In a typical synthesis, 1 g of PTCDA powder (2.54 mmoles) was 

dispersed in ~500 m1 water and 715 mg of KOH (12.74 mmoles) was added to this 

dispersion. This dispersion was heated on hot plate at 80 ° C for 1 h to form a 

homogeneous aqueous fluorescent green solution of K4PTCA. The solution was allowed 

to cool and filtered so as to remove trace amount of unreacted PTCDA, if any, and then 

1M HCl was added dropwise to this fluorescent green solution at room temperature. 

There was precipitation of highly water immiscible PTCA in the solution. 1M HCl was 

kept on adding until all the ~PTCA is converted into PTCA and there was complete 

disappearance of green fluorescence in the solution. This dispersion of PTCA was stirred 

at room temperature for further 1 h. This dispersion was then filtered using a 0.2 1-1m pore 

size filter paper and given several washings with water until the pH of the washings was 

neutral. The reddish orange solid PTCA powder was dried under vacuum and kept away 

from heat. Yield = 99%. IR (KBr) vmax 3618, 3122, 1774, 1696, 1586, 1410, 1300, 

1296, 857 cm-1. 
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5.3.2 Synthesis of 4-(dimethylamino) pyridinium 4-toluene sulfonate (DPTS) 

In order to carry carbodiimide reaction of PTCA, DPTS was synthesized. 61 g 

(0.5 moles) of 4-dimethylaminopyridine (DMAP) was dissolved in around 200 ml THF 

with vigorous stirring. A clear solution was obtained by occasionally sonicating and 

heating slightly with the heat gun. Then separately 95.11 g (0.5 moles) of p­

toluenesulfonic acid monohydrate (PTSA.H20) was dissolved in around 200 m1 THF 

with stirring, sonication and slight heating. Both these solutions are then cooled to room 

temperature. These two solutions are then mixed together and subjected to shaking of the 

flask by hand. The white aggregates of 4-( dimethylamino) pyridinium 4-toluene sulfonate 

(DPTS) immediately precipitates out of the solution. This precipitate is allowed to settle 

and filtered and dried under vacuum. (Yield: 100% ). 

5.3.3 Protocol for the conversion of PTCA to lD nanofibers of PTCDA 

(a) Chemical reaction of PTCA in DMF 

7 mg (16 J.Lmoles) of PTCA powder was taken in a 40 ml glass vial. - 35 ml 

dimethylformamide (DMF) was added to this vial and the resulting solution was 

sonicated for 15 minutes to form a clear homogeneous orange solution. A bright yellow 

fluorescence was observed when the solution was excited with hand-held UV lamp (365 

nm) Figure 5.3. Then 35 mg (116 J.liDOles) of DPTS was added to this vial and was 

dissolved in this solution with slight sonication. The resulting solution was then stirred on 

the stir plate using a small teflon covered stir bar (1 0 mm long). Then, 230 mg (0.28 ml, 

1.78 mmoles) N,N'-diisopropylcarbodiimide (DIPC) was added dropwise to this stirring 

solution. After 30 minutes addition of DIPC, the initial homogeneous solution started 

becoming turbid indicating aggregation. After 24 h of stirring, the color of the dispersion 
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became dark red and a very weak fluorescence was observed (Figure 5.3). This 

fluorescence did not disappear after stirring for additional few hours. Hence, the reaction 

was stopped at this stage. 

Scheme 5.1 Protocol followed for the formation of lD nanofibers of PTCDA. The 
chemical reaction of homogeneous orange solution PTCA in DMF (a) leads to formation 
of red colored aggregates after 24 h (b). Unreacted PTCA was removed by two times 
extractions using DMF as shown in (b) and (c) above. DPTS, DIPC and DMF were 
removed from the system by two times extractions using CH2Ch as shown in (d) and (e). 
Finally, the pure fibers were dispersed in CH2Ch. 

(b) Removal of unreacted PTCA 

After the reaction the stirring was stopped and the resulting dispersion was 

allowed to stand undisturbed for 12 h. All the red colored aggregates settled at the bottom 

of the vial leaving behind almost colorless layer ofDMF on the top which when observed 

under UV light showed slight yellow fluorescence. This top layer of DMF was discarded 

carefully using a pipette and the lower settled portion of aggregates was again dispersed 

in DMF. The aggregates were again allowed to settle and the top portion of DMF was 

again discarded carefully using a pipette. 
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(c) Removal of DMF, DPTS, DIPC and dispersion of aggregates in 

dichloromethane 

The settled aggregates after removal of top layer of DMF were then dispersed in 

dichloromethane (CH2Ch). The vial was left undisturbed for 4 h. Again the settling of 

aggregates was observed and the upper top portion of CH2Ch was discarded and fresh 

CH2Ch was then added for second extraction. Totally, two such extractions were carried 

out so as to remove all the DMF, DPTS and DIPC from the system and all the fibers are 

finally suspended in CH2Ch. 

5.4 Carbodiimide chemistry mediated self-assembly 

The carbodiimide chemistry has been widely used for the esterification reaction 

between carboxylic acid and an alcoho1.221"223 It has been established that this reaction 

proceeds via formation of acid anhydride. 221 '222 In the absence of an alcohol, 

monocarboxylic acid undergoes intermolecular reaction yielding acid anhydride. 

Whereas, the dicarboxylic acid in which the carboxylic acid groups are separated by two 

or three methylene groups undergoes intramolecular reaction yielding cyclic 

anhydride.222 Moreover, the rate of this reaction increases with solvent polarity and is 

expected to be higher in DMF. Thus, PTCA matches quite well the requirements of an 

ideal precursor, chemically reactive and soluble. 

45 

OPTS/ DIPC ~ 

DMF, RT, 24 h 

1 
Figure 5.2 Synthesis ofPTCDA from PTCA by carbodiimide chemistry. 
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Our goals were to explore, firstly, the chemical synthesis of PTCDA from PTCA 

(Figure 5.2) and finally, attempt to understand if such a chemical synthesis going from a 

highly soluble form of PTCA to the highly insoluble PTCDA would lead to any in-situ 

growth of 1 D nanostructures with the final assemblies being composed of PTCDA 

molecules. The PTCA was synthesized using the known methods from the parent 

PTCDA?20 This PTCA powder is highly soluble in DMF and exhibits a bright orange-

yellow fluorescence when excited with a hand-held UV lamp (365 nm) (Figure 5.3). To 

perform the chemical transformation of PTCA us1ng carbodiimide chemistry, 

homogeneous solution of PTCA was formed in DMF by sonication. Then, 4-

( dimethylamino) pyridinium 4-toluene sulfonate (DPTS, synthesis protocol mentioned 

above) was added to this vial and further sonicated. The addition of DPTS prevents the 

formation of unreactive N-acylurea as the by-product and the reaction proceeds via the 

formation of 0-acylisourea intermediate?24 This was then followed by the addition of 

1,3-diisopropylcarbodiimide (DIPC) and the solution was stirred slowly at room 

temperature. 

Figure 5.3 (a) Homogeneous orange solution of PTCA in DMF. (c) Red aggregates in 
DMF after 24 h of reaction and removal of unreacted PTCA. (b), (d) Yell ow orange 
fluorescence and no fluorescence observed upon excitation of (a) and (c) respectively 

with UV light of 365 nm. 
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Within 1 h, the solution became turbid red indicating some aggregation. When 

this solution was now excited with the hand-held UV-lamp, there was large amount of 

fluorescence from the unreacted PTCA which considerably quenched after 24 h of the 

reaction leading to dark red colored aggregates in solution (Figure 5.3). The residual 

weak fluorescence can be attributed to the trace amount of unreacted PTCA in this 

aggregated dispersion in DMF. This unreacted PTCA was removed by allowing the 

aggregates to settle and the upper solution layer of the residual PTCA in DMF was 

discarded. This process was repeated by addition of fresh DMF and allowing the 

aggregates to settle until the upper clear solution showed no detectable fluorescence. 

Typically, this took about 2-3 washings in DMF. 

5.5 Characterization of the product 

Transmission electron microscopy (TEM) was performed on JEOL 1230 

(acceleration voltage 120 kV), and JEOL 2010 (acceleration voltage 200kV) electron 

microscope using carbon-coated copper grid which were purchased from Electron 

Microscopy Sciences (EMS). The sample for TEM using dispersion of fibers in DMF 

was prepared by casting a droplet of this dispersion on the TEM grid placed on filter 

paper. The DMF spreads on filter paper and the aggregates remain on the TEM grid. The 

TEM sample from dispersion of fibers in dichloromethane was also prepared in the 

similar way. 

5.5.1 Transmission Electron Microscopy (TEM) 

In general, the chemical products obtained after synthesis are often found to be 

powdery substances. However, for the products (aggregates in DMF) mentioned above it 
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was interesting to note that the transmission electron microscopy (TEM) revealed the 

formation of bundles of uniform lD nanofiber having widths of 50 nm and lengths of2-3 

J.lm as shown in Figure 5.4 

Figure 5.4 (a-e) TEM images of fibers of PTCDA from DMF dispersion at different 
magnifications. (f) High magnification TEM image of single fiber of PTCDA. 

Intrigued by the observation of such morphology, we set on to understand the 

chemical species responsible for such a lD assembly as the reaction proceeds via the 

formation of stable urea by-product. Purification of the product was done using a series 

of extractions in CH2Ch, after the aggregates were extracted in DMF (Scheme 5.1 ). The 

series of extractions ensures only the removal of starting reagents (PTCA, DPTS, and 

DIPC) along with the stable urea by-product. This purified product now in CH2Ch was 

then again analyzed using TEM (Figure 5.5). Similar morphological characteristics are 

retained as those observed in DMF (Figure 5.4). 
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Figure 5.5 TEM image of fibers obtained by casting the fibers dispersed 1n 
dichloromethane. No change in morphology of fibers was observed. 

To probe if chemical reaction has occurred, a TEM sample was prepared by 

casting the aggregates from CH2Ch. The aggregates left on this TEM grid were then 

immersed into a potassium carbonate (K2C03) solution for at least 2 minutes. Following 

the drying, TEM morphological inspection of the samples were carried out and it was 

found that there was no destruction in the morphology (Figure 5 .6) and the aggregates 

were found to retain their original 1 D nanostructure (in terms of both widths and lengths). 

At room temperature, PTCA powder is highly soluble in K2C03, whereas PTCDA is not. 

This qualitatively suggests that indeed the reactants have been consumed and the fibers 

might be composed of PTCDA. 
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Figure 5.6. TEM image of fibers of PTCDA (a) before and (b) after treating with 
aqueous solution of K2C03. For this purpose, a particular region on the TEM grid was 
identified and was imaged. This grid was then dipped in aqueous solution of K2C03 for 2 
minutes. The grid was then dried and then the same region was identified and imaged 
again. There was no destruction of fibers and the morphology of the fibers remained 
intact. This further proved that the PTCA was converted to fibers of PTCDA after the 
chemical reaction. 

5.5.2 Fourier Transform Infrared Spectroscopy (FTIR) 

To obtain the chemical entities responsible for the formation of lD assembly, 

FTIR of the final fiber products were performed and compared to the starting PTCA and 

the parent PTCDA (standard). All the Fourier transform infrared spectra (FTIR) were 

obtained on FTIR-8400S Shimadzu instrument by grounding the solid powder of the 

samples with K.Br powder. The FTIR spectra of the fibers obtained after reaction showed 

a distinct sharp vibrational modes corresponding to the carboxylic dianhydride which 

consisted ofv(C=O) at 1770 cm-1, v(C-0-C) at 1299, 1234 cm-1 and v(-C0-0-CO-) at 

1022 cm-1 and matches very well with the commercially available PTCDA powder, and is 

different from the starting material PTCA (Figure 5.7).225 Thus, from the FTIR data it 
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was very clear that the free carboxylic acid groups in PTCA upon reaction gets converted 

into dianhydride groups leading to the formation of PTCDA. 

--PTCA 

I I I 

500 1000 1500 2000 3000 3250 3500 

Wavenumber (cm-1
) 

Figure 5.7 FTIR spectra of (a) standard PTCA powder (b) fibers of PTCDA obtained 
after chemical reaction by protocol mentioned in this paper (c) commercially available 
PTCDA powder. All the vibrational bands are labeled in each spectrum. In (a) there are 
strong vibrational bands corresponding to free carboxylic acid groups in PTCA whereas 
in (b) there are strong vibrational bands corresponding to anhydride group in PTCDA. 
The spectrum (b) matched exactly with the spectrum of commercially available PTCDA 
powder (c). 

5.5.3 Mass Spectrocopy 

Samples were analyzed by chemical ionization on a Waters Autospec Premier 

double-focusing magnetic sector mass spectrometer using methane as the reagent gas and 

internal calibration with perfluorokerosene (Courtesy: Dr. Karin Keller, UT -Austin). 

Solid samples were introduced using a direct exposure technique: a small amount of solid 
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material was packed into a glass melting point capillary, which was scored approximately 

20 mm from the closed end and placed upright into a coil of 0.006" tantalum wire 

mounted on an insertion probe. The capillary was broken along the score, and the 

probe/capillary assembly was inserted into the source. Approximately 1.6 amps of current 

were run through the tantalum wire to heat the capillary and vaporize the sample. A 

100% relative abundance peak for m/z at 393 corresponding to (PTCDA+H+) and 

matches perfectly with the standard PTCDA powder (Figure 5.8). Further, there are no 

peaks observed at higher molecular weight range suggesting that there is no 

polymerization and the species present in final1D fiber is monomeric PTCDA. 
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Figure 5.8 Mass spectra of fibers after reaction and its comparison with the mass spectra 
of standard PTCDA powder. Both the spectra shows a 100% relative abundance peak at 
393.04 suggesting that the species in fiber is PTCDA. 
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The chemical analysis by FTIR and mass spectroscopy clearly demonstrate the 

fact that the fibers are indeed composed of PTCDA molecules. 

5.5.4 X-ray Diffraction (XRD) 

Powder X-ray Diffraction (XRD) was done on Rigaku D/Max Ultima II Powder 

XRD instrument using Cu Ka X-ray beam of wavelength 1.54 A. Samples for XRD were 

prepared by drying the respective aggregates from chloroform dispersion on the glass 

slides resulting in thick film of uniform thickness. The data was collected by using 5 mm 

slit width and a scan rate of 0.5 degree/minute. 
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Figure 5.9. X-Ray Diffraction (XRD) ofPTCDA fibers. 
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The X-ray diffraction (XRD) pattern from the bundles of fibers of PTCDA shows 

that the assemblies are highly crystalline in nature. The peaks obtained could be indexed 

by matching with standard PTCDA powder (Figure 5.9)?10 
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5.6 Plausible Mechanism 

5.6.1 Conversion of PTCA to PTCDA by carbodiimide chemistry 
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Figure 5.10 Perylene-3,4,9,10-tetracarboxylic acid (PTCA) can react with 1,3-
diisopropylcarbodiimide (DIPC) in presence of 4-( dimethylamino) pyridinium 4-toluene 
sulfonate (DPTS) leading to the formation of o-acylisourea intermediate. This 
intermediate can react via two paths. Path A: 0-acylisourea groups can undergo 
intramolecular reaction with their neighboring carboxylic acid groups leading to 
formation of perylene-3,4,9, 1 0-tetracarboxylic-3,4,9, 1 0-dianhydride (PTCDA) and stable 
urea product. Path B: N-acylpyridinium intermediate can be formed from 0-acylisourea 
in presence of DPTS, which undergo reaction with their neighboring carboxylic acid 
groups leading to PTCDA and stable urea product. 

5.6.2 Formation of crystalline lD fibers of PTCDA 

The exact mechanism for the formation of the fibers of PTCDA by this chemical 

reaction mediated self assembly is not very clear at the moment. It is likely that various 

intermolecular forces like n-n interactions, hydrogen bonding and dipolar interactions 



108 

play a critical role, as observed in small size aggregates of PTCDA from vapor phase, 

when the intermediates are converted to the final fiber product (PTCDA).206•208•219•226•227 

One plausible explanation is that the insoluble PTCDA seeds formed upon the reaction 

initiation might allow for controlled assembly as more and more PTCA molecules get 

converted to PTCDA in DMF leading to highly crystalline lD assemblies. 

5. 7 Conclusion 

Thus, in conclusion we have for the first time demonstrated a carbodiimide based 

chemical reaction mediated self assembly of PTCDA into lD nanofibers using PTCA as 

a starting material. The fibers prepared by this approach are highly crystalline in nature 

and can be readily transferred to volatile organic solvents. The chemical compositions of 

the fibers were confirmed by FTIR and mass spectroscopy analysis. This kind of in-situ 

self assembly by a chemical reaction, leads to the expedient formation of organized lD 

nanostructures of PTCDA under ambient conditions, which are otherwise impossible by 

any other solution processing technique. This generic protocol of the carbodiimide 

chemistry can be further extended to similar 7t-conjugated chemical systems, with 

carboxylic acids, to yield the assembled structures of the 7t-conjugated cores without any 

side-chains. The comparison of the electrical performance from these lD nanofibers with 

those obtained in thin-films, and vapor phase methods for PTCDA, and the fibers and 

films of the well known PTCDI, with side-chains, will be crucial for the advancement of 

these materials in the electronic and opto-electronic applications. The electrical and 

optical properties of these 1 D nanofibers are under investigation and will be reported in 

due course. 



Chapter6 

Self-assembly of tetra potassium salts of perylene tetracarboxylic acid 

6.1 Introduction 
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The synthesis and self-assembly ofperylene-3,4,9,10-tetracarboxylic dianhydride 

(PTCDA) based n-type organic semiconducting molecules into ordered structures has 

gained a lot of interest in the fabrication of nano-scale devices having applications in 

electronics, opto-electronics and sensing.97•180 Besides the inherent 1t-1t interactions 

between the perylene cores, the alkyl side chain interdigitation,68•69•141•142•151•153 hydrogen 

bonding/59-163 electrostatic/72-175 solvophobic/49 metal-ligand interactions97•168-171 have 

also been utilized to create ordered structures by the design and synthesis of appropriate 

functional groups to the perylene core. Various self assembling methods like dispersion 

or phase transfer using an appropriate solvent that leads to aggregation (poor solvent), are 

used to achieve lD nanostructures.68•180 A key challenge in creating ordered multi­

functional materials relies on the ability to control the organization of the components 

with high precision. To this end, there is also a need to explore the possibilities for the 

formation of assemblies in a range of solvent to allow for compatibility with other 

components. Presently, the chemical conversion ofPTCDA into PTCDI and other related 

compounds has allowed for realization of assemblies mainly in organic solvents, owing 

primarily to their solubility in these solvent. 115 However, by introducing appropriate side 

chains it has also been possible to attain sufficient solubility in aqueous conditions. 182•228-

230 We hypothesize that instead of utilizing these substituted PTCDI amenable for 

aqueous processing it must possible to attain sufficient solubility by creating salts from 

PTCDA. In order to attain sufficient solubility in aqueous solvents salts of the perylene 
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tetracarboxylic acids were created. These salts show high solubility in water and 

therefore act as an appropriate precursors for exploring the self-assembly of these salts. 

Furthermore, given the known chemical reactions that can be used to convert the salts 

into different compounds, 117•220 the chemical transformations of the self-assembled 

structures are also explored. 

Recently, the electrostatic interaction between a double hydrophilic block 

copolymer- Poly(ethylene glycol)-b/ock-branched-poly(ethyleneimine) (PEG-b-PEI) and 

tripotassium salt of 3,4,9,10-perylenetetracarboxylic acid (PTCAPS) from water/ethanol 

mixture, has been reported for the formation of very uniform ultralong hierarchically 

structured PTCAPS fluorescent micro belts. 228 At an appropriate pH the cationic PEl 

interacts with the anionic carboxylate ions of PTCAPS and allows for controlled 

crystallization of PTCAPS along the polymer chain by n-n interactions. These fibers 

showed significant improvement in the electrical conductivity upon doping with 

hydrazine as compared to the organic nanobelts of PTCDI, acenes, phthalocyanine and 

undoped C6o. This was attributed to the meso-porous crystal structure of the fibers thus 

leading to efficient electron donation by hydrazine and subsequently efficient charge 

transfer along the long direction of the fibers. A colloidal method has also been 

developed by Kang et.al.231 for obtaining assemblies of the bare perylene molecules. In 

this chemical process the perylene perchlorate (salt) undergoes reduction due to the Br­

present in the cetyl trimethyl ammonium bromide (CTAB) in solution leading to the 

formation of uniform perylene nanoparticles having a protective layer of CT A+ around 

them. Under appropriate conditions these perylene nanoparticles self-organize themselves 

into hierarchical square nanorods and nanobelts because of the templating provided by 
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the lamellar micellar structure of CTA +. In both the above mentioned cases, a directing 

agent has been utilized for the formation of organized assemblies. In this chapter, the 

self-assembly of alkali metal salts of perylene tetracarboxylic acid (M4-PTCA) has been 

explored. These salts are highly soluble in water and therefore are ideally suited to form 

organized assemblies. 

6.2 Synthesis of tetrapotassium salt of PTCA (K.-PTCA) 

All the starting materials were obtained from commercial suppliers and used 

without further purification. Perylene-3,4,9, 1 0-tetracarboxylic-3,4,9, 1 0-dianhydride 

(PTCDA), Tetrahydrofuran (THF) (99.9% without any preservatives), n-propanol, 

Dimethylformamide (DMF), Lithium hydroxide monohydrate (LiOH.H20) were 

purchased from Sigma Aldrich. Potassium hydroxide (KOH) and Sodium hydroxide 

(NaOH) were purchased from Fischer Scientific. Deionized (DI) water was used for all 

the experiments. 

The highly water miscible fluorescent green solution of tetrapotassium salt of 

PTCA (Ka-PTCA) is obtained by reacting PTCDA powder with potassium hydroxide 

0 

(KOH) in water at high temperature (90 C). 

Water 
gooc 

Figure 6.1 Synthesis of highly water miscible ~-PTCA. 

K4-PTCA 

Briefly, 7 mg (17.84 J.1II10les) dark red PTCDA powder was taken in 40 ml vial. 

Separately, 5 mg/ml stock solution of KOH in water was prepared. Exactly 1 m1 of this 
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stock solution (exactly 5 equivalents of KOH) was added to the previously weighed 

PTCDA powder. Additionally, 2.5 ml of water was added to this vial to make the total 

volume of the water 3.5 ml. The vial was sonicated so as to homogeneously disperse the 

solid PTCDA powder. This red dispersion was then heated on a hot plate at 80°C for 30 

minutes. A highly water miscible fluorescent yellowish green solution of K4-PTCA was 

formed. This solution was also occasionally sonicated during heating so as to ensure that 

all the PTCDA is converted into ~-PTCA. This solution was then allowed to cool at 

room temperature. Thus, a 3.5 ml aqueous solution of- 3 mg/ml of~-PTCA was ready 

for the self-assembly process. 

6.3 Self-assembly of ~-PTCA 

6.3.1 Role of solvent used for aggregation 

In order to study the self-assembly of ~-PTCA by nucleation and growth 

process, several solvents that can be miscible with water in all proportions were screened. 

Solvents such as tetrahydrofuran (THF), ethanol, methanol, n-propanol, acetone, 

dimethylformamide (DMF), dimethylsulfoxide (DMSO) were attempted to aggregate 

these salts. We found that only the dropwise addition ofTHF (- 35ml) to 3.5 ml aqueous 

solution of~-PTCA (- 3 mg/ml) with stirring leads to the formation of very uniform lD 

nanostructures of ~-PTCA. Scheme 6.1 depicts the various stages of assembly process. 

When a drop of this dispersion (in THF) was cast on the glass slide and observed under 

the optical microscope, the bundles of lD fibers were seen floating in the solution. As 

soon as THF starts evaporating, the concentration of water increases and the fibers being 

highly soluble in water gets completely destroyed. In order to form stable fibers of ~­

PTCA the removal of THF and water was considered to be a critical step. This was 
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achieved by extracting the pre-aggregated fibers of K.t-PTCA (in THF) in n-propanol. 

This procedure effectively removes water and THF from the medium, and n-propanol 

being non-volatile solvent renders stability to the fibers upon drying. The morphology of 

these fibers was then analyzed by the SEM and TEM investigation. 

The K.t-PTCA in water used for the formation of fibers was also aggregated by 

using other poor solvents like n-propanol, methanol and ethanol. The detailed protocol is 

mentioned in the experimental section. The resulting aggregates were then extracted in n­

propanol so as to retain the stability and were further analyzed by the SEM. 

6.3.2 Protocol for the self-assembly of ~-PTCA into lD nanofibers 

THF was added dropwise to the stirring solution of the previously made 3.5 m1 of 

-3 mg/ml of K.t-PTCA in water in a 40 ml vial. There was uniform mixing and the 

solution remained homogeneous up to about 10 ml THF addition. With further dropwise 

addition of THF, there was an onset of aggregation and yellowish orange fluffy 

precipitate started forming in the solution. When the specimen in the vial was excited 

using a hand held UV lamp the aggregates were seen to be dispersed in fluorescent green 

solution. This fluorescence was attributed to the unassembled K.t-PTCA, which remained 

homogenously dissolved in solution. As more and more THF was added, more and more 

molecules of K.t-PTCA self-assembled. The complete aggregation of the entire salt 

occurs upon addition of -35 ml THF, confirmed by complete quenching of the 

fluorescence. The yellowish-orange fluffy aggregates of K.t-PTCA were found to be 

uniformly dispersed in the THF : water mixture. 
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Scheme 6.1 Detailed experimental protocol followed for the self-assembly of ~-PTCA 
into 1 D stable fibers by the solution based self-assembly process. A 3.5 ml homogeneous 
solution of~-PTCA in water (a). THF was added dropwise to the stirring solution of~­
PTCA in water (b) and there was an onset of aggregation (c). As more THF was added, 
all the ~-PTCA molecules self-assembled (d) and there was fluorescence quenching. In 
order to remove water, the fibers were allowed to settle, the upper portion of THF was 
discarded using pipette and fresh THF was added. Two such extractions were carried out 
using THF to remove water (d, e). Then THF was removed completely (method not 
shown here but explained in detail in the experimental protocol) and these fibers were 
then suspended in n-propanol (f). The fibers were made devoid of residual water and 
THF by final 3 extractions using n-propanol by settling the fibers, removing the upper 
clear layer of n-propanol and re-dispersing in fresh n-propanol (f,g) . Finally, the fibers 
were then dispersed in n-propanol for further characterization. 

In order to form stable fibers of the ~-PTCA, the removal of water and THF 

from the system was an essential process. Since, water is highly miscible in THF; several 

extractions were initially carried out in THF. For this purpose, the vial containing the 

fibers of~-PTCA dispersed in THF and water mixture was allowed to stand undisturbed 

for an hour. The bundles of fibers slowly settle down in a period of 1 h and a clear layer 

of THF water mixture was formed at the top. This top portion of clear THF :water mixture 

was removed carefully using a pipette and then the fibers were again dispersed in fresh 

THF. Again the fibers were allowed to settle, the upper clear layer of THF was discarded 

using a pipette and the fibers were dispersed in fresh THF. This process was repeated 



115 

atleast three times. After final extractions in THF, the fibers at this stage were suspended 

in ~ 10 ml THF. In order for the stabilization of the fibers, the extraction process was now 

again carried out using n-propanol in a similar way as mentioned above. Upon removal of 

THF the aggregates remain dispersed in n-propanol. Casting of this suspension now 

allows for obtaining the self-assembled fibers composed of ~-PTCA salts. The 

extraction using n-propanol is repeated three times to obtain stable fibers. The 

morphology of this sample was then examined by SEM and TEM. 

6.3.3 Morphology of the aggregates of ~-PTCA 

The SEM and TEM investigation of the aggregates using the THF as poor solvent 

and subsequent extraction in n-propanol revealed the formation of very well-defined 

fibers of nearly uniform diameter (~100 nm). The lengths of the fibers were between 8-10 

f.lm (Figure 6.2). 

We also found that instead of THF, when self assembly was carried out using n­

propanol or methanol (procedure mentioned in the experimental section), 3D faceted 

crystals were formed whereas ethanol lead to the formation of 2D sheets (Figure 6.3, 6.4 

and 6.5). These experiments (assembly in different solvents) highlight the importance of 

solvent towards controlling the molecular interactions responsible for the formation of 

morphologically defined structures. 
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Figure 6.2 Fibers of ~-PTCA formed by dropwise addition of THF to the aqueous 
solution of~-PTCA and subsequent extraction inn-propanol. (a) (b) (c) SEM images at 
different magnifications (d) TEM image of bundles of fibers. 

Figure 6.3 3D faceted crystals of ~-PTCA formed by dropwise addition of n-propanol 
to the solution of ~-PTCA in water and subsequent extraction in n-propanol. (a-d) SEM 
images at different magnifications. Samples were prepared by casting a drop of the 
dispersion on the silicon wafer. 
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Figure 6.4 2D Sheets of ~-PTCA formed by dropwise addition of ethanol to ~-PTCA 
in water and extraction in n-propanol. (a-d) SEM images at different magnifications. 
Samples were prepared by casting a drop of the dispersion on the silicon wafer. 

Figure 6.5 Rod and flower like crystals of K4-PTCA formed by dropwise addition of 
methanol to the solution of ~-PTCA in water and subsequent extraction in n-propanol. 
(a-d) SEM images at different magnifications. Samples were prepared by casting a drop 
of the dispersion on the silicon wafer. 
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6.3.4 Factors affecting the self-assembly of ~-PTCA 

The sequence and manner of addition of THF, amount of KOH and water in the 

initial solution was also found to be critical to obtain very uniform diameter 1 D 

nanofibers of ~-PTCA. 

6.3.4.1 Sequence and manner of addition: 

When THF was directly poured into this 3.5 ml aqueous solution of K4-PTCA 

without any stirring, there was immediate onset of aggregation and within few minutes 

the entire solution was aggregated. THF and water were removed from the system 

completely and all the fibers were finally dispersed inn-propanol. When a drop of this 

solution was cast on silicon wafer and examined under SEM, large size distribution in the 

dimensions of the fibers was observed (Figure 6.6). 

Figure 6.6 Effect of rapid addition of THF to the homogeneous solution of K4-PTCA in 
water without any stirring. 

If 3. 5 ml aqueous solution of ~-PTCA was dropwise added to excess THF (- 3 5 

ml) with stirring, there was rapid formation of yellowish orange aggregates. Water and 

THF were removed from these aggregates and the sample was then cast on silicon wafer 

and examined under SEM. The SEM revealed the formation of mixture of non-uniform 
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diameter fibers and ill-defmed seeds (Figure 6.7). The diameter of these fibers ranged 

from few nanometers to few microns. This was due to rapid non-uniform aggregation 

upon dropwise addition of~-PTCA to a huge excess of poor solvent (THF). 

Figure 6.7 Effect of dropwise addition of ~-PTCA salt in water to ~35 m1 THF with 
stirring. 

Only the dropwise addition of THF to the stock solution resulted in the formation 

of uniform diameter self assembled 1 D nanofibers of~-PTCA. 

6.3.4.2 Amount of water and KOH in the K4-PTCA solution 

When the amount of water was decreased to less than 3.5 ml for the same amount 

of ~-PTCA used in previous experiments, the rate of aggregation upon addition of THF 

was faster and there was non-uniform growth of fibers. Also, if the amount of KOH used 

to form ~-PTCA from PTCDA (7 mg) was increased in the same volume of water (3.5 

ml), then best quality fibers were formed until 5 mg KOH. Beyond 5 mg KOH, there was 

formation of approximately 1: 1 mixture of large size distribution 1 D fibers and random 

seeds. This was probably because of increase in solubility of the ~-PTCA in water and 

hence inefficient aggregation in THF, which upon extraction in n-propanol lead to the 

formation 3D crystals along with fibers (Figure 6.8). Thus, it was very important to use 
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exactly 5 equivalents of KOH while forming K4-PTCA from 7 mg PTCDA in 3.5 m1 

water, which on self assembly leads to very uniform diameter fibers. 

Figure 6.8 Effect of KOH on the self-assembly of ~-PTCA. For this purpose, 7 mg 
KOH was used instead of 5 mg to form ~-PTCA in water starting from 7 mg PTCDA 
and this solution was self-assembled leading to mixture of large size distribution fibers 
and seeds. 

6.3.5 Role of potassium ion on the self-assembly of Kt-PTCA 

In order to study the effect of metal ion on the self-assembly of tetra alkali metal 

salt of PTCA, two other highly water miscible salt of PTCA namely tetralithium salt of 

PTCA (Li4-PTCA) and tetrasodium salt of PTCA (Na4-PTCA) were synthesized. As 

explained above for ~-PTCA, the Li4-PTCA and N~-PTCA in water were prepared as 

follows: Using a 1 ml syringe, 0.75 ml of 5 mg/ml solution of Li0H.H20 in water 

(exactly 5 equivalents of LiOH.H20, 89.2 J.lmoles) was added to 7 mg PTCDA (17.84 

J.lmoles) in a 40 ml vial. The total volume of water in this vial was made 3.5 ml by adding 

0 

extra 2.75 ml water and this red dispersion was heated at 80 C for 30 min to get a 3.5 ml 

aqueous solution of Li4-PTCA. Similarly, 0. 71 ml of 5 mg/ml solution ofNaOH in water 

(exactly 5 equivalents ofNaOH) was added to 7 mg PTCDA (17.84 J.lmoles) in a 40 ml 

vial using a 1 ml syringe. Additional 2.79 ml of water was added to this vial to make the 
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total volume of water as 3.5 ml and this red dispersion was heated at 80°C for 30 min to 

get 3.5 ml aqueous solution of N(4-PTCA. These solutions were cooled at room 

temperature and then used further for self-assembly process. 

The aqueous solutions ofLi4-PTCA and N(4-PTCA were assembled in the similar 

way as that ofl<.t-PTCA and extracted inn-propanol as explained above for fibers ofl<.t-

PTCA. The SEM of these samples revealed only spherical, ill-defined morphology and 

not single fiber morphology was observed in both the cases (Figure 6.9). Moreover, 

similar morphology was obtained irrespective of the solvent used (THF, methanol, 

ethanol and n-propanol). These experiments suggest the critical role of the K+ for the 

formation of ordered lD nanostructures. 

Figure 6.9 (a), (b) Random spherical morphology formed by dropwise addition of THF 
to the Li4-PTCA in water and subsequent extraction in n-propanol at different 
magnifications. (c) ,(d) Random ill-defined aggregates formed due to the dropwise 
addition of THF to the N(4-PTCA in water and subsequent extraction in n-propanol at 
different magnification. There was complete absence of 1 D fiber in case of self-assembly 
of both the Li4-PTCA and N(4-PTCA salts in water using THF. 
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6.4 Optical properties of ~-PTCA in solution 

The UV-visible spectrum of aqueous solution of K4-PTCA exhibits the 0-0, 0-1 , 

0-2 transition at 466, 438 and 412 nm respectively. The fluorescence spectrum showed 

the same peak structure in mirror image to that of the absorption. However, upon 

aggregation in THF the 0-1 , 0-2 transitions were enhanced in comparison to the 0-0 

transitions in the UV -spectra. Furthermore, a small red shift in the 0-0 transition is 

observed. These changes imply electronic coupling among the individual ~-PTCA 

molecules. The coupling could also be inferred by the strong quenching of the 

fluorescence signals upon aggregation in THF (Figure 6.1 0). 
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Figure 6.10 UV-visible absorption (a) and florescence (b) spectra of~-PTCA (5 J.!M) in 
homogeneous solution (water) and poor solvent (THF).The fluorescence spectra was 
obtained by excitation at 430 nm. The absorption and fluorescence spectra are both 
normalized at the 0-0 transition maximum. 

6.5 Importance of interactions and environment in the self-assembly 

A key challenge in the self-assembly of 1 D structures lies in the ability to control 

the organization in a specific directions. In most organic systems there are more than one 

possible molecular interaction and thus the control for the formation lies in the ability to 
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allow favorable interactions along the long axis of the lD structure rather than the lateral 

associations that can lead to the disruption of the structures. For e.g., in case of PTCDI 

the formation of lD structure have been found to be a balance between the packing of the 

molecules by n-stacking interactions and the lateral side-chain association. 141 In case of 

the perylene salts explored here there are again more than one possible molecular 

interaction. The key molecular interactions responsible for the ordered structures are 

hydrophobic, n-stacking, and electrostatic interactions (ion-dipole, ion-solvent, and ion­

molecule) interactions. The roles of the interactions and the environments responsible for 

the formation of the ordered structures are discussed below. 

The role of environment for the formation of stable assembly has also been found 

to be critical. Though the lD fiber structure was already formed in THF, upon 

evaporation the fiber morphology was destroyed because of the evaporative- cooling 

effect. However, the fiber morphology could be stabilized in the n-propanol solvent likely 

because no free molecules of the salt were present. The removal of THF and water further 

facilitates the ordered morphology to be stable in n-propanol and the evaporation does 

not allow for the destruction of the morphology (since the boiling point of n-propanol is 

closer to water). 

Furthermore, the role of ion has also been found to be critical. Most of the studies 

thus far on the formation of ion-perylene structures have been performed using vapor 

phase methods wherein the perylene molecules are vaporized and deposited onto salt 

surfaces (e.g. NaCl, KCl etc.).206•232 In these structures it has been found that the metal 

ions coordinate with the 0-atoms in the carbonyl groups and allow for the formation of a 

square phase. In case of solution based environments the situation is rather different. The 
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ions are strongly solvated in an aqueous environment. 233•234 In order for stabilizing the 

molecular interactions the aggregating solvent must first overcome massive solvation 

energies before allowing the molecular interactions to occur. Thus, the choice of the 

solvent for aggregation also becomes very critical. THF being highly non-polar and 

miscible with water in all proportions allows for maximizing the molecular interactions. 

On the other hand solvents such as methanol, ethanol, and n-propanol also interact with 

water molecules via H-bonding interactions and are therefore unable to overcome the 

solvation energy of the ions. The specific cases of K-salts for the morphology control in 

different solvents are discussed below. The formation of ordered lD structure is best 

facilitated in THF solvent. Furthermore, the solvation energy is the most for Li and least 

for K. 233•234 The aggregation in the aqueous medium will be most favored for the K ions, 

owing the subtle balance between the size ofthe ion and the solvation energy. The sizes 

of the ions have also been found to be critical for the realization of organized assemblies. 

The rates of aggregation are the most for Li > Na > K > Cs, as observed by the time it 

takes for the precipitation to occur upon addition of the THF solvent. In case of Cs the 

addition of THF does not lead to any precipitation at all implying a very stable salt at all 

concentrations. This is because of the extremely large size of the Cs + ion. The Cs-salt 

used here as a control was synthesized and processed by the same protocols mentioned 

above. However, in case of Li and Na the aggregation was almost instantaneous and the 

extreme precipitation of the molecules likely results in disordered structures as observed 

by the morphological investigations. The aqueous environments are mainly responsible 

for the increased hydrophobic and 7t-stacking interactions amidst the 7t-rich perylene 

cores. 
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The formation of lD wire structures from THF, sheets from the K-salts from 

ethanol, and 3D crystals from methanol and n-propanol further substantiate the role of 

solvents used in the self-assembly. The formation of sheets in ethanol has been observed 

for the tripotassium salt ofPTCA by Colfen et al.228 when no additive (responsible for lD 

structure) was used. Such an observation further corroborates the fact that the THF 

solvent is playing a vital role in not only stabilizing the molecular interactions but also 

participating in the formation of the assembled structures. In the previously shown case 

of wires from PTCAPS the additive played a pivotal role of directing the self-assembly 

by 7t-stacking interactions leading to formation of lD structures.228 It has been previously 

found that solvent molecules can form complex with rigid 7t-structures (such as 

anthracene and perylene) thereby leading to controlled crystallization of the 1t-rich 

structures.Z35 Indeed, THF molecules can be trapped within the wires and act as a 

directing agent leading to the formation of the 1 D structures. 

6.6 Chemical modifications of fibers of ~-PTCA 

The next step was to investigate if it was possible to chemically modify the fibers 

of~-PTCA and study the changes in morphology. Any changes in the dimension of the 

fibers after the chemical modification can be attributed to the processing condition 

employed and the interaction between the new chemical species generated in the fiber 

morphology. Typically, the self-assembled materials often would revert back to 

molecular state or when converted lead to destruction of the morphology. In order to 

carry out the chemical transformation of the lD structures of K-PTCA the known 

chemistry was used Figure 6.11. Two different sets of conditions were adopted for the 

chemical transformation of the assembled salt structures. To this end, here the assembled 
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fibers of the salt were reacted with acid to observe the morphology and the chemical 

entities responsible for the formation of the ordered structures. 

Initially, concentrated hydrochloric acid (HCl) was explored for chemical 

modification of fibers of~-PTCA and heating the resulting dispersion at 80°C. Usually, 

this step in the case of homogeneous solution of ~-PTCA in water, leads to the 

formation of PTCA and subsequently to PTCDA because of the ring closing at high 

temperature.220 But as soon as HCl was added to the dispersion of fibers inn-propanol, 

because of the presence of water in HCl, all the fibers destroyed. Thus, this strategy of 

modification of the fibers was found to be inappropriate for this system. 

The synthesis of perylene-3,4,9,10-tetracarboxylic acid monoanhydride mono­

potassium salt from ~-PTCA in water has been widely studied.117 In the synthesis of 

perylene-3,4,9,10-tetracarboxylic acid monoanhydride mono-potassium salt, glacial 

acetic acid was added dropwise to the homogeneous solution of ~-PTCA in water at 

80°C. The Bordeaux colored perylene-3,4,9,10-tetracarboxylic acid monoanhydride 

mono-potassium salt, 4 being highly immiscible in water precipitated out of the solution 

which was then filtered and washed. Thus, glacial acetic acid was added to the ~-PTCA 

fibers in propanol and studied under two set of conditions. 

K..-PTCA,J 

Figure 6.11 Scheme for the synthesis of perylene-3,4,9,10-tetracarboxylic acid 
monoanhydride mono-potassium salt, 4. 
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Following the extractions and obtaining stable fibers of K4-PTCA, the weight of 

~-PTCA fibers was ----10 mg which were dispersed in ----15 ml n-propanol, 40 J.!l of glacial 

acetic acid (8 times excess) was added. The color of the dispersions at this stage changes 

from yellowish orange to dark orange. This reaction mixture was then processed using 

two set of condition. In the first condition, the reaction mixture was stirred at room 

temperature (R T) and in the other the reaction mixture was stirred at higher temperature, 

0 

80 C (HT) by immersing the vial in an oil bath (Figure 6.12). After 48 h of RT and HT 

processing, the resulting morphologies were examined by SEM and TEM. The difference 

in the colors of the initial ~-PTCA fibers, final RT and HT processing fibers suggested 

that all these fibers were composed of entirely different chemical species (Figure 6.12). 

The resulting aggregates were studied for their morphological changes by SEM and 

TEM. 

Figure 6.12 (a) Fibers of ~-PTCA dispersed inn-propanol, (b) After addition of 40 J.Ll 
glacial acetic acid there is change in color from yellowish orange to dark orange, (c) 
Dispersion of fibers inn-propanol obtained by room temperature processing after 48 h. 
The color changes to dark brown indicating some chemical transformation. (d) 

0 

Dispersion of fibers inn-propanol by high temperature processing (80 C) after 48 h. The 
color of the dispersion is red indicating that completely different chemical species is 
formed as compared to room temperature processing. 
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In case ofRT processing, the diameter of the fibers remained unchanged (1 00 nm) 

but the cross section of these fibers became more circular in nature, in comparison to the 

original ~-PTCA morphology. Whereas, in case of HT processing the initial 100 nm 

fibers gets transformed into very uniform 20 nm diameter fibers (Figure 6.13). A time 

dependent study was carried out to see the changes in the morphology due to addition of 

acetic acid in the course of 48 h under room temperature (RT) and high temperature (HT) 

processing conditions. For this purpose, samples were cast on silicon wafer at different 

time intervals after the addition of acetic acid in case of both the processing conditions. 

Figure 6.13 (a) SEM image and (b) TEM image of the fibers obtained by RT processing 
after 48 h. The diameter of the fibers remained unchanged however, the cross section of 
the fibers became more circular in nature. (c), (d) TEM images of the fibers obtained by 
HT processing after 48 h. The diameter of the fibers changed to 20 nm. 
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6.6.1 HT processing of fibers of ~-PTCA 

The time dependent TEM images for HT processing are shown in Figure 6.14. In 

0 
case of HT processing (80 C), immediately after 5 minutes of glacial acetic acid addition, 

there is destruction of the columnar aggregate with seeds appearing on the fiber structure 

(Figure 6.14b). At this stage the width of the structures are comparable to those of the 

original fibers of the K.-PTCA. After about 5 h, TEM investigations reveal the formation 

of small 20 nm fibers emerging out of the broken columnar bundles of 100 nm fibers 

(Figure 6.14c ). At this stage there was mixture of 20 nm and 100 nm broken columnar 

bundles of fibers. When the TEM of the same dispersion of fibers was taken after 24 h 

heating at 80°C, almost 95% ofthe fibers were 20 nm in diameter (Figure 6.14d). The 

dispersion was allowed to stir at this temperature for further 24 h. When the TEM of this 

dispersion of fibers was taken after total 48 hour of acetic acid addition and heating at 

80 ° C, there were exclusively 20 nm fibers in all the areas of the TEM grid (Figure 6.14e ). 

The diameter of the fibers changed from 100 nm to 20 nm and the length also changed to 

less than a micron under these HT processing conditions. The color of the dispersion of 

fibers in n-propanol after 48 h heating in presence of acetic acid was dark red. When a 

drop of this dispersion was suspended in water, there was no destruction of fiber 

morphology. In order to check the susceptibility of the fibers towards water, a sample 

was casted on TEM grid and allowed to dry and this grid was then dipped in water for 5 

minutes and dried. When this grid was examined under the TEM, there was no 

destruction of fibers observed and all the fibers were still 20 nm in diameter (Figure 

6.14f). 
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Figure 6.14 TEM Images of (a) ~-PTCA fibers before acetic acid addition, (b) after 5 
min, (c) after 5 h, (d) after 24 h, (e) after 48 h acetic acid addition, (f) after dipping and 
drying the TEM grid casted with sample in water. 
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The 20 nm fibers obtained by HT processing of the Kt-PTCA salt were 

completely destroyed in DMF and a homogenous fluorescent green solution of the 

species present in the fibers was formed. PTCDA powder and perylene-3,4,9,10-

tetracarboxylic acid monoanhydride mono-potassium salt are completely immiscible in 

DMF. This suggested that the final components formed in 20 nm fibers due to HT 

processing of Kt-PTCA fibers were not composed of either of these two components. 

Thus, the ring closing did not take place under these HT conditions. This is obvious 

because, the dissociation constant of acetic acid inn-propanol as against water is very 

low and Kt-PTCA fibers are already in aggregated form inn-propanol. This is contrary to 

the reaction of acetic acid with the homogenous solution of K4-PTCA in water at 80°C 

leading to the formation ofperylene-3,4,9,10-tetracarboxylic acid monoanhydride mono­

potassium salt. Thus, the ring closing failed in case of aggregated fibers of Kt-PTCA in 

n-propanol under HT processing conditions upon addition of acetic acid. In order to 

explore the chemical species present in these 20 nm fibers we synthesized PTCA by a 

standard procedure as mentioned in chapter 5 and compared its FTIR and UV visible 

spectrum with the fibers made by HT processing. The standard PTCA powder was highly 

miscible in DMF. When UV visible spectra of this solution in DMF was recorder it 

showed the presence of 0-0 transitions at 517 nm, 0-1 transitions at 483 nm, 0-2 

transitions at 451 nm. This UV visible spectrum exactly matched with the spectrum of the 

homogeneous solution of the species present in HT processing fibers in DMF (Figure 

6.15).This suggested that the components present in the HT processing fibers might be 

PTCA. 
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Figure 6.15 UV-Visible spectra of the homogeneous solution of species present in HT 
processing fibers in DMF and standard PTCA solution in DMF. Both the spectra match 
with each other suggesting that the species present in HT fibers is PTCA. 

To further confirm the presence of PTCA in the structure of 20 nm fibers, FTIR 

was carried out. The solid powders of fibers of K4- PTCA, standard PTCA and fibers after 

HT processing were separately grounded with KBr powder and their FTIR was recorded 

(Figure 6.16). The carbonyl of the carboxylate ions should appear at lower wavenumber 

whereas the carbonyl of the free carboxylic acid should appear at higher wavenumber. 

The FTIR of ~-PTCA showed the carbonyl stretching at around 1538 cm-1 and 1391 

cm-1 (narrow) whereas the FTIR of fibers obtained at HT processing showed the carbonyl 

stretching at around 1771 cm-1 (broad). Moreover, the FTIR spectra of standard PTCA 

matches exactly with of the fibers obtained after HT processing. Both of them show 

distinctive carbonyl stretch at 1771 cm-1 (broad) and OH stretching of the free carboxylic 

acids at 3122 cm-1 (narrow) and 3600 cm-1 (broad). Thus, it can be concluded that the 

chemical transformation of the ~-PTCA fibers (100 nm, widths) under HT conditions 

results in the formation of the fibers of PTCA with a width of 20 nm. This is likely 
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because the PTCA molecules can now, as they are formed, undergo H-bonding 

interactions in addition to the hydrophobic and the p-stacking interactions leading to the 

formation of organized 1 D nanostructures. These results highlight the first example for 

the use of self-assembled structures of perylene salts in order to achieve a chemical 

product which is different from the bulk reactions of the salts under same conditions. 

- l'lbers lifter HT Processing 
- l'lbers of K4.f'TCA 

500 1000 1500 2000 2100 3000 3500 4000 
Wavenumbers (cm-1) 

500 1000 1500 2000 2500 3000 3500 4000 

Wavenumbers (cm"1) 

Figure 6.16 (a) FTIR spectra of the HT processing fibers and its comparison with the 
FTIR spectra of fibers of~-PTCA. (b) FTIR spectra of standard PTCA powder and its 
comparison with the FTIR spectra of Fibers after HT Processing. 

6.6.2 RT processing of fibers of K.-PTCA 

The time dependent SEM images for RT processing are shown in Figure 6.17. In 

case of RT processing, immediately after 5 min addition of acetic acid, the SEM revealed 

the formation of small rod shaped seeds on the surface of the fibers indicative of some 

chemical transformation. The entire surface of these fibers was densely decorated with 

these rod shaped seeds (Figure 6.17b ). These rods grow orthogonal to the long axis of the 

~-PTCA fiber axis. After 1 h of glacial acetic acid addition, the density of these seeds on 

the surface of the fibers decreased and the shape of the seeds became more spherical 
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Figure 6.17 SEM Images of (a) ~-PTCA fibers before acetic acid addition, (b) after 5 
min, (c) after 1 h, (d) after 5 h, (e) after 24 hand (f) after 48 h acetic acid additions. 
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(Figure 6.17 c). After 5 h of glacial acetic acid addition, the size and the density of these 

seeds decreased drastically (Figure 6.17d). Even after 24 h stirring in presence of glacial 

acetic acid (Figure 6.17e ), there were some seeds present on fibers which completely 

disappeared after 48 h stirring (Figure 6.17f). The surface of the fibers after 48 h stirring 

in presence of acetic acid became very smooth and uniform. The lengths and widths of 

the fibers remain unchanged. However, the width of these fibers became circular (100 

nm) as opposed to the rectangular width of the ~-PTCA fibers. After 48 h addition of 

acetic acid to the dispersion of fibers of ~-PTCA, the color slowly changed from dark 

orange to dark brown. 

Upon casting a drop of the RT processing dispersion is suspended in water the 

fibers morphology was completely destroyed as the species present in these fibers 

dissolved in water. When immediately observed under the UV lamp, this homogeneous 

solution exhibited a green fluorescence, expected for the homogeneous dissolved 

molecules. However, within a minute the fluorescence of this suspension in water 

suddenly disappeared and some insoluble material was formed. This is because of the use 

of excess acetic acid in the initial condition. The fiber product was washed with large 

amount of propanol to remove all of the excess acid. The resulting residue retains the 

morphology of the aggregates after RT processing and homogeneously dissolved in water 

exhibiting a green fluorescence. This fluorescence did not disappear and remained 

permanent and there was no insoluble material formed. These observations suggested that 

the components present in the fibers obtained after RT processing were still in the form 

of some kind of potassium salt. 
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The dark brown colored K2-PTCA (synthesized, see experimental) had color 

similar to the R T processing fibers. When UV visible spectra of this standard K2-PTCA 

in water was recorder it showed the presence of 0-0 transitions at 467 nm, 0-1 transitions 

at 440 nm, 0-2 transitions at 415 nm. This UV visible spectrum exactly matched with the 

homogeneous aqueous solution of species present in the solid powder of RT processing 

fibers (Figure 6.18). This suggested that the components present in the fibers by room 

temperature processing might be Kr PTCA. 
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Figure 6.18 UV-Visible spectra of the homogeneous solution of species present in RT 
processing fibers in water and standard K2-PTCA solution in water. Both the spectra 
match with each other suggesting that the species present in R T fibers might be K2-
PTCA. 

To further confirm the presence of K2-PTCA in the structure of 1 00 nm fibers, 

FTIR of standard K2-PTCA powder and RT processing solid powder of fibers was carried 

out by grounding them separately in KBr powder (Figure 6.19). The FTIR spectrum of 

solid powder of standard K2-PTCA showed the presence of -OH stretch of free 

carboxylic acid at around 3416 cm-1 (broad) and two bands of carbonyl stretching at 
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around 1759 cm-1 and 1724 cm-1
• These two carbonyl stretching bands are observed due 

to the presence of carboxylate and free carboxylic acid groups both present in the 

structure of K2-PTCA. The protonation of the ~-PTCA fibers allows for the H-bonding 

interactions within the resulting acidic structure. Thus, the chances of acetic acid 

protonating two carboxylate ions present on the opposite sides of the perylene core are 

very high. This position and nature of carbonyl stretching was completely different as 

compared to the ~-PTCA which appeared at lower wavenumber. This further proved 

that the standard K2-PTCA was indeed a di-potassium salt of PTCA (brown colored) 

which was highly miscible in water and not K4-PTCA (yellow colored). The FTIR of the 

fibers obtained at RT processing showed similar carbonyl stretching' s at around 1759 em-

1 and 1724 cm-1 and -OH stretching at around 3416 cm-1
• Thus the FTIR spectrum of 

standard K2-PTCA was an exact match of the fibers obtained at RT processing. 
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Figure 6.19 (a) FTIR spectra of the RT processing fibers and its comparison with the 
FTIR spectra of fibers of standard K2-PTCA. (b) FTIR spectra of the R T processing 
fibers and its comparison with the FTIR spectra of fibers of the HT processing fibers. 
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Thus, from the UV visible and FTIR data it was confirmed that the species 

present in the RT processing fibers was K2-PTCA whereas the species present in HT­

processing fibers was PTCA. 

6. 7 Plausible mechanism for morphology evolution by RT and HT processing 

In the R T and HT processing, glacial acetic acid was added to the dispersion of 

fibers of ~-PTCA inn-propanol. The dissociation constant of glacial acetic acid is lower 

inn-propanol in comparison to water. After 48 h stirring in presence of acetic acid at RT, 

there is slow protonation of the carboxylate groups present in the fibers. The chance of 

both the carboxylate ions at 3, 4 or 9, 10 positions (i.e. on the same side) being 

protonated is very less. This is because, as soon as one carboxylate ion is protonated with 

acetic acid, the neighboring carboxylate-ion can immediately hydrogen bond with this 

free acid. Thus, only carboxylate ions present in the opposite sides of perylene core will 

get protonated to form free carboxylic acid and their adjacent carboxylate ions will 

immediately hydrogen bond with these free acids leading to formation of K2-PTCA. This 

is a slow process and hence in the time dependant study, we observe seeds on the surface 

of the fibers even after 24 h. After 48 h, all the seeds on the surface of the fibers 

disappear indicating the completion ofthis chemical transformation (Figure 6.14). There 

is no change in the morphology or FTIR of the fibers after 48 h indicating that stable 

products have indeed been formed. The formation of seeds only on the surface of the 

original ~-PTCA structure again highlights that the formation of assembly is driven by 

the co-existence of two different structures that are in strong interaction with each other. 

However, upon completion of the reaction the process leads to the formation ofK2-PTCA 

fibers with the cross section of the assembly being circular as opposed to rectangular. 
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However, in case of HT processing, the kinetics of the protonation of carboxylate 

ions due to acetic acid in n-propanol is very fast. This is the reason why within 2 h, the 

color of the HT processing dispersion becomes brown which was similar to RT 

processing fibers after 48 h. As this dispersion of fibers in n-propanol is further heated at 

0 
80 C, the remaining carboxylate ions are completely protonated. This is clearly seen in 

the time dependant morphology evolution study, wherein, after 5 h there are 20 nm fibers 

protruding outside the broken columnar bundles of fibers (Figure 6.17). After 48 h there 

is complete reorganization of the system via strong hydrogen bonding interaction 

between free carboxylic acids of PTCA, leading to the formation of small 20 nm diameter 

fibers. 

6.8 Experimental Section 

6.8.1 Characterization 

The optical absorption spectra were obtained with a UV -3600 Shimadzu 

UVNis/NIR spectrophotometer. The fluorescence (or PL) data was obtained using a 

SPEX fluorimeter (Fluoromax-3 model). All the Fourier transform infrared spectra 

(FTIR) were obtained on FTIR-8400S Shimadzu instrument by grounding the solid 

powder of the samples with K.Br powder. Scanning electron microscopy (SEM) for all the 

samples was done on FEI Quanta 400 ESEM FEG (ESEM2). The samples for SEM were 

prepared by drying the dispersion of the aggregates inn-propanol on the silicon wafer. 

The resulting samples were then coated with gold using CRC-150 sputter coater ( 40 s) for 

SEM imaging. Transmission electron microscopy (TEM) was performed on JEOL 1230 

(acceleration voltage 120 kV), JEOL 2010 (acceleration voltage 200kV) electron 

microscope using carbon-coated copper grid which were purchased from Electron 



140 

Microscopy Sciences (EMS). All the samples for SEM/TEM were prepared by casting a 

droplet of dispersion of aggregates in n-propanol on silicon wafer or TEM grid and 

allowed to dry. 

6.8.2 Self assembly of ~-PTCA into 3D crystals 

N-propanol (approximately 35 ml) was added dropwise to the stirring solution of 

aqueous 3.5 ml ~-PTCA prepared as mentioned above. The solution remained 

homogeneous until 15 ml of n-propanol addition which showed an intense green 

fluorescence. On total 35 m1 addition of n-propanol, the solution became turbid and there 

was complete quenching of fluorescence. Immediately there were no aggregates that 

precipitated out of solution at the bottom of the vial. The vial was left to stand 

undisturbed for 3 days when most of the aggregates settled at the bottom of the vial and 

formed a solid thick layer. The upper layer of n-propanol was discarded without 

disturbing the bottom layer of the aggregates. Slowly, n-propanol was then added to this 

vial and the bottom layer was rinsed carefully so as to remove all the water trapped inside 

the aggregates. This ensured that there would be no destruction of the morphology of the 

aggregates and they would be easily examined by SEM when dried on the silicon wafer. 

The bottom thick layer of the aggregates were then suspended uniformly in the 10 m1 n­

propanol by slightly shaking the vial and the resulting aggregates were examined by SEM 

6.8.3 Self assembly of ~-PTCA into 2D sheets 

~-PTCA was self assembled using ethanol as a poor solvent as per the protocol 

mentioned for the self assembly using n-propanol as poor solvent above. After complete 

addition of n-propanol, the vial was allowed to stand for 2 days, which led to the 

formation of solid thick layer of aggregates at the bottom, which was rinsed carefully 
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several times with n-propanol so as to remove water and volatile ethanol and then 

aggregates were suspended in 10 ml n-propanol. The sample was then cast on the silicon 

wafer, dried and examined by SEM. Similarly, when ~-PTCA was aggregated using 

methanol as poor solvent by the similar procedure mentioned in case of ethanol and the 

aggregates were extracted inn-propanol, 3D flower and rod like crystals were obtained. 

6.8.4 Protocol for the self-assembly ofLi4-PTCA and Na4-PTCA 

THF (-35 ml) was added dropwise to the stirring solutions of previously prepared 

3.5 ml solution of L4-PTCA and N~-PTCA in water respectively. After about 10 ml 

addition of THF, there was rapid aggregation and the entire solution turned turbid yellow 

in both the L4-PTCA and N~-PTCA. On further addition of THF, the entire solution in 

both the cases became bright yellow which when shined with UV light did not fluoresce 

indicating the completion of the aggregation process. The rate of aggregation in case of 

L4-PTCA and N~-PTCA was much faster as compared to ~-PTCA. When a drop of 

these dispersions were casted on the glass slide and observed under optical microscope 

only random aggregates were observed floating in the solution and there was complete 

absence of fibers. The vials were then left undisturbed for about an hour when all the 

aggregates settled at the bottom. All these aggregates were then made devoid of THF and 

water and then extracted in n-propanol by the protocol mentioned above for the fibers of 

~-PTCA. A drop of these samples was then casted on the silicon wafers separately and 

examined by SEM. 
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6.8.5 Synthesis of standard PTCA and K2-PTCA 

In order to determine the chemical species present m the fibers made by room 

temperature and high temperature processing, standard PTCA and K2-PTCA was 

synthesized as follows: 

(a) Synthesis of standard perylene tetracarboxylic acid (PTCA) 

1 g of PTCDA powder (2.54 mmoles) was dispersed in -500 ml water and 715 

mg ofKOH (12.74 mmoles) was added to this dispersion. This dispersion was heated on 

0 

hot plate at 80 C for 1 h to form a fluorescent green homogeneous solution of Kt-PTCA 

dissolved in water. The solution was allowed to cool and filtered so as to remove trace 

amount of unreacted PTCDA if any and then 1M HCl was added dropwise to this 

fluorescent green solution at room temperature. There was precipitation of highly water 

immiscible PTCA in the solution. 1M HCl was kept on adding until all the Kt-PTCA is 

converted into PTCA and there was complete disappearance of green fluorescence in the 

solution. This dispersion of PTCA was stirred at room temperature for further 1 h and 

kept away from heat. This dispersion was then filtered using a 0.2 Jlm pore size filter 

paper and given several washings with water until the pH of the washings was neutral. 

The reddish orange solid PTCA powder was dried under vaccum and kept away from 

heat. Yield= 99%. IR (KBr) Vmax 3618, 3122, 1763, 1586, 1296, 857 cm-1. 

(b) Synthesis of dipotassium salt of PTCA (K2- PTCA) 

Briefly, 7 mg of previously synthesized standard PTCA powder was taken in a 

vial and exactly 2 equivalents of KOH (0.36 ml of 5M KOH solution) was added to it. 

Extra 2 ml water was added to this vial so as to form a highly water miscible 

homogeneous concentrated solution. This salt of K2-PTCA homogeneously dissolved in 
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water was than precipitated using n-propanol. The dark brown colored K2-PTCA settled 

at the bottom of the vial in 1 day. The upper layer of the clear n-propanol was discarded 

using a pipette and the solid residue at the bottom of the vial was filtered using a 0.2 J.1lll 

filter paper and given several washing with n-propanol. The filtered solid was then dried 

under vacuum. This dried brown colored solid powder of K2-PTCA was completely 

miscible in water. The chances of this salt being a mixture of K4-PTCA and free PTCA 

was very less, because this product was not bright yellow in color (color of solid K4-

PTCA is bright yellow) and neither it was miscible in DMF (PTCA is miscible in DMF 

and immiscible in water). Thus, under the conditions in which it had been synthesized it 

had to be K2-PTCA. Yield = 98%. IR K2-PTCA (KBr) Vmax 3422, 1759, 1724, 1591, 813 

cm-1• 

6.9 Conclusions 

Thus in conclusion, the self-assembly of tetra potassium salt of PTCA into 1D 

nanofibers in a controlled environment is reported for the first time. The self-assembly of 

the ~-PTCA salt is driven by hydrophobic, 7t-7t stacking and ion-solvent interactions. 

Furthermore, assembly was indeed an ion-mediated self-assembly and 1 D nanostructures 

are formed only in case of tetrapotassium salt of PTCA whereas the tetra lithium salt and 

tetra sodium salt ofPTCA lead to random morphology. Moreover, it was also possible to 

chemically modified the fibers of tetrapotassium salt of PTCA into fibers of two different 

species - perylene tetracarboxylic acid (PTCA) and di-potassium salt of PTCA (K2-

PTCA) having 20 nm and 100 nm diameters respectively. These assemblies may have 

better performances as compared to the fibers based on perylene diimides due to absence 

of any insulating alkyl/aryl side chain attached to the perylene cores. This facile self-
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assembly and chemical modification process leads to the formation of chemically active 

fiber surface which can be further chemically modified to generate various hybrid 

materials. 



Chapter 7 

Summary 

145 

Various perylene based n-type organic semiconducting molecules have been 

successfully synthesized and further self-assembled into very uniform ordered lD (fibers, 

belts and wires), 2D (sheets) and 3D (crystals) structures. Different solution processing 

methods such as dispersion, two layer phase transfer at room temperature (2L-RT) and 

two layer phase transfer at high temperature (2L-HT) have been successfully utilized to 

generate these self-assembled structures. The perylene based molecules utilized for the 

self-assembly are perylene tetracarboxylic diimide (PTCDI), perylene-tetracarboxylic 

monoanhydride monoimides (m-PTCI), perylene-tetracarboxylic acid (PTCA) and 

tetrapotassium salt ofPTCA (~-PTCA). 

The self-assembly of PTCDI molecules with varymg length of side chains 

attached to the perylene core have been studied in this thesis by the 2L-HT method. It 

was found that due to slow nucleation and growth process associated with this method 

very long (few millimeters) PTCDI wires could be obtained which show very intense 

excimeric emission. These observations were attributed to the two different packing (due 

to both strong n- stacking and distorted n- stacking) present in these wires which not only 

lead to 1 D structures but also leads to very intense excimer like emission from a single 

wire. Moreover, due to the extremely large lengths associated with these wires, a single 

wire could be picked and placed easily for any device fabrication. 

The 2L-HT method was also utilized for the self-assembly of sparingly soluble 

m-PTCI molecules with varying length of side chain. This method leads to the formation 

of highly crystalline and fluorescent 2D sheets. From the optical properties coupled with 



146 

the results obtained from XRD, it is evident that atleast two types of packing are 

responsible for such 2D structures. The H-bonding, 1t-stacking and hydrophobic 

interactions are the primary driving forces for such 2D packing in these molecules. The 

2D structures developed in this thesis are the first examples of 2D self-assembly from m­

PTCI and hold promised in electronic and optoelectronic applications. The 2L-HT 

method developed in this thesis can be utilized to not only improve the solubility of the 

sparingly soluble functional materials but at the same time control their rate of 

aggregation leading to formation of long range ordered structures. Future plans with the 

2L-HT processing method includes the ability to co-assemble two different functional 

molecules (e.g. incorporation ofp-type within the framework of then-type assembly). 

In order to achieve the lD self-assembly of extremely insoluble perylene-3, 4, 9, 

10-tetracarboxylic dianhydride (PTCDA) by solution processing, the chemical reaction 

mediated self-assembly has been demonstrated for the first time. In this process, 

carbodiimide chemistry has been utilized for the conversion of highly soluble PTCA 

precursor into highly insoluble PTCDA. The most intriguing aspect of this conversion is 

that, highly crystalline lD nanofibers of highly insoluble PTCDA are formed due to this 

chemical transformation. Due to the absence of alkyl side chains, the H-bonding and 7t­

stacking interactions are attributed to the formation of such organized structures. Thus, 

this method of self-assembly open doors for the formation of ordered structures from 

other highly insoluble functional organic molecules from appropriately designed 

precursors. 

Further, m order to explore the self-assembly of perylene based molecules 

without any side chain modifications from aqueous solutions, various tetra alkali metal 
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salts ofperylene tetracarboxylic acid (M4-PTCA) were utilized for self-assembly process. 

It was found that the self-assembly in this system is an ion mediated and solvent 

mediated leading to the formation of lD, 2D and 3D self-assembled structures. Different 

non-covalent interactions such as hydrophobic, n- stacking, and electrostatic interactions 

(ion-dipole, ion-solvent, and ion-molecule) were attributed for the formation of such 

ordered structures. Further, the lD nanofibers were chemically modified in their 

aggregated into fibers of two different chemical species. This modification was found to 

lead no destruction of the morphology but there was change in the sizes of the resulting 

modified aggregates. The self-assembly for the salts of PTCA demonstrated in this work 

is a unique example for the formation of ordered structures utilizing these molecules. 

Moreover, the ability to chemically further change the characteristics is extremely 

promising for the incorporation of more complex structures to impart unique properties to 

these dimensionally controlled structures. 

Thus, overall this thesis elucidates that by appropriately designing molecules with 

various functional groups, the favorable interactions can be controlled in an appropriate 

environment (solvent) leading to the ordered structures. Further, this thesis elaborates the 

role of the processing conditions which can control the rate of nucleation and growth, 

leading to the dimension control of the self-assembly from organic molecules. Some of 

the future work would entail the fabrication of novel electronic, opto-electronic devices 

from these materials. 
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Appendices 

Appendix A. Abbreviations used 

PTCDA 

PTCDI 

m-PTCI 

PTCA 

DPTS 

DIPC 

K.-PTCA 

L4-PTCA 

Perylene-3,4,9, 1 0-tetracarboxylic dianhydride 

Perylene-3,4,9, 1 0-tetracarboxylic diimides 

Perylene-3,4,9, 1 0-tetracarboxylic monoanhydride monoimides 

Perylene-3,4,9, 1 0-tetracarboxylic acid 

4-( dimethylamino) pyridinium 4-toluene sulfonate (DPTS) 

N,N '-diisopropylcarbodiimide 

Tetrapotassium salt of perylene-3,4,9, 1 0-tetracarboxylic acid 

Tetralithium salt of perylene-3,4,9, 1 0-tetracarboxylic acid 

N~-PTCA: Tetrasodium salt ofperylene-3,4,9,10-tetracarboxylic acid 

K2-PTCA Dipotassium salt ofperylene-3,4,9,10-tetracarboxylic acid 

2L-RT 

2L-HT 

SEM 

TEM 

XRD 

SAED 

FTIR 

TEM 

Two layer phase transfer at room temperature 

Two layer phase transfer at high temperature 

Scanning electron microscopy 

Transmission electron microscopy 

X-Ray diffraction 

Single area electron diffraction 

Fourier transform infrared spectroscopy 

Transmission electron microscopy 
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